National Library of Energy BETA

Sample records for daily total solar

  1. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers

    SciTech Connect (OSTI)

    Myers, D.; Wilcox, S. M.

    2009-01-01

    We evaluated the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer. One minute averages of 3-second data for 12 months from the test instrument measurements were compared with the computed reference data set. Combined uncertainty in the computed reference irradiance is 1.8% {+-} 0.5%. Total uncertainty in the pyranometer comparisons is {+-}2.5%. We show mean percent difference between reference global irradiance and test pyranometer 1 minute data as a function of zenith angle, and percent differences between daily totals for the reference and test irradiances as a function of day number. We offer no explicit conclusion about the performance of instrument models, as a general array of applications with a wide range of instrumentation and accuracy requirements could be addressed with any of the radiometers.

  2. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.; Wilcox, S. M.

    2009-03-01

    This report evaluates the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer.

  3. Daylighter Daily Solar Roof Light | Open Energy Information

    Open Energy Info (EERE)

    Daylighter Daily Solar Roof Light Jump to: navigation, search Name: Daylighter Daily Solar Roof Light Address: 1991 Crocker Road, Suite 600 Place: Cleveland, Ohio Zip: 44145...

  4. Montana Total Maximum Daily Load Development Projects Wiki |...

    Open Energy Info (EERE)

    Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Total Maximum Daily Load Development Projects Wiki Abstract Provides information on...

  5. ARM: GRAMS: data from the total solar broadband radiometer (TBBR...

    Office of Scientific and Technical Information (OSTI)

    solar broadband radiometer (TBBR) Title: ARM: GRAMS: data from the total solar broadband radiometer (TBBR) GRAMS: data from the total solar broadband radiometer (TBBR) Authors: ...

  6. ARM: GRAMS: calibration information for the total solar broadband...

    Office of Scientific and Technical Information (OSTI)

    solar broadband radiometer (TBBR) Title: ARM: GRAMS: calibration information for the total solar broadband radiometer (TBBR) GRAMS: calibration information for the total solar ...

  7. Study of global daily solar radiation and its relation to sunshine duration in Bahrain

    SciTech Connect (OSTI)

    Al-Sadah, F.H.; Ragab, F.M. )

    1991-01-01

    The regression coefficients a and b of Angstrom type correlation for the monthly daily average global solar radiation have been determined. The two constants a and b have been derived for different months during the period 1983-1987. The clearness index (H/H{sub 0}) based on predicted and measured values of global daily solar radiation is presented for different seasons of the year. The study depicts the various astronomical and meteorological parameters affecting the global radiation in Bahrain.

  8. Properties of solar gravity mode signals in total irradiance observations

    SciTech Connect (OSTI)

    Kroll, R.J.; Chen, J.; Hill, H.A.

    1988-01-01

    Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs.

  9. Estimation of total cloud cover from solar radiation observations at Lake Rotorua, New Zealand

    SciTech Connect (OSTI)

    Luo, Liancong; Hamilton, David; Han, Boping

    2010-03-15

    The DYRESM-CAEDYM model is a valuable tool for simulating water temperature for biochemical studies in aquatic ecosystem. The model requires inputs of surface short-wave radiation and long-wave radiation or total cloud cover fraction (TC). Long-wave radiation is often not measured directly so a method to determine TC from commonly measured short-wave solar irradiance (E{sub 0}) and theoretical short-wave solar irradiance under a clear sky (E{sub c}) has broad application. A more than 17-year (15 November 1991 to 20 February 2009) hourly solar irradiance data set was used to estimate the peak solar irradiance for each ordinal date over one year, which was assumed to be representative of solar irradiance in the absence of cloud. Comparison between these daily observed values and the modelled clear-sky solar radiation over one year was in close agreement (Pearson correlation coefficient, r = 0.995 and root mean squared error, RMSE = 12.54 W m{sup -2}). The downloaded hourly cloudiness measurements from 15 November 1991 to 20 February 2009 was used to calculate the daily values for this period and then the calculated daily values over the 17 years were used to calculate the average values for each ordinal date over one year. A regression equation between (1 - E{sub 0}/E{sub c}) and TC produced a correlation coefficient value of 0.99 (p > 0.01, n = 71). The validation of this cloud cover estimation model was conducted with observed short-wave solar radiation and TC at two sites. Values of TC derived from the model at the Lake Rotorua site gave a reasonable prediction of the observed values (RMSE = 0.10, r = 0.86, p > 0.01, n = 61). The model was also tested at Queenstown (South Island of New Zealand) and it provided satisfactory results compared to the measurements (RMSE = 0.16, r = 0.67, p > 0.01, n = 61). Therefore the model's good performance and broad applicability will contribute to the DYRESM-CAEDYM accuracy of water temperature simulation when long-wave radiation

  10. Measurements and modeling of total solar irradiance in X-class solar flares

    SciTech Connect (OSTI)

    Moore, Christopher Samuel; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-05-20

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  11. Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions

    SciTech Connect (OSTI)

    Zambolin, E.; Del Col, D.

    2010-08-15

    New comparative tests on two different types of solar collectors are presented in this paper. A standard glazed flat plate collector and an evacuated tube collector are installed in parallel and tested at the same working conditions; the evacuated collector is a direct flow through type with external compound parabolic concentrator (CPC) reflectors. Efficiency in steady-state and quasi-dynamic conditions is measured following the standard and it is compared with the input/output curves measured for the whole day. The first purpose of the present work is the comparison of results in steady-state and quasi-dynamic test methods both for flat plate and evacuated tube collectors. Besides this, the objective is to characterize and to compare the daily energy performance of these two types of collectors. An effective mean for describing and analyzing the daily performance is the so called input/output diagram, in which the collected solar energy is plotted against the daily incident solar radiation. Test runs have been performed in several conditions to reproduce different conventional uses (hot water, space heating, solar cooling). Results are also presented in terms of daily efficiency versus daily average reduced temperature difference: this allows to represent the comparative characteristics of the two collectors when operating under variable conditions, especially with wide range of incidence angles. (author)

  12. NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost December 2, 2013 Two detailed reports from the Energy Department's National Renewable Energy Laboratory (NREL) find that solar financing and other non-hardware costs - often referred to as "soft costs" - now comprise up to 64% of the total price of residential solar energy systems, reflecting how soft costs are becoming an increasingly larger fraction of the cost of installing solar.

  13. Solar Basics for Homebuilders: Reducing the Total Cost of Ownership

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar photovoltaic (PV) energy systems are new in many residential real estate markets, and a growing number of homebuilders are integrating PV into new homes to attract customers and increase...

  14. Prisms with total internal reflection as solar reflectors

    DOE Patents [OSTI]

    Rabl, Arnulf; Rabl, Veronika

    1978-01-01

    An improved reflective wall for radiant energy collection and concentration devices is provided. The wall is comprised of a plurality of prisms whose frontal faces are adjacent and which reflect the desired radiation by total internal reflection.

  15. SPECIAL SEMINAR - The NOTTE experiment, or how to become a Total Solar Eclipse chaser

    ScienceCinema (OSTI)

    None

    2011-10-06

    The NOTTE experiment (Neutrino Oscillations with Telescope during Total Eclipse) aims at searching for visible photons emitted through a possible radiative decay of solar neutrinos. The experiment and the expeditions organized by a group of physicists and astrophysicists from INFN and INAF Bologna hunting for Total Solar Eclipses from 1998 to 2006 wil be described. The results of observations performed during total solar eclipse expeditions in 2001 (Zambia) and 2006 (Sahara desert, Libya) are presented and a beautiful photo gallery will be shown. Other peculiar observations that can be made during a solar eclipse are also illustrated. The seminar will be followed by a brief presentation of future camps for solar eclipse chasers and scientists organized in 2008 in Russia, Kazakhstan, China and Mongolia, in 2009 in Shanghai and on the Easter Island in 2010.

  16. SPECIAL SEMINAR - The NOTTE experiment, or how to become a Total Solar Eclipse chaser

    SciTech Connect (OSTI)

    2011-02-08

    The NOTTE experiment (Neutrino Oscillations with Telescope during Total Eclipse) aims at searching for visible photons emitted through a possible radiative decay of solar neutrinos. The experiment and the expeditions organized by a group of physicists and astrophysicists from INFN and INAF Bologna hunting for Total Solar Eclipses from 1998 to 2006 wil be described. The results of observations performed during total solar eclipse expeditions in 2001 (Zambia) and 2006 (Sahara desert, Libya) are presented and a beautiful photo gallery will be shown. Other peculiar observations that can be made during a solar eclipse are also illustrated. The seminar will be followed by a brief presentation of future camps for solar eclipse chasers and scientists organized in 2008 in Russia, Kazakhstan, China and Mongolia, in 2009 in Shanghai and on the Easter Island in 2010.

  17. Toward the Development of Multi-Year Total and Special Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Multi-Year Total and Special Solar Radiation Budgets at the Three ARM Locales Z. Li ... has been collected at Atmospheric Radiation Measurement (ARM) locales around the globe. ...

  18. Total

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other ...

  19. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  20. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  1. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  2. Narrowband filter radiometer for ground-based measurements of global ultraviolet solar irradiance and total ozone

    SciTech Connect (OSTI)

    Petkov, Boyan; Vitale, Vito; Tomasi, Claudio; Bonafe, Ubaldo; Scaglione, Salvatore; Flori, Daniele; Santaguida, Riccardo; Gausa, Michael; Hansen, Georg; Colombo, Tiziano

    2006-06-20

    The ultraviolet narrowband filter radiometer (UV-RAD) designed by the authors to take ground-based measurements of UV solar irradiance, total ozone, and biological dose rate is described, together with the main characteristics of the seven blocked filters mounted on it, all of which have full widths at half maxima that range 0.67 to 0.98 nm. We have analyzed the causes of cosine response and calibration errors carefully to define the corresponding correction terms, paying particular attention to those that are due to the spectral displacements of the filter transmittance peaks from the integer wavelength values. The influence of the ozone profile on the retrieved ozone at large solar zenith angles has also been examined by means of field measurements. The opportunity of carrying out nearly monochromatic irradiance measurements offered by the UV-RAD allowed us to improve the procedure usually followed to reconstruct the solar spectrum at the surface by fitting the computed results, using radiative transfer models with field measurements of irradiance. Two long-term comparison campaigns took place, showing that a mean discrepancy of+0.3% exists between the UV-RAD total ozone values and those given by the Brewer no. 63 spectroradiometer and that mean differences of+0.3% and-0.9% exist between the erythemal dose rates determined with the UV-RAD and those obtained with the Brewer no. 63 and the Brewer no. 104 spectroradiometers, respectively.

  3. An estimation of the total atmospheric pollution in the city of Thessaloniki using solar energy data

    SciTech Connect (OSTI)

    Sahsamanoglou, H.S.; Makrogiannis, T.I.; Meletis, H. )

    1991-01-01

    The atmospheric mass over the city of Thessaloniki is characterized by a generally increased pollution due to solid particles in the lower atmosphere. This conclusion has been reached after a comparison between values of total solar radiation, taken in the city center during clear sky days, and values predicted by the model of D.F. Heermann et al. for corresponding days. Pollution varies between a minimum value which is constant over the year and independent of weather situations (pollution background), and a maximum value. The minimum pollution causes an attenuation of solar radiation about 15%, compared to the values given by the above model. The atmospheric pollution in the city, during a usual day with clear sky, causes an attenuation varying between 10% in the summer and 20% in the winter, when compared to the constant background of the pollution. During the most unfavorable days with clear sky, the percentages are 30% in the summer and 40% in the winter.

  4. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  5. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  6. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  7. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  8. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  9. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  10. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  11. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  12. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  13. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  14. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Solar Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Data 10-Kilometer This data provides monthly average and annual average daily total solar resource averaged over surface cells of 0.1 degrees in both latitude and longitude,...

  15. Solar Radiation Map of the U.S. - Annual (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2009-01-18

    Maps that provide monthly average daily total solar resource information on grid cells of approximately 40 km by 40 km in size.

  16. Exploring the prominence-corona connection and its expansion into the outer corona using total solar eclipse observations

    SciTech Connect (OSTI)

    Habbal, Shadia Rifai; Morgan, Huw; Druckmüller, Miloslav

    2014-10-01

    Prominences constitute the most complex magnetic structures in the solar corona. The ubiquitous presence of their seemingly confined dense and cool plasma in an otherwise million-degree environment remains a puzzle. Using a decade of white light total solar eclipse observations, we show how these images reveal an intricate relationship between prominences and coronal structures both in their immediate vicinity, known as coronal cavities, and in the extended corona out to several solar radii. Observations of suspended prominences and twisted helical structures spanning several solar radii are central to these findings. The different manifestations of the prominence-corona interface that emerge from this study underscore the fundamental role played by prominences in defining and controlling the complex expansion and dynamic behavior of the solar magnetic field in the neighborhood of magnetic polarity reversal regions. This study suggests that the unraveling of prominences and the outward expansion of the helical twisted field lines linked to them could be the solar origin of twisted magnetic flux ropes detected in interplanetary space, and of the mechanism by which the Sun sheds its magnetic helicity. This work also underscores the likely role of the prominence-corona interface as a source of the slow solar wind.

  17. Solar and Photovoltaic Data from the University of Oregon Solar Radiation Monitoring Laboratory (UO SRML)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The UO SRML is a regional solar radiation data center whose goal is to provide sound solar resource data for planning, design, deployment, and operation of solar electric facilities in the Pacific Northwest. The laboratory has been in operation since 1975. Solar data includes solar resource maps, cumulative summary data, daily totals, monthly averages, single element profile data, parsed TMY2 data, and select multifilter radiometer data. A data plotting program and other software tools are also provided. Shade analysis information and contour plots showing the effect of tilt and orientation on annual solar electric system perfomance make up a large part of the photovoltaics data.(Specialized Interface)

  18. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  19. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  20. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  1. Bisfuel links - Solar energy news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar energy news http:asulightworks.com" target"blank">ASU Lightworks http:www.sciencedaily.comnewsmatterenergysolarenergy" target"blank">ScienceDaily: Solar Energy ...

  2. solar

    National Nuclear Security Administration (NNSA)

    2%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  3. Measurement of the nue and Total 8B Solar Neutrino Fluxes with theSudbury Neutrino Observatory Phase I Data Set

    SciTech Connect (OSTI)

    Aharmim, B.; Ahmad, Q.R.; Ahmed, S.N.; Allen, R.C.; Andersen,T.C.; Anglin, J.D.; Buehler, G.; Barton, J.C.; Beier, E.W.; Bercovitch,M.; Bergevin, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler, M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Burritt, T.H.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Deng, H.; DiMarco, M.; Doe, P.J.; Doucas, G.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon,N.; Germani, J.V.; Gil, S.; Goldschmidt, A.; Goon, J.T.M.; Graham, K.; Grant, D.R.; Guillian, E.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Henning, R.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime,A.; Howard, C.; Howe, M.A.; Huang, M.; Hykawy, J.G.; Isaac, M.C.P.; Jagam, P.; Jamieson, B.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Kirch, K.; Klein, J.R.; Knox, A.B.; Komar,R.J.; Kormos, L.L.; Kos, M.; Kouzes, R.; Krueger, A.; Kraus, C.; Krauss,C.B.; Kutter, T.; Kyba, C.C.M.; Labranche, H.; Lange, R.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Locke, W.; Luoma, S.; Lyon, J.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald,A.B.; McDonald, D.S.; McFarlane, K.; McGee, S.; McGregor, G.; MeijerDrees, R.; Mes, H.; Mifflin, C.; Miknaitis, K.K.S.; Miller, M.L.; Milton,G.; Moffat, B.A.; Monreal, B.; Moorhead, M.; Morrissette, B.; Nally,C.W.; Neubauer, M.S.; et al.

    2007-02-01

    This article provides the complete description of resultsfrom the Phase I data set of the Sudbury Neutrino Observatory (SNO). ThePhase I data set is based on a 0.65 kt-year exposure of heavy water tothe solar 8B neutrino flux. Included here are details of the SNO physicsand detector model, evaluations of systematic uncertainties, andestimates of backgrounds. Also discussed are SNO's approach tostatistical extraction of the signals from the three neutrino reactions(charged current, neutral current, and elastic scattering) and theresults of a search for a day-night asymmetry in the ?e flux. Under theassumption that the 8B spectrum is undistorted, the measurements fromthis phase yield a solar ?e flux of ?(?e) =1.76+0.05?0.05(stat.)+0.09?0.09 (syst.) x 106 cm?2 s?1, and a non-?ecomponent ?(? mu) = 3.41+0.45?0.45(stat.)+0.48?0.45 (syst.) x 106 cm?2s?1. The sum of these components provides a total flux in excellentagreement with the predictions of Standard Solar Models. The day-nightasymmetry in the ?e flux is found to be Ae = 7.0 +- 4.9 (stat.)+1.3?1.2percent (sys.), when the asymmetry in the total flux is constrained to bezero.

  4. Reconstruction and Prediction of Variations of Total Ozone and Associated Variations of UV-B Solar Radiation for Subarctic Regions Based of Dendrochronologic Data

    SciTech Connect (OSTI)

    Zuev, V.V.; Bondarenko, S.L.

    2005-03-18

    Variations of dendrochronologic parameters, especially annual ring density, significantly reflect the physiological tree response to systematic variations of solar UV-B radiation, taking place on monthly and longer timescales during growing season. Such variations of UV-B radiation are totally governed by variations of total ozone (TO). Thus, in any dendrochronologic signal, especially for coniferous trees, there is also a recorded response to TO variations, characterizing variations of UV-B radiation. Because a monitoring of global TO distribution is regularly performed since 1979 using TOMS satellite instrumentation, there appears a possibility to reconstruct TO behavior in the past practically at any point of dendrochronologic monitoring network. The reconstruction is performed by the method of linear regression, based on significant correlation of annual ring density of coniferous trees and TO for coordinates of denrochronologic signal. The present report considers the Subarctic latitudes, which are characterized by considerable TO variations in the second half of twentieth century.

  5. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  6. Solar absorption cooling plant in Seville

    SciTech Connect (OSTI)

    Bermejo, Pablo; Pino, Francisco Javier; Rosa, Felipe

    2010-08-15

    A solar/gas cooling plant at the Engineering School of Seville (Spain) was tested during the period 2008-2009. The system is composed of a double-effect LiBr + water absorption chiller of 174 kW nominal cooling capacity, powered by: (1) a pressurized hot water flow delivered by mean of a 352 m{sup 2} solar field of a linear concentrating Fresnel collector and (2) a direct-fired natural gas burner. The objective of the project is to indentify design improvements for future plants and to serve as a guideline. We focused our attention on the solar collector size and dirtiness, climatology, piping heat losses, operation control and coupling between solar collector and chiller. The daily average Fresnel collector efficiency was 0.35 with a maximum of 0.4. The absorption chiller operated with a daily average coefficient of performance of 1.1-1.25, where the solar energy represented the 75% of generator's total heat input, and the solar cooling ratio (quotient between useful cooling and insolation incident on the solar field) was 0.44. (author)

  7. Method and global relationship for estimation of transmitted solar energy distribution in passive solar rooms

    SciTech Connect (OSTI)

    Athienitis, A.K.; Stylianou, M. )

    1991-01-01

    Estimation of the distribution of transmitted solar radiation within a room with large windows is required for correct prediction of building thermal performance and for optimal positioning of the thermal storage mass. This article presents a detailed computer method that determines the instantaneous solar radiation transmitted through a window and absorbed by each room interior surface, and a correlation for estimating the fraction of daily total transmitted solar radiation absorbed by the floor for several latitudes, for different shapes of enclosures, and for varying surface solar absorptances. The correlation was developed by fitting an exponential relationship to results obtained from a numerical study of the variation of the following parameters influencing the distribution of solar radiation: latitude, day of year, geometry of enclosure (width-to-depth ratio and window azimuth angle), window-to-floor area ratio, and surface absorptances.

  8. WAPA Daily Energy Accounting Activities

    Energy Science and Technology Software Center (OSTI)

    1990-10-01

    ISA (Interchange, Scheduling, & Accounting) is the interchange scheduling system used by the DOE Western Area Power Administration to perform energy accounting functions associated with the daily activities of the Watertown Operations Office (WOO). The system's primary role is to provide accounting functions for scheduled energy which is exchanged with other power companies and power operating organizations. The system has a secondary role of providing a historical record of all scheduled interchange transactions. The followingmore » major functions are performed by ISA: scheduled energy accounting for received and delivered energy; generation scheduling accounting for both fossil and hydro-electric power plants; metered energy accounting for received and delivered totals; energy accounting for Direct Current (D.C.) Ties; regulation accounting; automatic generation control set calculations; accounting summaries for Basin, Heartland Consumers Power District, and the Missouri Basin Municipal Power Agency; calculation of estimated generation for the Laramie River Station plant; daily and monthly reports; and dual control areas.« less

  9. Category:Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search This is the Solar category. Subcategories This category has the following 2 subcategories, out of 2 total. C Concentrating Solar Power P...

  10. Solar tracking device

    SciTech Connect (OSTI)

    Wyland, R.R.

    1981-01-20

    A solar tracking device having a plurality of reflector banks for reflecting the sun rays onto collector tubes and heating a fluid circulated therethrough. The reflector banks synchronized to follow the sun during the daily and yearly cycle of the earth as the earth orbits around the sun. The device by accurately following the sun provides a more efficient means of collecting solar energy.

  11. Backstage at the Daily Show

    Broader source: Energy.gov [DOE]

    Backstage footage from Secretary Chu's appearance on the Daily Show where he discuses the green room candy dish and possible lighting considerations.

  12. BPA Daily Notice (pbl/products)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Products > Products Daily Notice (surplus power) Transmission Losses Power Products Catalog Wind Smoothing and Intertie Service (Pilot) Firstgov BPA'S DAILY NOTICE Daily Notice...

  13. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  14. NREL: Concentrating Solar Power Research - Advanced Optical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Today, the solar collectors used in concentrating solar power systems account for approximately 50% of the total capital cost of power plants. The solar reflector costs for these ...

  15. Solar For Milwaukee, By Milwaukee | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Installing a solar hot water system at a Milwaukee ... to estimating total cost - when it comes to home solar installations -- it's ... -- including solar panels manufactured by Helios ...

  16. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total Canada 61,078 1% China 3,323,297 57% Germany 154,800 3% Japan 12,593 0% India 47,192 1% South Korea 251,105 4% All Others 2,008,612 34% Total 5,858,677 100% Table 7 . Photovoltaic module import shipments by country, 2014 (peak kilowatts) Note: All Others includes Cambodia, Czech Republic, Hong Kong, Malaysia, Mexico, Netherlands, Philippines, Singapore, Taiwan and Turkey Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic

  17. Solar radiation on variously oriented sloping surfaces

    SciTech Connect (OSTI)

    Gopinathan, K.K. )

    1991-01-01

    Monthly average daily irradiation on surfaces tilted towards the equator and also inclined at various azimuth angles are estimated for two locations in Lesotho and the results are presented. The isotropic model suggested by Liu and Jordan (Trans. of Ashrae, 526, 1962) along with the modified equation of Klein (Solar Energy, 19, 4, 1977) are employed for the estimation purposes. Surface orientations are selected at three inclinations for six different azimuth angles. Conclusions are reached for optimum tilt and orientation for summer, winter and annual collection. Total annual radiation values are computed for all the slopes and orientations.

  18. Analysis of experimental solar radiation data for Rio de Janeiro, Brazil

    SciTech Connect (OSTI)

    Cavalcanti, E.S.C. )

    1991-01-01

    An analysis of measured global solar radiation in Rio de Janeiro (lat = 22{degree} 55{prime}S, long = 43{degree} 12{prime} W, sea level) is presented in the form of hourly means, decadic means, monthly means and percentage frequency distribution. The experimental data corresponds to the period from June 1979 to August 1983. The results are compared with prior predicted values found in the literature. The yearly averaged daily total global solar radiation was 16.71 MJ/m{sup 2} and the average yearly total global solar radiation was 6,099 MJ/m{sup 2}. Furthermore, these results can be used with the f-chart method by architects and heating engineers to determine the long-term thermal performance of solar heating systems.

  19. Solar Thermal Collector Manufacturing Activities - Energy Information...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Solar Thermal Manufacturing Activities Release Date: December 2010 | Next Release Date: ... Year: (PDF) 2009 2008 2007 2006 2005 2004 2003 1993 Go Overview Total shipments26 of solar ...

  20. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 482 0.0% Alaska 81 0.0% Arizona 194,476 3.3% Arkansas 336 0.0% California 3,163,120 53.0% Colorado 47,240 0.8% Connecticut 50,745 0.9% Delaware 6,600 0.1% District of Columbia 751 0.0% Florida 18,593 0.3% Georgia 47,660 0.8% Hawaii 78,329 1.3% Illinois 5,795 0.1% Indiana 37,016 0.6% Iowa 14,281 0.2% Kansas 1,809 0.0% Kentucky 520 0.0% Louisiana 12,147 0.2% Maine 1,296 0.0% Maryland 63,077 1.1% Massachusetts 157,415 2.6% Michigan 4,210 0.1% Minnesota

  1. Solar Circuitry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Circuitry" with the Solar Powered Energy Kit Curriculum: Solar Power- (lightelectromagnetic radiation, electricity, circuitry, efficiency, energy transformation, subatomic ...

  2. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  3. Community Shared Solar with Solarize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Shared Solar with Solarize Community Shared Solar with Solarize

  4. Improved photovoltaic energy output for cloudy conditions with a solar tracking system

    SciTech Connect (OSTI)

    Kelly, Nelson A.; Gibson, Thomas L.

    2009-11-15

    This work describes measurements of the solar irradiance made during cloudy periods in order to improve the amount of solar energy captured during such periods. It is well-known that 2-axis tracking, in which solar modules are pointed at the sun, improves the overall capture of solar energy by a given area of modules by 30-50% versus modules with a fixed tilt. On sunny days the direct sunshine accounts for up to 90% of the total solar energy, with the other 10% from diffuse (scattered) solar energy. However, during overcast conditions nearly all of the solar irradiance is diffuse radiation that is isotropically-distributed over the whole sky. An analysis of our data shows that during overcast conditions, tilting a solar module or sensor away from the zenith reduces the irradiance relative to a horizontal configuration, in which the sensor or module is pointed toward the zenith (horizontal module tilt), and thus receives the highest amount of this isotropically-distributed sky radiation. This observation led to an improved tracking algorithm in which a solar array would track the sun during cloud-free periods using 2-axis tracking, when the solar disk is visible, but go to a horizontal configuration when the sky becomes overcast. During cloudy periods we show that a horizontal module orientation increases the solar energy capture by nearly 50% compared to 2-axis solar tracking during the same period. Improving the harvesting of solar energy on cloudy days is important to using solar energy on a daily basis for fueling fuel-cell electric vehicles or charging extended-range electric vehicles because it improves the energy capture on the days with the lowest hydrogen generation, which in turn reduces the system size and cost. (author)

  5. Energy Assurance Daily | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Assurance Daily Energy Assurance Daily Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems, flows, and markets, it provides highlights of energy issues rather than a comprehensive coverage. Energy Assurance Daily covers: Major energy developments Electricity, petroleum, and natural gas industries Other relevant news Energy prices The Infrastructure

  6. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Labs Contributes to Solar Industry Innovation: A Partnership Story Customers & Partners, News, Partnership, Photovoltaic, Renewable Energy, Solar, Solar Newsletter Sandia ...

  7. U.S. Solar Resource Maps and Tools from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Solar maps provide monthly average daily total solar resource information on grid cells. The insolation values represent the resource available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal to equal to the latitude of the collector location. [Copied from http://www.nrel.gov/gis/solar.html] Several types of solar maps are made available. The U.S. Solar resource maps show the resource potential for energy from photovoltaics and from concentrating solar power (CSP). Both sets of maps are available in low or high resolution. A dynamic map based on version 2 of PVWATTS calculates electrical energy performance estimates for a grid-connected photovoltaic system. The map of U.S. Solar Measurement Station Locations is also dynamic, showing the spatial distribution of measurement stations across the U.S. that are monitored by programs and agencies such as DOE's Atmospheric Radiation Measurement (ARM) Program or NREL's Cooperative Network for Renewable Resource Measurements (CONFRRM). Clicking on a station location will take the user to the website of that station. Finally, static map images providing solar resource information averaged by month are also available.

  8. Solar Means Business: Top U.S. Corporate Solar Users

    Broader source: Energy.gov [DOE]

    Solar energy makes financial sense. That's why business leaders in America's brightest, most competitive companies are increasingly choosing to install solar energy systems at their facilities. For the third year in a row, not only are more businesses choosing solar, but those that have used solar in the past are doing so again and again on rooftops across America. Walmart, Kohl's, Costco, Apple, IKEA, and more have all embraced solar energy. Collectively, the 25 companies with the most solar capacity in the U.S. now have 1,110 systems totaling 569 MW, generating enough electricity to power more than 115,000 homes. And these companies are installing even more.

  9. TENESOL formerly known as TOTAL ENERGIE | Open Energy Information

    Open Energy Info (EERE)

    search Name: TENESOL (formerly known as TOTAL ENERGIE) Place: la Tour de Salvagny, France Zip: 69890 Sector: Solar Product: Makes polycrystalline silicon modules, and PV-based...

  10. Final Report - Efficient Solar Market Partners of Northern California...

    Broader source: Energy.gov (indexed) [DOE]

    solar installations to date (8.4% of California CSI program total as of 842011). ... SunShot Rooftop Challenge Awardees Santa Rosa, California: Solar in Action (Brochure), ...

  11. User:Nlangle/RAPID-Solar-Search | Open Energy Information

    Open Energy Info (EERE)

    RAPID-Solar-Search < User:Nlangle Jump to: navigation, search Total RAPID Pages: 955 Category RAPID & Category Solar: 40 RAPIDSolar RAPIDSolarAir Quality RAPIDSolarCalifornia...

  12. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Total 74 88 Percent of Total Sales Revenue Number of Companies Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers ...

  13. Energy Assurance Daily (EAD): January- March 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

  14. Energy Assurance Daily (EAD): April 2012

    Broader source: Energy.gov [DOE]

    Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

  15. Energy Assurance Daily (EAD): June 2012

    Broader source: Energy.gov [DOE]

    Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

  16. Energy Assurance Daily (EAD): July 2012

    Broader source: Energy.gov [DOE]

    Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

  17. Energy Assurance Daily (EAD): May 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

  18. TWP-ICE Daily Synoptic Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daily Synoptic Overview 16 January - 14 February 2006 Lori Chappel Bureau of Meteorology Weather Overview * 13 January - 2 February 2006 Monsoon across north Australia; - 13-25...

  19. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Solar Energy/Solar Newsletter Solar Newsletter Tara Camacho-Lopez 2016-07-11T20:14:36+00:00

  20. Solar Easements

    Broader source: Energy.gov [DOE]

    New Hampshire's "solar skyspace easement" provisions allow property owners to create solar easements in order to create and preserve a right to unobstructed access to solar energy. Easements remain...

  1. Solar Energy sro | Open Energy Information

    Open Energy Info (EERE)

    developer currently operating 2 PV plants with total capacity of 1.8MW. References: Solar Energy sro1 This article is a stub. You can help OpenEI by expanding it. Solar Energy...

  2. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  3. First Solar Manufacturing Solar Modules

    Broader source: Energy.gov [DOE]

    In this photograph, a First Solar associate handles photovoltaic materials at the company's Ohio manufacturing plant. First Solar is an industry partner with the U.S. Department of Energy Solar...

  4. Region Solar Inc Solar Inc California Renewable Energy Solar...

    Open Energy Info (EERE)

    Point Drive Fort Collins Colorado Solar Solar cell passive solar architectural glass solar grid tie inverter semiconductor flat panel display data storage http www advanced...

  5. NREL: Solar Research - Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Newsletter Subscribe: To receive new issues by email, subscribe to the newsletter. The Solar Newsletter is a monthly electronic newsletter that provides information on NREL's ...

  6. Nevada Solar One Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar One Solar Power Plant Jump to: navigation, search Name Nevada Solar One Solar Power Plant Facility Nevada Solar One Sector Solar Facility Type Concentrating Solar Power...

  7. Mojave Solar Park Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power...

  8. Starwood Solar I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar...

  9. California Solar Initiative- Single-Family Affordable Solar Housing (SASH) Program

    Broader source: Energy.gov [DOE]

    The California Solar Initiative (CSI) provides financial incentives for installing solar technologies through a variety of smaller sub-programs. Of the $3.2 billion in total funding for the CSI, ...

  10. Solar Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Solar Energy Technology Basics Solar Energy Technology Basics August 16, 2013 - 4:37pm Addthis Did you know that the amount of sunlight that strikes the earth's surface in an hour and a half is enough to handle the entire world's energy consumption for a full year? Solar energy has amazing potential to power our daily lives thanks to constantly-improving technologies. Solar energy systems come in all shapes and sizes. Residential systems are found on rooftops across the

  11. Homeowners Guide to Going Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homeowners Guide to Going Solar Homeowners Guide to Going Solar Homeowners Guide to Going Solar Since 2008, hundreds of thousands of solar panels have popped up across the country as an increasing number of Americans choose to power their daily lives with the sun's energy. Thanks in part to SunShot's investments, the cost of going solar goes down every year. You may be considering the option of adding a solar energy system to your home's roof or finding another way to harness the sun's energy.

  12. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  13. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade

  14. ImagineSolar | Open Energy Information

    Open Energy Info (EERE)

    Workforce training, Corporate consulting - Solar projects, Solar sales, Solar marketing, Solar business development, Solar policy, Solar advocacy, Solar government...

  15. Solar Manufacturing Projects | Department of Energy

    Office of Environmental Management (EM)

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR ...

  16. Property:DailyOpWaterUseConsumed | Open Energy Information

    Open Energy Info (EERE)

    Property Name DailyOpWaterUseConsumed Property Type Number Description Daily Operation Water Use (afday) Consumed. Retrieved from "http:en.openei.orgwindex.php?titleProper...

  17. Property:DailyOpWaterUseGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name DailyOpWaterUseGross Property Type Number Description Daily Operation Water Use (afday) Gross. Retrieved from "http:en.openei.orgwindex.php?titleProperty:...

  18. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  19. Solar Rights

    Broader source: Energy.gov [DOE]

    A solar energy system is defined as "a system affixed to a building or buildings that uses solar devices, which are thermally isolated from living space or any other area where the energy is used...

  20. Solar Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    96426 Solar Blog en Solar Energy Jobs Outpace U.S. Economy http:energy.govarticlessolar-energy-jobs-outpace-us-economy

  1. Solar Rights

    Broader source: Energy.gov [DOE]

    Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

  2. Solar Rights

    Broader source: Energy.gov [DOE]

    In the context of this law, a solar energy device is a system "manufactured and sold for the sole purpose of facilitating the collection and beneficial use of solar energy, including passive...

  3. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  4. Solar collectors

    SciTech Connect (OSTI)

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  5. Integrated Solar Thermochemical Reaction System

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes an integrated solar thermochemical reaction system project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pacific Northwest National Laboratory, is working to develop and demonstrate a high-performance solar thermochemical reaction system in an end-to-end demonstration that produces electricity. A highly efficient solar thermochemical reaction system would allow for 24-hour operation without the need for storage technology, and reductions in total system costs while providing a relatively low-risk deployment option for CSP systems.

  6. Purchasing Solar Collectively with Solarize

    Broader source: Energy.gov [DOE]

    This video provides an overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy...

  7. Shenandoah parabolic dish solar collector

    SciTech Connect (OSTI)

    Kinoshita, G.S.

    1985-01-01

    The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

  8. SunShot Solar Projects Download

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy's SunShot Initiative funds projects by private companies, universities, state and local governments, nonprofit organizations, and national laboratories to drive down the cost of solar electricity. We work to make it faster, easier, and more affordable for Americans to choose solar energy in their daily lives. Download the data driving the SunShot Project map [link], including SunShot’s active and inactive projects, funding amounts, and program areas.

  9. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect (OSTI)

    Stoffel, T

    2005-07-01

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: • Direct normal shortwave (solar beam) • Diffuse horizontal shortwave (sky) • Global horizontal shortwave (total hemispheric) • Upwelling shortwave (reflected) • Downwelling longwave (atmospheric infrared) • Upwelling longwave (surface infrared)

  10. Beacon Solar Energy Project Solar Power Plant | Open Energy Informatio...

    Open Energy Info (EERE)

    Solar Energy Project Solar Power Plant Jump to: navigation, search Name Beacon Solar Energy Project Solar Power Plant Facility Beacon Solar Energy Project Sector Solar Facility...

  11. Prescott Airport Solar Plant Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar...

  12. ARM: Baseline Solar Radiation Network (BSRN): solar irradiances...

    Office of Scientific and Technical Information (OSTI)

    Baseline Solar Radiation Network (BSRN): solar irradiances Title: ARM: Baseline Solar Radiation Network (BSRN): solar irradiances Baseline Solar Radiation Network (BSRN): solar ...

  13. Deming Solar Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  14. SES Calico Solar One Project Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Calico Solar One Project Solar Power Plant Jump to: navigation, search Name SES Calico Solar One Project Solar Power Plant Facility SES Calico Solar One Project Sector Solar...

  15. Nvision.Solar - Ravnishte Solar PV Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar - Ravnishte Solar PV Plant Jump to: navigation, search Name Nvision.Solar - Ravnishte Solar PV Plant Facility Ravishte roof and facade mounted solar power plant Sector Solar...

  16. Solar Millenium Palen Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power...

  17. SES Solar Two Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Two Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar...

  18. Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Carrizo Energy Solar Farm Solar Power Plant Jump to: navigation, search Name Carrizo Energy Solar Farm Solar Power Plant Facility Carrizo Energy Solar Farm Sector Solar Facility...

  19. El Dorado Solar Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Solar Power Plant Jump to: navigation, search Name El Dorado Solar Project Solar Power Plant Facility El Dorado Solar Project Sector Solar Facility Type Photovoltaic...

  20. Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Energy Sources Renewable Energy Solar Solar How much do you know about solar power? Take our quiz and test your solar energy IQ. | Photo courtesy of ...

  1. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

    SciTech Connect (OSTI)

    Martin, Luis; Marchante, Ruth; Cony, Marco; Zarzalejo, Luis F.; Polo, Jesus; Navarro, Ana

    2010-10-15

    Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models. (author)

  2. NREL: Concentrating Solar Power Research - Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Resource Maps These direct-normal solar radiation maps-filtered by solar resource and land availability-identify the most economically suitable lands ...

  3. Hybrid Solar GHP Simulator

    Energy Science and Technology Software Center (OSTI)

    2012-12-11

    is provided that is based on mathematically robust, validated models. An automated optimization tool is used to balance ground loads and incorporated into the simulation engine. With knowledge of the building loads, thermal properties of the ground, the borehole heat exchanger configuration, the heat pump peak hourly and seasonal COP for heating and cooling, the critical heat pump design entering fluid temperature, and the thermal performance of a solar collector, the total GHX length can be calculated along with the area of a supplemental solar collector array and the corresponding reduced GHX length. An economic analysis module allows for the calculation of the lowest capital cost combination of solar collector area and GHX length.« less

  4. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  5. Solar Mapper

    Broader source: Energy.gov [DOE]

    Interactive, online mapping tool providing access to spatial data related to siting utility-scale solar facilities in the southwestern United States.

  6. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  7. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  8. Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Administration and DOE EERE International Program: Solar Decathlon China 2013 16 | Building Technologies Office eere.energy.gov Project Integration, Collaboration & Market Impact ...

  9. Solar Rights

    Broader source: Energy.gov [DOE]

    Ordinances, bylaws, or regulations may reasonably restrict the installation and use of solar energy devices to protect public health and safety, buildings from damage, historic/aesthetic values (...

  10. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  11. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  12. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  13. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  14. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  15. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  16. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  17. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  18. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  19. Secretary Moniz's Remarks at the 2014 White House Solar Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to government period, that I certainly am very bullish on the future of solar. We can talk about numbers, like nearly 5 gigawatts total of solar technologies installation in...

  20. Unified Solar

    Broader source: Energy.gov [DOE]

    Unified Solar is an MIT startup that is commercializing an integrated circuit solution that eliminates most of the adverse effects caused by partial shading in photovoltaic power systems. With its patent-pending design, Unified Solar's solution is smaller, cheaper and more powerful than any competing power optimizer in the market.

  1. U.S. Total Exports

    Gasoline and Diesel Fuel Update (EIA)

    Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt ... Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total ...

  2. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  3. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  4. Summary Max Total Units

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  5. Illinois Company Implementing Solar Energy

    Broader source: Energy.gov [DOE]

    J.F. Family Limited Partnership has been awarded $191,000 through the Recovery Act toward the use of solar energy at its Lakefront Parkway property in Edwardsville, Ill., which is the company headquarters for J.F. Electric Inc. The funding will be used to install a 75-kW solar photovoltaic system on the building’s roof, creating electricity on-site and creating or saving a total of 14 jobs.

  6. Daily HMS Extremes in Met Data - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Meteorological Station Daily HMS Extremes in Met Data Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Daily HMS Extremes in Met Data Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size This table shows the daily extremes at each of the remote stations

  7. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  8. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  9. 2015,"AK","Total Electric Power Industry","All Sources",18,8...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Industry","All Sources",1,1,12,12 2015,"AR","Total Electric Power Industry","Solar Thermal and Photovoltaic",1,1,12,12 2015,"AZ","Total Electric Power ...

  10. Solar Two

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  11. Solar Millenium Ridgecrest Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Ridgecrest Solar Power Plant Jump to: navigation, search Name Solar Millenium Ridgecrest Solar Power Plant Facility Solar Millenium Ridgecrest Sector Solar Facility Type...

  12. SES Solar Three Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Three Project Solar Power Plant Jump to: navigation, search Name SES Solar Three Project Solar Power Plant Facility SES Solar Three Project Sector Solar Facility Type Photovoltaics...

  13. Renewable Energy Concepts Solar Inc REC Solar | Open Energy Informatio...

    Open Energy Info (EERE)

    Concepts Solar Inc REC Solar Jump to: navigation, search Name: Renewable Energy Concepts Solar Inc (REC Solar) Place: San Luis Obispo, California Zip: 93401 Sector: Solar Product:...

  14. Periodicity of the solar full-disk magnetic fields

    SciTech Connect (OSTI)

    Xiang, N. B.; Qu, Z. N.; Zhai, Q.

    2014-07-01

    A full-disk solar magnetogram has been measured each day since 1970 January 19, and the daily Magnetic Plage Strength Index (MPSI) and the daily Mount Wilson Sunspot Index (MWSI) were calculated for each magnetogram at the Mount Wilson Observatory. The MPSI and MWSI are used to investigate the periodicity of the solar full-disk magnetic activity through autocorrelation analyses. Just two periods, the solar cycle and the rotation cycle, are determined in both the MPSI (the solar full-disk weak magnetic field activity) and MWSI (the solar full-disk strong magnetic field activity) with no annual signal found. The solar cycle for MPSI (10.83 yr) is found to be obviously longer than that for MWSI (9.77 yr). The rotation cycle is determined to be 26.8 ± 0.63 sidereal days for MPSI and 27.4 ± 2.4 sidereal days for MWSI. The rotation cycle length for MPSI is found to fluctuate around 27 days within a very small amplitude, but for MWSI it obviously temporally varies with a rather large amplitude. The rotation cycle for MWSI seems longer near solar minimum than at solar maximum. Cross-correlation analyses of daily MPSI and MWSI are carried out, and it is inferred that the MPSI components partly come from relatively early MWSI measurements.

  15. Solar Rights

    Broader source: Energy.gov [DOE]

    In June of 2015, SB 1626 was signed into law. It provides that during the development period, the developer may only prohibit  a property owner from installing solar in developments with 50 or...

  16. solar energy

    National Nuclear Security Administration (NNSA)

    8%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  17. solar power

    National Nuclear Security Administration (NNSA)

    9%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  18. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  19. Solar interior and atmosphere

    SciTech Connect (OSTI)

    Cox, A.N.; Livingston, W.C.; Matthews, M.S. National Solar Observatory, Tucson, AZ )

    1991-01-01

    The present work discusses nuclear energy generation in the solar interior, solar neutrino experiments, solar premain-sequence evolution, the computation of standard solar models, radiative-zone mixing, solar element separation by atomic diffusion, the observation and theory of solar oscillations, the solar internal rotation and magnetism implications of oscillations, solar gravity modes, and solar oscillation-mode excitation. Also discussed are the solar spectrum, the role of the solar photosphere and a radiative boundary, high spatial-resolution techniques for solar study, high-resolution observations of the solar granulation, large-scale velocity fields, the solar activity cycle, the magnetic fields of active regions and sunspots, the physics of flux tubes and filigrees, the heating of the solar chromosphere, the fine structure of the solar transition region, coronal activity, the coronal origins of the solar winds, and postmain sequence solar evolution.

  20. Oxford Solar | Open Energy Information

    Open Energy Info (EERE)

    Oxford Solar Jump to: navigation, search Name: Oxford Solar Place: Randolph, New Jersey Zip: 7869 Sector: Solar Product: Oxford Solar provides solar energy consulting and...

  1. SBM Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: SBM Solar Place: North Carolina Sector: Solar Product: SBM Solar is a solar panel manufacturer based in North Carolina. References: SBM Solar1 This article is...

  2. Akeena Solar | Open Energy Information

    Open Energy Info (EERE)

    Akeena Solar Jump to: navigation, search Logo: Akeena Solar Name: Akeena Solar Address: 16005 Los Gatos Blvd. Place: Los Gatos, California Zip: 95032 Sector: Solar Product: Solar...

  3. Adobe Solar | Open Energy Information

    Open Energy Info (EERE)

    Adobe Solar Jump to: navigation, search Logo: Adobe Solar Name: Adobe Solar Place: Denver, Colorado Region: Rockies Area Sector: Solar Product: solar electric systems Phone Number:...

  4. Climatic Solar | Open Energy Information

    Open Energy Info (EERE)

    Climatic Solar Jump to: navigation, search Logo: Climatic Solar Name: Climatic Solar Address: 650 2nd Lane Place: Vero Beach, Florida Zip: 32962 Sector: Solar Product: solar energy...

  5. Tejas Solares | Open Energy Information

    Open Energy Info (EERE)

    Tejas Solares Jump to: navigation, search Name: Tejas Solares Place: Spain Sector: Solar Product: Tejas Solares is a Spain-based company focused on providing solar solutions for...

  6. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    SciTech Connect (OSTI)

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  7. Solar Kit Lessons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Kit Lessons Middle School Curriculum Created by Northeast Sustainable Energy Association (NESEA) Click on the links below to take you to the Chapter heading: Solar Cell Inquiry Sunshine Timer Parts of a Solar Panel Part 1 Parts of a Solar Panel Part 2 Build a Simple Ammeter Solar-Powered Battery Charger Positioning Solar Panels 1 Positioning Solar Panels 2 Properties of Solar Radiation: Reflection, Transmission, and Absorption Properties of Solar Radiation: Direct and Diffuse Light Power

  8. NREL: Solar STAT Blog -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Policy Basics Publications Request Assistance Technical Assistance Project Map Solar STAT Blog The Solar STAT blog discusses state and local efforts to develop solar...

  9. Solar Resource Assessment

    Broader source: Energy.gov [DOE]

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  10. Optimizing Geothermal with Geo-Solar Hybrid Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    geothermal plant and solar photovoltaic field, for a total installed capacity of 60 MW. Source: Enel Green Power North America DOE is exploring the potential of using hybrid ...

  11. SunShot Solar Projects Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Solar Projects Map SunShot Solar Projects Map The Department of Energy's SunShot Initiative funds projects by private companies, universities, state and local governments, nonprofit organizations, and national laboratories to drive down the cost of solar electricity. We work to make it faster, easier, and more affordable for Americans to choose solar energy in their daily lives. Learn more about SunShot's work. See our active and recently inactive projects in the map below. You can sort

  12. Solar resources

    SciTech Connect (OSTI)

    Hulstrom, R.L.

    1989-01-01

    Following the 1973 oil embargo, the US government initiated a program to develop and use solar energy. This led to individual programs devoted to developing various solar radiation energy conversion technologies: photovoltaic and solar-thermal conversion devices. Nearly concurrently, it was recognized that understanding the available insolation resources was required to develop and deploy solar energy devices and systems. It was also recognized that the insolation information available at that time (1973) was not adequate to meet the specific needs of the solar energy community. Federal efforts were initiated and conducted to produce new and more extensive information and data. The primary federal agencies that undertook such efforts were the Department of Energy (DOE) and the National Oceanic and Atmospheric Administration (NOAA). NOAA's efforts included activities performed by the National Weather Service (NWS) and the National Climatic Data Center (NCDC). This book has two man objectives: to report some of the insolation energy data, information, and products produced by the federal efforts and to describe how they were produced. Products include data bases, models and algorithms, monitoring networks, instrumentation, and scientific techniques. The scope of products and results does not include all those produced by past federal efforts. The book's scope and subject matter are oriented to support the intent and purpose of the other volumes in this series. In some cases, other pertinent material is presented to provide a more complete coverage of a given subject. 385 refs., 149 figs., 50 tabs.

  13. Solar Equipment Certification

    Broader source: Energy.gov [DOE]

    Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar...

  14. Solar Neutrinos

    DOE R&D Accomplishments [OSTI]

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  15. Creating solar media nets solar tools, publicity

    SciTech Connect (OSTI)

    Brewer, B.

    1980-01-01

    The utilization of locally produced solar tool to gain more access to commercial media is discussed. Central is a strategy of (1) giving commercial media something to report, (2) helping educate the media, and (3) simultaneously impacting that portion of the public which is likely to be most interested. Methods for reaching several target audiences include a Solar Calendar, a Passive Solar Film, a local Solar Directory, a local Solar Information Center, an Emergency Coolth brochure and a Conservation/Solar Retrofit Guide.

  16. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  17. New director of Jefferson Lab named (Daily Press) | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesnew-director-jefferson-lab-named-daily-press New director of Jefferson Lab named Hugh Montgomery Hugh Montgomery has been named president of...

  18. Question of the Week: What Is Your Daily Commute Like?

    Broader source: Energy.gov [DOE]

    In data collected from 2005 through 2007, The U.S. Census Bureau found that 76% of workers drove alone to work. Tell us about your daily commute?

  19. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  20. VISUAL-SOLAR

    Energy Science and Technology Software Center (OSTI)

    003661IBMPC00 Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops   

  1. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    76 Females Male Female Male Female Male Female Male Female Male Female 27 24 86 134 65 24 192 171 1189 423 PAY PLAN SES 96 EX 4 EJ/EK 60 EN 05 39 EN 04 159 EN 03 21 EN 00 8 NN (Engineering) 398 NQ (Prof/Tech/Admin) 1165 NU (Tech/Admin Support) 54 NV (Nuc Mat Courier) 325 GS 15 3 GS 14 1 GS 13 1 GS 10 1 Total includes 2318 permanent and 17 temporary employees. DIVERSITY 2335 1559 66.8% American Indian Alaska Native African American Asian American Pacific Islander Hispanic White 33.2% National

  2. Solar Easements & Local Option Solar Rights Laws

    Broader source: Energy.gov [DOE]

    Utah's solar easement provision is similar to easement provisions in many other states. Parties may voluntarily enter into written solar easement contracts that are enforceable by law. An...

  3. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  4. Concentrating Solar Power Projects | Concentrating Solar Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SolarPACES, an international program of the International Energy Agency, furthers collaborative development, testing, and marketing of concentrating solar power plants. Activities ...

  5. Help Solve Solar's Big Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Solve Solar's Big Challenge Help Solve Solar's Big Challenge December 2, 2013 - 1:00pm Addthis Soft costs now account for more than 60% of the total price of installing residential solar energy systems. <a href="http://www.energy.gov/eere/articles/infographic-lets-get-work-solar-soft-costs">View the full infographic to learn more</a>. Soft costs now account for more than 60% of the total price of installing residential solar energy systems. View the full infographic to

  6. The California Energy Commission's New Solar Homes Partnership Program Case Study: Promoting Greener, Better Housing in California

    Broader source: Energy.gov [DOE]

    This case study analyzes data from the California Energy Commission's New Solar Homes Partnership Program, part of California's comprehensive statewide solar program, the California Solar Initiative. At the time this study was conducted, the New Solar Homes Partnership Program had installed 14,100 solar energy systems totaling 45 megawatts of capacity.

  7. AV Solar Ranch I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer...

  8. Voltage-matched multijunction solar cell architectures for integrating PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies - Energy Innovation Portal Find More Like This Return to Search Voltage-matched multijunction solar cell architectures for integrating PV technologies National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary The U.S. Department of Energy SunShot Initiative aims to reduce the total installed cost of solar energy systems to $.06 per kilowatt-hour (kWh) by the year 2020. Reducing the cost of solar electricity requires that solar cell

  9. Southern Ute Indian Tribe Solar Project Achieves Milestone | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Southern Ute Indian Tribe Solar Project Achieves Milestone Southern Ute Indian Tribe Solar Project Achieves Milestone January 11, 2016 - 10:30am Addthis Southern Ute Indian Tribe Solar Project Achieves Milestone The Southern Ute Indian Tribe has achieved a major milestone toward developing a roughly 1-megawatt solar photovoltaic (PV) system that will generate energy equivalent to a 15% offset of the total energy usage at about 10 tribally owned buildings on the Southern Ute Indian

  10. Pascua Yaqui Tribe DOE Solar Energy Feasibility and Deployment Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pascua Yaqui Tribe DOE Solar Energy Feasibility and Deployment Study Pascua Yaqui Tribe/DOE Solar Feasibility & Deployment Pascua Yaqui Tribe ď‚— The reservation is located in Tucson, Arizona ď‚— Reservation population approximately 4,000 ď‚— Total tribal enrollment 18,000 Pascua Yaqui Tribe/DOE Solar Feasibility & Deployment History Pascua Yaqui Tribe/DOE Solar Feasibility & Deployment ď‚— In 1978, the Pascua Yaqui Tribe of Arizona became federally recognized and in 1994 the

  11. Spectral Solar Radiation Data Base at NREL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Solar Energy Research Institute (SERI)*, Electric Power Research Institute (EPRI), Florida Solar Energy Center (FSEC), and Pacific Gas and Electric Company (PG&E) cooperated to produce a spectral solar radiation data base representing a range of atmospheric conditions (or climates) that is applicable to several different types of solar collectors. Data that are included in the data base were collected at FSEC from October 1986 to April 1988, and at PG&E from April 1987 to April 1988. FSEC operated one EPRI and one SERI spectroradiometer almost daily at Cape Canaveral, which contributed nearly 2800 spectra to the data base. PG&E operated one EPRI spectroradiometer at San Ramon, Calif., as resources permitted, contributing nearly 300 spectra to the data base. SERI collected about 200 spectra in the Denver/Golden, Colo., area form November 1987 to February 1988 as part of a research project to study urban spectral solar radiation, and added these data to the data base. *In September 1991 the Solar Energy Research Institute became the National Renewable Energy Laboratory. [Description taken from http://rredc.nrel.gov/solar/old_data/spectral/

  12. Solar thermal power systems. Summary report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

  13. Orlando, Florida: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Orlando, Florida: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Orlando, Florida: Solar in Action (Brochure), Solar America Cities,...

  14. Denver, Colorado: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Denver, Colorado: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Denver, Colorado: Solar in Action (Brochure), Solar America Cities,...

  15. Kings River Conservation District (KRCD) Solar Farm Solar Power...

    Open Energy Info (EERE)

    River Conservation District (KRCD) Solar Farm Solar Power Plant Jump to: navigation, search Name Kings River Conservation District (KRCD) Solar Farm Solar Power Plant Facility...

  16. Space Coast Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Coast Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Space Coast Next Generation Solar Energy Center Solar Power Plant Facility Space Coast...

  17. Martin Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation...

  18. Portland, Oregon: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Portland, Oregon: Solar in Action (Brochure), Solar America Cities, ...

  19. Solar Position Algorithm for Solar Radiation Applications (Revised...

    Office of Scientific and Technical Information (OSTI)

    Solar Position Algorithm for Solar Radiation Applications (Revised) Citation Details In-Document Search Title: Solar Position Algorithm for Solar Radiation Applications (Revised) ...

  20. EE Solar Energy Efficiency Solar | Open Energy Information

    Open Energy Info (EERE)

    EE Solar Energy Efficiency Solar Jump to: navigation, search Name: EE Solar (Energy Efficiency Solar) Place: Ponoma, California Zip: 91768 Product: PV systems installer based in...

  1. Willard Kelsey Solar Group WK Solar | Open Energy Information

    Open Energy Info (EERE)

    Willard Kelsey Solar Group WK Solar Jump to: navigation, search Name: Willard & Kelsey Solar Group (WK Solar) Place: Perrysburg, Ohio Zip: 43551 Product: Manufacturer of CdTe...

  2. Innotech Solar AS formerly known as Solar Cell Repower | Open...

    Open Energy Info (EERE)

    Innotech Solar AS formerly known as Solar Cell Repower Jump to: navigation, search Name: Innotech Solar AS (formerly known as Solar Cell Repower) Place: Narvik, Norway Zip: 8512...

  3. Wuxi Jiacheng Solar Energy Technology Co JC Solar | Open Energy...

    Open Energy Info (EERE)

    JC Solar Jump to: navigation, search Name: Wuxi Jiacheng Solar Energy Technology Co (JC Solar) Place: Yixing, Jiangsu Province, China Zip: 214200 Sector: Solar Product: A Chinese...

  4. Innovative Systems Engineering Solar LLC ISE Solar LLC | Open...

    Open Energy Info (EERE)

    Systems Engineering Solar LLC ISE Solar LLC Jump to: navigation, search Name: Innovative Systems Engineering Solar LLC (ISE Solar LLC) Place: Warminster, Pennsylvania Zip:...

  5. First Solar Electric LLC formerly DT Solar | Open Energy Information

    Open Energy Info (EERE)

    Electric LLC formerly DT Solar Jump to: navigation, search Name: First Solar Electric LLC (formerly DT Solar) Place: Branchburg, New Jersey Zip: 8876 Sector: Solar Product: PV...

  6. Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd Jump to: navigation, search Name: Aide Solar (Jiangsu Aide Solar Energy Technology Co Ltd) Place: Xuzhou, Jiangsu Province,...

  7. AET Solar formerly solar division of GGAM Electrical Services...

    Open Energy Info (EERE)

    Solar formerly solar division of GGAM Electrical Services Jump to: navigation, search Name: AET Solar (formerly solar division of GGAM Electrical Services) Place: Limassol, Cyprus...

  8. Creative Energy Solar Investments SA formerly Hellenic Solar...

    Open Energy Info (EERE)

    Solar Investments SA formerly Hellenic Solar Jump to: navigation, search Name: Creative Energy Solar Investments SA (formerly Hellenic Solar) Place: 18538 Piraeus, Greece Product:...

  9. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  10. Siemens Solar formerly ARCO Solar Corporation | Open Energy Informatio...

    Open Energy Info (EERE)

    Solar formerly ARCO Solar Corporation Jump to: navigation, search Name: Siemens Solar (formerly ARCO Solar Corporation) Place: Arizona Product: Built a 6MW CPV project in 1984,...

  11. Siemens Concentrated Solar Power Ltd previously Solel Solar Systems...

    Open Energy Info (EERE)

    Siemens Concentrated Solar Power Ltd previously Solel Solar Systems Jump to: navigation, search Name: Siemens Concentrated Solar Power Ltd (previously Solel Solar Systems) Place:...

  12. Guodian Jintech Solar Energy formerly Yixing Jintech Solar Energy...

    Open Energy Info (EERE)

    Jintech Solar Energy formerly Yixing Jintech Solar Energy Co Ltd Jump to: navigation, search Name: Guodian Jintech Solar Energy (formerly Yixing Jintech Solar Energy Co Ltd) Place:...

  13. Shanghai Comtec Solar Technology Ltd aka Comtec Solar System...

    Open Energy Info (EERE)

    Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd Jump to: navigation, search Name: Shanghai Comtec Solar Technology Ltd (aka Comtec Solar System Group Ltd) Place:...

  14. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open...

    Open Energy Info (EERE)

    Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name: Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place: Ontario, California Zip: 91761 Product:...

  15. ET Solar Group Formerly CNS Solar Industry | Open Energy Information

    Open Energy Info (EERE)

    Solar Group Formerly CNS Solar Industry Jump to: navigation, search Name: ET Solar Group (Formerly CNS Solar Industry) Place: Nanjing, Jiangsu Province, China Zip: 210009 Sector:...

  16. Entech Solar Inc formerly WorldWater Solar Technologies | Open...

    Open Energy Info (EERE)

    Solar Inc formerly WorldWater Solar Technologies Jump to: navigation, search Name: Entech Solar Inc. (formerly WorldWater & Solar Technologies) Place: Fort Worth, Texas Zip: 76177...

  17. Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America ...

  18. Houston, Texas: Solar in Action (Brochure), Solar America Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Houston, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Houston, Texas: Solar in Action (Brochure), Solar America Cities, ...

  19. edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL...

    Office of Scientific and Technical Information (OSTI)

    Home economics: student activities. Field test edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL TOOLS; CURRICULUM GUIDES; GLAZING; HOUSES; SOLAR COOKERS; SOLAR...

  20. Solar Utility Networks: Replicable Innovations in Solar Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Funding Opportunity Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Funding ...

  1. PROJECT PROFILE: The Solar Foundation - Solar Training Network...

    Energy Savers [EERE]

    Training Network PROJECT PROFILE: The Solar Foundation - Solar Training Network Project Name: Solar Training Network Funding Opportunity: Solar Training and Education for ...

  2. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Energy Savers [EERE]

    Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America ...

  3. EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Solar Millennium Blythe Solar Power Project in Riverside County, CA EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside County, CA December 10, 2010 EIS-0449: ...

  4. Early solar mass loss, opacity uncertainties, and the solar abundance...

    Office of Scientific and Technical Information (OSTI)

    Early solar mass loss, opacity uncertainties, and the solar abundance problem Citation Details In-Document Search Title: Early solar mass loss, opacity uncertainties, and the solar ...

  5. EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Abengoa Solar's Mojave Solar Project near Barstow, CA EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA July 1, 2011 EA-1798: Final Environmental Assessment Loan ...

  6. San Antonio, Texas: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Antonio, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Antonio, Texas: Solar in Action (Brochure), Solar America Cities, ...

  7. Solar Impulse's Solar-Powered Plane

    ScienceCinema (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2014-01-07

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  8. Solar Impulse's Solar-Powered Plane

    SciTech Connect (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  9. Daily snow depth measurements from 195 stations in the United States

    SciTech Connect (OSTI)

    Allison, L.J.; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H.

    1997-02-01

    This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

  10. Pool daily fuel scheduling. Volume 1: technical manual. Final Report, February 1981

    SciTech Connect (OSTI)

    Pang, C.K.; Mikolinnas, T.A.; Reppen, N.D.; Ringlee, R.J.; Wollenberg, B.F.

    1981-02-01

    The results and efforts of research and development of methods for daily fuel scheduling performed under EPRI Project RP 1048-5 by Power Technologies, Inc. (PTI) are reported in three volumes: Technical Manual, Programming Manual, and Program Listings. Daily fuel scheduling involves the scheduling and dispatching of generating facilities to meet all system loads and operating requirements for periods ranging from a day to a week. Daily fuel scheduling and computer requirements are defined. The scheduling problem is formulated as a mixed-integer linear programming (MILP) optimization problem in which the total system operating cost is minimized. A potentially practical scheduling procedure, based on a combination of search and MILP approaches, was proposed; these two approaches were investigated, coded in FORTRAN and tested individually. This volume of the report (Volume 1) is the Technical Manual and contains the main body of the report, which includes descriptions and results for two approaches to the daily fuel scheduling problem: Search Approach and Mixed Integer Linear Programming (MILP) Approach. Prototype computer programs on these approaches have been coded in FORTRAN for testing and evaluation purposes using PTI in-house PRIME time-sharing computer.

  11. Concentrating Solar Power Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects

  12. Affordability Contest Adds New Dimension to Solar Decathlon 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Affordability Contest Adds New Dimension to Solar Decathlon 2011 Affordability Contest Adds New Dimension to Solar Decathlon 2011 September 27, 2011 - 10:20am Addthis Matt Hansen reviews each team’s design drawings and construction specifications to estimate the total construction cost of its house. (Credit: Alexis Power/U.S. Department of Energy Solar Decathlon) Matt Hansen reviews each team's design drawings and construction specifications to estimate the total

  13. Solar engineering 1991

    SciTech Connect (OSTI)

    Mancini, T.R. ); Watanabe, K. ); Klett, D.E. )

    1991-01-01

    This book contains paper presented at the second ASME-JSES-JSME international solar energy conference. It is organized under the following headings: Solar ponds, Energy fundamentals in solar systems, General solar energy, Solar powered cars, Distributed receiver components and systems, Central receiver components and systems, Chemical processes and waste destruction, High flux and innovative applications, Solar thermal space propulsion, Solar dynamic power systems, Analysis methods for monitored building use. Photovoltaics, Testing and measurement.

  14. Solar collector

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1982-05-04

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  15. Shell Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Shell Solar Place: The Hague, Netherlands Zip: 2501 AN Sector: Solar Product: Shell Solar is developing non-crystalline PV technology,...

  16. Apex Solar | Open Energy Information

    Open Energy Info (EERE)

    Name: Apex Solar Place: Sofia, Bulgaria Zip: 1616 Sector: Solar Product: Bulgarian PV and solar thermal project developer and installer. References: Apex Solar1 This article is a...

  17. Atlantic Solar | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Logo: Atlantic Solar Name: Atlantic Solar Place: Cape Town, South Africa Sector: Solar Product: Solar Thermal Technology Year Founded: 1985 Phone Number:...

  18. Declination Solar | Open Energy Information

    Open Energy Info (EERE)

    San Francisco, California Sector: Solar Product: San Francisco solar installation firm acquired by SolarCity in September 2006. References: Declination Solar1 This article...

  19. Solar Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Library Solar Energy Solar Energy Below are resources for Tribes on solar energy technologies. A Guide to Community Solar: Utility, Private, and Nonprofit ...

  20. Corona Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Corona Solar Place: Tholey-Theley, Germany Zip: D 66636 Sector: Solar Product: Engaged in solar passive large-size collectors. References:...

  1. AS Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: AS Solar Address: Am Tnniesberg 4A Place: Hannover, Germany Sector: Solar Product: PV, solar thermal Phone Number: +49 511 475578 - 0...

  2. Abengoa Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Logo: Abengoa Solar Name: Abengoa Solar Address: 11500 W 13th Ave Place: Lakewood, Colorado Zip: 80215 Region: Rockies Area Sector: Solar Product:...

  3. First Solar | Open Energy Information

    Open Energy Info (EERE)

    First Solar Name: First Solar Address: 350 West Washington Street, Suite 600 Place: Tempe, Arizona Zip: 85281 Sector: Solar Product: Solar energy systems Year Founded: 1999 Phone...

  4. Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    Logo: Solar Systems Name: Solar Systems Address: 45 Grosvenor Street Place: Abbotsford, Australia Sector: Solar Product: Solar concentrators Phone Number: +61 3 9413 8000 Website:...

  5. Ascent Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Logo: Ascent Solar Name: Ascent Solar Address: 12300 Grant Street Place: Thornton, Colorado Zip: 80241 Region: Rockies Area Sector: Solar Product:...

  6. Borrego Solar | Open Energy Information

    Open Energy Info (EERE)

    Borrego Solar Jump to: navigation, search Logo: Borrego Solar Name: Borrego Solar Address: 2560 9th Street Place: Berkeley, California Zip: 94710 Region: Bay Area Sector: Solar...

  7. DPW Solar | Open Energy Information

    Open Energy Info (EERE)

    DPW Solar Jump to: navigation, search Logo: DPW Solar Name: DPW Solar Address: 4000 B Vassar Dr. NE Place: Albuquerque, New Mexico Zip: 87107 Sector: Solar Product: Renewable...

  8. Inovateus Solar | Open Energy Information

    Open Energy Info (EERE)

    Inovateus Solar Jump to: navigation, search Logo: Inovateus Solar Name: Inovateus Solar Address: 19890 State Line Rd. Place: South Bend, Indiana Zip: 46637 Sector: Solar Product:...

  9. Standard Solar | Open Energy Information

    Open Energy Info (EERE)

    Standard Solar Name: Standard Solar Address: 202 Perry Parkway Place: Gaithersburg, Maryland Zip: 20877 Region: Northeast - NY NJ CT PA Area Sector: Solar Product: Solar...

  10. Wasatch Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Wasatch Solar Address: 4417 S 2950 E Place: Salt Lake City, Utah Zip: 84124 Sector: Solar Product: Solar Year Founded: 2009 Phone...

  11. Sylcom Solar | Open Energy Information

    Open Energy Info (EERE)

    Sylcom Solar provides the design, research, distribution, construction, operation, maintenance of products and of Photovoltaic Solar, Thermal Solar and Solar Thermoelectric...

  12. Genesis Solar | Open Energy Information

    Open Energy Info (EERE)

    Genesis Solar Facility Genesis Solar Sector Solar Facility Type Concentrating solar power Facility Status Under Construction Owner NextEra Developer NextEra Location Blythe,...

  13. Solar Easements | Department of Energy

    Office of Environmental Management (EM)

    Process Heat Solar Photovoltaics Daylighting Solar Pool Heating Program Info Sector Name State State Kentucky Program Type SolarWind Access Policy Summary In Kentucky, solar ...

  14. Preussen Solar | Open Energy Information

    Open Energy Info (EERE)

    Preussen Solar Jump to: navigation, search Name: Preussen Solar Place: Berlin, Germany Zip: 10711 Sector: Solar Product: Involved in solar projects. Coordinates: 52.516074,...

  15. Scaled Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: Scaled Solar manufacturers and markets utility-grade, concentrated photovoltaic solar energy systems to commercial customers References: Scaled Solar1 This...

  16. Solar PST | Open Energy Information

    Open Energy Info (EERE)

    search Name: Solar PST Place: Bergondo, Spain Zip: 15 165 Sector: Solar Product: Spanish company producing thermodynamic solar panels. References: Solar PST1 This article...

  17. Immodo Solar | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Immodo Solar Place: Spain Sector: Solar Product: Spanish company which installs and maintains solar panels. References: Immodo Solar1 This...

  18. Solarize Guidebook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solarize Guidebook Solarize Guidebook This guidebook is intended to be a roadmap for project planners and solar advocates who want to create their own successful Solarize ...

  19. Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  20. Solar cogeneration

    SciTech Connect (OSTI)

    Not Available

    1982-04-01

    After a brief introduction to the operational principles and advantages of solar cogeneration, seven cogeneration studies are summarized covering such applications as sulfur mining, copper smelting, enhanced oil recovery, natural gas processing, sugar mill operations, and space heating and cooling. For each plant is given a brief site description, project summary, conceptual design, and functional description, including a picture of the facility and a flow chart. Also listed are the addresses of the companies involved for obtaining additional information. (LEW)

  1. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  2. Solar Contractor Licensing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility InstallersContractors Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics...

  3. Solar energy collector

    DOE Patents [OSTI]

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  4. Solar Innovator | Alta Devices

    ScienceCinema (OSTI)

    Mattos, Laila; Le, Minh

    2013-05-29

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  5. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  6. Concentrating Solar Power Projects - Nevada Solar One | Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power | NREL Nevada Solar One This page provides information on Nevada Solar One, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Acciona Energy's Nevada Solar One is the third largest CSP plant in the world and the first plant built in the United States since 1999. Located in Boulder City, Nevada, about 40 miles southeast of Las Vegas, this parabolic trough system has been operating since June 2007. The US$260

  7. Jefferson Lab: Laser gun to eventually shoot down missiles (Daily...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab: Laser gun to eventually shoot down missiles (Daily Press) External Link: http:articles.dailypress.com2011-02-21newsdp-nws-jefferson-lab-201102211j... By ...

  8. Their best defense is good fiscal sense (Daily Press) | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlestheir-best-defense-good-fiscal-sense-daily-press Their best defense is good fiscal sense Top Guard Security finds it can be a good idea to say,...

  9. Italian Physicist Named Deputy Associate Director at JLab (Daily Press) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Italian Physicist Named Deputy Associate Director at JLab (Daily Press) External Link: http://www.dailypress.com/news/science/dead-rise-blog/dp-italian-physicist-named... By jlab_admin on Tue, 2012-02-1

  10. JLab's economic footprint expands (Daily Press) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab's economic footprint expands (Daily Press) External Link: http://articles.dailypress.com/2011-01-20/news/dp-nws-jlab-economy-20110120_1_je... By jlab_admin on Thu, 2011-01-2

  11. Invisible Science: Lab Breakthroughs in Our Daily Lives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Invisible Science: Lab Breakthroughs in Our Daily Lives Invisible Science: Lab Breakthroughs in Our Daily Lives April 24, 2012 - 2:30pm Addthis The Lab Breakthroughs video series focuses on the array of technological advancements and discoveries that stem from research performed in the National Labs, including improvements in industrial processes, discoveries in fundamental scientific research, and innovative medicines. <a href="http://energy.gov/lab-breakthroughs">See

  12. Copper Mountain Solar Farm

    Broader source: Energy.gov [DOE]

    This b-roll shows a large-scale solar farm in Nevada that generates renewable solar energy using parabolic troughs, a form of concentrating solar power (CSP) technology, and photovoltaic technology.

  13. Smart Solar Marketing Strategies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... e Cost. Consumers report high up-front and out-of-pocket costs and long payback periods deter them from installing solar ... While state solar pro- grams do not produce solar panels, ...

  14. Solar Neutrino Problem

    DOE R&D Accomplishments [OSTI]

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  15. Solar Easements & Rights Laws

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Solar Recordation Act describes the procedures for filing a solar right through the County Clerk's Office. The property owner seeking the solar right must give advanced notice to the adjacent...

  16. Concentrating Solar Power Projects - Xina Solar One | Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power | NREL Xina Solar One Abengoa has been selected by the Department of Energy (DOE) of South Africa to develop Xina Solar One, a 100 MW parabolic trough plant with a five-hour thermal energy storage system using molten salts. This project will form the largest solar complex in Africa together with Abengoa's plant KaXu Solar One that is currently under construction in the country. Xina Solar One was awarded to Abengoa in the third round of renewable energy projects organized by the

  17. Compound Solar Technology CompSolar | Open Energy Information

    Open Energy Info (EERE)

    Solar Technology CompSolar Jump to: navigation, search Name: Compound Solar Technology (CompSolar) Place: Jhunan, Taiwan Zip: 350 Sector: Solar Product: Producer of glass-based...

  18. Silicon Valley Solar Inc SV Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Inc SV Solar Jump to: navigation, search Name: Silicon Valley Solar Inc (SV Solar) Place: Santa Clara, California Zip: 95051 Sector: Solar Product: A US-based manufacturer of...

  19. First Solar AVSR Solar Ranch Technical Eligibility Re-Evaluation...

    Office of Environmental Management (EM)

    First Solar AVSR Solar Ranch Technical Eligibility Re-Evaluation Memo First Solar AVSR Solar Ranch Technical Eligibility Re-Evaluation Memo FirstSolarAVSRSolarRanchOneTechnic...

  20. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Barbados Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Crosby, ND Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India

  1. SunShot Solar PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar PV SunShot Solar PV

  2. Solar in Cold, Cloudy Climates

    Broader source: Energy.gov [DOE]

    Presentation delivered by Chuck Marken during the 2009 Northeastern Solar Cities Conference Solar Survey session.

  3. Tribal Solar Energy Partnerships

    Broader source: Energy.gov (indexed) [DOE]

    SOLAR ENERGY PARTNERSHIPS Chairman Timothy Williams - Fort Mojave Indian Tribe Perry Fontana - First Solar Fort Mojave Indian Reservation Fort Mojave Project Site Mohave Generating ...

  4. Making a Solar Oven

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students make solar ovens. Student background information is provided. The expected outcome is that students will learn about solar energy transfer.

  5. Solar PV Incentive Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Program (greater than 50 kW) * LIPA Solar Pioneer (homeowner) & Solar Entrepreneur (business - up to 50 kW) Research & Development collaborations on BOS cost ...

  6. Your Solar Home

    Broader source: Energy.gov [DOE]

    Solar Schoolhouse Education supplement for the Sacramento Bee to introduce solar to elementary school children and introduce the design and AD contest for local students.

  7. TVA- Solar Solutions Initiative

    Broader source: Energy.gov [DOE]

    Solar Solutions Initiative (SSI) is a pilot program that offers additional financial incentives for Solar PV systems participating in the Renewable Standard Offer program. Applications for new...

  8. Solar Photovoltaic SPECIFICATION, CHECKLIST...

    Energy Savers [EERE]

    Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the Renewable Energy Ready Home Specifications Assumptions of the RERH Solar ...

  9. Solar Power Basics

    Broader source: Energy.gov [DOE]

    This video summarizes the process of generating solar electricity from photovoltaic and concentrating solar power technologies. Research, manufacturing, and usage across the United States is also...

  10. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  11. Solar Energy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  12. Solar Thermoelectric Energy Conversion

    Office of Energy Efficiency and Renewable Energy (EERE)

    Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

  13. Solar Contractor Licensing

    Broader source: Energy.gov [DOE]

    Hawaii offers several specialty licenses for solar contractors through Hawaii’s Department of Commerce and Consumer Affairs. The following specialty licenses are available: Solar Power Systems...

  14. Solar Energy in Alaska

    Broader source: Energy.gov (indexed) [DOE]

    Solar Energy in Alaska Photo by: Cassandra Cerny, GVEA David Lockard, Solar Program Manager Alaska Energy Authority BIA Providers Conference December 2, 2015 Alaska Energy ...

  15. Concentrating Solar Power

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  16. Solarity | Open Energy Information

    Open Energy Info (EERE)

    Solarity Jump to: navigation, search Name: Solarity Address: 200 Innovation Blvd Suite 260A Place: State College, Pennsylvania Zip: 16801 Region: Northeast - NY NJ CT PA Area...

  17. Solar Research at BNL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LIPA Issued Solar RFP on April 22, 2008 which sought: * 50 MW or more of capacity, energy, and Renewable Energy Credits (RECs) from solar photovoltaic generating ...

  18. Solar Affordable Housing Program

    Office of Environmental Management (EM)

    Solar Affordable Housing Program Why Solar for Tribes ... from a clean, renewable energy source Green jobs training ... with Other Tribal Communities The Great Plains Montana ...

  19. Rooftop Solar Challenge

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Rooftop Solar Challenge aims to reduce the cost of rooftop solar energy systems through improved permitting, financing, zoning, net metering, and interconnection processes for residential and...

  20. Solar Two Tower System

    Broader source: Energy.gov [DOE]

    In this photograph of a concentrating solar power (CSP) technology, stretched membrane heliostats with silvered polymer reflectors will be used as demonstration units at the Solar Two central...

  1. Solar collector

    DOE Patents [OSTI]

    Wilhelm, William G.

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  2. Solar skylight

    DOE Patents [OSTI]

    Adamson, James C.

    1984-01-01

    A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

  3. Solar Easements & Local Option Solar Rights Laws

    Broader source: Energy.gov [DOE]

    The New York General City, Town, and Village codes also allow local zoning districts to make regulations regarding solar access that provide for "the accommodation of solar energy systems and...

  4. Prediction of Solar Radiation on Building Rooftops: A Data-Mining Approach

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Bhaduri, Budhendra L; Kodysh, Jeffrey B

    2012-01-01

    Solar energy technologies offer a clean, renewable, and domestic energy source, and are essential components of a sustainable energy future. The accurate measurement of solar radiation data is essential for optimum site selection of future distributed solar power plants as well as sizing photovoltaic systems. However, solar radiation data are not readily available because measured sequences of radiation values are obtained for a few locations in a country. When the data are available, they are usually at different time periods and spatial scale. The availability of solar radiation data at hourly or daily time scale will enhance the integration of solar energy into electricity generation and promote a sustainable energy future. The ability to generate approximate solar radiation values is often the only practical way to obtain radiation data at hourly or daily time scale. As a result, several models have been developed for estimating solar radiation values based on analytical, numerical simulation, and statistical approaches. However, these models have inherent challenges. We will discuss some of those challenges in this paper. To enhance the prediction of solar radiation values, a novel approach is presented for estimating solar radiation values using support vector machine technique. The approach accounts for unique characteristics that influence solar radiation values. The preliminary results obtained offer useful insights for model enhancements.

  5. Flix Solar | Open Energy Information

    Open Energy Info (EERE)

    Flix Solar Jump to: navigation, search Name: Flix Solar Place: Spain Sector: Solar Product: Flix solar is developing a 12MW solar park in Flix, Tarragona, Spain. References: Flix...

  6. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  7. Sunshot Rooftop Solar Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sunshot Rooftop Solar Challenge Sunshot Rooftop Solar Challenge Sunshot Rooftop Solar Challenge

  8. EA-1823: Rockford Solar, Rockford, Illinois

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of a proposal to provide Federal funding to the Illinois Department of Commerce and Economic Opportunity (DCEO) under the State Energy Program (SEP). DCEO is seeking to provide $4 million of its SEP funds to Rockford Solar Partners LLC (RSP), who would use these funds for the design, permitting, and construction of a solar photovoltaic facility with a generating capacity of up to 20 megawatts (MW). DOE’s Proposed Action would authorize $4,025,000 million in grant expenditures. The total cost of Rockford Solar Partner’s proposed project would be approximately $127 million.

  9. Solar collector

    DOE Patents [OSTI]

    Wilhelm, W.G.

    The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  10. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  11. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

  12. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  13. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  14. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  15. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  16. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  17. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  18. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  19. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  20. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  1. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  2. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  3. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  4. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  5. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  6. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  7. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  8. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  9. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  10. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  11. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  12. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  13. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  14. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  15. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  16. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  17. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  18. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  19. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  20. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  1. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  2. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  3. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  4. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  5. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  6. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  7. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  8. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  9. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  10. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  11. Total.........................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  12. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Basements Basement in Single-Family Homes and Apartments in 2-4 Unit Buildings ... Attics Attic in Single-Family Homes and Apartments in 2-4 Unit Buildings ...

  13. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Climate region 3 Very coldCold 31,898 30,469 28,057 28,228 21,019 30,542 25,067 Mixed-humid 27,873 26,716 24,044 26,365 21,026 27,096 22,812 Mixed-dryHot-dry 12,037 10,484 7,628 ...

  14. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Air-Conditioning Equipment 1, 2 Central System......Central Air-Conditioning...... 65.9 1.1 6.4 6.4 ...

  15. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Income Relative to Poverty Line Below 100 Percent......1.3 1.2 0.8 0.4 1. Below 150 percent of poverty line or 60 percent of median State ...

  16. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ...

  17. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Table HC7.4 Space Heating Characteristics by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More Space Heating ...

  18. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line ... Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line ...

  19. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ...

  20. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Table HC7.12 Home Electronics Usage Indicators by Household Income, 2005 Below Poverty ... Table HC7.12 Home Electronics Usage Indicators by Household Income, 2005 Below Poverty ...

  1. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 ...

  2. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  3. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  4. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  5. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Median square feet per building (thousand) Median square feet per worker Median operating hours per week Median age of buildings (years) All buildings 5,557 87,093 88,182 5.0 1,029 50 32 Building floorspace (square feet) 1,001 to 5,000 2,777 8,041 10,232 2.8 821 49 37 5,001 to 10,000 1,229 8,900 9,225 7.0 1,167 50 31 10,001 to 25,000 884 14,105 14,189 15.0 1,444 56 32 25,001 to 50,000 332 11,917 11,327 35.0 1,461 60 29 50,001 to 100,000 199 13,918 12,345 67.0 1,442 60 26 100,001 to 200,000 90

  6. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ...

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ...

  8. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 ...

  9. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy ...

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Per Household Member Average Square Feet Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC1.2.2 ...

  11. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  12. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 41.8 2,603 2,199 1,654 941 795 598 1-Car Garage...... 9.5 2,064 1,664 1,039 775 624 390 2-Car Garage......

  13. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Average Square Feet per Apartment in a -- Apartments (millions) Major Outside Wall Construction Siding (Aluminum, Vinyl, Steel)...... 35.3 3.5 1,286 1,090 325 852 786 461 ...

  14. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Renter-Occupied Housing Unit Housing Units (millions) Single-Family Units ... At Home Behavior Home Used for Business Yes......

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Owner-Occupied Housing Unit U.S. Housing Units (millions) Single-Family Units ... At Home Behavior Home Used for Business Yes......

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table ... At Home Behavior Home Used for Business Yes......

  17. Pool daily fuel scheduling. Volume 2: programming manual. Final report, February 1981

    SciTech Connect (OSTI)

    Pang, C.K.; Mikolinnas, T.A.

    1981-02-01

    The results and efforts of research and development of methods for daily fuel scheduling performed under EPRI Project RP 1048-5 by Power Technologies, Inc. (PTI) are reported in three volumes: Technical Manual; Programming Manual and Program Listings. Daily fuel scheduling involves the scheduling and dispatching of generating facilities to meet all system loads and operating requirements for periods ranging from a day to a week. Daily fuel scheduling and computer requirements are defined. The scheduling problem is formulated as a mixed-integer linear programming (MILP) optimization problem in which the total system operating cost is minimized. A potentially practical scheduling procedure, based on a combination of search and MILP approaches, was proposed; these two approaches were investigated, coded in FORTRAN and tested individually. Tests using the New York Power Pool system show that the search approach may produce potential savings for fuel scheduling approaches. Additional efforts are needed to make the MILP approach practical. Finally, a number of special scheduling problems have been identified and recommended for future work. This volume of the report (Volume 2) is the Programming Manual which describes the organization and structure of the programs. Layout and function of data files, sample outputs and test data are also presented. Program organization and data for the search and MILP approaches are given. Preliminary test results, system data descriptions and sample outputs for the search approach are included in the appendices.

  18. Concentrated Solar Thermoelectric Power

    SciTech Connect (OSTI)

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  19. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, conductionconvection, seasons, trigonometry) Grade Level: ...

  20. Solar Webinar Presentation Slides

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download presentation slides from the DOE Office of Indian Energy Webinar on solar renewable energy.

  1. Solar Policy Environment: Sacramento

    Office of Energy Efficiency and Renewable Energy (EERE)

    The City of Sacramento and the greater Sacramento region is the home of a long standing history of commitment to solar. Sacramento Solar Access seeks to further widespread adoption of solar energy by addressing current market barriers and preparing, through design guidelines and education, the infrastructure that will optimize solar production in the future.

  2. Solar Policy Environment: Houston

    Broader source: Energy.gov [DOE]

    The City of Houston is committed to achieving a sustainable solar infrastructure through strategic partnerships that address market barriers for solar energy through the Houston Solar Initiative. The initiative is dedicated to this long-term goal while focusing on near- and mid-term results that go beyond demonstration solar projects.

  3. Solar Policy Environment: Boston

    Office of Energy Efficiency and Renewable Energy (EERE)

    City of Boston’s objective in creating Solar Boston is to maximize solar technology’s role in the City’s sustainable development, educational and emergency preparedness policies. Solar Boston’s objective is the installation of solar technology on all feasible and appropriate locations throughout Boston.

  4. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating

    SciTech Connect (OSTI)

    Benli, Hueseyin; Durmus, Aydin

    2009-12-15

    The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl{sub 2}6H{sub 2}O was used as PCM in thermal energy storage with a melting temperature of 29 C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18-23% of total daily thermal energy requirements of the greenhouse for 3-4 h, in comparison with the conventional heating device. (author)

  5. Photovoltaic solar concentrator

    SciTech Connect (OSTI)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  6. Solar Power Generation Development

    SciTech Connect (OSTI)

    Robert L. Johnson Jr.; Gary E. Carver

    2011-10-28

    This project centered on creating a solar cell prototype enabling significant reductions in module cost and increases in module efficiency. Low cost was addressed by using plentiful organic materials that only comprise 16% of the total module cost, and by leveraging building integrated PV concepts that reduce the cost of key module components to zero. High efficiency was addressed by implementing multiband organic PV, low cost spectral splitting, and possibly integrating photovoltaic and photothermal mechanisms. This research has contributed to the design of multiband organic PV, and the sealing of organic PV cells. If one assumes that the aggregate multiband efficiency can reach 12%, projected cost would be $0.97/W. If the sealing technology enables 10 to 20 year lifetimes, the LCOE will match that of domestic coal. The final report describes progress towards these goals.

  7. Solar collector array

    SciTech Connect (OSTI)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  8. NREL: Innovation Impact - Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration What is a quantum dot? Close Quantum dots are tiny spheres of semiconductor material measuring only about 2-10 billionths of a meter in diameter. Quantum dots are a leading candidate for a third generation of solar-cell technologies. Close Achieving significant gains in solar

  9. Solar Policy Environment: Pittsburgh

    Broader source: Energy.gov [DOE]

    In this project, Pittsburgh plans to build on its reputation as a national leader in green practices. Its Solar America Cities project will develop a distributed approach to adoption of solar energy technologies. Pittsburgh’s partnership includes universities, non-profit organizations, and business, labor and foundation communities. The city plans to transform the solar energy market and stimulate early adoption of solar technology, to show that solar technology works in a northern city.

  10. NREL: Solar Radiation Research - Solar Radiation Research Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Radiation Research Laboratory Photographs The Solar Radiation Research Laboratory (SRRL) houses more than 70 instruments to analyze and record solar radiation and surface ...

  11. 20 Years of Solar Measurements: The Solar Radiation Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Years of Solar Measurements: The Solar Radiation Research Laboratory (SRRL) at NREL Tom ... * Continuous measurements of key solar radiation resources * Calibrations of instruments ...

  12. Solar Systems and Solutions Soluciones Sistemas Solares 3S |...

    Open Energy Info (EERE)

    Systems and Solutions Soluciones Sistemas Solares 3S Jump to: navigation, search Name: Solar Systems and Solutions Soluciones Sistemas Solares (3S) Place: Navarre, Spain Sector:...

  13. China Solar Clean Energy Solutions Inc formerly Deli Solar USA...

    Open Energy Info (EERE)

    Inc formerly Deli Solar USA Inc Jump to: navigation, search Name: China Solar & Clean Energy Solutions Inc ( formerly Deli Solar (USA) Inc) Place: Connecticut Zip: 6039 Sector:...

  14. EPOD Solar Wales Ltd formerly ICP Solar Technologies Ltd | Open...

    Open Energy Info (EERE)

    Wales Ltd formerly ICP Solar Technologies Ltd Jump to: navigation, search Name: EPOD Solar (Wales) Ltd (formerly ICP Solar Technologies Ltd) Place: Mid Glamorgan, United Kingdom...

  15. United Solar Systems Corp USSC aka Bekaert ECD Solar Systems...

    Open Energy Info (EERE)

    Systems Corp USSC aka Bekaert ECD Solar Systems LLC Jump to: navigation, search Name: United Solar Systems Corp (USSC) (aka Bekaert ECD Solar Systems LLC) Place: Middletown...

  16. Solar Energy Sources SES Solar Inc formerly Electric Network...

    Open Energy Info (EERE)

    SES Solar Inc formerly Electric Network com Jump to: navigation, search Name: Solar Energy Sources - SES Solar Inc (formerly Electric Network.com) Place: Vancouver, British...

  17. Amargosa Farm Road Solar Energy Project Solar Power Plant | Open...

    Open Energy Info (EERE)

    Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC, MAN Ferrostaal Inc Location Nye County, Nevada Coordinates 38.5807111, -116.0413889...

  18. Using the standard solar model to constrain solar composition...

    Office of Scientific and Technical Information (OSTI)

    Using the standard solar model to constrain solar composition and nuclear reaction S factors Citation Details In-Document Search Title: Using the standard solar model to constrain ...

  19. Exploring changes in solar model physics to mitigate the solar...

    Office of Scientific and Technical Information (OSTI)

    Exploring changes in solar model physics to mitigate the solar abundance problem Citation Details In-Document Search Title: Exploring changes in solar model physics to mitigate the ...

  20. Topaz Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Topaz Solar Farm Sector Solar Facility Type Photovoltaic Developer OptiSolar Location San Luis Obispo County, California Coordinates 35.3102296, -120.4357631 Show Map...

  1. DE-EE0005690 Developing Solar Friendly Communities Colorado Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EE0005690 Developing Solar Friendly Communities Colorado Solar Energy Industries ... A. PROJECT OBJECTIVES The goal of the Solar Friendly Communities project is to achieve ...

  2. SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology...

    Open Energy Info (EERE)

    China Zip: 271000 Sector: Solar Product: Manufacturer and exporter of solar passive water heating systems and PV-powered solar road lighting, torches and lamps. References:...

  3. MSM Solar India | Open Energy Information

    Open Energy Info (EERE)

    Solar India Jump to: navigation, search Name: MSM Solar India Place: India Sector: Solar Product: JV company to develop solar projects. References: MSM Solar India1 This article...

  4. Mohave Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Plant Jump to: navigation, search Name Mohave Solar Power Plant Facility Mojave Solar Sector Solar Facility Type Concentrating Solar Power Facility Status Under...

  5. Ener Solar Technology srl | Open Energy Information

    Open Energy Info (EERE)

    Ener Solar Technology srl Jump to: navigation, search Name: Ener Solar Technology srl Place: Italy Sector: Solar Product: Solar project developer. References: Ener Solar Technology...

  6. Sandia Energy - Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Glare Hazard Analysis Tool Solar...

  7. Solar and Wind Rights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name State State...

  8. Solar Easements & Rights Laws | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process...

  9. Sun Shine Solar | Open Energy Information

    Open Energy Info (EERE)

    Shine Solar Jump to: navigation, search Logo: Sun Shine Solar Name: Sun Shine Solar Place: Norwich, United Kingdom Sector: Solar Product: Solar energy products Phone Number: 01508...

  10. Solar Energy Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Solar Solar Energy Resource Basics Solar Energy Resource Basics August 21, 2013 - 11:40am Addthis Solar radiation, often called the solar resource, is a ...

  11. Solar Business Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Innovation Solar Business Innovation Solar Business Innovation Networking and Solar Technical Assistance Solar Training Solar DATA ANALYSIS The SunShot Initiative is ...

  12. Vaillant Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    Zip: 92075 Sector: Solar Product: California-based solar company specializing in solar water heating, solar pool heating and solar space heating systems for residential and...

  13. CRSP Funds 10 New Advanced Solar Research Projects, Announces First

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sponsored Research Program Project with Konarka Technologies - News Releases | NREL CRSP Funds 10 New Advanced Solar Research Projects, Announces First Sponsored Research Program Project with Konarka Technologies February 17, 2010 The Center for Revolutionary Solar Photoconversion (CRSP) has funded 10 advanced solar research projects totaling $800,000 - its second round of Shared Research Program funding. Separately, CRSP also has launched its first Sponsored Research Program effort - a

  14. Task Descriptions | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Task Descriptions Center for Bio-Inspired Solar Fuel Production Central to design of a complete system for solar water oxidation and hydrogen production is incorporation of synthetic components inspired by natural systems into one operational unit. The research effort of the Center is naturally divided into the following subtasks: Subtask 1. Total systems analysis, assembly and testing The solar water splitting device consists of four subsystems, each of which is being investigated by one of the

  15. Collaboratory Funds 12 New Solar Research Projects - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboratory Funds 12 New Solar Research Projects October 15, 2008 Photo of the Colorado Renewable Energy Collaboratory logo. The Center for Revolutionary Solar Photoconversion (CRSP) is launching 12 novel solar research projects totaling more than $1.1 million in its inaugural round of research and development funding. CRSP is the newest research center of the Colorado Renewable Energy Collaboratory. The center concentrates on ways to directly convert the sun's energy to clean, low-cost

  16. Himin Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: Himin Solar Place: Alicante, Spain Zip: 3201 Sector: Solar Product: Manufacturing, planning, development and distribution of projects of solar energy products....

  17. Webasto Solar | Open Energy Information

    Open Energy Info (EERE)

    Webasto Solar Jump to: navigation, search Name: Webasto Solar Place: Germany Product: German module manufacturer. References: Webasto Solar1 This article is a stub. You can help...

  18. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink Pratt Whitney Rocketdyne Testing Concentrating Solar Power, EC, Energy, Facilities, ...

  19. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink High-Efficiency Solar Thermochemical Reactor for Hydrogen Production Center for ...

  20. Solar Mimizan | Open Energy Information

    Open Energy Info (EERE)

    Mimizan Jump to: navigation, search Name: Solar Mimizan Place: PARIS, France Zip: 75002 Sector: Solar Product: Paris-based, building-integrated solar power plant developer....

  1. Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... ActivitiesBalance of Systems and Soft CostsSolar Glare Hazard Analysis Tool Solar ...

  2. Sereno Solar | Open Energy Information

    Open Energy Info (EERE)

    Name: Sereno Solar Place: Monte Sereno, California Sector: Solar Product: Has developed a solar passive water heating panel to be installed under current roofing or siding...

  3. Phototaxis Solar | Open Energy Information

    Open Energy Info (EERE)

    Cambridge, Massachusetts Sector: Solar Product: Solar start-up planning to construct solar-panel covered roofs over parking lots. Coordinates: 43.003745, -89.017499 Show...

  4. AEE Solar | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Logo: AEE Solar Name: AEE Solar Address: 1155 Redway Drive PO Box 339 Place: Redway, California Zip: 95560 Region: Bay Area Sector: Solar Year Founded:...

  5. Trinity Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: Trinity Solar Place: Freehold, New Jersey Zip: 7728 Sector: Solar Product: A provider of solar energy systems to home and business owners. Coordinates: 42.376865,...

  6. Harvest Solar | Open Energy Information

    Open Energy Info (EERE)

    Harvest Solar Energy Name: Harvest Solar Energy Address: 1571 East 22 Place Place: Tulsa, Oklahoma Zip: 74114 Sector: Solar Product: Renewable energy systems Phone Number:...

  7. Abound Solar | Open Energy Information

    Open Energy Info (EERE)

    Abound Solar Jump to: navigation, search Logo: Abound Solar Name: Abound Solar Address: 2695 Rocky Mountain Avenue, Suite 100 Place: Loveland, Colorado Zip: 80538 Region: Rockies...

  8. Select Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Logo: Select Solar Name: Select Solar Address: Unit 5 Blakehill Business Park Chelworth Road Cricklade SN6 6JD Place: Cricklade, United Kingdom...

  9. Solar Community | Open Energy Information

    Open Energy Info (EERE)

    Community Jump to: navigation, search Name: Solar Community Address: 4704 E Cesar Chavez St Place: Austin, Texas Zip: 78702 Region: Texas Area Sector: Solar Product: Solar sales...

  10. Solar Monkey | Open Energy Information

    Open Energy Info (EERE)

    Monkey Jump to: navigation, search Name: Solar Monkey Place: Irvine, California Zip: 92618 Sector: Solar Product: Solar Monkey installs PV systems for commercial and industrial...

  11. Solar Power | Open Energy Information

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Solar Power (Redirected from Solar energy) Jump to: navigation, search Solar Energy...

  12. Solar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  13. Solar Junction | Open Energy Information

    Open Energy Info (EERE)

    Junction Jump to: navigation, search Name: Solar Junction Place: San Jose, California Zip: CA 95131 Sector: Efficiency, Solar Product: Solar Junction is developing high efficiency...

  14. Solar Power | Open Energy Information

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Solar Power (Redirected from Solar) Jump to: navigation, search Solar Energy Companies...

  15. Activ Solar | Open Energy Information

    Open Energy Info (EERE)

    Activ Solar Jump to: navigation, search Name: Activ Solar Address: Vienna, Wipplingerstrasse 35 Place: Austria Zip: 1010 Sector: Solar Product: The company's main business areas...

  16. Agrupacion Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Agrupacion Solar Place: Spain Product: Spanish PV project developer, or finance arranger. References: Agrupacion Solar1 This article is a...

  17. EMPE Solar | Open Energy Information

    Open Energy Info (EERE)

    EMPE Solar Jump to: navigation, search Name: EMPE Solar Place: Spain Product: Developing projects using new module technology, in Spain. References: EMPE Solar1 This article is a...

  18. Friends Solar | Open Energy Information

    Open Energy Info (EERE)

    Friends Solar Name: Friends Solar Place: Kahuku, Hawaii Sector: Renewable Energy Product: Solar Energy Number of Employees: 11-50 Year Founded: 1988 Phone Number: 8086839550...

  19. Apros Solar | Open Energy Information

    Open Energy Info (EERE)

    Apros Solar Jump to: navigation, search Name: Apros Solar Place: Prague 2, Czech Republic Zip: 120 00 Product: Czech developer of PV projects. References: Apros Solar1 This...

  20. Sun Solar | Open Energy Information

    Open Energy Info (EERE)

    Sun Solar Jump to: navigation, search Name: Sun Solar Place: San Diego, California Zip: 92019 Sector: Services, Solar Product: String representation "Established in ... e...

  1. Solar2 | Open Energy Information

    Open Energy Info (EERE)

    Germany Zip: 27472 Sector: Solar Product: Sells and installs PV, solar thermal and wood pellet powered heating systems. References: Solar21 This article is a stub. You can...

  2. Line-Focus Solar Collector

    Broader source: Energy.gov [DOE]

    Solar thermal electric technologies, such as this concentrating solar power parabolic trough, use highly reflective materials to capture the sun's energy and produce electricity. Shown is solar...

  3. First Solar Corporate Template 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Copyright 2013, First Solar, Inc. Why Are We Backtracking? 3 Copyright 2013, First Solar, Inc. Shading Response * First Solar modules are laid-out in landscape ...

  4. Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    Place: Dubai, United Arab Emirates Sector: Solar Product: Dubai-based solar photovoltaic module manufacturing company. References: Solar Technologies1 This article is a...

  5. Tessera Solar | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Tessera Solar Name: Tessera Solar Address: 2600 10th Street Place: Berkeley, California Zip: 94710 Region: Bay Area Sector: Solar Product: Developer of utility...

  6. Utah Solar Outlook March 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  7. Paz Solar | Open Energy Information

    Open Energy Info (EERE)

    Paz Solar Jump to: navigation, search Name: Paz Solar Place: Israel Product: Israel-based engineering and installation contractor. References: Paz Solar1 This article is a stub....

  8. Aztec Solar | Open Energy Information

    Open Energy Info (EERE)

    Rancho Cordova, California Zip: 95742 Sector: Solar Product: Installer of solar hot water and pool heating systems. References: Aztec Solar1 This article is a stub. You can...

  9. ESPEE Solar | Open Energy Information

    Open Energy Info (EERE)

    Karnataka, India Zip: 560 091 Sector: Solar Product: Distributor of solar thermal water heating systems and PV lights. References: ESPEE Solar1 This article is a stub....

  10. Once-Daily Radiation Therapy for Inflammatory Breast Cancer

    SciTech Connect (OSTI)

    Brown, Lindsay; Harmsen, William; Blanchard, Miran; Goetz, Matthew; Jakub, James; Mutter, Robert; Petersen, Ivy; Rooney, Jessica; Stauder, Michael; Yan, Elizabeth; Laack, Nadia

    2014-08-01

    Purpose: Inflammatory breast cancer (IBC) is a rare and aggressive breast cancer variant treated with multimodality therapy. A variety of approaches intended to escalate the intensity and efficacy of radiation therapy have been reported, including twice-daily radiation therapy, dose escalation, and aggressive use of bolus. Herein, we examine our outcomes for patients treated with once-daily radiation therapy with aggressive bolus utilization, focusing on treatment technique. Methods and Materials: A retrospective review of patients with nonmetastatic IBC treated from January 1, 2000, through December 31, 2010, was performed. Locoregional control (LRC), disease-free survival (DFS), overall survival (OS) and predictors thereof were assessed. Results: Fifty-two women with IBC were identified, 49 (94%) of whom were treated with neoadjuvant chemotherapy. All underwent mastectomy followed by adjuvant radiation therapy. Radiation was delivered in once-daily fractions of 1.8 to 2.25 Gy (median, 2 Gy). Patients were typically treated with daily 1-cm bolus throughout treatment, and 33 (63%) received a subsequent boost to the mastectomy scar. Five-year Kaplan Meier survival estimates for LRC, DFS, and OS were 81%, 56%, and 64%, respectively. Locoregional recurrence was associated with poorer OS (P<.001; hazard ratio [HR], 4.1). Extracapsular extension was associated with worse LRC (P=.02), DFS (P=.007), and OS (P=.002). Age greater than 50 years was associated with better DFS (P=.03). Pathologic complete response was associated with a trend toward improved LRC (P=.06). Conclusions: Once-daily radiation therapy with aggressive use of bolus for IBC results in outcomes consistent with previous reports using various intensified radiation therapy regimens. LRC remains a challenge despite modern systemic therapy. Extracapsular extension, age ≤50 years, and lack of complete response to chemotherapy appear to be associated with worse outcomes. Novel strategies are needed in IBC

  11. Solar Design Workbook

    SciTech Connect (OSTI)

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  12. Rooftop Solar Challenge to Cut Solar's Red Tape | Department...

    Energy Savers [EERE]

    Rooftop Solar Challenge to Cut Solar's Red Tape Rooftop Solar Challenge to Cut Solar's Red Tape December 1, 2011 - 4:35pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor ...

  13. ThinkSolar SolarMarkt US | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: ThinkSolar (SolarMarkt US) Place: Oakland, California Sector: Solar Product: US subsidiary of German PV installer SolarMarkt which like its parent also...

  14. China Nuvo Solar Energy Inc formerly Nuvo Solar Energy Inc |...

    Open Energy Info (EERE)

    Nuvo Solar Energy Inc formerly Nuvo Solar Energy Inc Jump to: navigation, search Name: China Nuvo Solar Energy Inc (formerly Nuvo Solar Energy Inc) Place: West Palm Beach, Florida...

  15. SolarBridge Technologies: Helping Solar Modules Speak the Language...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SolarBridge Technologies: Helping Solar Modules Speak the Language of the Energy Grid SolarBridge Technologies: Helping Solar Modules Speak the Language of the Energy Grid June 5, ...

  16. Solar wind samples give insight into birth of solar system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar wind samples Solar wind samples give insight into birth of solar system Most of the Genesis payload consisted of fragile solar-wind collectors, which had been exposed to the ...

  17. NREL + SolarCity: Maximizing Solar Power on Electrical Grids...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    + SolarCity: Maximizing Solar Power on Electrical Grids (Text Version) This is a text version of the video "NREL + SolarCity: Maximizing Solar Power on Electrical Grids." RYAN ...

  18. Homebuyer Solar Option and Solar Offset Program

    Broader source: Energy.gov [DOE]

    Senate Bill 1 of 2006, which established the statewide California Solar Initiative, also required the California Energy Commission (CEC) to implement regulations that require sellers of production...

  19. Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Solar Rooftop solar is growing rapidly, but red tape and additional costs can still get in the way. We explore the reasons why -- and how the Energy Department is working to make going solar easier -- in this episode of our podcast, Direct Current. Rooftop solar is growing rapidly, but red tape and additional costs can still get in the way. We explore the reasons why -- and how the Energy Department is working to make going solar easier -- in this episode of our podcast, Direct Current.

  20. Making a Difference: Solarize Programs Accelerating Solar Adoption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Making a Difference: Solarize Programs Accelerating Solar Adoption Making a Difference: Solarize Programs Accelerating Solar Adoption December 29, 2015 - 12:51pm Addthis Making a Difference: Solarize Programs Accelerating Solar Adoption Dr. Elaine Ulrich Dr. Elaine Ulrich Balance of Systems/Soft Costs Program Manager As a part of their Rooftop Solar Challenge II award, the Midwest Renewable Energy Association has organized group solar buys for 92 families in Milwaukee,

  1. EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 8: Abengoa Solar's Mojave Solar Project near Barstow, CA EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA July 1, 2011 EA-1798: Final Environmental Assessment Loan Guarantee to Mojave Solar, LLC for the Abengoa Mojave Solar Project near Barstow, California July 8, 2011 EA-1798: Finding of No Significant Impact Loan Guarantee to Mojave Solar, LLC for the Abengoa Mojave Solar Project near Barstow, California March 17, 2011 Abengoa Mojave Final Biological

  2. Carports with Solar Panels do Double Duty for Navy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14, 2010 - 12:22pm Addthis Joshua DeLung What does this project do? In total, all of China Lake's solar PV projects generate enough electricity a year to power up to 1,200...

  3. Category:Solar Power in China | Open Energy Information

    Open Energy Info (EERE)

    3 pages are in this category, out of 3 total. A All Solar PV C China Guangdong Nuclear Power Company China Guodian Corporation Retrieved from "http:en.openei.orgw...

  4. SJ Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: SJ Solar Place: San Jose, California Zip: 95131 Sector: Solar Product: Cell design firm for concentrated solar References: SJ Solar1 This article is a stub. You...

  5. Capital Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Capital Solar Place: Lecce, Italy Sector: Solar Product: Lecce-based solar project developer. Coordinates: 40.357955, 18.16801 Show Map...

  6. APOLO Solar | Open Energy Information

    Open Energy Info (EERE)

    APOLO Solar Jump to: navigation, search Name: APOLO Solar Address: Paseo de la Castellana, 164-166 1 Place: Madrid, Spain Sector: Solar Product: PV, solar thermal Phone Number:...

  7. Hope Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Hope Solar Address: No.6-8 Hope Road Taihu Town Tongzhou Dist Place: Beijing, China Sector: Solar Product: Solar cells and power systems...

  8. Solar Dynamics | Open Energy Information

    Open Energy Info (EERE)

    Dynamics Jump to: navigation, search Name: Solar Dynamics Place: Ottumwa, Iowa Zip: IA 52501 Sector: Solar Product: Solar Dynamics is a US-based solar powered attic roof vents...

  9. ISI Solar | Open Energy Information

    Open Energy Info (EERE)

    ISI Solar Jump to: navigation, search Name: ISI Solar Place: New City, New York Zip: 10956 Sector: Solar Product: US-based company that designs and installs solar power systems for...

  10. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  11. Solar Success Story at Moanalua Terrace

    SciTech Connect (OSTI)

    Not Available

    1999-03-01

    Solar systems prove to be the environmentally and economically sound choice for heating water in U.S. Navy housing at Moanalua Terrace in Pearl Harbor, Hawaii. Hawaii is a perfect environment for solar water heating,'' according to Alan Ikeda, a Housing Management Specialist with the Pacific Naval Facility Engineering Command Housing Department in Pearl Harbor, Hawaii. ''The sun shines most of the time, we don't have to worry about freezing, the state offers a 35% solar tax credit, and our local utility supports the purchase and installation of solar systems with generous rebates.'' The Hawaiian Electric Company's (HECO's) $1,500 per unit rebate for solar water heaters installed on new construction helped persuade the Navy to take advantage of Hawaii's solar resource and install solar water heaters on family housing units. At Moanalua Terrace, the Navy had demolished 752 units of family housing, which they are rebuilding in four phases. Designers decided to use the opportunity to give the solar systems a try. When the 100 homes in Phase I were built, money was not available for solar water heaters. However, Ikeda subsequently secured a $130,000 grant from the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) to retrofit the Phase I homes with solar systems. In retrofit applications, HECO rebates $800 per unit ($80,000 total) on approved equipment, and Pearl Harbor Family Housing will pay the difference of the estimated $340,000 total cost, or about $130,000. The 136 units built during Phase II of the Moanalua Terrace project included solar systems in their specifications, so the Navy was able to take advantage of the $1,500 per system HECO rebate for approved solar water heaters in new construction. The Navy chose direct (open-loop) active systems that circulate potable water through flat-plate collectors coated with a black chrome selective surface. Each system consists of a 4-foot by 8-foot (1.2-m by 2.4-m) collector made by American

  12. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  13. Solar Multimedia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multimedia Solar Multimedia <a target="_self" href="/node/1758401">Solar Dish Sets World-Record Efficiency</a><br /> Solar Dish - Albuquerque, New Mexico<br /> Credit: Sandia National Laboratories/Randy Montoya Solar Dish Sets World-Record Efficiency Solar Dish - Albuquerque, New Mexico Credit: Sandia National Laboratories/Randy Montoya Solar Technologies Photovoltaics Concentrating Solar Power Solar Applications Residential Commercial City and County

  14. Solar Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Basics Solar is the Latin word for sun-a powerful source of energy that can be used to heat, cool, and light our homes and businesses. That's because more energy from ...

  15. LADWP- Solar Incentive Program

    Broader source: Energy.gov [DOE]

    The Los Angeles Department of Water and Power's (LADWP) Solar Incentive Program began in 2000, with a funding level of $150 million. The California Solar Initiative, created in 2007 upon the...

  16. Alaska Solar Energy Workshop

    Broader source: Energy.gov [DOE]

    The Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices, performance of systems in the arctic, project development and financing, and lessons learned about solar energy.

  17. REAP Anchorage Solar Tour

    Broader source: Energy.gov [DOE]

    The Alaska Center for Appropriate Technology has partnered with the American Solar Energy Society to share how solar energy is being used and developed in Alaska communities. Tours take place in...

  18. Solar Decathlon 2007 Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    This podcast captures an interview with Richard King, who provides an overview of Solar Decathlon 2007. King is with the U.S. Department of Energy and director of Solar Decathlon.

  19. Solar Construction Permitting Standards

    Broader source: Energy.gov [DOE]

    Owners of solar photovoltaic (PV) systems and solar water heating systems in Colorado are required to obtain a building permit before their systems may be installed. Permits are handled at the l...

  20. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  1. Solar & Wind Equipment Certification

    Broader source: Energy.gov [DOE]

    With the exception of solar energy systems designed or installed by the final owner, systems sold or installed in Arizona must be installed by licensed solar contractors and must comply with any...

  2. Powering America's Solar Workforce

    Broader source: Energy.gov [DOE]

    This video provides an overview of the U.S. Department of Energy SunShot Initiative’s efforts to develop America’s solar workforce, including online training modules and programs like the Solar...

  3. Solar 2015 Conference

    Broader source: Energy.gov [DOE]

    The American Solar Energy Society is hosting a three-day conference where attendees can share sustainable energy ideas and network with other clean energy professionals who are driving solar change...

  4. Solar Contractor Licensing

    Broader source: Energy.gov [DOE]

    Until 1994, Florida offered limited specialty licenses for residential solar hot water and pool heating, as well a general solar contractor's license. These specialty licenses have not been issued...

  5. Solar Equipment Certification Requirement

    Broader source: Energy.gov [DOE]

    All active solar space-heating and water-heating systems that are sold, offered for sale, or installed on residential and commercial buildings in Minnesota must meet Solar Rating and Certification...

  6. Mass Solar Loan Program

    Broader source: Energy.gov [DOE]

    Massachusetts offers fixed low-interest loans to residents purchasing solar photovoltaic (PV) systems. One purpose of this program is to provide more opportunity for residents to own solar PV...

  7. Solar Advantage Plus Program

    Broader source: Energy.gov [DOE]

    DC District Department of Environment (DDOE) offers Solar Advantage Plus program, which fully subsidizes the cost of installation of solar PV system for eligible low-income residents in DC. The...

  8. Solar Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    For both residential and non-residential systems, the exemption applies to solar-energy systems that utilize solar radiation to produce energy designed to provide heating, cooling, hot water and/or...

  9. Oregon's Solar Advantage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SolaicxMEMC IngotsWafers Sanyo Solar Oregon IngotsWafers y g g Peak Sun Polysilicon SoloPower Thin Film CIGs Solar Supply Chain Incentives Incentives Compan T pe Company Type PV ...

  10. Solar Market Pathways

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of...

  11. CT Solar Loan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Clean Energy Finance and Investment Authority is offering a pilot loan program, CT Solar Loan, to provide homeowners with 15-year loans for solar PV equipment. The loans are administered...

  12. Solar Property Tax Exemption

    Broader source: Energy.gov [DOE]

    In Missouri, solar energy systems not held for resale are exempt from state, local, and county property taxes. As enacted in July 2013, the law does not define solar energy systems.

  13. CT Solar Lease

    Broader source: Energy.gov [DOE]

    CT Solar Lease allows homeowners to lease a photovoltaic (PV) or solar thermal system, with fixed monthly payments, for a term of 20 years, at no upfront down payment.* This program, which takes...

  14. Solar Resource Assessment

    SciTech Connect (OSTI)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  15. Silicon solar cell assembly

    DOE Patents [OSTI]

    Burgess, Edward L.; Nasby, Robert D.; Schueler, Donald G.

    1979-01-01

    A silicon solar cell assembly comprising a large, thin silicon solar cell bonded to a metal mount for use when there exists a mismatch in the thermal expansivities of the device and the mount.

  16. Solar 2015 Conference

    Broader source: Energy.gov [DOE]

    The Solar 2015 Conference is a three-day conference where attendees can share sustainable energy ideas and network with other clean energy professionals who are driving solar change and industry innovation.

  17. Solar Permitting Law

    Broader source: Energy.gov [DOE]

    This legislation also addressed permitting fees for solar systems.  Counties and cities may not charge permit fees for solar permit applications specifically, but they can charge building permit ...

  18. Anchorage Solar Tour

    Broader source: Energy.gov [DOE]

    The Alaska Center for Appropriate Technology has partnered with the American Solar Energy Society to share how solar energy is being used and developed in Alaska communities. Tours take place in Fairbanks, Mat Su, Kenai, and Anchorage.

  19. Solar Webinar Text Version

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download the text version of the audio from the DOE Office of Indian Energy webinar on solar renewable energy.

  20. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Valuation Rates Karl R. Rábago Rábago Energy LLC 1 The Ideal Residential Solar Tariff ‣ Fair to the utility and non-solar customers ‣ Fair compensation to the solar customer ‣ Decouple compensation from incentives ‣ Align public policy goals (decouple compensation from consumption) ‣ Intuitively sound and administratively simple 2 Historical Antecedents ‣ Externalities ‣ Price ≠ Cost ‣ Green Power ‣ Small Is Profitable (http://www.smallisprofitable.org/) ‣ Local