National Library of Energy BETA

Sample records for dairy farm biodigesters

  1. We Energies- Livestock and Dairy Farm Electrical Re-wiring Program

    Broader source: Energy.gov [DOE]

    Any We Energies dairy farm customer can apply for assistance with a re-wiring project. We Energies would pay the first $1,000 of the project and 50 percent of remaining costs up for a total grant...

  2. Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary

    SciTech Connect (OSTI)

    Andrew Wold; Robert Divers

    2011-06-23

    At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and over 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.

  3. H2A Biomethane Model Documentation and a Case Study for Biogas From Dairy Farms

    SciTech Connect (OSTI)

    Saur, G.; Jalalzadeh, A.

    2010-12-01

    The new H2A Biomethane model was developed to estimate the levelized cost of biomethane by using the framework of the vetted original H2A models for hydrogen production and delivery. For biomethane production, biogas from sources such as dairy farms and landfills is upgraded by a cleanup process. The model also estimates the cost to compress and transport the product gas via the pipeline to export it to the natural gas grid or any other potential end-use site. Inputs include feed biogas composition and cost, required biomethane quality, cleanup equipment capital and operations and maintenance costs, process electricity usage and costs, and pipeline delivery specifications.

  4. Farm scale electrical power production from animal waste. Volume I. Final report, 30 June 1981-30 December 1983

    SciTech Connect (OSTI)

    Carpenter, P.A.

    1984-01-31

    A 1 1/2 (dry) tons per day biodigester cogeneration plant has been designed and constructed. This project is part of a federal program to promote energy conservation and the use of non-conventional energy resources. The main purpose of the project is to demonstrate that a dairy farm can generate its own power and supply excess power to a local utility. Such a facility can produce significant energy savings to livestock farms and small communities by allowing them to get energy from raw animal and human waste. Also, an odorless by-product is produced that is nearly pathogenically free and has the possibility of several end uses such as: fertilizer and soil conditioner, protein-rich animal refeed, livestock bedding material, and aquatic food for fish farming. 53 references, 18 figures, 4 tables.

  5. SEP Success Story: Farming Out Heat and Electricity through Biopower |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Farming Out Heat and Electricity through Biopower SEP Success Story: Farming Out Heat and Electricity through Biopower December 16, 2011 - 11:46am Addthis Cows like these in Skagit County, Washington, supply the biodigester developed by Kevin Maas of Farm Power up to 70,000 gallons of manure per day. The newest Farm Power facility in Washington generates enough electricity to power 500 homes. Photo courtesy of sea_turtle. Cows like these in Skagit County, Washington,

  6. Farming Out Heat and Electricity through Biopower | Department of Energy

    Energy Savers [EERE]

    Farming Out Heat and Electricity through Biopower Farming Out Heat and Electricity through Biopower December 16, 2011 - 4:00pm Addthis Cows like these in Skagit County, Washington, supply the biodigester developed by Kevin Maas of Farm Power up to 70,000 gallons of manure per day. The newest Farm Power facility in Washington generates enough electricity to power 500 homes. Photo courtesy of <a href="http://creativecommons.org/licenses/by-nc-nd/2.0/">sea_turtle</a>. Cows

  7. CX-000985: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Pennsylvania Green Energy Works! Targeted Grant - Biogas - Anergy Dairy Farm BiodigestersCX(s) Applied: B1.15, B5.1Date: 02/16/2010Location(s): Lebanon County, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  8. A mixed plug flow anaerobic digester for dairy manure

    SciTech Connect (OSTI)

    Cournoyer, M.S.; Delisle, U.; Ferland, D.; Chagnon, R.

    1985-01-01

    In 1982, a ''mixed plug-flow'' anaerobic digester has been built to produce biogas from the manure of 350 dairy cows and, subsequently, to produce electricity for on-farm use only. This paper describes the digester and presents the main results of one year of technical follow-up.

  9. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  10. Fiscalini Farms Renewable Energy Power Generation Project

    SciTech Connect (OSTI)

    2009-02-01

    Funded by the American Recovery and Reinvestment Act of 2009 Fiscalini Farms L.P., in collaboration with University of the Pacific, Biogas Energy, Inc., and the University of California at Berkeley will measure and analyze the efficiency and regulatory compliance of a renewable energy system for power generation. The system will utilize digester gas from an anaerobic digester located at the Fiscalini Farms dairy for power generation with a reciprocating engine. The project will provide power, efficiency, emissions, and cost/benefit analysis for the system and evaluate its compliance with federal and California emissions standards.

  11. Karen Avenue Wind Farm II (San Gorgonio Farms) | Open Energy...

    Open Energy Info (EERE)

    Farm II (San Gorgonio Farms) Jump to: navigation, search Name Karen Avenue Wind Farm II (San Gorgonio Farms) Facility Karen Avenue Windfarm II (San Gorgonio Farms) Sector Wind...

  12. SEP Success Story: Turkey Hill Dairy: Where Energy is Not Left Flapping in

    Energy Savers [EERE]

    the Wind | Department of Energy Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind SEP Success Story: Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind December 21, 2011 - 11:57am Addthis These two General Electric wind turbines, erected in January 2011 on the Frey Farm landfill adjacent to Turkey Hill Dairy's ice cream and sweet iced tea plant in Lancaster County, Penn., are expected to produce 7.5 million kWh of electricity annually. | Photo courtesy of

  13. Tjaden Farms Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Status In Service Owner Tjaden Farms Energy Purchaser Tjaden Farms Location Charles City IA Coordinates 43.170337, -92.58944 Show Map Loading map... "minzoom":false,"mappingse...

  14. Finding Energy Efficiency and Savings on a Kentucky Farm | Department of

    Office of Environmental Management (EM)

    Energy Finding Energy Efficiency and Savings on a Kentucky Farm Finding Energy Efficiency and Savings on a Kentucky Farm September 28, 2010 - 4:00pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this project do? The project is expected to create $852,000 worth of energy savings. Alvin Frogue of Frogue Dairy has been in the dairy business for 50 years and until recently one of his top challenges was managing 250 cows with individualized care. Now $80,540 worth of

  15. On-farm biogas systems information dissemination project. Final report

    SciTech Connect (OSTI)

    Campbell, J.K.; Koelsch, R.K.; Guest, R.W.; Fabian, E.

    1997-03-01

    The purpose of this project was to study how farmers manage anaerobic digesters on three New York State dairy farms. Two years of data collected were from both plug-flow and tower-type mixed-flow digesters at regular intervals over a three-year period revealed that the financial return from the energy produced by a biogass system in the late 1980`s is marginal. Little difficulty was experienced in operation of the anaerobic digester; however, several farms utilizing congeneration to convert biogas into electricity and heat suffered from not applying maintenance to the congenerator in a timely fashion.

  16. Fiscalini Farms Biomass Energy Project

    SciTech Connect (OSTI)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and refused-feed. The ability of the dairy to produce silage in excess of on-site feed requirements limited power production. The availability of biomass energy crops and alternative feedstocks, such as agricultural and food wastes, will be a major determinant to the economic and environmental sustainability of biomass based electricity production.

  17. Farms to Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Farms to Fuel Amy Bolten Public Information Officer � Amy.Bolten@scwa.ca.gov � Farms to Fuel * Carbon Free Water by 2015 * One of the largest energy users in Sonoma County * Goal of operating Carbon Free Water system by 2015 * Diverse energy portfolio Farms to Fuel * Agriculture big part of Sonoma County * Poultry and eggs ranked 6 th in the state Farms to Fuel * Local Agriculture Statistics * 2007 Census of Agriculture - Sonoma County * -1% change # of Farms * -15% change Land in Farms *

  18. Fair Oaks Farms and AMP Americas Transform Waste into Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fair Oaks Farms and AMP Americas Transform Waste into Fuel Fair Oaks Farms and AMP Americas Transform Waste into Fuel March 7, 2013 - 9:00am Addthis Learn how an Indiana dairy fuels milk delivery trucks with compressed natural gas. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? An anaerobic digester is helping Fair Oaks Farms and AMP Americas turn agriculture waste into renewable natural gas. The natural gas will be used to fuel the fleet of

  19. Fair Oaks Farms and AMP Americas Transform Waste into Fuel | Department of

    Office of Environmental Management (EM)

    Energy Fair Oaks Farms and AMP Americas Transform Waste into Fuel Fair Oaks Farms and AMP Americas Transform Waste into Fuel March 7, 2013 - 9:00am Addthis Learn how an Indiana dairy fuels milk delivery trucks with compressed natural gas. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? An anaerobic digester is helping Fair Oaks Farms and AMP Americas turn agriculture waste into renewable natural gas. The natural gas will be used to fuel the fleet of

  20. Crave Brothers Farm

    SciTech Connect (OSTI)

    2009-10-01

    This is a combined heat and power (CHP) project profile on a 633 kW biogas CHP application at Crave Brothers Farm in Waterloo, Wisconsin.

  1. Tank Farms - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River Protection About ORP ORP Projects & Facilities Tank Farms Retrieval Activities PHOENIX - Tank Monitoring Waste Treatment & Immobilization Plant 222-S Laboratory 242-A...

  2. Energy Economics of Farm Biogas in Cold Climates

    SciTech Connect (OSTI)

    Pillay, Pragasen; Grimberg, Stefan; Powers, Susan E

    2012-10-24

    Anaerobic digestion of farm and dairy waste has been shown to be capital intensive. One way to improve digester economics is to co-digest high-energy substrates together with the dairy manure. Cheese whey for example represents a high-energy substrate that is generated during cheese manufacture. There are currently no quantitative tools available that predict performance of co-digestion farm systems. The goal of this project was to develop a mathematical tool that would (1) predict the impact of co-digestion and (2) determine the best use of the generated biogas for a cheese manufacturing plant. Two models were developed that separately could be used to meet both goals of the project. Given current pricing structures of the most economical use of the generated biogas at the cheese manufacturing plant was as a replacement of fuel oil to generate heat. The developed digester model accurately predicted the performance of 26 farm digesters operating in the North Eastern U.S.

  3. Frey Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy LLC Lancaster County Solid Waste Management Authority Energy Purchaser Turkey Hill Dairy Location Conestoga PA Coordinates 39.95904681, -76.45606756 Show Map...

  4. Farm Opportunities Loan Program

    Broader source: Energy.gov [DOE]

    The Farm Opportunity Loan Program (formerly known as the Sustainable Agriculture Loan Program) is designed to finance the purchase of equipment to add value to crops or livestock, adopt best...

  5. Sunset Farms Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Farms Biomass Facility Jump to: navigation, search Name Sunset Farms Biomass Facility Facility Sunset Farms Sector Biomass Facility Type Landfill Gas Location Travis County, Texas...

  6. Spring Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. Cool Farm Tool | Open Energy Information

    Open Energy Info (EERE)

    aboutussuppliersustainablesourcingtools?WT.LHNAV Cost: Free Language: English Cool Farm Tool Screenshot References: Cool Farm Tool 1 Overview "The Cool Farm Tool...

  8. Gray County Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Gray County Wind Farm Jump to: navigation, search Name Gray County Wind Farm Facility Gray County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  9. Spanish Fork Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Fork Wind Farm Jump to: navigation, search Name Spanish Fork Wind Farm Facility Spanish Fork Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. State Farm Insurance | Open Energy Information

    Open Energy Info (EERE)

    Farm Insurance Jump to: navigation, search Name: State Farm Insurance Place: Bloomington, IL Website: www.statefarminsurance.com References: State Farm Insurance1 Information...

  11. Green Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Shane Cowell Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Shane Cowell Wind Farm Jump to: navigation, search Name Shane Cowell Wind Farm Facility Shane Cowell Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Antelope Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Antelope Ridge Wind Farm Jump to: navigation, search Name Antelope Ridge Wind Farm Facility Antelope Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Locust Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Locust Ridge Wind Farm Jump to: navigation, search Name Locust Ridge Wind Farm Facility Locust Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Rosiere Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rosiere Wind Farm Jump to: navigation, search Name Rosiere Wind Farm Facility Rosiere Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  16. Paynes Ferry Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Paynes Ferry Wind Farm Jump to: navigation, search Name Paynes Ferry Wind Farm Facility Paynes Ferry Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Marengo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marengo Wind Farm Jump to: navigation, search Name Marengo Wind Farm Facility Marengo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  18. Stoney Corners Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stoney Corners Wind Farm Jump to: navigation, search Name Stoney Corners Wind Farm Facility Stoney Corners Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Marshall Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marshall Wind Farm Jump to: navigation, search Name Marshall Wind Farm Facility Marshall Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  20. Laredo Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Laredo Ridge Wind Farm Jump to: navigation, search Name Laredo Ridge Wind Farm Facility Laredo Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  1. Nine Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Nine Canyon Wind Farm Jump to: navigation, search Name Nine Canyon Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  2. Casper Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Casper Wind Farm Jump to: navigation, search Name Casper Wind Farm Facility Casper Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  3. Wallys Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wallys Wind Farm Jump to: navigation, search Name Wallys Wind Farm Facility Wallys Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  4. Cassia Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cassia Wind Farm Jump to: navigation, search Name Cassia Wind Farm Facility Cassia Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  5. Hatchet Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hatchet Ridge Wind Farm Jump to: navigation, search Name Hatchet Ridge Wind Farm Facility Hatchet Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Cedar Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cedar Point Wind Farm Jump to: navigation, search Name Cedar Point Wind Farm Facility Cedar Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  7. Allegheny Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Allegheny Ridge Wind Farm Jump to: navigation, search Name Allegheny Ridge Wind Farm Facility Allegheny Ridge wind farm Sector Wind energy Facility Type Commercial Scale Wind...

  8. Greensburg Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Greensburg Wind Farm Jump to: navigation, search Name Greensburg Wind Farm Facility Greensburg Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  9. Wheatfield Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wheatfield Wind Farm Jump to: navigation, search Name Wheatfield Wind Farm Facility Wheatfield Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Ewington Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Ewington Wind Farm Jump to: navigation, search Name Ewington Wind Farm Facility Ewington Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  11. Uilk Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Uilk Wind Farm Jump to: navigation, search Name Uilk Wind Farm Facility Uilk Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  12. Octotillo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Octotillo Wind Farm Jump to: navigation, search Name Octotillo Wind Farm Facility Octotillo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Flat Water Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Water Wind Farm Jump to: navigation, search Name Flat Water Wind Farm Facility Flat Water Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. Star Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Point Wind Farm Jump to: navigation, search Name Star Point Wind Farm Facility Star Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. Turkey Track Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Track Wind Farm Jump to: navigation, search Name Turkey Track Wind Farm Facility Turkey Track Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Blue Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Creek Wind Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Hopkins Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hopkins Ridge Wind Farm Facility Hopkins Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Red Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Canyon Wind Farm Jump to: navigation, search Name Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  20. Galveston Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  1. Olsen Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Olsen Wind Farm Jump to: navigation, search Name Olsen Wind Farm Facility Olsen Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  2. Express Farms Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Express Farms Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Express Farms Greenhouse Low Temperature Geothermal Facility Facility Express Farms...

  3. Opline Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Opline Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Opline Farms Aquaculture Low Temperature Geothermal Facility Facility Opline Farms...

  4. Tuana Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  5. Montfort Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Montfort Wind Farm Jump to: navigation, search Name Montfort Wind Farm Facility Montfort Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  6. Wind Farm Recommendation Report

    SciTech Connect (OSTI)

    John Reisenauer

    2011-05-01

    On April 21, 2011, an Idaho National Laboratory (INL) Land Use Committee meeting was convened to develop a wind farm recommendation for the Executive Council and a list of proposed actions for proceeding with the recommendation. In terms of land use, the INL Land Use Committee unanimously agrees that Site 6 is the preferred location of the alternatives presented for an INL wind farm. However, further studies and resolution to questions raised (stated in this report) by the INL Land Use Committee are needed for the preferred location. Studies include, but are not limited to, wind viability (6 months), bats (2 years), and the visual impact of the wind farm. In addition, cultural resource surveys and consultation (1 month) and the National Environmental Policy Act process (9 to 12 months) need to be completed. Furthermore, there is no documented evidence of developers expressing interest in constructing a small wind farm on INL, nor a specific list of expectations or concessions for which a developer might expect INL to cover the cost. To date, INL assumes the National Environmental Policy Act activities will be paid for by the Department of Energy and INL (the environmental assessment has only received partial funding). However, other concessions also may be expected by developers such as roads, fencing, power line installation, tie-ins to substations, annual maintenance, snow removal, access control, down-time, and remediation. These types of concessions have not been documented, as a request, from a developer and INL has not identified the short and long-term cost liabilities for such concessions should a developer expect INL to cover these costs. INL has not identified a go-no-go funding level or the priority this Wind Farm Project might have with respect to other nuclear-related projects, should the wind farm remain an unfunded mandate. The Land Use Committee recommends Legal be consulted to determine what, if any, liabilities exist with the Wind Farm Project and INLs rights and responsibilities in regards to access to the wind farm once constructed. An expression of interest is expected to go out soon to developers. However, with the potential of 2 years of study remaining for Site 6, the expectation of obtaining meaningful interest from developers should be questioned.

  7. Long Island Solar Farm

    SciTech Connect (OSTI)

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  8. Cooper Farms | Open Energy Information

    Open Energy Info (EERE)

    Farms Sector Wind energy Facility Type Community Wind Facility Status In Service Owner V.H. Cooper and Co Inc Developer One Energy LLC Energy Purchaser Cooper Farms Location Van...

  9. Farming: A Climate Change Culprit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farming: A Climate Change Culprit Farming: A Climate Change Culprit Simulations run at NERSC show impact of land-use change on African monsoon precipitation June 7, 2014 SahelMap...

  10. Aqua Farms International Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Farms International Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Aqua Farms International Aquaculture Low Temperature Geothermal Facility...

  11. Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility Facility...

  12. Economic analysis of wind-powered farmhouse and farm building heating systems. Final report

    SciTech Connect (OSTI)

    Stafford, R.W.; Greeb, F.J.; Smith, M.F.; Des Chenes, C.; Weaver, N.L.

    1981-01-01

    The study evaluated the break-even values of wind energy for selected farmhouses and farm buildings focusing on the effects of thermal storage on the use of WECS production and value. Farmhouse structural models include three types derived from a national survey - an older, a more modern, and a passive solar structure. The eight farm building applications that were analyzed include: poultry-layers, poultry-brooding/layers, poultry-broilers, poultry-turkeys, swine-farrowing, swine-growing/finishing, dairy, and lambing. These farm buildings represent the spectrum of animal types, heating energy use, and major contributions to national agricultural economic values. All energy analyses were based on hour-by-hour computations which allowed for growth of animals, sensible and latent heat production, and ventilation requirements. Hourly or three-hourly weather data obtained from the National Climatic Center was used for the nine chosen analysis sites, located throughout the United States and corresponding to regional agricultural production centers.

  13. Scaled Wind Farm Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scaled Wind Farm Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  14. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  15. Colorado Dairy Industry Boosts Energy Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dairy Industry Boosts Energy Efficiency Colorado Dairy Industry Boosts Energy Efficiency December 21, 2015 - 2:12pm Addthis Colorado Dairy Industry Boosts Energy Efficiency Historically, the U.S. dairy industry has been one of the most energy-intensive forms of agriculture. Colorado is at the forefront of the fight to increase energy efficiency in this sector. In 2014, the Colorado Energy Office invested $240,000 of State Energy Program funds to help reduce the dairy industry's electricity

  16. Fort Mojave Tribe - Feasibility Study

    Office of Environmental Management (EM)

    Feasibility Study Bill Cyr AHA MACAV POWER SERVICE Russell Gum ERCC Analytics QuickTime(tm) and a TIFF (Uncompressed) decompressor are needed to see this picture. Bottom Line * Biodigester for Dairy * 10 MW wind farm * Concentrated Solar 1.5 MW modules * 200kw at 6 cents per kwh until the loan is paid off, essentially free power for the remaining life of the project. * 3.2 mw at 9 cents per kwh until the loan is paid off in 15 years and 2 cents per kwh for the remaining life of the project *

  17. Superior Farms | Open Energy Information

    Open Energy Info (EERE)

    Windpower Developer Foundation Windpower Energy Purchaser Superior Farms Location Dixon CA Coordinates 38.420103, -121.817506 Show Map Loading map......

  18. Shelburne Farms | Open Energy Information

    Open Energy Info (EERE)

    VT 05482 Product: Shelburne Farms is a membership-supported, nonprofit environmental education center and National Historic Landmark in Shelburne, Vermont Coordinates:...

  19. Tank Farms - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities Tank Farms About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  20. Multilevel and multi-user sustainability assessment of farming systems

    SciTech Connect (OSTI)

    Van Passel, Steven; Meul, Marijke

    2012-01-15

    Sustainability assessment is needed to build sustainable farming systems. A broad range of sustainability concepts, methodologies and applications already exists. They differ in level, focus, orientation, measurement, scale, presentation and intended end-users. In this paper we illustrate that a smart combination of existing methods with different levels of application can make sustainability assessment more profound, and that it can broaden the insights of different end-user groups. An overview of sustainability assessment tools on different levels and for different end-users shows the complementarities and the opportunities of using different methods. In a case-study, a combination of the sustainable value approach (SVA) and MOTIFS is used to perform a sustainability evaluation of farming systems in Flanders. SVA is used to evaluate sustainability at sector level, and is especially useful to support policy makers, while MOTIFS is used to support and guide farmers towards sustainability at farm level. The combined use of the two methods with complementary goals can widen the insights of both farmers and policy makers, without losing the particularities of the different approaches. To stimulate and support further research and applications, we propose guidelines for multilevel and multi-user sustainability assessments. - Highlights: Black-Right-Pointing-Pointer We give an overview of sustainability assessment tools for agricultural systems. Black-Right-Pointing-Pointer SVA and MOTIFS are used to evaluate the sustainability of dairy farming in Flanders. Black-Right-Pointing-Pointer Combination of methods with different levels broadens the insights of different end-user groups. Black-Right-Pointing-Pointer We propose guidelines for multilevel and multi-user sustainability assessments.

  1. Desert Sky Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sky Wind Farm Jump to: navigation, search Name Desert Sky Wind Farm Facility Desert Sky Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  2. Rim Rock Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rim Rock Wind Farm Jump to: navigation, search Name Rim Rock Wind Farm Facility Rim Rock Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  3. Broken Bow Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Broken Bow Wind Farm Jump to: navigation, search Name Broken Bow Wind Farm Facility Broken Bow Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  4. Moe Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Moe Wind Farm Jump to: navigation, search Name Moe Wind Farm Facility Moe Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Two...

  5. Lost Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Lost Creek Wind Farm Jump to: navigation, search Name Lost Creek Wind Farm Facility Lost Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. JJN Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JJN Wind Farm Jump to: navigation, search Name JJN Wind Farm Facility JJN Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner JJNWind...

  7. Flat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Flat Ridge Wind Farm Jump to: navigation, search Name Flat Ridge Wind Farm Facility Flat Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  8. Nobles Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    Farm II Jump to: navigation, search Name Nobles Wind Farm II Facility Nobles Wind Farm II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  9. Red Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hills Wind Farm Jump to: navigation, search Name Red Hills Wind Farm Facility Red Hills Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  10. Category:Wind Farms | Open Energy Information

    Open Energy Info (EERE)

    in category "Wind Farms" The following 5 pages are in this category, out of 5 total. F Foote Creek Rim Wind Farm M Mountain Wind R Rock River LLC Wind Farm Rolling Hills Wind...

  11. We Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    We Energy Wind Farm Jump to: navigation, search Name We Energy Wind Farm Facility We Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Campbell Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hill Wind Farm Jump to: navigation, search Name Campbell Hill Wind Farm Facility Campbell Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  13. Happy Jack Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Happy Jack Wind Farm Jump to: navigation, search Name Happy Jack Wind Farm Facility Happy Jack Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  14. Sky River Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    River Wind Farm Jump to: navigation, search Name Sky River Wind Farm Facility Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. Stateline Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stateline Expansion Wind Farm Jump to: navigation, search Name Stateline Expansion Wind Farm Facility Stateline Expansion Sector Wind energy Facility Type Commercial Scale Wind...

  16. Bull Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Facility Bull Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Eurus Developer Eurus Energy Purchaser Market...

  17. Mountain Home Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Mountain Home Wind Farm Jump to: navigation, search Name Mountain Home Wind Farm Facility Mountain Home Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Turtle Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turtle Mountain Wind Farm Jump to: navigation, search Name Turtle Mountain Wind Farm Facility Turtle Mountain Sector Wind energy Facility Type Small Scale Wind Facility Status In...

  19. Silver Sage Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sage Wind Farm Jump to: navigation, search Name Silver Sage Wind Farm Facility Silver Sage Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal Facility...

  1. Green Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Power Wind Farm Facility Green Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  2. Gulf Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Gulf Wind Farm Facility Gulf Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy...

  3. Stetson Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Farm Jump to: navigation, search Name Stetson Wind Farm Facility Stetson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  4. Zirbel Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Zirbel Wind Farm Facility Zirbel Wind Farm (Glenmore Wind Energy Facility) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  5. Great Plains Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Great Plains Wind Farm Facility Great Plains Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  6. Simplicity Energy Farms Inc | Open Energy Information

    Open Energy Info (EERE)

    Simplicity Energy Farms, Inc. Place: Englewood, Colorado Zip: 80113 Sector: Solar, Wind energy Product: Colorado-headquartered developer of farm-based solar and wind energy...

  7. Nobles Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Farm Jump to: navigation, search Name Nobles Wind Farm Facility Nobles Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Nobles Cooperative...

  8. Whirlwind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Whirlwind Wind Farm Jump to: navigation, search Name Whirlwind Wind Farm Facility Whirlwind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  9. Federated Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Federated Wind Farm Jump to: navigation, search Name Federated Wind Farm Facility Federated Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  10. Hilltop Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hilltop Wind Farm Jump to: navigation, search Name Hilltop Wind Farm Facility Hilltop Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  11. Craig Wind Farm Ltd | Open Energy Information

    Open Energy Info (EERE)

    Craig Wind Farm Ltd Jump to: navigation, search Name: Craig Wind Farm Ltd Place: United Kingdom Sector: Wind energy Product: This organisation is a special purpose vehicle (SPV)...

  12. Calverton Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Calverton Wind Farm Jump to: navigation, search Name Calverton Wind Farm Facility Calverton Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Long...

  13. Bitworks Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Bitworks Wind Farm Jump to: navigation, search Name Bitworks Wind Farm Facility Bitworks Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Bitworks...

  14. Ridgewind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Ridgewind Wind Farm Jump to: navigation, search Name Ridgewind Wind Farm Facility Ridgewind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. Beaulieu Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Beaulieu Wind Farm Jump to: navigation, search Name Beaulieu Wind Farm Facility Beaulieu Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Private...

  16. Crofton Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Crofton Hills Wind Farm Jump to: navigation, search Name Crofton Hills Wind Farm Facility Crofton Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Cottonwood Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cottonwood Wind Farm Jump to: navigation, search Name Cottonwood Wind Farm Facility Cottonwood Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  18. SMUD Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    SMUD Wind Farm Jump to: navigation, search Name SMUD Wind Farm Facility SMUD Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Sacramento...

  19. Glenrock Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Glenrock Wind Farm Jump to: navigation, search Name Glenrock Wind Farm Facility Glenrock Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Anacacho Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Anacacho Wind Farm Jump to: navigation, search Name Anacacho Wind Farm Facility Anacacho Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  1. Savoonga Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Savoonga Wind Farm Jump to: navigation, search Name Savoonga Wind Farm Facility Savoonga Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  2. Crookston Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Crookston Wind Farm Jump to: navigation, search Name Crookston Wind Farm Facility Crookston Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner...

  3. Summerside Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Summerside Wind Farm Jump to: navigation, search Name Summerside Wind Farm Sector Wind energy Facility Type Community Wind Facility Status In Service Owner City of Summerside...

  4. Canova Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Canova Wind Farm Jump to: navigation, search Name Canova Wind Farm Facility Canova Sector Wind energy Facility Type Community Wind Facility Status In Service Owner City of Howard...

  5. Agriwind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Agriwind Wind Farm Jump to: navigation, search Name Agriwind Wind Farm Facility Agriwind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  6. Nome Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Nome Wind Farm Jump to: navigation, search Name Nome Wind Farm Facility Nome Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Bering Straits...

  7. Affinity Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Affinity Wind Farm Jump to: navigation, search Name Affinity Wind Farm Facility Affinity Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction...

  8. Silver Star Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Star Wind Farm Jump to: navigation, search Name Silver Star Wind Farm Facility Silver Star Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  9. Ashtabula II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Ashtabula II Wind Farm Facility Ashtabula II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  10. Marengo II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Marengo II Wind Farm Facility Marengo II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  11. Klondike II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Klondike II Wind Farm Jump to: navigation, search Name Klondike II Wind Farm Facility Klondike II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  12. Harvest Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Harvest Wind Farm II Facility Harvest Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  13. Murray Various Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Various Wind Farm Jump to: navigation, search Name Murray Various Wind Farm Facility Murray Various Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. Noble Bellmont Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Noble Bellmont Wind Farm Jump to: navigation, search Name Noble Bellmont Wind Farm Facility Noble Bellmont Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  15. Forbes Park Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Forbes Park Wind Farm Jump to: navigation, search Name Forbes Park Wind Farm Facility Forbes Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  16. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  17. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  18. Wildcat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wildcat Ridge Wind Farm Facility Wildcat Ridge Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Midwest Wind Energy Developer Midwest Wind...

  19. Radial Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Radial Wind Farm Facility Radial Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Radial Wind Developer Radial Wind Location...

  20. Deepwater Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...

  1. Hull Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Farm Jump to: navigation, search Name Hull Wind Farm Facility Hull Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Hull Municipal Light...

  2. Tholen & Petersen Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tholen & Petersen Wind Farm Jump to: navigation, search Name Tholen & Petersen Wind Farm Facility Tholen & Petersen Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Wind Farm Capital | Open Energy Information

    Open Energy Info (EERE)

    Farm Capital Jump to: navigation, search Name: Wind Farm Capital Place: Connecticut Sector: Wind energy Product: US-based company that buys wind leases from farmers and landowners,...

  4. Camp Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Camp Springs Wind Farm Facility Camp Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  5. Hot Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hot Springs Wind Farm Facility Hot Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho...

  6. Pebble Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Pebble Springs Wind Farm Facility Pebble Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  7. Sweetwater 5 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    5 Wind Farm Jump to: navigation, search Name Sweetwater 5 Wind Farm Facility Sweetwater 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. EERE Success Story-Colorado Dairy Industry Boosts Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the U.S. dairy industry has been one of the most energy-intensive forms of agriculture. ... In this new phase, the U.S. Department of Agriculture helps dairies with the cost of ...

  9. Energy Department Funding Helping Energy-Intensive Dairy Industry |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Funding Helping Energy-Intensive Dairy Industry Energy Department Funding Helping Energy-Intensive Dairy Industry July 17, 2015 - 12:55pm Addthis Energy Department Funding Helping Energy-Intensive Dairy Industry Emiley Mallory Emiley Mallory Communications Specialist, Weatherization Assistance Program John Coggin John Coggin Communications Specialist, Weatherization and Intergovernmental Programs What are the key facts? The Colorado Energy Office implemented a Dairy and

  10. The Long Island Solar Farm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long Island Solar Farm May 2013 The Long Island Solar Farm Technical Report DOE/GO-102013-3914 * May 2013 by Robert S. Anders, M.A. Presidential Management Fellow Brookhaven National Laboratory U.S. Department of Energy i Abstract In November 2011, a utility-scale solar array became operational in the most unlikely of places, at Brookhaven National Laboratory in Eastern Long Island, New York. The Long Island Solar Farm project came together as a joint effort of five very different interest

  11. High Sheldon Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sheldon Energy Wind Farm Jump to: navigation, search Name High Sheldon Energy Wind Farm Facility High Sheldon Energy Wind Farm Sector Wind energy Facility Type Commercial Scale...

  12. Independent Oversight Review, Hanford Site Tank Farms 222-S Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Farms 222-S Laboratory - January 2014 Independent Oversight Review, Hanford Site Tank Farms 222-S Laboratory - January 2014 January 2014 Review of the Hanford Tank Farms ...

  13. Luverne Wind Farm (North Field) | Open Energy Information

    Open Energy Info (EERE)

    Luverne Wind Farm (North Field) Jump to: navigation, search Name Luverne Wind Farm (North Field) Facility Luverne Wind Farm (North Field) Sector Wind energy Facility Type...

  14. Blue Spruce Farm Ana Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Spruce Farm Ana Biomass Facility Jump to: navigation, search Name Blue Spruce Farm Ana Biomass Facility Facility Blue Spruce Farm Ana Sector Biomass Location Vermont Coordinates...

  15. Rhode Island Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rhode Island Offshore Wind Farm Jump to: navigation, search Name Rhode Island Offshore Wind Farm Facility Rhode Island Offshore Wind Farm Sector Wind energy Facility Type Offshore...

  16. Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Carrizo Energy Solar Farm Solar Power Plant Jump to: navigation, search Name Carrizo Energy Solar Farm Solar Power Plant Facility Carrizo Energy Solar Farm Sector Solar Facility...

  17. Mustang Island Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Island Offshore Wind Farm Jump to: navigation, search Name Mustang Island Offshore Wind Farm Facility Mustang Island Offshore Wind Farm Sector Wind energy Facility Type Offshore...

  18. Farming: A Climate Change Culprit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farming: A Climate Change Culprit Farming: A Climate Change Culprit Simulations run at NERSC show impact of land-use change on African monsoon precipitation June 7, 2014 SahelMap Africarough The Sahel region is a narrow swath of semi-arid land that spans the African continent, from the Atlantic Ocean in the west to the Red Sea in the east. The low annual precipitation indicates the region is strongly reliant on the monsoon season for water supply. Increased agricultural activity is a rain taker,

  19. Corn Plus Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Plus Wind Farm Jump to: navigation, search Name Corn Plus Wind Farm Facility Corn Plus Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  20. Carbon Credited Farming Plc | Open Energy Information

    Open Energy Info (EERE)

    Credited Farming Plc Jump to: navigation, search Name: Carbon Credited Farming Plc Place: London, United Kingdom Zip: W1U 6PZ Product: London-based biofuel developer focusing on...

  1. Burco Farm and Feed | Open Energy Information

    Open Energy Info (EERE)

    Owner Burco Farm and Feed Energy Purchaser Burco Farm and Feed Location Independence IA Coordinates 42.5638438, -91.88753486 Show Map Loading map... "minzoom":false,"mappi...

  2. Difwind V Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    V Wind Farm Jump to: navigation, search Name Difwind V Wind Farm Facility Difwind V Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco...

  3. Baillie Wind Farm Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baillie Wind Farm Ltd Jump to: navigation, search Name: Baillie Wind Farm Ltd Place: Edinburgh, Scotland, United Kingdom Zip: EH2 4DF Sector: Wind energy Product: Special Purpose...

  4. Spittal Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spittal Hill Wind Farm Jump to: navigation, search Name: Spittal Hill Wind Farm Place: United Kingdom Sector: Wind energy Product: Set up to manage wind projects in the Scotland....

  5. Shiloh II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Shiloh II Wind Farm Jump to: navigation, search Name Shiloh II Wind Farm Facility Shiloh II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  6. Oliver II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Oliver II Wind Farm Facility Oliver II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra...

  7. CWES II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name CWES II Wind Farm Facility CWES II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest...

  8. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Sweeten, John M; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C.; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B.; Stewart, B. A.

    2012-05-03

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco -- the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 -- Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 -- Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to re-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling behavior, using CB as reburn fuel for NOx and Hg reduction, gasification of fuels to produce low quality gases, modeling of reburn, pilot scale test results, synthesis of engineering characterization, geographical mapping, a transportation cost study to determine potential handling and transportation systems for co-firing with coal at regional coal-fired power plants, software analyses for the design of off-site manure, pre-processing and storage systems for a typical dairy farm or beef cattle feedlot, recursive production functions/systems models for both cattle feedlots, systems modeling, stocks and flows of energy involved in the CAFO system, feedback from an Industry Advisory Committee (IAC) to the investigators on project direction and task emphasis and economics of using CB as cofiring and reburn fuel.

  9. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Kalyan Annamalai, John M. Sweeten, Brent W. Auvermann, Saqib Mukhtar, Sergio Caperada Cady R. Engler, Wyatte Harman Reddy JN Robert Deotte

    2012-05-03

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling behavior, using CB as reburn fuel for NOx and Hg reduction, gasification of fuels to produce low quality gases, modeling of reburn, pilot scale test results, synthesis of engineering characterization, geographical mapping, a transportation cost study to determine potential handling and transportation systems for co-firing with coal at regional coal-fired power plants, software analyses for the design of off-site manure, pre-processing and storage systems for a typical dairy farm or beef cattle feedlot, recursive production functions/systems models for both cattle feedlots, systems modeling, stocks and flows of energy involved in the CAFO system, feedback from an Industry Advisory Committee (IAC) to the investigators on project direction and task emphasis and economics of using CB as cofiring and reburn fuel.

  10. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Sweeten, John; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B; Stewart, B A

    2012-05-02

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco—the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 – Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 – Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling behavior, using CB as reburn fuel for NOx and Hg reduction, gasification of fuels to produce low quality gases, modeling of reburn, pilot scale test results, synthesis of engineering characterization, geographical mapping, a transportation cost study to determine potential handling and transportation systems for co-firing with coal at regional coal-fired power plants, software analyses for the design of off-site manure, pre-processing and storage systems for a typical dairy farm or beef cattle feedlot, recursive production functions/systems models for both cattle feedlots, systems modeling, stocks and flows of energy involved in the CAFO system, feedback from an Industry Advisory Committee (IAC) to the investigators on project direction and task emphasis and economics of using CB as cofiring and reburn fuel.

  11. Wind Farms through the Years | Department of Energy

    Energy Savers [EERE]

    Wind Farms through the Years Wind Farms through the Years 1975 Start Slow Stop Year Wind Farms Homes Powered Added Current Year 833 Wind Farms Online. Enough to Power 15 M Homes...

  12. EERE Success Story-Colorado Dairy Industry Boosts Energy Efficiency |

    Energy Savers [EERE]

    Department of Energy Colorado Dairy Industry Boosts Energy Efficiency EERE Success Story-Colorado Dairy Industry Boosts Energy Efficiency December 21, 2015 - 2:12pm Addthis EERE Success Story—Colorado Dairy Industry Boosts Energy Efficiency Historically, the U.S. dairy industry has been one of the most energy-intensive forms of agriculture. Colorado is at the forefront of the fight to increase energy efficiency in this sector. In 2014, the Colorado Energy Office invested $240,000 of

  13. The CDF Central Analysis Farm

    SciTech Connect (OSTI)

    Kim, T.H.; Neubauer, M.; Sfiligoi, I.; Weems, L.; Wurthwein, F.; /UC, San Diego

    2004-01-01

    With Run II of the Fermilab Tevatron well underway, many computing challenges inherent to analyzing large volumes of data produced in particle physics research need to be met. We present the computing model within CDF designed to address the physics needs of the collaboration. Particular emphasis is placed on current development of a large O(1000) processor PC cluster at Fermilab serving as the Central Analysis Farm for CDF. Future plans leading toward distributed computing and GRID within CDF are also discussed.

  14. advanced wind-farm research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind-farm research - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  15. Branchburg Solar Farm and Carport

    SciTech Connect (OSTI)

    Gregory, John

    2013-10-23

    To meet the goal of becoming a model of green, clean, and efficient consumer of energy, the Township of Branchburg will install of a 250kw solar farm to provide energy for the Township of Branchburg Municipal Building, a 50kw Solar carport to provide power to the Municipal Annex, purchase 3 plug in hybrid-electric vehicles, and install 3 dual-head charging stations.

  16. Anaerobic digestion of the liquid fraction of dairy manure

    SciTech Connect (OSTI)

    Haugen, V.; Dahlberg, S.; Lindley, J.A.

    1983-06-01

    The authors tested several solid liquid separation systems suitable for processing dairy manure prior to anaerobic digestion. None of the systems tried have completely satisfied the requirements. Evaluated effects of separation on biogas production. Unseparated dairy manure produced more biogas than the liquid fraction.

  17. SEP Success Story: Energy Department Funding Helping Energy-Intensive Dairy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry | Department of Energy Energy Department Funding Helping Energy-Intensive Dairy Industry SEP Success Story: Energy Department Funding Helping Energy-Intensive Dairy Industry July 20, 2015 - 1:24pm Addthis SEP Success Story: Energy Department Funding Helping Energy-Intensive Dairy Industry With help from the State Energy Program, eight dairies in Colorado received a free energy audit and energy saving recommendations through the Colorado Dairy and Irrigation Efficiency Pilot. The

  18. CPS and the Fermilab farms

    SciTech Connect (OSTI)

    Fausey, M.R.

    1992-06-01

    Cooperative Processes Software (CPS) is a parallel programming toolkit developed at the Fermi National Accelerator Laboratory. It is the most recent product in an evolution of systems aimed at finding a cost-effective solution to the enormous computing requirements in experimental high energy physics. Parallel programs written with CPS are large-grained, which means that the parallelism occurs at the subroutine level, rather than at the traditional single line of code level. This fits the requirements of high energy physics applications, such as event reconstruction, or detector simulations, quite well. It also satisfies the requirements of applications in many other fields. One example is in the pharmaceutical industry. In the field of computational chemistry, the process of drug design may be accelerated with this approach. CPS programs run as a collection of processes distributed over many computers. CPS currently supports a mixture of heterogeneous UNIX-based workstations which communicate over networks with TCP/IR CPS is most suited for jobs with relatively low I/O requirements compared to CPU. The CPS toolkit supports message passing remote subroutine calls, process synchronization, bulk data transfers, and a mechanism called process queues, by which one process can find another which has reached a particular state. The CPS software supports both batch processing and computer center operations. The system is currently running in production mode on two farms of processors at Fermilab. One farm consists of approximately 90 IBM RS/6000 model 320 workstations, and the other has 85 Silicon Graphics 4D/35 workstations. This paper first briefly describes the history of parallel processing at Fermilab which lead to the development of CPS. Then the CPS software and the CPS Batch queueing system are described. Finally, the experiences of using CPS in production on the Fermilab processor farms are described.

  19. Wing River Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Wing River Wind Farm Facility Wing River Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wing River...

  20. Wessington Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Wessington Springs Wind Farm Facility Wessington Springs Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  1. Barton Chapel Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name Barton Chapel Wind Farm Facility Barton Chapel Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola...

  2. Wolverine Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Wolverine Creek Wind Farm Facility Wolverine Creek Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Cabazon Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Cabazon Wind Farm II Facility Cabazon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Goldman Sachs...

  4. Cumbria Wind Farms Limited | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: SY16 2LW Sector: Services Product: Provides operational and maintenance services in Cumbria, Cornwall and Wales. References: Cumbria Wind Farms Limited1...

  5. Southern Wind Farms Ltd | Open Energy Information

    Open Energy Info (EERE)

    Services Product: Chennai-based firm involved in manufacturing, installation and marketing of WEGs on turnkey basis. Also offers O&M services. References: Southern Wind Farms...

  6. Tank farms essential drawing plan

    SciTech Connect (OSTI)

    Domnoske-Rauch, L.A.

    1998-08-04

    The purpose of this document is to define criteria for selecting Essential Drawings, Support Drawings, and Controlled Print File (CPF) drawings and documents for facilities that are part of East and West Tank Farms. Also, the drawings and documents that meet the criteria are compiled separate listings. The Essential Drawing list and the Support Drawing list establish a priority for updating technical baseline drawings. The CPF drawings, denoted by an asterisk (*), defined the drawings and documents that Operations is required to maintain per the TWRS Administration Manual. The Routing Boards in Buildings 272-WA and 272-AW are not part of the CPF.

  7. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    John M. Sweeten, Kalyan Annamalai Brent Auvermann Saqib Mukhtar Sergio C. Capareda Cady Engler Wyatte Harman J.N. Reddy, Robert DeOtte David B. Parker Dr. B.A. Stewart

    2012-05-03

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling beh

  8. Dutch Hill/Cohocton Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Dutch HillCohocton Wind Farm Jump to: navigation, search Name Dutch HillCohocton Wind Farm Facility Dutch HillCohocton Wind Farm Sector Wind energy Facility Type Commercial...

  9. Blue Sky Green Field Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Green Field Wind Farm Jump to: navigation, search Name Blue Sky Green Field Wind Farm Facility Blue Sky Green Field Wind Farm Sector Wind energy Facility Type Commercial Scale Wind...

  10. G. McNeilus Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    G. McNeilus Wind Farm Jump to: navigation, search Name G. McNeilus Wind Farm Facility G. McNeilus Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  11. Independent Activity Report, Hanford Tank Farms - April 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Farms - April 2013 Independent Activity Report, Hanford Tank Farms - April 2013 April 2013 Operational Awareness at the Hanford Tank Farms HIAR-HANFORD-2013-04-15 The Office...

  12. Minn-Dakota Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    Minn-Dakota Wind Farm I Jump to: navigation, search Name Minn-Dakota Wind Farm I Facility Minn-Dakota Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. PaTu Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    PaTu Wind Farm Jump to: navigation, search Name PaTu Wind Farm Facility PaTu Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  14. FERN Blue Ribbon Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    FERN Blue Ribbon Wind Farm I Jump to: navigation, search Name FERN Blue Ribbon Wind Farm I Facility FERN Blue Ribbon Wind Farm I Sector Wind energy Facility Type Offshore Wind...

  15. Michigan Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  16. Nine Canyon Wind Farm Phase II | Open Energy Information

    Open Energy Info (EERE)

    Farm Phase II Jump to: navigation, search Name Nine Canyon Wind Farm Phase II Facility Nine Canyon Wind Farm Phase II Sector Wind energy Facility Type Commercial Scale Wind...

  17. Hanford Site C Tank Farm Meeting Summary - January 2010 | Department...

    Office of Environmental Management (EM)

    0 Hanford Site C Tank Farm Meeting Summary - January 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  18. Hanford Site C Tank Farm Meeting Summary - May 2011 | Department...

    Office of Environmental Management (EM)

    1 Hanford Site C Tank Farm Meeting Summary - May 2011 PDF icon Hanford Site C Tank Farm Meeting Summary More Documents & Publications Hanford Site C Tank Farm Meeting Summary -...

  19. Hanford Site C Tank Farm Meeting Summary - January 2011 | Department...

    Office of Environmental Management (EM)

    1 Hanford Site C Tank Farm Meeting Summary - January 2011 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  20. Hanford Site C Tank Farm Meeting Summary - May 2010 | Department...

    Office of Environmental Management (EM)

    0 Hanford Site C Tank Farm Meeting Summary - May 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  1. Development of a Computer-based Benchmarking and Analytical Tool. Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    SciTech Connect (OSTI)

    Xu, Tengfang; Flapper, Joris; Ke, Jing; Kramer, Klaas; Sathaye, Jayant

    2012-02-01

    The overall goal of the project is to develop a computer-based benchmarking and energy and water savings tool (BEST-Dairy) for use in the California dairy industry – including four dairy processes – cheese, fluid milk, butter, and milk powder.

  2. Wind Farm Power System Model Development: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.

    2004-07-01

    In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

  3. INL Wind Farm Project Description Document

    SciTech Connect (OSTI)

    Gary Siefert

    2009-07-01

    The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

  4. Tillamook County PUD- Dairy Lighting Retrofit Rebate Program

    Broader source: Energy.gov [DOE]

    Tillamook PUD offers the Dairy Lighting Retrofit Program for its agricultural members to save energy on lighting in eligible barns/facilities. Tillamook PUD completes a lighting audit of the...

  5. Global Offshore Wind Farms Database | Open Energy Information

    Open Energy Info (EERE)

    Wind Farms Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Offshore Wind Farms Database Focus Area: Renewable Energy Topics: Deployment Data Website:...

  6. Mars Hill (2006) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Mars Hill (2006) Wind Farm Jump to: navigation, search Name Mars Hill (2006) Wind Farm Facility Mars Hill (2006) Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. Before the Committee on Agriculture Subcommittee on General Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agriculture Subcommittee on General Farm Commodities and Risk Management Before the Committee on Agriculture Subcommittee on General Farm Commodities and Risk Management Before the ...

  8. University of Minnesota -- Morris Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    -- Morris Wind Farm Jump to: navigation, search Name University of Minnesota -- Morris Wind Farm Facility University of Minnesota -- Morris Sector Wind energy Facility Type...

  9. Windy Point (08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    (08) Wind Farm Jump to: navigation, search Name Windy Point (08) Wind Farm Facility Windy Point (08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Windy Point - Siemens Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Siemens Wind Farm Jump to: navigation, search Name Windy Point - Siemens Wind Farm Facility Windy Point - Siemens Sector Wind energy Facility Type Commercial Scale Wind Facility...

  11. Windy Point - REpower (09) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    REpower (09) Wind Farm Jump to: navigation, search Name Windy Point - REpower (09) Wind Farm Facility Windy Point - REpower (09) Sector Wind energy Facility Type Commercial Scale...

  12. Paso Robles Fish Farm Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Paso Robles Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Paso Robles Fish Farm Aquaculture Low Temperature Geothermal Facility...

  13. California Desert Fish Farm Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Desert Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name California Desert Fish Farm Aquaculture Low Temperature Geothermal Facility...

  14. First Ascent Fish Farm Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Ascent Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name First Ascent Fish Farm Aquaculture Low Temperature Geothermal Facility Facility...

  15. Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal...

  16. Blue Aquarius Fish Farms Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Blue Aquarius Fish Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Aquarius Fish Farms Aquaculture Low Temperature Geothermal Facility...

  17. Valley Fish Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Fish Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Valley Fish Farms Aquaculture Low Temperature Geothermal Facility Facility Valley Fish...

  18. Traverse City Light & Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    City Light & Power Wind Farm Jump to: navigation, search Name Traverse City Light & Power Wind Farm Facility Traverse City Light & Power Sector Wind energy Facility Type Community...

  19. Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Clipper) Wind Farm Jump to: navigation, search Name Milford Wind Corridor Phase I (Clipper) Wind Farm Facility Milford Wind Corridor Phase I (Clipper) Sector Wind energy Facility...

  20. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  1. International Turbine Research Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turbine Research Wind Farm Jump to: navigation, search Name International Turbine Research Wind Farm Facility International Turbine Research Sector Wind energy Facility Type...

  2. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  3. Mountain View Power Partners III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    III Wind Farm Jump to: navigation, search Name Mountain View Power Partners III Wind Farm Facility Mountain View Power Partners III Sector Wind energy Facility Type Commercial...

  4. Independent Oversight Activity Report, Hanford Waste Tank Farms...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Farms - October 28 - November 6, 2013 Independent Oversight Activity Report, Hanford Waste Tank Farms - October 28 - November 6, 2013 February 2014 Follow-up on Previously...

  5. Westmill Wind Farm Co operative Ltd | Open Energy Information

    Open Energy Info (EERE)

    Westmill Wind Farm Co operative Ltd Jump to: navigation, search Name: Westmill Wind Farm Co-operative Ltd Place: Cumbria, United Kingdom Sector: Wind energy Product: Raising GBP...

  6. Stetson Wind Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  7. Southwest Wind Farm Private Limited ESS ARR Group | Open Energy...

    Open Energy Info (EERE)

    Southwest Wind Farm Private Limited ESS ARR Group Jump to: navigation, search Name: Southwest Wind Farm Private Limited (ESS ARR Group) Place: Coimbatore, Tamil Nadu, India Zip:...

  8. Kings River Conservation District (KRCD) Solar Farm Solar Power...

    Open Energy Info (EERE)

    River Conservation District (KRCD) Solar Farm Solar Power Plant Jump to: navigation, search Name Kings River Conservation District (KRCD) Solar Farm Solar Power Plant Facility...

  9. Prairie Star (07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Star (07) Wind Farm Facility Prairie Star (07) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Prairie Star (08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Star (08) Wind Farm Facility Prairie Star (08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  11. Windland (Boxcar II) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Windland (Boxcar II) Wind Farm Jump to: navigation, search Name Windland (Boxcar II) Wind Farm Facility Windland (Boxcar II) Sector Wind energy Facility Type Commercial Scale Wind...

  12. Klondike III II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Klondike III II Wind Farm Facility Klondike III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  13. Champion (Roscoe II) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Champion (Roscoe II) Wind Farm Jump to: navigation, search Name Champion (Roscoe II) Wind Farm Facility Champion (Roscoe II) Sector Wind energy Facility Type Commercial Scale Wind...

  14. Langdon II - Otter Tail Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Otter Tail Wind Farm Jump to: navigation, search Name Langdon II - Otter Tail Wind Farm Facility Langdon II - Otter Tail Sector Wind energy Facility Type Commercial Scale Wind...

  15. Mountain View Power Partners II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Mountain View Power Partners II Wind Farm Facility Mountain View Power Partners II Sector Wind energy Facility Type Commercial Scale...

  16. Langdon II - FPL Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Langdon II - FPL Wind Farm Jump to: navigation, search Name Langdon II - FPL Wind Farm Facility Langdon II - FPL Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Beech Ridge Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Beech Ridge Energy Wind Farm Jump to: navigation, search Name Beech Ridge Energy Wind Farm Facility Beech Ridge Energy Sector Wind energy Facility Type Commercial Scale Wind...

  18. Humboldt Industrial Park Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Industrial Park Wind Farm Jump to: navigation, search Name Humboldt Industrial Park Wind Farm Facility Humboldt Industrial Park Sector Wind energy Facility Type Community Wind...

  19. Sustainable Technologies Museum Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Farm Jump to: navigation, search Name Sustainable Technologies Museum Wind Farm Facility Sustainable Technologies Museum Sector Wind energy Facility Type Commercial Scale Wind...

  20. Bureau Valley School District Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Valley School District Wind Farm Jump to: navigation, search Name Bureau Valley School District Wind Farm Facility Bureau Valley School District Sector Wind energy Facility Type...

  1. Hydrogen Pilot Project Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Pilot Project Wind Farm Jump to: navigation, search Name Hydrogen Pilot Project Wind Farm Facility Hydrogen Pilot Project Sector Wind energy Facility Type Small Scale Wind Facility...

  2. Liberty Turbine Test Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turbine Test Wind Farm Jump to: navigation, search Name Liberty Turbine Test Wind Farm Facility Liberty Turbine Test Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Wethersfield Wind Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  5. Loranger Power Generation Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Loranger Power Generation Wind Farm Jump to: navigation, search Name Loranger Power Generation Wind Farm Facility Loranger Power Generation Sector Wind energy Facility Type...

  6. Shaokatan Power Partners Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Power Partners Wind Farm Jump to: navigation, search Name Shaokatan Power Partners Wind Farm Facility Shaokatan Power Partners Sector Wind energy Facility Type Commercial Scale...

  7. Oasis Power Partners Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Oasis Power Partners Wind Farm Jump to: navigation, search Name Oasis Power Partners Wind Farm Facility Oasis Power Partners Sector Wind energy Facility Type Commercial Scale Wind...

  8. Massachusetts Maritime Academy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Maritime Academy Wind Farm Jump to: navigation, search Name Massachusetts Maritime Academy Wind Farm Facility Massachusetts Maritime Academy Sector Wind energy Facility Type...

  9. Great Lakes Science Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Science Center Wind Farm Jump to: navigation, search Name Great Lakes Science Center Wind Farm Facility Great Lakes Science Center Sector Wind energy Facility Type Community Wind...

  10. Farming First-Agriculture and the Green Economy | Open Energy...

    Open Energy Info (EERE)

    Farming First-Agriculture and the Green Economy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Farming First-Agriculture and the Green Economy AgencyCompany...

  11. Voluntary Protection Program Onsite Review, Tank Farm Operations...

    Energy Savers [EERE]

    Tank Farm Operations Contract - November 2010 Voluntary Protection Program Onsite Review, Tank Farm Operations Contract - November 2010 November 2010 Evaluation to determine...

  12. Kerr Aqua Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Kerr Aqua Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Kerr Aqua Farms Aquaculture Low Temperature Geothermal Facility Facility Kerr Aqua...

  13. Silver Creek Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Creek Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Silver Creek Farms Aquaculture Low Temperature Geothermal Facility Facility Silver...

  14. American Windmill Museum Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Windmill Museum Wind Farm Jump to: navigation, search Name American Windmill Museum Wind Farm Facility American Windmill Museum Sector Wind energy Facility Type Community Wind...

  15. Distributed connected wind farms (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Distributed connected wind farms (Smart Grid Project) Jump to: navigation, search Project Name Distributed connected wind farms Country Ireland Headquarters Location Kerry, Ireland...

  16. Hanford Site C Tank Farm Meeting Summary - February 2009 | Department...

    Office of Environmental Management (EM)

    February 2009 Hanford Site C Tank Farm Meeting Summary - February 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site...

  17. Stanton Energy Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stanton Energy Center Wind Farm Jump to: navigation, search Name Stanton Energy Center Wind Farm Facility Stanton Energy Center Sector Wind energy Facility Type Commercial Scale...

  18. Saint Paul Island Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Paul Island Wind Farm Jump to: navigation, search Name Saint Paul Island Wind Farm Facility Saint Paul Island Sector Wind energy Facility Type Community Wind Facility Status In...

  19. Cisco Wind Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. State Fair Wind Energy Education Center Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Fair Wind Energy Education Center Wind Farm Jump to: navigation, search Name State Fair Wind Energy Education Center Wind Farm Facility Wind Energy Education Center Sector Wind...

  1. Independent Oversight Review, Hanford Tank Farms- November 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades

  2. Wind Farms through the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Farms through the Years Wind Farms through the Years 1975 Start Slow Stop Year Wind Farms Homes Powered Added Current Year 833 Wind Farms Online. Enough to Power 15 M Homes Data provided by the EIA. The number of homes powered is estimated through conversion factors provided by the EIA.

  3. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  4. Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure in the Midwest Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest to someone by E-mail Share Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Facebook Tweet about Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Twitter Bookmark Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and

  5. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect (OSTI)

    none,

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  6. Public Interest Energy Research (PIER) Program Development of a Computer-based Benchmarking and Analytical Tool. Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    SciTech Connect (OSTI)

    Xu, Tengfang; Flapper, Joris; Ke, Jing; Kramer, Klaas; Sathaye, Jayant

    2012-02-01

    The overall goal of the project is to develop a computer-based benchmarking and energy and water savings tool (BEST-Dairy) for use in the California dairy industry - including four dairy processes - cheese, fluid milk, butter, and milk powder. BEST-Dairy tool developed in this project provides three options for the user to benchmark each of the dairy product included in the tool, with each option differentiated based on specific detail level of process or plant, i.e., 1) plant level; 2) process-group level, and 3) process-step level. For each detail level, the tool accounts for differences in production and other variables affecting energy use in dairy processes. The dairy products include cheese, fluid milk, butter, milk powder, etc. The BEST-Dairy tool can be applied to a wide range of dairy facilities to provide energy and water savings estimates, which are based upon the comparisons with the best available reference cases that were established through reviewing information from international and national samples. We have performed and completed alpha- and beta-testing (field testing) of the BEST-Dairy tool, through which feedback from voluntary users in the U.S. dairy industry was gathered to validate and improve the tool's functionality. BEST-Dairy v1.2 was formally published in May 2011, and has been made available for free downloads from the internet (i.e., http://best-dairy.lbl.gov). A user's manual has been developed and published as the companion documentation for use with the BEST-Dairy tool. In addition, we also carried out technology transfer activities by engaging the dairy industry in the process of tool development and testing, including field testing, technical presentations, and technical assistance throughout the project. To date, users from more than ten countries in addition to those in the U.S. have downloaded the BEST-Dairy from the LBNL website. It is expected that the use of BEST-Dairy tool will advance understanding of energy and water usage in individual dairy plants, augment benchmarking activities in the market places, and facilitate implementation of efficiency measures and strategies to save energy and water usage in the dairy industry. Industrial adoption of this emerging tool and technology in the market is expected to benefit dairy plants, which are important customers of California utilities. Further demonstration of this benchmarking tool is recommended, for facilitating its commercialization and expansion in functions of the tool. Wider use of this BEST-Dairy tool and its continuous expansion (in functionality) will help to reduce the actual consumption of energy and water in the dairy industry sector. The outcomes comply very well with the goals set by the AB 1250 for PIER program.

  7. Two-phase anaerobic digestion of screened dairy manure

    SciTech Connect (OSTI)

    Lo, K.V.; Liao, P.H.

    1985-01-01

    The paper describes the operating results of a two-phase process that separate the acid-phase and methane-phase digestion of screened dairy manure under mesophilic temperature. Acidogenesis pretreatment prior to the methanogenic fixed-film reactor phase resulted in a significant increase in methane yield.

  8. Mars Hill (2007) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    7) Wind Farm Jump to: navigation, search Name Mars Hill (2007) Wind Farm Facility Mars Hill (2007) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  9. Taean Solar Farm Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Taean Solar Farm Co Ltd Jump to: navigation, search Name: Taean Solar Farm Co.,Ltd Place: South Chungcheong, Korea (Republic) Sector: Solar Product: Korea-based project developer,...

  10. Kibby Mountain Phase I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Kibby Mountain Phase I Wind Farm Jump to: navigation, search Name Kibby Mountain Phase I Wind Farm Facility Kibby Mountain Phase I Sector Wind energy Facility Type Commercial Scale...

  11. Black River Farm Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Facility Black River Farm Solar Project Sector Solar Facility Type Fixed Tilt Ground-Mount & Roof-Mount Owner EnXco Developer EnXco Energy Purchaser Black River Farm...

  12. Green Mountain Energy Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Green Mountain Energy Wind Farm II Facility AMP-OhioGreen Mountain Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind...

  13. Green Mountain Energy Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Green Mountain Energy Wind Farm I Facility AMP-OhioGreen Mountain Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind...

  14. Mountain View Power Partners I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    I Wind Farm Jump to: navigation, search Name Mountain View Power Partners I Wind Farm Facility Mountain View Power Partners I Sector Wind energy Facility Type Commercial Scale Wind...

  15. G.M. Allen & Sons Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    M. Allen & Sons Wind Farm Jump to: navigation, search Name G.M. Allen & Sons Wind Farm Facility G.M. Allen & Sons Sector Wind energy Facility Type Small Scale Wind Facility Status...

  16. Foote Creek Rim Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Edit History Foote Creek Rim Wind Farm Jump to: navigation, search The Foote Creek Rim Wind Farm is in Carbon County, Wyoming. It consists of 133 turbines and has a total...

  17. Independent Oversight Activity Report, Hanford Tank Farms - March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 10-12, 2014 Independent Oversight Activity Report, Hanford Tank Farms - March 10-12, 2014 March 10-12, 2014 Hanford Tank Farm Operations HIAR-HANFORD-2014-03-10 This...

  18. Bison Wind Farm 1A | Open Energy Information

    Open Energy Info (EERE)

    Bison Wind Farm 1A Jump to: navigation, search Name Bison Wind Farm 1A Facility Bison Wind 1A Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  19. South Trent Wind Farm LLC | Open Energy Information

    Open Energy Info (EERE)

    South Trent Wind Farm LLC Jump to: navigation, search Name: South Trent Wind Farm, LLC Place: Texas Sector: Wind energy Product: US-based wind project developer and special purpose...

  20. McNeilus Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    McNeilus Wind Farm I Jump to: navigation, search Name McNeilus Wind Farm I Facility McNeilus Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  1. JD Wind 6 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 6 Wind Farm Jump to: navigation, search Name JD Wind 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  2. JD Wind 7 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 7 Wind Farm Jump to: navigation, search Name JD Wind 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. EcoGrove Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    EcoGrove Wind Farm Jump to: navigation, search Name EcoGrove Wind Farm Facility EcoGrove Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  4. Lone Star I (Q2) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Q2) Wind Farm Jump to: navigation, search Name Lone Star I (Q2) Wind Farm Facility Lone Star I (Q2) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  5. Lone Star I (Q3) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Q3) Wind Farm Jump to: navigation, search Name Lone Star I (Q3) Wind Farm Facility Lone Star I (Q3) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. TANK FARM INTERIM SURFACE BARRIER MATERIALS AND RUNOFF ALTERNATIVES STUDY

    SciTech Connect (OSTI)

    HOLM MJ

    2009-06-25

    This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

  7. FERN Blue Ribbon Wind Farm II* | Open Energy Information

    Open Energy Info (EERE)

    II* Jump to: navigation, search Name FERN Blue Ribbon Wind Farm II* Facility FERN Blue Ribbon Wind Farm II* Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  8. Hopkins Ridge II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Hopkins Ridge II Wind Farm Facility Hopkins Ridge II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  9. Panther Creek II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Panther Creek II Wind Farm Facility Panther Creek II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  10. Woodward Mountain I & II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Mountain I & II Wind Farm Jump to: navigation, search Name Woodward Mountain I & II Wind Farm Facility Woodward Mountain Wind Ranch I and II Sector Wind energy Facility Type...

  11. Minn-Dakota Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Minn-Dakota Wind Farm II Facility Minn-Dakota Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  12. North Dakota Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name North Dakota Wind II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Lake Benton II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Lake Benton II Wind Farm Facility Lake Benton II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  14. Smoky Hills II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Smoky Hills II Wind Farm Jump to: navigation, search Name Smoky Hills II Wind Farm Facility Smoky Hills II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. Tres Vaqueros II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Tres Vaqueros II Wind Farm Facility Tres Vaqueros II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  16. Venture Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Venture Wind II Wind Farm Facility Venture Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  17. Twin Groves II (08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    8) Wind Farm Jump to: navigation, search Name Twin Groves II (08) Wind Farm Facility Twin Groves II (08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Dry Lake II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Dry Lake II Wind Farm Facility Dry Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  19. Foote Creek Rim II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Foote Creek Rim II Wind Farm Facility Foote Creek Rim II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  20. Twin Groves II (07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    7) Wind Farm Jump to: navigation, search Name Twin Groves II (07) Wind Farm Facility Twin Groves II (07) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  1. Meridian Way II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Meridian Way II Wind Farm Facility Meridian Way II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  2. MinWind I & II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    I & II Wind Farm Jump to: navigation, search Name MinWind I & II Wind Farm Facility MinWind I & II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  3. Wild Horse II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Wild Horse II Wind Farm Facility Wild Horse II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  4. JD Wind 4 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name JD Wind 4 Wind Farm Facility JD Wind 4 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  5. Echo 8-9 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    8-9 Wind Farm Jump to: navigation, search Name Echo 8-9 Wind Farm Facility Echo 8-9 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  6. Buffalo Gap 3 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    3 Wind Farm Jump to: navigation, search Name Buffalo Gap 3 Wind Farm Facility Buffalo Gap 3 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  7. SLIDESHOW: Shepherds Flat Wind Farm | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shepherds Flat Wind Farm SLIDESHOW: Shepherds Flat Wind Farm Addthis 1 of 5 Image: Caithness Energy 2 of 5 Image: Caithness Energy 3 of 5 Image: Caithness Energy 4 of 5 Image: Caithness Energy 5 of 5 Image: Caithness Energy

  8. West Coast Wind Farms Scotland Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Farms Scotland Ltd Jump to: navigation, search Name: West Coast Wind Farms (Scotland) Ltd Place: Ilfracombe, United Kingdom Zip: EX34 8NJ Sector: Wind energy Product: Wind...

  9. Hull Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Hull Wind II Wind Farm Facility Hull II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Hull...

  10. Hanford Site C Tank Farm Meeting Summary - May 2009 | Department...

    Office of Environmental Management (EM)

    May 2009 Hanford Site C Tank Farm Meeting Summary - May 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  11. Hanford Site C Tank Farm Meeting Summary - July 2010 | Department...

    Office of Environmental Management (EM)

    July 2010 Hanford Site C Tank Farm Meeting Summary - July 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  12. Hanford Site C Tank Farm Meeting Summary - October 2009 | Department...

    Office of Environmental Management (EM)

    October 2009 Hanford Site C Tank Farm Meeting Summary - October 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C...

  13. Hanford Site C Tank Farm Meeting Summary - September 2010 | Department...

    Office of Environmental Management (EM)

    10 Hanford Site C Tank Farm Meeting Summary - September 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  14. Hanford Site C Tank Farm Meeting Summary - September 2009 | Department...

    Office of Environmental Management (EM)

    09 Hanford Site C Tank Farm Meeting Summary - September 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  15. Hanford Site C Tank Farm Meeting Summary - March 2010 | Department...

    Office of Environmental Management (EM)

    March 2010 Hanford Site C Tank Farm Meeting Summary - March 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Meeting Summary for...

  16. JD Wind 5 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    5 Wind Farm Jump to: navigation, search Name JD Wind 5 Wind Farm Facility JD Wind 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  17. Mojave 90 (3 & 5) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    3 & 5) Wind Farm Jump to: navigation, search Name Mojave 90 (3 & 5) Wind Farm Facility Mojave 90 (3 & 5) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Cow Branch Wind Energy Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cow Branch Wind Energy Center Wind Farm Jump to: navigation, search Name Cow Branch Wind Energy Center Wind Farm Facility Cow Branch Wind Energy Center Sector Wind energy Facility...

  19. Metro Wind LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind LLC Wind Farm Jump to: navigation, search Name Metro Wind LLC Wind Farm Facility Metro Wind LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  20. Echo 1-7 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Echo 1-7 Wind Farm Jump to: navigation, search Name Echo 1-7 Wind Farm Facility Echo 1-7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  1. JD Wind 1 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name JD Wind 1 Wind Farm Facility JD Wind 1 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWSJohn...

  2. Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative September 26, 2013 - 5:50pm Addthis Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative A train carrying wind turbine components arrives in Alaska. The components were then transported to the Eva Creek Wind Farm site. | Photo courtesy of Golden Valley Electric Association A train carrying wind turbine components arrives in Alaska.

  3. MAESTRO HELPS SMALL MISSOURI FARMS SAVE BIG | Department of Energy

    Energy Savers [EERE]

    MAESTRO HELPS SMALL MISSOURI FARMS SAVE BIG MAESTRO HELPS SMALL MISSOURI FARMS SAVE BIG MAESTRO HELPS SMALL MISSOURI FARMS SAVE BIG Given the rising cost of operating a farm in today's economy, many small farmers in Missouri feel the challenging economic times more than other residents. To help farmers in the state save resources and money, the Missouri Department of Agriculture (MDA), along with a number of partners, created a program known as MAESTRO, or Missouri Agricultural Energy Saving

  4. Hanford Communities Issue Briefing on Tank Farms

    Broader source: Energy.gov [DOE]

    Department of Energy Office of River Protection representatives Stacy Charboneau (Deputy Manager) and Tom Fletcher (Tank Farms Assistant Manager) and Washington State Department of Ecology's Suzanne Dahl (Tank Waste Section Manager) discuss Hanford's complex tank waste retrieval mission with members of the community.

  5. Before the Committee on Agriculture Subcommittee on General Farm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commodities and Risk Management | Department of Energy Agriculture Subcommittee on General Farm Commodities and Risk Management Before the Committee on Agriculture Subcommittee on General Farm Commodities and Risk Management Before the Committee on Agriculture Subcommittee on General Farm Commodities and Risk Management By: Howard Gruenspecht, Acting Administrator, Energy Information Administration Subject: Energy Markets and their Implications on Agriculture PDF icon

  6. SEP Success Story: Turkey Hill Dairy: Where Energy is Not Left...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The newest Farm Power facility in Washington generates enough electricity to power 500 homes. Photo courtesy of seaturtle. SEP Success Story: Farming Out Heat and Electricity ...

  7. North Central Texas Dairy Waste Control Pilot Project

    SciTech Connect (OSTI)

    2006-08-01

    One of the major goals of this project is to remove 80% of the phosphorus from the liquid waste stream. Also important is that it be economically beneficial to the farm.

  8. Toxic chemical considerations for tank farm releases

    SciTech Connect (OSTI)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.

  9. Biogas and alcohol fuels production. Proceedings of the Seminar on Biomass, Energy for City, Farm, and Industry, Chicago, IL, October 25, 26, 1979

    SciTech Connect (OSTI)

    Goldstein, J.

    1980-01-01

    Basic principles of anaerobic digestion are considered along with the status of the Imperial Valley Biogas Project, the Department of Energy program for the recovery of energy and materials from urban waste, the principles of alcohol production from wastes, the mechanical recovery of a refuse-derived cellulosic feedstock for ethanol production, and the production of ethanol from cellulosic biomass. Attention is given to on-farm alcohol fuel production, the current status and future role of gasohol production, methane generation from small scale farms, farmsite installations of energy harvester anaerobic digesters, biogas/composting and landfill recovery, farm-scale composting as an option to anaerobic digestion, designing a high-quality biogas system, and methane as fuel of the future. A description is presented of subjects which are related to landfill gas recovery, biogas purification with permselective membranes, and anaerobic digestion of marine biomass. Other topics studied include the application of biogas technology in India, biogas production in China, biogasification of organic wastes in the Republic of the Philippines, and economics and operational experience of full-scale anaerobic dairy manure digester.

  10. Dairy Analytics and Nutrient Analysis (DANA) Prototype System User Manual

    SciTech Connect (OSTI)

    Sam Alessi; Dennis Keiser

    2012-10-01

    This document is a user manual for the Dairy Analytics and Nutrient Analysis (DANA) model. DANA provides an analysis of dairy anaerobic digestion technology and allows users to calculate biogas production, co-product valuation, capital costs, expenses, revenue and financial metrics, for user customizable scenarios, dairy and digester types. The model provides results for three anaerobic digester types; Covered Lagoons, Modified Plug Flow, and Complete Mix, and three main energy production technologies; electricity generation, renewable natural gas generation, and compressed natural gas generation. Additional options include different dairy types, bedding types, backend treatment type as well as numerous production, and economic parameters. DANAs goal is to extend the National Market Value of Anaerobic Digester Products analysis (informa economics, 2012; Innovation Center, 2011) to include a greater and more flexible set of regional digester scenarios and to provide a modular framework for creation of a tool to support farmer and investor needs. Users can set up scenarios from combinations of existing parameters or add new parameters, run the model and view a variety of reports, charts and tables that are automatically produced and delivered over the web interface. DANA is based in the INLs analysis architecture entitled Generalized Environment for Modeling Systems (GEMS) , which offers extensive collaboration, analysis, and integration opportunities and greatly speeds the ability construct highly scalable web delivered user-oriented decision tools. DANAs approach uses server-based data processing and web-based user interfaces, rather a client-based spreadsheet approach. This offers a number of benefits over the client-based approach. Server processing and storage can scale up to handle a very large number of scenarios, so that analysis of county, even field level, across the whole U.S., can be performed. Server based databases allow dairy and digester parameters be held and managed in a single managed data repository, while allows users to customize standard values and perform individual analysis. Server-based calculations can be easily extended, versions and upgrades managed, and any changes are immediately available to all users. This user manual describes how to use and/or modify input database tables, run DANA, view and modify reports.

  11. Voluntary Protection Program Onsite Review, Tank Farm Operations Contract -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 2010 | Department of Energy Tank Farm Operations Contract - November 2010 Voluntary Protection Program Onsite Review, Tank Farm Operations Contract - November 2010 November 2010 Evaluation to determine whether the Tank Farm Operations Contract is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review during November 1 - 11, 2010 to determine whether Washington River Protection Solutions, LLC is continuing to perform at a level deserving

  12. Offshore Wind Farm Model Development - Upcoming Release of the University

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Minnesota's Virtual Wind Simulator | Department of Energy Offshore Wind Farm Model Development - Upcoming Release of the University of Minnesota's Virtual Wind Simulator Offshore Wind Farm Model Development - Upcoming Release of the University of Minnesota's Virtual Wind Simulator September 16, 2015 - 1:14pm Addthis Large-eddy simulation of wind farms with parameterization of wind turbines is emerging as a powerful tool for improving the performance and lowering the maintenance cost of

  13. Independent Oversight Review, Hanford Site Tank Farms 222-S Laboratory -

    Office of Environmental Management (EM)

    January 2014 | Department of Energy Tank Farms 222-S Laboratory - January 2014 Independent Oversight Review, Hanford Site Tank Farms 222-S Laboratory - January 2014 January 2014 Review of the Hanford Tank Farms Safety Management Program Implementation Electrical Safety in the 222-S Laboratory The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of the

  14. Independent Oversight Review, Hanford Tank Farms - April 2013 | Department

    Office of Environmental Management (EM)

    of Energy Tank Farms - April 2013 Independent Oversight Review, Hanford Tank Farms - April 2013 April 2013 Review of Management of Safety Systems at the Hanford Tank Farms The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of the management of safety class or safety significant structures, systems and components (hereinafter referred to as safety systems) at

  15. Making a Difference: Federal Energy Management Down on the Farm |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Federal Energy Management Down on the Farm Making a Difference: Federal Energy Management Down on the Farm November 30, 2015 - 10:15am Addthis Making a Difference: Federal Energy Management Down on the Farm Timothy Unruh Timothy Unruh FEMP Director Above: design of Solar Shaded AgPort, showing sheltered area under photovoltaic-covered rooftop. Image courtesy of Gerald Robinson, Lawrence Berkeley National Laboratory The Energy Department's Federal Energy Management

  16. Medicine Bow Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Medicine Bow Wind Farm II Facility Medicine Bow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Platte...

  17. Medicine Bow Wind Farm IV | Open Energy Information

    Open Energy Info (EERE)

    IV Jump to: navigation, search Name Medicine Bow Wind Farm IV Facility Medicine Bow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Platte...

  18. Medicine Bow Wind Farm III | Open Energy Information

    Open Energy Info (EERE)

    III Jump to: navigation, search Name Medicine Bow Wind Farm III Facility Medicine Bow Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Platte...

  19. Medicine Bow Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Medicine Bow Wind Farm I Facility Medicine Bow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Platte...

  20. Green Ridge Power Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Green Ridge Power Wind Farm II Facility Green Ridge Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  1. Topaz Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Topaz Solar Farm Sector Solar Facility Type Photovoltaic Developer OptiSolar Location San Luis Obispo County, California Coordinates 35.3102296, -120.4357631 Show Map...

  2. Belgaum Wind Farms Private Limited BWFPL | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Belgaum Wind Farms Private Limited (BWFPL) Place: Mumbai, Maharashtra, India Zip: 400705 Product: Mumbai-based project developer and subsidiary...

  3. Pleasant Run Farm, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Run Farm, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.3031126, -84.5480009 Show Map Loading map... "minzoom":false,"mappingservice...

  4. Iowa Lakes Superior Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Iowa Lakes Superior Wind Farm Facility Iowa Lakes Superior Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iowa Lakes...

  5. Iowa Lakes Lakota Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Iowa Lakes Lakota Wind Farm Facility Iowa Lakes Lakota Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iowa Lakes...

  6. NREL Research Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name NREL Research Wind Farm II Facility NREL Research Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  7. NREL Research Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name NREL Research Wind Farm I Facility NREL Research Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  8. PERFORMANCE OBJECTIVES FOR TANK FARM CLOSURE PERFORMANCE ASSESSMENTS

    SciTech Connect (OSTI)

    MANN, F.M.; CRUMPLER, J.D.

    2005-09-30

    This report documents the performance objectives (metrics, times of analyses, and times of compliance) to be used in performance assessments of Hanford Site tank farm closure.

  9. NNSA Awards Contract for Largest Federal Wind Farm to Siemens...

    National Nuclear Security Administration (NNSA)

    Contract for Largest Federal Wind Farm to Siemens Government Technologies, Inc. | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  10. Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm I...

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm I Facility Southern Minnesota Municipal Power Agency (SMMPA) Sector Wind energy...

  11. Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm Ii...

    Open Energy Info (EERE)

    Ii Jump to: navigation, search Name Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm Ii Facility Southern Minnesota Municipal Power Agency (SMMPA) Sector Wind energy...

  12. European Wind Farms A S | Open Energy Information

    Open Energy Info (EERE)

    Sector: Wind energy Product: Focused on wind farm development in Europe. Coordinates: 56.866669, 8.31667 Show Map Loading map... "minzoom":false,"mappingservice":"googlemap...

  13. EA-1955: Campbell County Wind Farm; Campbell County, South Dakota...

    Broader source: Energy.gov (indexed) [DOE]

    an EA that analyzes the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm...

  14. Independent Oversight Activity Report, Hanford Tank Farms - June...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2013 Independent Oversight Activity Report, Hanford Tank Farms - June 2013 June 2013 Office of River Protection Assessment of Contractor Quality Assurance, Operational...

  15. Independent Oversight Review, Hanford Tank Farms - December 2012...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - December 2012 December 2012 Review of the Hanford Tank Farms Radiological Controls Activity-Level Implementation This report documents an independent review by the Office of...

  16. Buena Vista Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Buena Vista Wind Farm I Facility Buena Vista Facility Status Decommissioned Owner International Wind Companies Energy Purchaser Pacific Gas &...

  17. Masson Radium Springs Farm Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Temperature Geothermal Facility Facility Masson Radium Springs Farm Sector Geothermal energy Type Greenhouse Location Radium Springs, New Mexico Coordinates 32.501453,...

  18. Cedar Creek Wind Farm II (Nordex) | Open Energy Information

    Open Energy Info (EERE)

    Nordex) Jump to: navigation, search Name Cedar Creek Wind Farm II (Nordex) Facility Cedar Creek II (Nordex) Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  19. Whitewater Hill Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Whitewater Hill Wind Farm II Facility Whitewater Hill Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Cannon...

  20. Oak Creek Energy Systems Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Oak Creek Energy Systems Wind Farm II Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  1. Victory Gardens Phase IV Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Victory Gardens Phase IV Wind Farm II Facility Victory Gardens- Phase IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  2. DOE - NNSA/NFO -- News & Views Experimental Farm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique 36-acre Experimental Farm Tested Crops, Animals Photo - EPA experimental farm on the NTS For 15 years the U.S. Environmental Protection Agency (EPA) managed a unique, 36-acre experimental farm for the U.S. Department of Energy and its predecessor agencies. Construction of the farm began in 1964 in Area 15 of the Nevada Test Site. The land was cleared of desert vegetation, a 5,400-foot water well was rehabilitated, a one-million-gallon reservoir was built, and the first crops were planted.

  3. DOE - NNSA/NFO -- Photo Library EPA Farm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EPA Farm NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - EPA Farm In November 1981, the last cattle roundup took place at the U.S. Department of Energy's (DOE) experimental farm, managed for DOE by the U.S. Environmental Protection Agency (EPA). Operations at this unique 30-acre experimental farm in Area 15 started in 1964 when the EPA was contracted to conduct research to determine if radioactive materials found in the environment were being transported to humans.

  4. Radiation Control in Tank farms discussion with HAB

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control in Tank Farms discussion with HAB Health, Safety, Environment Protection Brandon Williams February 14, 2012 Timeline * 2-23-10, ORP initiated an assessment of WRPS Rad...

  5. MHK Projects/Brough Head Wave Farm | Open Energy Information

    Open Energy Info (EERE)

    homepage Retrieved from "http:en.openei.orgwindex.php?titleMHKProjectsBroughHeadWaveFarm&oldid680140" Feedback Contact needs updating Image needs updating Reference...

  6. MHK Projects/Paimpol Brehat tidal farm | Open Energy Information

    Open Energy Info (EERE)

    Paimpol Brehat tidal farm < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  7. EECBG Success Story: Georgia County Turning Industrial and Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Georgia County Turning Industrial and Farm Waste Into Big Energy Savings EECBG Success ... Learn more. Addthis Related Articles EECBG Success Story: County Aims to Save with ...

  8. H-Tank Farm Waste Determination | Department of Energy

    Energy Savers [EERE]

    H-Tank Farm Waste Determination H-Tank Farm Waste Determination On Dec. 19, 2014, the Energy Secretary signed a determination that allows the Savannah River Site (SRS) in South Carolina to complete cleanup and closure of the underground liquid waste tanks in the H Tank Farm as they are emptied and cleaned. The action marked a major milestone in efforts to clean up the Cold War legacy at SRS. PDF icon Basis for Section 3116 Determination for Closure of H-Tank Farm at the Savannah River Site PDF

  9. Sandia Energy - Increasing the Scaled Wind Farm Technology Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Production Home Renewable Energy Energy SWIFT Facilities Partnership News Wind Energy News & Events Systems Analysis Increasing the Scaled Wind Farm Technology...

  10. Sandia Energy - Scaled Wind Farm Technology Facility Baselining...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Accelerates Work Home Renewable Energy Energy SWIFT Facilities Partnership News Wind Energy News & Events Systems Analysis Scaled Wind Farm Technology Facility Baselining...

  11. Sandia Energy - Scaled Wind Farm Technology (SWIFT) Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Wind Turbine Controller Ground Testing Home Renewable Energy Energy SWIFT News Wind Energy News & Events Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine...

  12. Wind Farm Growth Through the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Farm Growth Through the Years Wind Farm Growth Through the Years August 6, 2013 - 8:32am Addthis 1975 Start Slow Stop Year Wind Farms Homes Powered Added Current Year 833 Wind Farms Online. Enough to Power 15 M Homes Data provided by the EIA. The number of homes powered is estimated through conversion factors provided by the EIA. Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs As we publish the 2012 Wind Technologies Market Report, we are excited

  13. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    1878, Rev. 0 Summary Notes from 5 - 7 May 2009 Office of River Protection Waste Management Area C Tank Farm Performance Assessment Input Meeting MP Connelly Washington River Protection Solutions LLC Richland, WA 99352 U.S. Department of Energy Contract DE-AC27-08RV14800 EDT/EON: DRF UC: Cost Center: Charge Code: B&R Code: Total Pages: 15 Key Words: Waste Management Area C, Performance Assessment, tank closure, waste inventory Abstract: Summary of meeting between DOE-ORP and Hanford Site

  14. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    3622, Rev. 0 Summary Notes from 1 - 3 September 2009 Office of River Protection Waste Management Area C Tank Farm Performance Assessment Input Meeting MP Connelly Washington River Protection Solutions LLC Richland, WA 99352 U.S. Department of Energy Contract DE-AC27-08RV1 4800 EDT/ECN: DRF UC: Cost Center: Charge Code: B&R Code: Total Pages: 13 Key Words: Waste Management Area C, Performance Assessment, tank closure, waste inventory Abstract: Summary of meeting between DOE-ORP and Hanford

  15. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    SciTech Connect (OSTI)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  16. Long Island New York City Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Long Island New York City Offshore Wind Farm Jump to: navigation, search Name Long Island New York City Offshore Wind Farm Facility Long Island New York City Offshore Wind Farm...

  17. EA-1979: Summit Wind Farm; Summit, South Dakota | Department of Energy

    Office of Environmental Management (EM)

    9: Summit Wind Farm; Summit, South Dakota EA-1979: Summit Wind Farm; Summit, South Dakota Summary Western Area Power Administration (Western) prepared an EA that analyzes the potential environmental impacts of the proposed Summit Wind Farm, a proposed 99-MW wind farm south of Summit, South Dakota. The proposed wind farm would interconnect to Western's existing transmission line within the footprint of the wind farm. Additional information is available at

  18. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, ... operating in the marine environment where offshore wind farms could be installed. ...

  19. Hanford Technology Development (Tank Farms) - 12509

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of tank waste are a byproduct of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. One key part of the ongoing work at Hanford is retrieving waste from the single-shell tanks, some of which have leaked in the past, and transferring that waste to the double-shell tanks - none of which have ever leaked. The 56 million gallons of radioactive tank waste is stored in 177 underground tanks, 149 of which are single-shell tanks built between 1943 and 1964. The tanks sit approximately 250 feet above the water table. Hanford's single-shell tanks are decades past their 20-year design life. In the past, up to 67 of the single-shell tanks are known or suspected to have leaked as much as one million gallons of waste to the surrounding soil. Starting in the late 1950's, waste leaks from dozens of the single-shell tanks were detected or suspected. Most of the waste is in the soil around the tanks, but some of this waste is thought to have reached groundwater. The Vadose Zone Project was established to understand the radioactive and chemical contamination in the soil beneath the tanks as the result of leaks and discharges from past plutonium-production operations. The vadose zone is the area of soil between the ground surface and the water table 200-to-300 feet below. The project tracks and monitors contamination in the soil. Technologies are being developed and deployed to detect and monitor contaminants. Interim surface barriers, which are barriers put over the single-shell tanks, prevent rain and snow from soaking into the ground and spreading contamination. The impermeable barrier placed over T Farm, which was the site of the largest tank waste leak in Hanford's history, is 60,000 square feet and sloped to drain moisture outside the tank farm. The barrier over TY Farm is constructed of asphalt and drains moisture to a nearby evaporation basin. Our discussion of technology will address the incredible challenge of removing waste from Hanford's single-shell tanks. Under the terms of the Tri-Party Agreement, ORP is required to remove 99 percent of the tank waste, or until the limits of technology have been reached. All pumpable liquids have been removed from the single-shell tanks, and work now focuses on removing the non-pumpable liquids. Waste retrieval was completed from the first single-shell tank in late 2003. Since then, another six single-shell tanks have been retrieved to regulatory standards. (authors)

  20. Fault Detection and Load Distribution for the Wind Farm Challenge

    SciTech Connect (OSTI)

    Borchehrsen, Anders B.; Larsen, Jesper A.; Stoustrup, Jakob

    2014-08-24

    In this paper a fault detection system and a fault tolerant controller for a wind farm model. The wind farm model used is the one proposed as a public challenge. In the model three types of faults are introduced to a wind farm consisting of nine turbines. A fault detection system designed, by taking advantage of the fact that within a wind farm several wind turbines will be operating under all most identical conditions. The turbines are then grouped, and then turbines within each group are used to generate residuals for turbines in the group. The generated residuals are then evaluated using dynamical cumulative sum. The designed fault detection system is cable of detecting all three fault types occurring in the model. But there is room for improving the fault detection in some areas. To take advantage of the fault detection system a fault tolerant controller for the wind farm has been designed. The fault tolerant controller is a dispatch controller which is estimating the possible power at each individual turbine and then setting the reference accordingly. The fault tolerant controller has been compared to a reference controller. And the comparison shows that the fault tolerant controller performance better in all measures. The fault detection and a fault tolerant controller has been designed, and based on the simulated results the overall performance of the wind farm is improved on all measures. Thereby this is a step towards improving the overall performance of current and future wind farms.

  1. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect (OSTI)

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  2. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

  3. Hanford Single-Shell Tank Leak Causes and Locations - 241-B Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-07-11

    This document identifies 241-B Tank Farm (B Farm) leak cause and locations for the 100 series leaking tank (241-B-107) identified in RPP-RPT-49089, Hanford B-Farm Leak Inventory Assessments Report. This document satisfies the B Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  4. Lessons Learned and Best Practices in Savannah River Site Saltstone and Tank Farm Performance Assessments

    Broader source: Energy.gov [DOE]

    Lessons Learned and Best Practices in Savannah River Site Saltstone and Tank Farm Performance Assessments

  5. Question about Map of Wind Farms | OpenEI Community

    Open Energy Info (EERE)

    farms using GIS software. Submitted by Wzeng on 13 July, 2012 - 13:59 1 answer Points: 1 Hi, there is a button labeled "Download CSV" below the map. A recent change was made to...

  6. Green Ridge Power Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Green Ridge Power Wind Farm I Facility Green Ridge Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  7. On-Farm Small-Scale Waste Energy Demonstration

    SciTech Connect (OSTI)

    2006-08-01

    This project is composed of three tasks: development of feedstock pocessing, handling, storage cost estimates, gasifier system development, and on-farm testing of the resulting gasification and power generation system.

  8. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    NREL researchers have used high-tech instruments and high-performance computing to understand atmospheric turbulence and turbine wake behavior in order to improve wind turbine design and siting within wind farms.

  9. Map of Wind Farms/Data | Open Energy Information

    Open Energy Info (EERE)

    Northern Power Systems In Service AB Tehachapi Wind Farm Commercial Scale Wind Coram Energy AB Energy Southern California Edison Co Tehachapi CA 6.97 MW6,970 kW 6,970,000 W...

  10. Cedar Creek Wind Farm II (GE) | Open Energy Information

    Open Energy Info (EERE)

    GE) Jump to: navigation, search Name Cedar Creek Wind Farm II (GE) Facility Cedar Creek II (GE) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  11. Alliant Energy (Wisconsin Power and Light) - Farm Wiring Grant...

    Broader source: Energy.gov (indexed) [DOE]

    Alliant Energy Website http:www.alliantenergy.comSaveEnergyAndMoneyRebatesFarmWIindex.htm State Wisconsin Program Type Grant Program Rebate Amount 1,000 + 50% of...

  12. Moray Firth Deepwater Wind Farm Trial | Open Energy Information

    Open Energy Info (EERE)

    Firth Deepwater Wind Farm Trial Place: United Kingdom Sector: Wind energy Product: A joint venture to trial deep water wind turbines on the Beatrice Oil Field in the Moray...

  13. EIS-0376: White Wind Farm Brookings County, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal by Western to interconnect its proposed White Wind Farm Project (Project) to Western’s transmission system at the existing White...

  14. Fact Sheet: Wind Firming EnergyFarm (October 2012)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Institute (EPRI). The EnergyFarm will displace a planned 73 million natural-gas-fired power plant intended to smooth (or firm) the output of intermittent wind and...

  15. Rhode Island to Build First Offshore Wind Farm

    Broader source: Energy.gov [DOE]

    Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island’s first offshore wind farm.

  16. Argonne National Laboratory Develops Extreme-Scale Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    studies of complex flow and wind turbine interactions in large land-based and offshore wind farms that will improve wind plant design and reduce the levelized cost of energy. ...

  17. Hanford Single-Shell Tank Leak Causes and Locations - 241-BY and 241-TY Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-11-19

    This document identifies 241-BY Tank Farm (BY Farm) and 241-TY Tank Farm (TY Farm) leak causes and locations for the 100 series leaking tanks (241-BY-103, 241-TY-103, 241-TY-104, 241-TY-105, and 241-TY-106) identified in RPP-RPT-43704, Hanford BY Farm Leak Assessments Report, and in RPP-RPT-42296, Hanford TY Farm Leak Assessments Report. This document satisfies the BY and TY Farm portion of the target (T04) in Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  18. Hanford Single-Shell Tank Leak Causes and Locations - 241-BY and 241-TY Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2014-09-04

    This document identifies 241-BY Tank Farm (BY Farm) and 241-TY Tank Farm (TY Farm) lead causes and locations for the 100 series leaking tanks (241-BY-103, 241-TY-103, 241-TY-104, 241-TY-105 and 241-TY-106) identified in RPP-RPT-43704, Hanford BY Farm Leak Assessments Report, and in RPP-RPT-42296, Hanford TY Farm Leak Assessments Report. This document satisfies the BY and TY Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  19. Independent Oversight Activity Report, Hanford Waste Tank Farms - October

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    28 - November 6, 2013 | Department of Energy Tank Farms - October 28 - November 6, 2013 Independent Oversight Activity Report, Hanford Waste Tank Farms - October 28 - November 6, 2013 February 2014 Follow-up on Previously Identified Items Regarding Positive Ventilation of Hanford Underground Waste Tanks [HIAR-HANFORD-2013-10-28] This Independent Oversight Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's Office of Safety and Emergency

  20. PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Hybrids Show Best Potential | Department of Energy Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential February 24, 2012 - 11:30am Addthis This is an excerpt from the First Quarter 2012 edition of the Wind Program R&D Newsletter. Adding offshore wind to the U.S. renewable energy portfolio promises access to a large,

  1. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 41: Mohave County Wind Farm Project, Mohave County, Arizona EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona Summary This EIS, prepared by the Bureau of Land Management with DOE's Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one

  2. Tank Farms at the Savannah River Site | Department of Energy

    Energy Savers [EERE]

    Tank Farms at the Savannah River Site Tank Farms at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. A Waste Determination Basis (WD Basis) provides the analysis to document the

  3. ICPP tank farm closure study. Volume 1

    SciTech Connect (OSTI)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  4. Criticality Safety Evaluation of Hanford Tank Farms Facility

    SciTech Connect (OSTI)

    WEISS, E.V.

    2000-12-15

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  5. Primus Power Corporation Wind Firming EnergyFarm

    Energy Savers [EERE]

    Primus Power Corporation Wind Firming EnergyFarm (tm) Project Description Primus Power is deploying a 25MW/75MWh EnergyFarm(tm) in the Modesto Irrigation District (MID) in California' central valley that consists of an array of 250kW EnergyPods(tm); plug-and-play zinc-flow battery modules and power electronics systems housed inside ISO shipping containers. The modular design and operation will be field tested at Pacific Gas & Electric with support from Sandia National Laboratories and the

  6. Economic Development Benefits of the Mars Hill Wind Farm, Wind Powering America Rural Economic Development, Case Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    This case study summarizes the economic development benefits of the Mars Hill Wind Farm to the community of Mars Hill, Maine. The Mars Hill Wind Farm is New England's first utility-scale wind farm.

  7. Patankar Wind Farms Pvt Ltd Shri Padmawati Wind Energy Pvt Ltd...

    Open Energy Info (EERE)

    Patankar Wind Farms Pvt Ltd Shri Padmawati Wind Energy Pvt Ltd Jump to: navigation, search Name: Patankar Wind Farms Pvt. Ltd. & Shri Padmawati Wind Energy Pvt. Ltd Place: Satara,...

  8. Painted Hills B&C Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    Painted Hills B&C Wind Farm I Jump to: navigation, search Name Painted Hills B&C Wind Farm I Facility Painted Hills B&C Sector Wind energy Facility Type Commercial Scale Wind...

  9. First Draft Performance Assessment for the H-Area Tank Farm at...

    Office of Environmental Management (EM)

    ... Performance Assessment for the SRR-CWDA-2010-00128 H-Area Tank Farm at the Revision 0 ... Performance Assessment for the SRR-CWDA-2010-00128 H-Area Tank Farm at the Revision 0 ...

  10. First Draft Performance Assessment for the H-Area Tank Farm at...

    Office of Environmental Management (EM)

    the eventual removal from service of the H-Area Tank Farm (HTF) underground radioactive ... Assessment for the SRR-CWDA-2010-00128 H-Area Tank Farm at the Revision 0 Savannah ...

  11. First Draft Performance Assessment for the H-Area Tank Farm at...

    Office of Environmental Management (EM)

    ... Assessment for the SRR-CWDA-2010-00128 H-Area Tank Farm at the Revision 0 Savannah ... Assessment for the SRR-CWDA-2010-00128 H-Area Tank Farm at the Revision 0 Savannah ...

  12. Lone Star II (1Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Lone Star II (1Q08) Wind Farm Facility Lone Star II (1Q08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Lone Star II (4Q07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Lone Star II (4Q07) Wind Farm Facility Lone Star II (4Q07) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. Lone Star I (4Q07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Lone Star I (4Q07) Wind Farm Facility Lone Star I (4Q07) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. Lone Star II (2Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Lone Star II (2Q08) Wind Farm Facility Lone Star II (2Q08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Mojave 16-17-18 Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    16-17-18 Wind Farm II Jump to: navigation, search Name Mojave 16-17-18 Wind Farm II Facility Mojave 161718 Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  17. Ponnequin phase I and II (PSCo) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    I and II (PSCo) Wind Farm Jump to: navigation, search Name Ponnequin phase I and II (PSCo) Wind Farm Facility Ponnequin phase I and II (PSCo) Sector Wind energy Facility Type...

  18. Oak Creek Wind Power Phase 2 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Phase 2 Wind Farm Jump to: navigation, search Name Oak Creek Wind Power Phase 2 Wind Farm Facility Oak Creek Wind Power Phase 2 Sector Wind energy Facility Type...

  19. Wind Power Partners '90-'92 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    0-'92 Wind Farm Jump to: navigation, search Name Wind Power Partners '90-'92 Wind Farm Facility Wind Power Partners '90-'92 Sector Wind energy Facility Type Commercial Scale Wind...

  20. F.E. Warren Air Force Base Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    F.E. Warren Air Force Base Wind Farm Jump to: navigation, search Name F.E. Warren Air Force Base Wind Farm Facility F.E. Warren Air Force Base Sector Wind energy Facility Type...

  1. EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction and Startup of the Topaz Solar Farm, San Luis Obispo County, CA July 30, 2010 EIS-0458: Option A & B Study Areas May 25, 2009 EIS-0458: Topaz Solar Farm Vicinity Map

  2. Camp Springs II (4Q07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4Q07) Wind Farm Jump to: navigation, search Name Camp Springs II (4Q07) Wind Farm Facility Camp Springs II (4Q07) Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Camp Springs II (1Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    1Q08) Wind Farm Jump to: navigation, search Name Camp Springs II (1Q08) Wind Farm Facility Camp Springs II (1Q08) Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Conceptual design report for tank farm restoration and safe operations, project W-314

    SciTech Connect (OSTI)

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  5. Hanford Single-Shell Tank Leak Causes and Locations - 241-T Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2014-05-15

    This document identifies 241-T Tank Farm (T Farm) leak causes and locations for the 100 series leaking tanks (241-T-106 and 241-T-111) identified in RPP-RPT-55084, Rev. 0, Hanford 241-T Farm Leak Inventory Assessment Report. This document satisfies the T Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  6. Hanford Single-Shell Tank Leak Causes and Locations - 241-C Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-07-30

    This document identifies 241-C Tank Farm (C Farm) leak causes and locations for the 100 series leaking tanks (241-C-101 and 241-C-105) identified in RPP-RPT-33418, Rev. 2, Hanford C-Farm Leak Inventory Assessments Report. This document satisfies the C Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  7. Hanford Single-Shell Tank Leak Causes and Locations - 241-U Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-12-02

    This document identifies 241-U Tank Farm (U Farm) leak causes and locations for the 100 series leaking tanks (241-U-104, 241-U-110, and 241-U-112) identified in RPP-RPT-50097, Rev. 0, Hanford 241-U Farm Leak Inventory Assessment Report. This document satisfies the U-Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  8. Hanford Single-Shell Tank Leak Causes and Locations - 241-A Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-09-10

    This document identifies 241-A Tank Farm (A Farm) leak causes and locations for the 100 series leaking tanks (241-A-104 and 241-A-105) identified in RPP-ENV-37956, Hanford A and AX Farm Leak Assessment Report. This document satisfies the A Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  9. Tank farms solid waste characterization guide with sampling and analysis plan attachment

    SciTech Connect (OSTI)

    Quigley, J.T.

    1997-04-02

    This document describes methods used, including sampling and analysis, to characterize hazardous chemical constituent in Tank Farms containerized solid waste.

  10. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    SciTech Connect (OSTI)

    Girardot, C. L.; Harlow, D> G.

    2014-07-22

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  11. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant and Tank Farm – January 2014

    Broader source: Energy.gov [DOE]

    Hanford Waste Treatment and Immobilization Plant Engineering Activities and Tank Farm Operations [HIAR-HANFORD-2014-01-13

  12. VP 100: Illinois Wind Farm Breathes New Life Into Businesses | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Illinois Wind Farm Breathes New Life Into Businesses VP 100: Illinois Wind Farm Breathes New Life Into Businesses September 23, 2010 - 12:46pm Addthis The Streator Cayuga Ridge South Wind Farm has 300 MW capacity of electricity. | Photo courtesy of Greater Livingston County Economic Development Council The Streator Cayuga Ridge South Wind Farm has 300 MW capacity of electricity. | Photo courtesy of Greater Livingston County Economic Development Council Stephen Graff Former Writer

  13. Use of alcohol in farming applications: alternative fuels utilization program

    SciTech Connect (OSTI)

    Borman, G.L.; Foster, D.E.; Uyehara, O.A.; McCallum, P.W.; Timbario, T.J.

    1980-11-01

    The use of alcohol with diesel fuel has been investigated as a means of extending diesel fuel supplies. The ability to use ethanol in diesel-powered farm equipment could provide the means for increasing the near-term fuels self-sufficiency of the American farmer. In the longer term, the potential availability of methanol (from coal) in large quantities could serve to further decrease the dependency on diesel fuel. This document gives two separate overviews of the use of alcohols in farm equipment. Part I of this document compares alcohol with No. 1 and No. 2 diesel fuels and describes several techniques for using alcohol in farm diesels. Part II of this document discusses the use of aqueous ethanol in diesel engines, spark ignition engines and provides some information on safety and fuel handling of both methanol and ethanol. This document is not intended as a guide for converting equipment to utilize alcohol, but rather to provide information such that the reader can gain insight on the advantages and disadvantages of using alcohol in existing engines currently used in farming applications.

  14. Bureau of Indian Education Many Farms Training Program at Argonne

    ScienceCinema (OSTI)

    None

    2013-04-19

    Bureau of Indian Education Many Farms Training Program for Renewable Energy at Argonne National Laboratory. Principal Contacts; Harold Myron (ANL), Anthony Dvorak (ANL), Freddie Cardenas (BIA). Supported by; United States Department of the Interior, Bureau of Indian Education, and Argonne National Laboratory

  15. Fact Sheet: Wind Firming EnergyFarm (August 2013)

    Broader source: Energy.gov [DOE]

    Primus Power is deploying a 25MW/75MWh EnergyFarm(TM) in the Modesto Irrigation District (MID) in California’ central valley that consists of an array of 250kW EnergyPods(TM); plug-and-play zinc-flow battery modules and power electronics systems housed inside ISO shipping containers.

  16. Tank farm stack NESHAP designation determinations. Revision 2

    SciTech Connect (OSTI)

    Crummel, G.M.

    1996-01-18

    This document provides a determination of the status of Tank Farm Exhausters as regulated by the ``National Emission Standards for Hazardous Air Pollutants`` (NESHAP) specified in the 40 Series Code of Federal Regulations (CFRs), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides other than Radon from Department of Energy Facilities.``

  17. Technical Baseline Summary Description for the Tank Farm Contractor

    SciTech Connect (OSTI)

    TEDESCHI, A.R.

    2000-04-21

    This document is a revision of the document titled above, summarizing the technical baseline of the Tank Farm Contractor. It is one of several documents prepared by CH2M HILL Hanford Group, Inc. to support the U.S. Department of Energy Office of River Protection Tank Waste Retrieval and Disposal Mission at Hanford.

  18. Operational test procedure for SY tank farm replacement exhauster unit

    SciTech Connect (OSTI)

    McClees, J.

    1995-09-26

    This operational test procedure will verify that the remaining functions not tested per WHC-SD-WM-ATP-080, or components disturbed during final installation, as well as interfaces with other tank farm equipment and remote monitoring stations are operating correctly.

  19. EA-1955: Campbell County Wind Farm; Campbell County, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) prepared an EA that analyzes the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm near Pollock, South Dakota, to Western’s existing transmission line at that location.

  20. Pantex signing ceremony kicks off wind farm project | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration signing ceremony kicks off wind farm project | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  1. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  2. PORFLOW Modeling Supporting The H-Tank Farm Performance Assessment

    SciTech Connect (OSTI)

    Jordan, J. M.; Flach, G. P.; Westbrook, M. L.

    2012-08-31

    Numerical simulations of groundwater flow and contaminant transport in the vadose and saturated zones have been conducted using the PORFLOW code in support of an overall Performance Assessment (PA) of the H-Tank Farm. This report provides technical detail on selected aspects of PORFLOW model development and describes the structure of the associated electronic files. The PORFLOW models for the H-Tank Farm PA, Rev. 1 were updated with grout, solubility, and inventory changes. The aquifer model was refined. In addition, a set of flow sensitivity runs were performed to allow flow to be varied in the related probabilistic GoldSim models. The final PORFLOW concentration values are used as input into a GoldSim dose calculator.

  3. The Long Island Solar Farm | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In November 2011, a utility-scale solar array became operational in the most unlikely of places: at Brookhaven National Laboratory on densely populated Long Island, New York. Now the largest utility-scale solar power plant in the eastern United States, the Long Island Solar Farm is a remarkable success story whereby very different interest groups capitalized on unusual circumstances to develop a mutually beneficial source of renewable energy. Location Brookhaven National Laboratory 2 Center St

  4. DOE/SNL Scaled Wind-Farm Technology facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SNL Scaled Wind-Farm Technology facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  5. High-Resolution Computational Algorithms for Simulating Offshore Wind Farms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Algorithms for Simulating Offshore Wind Farms - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  6. Tribal Wind Farm Leases: Hearth Act versus BIA Approval

    Energy Savers [EERE]

    Tribal Wind Farm Leases Hearth Act Versus BIA Approval March 24, 2014 Mark Randall Developer PNE Wind USA DOE TEP Peer Review Meeting Chilocco Wind Fram Helping Expedite and Advance Responsible Tribal Home Ownership Tribes can develop and implement their own leasing regulations Tribal regs can include a tribal NEPA process Secretary must verify compliance before approval Federal permits are still required The HEARTH Act July 30 2012 ∗ Tribal regulation must provide the same protections that

  7. Pantex Wind Farm Complete | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Wind Farm Complete | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  8. Rosebud Sioux Tribe - Owl Feather War Bonnet Wind Farm

    Energy Savers [EERE]

    Anticipated Time Lines * Nov. 2005, Complete NEPA and Submit to BIA * Dec. 2005 Obtain Power Purchase Agreement * Jan 2006, BIA issues FONSI * Nov. 05- Jan 2006, Dev. financial structure, LLC and secure RST Tribal approval * Dec.05- Feb 2006, Engage Investors/Rural Utilities Service, USDA, Secure Loan, Est. Proj. Costs 46 million * July 2006 Construction underway * Dec 2006 Wind farm on line Old Bristow Ranch Met tower Tribal lands North Antelope Met Tower Tribal lands

  9. On-farm anaerobic digester and fuel alcohol plant

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    An anaerobic digestion system was constructed and set up on a southern Illinois farm. The anaerobic digestion system was designed to be coupled with a fuel alcohol plant constructed by the farm family as part of an integrated farm energy system. The digester heating can be done using waste hot water from the alcohol plant and biogas from the digester can be used as fuel for the alcohol production. The anaerobic digestion system is made up of the following components. A hog finishing house, which already had a slotted floor and manure pit beneath it, was fitted with a system to scrape the manure into a feed slurry pit constructed at one end of the hog house. A solids handling pump feeds the manure from the feed slurry pit into the digester, a 13,000 gallon tank car body which has been insulated with styrofoam and buried underground. Another pump transfers effluent (digested manure) from the digester to a 150,000 gallon storage tank. The digested manure is then applied to cropland at appropriate times of the year. The digester temperature is maintained at the required level by automated hot water circulation through an internal heat exchanger. The biogas produced in the digester is pumped into a 32,000 gallon gas storage tank.

  10. Configuration Management Plan for the Tank Farm Contractor

    SciTech Connect (OSTI)

    WEIR, W.R.

    2000-04-21

    The Configuration Management Plan for the Tank Farm Contractor describes configuration management the contractor uses to manage and integrate its technical baseline with the programmatic and functional operations to perform work. The Configuration Management Plan for the Tank Farm Contractor supports the management of the project baseline by providing the mechanisms to identify, document, and control the technical characteristics of the products, processes, and structures, systems, and components (SSC). This plan is one of the tools used to identify and provide controls for the technical baseline of the Tank Farm Contractor (TFC). The configuration management plan is listed in the management process documents for TFC as depicted in Attachment 1, TFC Document Structure. The configuration management plan is an integrated approach for control of technical, schedule, cost, and administrative processes necessary to manage the mission of the TFC. Configuration management encompasses the five functional elements of: (1) configuration management administration, (2) configuration identification, (3) configuration status accounting, (4) change control, and (5 ) configuration management assessments.

  11. Opportunities for Automated Demand Response in California’s Dairy Processing Industry

    SciTech Connect (OSTI)

    Homan, Gregory K.; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-30

    During periods of peak electrical demand on the energy grid or when there is a shortage of supply, the stability of the grid may be compromised or the cost of supplying electricity may rise dramatically, respectively. Demand response programs are designed to mitigate the severity of these problems and improve reliability by reducing the demand on the grid during such critical times. In 2010, the Demand Response Research Center convened a group of industry experts to suggest potential industries that would be good demand response program candidates for further review. The dairy industry was suggested due to the perception that the industry had suitable flexibility and automatic controls in place. The purpose of this report is to provide an initial description of the industry with regard to demand response potential, specifically automated demand response. This report qualitatively describes the potential for participation in demand response and automated demand response by dairy processing facilities in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use. Typical process equipment and controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Two case studies of demand response at dairy facilities in California and across the country are reviewed. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  12. Harvesting the Sun at the West Tennessee Solar Farm | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harvesting the Sun at the West Tennessee Solar Farm Harvesting the Sun at the West Tennessee Solar Farm April 18, 2012 - 4:07pm Addthis Deputy Secretary of Energy Daniel Poneman joins officials from Tennessee government agencies and the University of Tennessee at the official opening of the West Tennessee Solar Farm. | Energy Department photo. Deputy Secretary of Energy Daniel Poneman joins officials from Tennessee government agencies and the University of Tennessee at the official opening of

  13. Draft Performance Assessment for the F-Tank Farm at the Savannah River Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Draft Performance Assessment for the F-Tank Farm at the Savannah River Site Draft Performance Assessment for the F-Tank Farm at the Savannah River Site This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the eventual operational closure of the F-Tank Farm (FTF) underground radioactive waste tanks and ancillary equipment. This PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance

  14. Microsoft Word - West TN Solar Farm_Final EA.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 10-088(E)/010511 FINAL ENVIRONMENTAL ASSESSMENT WEST TENNESSEE SOLAR FARM PROJECT HAYWOOD COUNTY, TENNESSEE U.S. Department of Energy National Energy Technology Laboratory Pittsburgh, PA February 2011 DOE/EA-1706 10-088(E)/010511 FINAL ENVIRONMENTAL ASSESSMENT West Tennessee Solar Farm Project Haywood County, Tennessee February 2011 Environmental Assessment for the West Tennessee Solar Farm Project Table of Contents i Table of Contents 1 INTRODUCTION

  15. SEP Success Story: Harvesting the Sun at the West Tennessee Solar Farm |

    Energy Savers [EERE]

    Department of Energy Harvesting the Sun at the West Tennessee Solar Farm SEP Success Story: Harvesting the Sun at the West Tennessee Solar Farm April 18, 2012 - 2:38pm Addthis Deputy Secretary of Energy Daniel Poneman joins officials from Tennessee government agencies and the University of Tennessee at the official opening of the West Tennessee Solar Farm. | Energy Department photo. Deputy Secretary of Energy Daniel Poneman joins officials from Tennessee government agencies and the

  16. PERFORMANCE ASSESSMENT for the H-AREA TANK FARM at the SAVANNAH RIVER SITE

    Energy Savers [EERE]

    | Department of Energy PERFORMANCE ASSESSMENT for the H-AREA TANK FARM at the SAVANNAH RIVER SITE PERFORMANCE ASSESSMENT for the H-AREA TANK FARM at the SAVANNAH RIVER SITE This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the eventual removal from service of the H-Area Tank Farm (HTF) underground radioactive waste tanks and ancillary equipment. This PA provides the technical basis and results to be used in subsequent documents to demonstrate

  17. Meeting Summaries for Development of the Hanford Site C Tank Farm

    Energy Savers [EERE]

    Performance Assessment | Department of Energy Meeting Summaries for Development of the Hanford Site C Tank Farm Performance Assessment Meeting Summaries for Development of the Hanford Site C Tank Farm Performance Assessment The Meeting Summaries for Development of the Hanford Site C Tank Farm Performance Assessment cover informal discussions between representatives of the U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), the U.S. Nuclear Regulatory Commission

  18. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea

    Office of Environmental Management (EM)

    Surface, Subsurface and Airborne Electronic Systems | Department of Energy DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Report that assesses possible interference to various kinds of equipment operating in the marine environment where offshore wind farms could be installed. PDF icon

  19. EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo County,

    Office of Environmental Management (EM)

    CA | Department of Energy 8: First Solar Topaz Solar Farm Project in San Luis Obispo County, CA EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo County, CA Documents Available for Download August 12, 2011 EIS-0458: Final Environmental Impact Statement Proposed Loan Guarantee to Support Construction and Startup of the Topaz Solar Farm, San Luis Obispo County, CA August 12, 2011 EIS-0458: DOE Notice of Availability of the Final Environmental Impact Statement Proposed Loan

  20. Grouting at the Idaho National Laboratory Tank Farm Facility, R. Mark Shaw

    Office of Environmental Management (EM)

    Grouting at the Idaho National Laboratory Tank Farm Facility R. Mark Shaw, U. S. Department of Energy safety v performance v cleanup v closure M E Environmental Management Environmental Management 2 Topics/Agenda * Tank Farm Overview * Tank and Vault Grouting * Cooling Coil and Transfer Line Grouting safety v performance v cleanup v closure M E Environmental Management Environmental Management 3 INTEC TANK FARM CLOSURE INTEC TANK FARM CLOSURE VES-WM-103 VES-WM-104 VES-WM-105 VES-WM-106 182 183

  1. 3D Scanner to Help Boost Worker Safety in Hanford Tank Farms

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – A laser scanner is being tested in the Hanford tank farms as a mapping tool to help conduct virtual walk-downs.

  2. MHK Projects/San Onofre Oweg Electricity Farm | Open Energy Informatio...

    Open Energy Info (EERE)

    Onofre Oweg Electricity Farm < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  3. Independent Oversight Activity Report, Hanford Tank Farms - March 10-12,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 | Department of Energy Tank Farms - March 10-12, 2014 Independent Oversight Activity Report, Hanford Tank Farms - March 10-12, 2014 March 10-12, 2014 Hanford Tank Farm Operations [HIAR-HANFORD-2014-03-10] This Independent Oversight Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from March 10-12, 2014, at the Hanford Tank Farms. The activity consisted of HSS staff

  4. Alliant Energy Interstate Power and Light (Gas and Electric)- Farm Equipment Energy Efficiency Incentives

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (Alliant Energy) offers prescriptive rebates for a variety of energy efficient products for agricultural customers. In addition to these incentives, IPL offers a Farm...

  5. Want to Finance a Wind Farm Project in Your Community? Try Crowdfunding

    Broader source: Energy.gov [DOE]

    East River Electric Cooperative, a supplier of electric power for rural areas of South Dakota and Minnesota, used a novel approach to financing a wind farm project.

  6. Hanford Single-Shell Tank Leak Causes and Locations - 241-SX Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2014-01-08

    This document identifies 241-SX Tank Farm (SX Farm) leak causes and locations for the 100 series leaking tanks (241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114, and 241-SX-115) identified in RPP-ENV-39658, Rev. 0, Hanford SX-Farm Leak Assessments Report. This document satisfies the SX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  7. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  8. Camp William Utah National Guard Wind Farm II | Open Energy Informatio...

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Camp William Utah National Guard Wind Farm II Facility Camp William Utah National Guard Sector Wind energy Facility Type Community Wind Facility...

  9. Basis for Section 3116 Determination for Closure of F-Tank Farm...

    Office of Environmental Management (EM)

    ... This facility utilizes fast-response sonic anemometers, ... nuclear production reactors. Before transfer of the waste from the F Canyon to the tank farms, sodium hydroxide was ...

  10. The American farm: Harnessing the sun to fuel the world

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This NREL publication forecasts the future in energy crops. Tomorrow`s farm will produce crops like corn, soybeans, rapeseed, sunflowers for food and fuel. Farmers will harvest switchgrass and then sell it for feed or to make ethanol. Aspects of planting trees that are beneficial to the environment such as filtering run-off water are discussed. Economic issues of energy crop growth are presented. The harvesting of trees for pulp, paper, and energy and corn for electricity, fuels, and chemicals are both emphasized. Tree harvesting research from breeding programs to high-tech harvesting techniques is presented.

  11. Economic evaluation of a swine farm covered anaerobic lagoon digester

    SciTech Connect (OSTI)

    Lusk, P.

    1996-12-31

    It is helpful to evaluate anaerobic digestion technologies using objective economic criteria. Options can then be ranked in terms of their relative cost effectiveness, leading to rational deployment decisions. This study presents the results of a hypothetical pro forma economic evaluation of one type of digestion system that could commonly be found on many swine farms; a covered anaerobic lagoon. The digester was assumed to be located in North Carolina, a major swine-producing state. Electricity generation with waste heat recovery was assumed to be the major end-use application of biogas manufactured from this process.

  12. The Long Island Solar Farm | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This technical report provides an in-depth look at the one SunShot Initiative success story, the Long Island Solar Farm project, which is a utility-scale solar array located at Brookhaven National Laboratory in Eastern Long Island, New York. Three aspects of this project make it remarkable: first, it is the largest utility-scale solar power plant in the Eastern United States; second, it is a commercial project built on federally administered public lands; and third, the project was very unlikely

  13. Alcohol as a fuel for farm and construction equipment

    SciTech Connect (OSTI)

    Borman, G L; Foster, D E; Meyers, P S; Uyehara, O A

    1982-06-01

    Work in three areas dealing with the utilization of ethanol as fuel for farm and construction diesels is summarized. The first part is a review of what is known about the retrofitting of diesels for use of ethanol and the combustion problems involved. The second part is a discussion of the work that has been done under the contract on the performance of a single-cylinder, open-chamber diesel using solutions and emulsions of diesel fuel with ethanol. Data taken include performance, emissions and cylinder pressure-time for diesel fuel with zero to forty percent ethanol by volume. Analysis of the data includes calculation of heat release rates using a single zone model. The third part is a discussion of work done retrofitting a multicylinder turbocharged farm tractor diesel to use ethanol by fumigation. Three methods of ethanol introduction are discussed; spraying ethanol upstream and downstream of the compressor and prevaporization of the ethanol. Data on performance and emissions are given for the last two methods. A three zone heat release model is described and results from the model are given. A correlation of the ignition delay using prevaporized ethanol fumigation data is also given. Comparisons are made between fumigation in DI and IDI engines.

  14. First Draft Performance Assessment for the H-Area Tank Farm at...

    Office of Environmental Management (EM)

    SRR-CWDA-2010-00128 Revision 0 PERFORMANCE ASSESSMENT for the H-AREA TANK FARM at the ... DE-AC09-09SR22505 Performance Assessment for the SRR-CWDA-2010-00128 H-Area Tank Farm at ...

  15. ATMOSPHERIC DISPERSION COEFFICIENTS AND RADIOLOGICAL AND TOXICOLOGICAL EXPOSURE METHODOLOGY FOR USE IN TANK FARMS

    SciTech Connect (OSTI)

    GRIGSBY KM

    2011-04-07

    This report presents the atmospheric dispersion coefficients used in Tank Farms safety analysis. The basis equations for calculating radiological and toxicological exposures are also included. In this revision, the time averaging for toxicological consequence evaluations is clarified based on a review of DOE complex guidance and a review of tank farm chemicals.

  16. Ammonia and methane dairy emissions in the San Joaquin Valley of California from individual feedlot to regional scale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, David J.; Sun, Kang; Tao, Lei; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sasche, Glen; Beyersdorf, Andreas; Ferrare, Richard; Scarino, Amy Jo; et al

    2015-09-27

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013more » field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 ± 0.03 ppmv ppmv–1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20–30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. As a result, our analyses have important implications for constraining NH3 sink and plume variability influences on regional NH3 emission estimates and for improving NH3 emission inventory spatial allocations.« less

  17. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet), Innovation Impact: Wind, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Wind Farm Aerodynamics to Improve Siting NREL researchers are using advanced remote sensing instruments and high- performance computing to understand atmospheric turbulence and turbine wake behavior-a key to improving wind turbine design and siting within wind farms. As turbines and wind farms grow in size, they create bigger wakes and present more complex challenges to wind turbine and wind farm designers and operators. NREL researchers have confirmed through both observation and

  18. Crude Oil Stocks at Tank Farms & Pipelines

    Gasoline and Diesel Fuel Update (EIA)

    Stocks at Tank Farms & Pipelines (Thousand Barrels) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 321,854 319,951 323,420 344,527 348,411 344,079 1981-2015 East Coast (PADD 1) 2,839 2,706 3,269 2,983 3,077 3,603 1981-2015 Midwest (PADD 2) 118,602 119,856 113,242 117,878 126,101 129,504 1981-2015 Cushing, OK 57,242 56,791 53,433 53,921

  19. High-level waste tank farm set point document

    SciTech Connect (OSTI)

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

  20. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    SciTech Connect (OSTI)

    Not Available

    1994-05-19

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank`s highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format.

  1. Determination of operating conditions in an anaerobic acid-phase reactor treating dairy wastewater

    SciTech Connect (OSTI)

    Kasapgil, B.; Ince, O.; Anderson, G.K.

    1996-11-01

    Anaerobic digestion of organic material is a multistep process. Two groups of bacteria, namely acidogenic and methanogenic bacteria, are responsible for the acidification and for the methane formation, respectively. The growth requirements of the two groups of bacteria are rather different. In order to create optimum conditions for the process, it was first proposed to separate the process into two phases. Operating variables applicable for the selection and enrichment of microbial populations in phased digesters include digester loading, hydraulic retention time (HRT), pH, temperature, reactor design, and operating mode. By proper manipulation of these operating parameters it is possible to prevent any significant growth of methane bacteria and at the same time achieve the required level of acidification in the first reactor. Further enrichment of two cultures is possible by biomass recycle around each phase. Since the 1970s, phase separation has been introduced into anaerobic digestion technology. However, data concerning the optimization of operating conditions in both acidogenic and methanogenic phase reactors are scarce. This study was therefore carried out for the purposes given below. These were: (1) to determine the best combination of pH and temperature within the ranges studied for the pre-acidification of dairy wastewater; (2) to determine the maximum acidogenic conversion from COD to VFAs, and (3) to determine the changes in the distribution of major VFAs being produced during the pre-acidification of dairy wastewater.

  2. F-Tank Farm Performance Assessment, Rev 1 | Department of Energy

    Energy Savers [EERE]

    F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site. In accordance with NDAA Section 3116, certain waste from reprocessing of spent nuclear fuel is not high-level waste if the Secretary of Energy, in consultation with the NRC, determines that the criteria in NDAA Section 3116(a) are met. This Draft FTF 3116 Basis Document shows that those criteria are satisfied, to

  3. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  4. 241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-25

    This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

  5. Energy Department Joins Farm to Fly 2.0 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Joins Farm to Fly 2.0 Energy Department Joins Farm to Fly 2.0 August 12, 2014 - 1:50pm Addthis During Biomass 2014, Assistant Secretary for Energy Efficiency and Renewable Energy David Danielson announced that the Energy Department is joining Farm to Fly 2.0 to support the development of sustainable biofuels that require no jet engine modifications. As part of the initiative, the Energy Department will provide technical guidance on alternative fuel production and assist with

  6. Caithness Shephards Flat: The Largest Wind Farm Project in the World |

    Energy Savers [EERE]

    Department of Energy Caithness Shephards Flat: The Largest Wind Farm Project in the World Caithness Shephards Flat: The Largest Wind Farm Project in the World October 12, 2010 - 5:04pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this project do? Wind farm project is projected to employ over 400 people in construction phase. It is expected to produce 845 megawatt wind-powered electrical generation, or enough wind energy to supply 235,000 homes.

  7. Photos of One of the World's Largest Wind Farms | Department of Energy

    Energy Savers [EERE]

    Photos of One of the World's Largest Wind Farms Photos of One of the World's Largest Wind Farms February 6, 2013 - 4:20pm Addthis 1 of 5 Image: Caithness Energy 2 of 5 Image: Caithness Energy 3 of 5 Image: Caithness Energy 4 of 5 Image: Caithness Energy 5 of 5 Image: Caithness Energy Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs Panoramic View See a landscape shot of the Shepherds Flat Wind Farm here America's clean energy industry continues to

  8. First Draft Performance Assessment for the H-Area Tank Farm at the Savannah

    Energy Savers [EERE]

    River Site | Department of Energy First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site The PAs are used to assess the long-term fate and transport of residual contamination in the environment and provide the Department Of Energy with reasonable assurance that the removal from service of the Savannah River Site tank farm underground radioactive waste tanks and ancillary

  9. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    SciTech Connect (OSTI)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-30

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the retrieval of the waste is under way and is being conducted to achieve the completion criteria established in the Hanford Federal Facility Agreement and Consent Order.

  10. A question about geographic data on wind farms in the US | OpenEI...

    Open Energy Info (EERE)

    know. Thanks -nick Submitted by Nickc on 10 September, 2013 - 11:52 1 answer Points: 0 Hi Nick- Thank you for posting your question here. One of the most complete wind farm...

  11. EIS-0438: Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, Wyoming

    Broader source: Energy.gov [DOE]

    After the applicant withdrew its request to interconnect the proposed Hermosa West Wind Farm Project with Western Area Power Administrations transmission system, Western cancelled preparation of an EIS to evaluate the potential environmental impacts of the proposal.

  12. Live Webcast on the 2014 Farm Bill's Renewable Energy for America Program

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webcast titled “The 2014 Farm Bill's Renewable Energy for America Program” on May 21, 2014, from 3:00 to 4:00 p.m. Eastern Standard Time.

  13. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    SciTech Connect (OSTI)

    Girardot, Crystal; Harlow, Don; Venetz, Theodore; Washenfelder, Dennis; Johnson, Jeremy

    2012-07-01

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-91F Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal 1-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX- 111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and dry-wells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching. (authors)

  14. Science Road Map for Phase 2 of the Tank-Farm Vadose Zone Program

    SciTech Connect (OSTI)

    Zachara, John M.; Freshley, Mark D.; Mann, Frederick M.

    2008-08-18

    Phase 1 of the Tank-Farm Vadose Zone Program (TFVZP) developed information on the nature and extent of vadose zone contamination in the tank farms through field studies, laboratory analyses and experiments, and historical data searches; assembled data and performed tank-farm risk analysis; and initiated interim corrective actions to lessen the impacts of tank leak contaminants. Pacific Northwest National Laboratory scientists and external collaborators at universities and U.S. Department of Energy user facilities sampled and analyzed contaminant plumes. These types of activities will continue during Phase 2 of the TFVZP to refine and expand scientific understanding of the subsurface beneath tank farms, especially of water movement, residual waste leaching, and contaminant transport.

  15. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Final Report DE-EE0005380 - Assessment of Offshore...

  16. Painted Hills B&C Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Painted Hills B&C Wind Farm II Facility Painted Hills B&C Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  17. EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared an EIS to evaluate the environmental impacts of interconnecting the proposed Grande Prairie Wind Farm, in Holt County, near O’Neill, Nebraska, to Western’s power transmission system.

  18. First Draft Performance Assessment for the H-Area Tank Farm at...

    Office of Environmental Management (EM)

    ... Assessment for the SRR-CWDA-2010-00128 H-Area Tank Farm at the Revision 0 Savannah ... In this section, the relevant natural and demographic characteristics of H Area and the ...

  19. Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms- February 2013

    Broader source: Energy.gov [DOE]

    Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms [HIAR-HANFORD-2013-02-25

  20. Preparation plan, preliminary safety documentation, tank farm restoration and safe operations, Project W-314

    SciTech Connect (OSTI)

    Kidder, R.J.

    1994-10-20

    This preparation plan is developed to establish planning for the preliminary safety documentation for Project W-314, {open_quotes}Tank Farm Restoration and Safe Operations.{close_quotes}