National Library of Energy BETA

Sample records for daily total solar

  1. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers

    SciTech Connect (OSTI)

    Myers, D.; Wilcox, S. M.

    2009-01-01

    We evaluated the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer. One minute averages of 3-second data for 12 months from the test instrument measurements were compared with the computed reference data set. Combined uncertainty in the computed reference irradiance is 1.8% {+-} 0.5%. Total uncertainty in the pyranometer comparisons is {+-}2.5%. We show mean percent difference between reference global irradiance and test pyranometer 1 minute data as a function of zenith angle, and percent differences between daily totals for the reference and test irradiances as a function of day number. We offer no explicit conclusion about the performance of instrument models, as a general array of applications with a wide range of instrumentation and accuracy requirements could be addressed with any of the radiometers.

  2. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.; Wilcox, S. M.

    2009-03-01

    This report evaluates the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer.

  3. Daylighter Daily Solar Roof Light | Open Energy Information

    Open Energy Info (EERE)

    Daylighter Daily Solar Roof Light Jump to: navigation, search Name: Daylighter Daily Solar Roof Light Address: 1991 Crocker Road, Suite 600 Place: Cleveland, Ohio Zip: 44145...

  4. Montana Total Maximum Daily Load Development Projects Wiki |...

    Open Energy Info (EERE)

    Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Total Maximum Daily Load Development Projects Wiki Abstract Provides information on...

  5. Properties of solar gravity mode signals in total irradiance observations

    SciTech Connect (OSTI)

    Kroll, R.J.; Chen, J.; Hill, H.A.

    1988-01-01

    Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs.

  6. Estimation of total cloud cover from solar radiation observations at Lake Rotorua, New Zealand

    SciTech Connect (OSTI)

    Luo, Liancong; Hamilton, David; Han, Boping

    2010-03-15

    The DYRESM-CAEDYM model is a valuable tool for simulating water temperature for biochemical studies in aquatic ecosystem. The model requires inputs of surface short-wave radiation and long-wave radiation or total cloud cover fraction (TC). Long-wave radiation is often not measured directly so a method to determine TC from commonly measured short-wave solar irradiance (E{sub 0}) and theoretical short-wave solar irradiance under a clear sky (E{sub c}) has broad application. A more than 17-year (15 November 1991 to 20 February 2009) hourly solar irradiance data set was used to estimate the peak solar irradiance for each ordinal date over one year, which was assumed to be representative of solar irradiance in the absence of cloud. Comparison between these daily observed values and the modelled clear-sky solar radiation over one year was in close agreement (Pearson correlation coefficient, r = 0.995 and root mean squared error, RMSE = 12.54 W m{sup -2}). The downloaded hourly cloudiness measurements from 15 November 1991 to 20 February 2009 was used to calculate the daily values for this period and then the calculated daily values over the 17 years were used to calculate the average values for each ordinal date over one year. A regression equation between (1 - E{sub 0}/E{sub c}) and TC produced a correlation coefficient value of 0.99 (p > 0.01, n = 71). The validation of this cloud cover estimation model was conducted with observed short-wave solar radiation and TC at two sites. Values of TC derived from the model at the Lake Rotorua site gave a reasonable prediction of the observed values (RMSE = 0.10, r = 0.86, p > 0.01, n = 61). The model was also tested at Queenstown (South Island of New Zealand) and it provided satisfactory results compared to the measurements (RMSE = 0.16, r = 0.67, p > 0.01, n = 61). Therefore the model's good performance and broad applicability will contribute to the DYRESM-CAEDYM accuracy of water temperature simulation when long-wave radiation is not available. (author)

  7. Measurements and modeling of total solar irradiance in X-class solar flares

    SciTech Connect (OSTI)

    Moore, Christopher Samuel; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-05-20

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  8. Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions

    SciTech Connect (OSTI)

    Zambolin, E.; Del Col, D.

    2010-08-15

    New comparative tests on two different types of solar collectors are presented in this paper. A standard glazed flat plate collector and an evacuated tube collector are installed in parallel and tested at the same working conditions; the evacuated collector is a direct flow through type with external compound parabolic concentrator (CPC) reflectors. Efficiency in steady-state and quasi-dynamic conditions is measured following the standard and it is compared with the input/output curves measured for the whole day. The first purpose of the present work is the comparison of results in steady-state and quasi-dynamic test methods both for flat plate and evacuated tube collectors. Besides this, the objective is to characterize and to compare the daily energy performance of these two types of collectors. An effective mean for describing and analyzing the daily performance is the so called input/output diagram, in which the collected solar energy is plotted against the daily incident solar radiation. Test runs have been performed in several conditions to reproduce different conventional uses (hot water, space heating, solar cooling). Results are also presented in terms of daily efficiency versus daily average reduced temperature difference: this allows to represent the comparative characteristics of the two collectors when operating under variable conditions, especially with wide range of incidence angles. (author)

  9. NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost December 2, 2013 Two detailed reports from the Energy Department's National Renewable Energy Laboratory (NREL) find that solar financing and other non-hardware costs - often referred to as "soft costs" - now comprise up to 64% of the total price of residential solar energy systems, reflecting how soft costs are becoming an increasingly larger fraction of the cost of installing solar.

  10. Solar Basics for Homebuilders: Reducing the Total Cost of Ownership

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) energy systems are new in many residential real estate markets, and a growing number of homebuilders are integrating PV into new homes to attract customers and increase...

  11. Prisms with total internal reflection as solar reflectors

    DOE Patents [OSTI]

    Rabl, Arnulf; Rabl, Veronika

    1978-01-01

    An improved reflective wall for radiant energy collection and concentration devices is provided. The wall is comprised of a plurality of prisms whose frontal faces are adjacent and which reflect the desired radiation by total internal reflection.

  12. SPECIAL SEMINAR - The NOTTE experiment, or how to become a Total Solar Eclipse chaser

    ScienceCinema (OSTI)

    None

    2011-10-06

    The NOTTE experiment (Neutrino Oscillations with Telescope during Total Eclipse) aims at searching for visible photons emitted through a possible radiative decay of solar neutrinos. The experiment and the expeditions organized by a group of physicists and astrophysicists from INFN and INAF Bologna hunting for Total Solar Eclipses from 1998 to 2006 wil be described. The results of observations performed during total solar eclipse expeditions in 2001 (Zambia) and 2006 (Sahara desert, Libya) are presented and a beautiful photo gallery will be shown. Other peculiar observations that can be made during a solar eclipse are also illustrated. The seminar will be followed by a brief presentation of future camps for solar eclipse chasers and scientists organized in 2008 in Russia, Kazakhstan, China and Mongolia, in 2009 in Shanghai and on the Easter Island in 2010.

  13. SPECIAL SEMINAR - The NOTTE experiment, or how to become a Total Solar Eclipse chaser

    SciTech Connect (OSTI)

    2011-02-08

    The NOTTE experiment (Neutrino Oscillations with Telescope during Total Eclipse) aims at searching for visible photons emitted through a possible radiative decay of solar neutrinos. The experiment and the expeditions organized by a group of physicists and astrophysicists from INFN and INAF Bologna hunting for Total Solar Eclipses from 1998 to 2006 wil be described. The results of observations performed during total solar eclipse expeditions in 2001 (Zambia) and 2006 (Sahara desert, Libya) are presented and a beautiful photo gallery will be shown. Other peculiar observations that can be made during a solar eclipse are also illustrated. The seminar will be followed by a brief presentation of future camps for solar eclipse chasers and scientists organized in 2008 in Russia, Kazakhstan, China and Mongolia, in 2009 in Shanghai and on the Easter Island in 2010.

  14. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Cell shipments Total Inventory, start-of-year 328,658 Manufactured during reporting year ... Table 5. Source and disposition of photovoltaic cell shipments, 2013 (peak kilowatts) ...

  15. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500...... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to ...

  17. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  18. Narrowband filter radiometer for ground-based measurements of global ultraviolet solar irradiance and total ozone

    SciTech Connect (OSTI)

    Petkov, Boyan; Vitale, Vito; Tomasi, Claudio; Bonafe, Ubaldo; Scaglione, Salvatore; Flori, Daniele; Santaguida, Riccardo; Gausa, Michael; Hansen, Georg; Colombo, Tiziano

    2006-06-20

    The ultraviolet narrowband filter radiometer (UV-RAD) designed by the authors to take ground-based measurements of UV solar irradiance, total ozone, and biological dose rate is described, together with the main characteristics of the seven blocked filters mounted on it, all of which have full widths at half maxima that range 0.67 to 0.98 nm. We have analyzed the causes of cosine response and calibration errors carefully to define the corresponding correction terms, paying particular attention to those that are due to the spectral displacements of the filter transmittance peaks from the integer wavelength values. The influence of the ozone profile on the retrieved ozone at large solar zenith angles has also been examined by means of field measurements. The opportunity of carrying out nearly monochromatic irradiance measurements offered by the UV-RAD allowed us to improve the procedure usually followed to reconstruct the solar spectrum at the surface by fitting the computed results, using radiative transfer models with field measurements of irradiance. Two long-term comparison campaigns took place, showing that a mean discrepancy of+0.3% exists between the UV-RAD total ozone values and those given by the Brewer no. 63 spectroradiometer and that mean differences of+0.3% and-0.9% exist between the erythemal dose rates determined with the UV-RAD and those obtained with the Brewer no. 63 and the Brewer no. 104 spectroradiometers, respectively.

  19. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  20. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  1. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  2. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  3. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1

  4. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  5. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  6. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  7. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  8. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  9. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  10. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  11. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Solar Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Data 10-Kilometer This data provides monthly average and annual average daily total solar resource averaged over surface cells of 0.1 degrees in both latitude and longitude,...

  12. Solar Radiation Map of the U.S. - Annual (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2009-01-18

    Maps that provide monthly average daily total solar resource information on grid cells of approximately 40 km by 40 km in size.

  13. Exploring the prominence-corona connection and its expansion into the outer corona using total solar eclipse observations

    SciTech Connect (OSTI)

    Habbal, Shadia Rifai; Morgan, Huw; Druckmüller, Miloslav

    2014-10-01

    Prominences constitute the most complex magnetic structures in the solar corona. The ubiquitous presence of their seemingly confined dense and cool plasma in an otherwise million-degree environment remains a puzzle. Using a decade of white light total solar eclipse observations, we show how these images reveal an intricate relationship between prominences and coronal structures both in their immediate vicinity, known as coronal cavities, and in the extended corona out to several solar radii. Observations of suspended prominences and twisted helical structures spanning several solar radii are central to these findings. The different manifestations of the prominence-corona interface that emerge from this study underscore the fundamental role played by prominences in defining and controlling the complex expansion and dynamic behavior of the solar magnetic field in the neighborhood of magnetic polarity reversal regions. This study suggests that the unraveling of prominences and the outward expansion of the helical twisted field lines linked to them could be the solar origin of twisted magnetic flux ropes detected in interplanetary space, and of the mechanism by which the Sun sheds its magnetic helicity. This work also underscores the likely role of the prominence-corona interface as a source of the slow solar wind.

  14. Toward the Development of Multi-Year Total and Special Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Radiation Budgets at the Three ARM Locales Z. Li and M. C. Cribb Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland A. P....

  15. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... comprehensively recording solar irradiance data to accompany its outdoor PV testing. ...

  16. Solar and Photovoltaic Data from the University of Oregon Solar Radiation Monitoring Laboratory (UO SRML)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The UO SRML is a regional solar radiation data center whose goal is to provide sound solar resource data for planning, design, deployment, and operation of solar electric facilities in the Pacific Northwest. The laboratory has been in operation since 1975. Solar data includes solar resource maps, cumulative summary data, daily totals, monthly averages, single element profile data, parsed TMY2 data, and select multifilter radiometer data. A data plotting program and other software tools are also provided. Shade analysis information and contour plots showing the effect of tilt and orientation on annual solar electric system perfomance make up a large part of the photovoltaics data.(Specialized Interface)

  17. Bisfuel links - Solar energy news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar energy news http:asulightworks.com" target"blank">ASU Lightworks http:www.sciencedaily.comnewsmatterenergysolarenergy" target"blank">ScienceDaily: Solar Energy ...

  18. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Solar Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MapSearch Searching for maps has never been easier. A screen capture of the MapSearch Map view option Solar Maps Solar maps provide monthly average daily total solar resource information on grid cells. The insolation values represent the resource available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal to equal to the latitude of the collector location. This is typical practice for PV system installation, although other orientations are

  19. Measurement of the nue and Total 8B Solar Neutrino Fluxes with theSudbury Neutrino Observatory Phase I Data Set

    SciTech Connect (OSTI)

    Aharmim, B.; Ahmad, Q.R.; Ahmed, S.N.; Allen, R.C.; Andersen,T.C.; Anglin, J.D.; Buehler, G.; Barton, J.C.; Beier, E.W.; Bercovitch,M.; Bergevin, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler, M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Burritt, T.H.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Deng, H.; DiMarco, M.; Doe, P.J.; Doucas, G.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon,N.; Germani, J.V.; Gil, S.; Goldschmidt, A.; Goon, J.T.M.; Graham, K.; Grant, D.R.; Guillian, E.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Henning, R.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime,A.; Howard, C.; Howe, M.A.; Huang, M.; Hykawy, J.G.; Isaac, M.C.P.; Jagam, P.; Jamieson, B.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Kirch, K.; Klein, J.R.; Knox, A.B.; Komar,R.J.; Kormos, L.L.; Kos, M.; Kouzes, R.; Krueger, A.; Kraus, C.; Krauss,C.B.; Kutter, T.; Kyba, C.C.M.; Labranche, H.; Lange, R.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Locke, W.; Luoma, S.; Lyon, J.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald,A.B.; McDonald, D.S.; McFarlane, K.; McGee, S.; McGregor, G.; MeijerDrees, R.; Mes, H.; Mifflin, C.; Miknaitis, K.K.S.; Miller, M.L.; Milton,G.; Moffat, B.A.; Monreal, B.; Moorhead, M.; Morrissette, B.; Nally,C.W.; Neubauer, M.S.; et al.

    2007-02-01

    This article provides the complete description of resultsfrom the Phase I data set of the Sudbury Neutrino Observatory (SNO). ThePhase I data set is based on a 0.65 kt-year exposure of heavy water tothe solar 8B neutrino flux. Included here are details of the SNO physicsand detector model, evaluations of systematic uncertainties, andestimates of backgrounds. Also discussed are SNO's approach tostatistical extraction of the signals from the three neutrino reactions(charged current, neutral current, and elastic scattering) and theresults of a search for a day-night asymmetry in the ?e flux. Under theassumption that the 8B spectrum is undistorted, the measurements fromthis phase yield a solar ?e flux of ?(?e) =1.76+0.05?0.05(stat.)+0.09?0.09 (syst.) x 106 cm?2 s?1, and a non-?ecomponent ?(? mu) = 3.41+0.45?0.45(stat.)+0.48?0.45 (syst.) x 106 cm?2s?1. The sum of these components provides a total flux in excellentagreement with the predictions of Standard Solar Models. The day-nightasymmetry in the ?e flux is found to be Ae = 7.0 +- 4.9 (stat.)+1.3?1.2percent (sys.), when the asymmetry in the total flux is constrained to bezero.

  20. solar

    National Nuclear Security Administration (NNSA)

    2%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  1. Reconstruction and Prediction of Variations of Total Ozone and Associated Variations of UV-B Solar Radiation for Subarctic Regions Based of Dendrochronologic Data

    SciTech Connect (OSTI)

    Zuev, V.V.; Bondarenko, S.L.

    2005-03-18

    Variations of dendrochronologic parameters, especially annual ring density, significantly reflect the physiological tree response to systematic variations of solar UV-B radiation, taking place on monthly and longer timescales during growing season. Such variations of UV-B radiation are totally governed by variations of total ozone (TO). Thus, in any dendrochronologic signal, especially for coniferous trees, there is also a recorded response to TO variations, characterizing variations of UV-B radiation. Because a monitoring of global TO distribution is regularly performed since 1979 using TOMS satellite instrumentation, there appears a possibility to reconstruct TO behavior in the past practically at any point of dendrochronologic monitoring network. The reconstruction is performed by the method of linear regression, based on significant correlation of annual ring density of coniferous trees and TO for coordinates of denrochronologic signal. The present report considers the Subarctic latitudes, which are characterized by considerable TO variations in the second half of twentieth century.

  2. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  3. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  4. Energy Assurance Daily

    Broader source: Energy.gov [DOE]

    Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems, flows, and markets, it provides highlights of energy issues rather than a comprehensive coverage.

  5. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  6. Solar absorption cooling plant in Seville

    SciTech Connect (OSTI)

    Bermejo, Pablo; Pino, Francisco Javier; Rosa, Felipe

    2010-08-15

    A solar/gas cooling plant at the Engineering School of Seville (Spain) was tested during the period 2008-2009. The system is composed of a double-effect LiBr + water absorption chiller of 174 kW nominal cooling capacity, powered by: (1) a pressurized hot water flow delivered by mean of a 352 m{sup 2} solar field of a linear concentrating Fresnel collector and (2) a direct-fired natural gas burner. The objective of the project is to indentify design improvements for future plants and to serve as a guideline. We focused our attention on the solar collector size and dirtiness, climatology, piping heat losses, operation control and coupling between solar collector and chiller. The daily average Fresnel collector efficiency was 0.35 with a maximum of 0.4. The absorption chiller operated with a daily average coefficient of performance of 1.1-1.25, where the solar energy represented the 75% of generator's total heat input, and the solar cooling ratio (quotient between useful cooling and insolation incident on the solar field) was 0.44. (author)

  7. WAPA Daily Energy Accounting Activities

    Energy Science and Technology Software Center (OSTI)

    1990-10-01

    ISA (Interchange, Scheduling, & Accounting) is the interchange scheduling system used by the DOE Western Area Power Administration to perform energy accounting functions associated with the daily activities of the Watertown Operations Office (WOO). The system's primary role is to provide accounting functions for scheduled energy which is exchanged with other power companies and power operating organizations. The system has a secondary role of providing a historical record of all scheduled interchange transactions. The followingmore » major functions are performed by ISA: scheduled energy accounting for received and delivered energy; generation scheduling accounting for both fossil and hydro-electric power plants; metered energy accounting for received and delivered totals; energy accounting for Direct Current (D.C.) Ties; regulation accounting; automatic generation control set calculations; accounting summaries for Basin, Heartland Consumers Power District, and the Missouri Basin Municipal Power Agency; calculation of estimated generation for the Laramie River Station plant; daily and monthly reports; and dual control areas.« less

  8. Category:Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search This is the Solar category. Subcategories This category has the following 2 subcategories, out of 2 total. C Concentrating Solar Power P...

  9. Solar tracking device

    SciTech Connect (OSTI)

    Wyland, R.R.

    1981-01-20

    A solar tracking device having a plurality of reflector banks for reflecting the sun rays onto collector tubes and heating a fluid circulated therethrough. The reflector banks synchronized to follow the sun during the daily and yearly cycle of the earth as the earth orbits around the sun. The device by accurately following the sun provides a more efficient means of collecting solar energy.

  10. Backstage at the Daily Show

    Broader source: Energy.gov [DOE]

    Backstage footage from Secretary Chu's appearance on the Daily Show where he discuses the green room candy dish and possible lighting considerations.

  11. BPA Daily Notice (pbl/products)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Products > Products Daily Notice (surplus power) Transmission Losses Power Products Catalog Wind Smoothing and Intertie Service (Pilot) Firstgov BPA'S DAILY NOTICE Daily Notice...

  12. NREL: Concentrating Solar Power Research - Advanced Optical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Today, the solar collectors used in concentrating solar power systems account for approximately 50% of the total capital cost of power plants. The solar reflector costs for these ...

  13. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total China 1,461,074 34 Republic of Korea 172,379 4 Taiwan 688,311 16 All others 1,966,263 46 Total 4,288,027 100 Note: All Others includes Canada, Czech Republic, Federal Republic of Germany, Malaysia, Mexico, Philippines and Singapore Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Table 7 . Photovoltaic module import shipments by country, 2013 (peak kilowatts)

  14. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  15. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 1,652 0.0 Alaska 152 0.0 Arizona 912,975 19.9 Arkansas 2,724 0.1 California 2,239,983 48.8 Colorado 49,903 1.1 Connecticut 33,627 0.7 Delaware 3,080 0.1 District of Columbia 1,746 0.0 Florida 22,061 0.5 Georgia 99,713 2.2 Guam 39 0.0 Hawaii 126,595 2.8 Idaho 1,423 0.0 Illinois 8,176 0.2 Indiana 12,912 0.3 Iowa 4,480 0.1 Kansas 523 0.0 Kentucky 2,356 0.1 Louisiana 27,704 0.6 Maine 993 0.0 Maryland 30,528 0.7 Massachusetts 143,539 3.1 Michigan 3,416 0.1

  16. Community Shared Solar with Solarize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Shared Solar with Solarize Community Shared Solar with Solarize

  17. Improved photovoltaic energy output for cloudy conditions with a solar tracking system

    SciTech Connect (OSTI)

    Kelly, Nelson A.; Gibson, Thomas L.

    2009-11-15

    This work describes measurements of the solar irradiance made during cloudy periods in order to improve the amount of solar energy captured during such periods. It is well-known that 2-axis tracking, in which solar modules are pointed at the sun, improves the overall capture of solar energy by a given area of modules by 30-50% versus modules with a fixed tilt. On sunny days the direct sunshine accounts for up to 90% of the total solar energy, with the other 10% from diffuse (scattered) solar energy. However, during overcast conditions nearly all of the solar irradiance is diffuse radiation that is isotropically-distributed over the whole sky. An analysis of our data shows that during overcast conditions, tilting a solar module or sensor away from the zenith reduces the irradiance relative to a horizontal configuration, in which the sensor or module is pointed toward the zenith (horizontal module tilt), and thus receives the highest amount of this isotropically-distributed sky radiation. This observation led to an improved tracking algorithm in which a solar array would track the sun during cloud-free periods using 2-axis tracking, when the solar disk is visible, but go to a horizontal configuration when the sky becomes overcast. During cloudy periods we show that a horizontal module orientation increases the solar energy capture by nearly 50% compared to 2-axis solar tracking during the same period. Improving the harvesting of solar energy on cloudy days is important to using solar energy on a daily basis for fueling fuel-cell electric vehicles or charging extended-range electric vehicles because it improves the energy capture on the days with the lowest hydrogen generation, which in turn reduces the system size and cost. (author)

  18. U.S. Solar Resource Maps and Tools from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Solar maps provide monthly average daily total solar resource information on grid cells. The insolation values represent the resource available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal to equal to the latitude of the collector location. [Copied from http://www.nrel.gov/gis/solar.html] Several types of solar maps are made available. The U.S. Solar resource maps show the resource potential for energy from photovoltaics and from concentrating solar power (CSP). Both sets of maps are available in low or high resolution. A dynamic map based on version 2 of PVWATTS calculates electrical energy performance estimates for a grid-connected photovoltaic system. The map of U.S. Solar Measurement Station Locations is also dynamic, showing the spatial distribution of measurement stations across the U.S. that are monitored by programs and agencies such as DOE's Atmospheric Radiation Measurement (ARM) Program or NREL's Cooperative Network for Renewable Resource Measurements (CONFRRM). Clicking on a station location will take the user to the website of that station. Finally, static map images providing solar resource information averaged by month are also available.

  19. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  20. TENESOL formerly known as TOTAL ENERGIE | Open Energy Information

    Open Energy Info (EERE)

    search Name: TENESOL (formerly known as TOTAL ENERGIE) Place: la Tour de Salvagny, France Zip: 69890 Sector: Solar Product: Makes polycrystalline silicon modules, and PV-based...

  1. Solar Means Business: Top U.S. Corporate Solar Users

    Broader source: Energy.gov [DOE]

    Solar energy makes financial sense. That's why business leaders in America's brightest, most competitive companies are increasingly choosing to install solar energy systems at their facilities. For the third year in a row, not only are more businesses choosing solar, but those that have used solar in the past are doing so again and again on rooftops across America. Walmart, Kohl's, Costco, Apple, IKEA, and more have all embraced solar energy. Collectively, the 25 companies with the most solar capacity in the U.S. now have 1,110 systems totaling 569 MW, generating enough electricity to power more than 115,000 homes. And these companies are installing even more.

  2. User:Nlangle/RAPID-Solar-Search | Open Energy Information

    Open Energy Info (EERE)

    RAPID-Solar-Search < User:Nlangle Jump to: navigation, search Total RAPID Pages: 955 Category RAPID & Category Solar: 40 RAPIDSolar RAPIDSolarAir Quality RAPIDSolarCalifornia...

  3. Energy Assurance Daily (EAD): April 2012

    Broader source: Energy.gov [DOE]

    Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

  4. Energy Assurance Daily (EAD): July 2012

    Broader source: Energy.gov [DOE]

    Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

  5. TWP-ICE Daily Synoptic Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daily Synoptic Overview 16 January - 14 February 2006 Lori Chappel Bureau of Meteorology Weather Overview * 13 January - 2 February 2006 Monsoon across north Australia; - 13-25...

  6. Energy Assurance Daily (EAD): January- March 2012

    Broader source: Energy.gov [DOE]

    Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

  7. Energy Assurance Daily (EAD): June 2012

    Broader source: Energy.gov [DOE]

    Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

  8. Energy Assurance Daily (EAD): May 2012

    Broader source: Energy.gov [DOE]

    Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

  9. Solar Easements

    Broader source: Energy.gov [DOE]

    New Hampshire's "solar skyspace easement" provisions allow property owners to create solar easements in order to create and preserve a right to unobstructed access to solar energy. Easements remain...

  10. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWhsq meter power production potential As the ...

  11. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1. Location, based on zip code has at least 5 kWhm 2 day average daily solar radiation based on annual solar insolation using PVWatts online tool: http:...

  12. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley Solar Ranch produces clean, renewable electricity at the scale of traditional power plants. | Photo courtesy of SunPower. The California Valley Solar Ranch produces clean, renewable electricity at the scale of traditional power plants. | Photo courtesy of SunPower. Aerial shot of the California Valley Solar Ranch in

  13. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  14. Solar Energy sro | Open Energy Information

    Open Energy Info (EERE)

    developer currently operating 2 PV plants with total capacity of 1.8MW. References: Solar Energy sro1 This article is a stub. You can help OpenEI by expanding it. Solar Energy...

  15. Solar Decathlon

    Broader source: Energy.gov [DOE]

    The Energy Department's Solar Decathlon challenges collegiate teams to design, build and operate solar-powered houses that are cost effective, energy efficient and attractive.

  16. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Solar Newsletter, SunShot, ... The system will be monitored and tested to collect a range of data ...

  17. Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and workforce development opportunity for ... around the world: Solar Decathlon China 2013, Solar Decathlon ... and two-way power flow for operation of ...

  18. Region Solar Inc Solar Inc California Renewable Energy Solar...

    Open Energy Info (EERE)

    Point Drive Fort Collins Colorado Solar Solar cell passive solar architectural glass solar grid tie inverter semiconductor flat panel display data storage http www advanced...

  19. California Solar Initiative- Single-Family Affordable Solar Housing (SASH) Program

    Broader source: Energy.gov [DOE]

    The California Solar Initiative (CSI) provides financial incentives for installing solar technologies through a variety of smaller sub-programs. Of the $3.2 billion in total funding for the CSI, ...

  20. Mojave Solar Park Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power...

  1. Nevada Solar One Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar One Solar Power Plant Jump to: navigation, search Name Nevada Solar One Solar Power Plant Facility Nevada Solar One Sector Solar Facility Type Concentrating Solar Power...

  2. Starwood Solar I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar...

  3. Solar Manufacturing Technology 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Flextronics International USA, to deploy a fully integrated solar glass coating manufacturing line ... total energy yields from these panels enabling a significant reduction ...

  4. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  5. Property:DailyOpWaterUseConsumed | Open Energy Information

    Open Energy Info (EERE)

    Property Name DailyOpWaterUseConsumed Property Type Number Description Daily Operation Water Use (afday) Consumed. Retrieved from "http:en.openei.orgwindex.php?titleProper...

  6. Property:DailyOpWaterUseGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name DailyOpWaterUseGross Property Type Number Description Daily Operation Water Use (afday) Gross. Retrieved from "http:en.openei.orgwindex.php?titleProperty:...

  7. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Total 5,517,291 3,455,846 100.00 - No data reported. ... rounding. Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector ...

  8. ImagineSolar | Open Energy Information

    Open Energy Info (EERE)

    Workforce training, Corporate consulting - Solar projects, Solar sales, Solar marketing, Solar business development, Solar policy, Solar advocacy, Solar government...

  9. Solar Manufacturing Projects | Department of Energy

    Energy Savers [EERE]

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR ...

  10. Solar Rights

    Broader source: Energy.gov [DOE]

    In the context of this law, a solar energy device is a system "manufactured and sold for the sole purpose of facilitating the collection and beneficial use of solar energy, including passive...

  11. Solar Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    96426 Solar Blog en Solar Energy Jobs Outpace U.S. Economy http:energy.govarticlessolar-energy-jobs-outpace-us-economy

  12. Solar Rights

    Broader source: Energy.gov [DOE]

    Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

  13. Solar Rights

    Broader source: Energy.gov [DOE]

    A solar energy system is defined as "a system affixed to a building or buildings that uses solar devices, which are thermally isolated from living space or any other area where the energy is used...

  14. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  15. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  16. Solar collectors

    SciTech Connect (OSTI)

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  17. Solar Easements

    Broader source: Energy.gov [DOE]

    In addition, the state’s local zoning ordinances must address access to air and light, views, and solar access.

  18. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Battery Abuse Testing Laboratory Cylindrical Boiling Facility Distributed Energy Technology Lab Microsystems and Engineering Sciences Applications National Solar ...

  19. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  20. Integrated Solar Thermochemical Reaction System

    Broader source: Energy.gov [DOE]

    This fact sheet describes an integrated solar thermochemical reaction system project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pacific Northwest National Laboratory, is working to develop and demonstrate a high-performance solar thermochemical reaction system in an end-to-end demonstration that produces electricity. A highly efficient solar thermochemical reaction system would allow for 24-hour operation without the need for storage technology, and reductions in total system costs while providing a relatively low-risk deployment option for CSP systems.

  1. Shenandoah parabolic dish solar collector

    SciTech Connect (OSTI)

    Kinoshita, G.S.

    1985-01-01

    The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

  2. SunShot Solar Projects Download

    Broader source: Energy.gov [DOE]

    The Department of Energy's SunShot Initiative funds projects by private companies, universities, state and local governments, nonprofit organizations, and national laboratories to drive down the cost of solar electricity. We work to make it faster, easier, and more affordable for Americans to choose solar energy in their daily lives. Download the data driving the SunShot Project map [link], including SunShot’s active and inactive projects, funding amounts, and program areas.

  3. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect (OSTI)

    Stoffel, T

    2005-07-01

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: • Direct normal shortwave (solar beam) • Diffuse horizontal shortwave (sky) • Global horizontal shortwave (total hemispheric) • Upwelling shortwave (reflected) • Downwelling longwave (atmospheric infrared) • Upwelling longwave (surface infrared)

  4. El Dorado Solar Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Solar Power Plant Jump to: navigation, search Name El Dorado Solar Project Solar Power Plant Facility El Dorado Solar Project Sector Solar Facility Type Photovoltaic...

  5. Beacon Solar Energy Project Solar Power Plant | Open Energy Informatio...

    Open Energy Info (EERE)

    Solar Energy Project Solar Power Plant Jump to: navigation, search Name Beacon Solar Energy Project Solar Power Plant Facility Beacon Solar Energy Project Sector Solar Facility...

  6. Deming Solar Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  7. SES Calico Solar One Project Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Calico Solar One Project Solar Power Plant Jump to: navigation, search Name SES Calico Solar One Project Solar Power Plant Facility SES Calico Solar One Project Sector Solar...

  8. Nvision.Solar - Ravnishte Solar PV Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar - Ravnishte Solar PV Plant Jump to: navigation, search Name Nvision.Solar - Ravnishte Solar PV Plant Facility Ravishte roof and facade mounted solar power plant Sector Solar...

  9. Solar Millenium Palen Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power...

  10. SES Solar Two Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Two Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar...

  11. Prescott Airport Solar Plant Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar...

  12. Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Carrizo Energy Solar Farm Solar Power Plant Jump to: navigation, search Name Carrizo Energy Solar Farm Solar Power Plant Facility Carrizo Energy Solar Farm Sector Solar Facility...

  13. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

    SciTech Connect (OSTI)

    Martin, Luis; Marchante, Ruth; Cony, Marco; Zarzalejo, Luis F.; Polo, Jesus; Navarro, Ana

    2010-10-15

    Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models. (author)

  14. NREL: Concentrating Solar Power Research - Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Resource Maps These direct-normal solar radiation maps-filtered by solar resource and land availability-identify the most economically suitable lands ...

  15. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  16. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  17. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  18. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  19. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  20. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  1. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  2. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  3. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  4. Solar Rights

    Broader source: Energy.gov [DOE]

    Ordinances, bylaws, or regulations may reasonably restrict the installation and use of solar energy devices to protect public health and safety, buildings from damage, historic/aesthetic values (...

  5. Solar Mapper

    Broader source: Energy.gov [DOE]

    Interactive, online mapping tool providing access to spatial data related to siting utility-scale solar facilities in the southwestern United States.

  6. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    1 Distribution of domestic solar thermal collector shipments (thousand square feet) 2008 2009 Wholesale Distributors 8,680 4,063 Retail Distributors 3,997 5,739 Exporters 368 346 Installers 948 939 End Users 723 1,134 U.S. Total 14,716 12,221 Customer Type Shipments Notes: Totals may not equal sum of components due to independent rounding. U.S. total includes territories. Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey

  7. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  8. Photovoltaic Solar Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic ...

  9. Secretary Moniz's Remarks at the 2014 White House Solar Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to government period, that I certainly am very bullish on the future of solar. We can talk about numbers, like nearly 5 gigawatts total of solar technologies installation in...

  10. Unified Solar

    Broader source: Energy.gov [DOE]

    Unified Solar is an MIT startup that is commercializing an integrated circuit solution that eliminates most of the adverse effects caused by partial shading in photovoltaic power systems. With its patent-pending design, Unified Solar's solution is smaller, cheaper and more powerful than any competing power optimizer in the market.

  11. Daily HMS Extremes in Met Data - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Meteorological Station Daily HMS Extremes in Met Data Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Daily HMS Extremes in Met Data Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size This table shows the daily extremes at each of the remote stations

  12. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  13. Country/Continent Total

    U.S. Energy Information Administration (EIA) Indexed Site

    peak kilowatts) Country/Continent Total Percent of U.S. total Africa 14,279 3.7 Asia/Australia 330,200 86.2 Europe 19,771 5.1 South/Central America 7,748 2.0 Canada 5,507 1.4 Mexico 5,747 1.5 Total 383,252 100.0 Table 8. Destination of photovoltaic module export shipments, 2013 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.'

  14. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  15. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  16. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    0 Soloar-related sales as a percentage of total company sales revenue, 2008 and 2009 2008 2009 90-100 49 56 50-89 9 7 10-49 7 12 Less than 10 9 13 U.S. Total 74 88 Percent of Total Sales Revenue Number of Companies Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  17. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  18. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  19. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    5 Shipments of complete solar thermal collector systems, 2008 and 2009 Shipment Information 2008 2009 Complete Collector Systems Shipped 63,961 75,066 Thousand Square Feet 4,058 5,995 Percent of Total Shipments 24 43 Number of Companies 46 62 Revenue of Systems (Thousand Dollars) 47,523 159,085 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  20. Illinois Company Implementing Solar Energy

    Broader source: Energy.gov [DOE]

    J.F. Family Limited Partnership has been awarded $191,000 through the Recovery Act toward the use of solar energy at its Lakefront Parkway property in Edwardsville, Ill., which is the company headquarters for J.F. Electric Inc. The funding will be used to install a 75-kW solar photovoltaic system on the building’s roof, creating electricity on-site and creating or saving a total of 14 jobs.

  1. Solar Two

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  2. PROJECT PROFILE: Solar Electric Power Association (Solar Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Electric Power Association (Solar Market Pathways) PROJECT PROFILE: Solar Electric Power Association (Solar Market Pathways) Title: Community Solar Design Models for ...

  3. Solar Millenium Ridgecrest Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Ridgecrest Solar Power Plant Jump to: navigation, search Name Solar Millenium Ridgecrest Solar Power Plant Facility Solar Millenium Ridgecrest Sector Solar Facility Type...

  4. SES Solar Three Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Three Project Solar Power Plant Jump to: navigation, search Name SES Solar Three Project Solar Power Plant Facility SES Solar Three Project Sector Solar Facility Type Photovoltaics...

  5. Renewable Energy Concepts Solar Inc REC Solar | Open Energy Informatio...

    Open Energy Info (EERE)

    Concepts Solar Inc REC Solar Jump to: navigation, search Name: Renewable Energy Concepts Solar Inc (REC Solar) Place: San Luis Obispo, California Zip: 93401 Sector: Solar Product:...

  6. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  7. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    SciTech Connect (OSTI)

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  8. Solar Circuitry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time: 4 to 5 class periods Summary: Students will learn how the solar cell changes light energy to electrical energy. Students will work in small groups and construct different ...

  9. solar energy

    National Nuclear Security Administration (NNSA)

    8%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  10. solar power

    National Nuclear Security Administration (NNSA)

    9%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  11. Solar Rights

    Broader source: Energy.gov [DOE]

    In June of 2015, SB 1626 was signed into law. It provides that during the development period, the developer may only prohibit  a property owner from installing solar in developments with 50 or...

  12. Oxford Solar | Open Energy Information

    Open Energy Info (EERE)

    Oxford Solar Jump to: navigation, search Name: Oxford Solar Place: Randolph, New Jersey Zip: 7869 Sector: Solar Product: Oxford Solar provides solar energy consulting and...

  13. Akeena Solar | Open Energy Information

    Open Energy Info (EERE)

    Akeena Solar Jump to: navigation, search Logo: Akeena Solar Name: Akeena Solar Address: 16005 Los Gatos Blvd. Place: Los Gatos, California Zip: 95032 Sector: Solar Product: Solar...

  14. Adobe Solar | Open Energy Information

    Open Energy Info (EERE)

    Adobe Solar Jump to: navigation, search Logo: Adobe Solar Name: Adobe Solar Place: Denver, Colorado Region: Rockies Area Sector: Solar Product: solar electric systems Phone Number:...

  15. Climatic Solar | Open Energy Information

    Open Energy Info (EERE)

    Climatic Solar Jump to: navigation, search Logo: Climatic Solar Name: Climatic Solar Address: 650 2nd Lane Place: Vero Beach, Florida Zip: 32962 Sector: Solar Product: solar energy...

  16. Tejas Solares | Open Energy Information

    Open Energy Info (EERE)

    Tejas Solares Jump to: navigation, search Name: Tejas Solares Place: Spain Sector: Solar Product: Tejas Solares is a Spain-based company focused on providing solar solutions for...

  17. SBM Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: SBM Solar Place: North Carolina Sector: Solar Product: SBM Solar is a solar panel manufacturer based in North Carolina. References: SBM Solar1 This article is...

  18. Optimizing Geothermal with Geo-Solar Hybrid Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    geothermal plant and solar photovoltaic field, for a total installed capacity of 60 MW. Source: Enel Green Power North America DOE is exploring the potential of using hybrid ...

  19. SunShot Solar Projects Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Solar Projects Map SunShot Solar Projects Map The Department of Energy's SunShot Initiative funds projects by private companies, universities, state and local governments, nonprofit organizations, and national laboratories to drive down the cost of solar electricity. We work to make it faster, easier, and more affordable for Americans to choose solar energy in their daily lives. Learn more about SunShot's work. See our active and recently inactive projects in the map below. You can sort

  20. NREL: Solar STAT Blog -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Policy Basics Publications Request Assistance Technical Assistance Project Map Solar STAT Blog The Solar STAT blog discusses state and local efforts to develop solar...

  1. Solar Resource Assessment

    Broader source: Energy.gov [DOE]

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  2. 21 briefing pages total

    Energy Savers [EERE]

    1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  3. Solar resources

    SciTech Connect (OSTI)

    Hulstrom, R.L.

    1989-01-01

    Following the 1973 oil embargo, the US government initiated a program to develop and use solar energy. This led to individual programs devoted to developing various solar radiation energy conversion technologies: photovoltaic and solar-thermal conversion devices. Nearly concurrently, it was recognized that understanding the available insolation resources was required to develop and deploy solar energy devices and systems. It was also recognized that the insolation information available at that time (1973) was not adequate to meet the specific needs of the solar energy community. Federal efforts were initiated and conducted to produce new and more extensive information and data. The primary federal agencies that undertook such efforts were the Department of Energy (DOE) and the National Oceanic and Atmospheric Administration (NOAA). NOAA's efforts included activities performed by the National Weather Service (NWS) and the National Climatic Data Center (NCDC). This book has two man objectives: to report some of the insolation energy data, information, and products produced by the federal efforts and to describe how they were produced. Products include data bases, models and algorithms, monitoring networks, instrumentation, and scientific techniques. The scope of products and results does not include all those produced by past federal efforts. The book's scope and subject matter are oriented to support the intent and purpose of the other volumes in this series. In some cases, other pertinent material is presented to provide a more complete coverage of a given subject. 385 refs., 149 figs., 50 tabs.

  4. New director of Jefferson Lab named (Daily Press) | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesnew-director-jefferson-lab-named-daily-press New director of Jefferson Lab named Hugh Montgomery Hugh Montgomery has been named president of...

  5. Question of the Week: What Is Your Daily Commute Like?

    Broader source: Energy.gov [DOE]

    In data collected from 2005 through 2007, The U.S. Census Bureau found that 76% of workers drove alone to work. Tell us about your daily commute?

  6. NREL: Solar Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Largest Piece of Solar Installation Total Cost Two reports offer more in-depth look at non-hardware costs November 21, 2013 NREL Releases Renewable Energy Data Book Detailing ...

  7. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to the solar ...

  8. Solar Equipment Certification

    Broader source: Energy.gov [DOE]

    Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar...

  9. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  10. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  11. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  12. VISUAL-SOLAR

    Energy Science and Technology Software Center (OSTI)

    003661IBMPC00 Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops   

  13. Solar Easements & Local Option Solar Rights Laws

    Broader source: Energy.gov [DOE]

    Utah's solar easement provision is similar to easement provisions in many other states. Parties may voluntarily enter into written solar easement contracts that are enforceable by law. An...

  14. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  15. Help Solve Solar's Big Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Solve Solar's Big Challenge Help Solve Solar's Big Challenge December 2, 2013 - 1:00pm Addthis Soft costs now account for more than 60% of the total price of installing residential solar energy systems. <a href="http://www.energy.gov/eere/articles/infographic-lets-get-work-solar-soft-costs">View the full infographic to learn more</a>. Soft costs now account for more than 60% of the total price of installing residential solar energy systems. View the full infographic to

  16. The California Energy Commission's New Solar Homes Partnership Program Case Study: Promoting Greener, Better Housing in California

    Broader source: Energy.gov [DOE]

    This case study analyzes data from the California Energy Commission's New Solar Homes Partnership Program, part of California's comprehensive statewide solar program, the California Solar Initiative. At the time this study was conducted, the New Solar Homes Partnership Program had installed 14,100 solar energy systems totaling 45 megawatts of capacity.

  17. Total Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  18. AV Solar Ranch I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer...

  19. Pool daily fuel scheduling. Volume 1: technical manual. Final Report, February 1981

    SciTech Connect (OSTI)

    Pang, C.K.; Mikolinnas, T.A.; Reppen, N.D.; Ringlee, R.J.; Wollenberg, B.F.

    1981-02-01

    The results and efforts of research and development of methods for daily fuel scheduling performed under EPRI Project RP 1048-5 by Power Technologies, Inc. (PTI) are reported in three volumes: Technical Manual, Programming Manual, and Program Listings. Daily fuel scheduling involves the scheduling and dispatching of generating facilities to meet all system loads and operating requirements for periods ranging from a day to a week. Daily fuel scheduling and computer requirements are defined. The scheduling problem is formulated as a mixed-integer linear programming (MILP) optimization problem in which the total system operating cost is minimized. A potentially practical scheduling procedure, based on a combination of search and MILP approaches, was proposed; these two approaches were investigated, coded in FORTRAN and tested individually. This volume of the report (Volume 1) is the Technical Manual and contains the main body of the report, which includes descriptions and results for two approaches to the daily fuel scheduling problem: Search Approach and Mixed Integer Linear Programming (MILP) Approach. Prototype computer programs on these approaches have been coded in FORTRAN for testing and evaluation purposes using PTI in-house PRIME time-sharing computer.

  20. Daily snow depth measurements from 195 stations in the United States

    SciTech Connect (OSTI)

    Allison, L.J.; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H.

    1997-02-01

    This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

  1. Pascua Yaqui Tribe DOE Solar Energy Feasibility and Deployment Study

    Energy Savers [EERE]

    Pascua Yaqui Tribe DOE Solar Energy Feasibility and Deployment Study Pascua Yaqui Tribe/DOE Solar Feasibility & Deployment Pascua Yaqui Tribe ď‚— The reservation is located in Tucson, Arizona ď‚— Reservation population approximately 4,000 ď‚— Total tribal enrollment 18,000 Pascua Yaqui Tribe/DOE Solar Feasibility & Deployment History Pascua Yaqui Tribe/DOE Solar Feasibility & Deployment ď‚— In 1978, the Pascua Yaqui Tribe of Arizona became federally recognized and in 1994 the

  2. Voltage-matched multijunction solar cell architectures for integrating PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies - Energy Innovation Portal Find More Like This Return to Search Voltage-matched multijunction solar cell architectures for integrating PV technologies National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary The U.S. Department of Energy SunShot Initiative aims to reduce the total installed cost of solar energy systems to $.06 per kilowatt-hour (kWh) by the year 2020. Reducing the cost of solar electricity requires that solar cell

  3. The 200 ft. Solar Tower at Sandia National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    200 ft. Solar Tower at Sandia National Laboratories provides 218 computer-controlled heliostats to reflect concentrated solar energy onto the tower, producing a total thermal capacity of 6 MW and peak flux to 300 W/cm 2 . The NSTTF offers a complete testing environment for a variety of activities, including: * Thermal flash simulation * Thermal performance testing and thermophysical properties measurement * Space technology systems testing * Solar array and solar applications testing *

  4. Solar thermal power systems. Summary report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

  5. Solar Impulse's Solar-Powered Plane

    SciTech Connect (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  6. Solar Impulse's Solar-Powered Plane

    ScienceCinema (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2014-01-07

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  7. San Francisco, California: Solar in Action (Brochure), Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Francisco, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Francisco, California: Solar in Action (Brochure), Solar ...

  8. Space Coast Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Coast Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Space Coast Next Generation Solar Energy Center Solar Power Plant Facility Space Coast...

  9. Martin Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation...

  10. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America ...

  11. Houston, Texas: Solar in Action (Brochure), Solar America Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Houston, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Houston, Texas: Solar in Action (Brochure), Solar America Cities, ...

  12. San Antonio, Texas: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Antonio, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Antonio, Texas: Solar in Action (Brochure), Solar America Cities, ...

  13. EE Solar Energy Efficiency Solar | Open Energy Information

    Open Energy Info (EERE)

    EE Solar Energy Efficiency Solar Jump to: navigation, search Name: EE Solar (Energy Efficiency Solar) Place: Ponoma, California Zip: 91768 Product: PV systems installer based in...

  14. Willard Kelsey Solar Group WK Solar | Open Energy Information

    Open Energy Info (EERE)

    Willard Kelsey Solar Group WK Solar Jump to: navigation, search Name: Willard & Kelsey Solar Group (WK Solar) Place: Perrysburg, Ohio Zip: 43551 Product: Manufacturer of CdTe...

  15. Innotech Solar AS formerly known as Solar Cell Repower | Open...

    Open Energy Info (EERE)

    Innotech Solar AS formerly known as Solar Cell Repower Jump to: navigation, search Name: Innotech Solar AS (formerly known as Solar Cell Repower) Place: Narvik, Norway Zip: 8512...

  16. Wuxi Jiacheng Solar Energy Technology Co JC Solar | Open Energy...

    Open Energy Info (EERE)

    JC Solar Jump to: navigation, search Name: Wuxi Jiacheng Solar Energy Technology Co (JC Solar) Place: Yixing, Jiangsu Province, China Zip: 214200 Sector: Solar Product: A Chinese...

  17. Innovative Systems Engineering Solar LLC ISE Solar LLC | Open...

    Open Energy Info (EERE)

    Systems Engineering Solar LLC ISE Solar LLC Jump to: navigation, search Name: Innovative Systems Engineering Solar LLC (ISE Solar LLC) Place: Warminster, Pennsylvania Zip:...

  18. First Solar Electric LLC formerly DT Solar | Open Energy Information

    Open Energy Info (EERE)

    Electric LLC formerly DT Solar Jump to: navigation, search Name: First Solar Electric LLC (formerly DT Solar) Place: Branchburg, New Jersey Zip: 8876 Sector: Solar Product: PV...

  19. Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd Jump to: navigation, search Name: Aide Solar (Jiangsu Aide Solar Energy Technology Co Ltd) Place: Xuzhou, Jiangsu Province,...

  20. AET Solar formerly solar division of GGAM Electrical Services...

    Open Energy Info (EERE)

    Solar formerly solar division of GGAM Electrical Services Jump to: navigation, search Name: AET Solar (formerly solar division of GGAM Electrical Services) Place: Limassol, Cyprus...

  1. Creative Energy Solar Investments SA formerly Hellenic Solar...

    Open Energy Info (EERE)

    Solar Investments SA formerly Hellenic Solar Jump to: navigation, search Name: Creative Energy Solar Investments SA (formerly Hellenic Solar) Place: 18538 Piraeus, Greece Product:...

  2. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  3. Siemens Solar formerly ARCO Solar Corporation | Open Energy Informatio...

    Open Energy Info (EERE)

    Solar formerly ARCO Solar Corporation Jump to: navigation, search Name: Siemens Solar (formerly ARCO Solar Corporation) Place: Arizona Product: Built a 6MW CPV project in 1984,...

  4. Siemens Concentrated Solar Power Ltd previously Solel Solar Systems...

    Open Energy Info (EERE)

    Siemens Concentrated Solar Power Ltd previously Solel Solar Systems Jump to: navigation, search Name: Siemens Concentrated Solar Power Ltd (previously Solel Solar Systems) Place:...

  5. Guodian Jintech Solar Energy formerly Yixing Jintech Solar Energy...

    Open Energy Info (EERE)

    Jintech Solar Energy formerly Yixing Jintech Solar Energy Co Ltd Jump to: navigation, search Name: Guodian Jintech Solar Energy (formerly Yixing Jintech Solar Energy Co Ltd) Place:...

  6. Shanghai Comtec Solar Technology Ltd aka Comtec Solar System...

    Open Energy Info (EERE)

    Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd Jump to: navigation, search Name: Shanghai Comtec Solar Technology Ltd (aka Comtec Solar System Group Ltd) Place:...

  7. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open...

    Open Energy Info (EERE)

    Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name: Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place: Ontario, California Zip: 91761 Product:...

  8. ET Solar Group Formerly CNS Solar Industry | Open Energy Information

    Open Energy Info (EERE)

    Solar Group Formerly CNS Solar Industry Jump to: navigation, search Name: ET Solar Group (Formerly CNS Solar Industry) Place: Nanjing, Jiangsu Province, China Zip: 210009 Sector:...

  9. Entech Solar Inc formerly WorldWater Solar Technologies | Open...

    Open Energy Info (EERE)

    Solar Inc formerly WorldWater Solar Technologies Jump to: navigation, search Name: Entech Solar Inc. (formerly WorldWater & Solar Technologies) Place: Fort Worth, Texas Zip: 76177...

  10. EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Solar Millennium Blythe Solar Power Project in Riverside County, CA EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside County, CA December 10, 2010 EIS-0449: ...

  11. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683: ...

  12. Orlando, Florida: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Orlando, Florida: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Orlando, Florida: Solar in Action (Brochure), Solar America Cities,...

  13. Denver, Colorado: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Denver, Colorado: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Denver, Colorado: Solar in Action (Brochure), Solar America Cities,...

  14. EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Abengoa Solar's Mojave Solar Project near Barstow, CA EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA July 1, 2011 EA-1798: Final Environmental Assessment Loan ...

  15. Kings River Conservation District (KRCD) Solar Farm Solar Power...

    Open Energy Info (EERE)

    River Conservation District (KRCD) Solar Farm Solar Power Plant Jump to: navigation, search Name Kings River Conservation District (KRCD) Solar Farm Solar Power Plant Facility...

  16. edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL...

    Office of Scientific and Technical Information (OSTI)

    Home economics: student activities. Field test edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL TOOLS; CURRICULUM GUIDES; GLAZING; HOUSES; SOLAR COOKERS; SOLAR...

  17. Concentrating Solar Power Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects

  18. An Update on White House Solar Panels and Our Solar Program

    Broader source: Energy.gov [DOE]

    The Energy Department remains on the path to complete the White House solar demonstration project. This project is one component of the Energy Department’s larger, ambitious SunShot Initiative to reduce the total installed cost of solar energy systems by about 75 percent before the end of the decade.

  19. Solar collector

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1982-05-04

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  20. Solar PST | Open Energy Information

    Open Energy Info (EERE)

    search Name: Solar PST Place: Bergondo, Spain Zip: 15 165 Sector: Solar Product: Spanish company producing thermodynamic solar panels. References: Solar PST1 This article...

  1. Immodo Solar | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Immodo Solar Place: Spain Sector: Solar Product: Spanish company which installs and maintains solar panels. References: Immodo Solar1 This...

  2. Shell Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Shell Solar Place: The Hague, Netherlands Zip: 2501 AN Sector: Solar Product: Shell Solar is developing non-crystalline PV technology,...

  3. Preussen Solar | Open Energy Information

    Open Energy Info (EERE)

    Preussen Solar Jump to: navigation, search Name: Preussen Solar Place: Berlin, Germany Zip: 10711 Sector: Solar Product: Involved in solar projects. Coordinates: 52.516074,...

  4. Genesis Solar | Open Energy Information

    Open Energy Info (EERE)

    Genesis Solar Facility Genesis Solar Sector Solar Facility Type Concentrating solar power Facility Status Under Construction Owner NextEra Developer NextEra Location Blythe,...

  5. Solar Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Library Solar Energy Solar Energy Below are resources for Tribes on solar energy technologies. A Guide to Community Solar: Utility, Private, and Nonprofit ...

  6. Declination Solar | Open Energy Information

    Open Energy Info (EERE)

    San Francisco, California Sector: Solar Product: San Francisco solar installation firm acquired by SolarCity in September 2006. References: Declination Solar1 This article...

  7. AS Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: AS Solar Address: Am Tnniesberg 4A Place: Hannover, Germany Sector: Solar Product: PV, solar thermal Phone Number: +49 511 475578 - 0...

  8. Abengoa Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Logo: Abengoa Solar Name: Abengoa Solar Address: 11500 W 13th Ave Place: Lakewood, Colorado Zip: 80215 Region: Rockies Area Sector: Solar Product:...

  9. First Solar | Open Energy Information

    Open Energy Info (EERE)

    First Solar Name: First Solar Address: 350 West Washington Street, Suite 600 Place: Tempe, Arizona Zip: 85281 Sector: Solar Product: Solar energy systems Year Founded: 1999 Phone...

  10. Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    Logo: Solar Systems Name: Solar Systems Address: 45 Grosvenor Street Place: Abbotsford, Australia Sector: Solar Product: Solar concentrators Phone Number: +61 3 9413 8000 Website:...

  11. Ascent Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Logo: Ascent Solar Name: Ascent Solar Address: 12300 Grant Street Place: Thornton, Colorado Zip: 80241 Region: Rockies Area Sector: Solar Product:...

  12. Borrego Solar | Open Energy Information

    Open Energy Info (EERE)

    Borrego Solar Jump to: navigation, search Logo: Borrego Solar Name: Borrego Solar Address: 2560 9th Street Place: Berkeley, California Zip: 94710 Region: Bay Area Sector: Solar...

  13. DPW Solar | Open Energy Information

    Open Energy Info (EERE)

    DPW Solar Jump to: navigation, search Logo: DPW Solar Name: DPW Solar Address: 4000 B Vassar Dr. NE Place: Albuquerque, New Mexico Zip: 87107 Sector: Solar Product: Renewable...

  14. Inovateus Solar | Open Energy Information

    Open Energy Info (EERE)

    Inovateus Solar Jump to: navigation, search Logo: Inovateus Solar Name: Inovateus Solar Address: 19890 State Line Rd. Place: South Bend, Indiana Zip: 46637 Sector: Solar Product:...

  15. Standard Solar | Open Energy Information

    Open Energy Info (EERE)

    Standard Solar Name: Standard Solar Address: 202 Perry Parkway Place: Gaithersburg, Maryland Zip: 20877 Region: Northeast - NY NJ CT PA Area Sector: Solar Product: Solar...

  16. Wasatch Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Wasatch Solar Address: 4417 S 2950 E Place: Salt Lake City, Utah Zip: 84124 Sector: Solar Product: Solar Year Founded: 2009 Phone...

  17. Scaled Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: Scaled Solar manufacturers and markets utility-grade, concentrated photovoltaic solar energy systems to commercial customers References: Scaled Solar1 This...

  18. Corona Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Corona Solar Place: Tholey-Theley, Germany Zip: D 66636 Sector: Solar Product: Engaged in solar passive large-size collectors. References:...

  19. Sylcom Solar | Open Energy Information

    Open Energy Info (EERE)

    Sylcom Solar provides the design, research, distribution, construction, operation, maintenance of products and of Photovoltaic Solar, Thermal Solar and Solar Thermoelectric...

  20. Apex Solar | Open Energy Information

    Open Energy Info (EERE)

    Name: Apex Solar Place: Sofia, Bulgaria Zip: 1616 Sector: Solar Product: Bulgarian PV and solar thermal project developer and installer. References: Apex Solar1 This article is a...

  1. Atlantic Solar | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Logo: Atlantic Solar Name: Atlantic Solar Place: Cape Town, South Africa Sector: Solar Product: Solar Thermal Technology Year Founded: 1985 Phone Number:...

  2. Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  3. Solar Contractor Licensing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility InstallersContractors Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics...

  4. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  5. JLab's economic footprint expands (Daily Press) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab's economic footprint expands (Daily Press) External Link: http://articles.dailypress.com/2011-01-20/news/dp-nws-jlab-economy-20110120_1_je... By jlab_admin on Thu, 2011-01-2

  6. Italian Physicist Named Deputy Associate Director at JLab (Daily Press) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Italian Physicist Named Deputy Associate Director at JLab (Daily Press) External Link: http://www.dailypress.com/news/science/dead-rise-blog/dp-italian-physicist-named... By jlab_admin on Tue, 2012-02-1

  7. Their best defense is good fiscal sense (Daily Press) | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlestheir-best-defense-good-fiscal-sense-daily-press Their best defense is good fiscal sense Top Guard Security finds it can be a good idea to say,...

  8. Solar energy collector

    DOE Patents [OSTI]

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  9. Solar Innovator | Alta Devices

    ScienceCinema (OSTI)

    Mattos, Laila; Le, Minh

    2013-05-29

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  10. Invisible Science: Lab Breakthroughs in Our Daily Lives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Invisible Science: Lab Breakthroughs in Our Daily Lives Invisible Science: Lab Breakthroughs in Our Daily Lives April 24, 2012 - 2:30pm Addthis The Lab Breakthroughs video series focuses on the array of technological advancements and discoveries that stem from research performed in the National Labs, including improvements in industrial processes, discoveries in fundamental scientific research, and innovative medicines. <a href="http://energy.gov/lab-breakthroughs">See

  11. Solar Energy Glossary

    Broader source: Energy.gov [DOE]

    The solar glossary contains definitions for technical terms related to solar power and photovoltaic (PV) technologies, including terms having to do with electricity, power generation, and concentrating solar power (CSP).

  12. Solar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    How much do you know about solar power? Take our quiz and test your solar energy IQ. | Photo courtesy of NREL. How much do you know about solar power? Take our quiz and test your...

  13. Solar Easements & Rights Laws

    Broader source: Energy.gov [DOE]

    The Solar Recordation Act describes the procedures for filing a solar right through the County Clerk's Office. The property owner seeking the solar right must give advanced notice to the adjacent...

  14. Compound Solar Technology CompSolar | Open Energy Information

    Open Energy Info (EERE)

    Solar Technology CompSolar Jump to: navigation, search Name: Compound Solar Technology (CompSolar) Place: Jhunan, Taiwan Zip: 350 Sector: Solar Product: Producer of glass-based...

  15. Silicon Valley Solar Inc SV Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Inc SV Solar Jump to: navigation, search Name: Silicon Valley Solar Inc (SV Solar) Place: Santa Clara, California Zip: 95051 Sector: Solar Product: A US-based manufacturer of...

  16. Solar skylight

    DOE Patents [OSTI]

    Adamson, James C.

    1984-01-01

    A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

  17. Solar collector

    DOE Patents [OSTI]

    Wilhelm, William G.

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  18. Your Solar Home

    Broader source: Energy.gov [DOE]

    Solar Schoolhouse Education supplement for the Sacramento Bee to introduce solar to elementary school children and introduce the design and AD contest for local students.

  19. Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Solar How much do you know about solar power? Take our quiz and test your solar energy IQ. | Photo courtesy of NREL. How much do you know about solar power? Take our quiz and test your solar energy IQ. | Photo courtesy of NREL. The tremendous growth in the U.S. solar industry is helping to pave the way to a cleaner, more sustainable energy future. Over the past few years, the cost of a solar energy system has dropped significantly -- helping to give more American families and business

  20. Solar Contractor Licensing

    Broader source: Energy.gov [DOE]

    Hawaii offers several specialty licenses for solar contractors through Hawaii’s Department of Commerce and Consumer Affairs. The following specialty licenses are available: Solar Power Systems...

  1. Solar Photovoltaic SPECIFICATION, CHECKLIST...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the Renewable Energy Ready Home Specifications Assumptions of the RERH Solar ...

  2. Concentrating Solar Power

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  3. CPS Energy Solar Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Solar * Combine large-scale solar energy PPA with local economic development - ... transformer 1 Includes CAISO connection, data measuring, weather, etc. 1 Distribution ...

  4. Solar Power International

    Broader source: Energy.gov [DOE]

    Solar Power International in Anaheim, CA, received Vice President Joe Biden on Sept. 16. He announced more than $102 million in new solar funding.

  5. TVA- Solar Solutions Initiative

    Broader source: Energy.gov [DOE]

    Solar Solutions Initiative (SSI) is a pilot program that offers additional financial incentives for Solar PV systems participating in the Renewable Standard Offer program. Applications for new...

  6. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  7. Solar Thermoelectric Energy Conversion

    Broader source: Energy.gov [DOE]

    Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

  8. Making a Solar Oven

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students make solar ovens. Student background information is provided. The expected outcome is that students will learn about solar energy transfer.

  9. Solar Energy Technologies Office

    Broader source: Energy.gov [DOE]

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  10. Solarity | Open Energy Information

    Open Energy Info (EERE)

    Solarity Jump to: navigation, search Name: Solarity Address: 200 Innovation Blvd Suite 260A Place: State College, Pennsylvania Zip: 16801 Region: Northeast - NY NJ CT PA Area...

  11. Solar in Cold, Cloudy Climates

    Broader source: Energy.gov [DOE]

    Presentation delivered by Chuck Marken during the 2009 Northeastern Solar Cities Conference Solar Survey session.

  12. SunShot Solar PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar PV SunShot Solar PV

  13. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  14. Solar Easements & Local Option Solar Rights Laws

    Broader source: Energy.gov [DOE]

    The New York General City, Town, and Village codes also allow local zoning districts to make regulations regarding solar access that provide for "the accommodation of solar energy systems and...

  15. Prediction of Solar Radiation on Building Rooftops: A Data-Mining Approach

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Bhaduri, Budhendra L; Kodysh, Jeffrey B

    2012-01-01

    Solar energy technologies offer a clean, renewable, and domestic energy source, and are essential components of a sustainable energy future. The accurate measurement of solar radiation data is essential for optimum site selection of future distributed solar power plants as well as sizing photovoltaic systems. However, solar radiation data are not readily available because measured sequences of radiation values are obtained for a few locations in a country. When the data are available, they are usually at different time periods and spatial scale. The availability of solar radiation data at hourly or daily time scale will enhance the integration of solar energy into electricity generation and promote a sustainable energy future. The ability to generate approximate solar radiation values is often the only practical way to obtain radiation data at hourly or daily time scale. As a result, several models have been developed for estimating solar radiation values based on analytical, numerical simulation, and statistical approaches. However, these models have inherent challenges. We will discuss some of those challenges in this paper. To enhance the prediction of solar radiation values, a novel approach is presented for estimating solar radiation values using support vector machine technique. The approach accounts for unique characteristics that influence solar radiation values. The preliminary results obtained offer useful insights for model enhancements.

  16. Flix Solar | Open Energy Information

    Open Energy Info (EERE)

    Flix Solar Jump to: navigation, search Name: Flix Solar Place: Spain Sector: Solar Product: Flix solar is developing a 12MW solar park in Flix, Tarragona, Spain. References: Flix...

  17. Pool daily fuel scheduling. Volume 2: programming manual. Final report, February 1981

    SciTech Connect (OSTI)

    Pang, C.K.; Mikolinnas, T.A.

    1981-02-01

    The results and efforts of research and development of methods for daily fuel scheduling performed under EPRI Project RP 1048-5 by Power Technologies, Inc. (PTI) are reported in three volumes: Technical Manual; Programming Manual and Program Listings. Daily fuel scheduling involves the scheduling and dispatching of generating facilities to meet all system loads and operating requirements for periods ranging from a day to a week. Daily fuel scheduling and computer requirements are defined. The scheduling problem is formulated as a mixed-integer linear programming (MILP) optimization problem in which the total system operating cost is minimized. A potentially practical scheduling procedure, based on a combination of search and MILP approaches, was proposed; these two approaches were investigated, coded in FORTRAN and tested individually. Tests using the New York Power Pool system show that the search approach may produce potential savings for fuel scheduling approaches. Additional efforts are needed to make the MILP approach practical. Finally, a number of special scheduling problems have been identified and recommended for future work. This volume of the report (Volume 2) is the Programming Manual which describes the organization and structure of the programs. Layout and function of data files, sample outputs and test data are also presented. Program organization and data for the search and MILP approaches are given. Preliminary test results, system data descriptions and sample outputs for the search approach are included in the appendices.

  18. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur Distillate Fuel Oil, Greater than 500 ppm ...

  19. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units ...

  20. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  1. Total........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351

  2. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space

  3. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

  4. Total.............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  5. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  6. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  7. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  8. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  9. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  10. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  11. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  12. Total................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central

  13. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  14. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  15. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1

  16. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  17. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  18. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  19. Total....................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5

  20. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  1. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  2. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  3. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  4. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing

  5. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  6. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  7. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One

  8. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  9. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7

  10. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  11. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  12. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  13. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  14. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  15. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  16. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  17. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  18. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  19. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  20. Total.................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  1. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  2. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  3. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  4. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  5. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  6. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  7. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  8. Total.........................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  9. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration, Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.'rounding. ... Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.' CellModule ...

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 41.8 2,603 2,199 1,654 941 795 598 1-Car Garage...... 9.5 2,064 1,664 1,039 775 624 390 2-Car Garage......

  11. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass...... 27.4 ... Q Q N Q N N Proportion of Windows Replaced All......

  12. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass......Q Q Q Q Proportion of Windows Replaced All......

  13. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump......

  14. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump......

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump...... 53.5 ...

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump......

  17. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Cooling Equipment...... 17.8 2.1 1.8 0.3 Have Cooling Equipment...... 93.3 23.5 16.0 7.5 Use ...

  18. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  19. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment...... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment...... 93.3 26.5 6.5 2.5 ...

  20. Sunshot Rooftop Solar Challenge | Department of Energy

    Energy Savers [EERE]

    Sunshot Rooftop Solar Challenge Sunshot Rooftop Solar Challenge Sunshot Rooftop Solar Challenge

  1. EA-1823: Rockford Solar, Rockford, Illinois

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of a proposal to provide Federal funding to the Illinois Department of Commerce and Economic Opportunity (DCEO) under the State Energy Program (SEP). DCEO is seeking to provide $4 million of its SEP funds to Rockford Solar Partners LLC (RSP), who would use these funds for the design, permitting, and construction of a solar photovoltaic facility with a generating capacity of up to 20 megawatts (MW). DOE’s Proposed Action would authorize $4,025,000 million in grant expenditures. The total cost of Rockford Solar Partner’s proposed project would be approximately $127 million.

  2. Solar collector

    DOE Patents [OSTI]

    Wilhelm, W.G.

    The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  3. Concentrated Solar Thermoelectric Power

    SciTech Connect (OSTI)

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  4. Solar Policy Environment: Sacramento

    Broader source: Energy.gov [DOE]

    The City of Sacramento and the greater Sacramento region is the home of a long standing history of commitment to solar. Sacramento Solar Access seeks to further widespread adoption of solar energy by addressing current market barriers and preparing, through design guidelines and education, the infrastructure that will optimize solar production in the future.

  5. Solar Policy Environment: Houston

    Broader source: Energy.gov [DOE]

    The City of Houston is committed to achieving a sustainable solar infrastructure through strategic partnerships that address market barriers for solar energy through the Houston Solar Initiative. The initiative is dedicated to this long-term goal while focusing on near- and mid-term results that go beyond demonstration solar projects.

  6. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating

    SciTech Connect (OSTI)

    Benli, Hueseyin; Durmus, Aydin

    2009-12-15

    The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl{sub 2}6H{sub 2}O was used as PCM in thermal energy storage with a melting temperature of 29 C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18-23% of total daily thermal energy requirements of the greenhouse for 3-4 h, in comparison with the conventional heating device. (author)

  7. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  8. Solar Power Generation Development

    SciTech Connect (OSTI)

    Robert L. Johnson Jr.; Gary E. Carver

    2011-10-28

    This project centered on creating a solar cell prototype enabling significant reductions in module cost and increases in module efficiency. Low cost was addressed by using plentiful organic materials that only comprise 16% of the total module cost, and by leveraging building integrated PV concepts that reduce the cost of key module components to zero. High efficiency was addressed by implementing multiband organic PV, low cost spectral splitting, and possibly integrating photovoltaic and photothermal mechanisms. This research has contributed to the design of multiband organic PV, and the sealing of organic PV cells. If one assumes that the aggregate multiband efficiency can reach 12%, projected cost would be $0.97/W. If the sealing technology enables 10 to 20 year lifetimes, the LCOE will match that of domestic coal. The final report describes progress towards these goals.

  9. NREL: Innovation Impact - Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration What is a quantum dot? Close Quantum dots are tiny spheres of semiconductor material measuring only about 2-10 billionths of a meter in diameter. Quantum dots are a leading candidate for a third generation of solar-cell technologies. Close Achieving significant gains in solar

  10. Solar Energy in Alaska

    Energy Savers [EERE]

    Evolution and Diffusion Studies Solar Energy Evolution and Diffusion Studies Solar Energy Evolution and Diffusion Studies Through the Solar Energy Evolution and Diffusion Studies, or SEEDS, program, seven projects are investigating strategies to accelerate the pace of change for solar energy technologies as they are developed and deployed. The projects integrate the use of cutting-edge analytical and computational tools with real-world market data and pilot tests to speed the pace of solar

  11. Solar collector array

    DOE Patents [OSTI]

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  12. Solar Policy Environment: Pittsburgh

    Office of Energy Efficiency and Renewable Energy (EERE)

    In this project, Pittsburgh plans to build on its reputation as a national leader in green practices. Its Solar America Cities project will develop a distributed approach to adoption of solar energy technologies. Pittsburgh’s partnership includes universities, non-profit organizations, and business, labor and foundation communities. The city plans to transform the solar energy market and stimulate early adoption of solar technology, to show that solar technology works in a northern city.

  13. Topaz Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Topaz Solar Farm Sector Solar Facility Type Photovoltaic Developer OptiSolar Location San Luis Obispo County, California Coordinates 35.3102296, -120.4357631 Show Map...

  14. SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology...

    Open Energy Info (EERE)

    China Zip: 271000 Sector: Solar Product: Manufacturer and exporter of solar passive water heating systems and PV-powered solar road lighting, torches and lamps. References:...

  15. Amargosa Farm Road Solar Energy Project Solar Power Plant | Open...

    Open Energy Info (EERE)

    Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC, MAN Ferrostaal Inc Location Nye County, Nevada Coordinates 38.5807111, -116.0413889...

  16. China Solar Clean Energy Solutions Inc formerly Deli Solar USA...

    Open Energy Info (EERE)

    Inc formerly Deli Solar USA Inc Jump to: navigation, search Name: China Solar & Clean Energy Solutions Inc ( formerly Deli Solar (USA) Inc) Place: Connecticut Zip: 6039 Sector:...

  17. EPOD Solar Wales Ltd formerly ICP Solar Technologies Ltd | Open...

    Open Energy Info (EERE)

    Wales Ltd formerly ICP Solar Technologies Ltd Jump to: navigation, search Name: EPOD Solar (Wales) Ltd (formerly ICP Solar Technologies Ltd) Place: Mid Glamorgan, United Kingdom...

  18. United Solar Systems Corp USSC aka Bekaert ECD Solar Systems...

    Open Energy Info (EERE)

    Systems Corp USSC aka Bekaert ECD Solar Systems LLC Jump to: navigation, search Name: United Solar Systems Corp (USSC) (aka Bekaert ECD Solar Systems LLC) Place: Middletown...

  19. Solar Energy Sources SES Solar Inc formerly Electric Network...

    Open Energy Info (EERE)

    SES Solar Inc formerly Electric Network com Jump to: navigation, search Name: Solar Energy Sources - SES Solar Inc (formerly Electric Network.com) Place: Vancouver, British...

  20. Solar Systems and Solutions Soluciones Sistemas Solares 3S |...

    Open Energy Info (EERE)

    Systems and Solutions Soluciones Sistemas Solares 3S Jump to: navigation, search Name: Solar Systems and Solutions Soluciones Sistemas Solares (3S) Place: Navarre, Spain Sector:...

  1. DE-EE0005690 Developing Solar Friendly Communities Colorado Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EE0005690 Developing Solar Friendly Communities Colorado Solar Energy Industries ... A. PROJECT OBJECTIVES The goal of the Solar Friendly Communities project is to achieve ...

  2. Vaillant Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    Zip: 92075 Sector: Solar Product: California-based solar company specializing in solar water heating, solar pool heating and solar space heating systems for residential and...

  3. MSM Solar India | Open Energy Information

    Open Energy Info (EERE)

    Solar India Jump to: navigation, search Name: MSM Solar India Place: India Sector: Solar Product: JV company to develop solar projects. References: MSM Solar India1 This article...

  4. Ener Solar Technology srl | Open Energy Information

    Open Energy Info (EERE)

    Ener Solar Technology srl Jump to: navigation, search Name: Ener Solar Technology srl Place: Italy Sector: Solar Product: Solar project developer. References: Ener Solar Technology...

  5. Solar Reflection Panels - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Solar Reflection Panels Sandia National Laboratories Contact SNL About This ...

  6. Solar Selective Absorption Coatings - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Solar Selective Absorption Coatings Sandia National Laboratories Contact SNL ...

  7. Mohave Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Plant Jump to: navigation, search Name Mohave Solar Power Plant Facility Mojave Solar Sector Solar Facility Type Concentrating Solar Power Facility Status Under...

  8. Solar and Wind Rights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name State State...

  9. Solar Easements & Rights Laws | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process...

  10. Sun Shine Solar | Open Energy Information

    Open Energy Info (EERE)

    Shine Solar Jump to: navigation, search Logo: Sun Shine Solar Name: Sun Shine Solar Place: Norwich, United Kingdom Sector: Solar Product: Solar energy products Phone Number: 01508...

  11. Sandia Energy - Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Glare Hazard Analysis Tool Solar...

  12. Once-Daily Radiation Therapy for Inflammatory Breast Cancer

    SciTech Connect (OSTI)

    Brown, Lindsay; Harmsen, William; Blanchard, Miran; Goetz, Matthew; Jakub, James; Mutter, Robert; Petersen, Ivy; Rooney, Jessica; Stauder, Michael; Yan, Elizabeth; Laack, Nadia

    2014-08-01

    Purpose: Inflammatory breast cancer (IBC) is a rare and aggressive breast cancer variant treated with multimodality therapy. A variety of approaches intended to escalate the intensity and efficacy of radiation therapy have been reported, including twice-daily radiation therapy, dose escalation, and aggressive use of bolus. Herein, we examine our outcomes for patients treated with once-daily radiation therapy with aggressive bolus utilization, focusing on treatment technique. Methods and Materials: A retrospective review of patients with nonmetastatic IBC treated from January 1, 2000, through December 31, 2010, was performed. Locoregional control (LRC), disease-free survival (DFS), overall survival (OS) and predictors thereof were assessed. Results: Fifty-two women with IBC were identified, 49 (94%) of whom were treated with neoadjuvant chemotherapy. All underwent mastectomy followed by adjuvant radiation therapy. Radiation was delivered in once-daily fractions of 1.8 to 2.25 Gy (median, 2 Gy). Patients were typically treated with daily 1-cm bolus throughout treatment, and 33 (63%) received a subsequent boost to the mastectomy scar. Five-year Kaplan Meier survival estimates for LRC, DFS, and OS were 81%, 56%, and 64%, respectively. Locoregional recurrence was associated with poorer OS (P<.001; hazard ratio [HR], 4.1). Extracapsular extension was associated with worse LRC (P=.02), DFS (P=.007), and OS (P=.002). Age greater than 50 years was associated with better DFS (P=.03). Pathologic complete response was associated with a trend toward improved LRC (P=.06). Conclusions: Once-daily radiation therapy with aggressive use of bolus for IBC results in outcomes consistent with previous reports using various intensified radiation therapy regimens. LRC remains a challenge despite modern systemic therapy. Extracapsular extension, age ≤50 years, and lack of complete response to chemotherapy appear to be associated with worse outcomes. Novel strategies are needed in IBC, particularly among these subsets of patients.

  13. Solar Thermal Collector Manufacturing Activities - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration Solar Thermal Manufacturing Activities Release Date: December 2010 | Next Release Date: Discontinued | full report Previous Issues Year: (PDF) 2009 2008 2007 2006 2005 2004 2003 1993 Go Overview Total shipments26 of solar thermal collectors decreased dramatically, falling from 17.0 million square feet in 2008 to 13.8 million square feet in 2009, a decline of almost 19 percent. Total shipments in 2009 were down 33 percent from the 2006 record level of 20.7 million square feet

  14. Task Descriptions | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Task Descriptions Center for Bio-Inspired Solar Fuel Production Central to design of a complete system for solar water oxidation and hydrogen production is incorporation of synthetic components inspired by natural systems into one operational unit. The research effort of the Center is naturally divided into the following subtasks: Subtask 1. Total systems analysis, assembly and testing The solar water splitting device consists of four subsystems, each of which is being investigated by one of the

  15. Sun Solar | Open Energy Information

    Open Energy Info (EERE)

    Sun Solar Jump to: navigation, search Name: Sun Solar Place: San Diego, California Zip: 92019 Sector: Services, Solar Product: String representation "Established in ... e...

  16. Paz Solar | Open Energy Information

    Open Energy Info (EERE)

    Paz Solar Jump to: navigation, search Name: Paz Solar Place: Israel Product: Israel-based engineering and installation contractor. References: Paz Solar1 This article is a stub....

  17. Aztec Solar | Open Energy Information

    Open Energy Info (EERE)

    Rancho Cordova, California Zip: 95742 Sector: Solar Product: Installer of solar hot water and pool heating systems. References: Aztec Solar1 This article is a stub. You can...

  18. ESPEE Solar | Open Energy Information

    Open Energy Info (EERE)

    Karnataka, India Zip: 560 091 Sector: Solar Product: Distributor of solar thermal water heating systems and PV lights. References: ESPEE Solar1 This article is a stub....

  19. Apros Solar | Open Energy Information

    Open Energy Info (EERE)

    Apros Solar Jump to: navigation, search Name: Apros Solar Place: Prague 2, Czech Republic Zip: 120 00 Product: Czech developer of PV projects. References: Apros Solar1 This...

  20. Solar Mimizan | Open Energy Information

    Open Energy Info (EERE)

    Mimizan Jump to: navigation, search Name: Solar Mimizan Place: PARIS, France Zip: 75002 Sector: Solar Product: Paris-based, building-integrated solar power plant developer....

  1. Tessera Solar | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Tessera Solar Name: Tessera Solar Address: 2600 10th Street Place: Berkeley, California Zip: 94710 Region: Bay Area Sector: Solar Product: Developer of utility...

  2. Harvest Solar | Open Energy Information

    Open Energy Info (EERE)

    Harvest Solar Energy Name: Harvest Solar Energy Address: 1571 East 22 Place Place: Tulsa, Oklahoma Zip: 74114 Sector: Solar Product: Renewable energy systems Phone Number:...

  3. Abound Solar | Open Energy Information

    Open Energy Info (EERE)

    Abound Solar Jump to: navigation, search Logo: Abound Solar Name: Abound Solar Address: 2695 Rocky Mountain Avenue, Suite 100 Place: Loveland, Colorado Zip: 80538 Region: Rockies...

  4. Select Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Logo: Select Solar Name: Select Solar Address: Unit 5 Blakehill Business Park Chelworth Road Cricklade SN6 6JD Place: Cricklade, United Kingdom...

  5. Solar Community | Open Energy Information

    Open Energy Info (EERE)

    Community Jump to: navigation, search Name: Solar Community Address: 4704 E Cesar Chavez St Place: Austin, Texas Zip: 78702 Region: Texas Area Sector: Solar Product: Solar sales...

  6. Solar Monkey | Open Energy Information

    Open Energy Info (EERE)

    Monkey Jump to: navigation, search Name: Solar Monkey Place: Irvine, California Zip: 92618 Sector: Solar Product: Solar Monkey installs PV systems for commercial and industrial...

  7. Solar Power | Open Energy Information

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Solar Power (Redirected from Solar energy) Jump to: navigation, search Solar Energy...

  8. Solar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  9. Solar Junction | Open Energy Information

    Open Energy Info (EERE)

    Junction Jump to: navigation, search Name: Solar Junction Place: San Jose, California Zip: CA 95131 Sector: Efficiency, Solar Product: Solar Junction is developing high efficiency...

  10. Solar Power | Open Energy Information

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Solar Power (Redirected from Solar) Jump to: navigation, search Solar Energy Companies...

  11. Activ Solar | Open Energy Information

    Open Energy Info (EERE)

    Activ Solar Jump to: navigation, search Name: Activ Solar Address: Vienna, Wipplingerstrasse 35 Place: Austria Zip: 1010 Sector: Solar Product: The company's main business areas...

  12. Agrupacion Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Agrupacion Solar Place: Spain Product: Spanish PV project developer, or finance arranger. References: Agrupacion Solar1 This article is a...

  13. EMPE Solar | Open Energy Information

    Open Energy Info (EERE)

    EMPE Solar Jump to: navigation, search Name: EMPE Solar Place: Spain Product: Developing projects using new module technology, in Spain. References: EMPE Solar1 This article is a...

  14. Trinity Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: Trinity Solar Place: Freehold, New Jersey Zip: 7728 Sector: Solar Product: A provider of solar energy systems to home and business owners. Coordinates: 42.376865,...

  15. Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    Place: Dubai, United Arab Emirates Sector: Solar Product: Dubai-based solar photovoltaic module manufacturing company. References: Solar Technologies1 This article is a...

  16. AEE Solar | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Logo: AEE Solar Name: AEE Solar Address: 1155 Redway Drive PO Box 339 Place: Redway, California Zip: 95560 Region: Bay Area Sector: Solar Year Founded:...

  17. Sereno Solar | Open Energy Information

    Open Energy Info (EERE)

    Name: Sereno Solar Place: Monte Sereno, California Sector: Solar Product: Has developed a solar passive water heating panel to be installed under current roofing or siding...

  18. Phototaxis Solar | Open Energy Information

    Open Energy Info (EERE)

    Cambridge, Massachusetts Sector: Solar Product: Solar start-up planning to construct solar-panel covered roofs over parking lots. Coordinates: 43.003745, -89.017499 Show...

  19. Utah Solar Outlook March 2010

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  20. Himin Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: Himin Solar Place: Alicante, Spain Zip: 3201 Sector: Solar Product: Manufacturing, planning, development and distribution of projects of solar energy products....

  1. Webasto Solar | Open Energy Information

    Open Energy Info (EERE)

    Webasto Solar Jump to: navigation, search Name: Webasto Solar Place: Germany Product: German module manufacturer. References: Webasto Solar1 This article is a stub. You can help...

  2. Friends Solar | Open Energy Information

    Open Energy Info (EERE)

    Friends Solar Name: Friends Solar Place: Kahuku, Hawaii Sector: Renewable Energy Product: Solar Energy Number of Employees: 11-50 Year Founded: 1988 Phone Number: 8086839550...

  3. Solar2 | Open Energy Information

    Open Energy Info (EERE)

    Germany Zip: 27472 Sector: Solar Product: Sells and installs PV, solar thermal and wood pellet powered heating systems. References: Solar21 This article is a stub. You can...

  4. Determination of Total Solids in Biomass and Total Dissolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The published moisture loss on drying for sodium tartrate is 15.62% (84.38% total solids). 14.6 Sample size: Determined by sample matrix. 14.7 Sample storage: Samples should be ...

  5. Solar Design Workbook

    SciTech Connect (OSTI)

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  6. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on Thursday, March 26, 2015. This will be provided by Rogue Wave Software staff members. The training will include a lecture and demo sessions in the morning, followed by a hands-on parallel debugging session in the afternoon. Location This event will be presented online using WebEx technology and in person at NERSC Oakland

  7. Homebuyer Solar Option and Solar Offset Program

    Broader source: Energy.gov [DOE]

    Senate Bill 1 of 2006, which established the statewide California Solar Initiative, also required the California Energy Commission (CEC) to implement regulations that require sellers of production...

  8. EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project in Nye County, NV EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project in Nye County, NV Documents ...

  9. China Nuvo Solar Energy Inc formerly Nuvo Solar Energy Inc |...

    Open Energy Info (EERE)

    Nuvo Solar Energy Inc formerly Nuvo Solar Energy Inc Jump to: navigation, search Name: China Nuvo Solar Energy Inc (formerly Nuvo Solar Energy Inc) Place: West Palm Beach, Florida...

  10. Rooftop Solar Challenge to Cut Solar's Red Tape | Department...

    Energy Savers [EERE]

    Rooftop Solar Challenge to Cut Solar's Red Tape Rooftop Solar Challenge to Cut Solar's Red Tape December 1, 2011 - 4:35pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor ...

  11. EA-1784: Fotowatio Nevada Solar, LLC's Apex Solar Power Project...

    Office of Environmental Management (EM)

    84: Fotowatio Nevada Solar, LLC's Apex Solar Power Project in Clark County, NV EA-1784: Fotowatio Nevada Solar, LLC's Apex Solar Power Project in Clark County, NV July 1, 2010 ...

  12. ThinkSolar SolarMarkt US | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: ThinkSolar (SolarMarkt US) Place: Oakland, California Sector: Solar Product: US subsidiary of German PV installer SolarMarkt which like its parent also...

  13. SolarBridge Technologies: Helping Solar Modules Speak the Language...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SolarBridge Technologies: Helping Solar Modules Speak the Language of the Energy Grid SolarBridge Technologies: Helping Solar Modules Speak the Language of the Energy Grid June 5, ...

  14. Solar Deployment and Policy

    U.S. Energy Information Administration (EIA) Indexed Site

    Solar Deployment and Policy Justin Baca Director of Research Solar Energy Industries Association About SEIA * Founded in 1974 * U.S. National Trade Association for Solar Energy * 1,000 member companies from around the world * Members from across 50 states * Largest companies in the world as well as small installers * Our Mission: Build a strong solar industry to power America * Our Goal: 10 gigawatts (GW) of annual installed solar capacity in the U.S. by 2015 July 18, 2014 © 2014 Solar Energy

  15. Solar Ready Vets: Preparing Veterans for the Solar Workforce | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Solar Ready Vets: Preparing Veterans for the Solar Workforce Solar Ready Vets: Preparing Veterans for the Solar Workforce Addthis Description Solar Ready Vets, created by the Department of Energy's SunShot Initiative, connects our nation's transitioning veterans to the growing solar energy industry. As these active duty service members prepare to enter the civilian world, the Solar Ready Vets program offers them the opportunity to learn about all aspects of the solar industry in a

  16. EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA |

    Energy Savers [EERE]

    Department of Energy 8: Abengoa Solar's Mojave Solar Project near Barstow, CA EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA July 1, 2011 EA-1798: Final Environmental Assessment Loan Guarantee to Mojave Solar, LLC for the Abengoa Mojave Solar Project near Barstow, California July 8, 2011 EA-1798: Finding of No Significant Impact Loan Guarantee to Mojave Solar, LLC for the Abengoa Mojave Solar Project near Barstow, California March 17, 2011 Abengoa Mojave Final Biological

  17. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The...

  18. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Freeport, TX Hidalgo, TX Laredo, TX McAllen, TX Penitas, TX Rio Bravo, TX Rio Grande, TX Roma, TX Total ...

  19. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  20. 2014 Total Electric Industry- Customers

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 6,243,013 862,269 28,017 8 ...

  1. "2014 Total Electric Industry- Customers"

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",6243013,8...

  2. Category:Solar Power in China | Open Energy Information

    Open Energy Info (EERE)

    3 pages are in this category, out of 3 total. A All Solar PV C China Guangdong Nuclear Power Company China Guodian Corporation Retrieved from "http:en.openei.orgw...

  3. Carports with Solar Panels do Double Duty for Navy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14, 2010 - 12:22pm Addthis Joshua DeLung What does this project do? In total, all of China Lake's solar PV projects generate enough electricity a year to power up to 1,200...

  4. SJ Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: SJ Solar Place: San Jose, California Zip: 95131 Sector: Solar Product: Cell design firm for concentrated solar References: SJ Solar1 This article is a stub. You...

  5. APOLO Solar | Open Energy Information

    Open Energy Info (EERE)

    APOLO Solar Jump to: navigation, search Name: APOLO Solar Address: Paseo de la Castellana, 164-166 1 Place: Madrid, Spain Sector: Solar Product: PV, solar thermal Phone Number:...

  6. Hope Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Hope Solar Address: No.6-8 Hope Road Taihu Town Tongzhou Dist Place: Beijing, China Sector: Solar Product: Solar cells and power systems...

  7. Solar Dynamics | Open Energy Information

    Open Energy Info (EERE)

    Dynamics Jump to: navigation, search Name: Solar Dynamics Place: Ottumwa, Iowa Zip: IA 52501 Sector: Solar Product: Solar Dynamics is a US-based solar powered attic roof vents...

  8. Capital Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Capital Solar Place: Lecce, Italy Sector: Solar Product: Lecce-based solar project developer. Coordinates: 40.357955, 18.16801 Show Map...

  9. ISI Solar | Open Energy Information

    Open Energy Info (EERE)

    ISI Solar Jump to: navigation, search Name: ISI Solar Place: New City, New York Zip: 10956 Sector: Solar Product: US-based company that designs and installs solar power systems for...

  10. Solar Success Story at Moanalua Terrace

    SciTech Connect (OSTI)

    Not Available

    1999-03-01

    Solar systems prove to be the environmentally and economically sound choice for heating water in U.S. Navy housing at Moanalua Terrace in Pearl Harbor, Hawaii. Hawaii is a perfect environment for solar water heating,'' according to Alan Ikeda, a Housing Management Specialist with the Pacific Naval Facility Engineering Command Housing Department in Pearl Harbor, Hawaii. ''The sun shines most of the time, we don't have to worry about freezing, the state offers a 35% solar tax credit, and our local utility supports the purchase and installation of solar systems with generous rebates.'' The Hawaiian Electric Company's (HECO's) $1,500 per unit rebate for solar water heaters installed on new construction helped persuade the Navy to take advantage of Hawaii's solar resource and install solar water heaters on family housing units. At Moanalua Terrace, the Navy had demolished 752 units of family housing, which they are rebuilding in four phases. Designers decided to use the opportunity to give the solar systems a try. When the 100 homes in Phase I were built, money was not available for solar water heaters. However, Ikeda subsequently secured a $130,000 grant from the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) to retrofit the Phase I homes with solar systems. In retrofit applications, HECO rebates $800 per unit ($80,000 total) on approved equipment, and Pearl Harbor Family Housing will pay the difference of the estimated $340,000 total cost, or about $130,000. The 136 units built during Phase II of the Moanalua Terrace project included solar systems in their specifications, so the Navy was able to take advantage of the $1,500 per system HECO rebate for approved solar water heaters in new construction. The Navy chose direct (open-loop) active systems that circulate potable water through flat-plate collectors coated with a black chrome selective surface. Each system consists of a 4-foot by 8-foot (1.2-m by 2.4-m) collector made by American Energy Technologies, Ltd., and an 80-gallon (302-liter) Rheem tank containing an electric backup element.

  11. REAP Anchorage Solar Tour

    Broader source: Energy.gov [DOE]

    The Alaska Center for Appropriate Technology has partnered with the American Solar Energy Society to share how solar energy is being used and developed in Alaska communities. Tours take place in...

  12. CT Solar Loan

    Broader source: Energy.gov [DOE]

    The Clean Energy Finance and Investment Authority is offering a pilot loan program, CT Solar Loan, to provide homeowners with 15-year loans for solar PV equipment. The loans are administered...

  13. CT Solar Lease

    Broader source: Energy.gov [DOE]

    CT Solar Lease allows homeowners to lease a photovoltaic (PV) or solar thermal system, with fixed monthly payments, for a term of 20 years, at no upfront down payment.* This program, which takes...

  14. Solar Resource Assessment

    SciTech Connect (OSTI)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  15. Solar Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    For both residential and non-residential systems, the exemption applies to solar-energy systems that utilize solar radiation to produce energy designed to provide heating, cooling, hot water and/or...

  16. Solar Property Tax Exemption

    Broader source: Energy.gov [DOE]

    In Missouri, solar energy systems not held for resale are exempt from state, local, and county property taxes. As enacted in July 2013, the law does not define solar energy systems.

  17. Solar Equipment Certification Requirement

    Broader source: Energy.gov [DOE]

    All active solar space-heating and water-heating systems that are sold, offered for sale, or installed on residential and commercial buildings in Minnesota must meet Solar Rating and Certification...

  18. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  19. Solar Contractor Licensing

    Broader source: Energy.gov [DOE]

    Until 1994, Florida offered limited specialty licenses for residential solar hot water and pool heating, as well a general solar contractor's license. These specialty licenses have not been issued...

  20. Solar Construction Permitting Standards

    Broader source: Energy.gov [DOE]

    Owners of solar photovoltaic (PV) systems and solar water heating systems in Colorado are required to obtain a building permit before their systems may be installed. Permits are handled at the l...

  1. Solar 2015 Conference

    Broader source: Energy.gov [DOE]

    The Solar 2015 Conference is a three-day conference where attendees can share sustainable energy ideas and network with other clean energy professionals who are driving solar change and industry innovation.

  2. Alaska Solar Energy Workshop

    Broader source: Energy.gov [DOE]

    The Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices, performance of systems in the arctic, project development and financing, and lessons learned about solar energy.

  3. Solar 2015 Conference

    Broader source: Energy.gov [DOE]

    The American Solar Energy Society is hosting a three-day conference where attendees can share sustainable energy ideas and network with other clean energy professionals who are driving solar change...

  4. Solar Market Pathways

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of...

  5. Anchorage Solar Tour

    Broader source: Energy.gov [DOE]

    The Alaska Center for Appropriate Technology has partnered with the American Solar Energy Society to share how solar energy is being used and developed in Alaska communities. Tours take place in Fairbanks, Mat Su, Kenai, and Anchorage.

  6. Mass Solar Loan Program

    Broader source: Energy.gov [DOE]

    Massachusetts offers fixed low-interest loans to residents purchasing solar photovoltaic (PV) systems. One purpose of this program is to provide more opportunity for residents to own solar PV...

  7. Solar & Wind Equipment Certification

    Broader source: Energy.gov [DOE]

    With the exception of solar energy systems designed or installed by the final owner, systems sold or installed in Arizona must be installed by licensed solar contractors and must comply with any...

  8. LADWP- Solar Incentive Program

    Broader source: Energy.gov [DOE]

    The Los Angeles Department of Water and Power's (LADWP) Solar Incentive Program began in 2000, with a funding level of $150 million. The California Solar Initiative, created in 2007 upon the...

  9. Solar Advantage Plus Program

    Broader source: Energy.gov [DOE]

    DC District Department of Environment (DDOE) offers Solar Advantage Plus program, which fully subsidizes the cost of installation of solar PV system for eligible low-income residents in DC. The...

  10. Solar Permitting Law

    Broader source: Energy.gov [DOE]

    This legislation also addressed permitting fees for solar systems.  Counties and cities may not charge permit fees for solar permit applications specifically, but they can charge building permit ...

  11. Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Solar EERE plays a key role in advancing America's booming solar industry, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's booming solar industry, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation

  12. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, ... to record the following data: Water temperature before: ...

  13. Wisdom Way Solar Village

    SciTech Connect (OSTI)

    2009-03-10

    This article gives an overview of Wisdom Way Village, a community of affordable, sustainable solar homes in Greenfield, MA.

  14. Final Technical Report Advanced Solar Resource Modeling and Analysis.

    SciTech Connect (OSTI)

    Hansen, Clifford

    2015-12-01

    The SunShot Initiative coordinates research, development, demonstration, and deployment activities aimed at dramatically reducing the total installed cost of solar power. The SunShot Initiative focuses on removing critical technical and non-technical barriers to installing and integrating solar energy into the electricity grid. Uncertainty in projected power and energy production from solar power systems contributes to these barriers by increasing financial risks to photovoltaic (PV) deployment and by exacerbating the technical challenges to integration of solar power on the electricity grid.

  15. Consumer Guide for Solar

    Broader source: Energy.gov [DOE]

    MARC’s Consumer Guide to Solar provides answers to frequently asked questions, as well as guidance on how to get started with solar energy. The objective in creating this resource was to provide clear information to consumers in the Kansas City region who are interested in installing solar on their home or business.

  16. Solar Policy Environment: Milwaukee

    Broader source: Energy.gov [DOE]

    The City of Milwaukee’s SAC Initiative, Milwaukee Shines, works to reduce informational, economic and procedural barriers to the widespread adoption of solar energy systems. While the City of Milwaukee and its partners have demonstrated commitment and experience in implementing solar technologies, Milwaukee Shines aims to enhance these efforts and make solar a viable alternative throughout the region.

  17. Conservation and solar guidelines

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    Guidelines are given for selecting R-values and infiltration levels, and determining the size of the solar collection area for passive solar buildings. The guidelines are based on balancing the incremental cost/benefit of conservation and passive solar strategies. Tables are given for 90 cities in the US and the results are also displayed on maps. An example is included.

  18. Cool Earth Solar

    ScienceCinema (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  19. Solar Market Pathways

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of approaches to develop actionable strategic plans to expand solar electricity use for residential, community, and commercial properties.

  20. Solar Market Pathways Website

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of approaches to develop actionable strategic plans to expand solar electricity use for residential, community, and commercial properties.

  1. Solar Policy Environment: Tucson

    Broader source: Energy.gov [DOE]

    The Tucson Solar Initiative seeks to institutionalize the value of nine years of solar energy development experience, secure the promise of renewable energy investment funds, facilitate the installation of a significant volume of installations in the community and establish a mechanism for sustainable solar integration for the future.

  2. Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)

    SciTech Connect (OSTI)

    Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

    2010-09-01

    As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

  3. SunShot Prize: The Race to 7-Day Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs » SunShot Prize: The Race to 7-Day Solar SunShot Prize: The Race to 7-Day Solar SunShot Prize: The Race to 7-Day Solar Sponsored by the U.S. Department of Energy SunShot Initiative, the SunShot Prize: Race to 7-Day Solar aims to motivate local governments, communities, solar companies and electric utilities to collaborate towards improving the "going solar" experience from permit to plug-in for all Americans. This competition offers a total of $10 million in cash awards to

  4. Breakout Session: Solar as a Base Load Power Source | Department of Energy

    Office of Environmental Management (EM)

    Pitch for Solar Breakout Session: Pitch for Solar May 21, 2014 5:15PM to 7:30PM PDT San Simeon A & B As the hardware costs of solar have decreased significantly over the last decade, the non-hardware "soft costs" of solar - like permitting, installation, financing, and grid integration, among others - remain a major barrier to greater solar deployment in the U.S. and make up an increasingly larger fraction of the total cost of a solar energy system. SunShot invites big thinkers,

  5. New Jersey Solar Power LLC NJ Solar Power | Open Energy Information

    Open Energy Info (EERE)

    Solar Power LLC NJ Solar Power Jump to: navigation, search Name: New Jersey Solar Power LLC (NJ Solar Power) Place: New Jersey Sector: Solar Product: A photovoltaic engineering...

  6. Solar Mapping Resources

    Broader source: Energy.gov [DOE]

    Choosing solar energy is a big investment. In order to help consumers quantify the potential benefits, national laboratories and private companies have developed a number of tools to forecast their solar futures. Satellite maps, irradiance data, and real-time bids from installers have been combined to assist customers in understanding the potential costs and benefits of solar with just the click of a button. The examples below help consumers start the process of choosing solar by demonstrating the solar potential of their homes or businesses.

  7. Solar radiation absorbing material

    DOE Patents [OSTI]

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  8. Daily temperature and precipitation data for 223 USSR Stations

    SciTech Connect (OSTI)

    Razuvaev, V.N.; Apasova, E.G.; Martuganov, R.A.; Vose, R.S.; Steurer, P.M.

    1993-11-01

    On- May 23, 1972, the United States and the USSR established a bilateral initiative known as the Agreement on Protection of the Environment. Given recent interest in possible greenhouse gas-induced climate change, Working Group VIII (Influence of Environmental Changes on Climate) has become particularly useful to the scientific communities of both nations. Among its many achievements, Working Group VIII has been instrumental in the exchange of climatological information between the principal climate data centers of each country [i.e., the National Climatic Data Center (NCDC) in Asheville, North Carolina, and the Research Institute of Hydrometeorological Information in Obninsk, Russia]. Considering the relative lack of climate records previously available for the USSR, data obtained via this bilateral exchange are particularly valuable to researchers outside the former Soviet Union. To expedite the dissemination of these data, NOAA`s Climate and Global Change Program funded the Carbon Dioxide Information Analysis Center (CDIAC) and NCDC to distribute one of the more useful archives acquired through this exchange: a 223-station daily data set covering the period 1881-1989. This data set contains: (1) daily mean, minimum, and maximum temperature data; (2) daily precipitation data; (3) station inventory information (WMO No., name, coordinates, and elevation); (4) station history information (station relocation and rain gauge replacement dates); and (5) quality assurance information (i.e., flag codes that were assigned as a result of various data checks). The data set is available, free of charge, as a Numeric Data Package (NDP) from CDIAC. The NDP consists of 18 data files and a printed document which describes both the data files and the 223-station network in detail.

  9. CATEGORY Total Procurement Total Small Business Small Disadvantaged

    National Nuclear Security Administration (NNSA)

    CATEGORY Total Procurement Total Small Business Small Disadvantaged Business Woman Owned Small Business HubZone Small Business Veteran-Owned Small Business Service Disabled Veteran Owned Small Business FY 2013 Dollars Accomplished $1,049,087,940 $562,676,028 $136,485,766 $106,515,229 $12,080,258 $63,473,852 $28,080,960 FY 2013 % Accomplishment 54.40% 13.00% 10.20% 1.20% 6.60% 2.70% FY 2014 Dollars Accomplished $868,961,755 $443,711,175 $92,478,522 $88,633,031 $29,867,820 $43,719,452 $26,826,374

  10. LONG-TERM PERIODICITY VARIATIONS OF THE SOLAR RADIUS

    SciTech Connect (OSTI)

    Qu, Z. N.; Xie, J. L.

    2013-01-01

    In order to study the long-term periodicity variations of the solar radius, daily solar radius data from 1978 February to 2000 September at the Calern Observatory are used. Continuous observations of the solar radius are difficult due to the weather, seasonal effects, and instrument characteristics. Thus, to analyze these data, we first use the Dixon criterion to reject suspect values, then we measure the cross-correlation between the solar radius and sunspot numbers. The result indicates that the solar radius is in complete antiphase with the sunspot numbers and shows lead times of 74 months relative to the sunspot numbers. The Lomb-Scargle and date compensated discrete Fourier transform methods are also used to investigate the periodicity of the solar radius. Both methods yield similar significance periodicities around {approx}1 yr, {approx}2.6 yr, {approx}3.6 yr, and {approx}11 yr. Possible mechanisms for these periods are discussed. The possible physical cause of the {approx}11 yr period is the cyclic variation of the magnetic pressure of the concentrated flux tubes at the bottom of the solar convection zone.

  11. NREL: Solar Research - Potential of Perovskite Solar Cells Featured in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Today Potential of Perovskite Solar Cells Featured in Solar Today February 11, 2016 Familiar with perovskite solar cells? If not, you'll probably hear more about them soon. Perovskites are a family of materials receiving considerable attention by solar cell researchers due to the rapid rise of solar conversion efficiencies, increasing from about 4% to almost 22% in just six years. In an interview published in Solar Today (winter 2015 edition), Dr. Jao van de Lagemaat, director of the

  12. Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity | Department of Energy Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Funding Opportunity Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Funding Opportunity The Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) program is helping utilities develop adaptable and replicable practices, long-term strategic plans, and technical solutions to sustain reliable operations with large proportions of solar

  13. Concentrating Solar Power Projects | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects SolarPACES Snapshot SolarPACES, an international program of the International Energy Agency, furthers collaborative development, testing, and marketing of concentrating solar power plants. Activities include testing large-scale systems and developing advanced technologies, components, instrumentation, and analysis techniques. Three ongoing Tasks are Concentrating Solar Electric Power Systems, Solar Chemistry Research, and Solar Technology and Applications. Founded in 1977, SolarPACES

  14. Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation

    SciTech Connect (OSTI)

    Shabani, Bahman; Andrews, John; Watkins, Simon

    2010-01-15

    A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

  15. Progress in solar engineering

    SciTech Connect (OSTI)

    Yogi Goswami, D.

    1987-01-01

    This book presents reviews of various areas of solar energy technology, including wind energy technology and ocean thermal energy conversion (OTEC). It also identifies and suggests needs and future directions of research and development. The subjects covered in this book include solar thermal power technology, solar thermal storage, solar ponds, industrial process heat, solar water heating, active and passive solar cooling methods, low-cost collector development, photovoltaic research and applications, wind energy technology, and OTEC. Also covered are the status of the technology, basic and applied research, design and analysis methods, and performance and operational experiences of various systems. The book will thus be helpful as a review of various solar, wind, and OTEC technologies.

  16. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  17. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  18. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  19. Portable solar heater structure

    SciTech Connect (OSTI)

    Holley, D.; Holley, D.E.

    1981-09-08

    Portable solar heater structure is described. A substantially rectangular frame has a back with openings therethrough for permitting air to be drawn into the solar heater. A layer of insulating materials is in contact with the back. A plurality of cupshaped solar collectors open toward the front of the solar heater structure are positioned adjacent the insulating material. A cover is over the front of the solar heater having openings therein adjacent the top thereof through which air heated by the solar heater is passed. A passage is between the openings in the back and cover of the solar heater through which relatively cool air is drawn through the openings in the back over the collectors to be heated for subsequent withdrawal through the openings in the cover.

  20. Solar Background Document 5 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Solar Background Document 5 Graph illustrating Chinese Development Bank financing to Chinese solar companies. PDF icon Solar Background Document 5.pdf More Documents & Publications Solar Background Document 7 National Solar Jobs Census 2014 Solar Background Document 4

  1. Solar Thermoelectric Energy Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermoelectric Energy Conversion Solar Thermoelectric Energy Conversion Efficiencies of different types of solar thermoelectric generators were predicted using theoretical ...

  2. Renewable Energy Ready Home Solar Photovoltaic Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide, ...

  3. Planning for Solar Projects on Federal Sites

    Broader source: Energy.gov [DOE]

    Planning for the federal site solar project can begin after the solar solar pre-screening is complete.

  4. Final Test and Evaluation Results from the Solar Two Project

    SciTech Connect (OSTI)

    BRADSHAW, ROBERT W.; DAWSON, DANIEL B.; DE LA ROSA, WILFREDO; GILBERT, ROCKWELL; GOODS, STEVEN H.; HALE, MARY JANE; JACOBS, PETER; JONES, SCOTT A.; KOLB, GREGORY J.; PACHECO, JAMES E.; PRAIRIE, MICHAEL R.; REILLY, HUGH E.; SHOWALTER, STEVEN K.; VANT-HULL, LORIN L.

    2002-01-01

    Solar Two was a collaborative, cost-shared project between 11 U. S. industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, comprised 1926 heliostats, a receiver, a thermal storage system, a steam generation system, and steam-turbine power block. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10-MWe (megawatt electric), conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the project was to validate the technical characteristics of a molten salt power tower. This report describes the significant results from the test and evaluation activities, the operating experience of each major system, and overall plant performance. Tests were conducted to measure the power output (MW) of the each major system, the efficiencies of the heliostat, receiver, thermal storage, and electric power generation systems and the daily energy collected, daily thermal-to-electric conversion, and daily parasitic energy consumption. Also included are detailed test and evaluation reports.

  5. Solar Energy International Solar PV 101 Training

    Broader source: Energy.gov [DOE]

    Solar Energy International is offering a five-day training that provides an overview of the three basic PV system applications, primarily focusing on grid-direct systems. The goal of the course is...

  6. California Solar Initiative- Solar Thermal Program

    Broader source: Energy.gov [DOE]

    '''''Note: This program was modified by AB 2249, signed in September 2012. The bill allows for non-residential solar pool heating to qualify for incentives, and requires program administrators to...

  7. Havasu Solar Electric | Open Energy Information

    Open Energy Info (EERE)

    Havasu Solar Electric Jump to: navigation, search Name: Havasu Solar Electric Place: Arizona Zip: 86401 Sector: Solar Product: Arizona-based electric contractors in the solar...

  8. Acro Solar Lasers | Open Energy Information

    Open Energy Info (EERE)

    Acro Solar Lasers Place: El Paso, Texas Zip: 79936 Sector: Solar Product: Makes solar water heating devices based on parabolic dish concentrators. References: Acro Solar...

  9. SolarPrint | Open Energy Information

    Open Energy Info (EERE)

    search Name: SolarPrint Place: Dublin, Ireland Sector: Solar Product: Irish solar cell manufacturer. The company developed DSSC technology. References: SolarPrint1 This...

  10. Residential Solar Energy Property Tax Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Property Tax Exemption Residential Solar Energy Property Tax Exemption < Back Eligibility Residential Savings Category Solar Water Heat Solar Space Heat Solar Photovoltaics...

  11. Solar Mapping Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Mapping Resources Solar Mapping Resources Solar Mapping Resources Choosing solar energy is a big investment. In order to help consumers quantify the potential benefits,...

  12. Nobility Solar Projects | Open Energy Information

    Open Energy Info (EERE)

    Solar Projects Jump to: navigation, search Name: Nobility Solar Projects Place: Brno, Czech Republic Zip: 602 00 Sector: Solar Product: A solar equipment distributer and...

  13. Act Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    Solar Inc Jump to: navigation, search Name: Act Solar Inc. Place: Santa Clara, California Sector: Solar Product: California-based solar micro-inverter manufacturer and power...

  14. Crystal Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    Solar Inc Jump to: navigation, search Name: Crystal Solar Inc. Place: Santa Clara, California Zip: 94054 Sector: Solar Product: California-based developer of silicon solar cells....

  15. Shang Yang Solar | Open Energy Information

    Open Energy Info (EERE)

    Shang Yang Solar Jump to: navigation, search Name: Shang Yang Solar Place: Taiwan Sector: Solar Product: A subsidiary set up by CMC Magnetics to produce solar modules. References:...

  16. SolarHybrid AG | Open Energy Information

    Open Energy Info (EERE)

    SolarHybrid AG Jump to: navigation, search Name: SolarHybrid AG Place: Germany Sector: Solar Product: Germany-based solar thermal hybrid product manufacturer References:...

  17. Apex BP Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Apex BP Solar Place: St Mathieu de Treviers, France Zip: 34270 Sector: Solar Product: Regional subsidiary of BP Solar. References: Apex BP...

  18. MAN Solar Millennium | Open Energy Information

    Open Energy Info (EERE)

    Solar Millennium Jump to: navigation, search Name: MAN Solar Millennium Place: Essen, Germany Zip: 45128 Sector: Solar Product: JV between MAN Ferrostaal and Solar Millennium to...

  19. Sandia Energy - Concentrating Solar Power Technical Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Technical Management Position Home Renewable Energy Energy Facilities News Concentrating Solar Power Solar Job Listing National Solar Thermal Test...

  20. Beijing Sijimicoe Solar Energy | Open Energy Information

    Open Energy Info (EERE)

    Sijimicoe Solar Energy Jump to: navigation, search Name: Beijing Sijimicoe Solar Energy Place: Beijing, China Zip: 102200 Sector: Solar Product: Beijing-based solar water heating...