Powered by Deep Web Technologies
Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

5Calculating Total Radiation Dosages at Mars The NASA, Mars Radiation Environment Experiment (MARIE) measured the daily  

E-Print Network [OSTI]

Radiation for astronauts orbiting Mars. The biggest uncertainty is in the SPE dose estimate. We had important than GCRs as a source of radiation? Explain why or why not in terms of estimation uncertainties5Calculating Total Radiation Dosages at Mars The NASA, Mars Radiation Environment Experiment (MARIE

2

IEP - Water-Energy Interface: Total Maximum Daily Load Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Maximum Daily Loads (TMDLs) Total Maximum Daily Loads (TMDLs) The overall goal of the Clean Water Act is to "restore and maintain the chemical, physical, and biological integrity of the Nation’s waters." In 1999, EPA proposed changes to Section 303(d), to establish Total Maximum Daily Loads (TMDLs) for watersheds that do not meet this goal. The TMDL is the highest amount of a given pollutant that is permissible in that body of water over a given period of time. TMDLs include both waste load allocation (WLA) for point sources and load allocations for non-point sources. In Appalachia, acid mine drainage (AMD) is the single most damaging non-point source. There is also particular concern of the atmospheric deposition of airborne sulfur, nitrogen, and mercury compounds. States are currently in the process of developing comprehensive lists of impaired waters and establishing TMDLs for those waters. EPA has recently proposed a final rule that will require states to develop TMDLs and implement plans for improving water quality within the next 10 years. Under the new rule, TMDL credits could be traded within a watershed.

3

Predicting Daily Net Radiation Using Minimum Climatological Data1  

E-Print Network [OSTI]

Predicting Daily Net Radiation Using Minimum Climatological Data1 S. Irmak, M.ASCE2 ; A. Irmak3 ; J for predicting daily Rn have been widely used. However, when the paucity of detailed climatological data with National Weather Service climatological datasets that only record Tmax and Tmin on a regular basis. DOI: 10

4

Combined Total Amount of Oil and Gas Recovered Daily from the...  

Broader source: Energy.gov (indexed) [DOE]

XLS Combined Total Amount of Oil and Gas Recovered Daily from the Top Hat and Choke Line oil recovery systems - XLS Updated through 12:00 AM on July 16, 2010. 52Item84Recovery...

5

Combined Total Amount of Oil and Gas Recovered Daily from the...  

Broader source: Energy.gov (indexed) [DOE]

ODS format Combined Total Amount of Oil and Gas Recovered Daily from the Top Hat and Choke Line oil recovery systems - ODS format Updated through 12:00 AM on July 16, 2010....

6

Do Diurnal Aerosol Changes Affect Daily Average Radiative Forcing?  

SciTech Connect (OSTI)

Strong diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project (TCAP) on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF, when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

2013-06-17T23:59:59.000Z

7

Estimating Radiation Risk from Total Effective Dose Equivalent...  

National Nuclear Security Administration (NNSA)

and UNSCEAR 1988 in Radiation Risk Assessment - Lifetime Total Cancer Mortality Risk Estimates at Low Doses and Low Dose Rates for Low-LET Radiation, Committee on Interagency...

8

Prediction of clock time hourly global radiation from daily values over  

Open Energy Info (EERE)

Prediction of clock time hourly global radiation from daily values over Prediction of clock time hourly global radiation from daily values over Bangladesh Dataset Summary Description (Abstract): A need for predicting hourly global radiation exists for many locations particularly in Bangladesh for which measured values are not available and daily values have to be estimated from sunshine data. The CPRG model has been used to predict values of hourly Gh for Dhaka (23.770N, 90.380E), Chittagong (22.270N, 91.820E) and Bogra (24.850N, 89.370E) for = ±7.50, ±22.50, ±37.50, ±52.50, ±67.50, ±82.50 and ±97.50 i.e., for ±1/2, ±3/2, ±5/2, ±7/2, ±9/2, ±11/2, ±13/2 hours before and after solar noon and the computed values for different months are symmetrical about solar noon whereas for many months experimental data show a clear asymmetry. To obtain improved

9

Statistical correlation between hourly and daily values of solar radiation on horizontal surface at sea level in the Italian climate  

E-Print Network [OSTI]

219- Statistical correlation between hourly and daily values of solar radiation on horizontal- nalières du rayonnement solaire. Abstract. 2014 The knowledge of hourly data of solar radiation is required data measured in Italian stations and propose a method to estimate hourly solar radiation

Boyer, Edmond

10

The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data  

SciTech Connect (OSTI)

The main objective of present study is to predict daily global solar radiation (GSR) on a horizontal surface, based on meteorological variables, using different artificial neural network (ANN) techniques. Daily mean air temperature, relative humidity, sunshine hours, evaporation, and wind speed values between 2002 and 2006 for Dezful city in Iran (32 16'N, 48 25'E), are used in this study. In order to consider the effect of each meteorological variable on daily GSR prediction, six following combinations of input variables are considered: (I)Day of the year, daily mean air temperature and relative humidity as inputs and daily GSR as output. (II)Day of the year, daily mean air temperature and sunshine hours as inputs and daily GSR as output. (III)Day of the year, daily mean air temperature, relative humidity and sunshine hours as inputs and daily GSR as output. (IV)Day of the year, daily mean air temperature, relative humidity, sunshine hours and evaporation as inputs and daily GSR as output. (V)Day of the year, daily mean air temperature, relative humidity, sunshine hours and wind speed as inputs and daily GSR as output. (VI)Day of the year, daily mean air temperature, relative humidity, sunshine hours, evaporation and wind speed as inputs and daily GSR as output. Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are applied for daily GSR modeling based on six proposed combinations. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data. The comparison of obtained results from ANNs and different conventional GSR prediction (CGSRP) models shows very good improvements (i.e. the predicted values of best ANN model (MLP-V) has a mean absolute percentage error (MAPE) about 5.21% versus 10.02% for best CGSRP model (CGSRP 5)). (author)

Behrang, M.A.; Assareh, E. [Department of Mechanical Engineering, Young Researchers Club, Islamic Azad University, Dezful Branch (Iran); Ghanbarzadeh, A.; Noghrehabadi, A.R. [Department of Mechanical Engineering, Engineering Faculty, Shahid Chamran University, Ahvaz (Iran)

2010-08-15T23:59:59.000Z

11

Forecasting of preprocessed daily solar radiation time series using neural networks  

SciTech Connect (OSTI)

In this paper, we present an application of Artificial Neural Networks (ANNs) in the renewable energy domain. We particularly look at the Multi-Layer Perceptron (MLP) network which has been the most used of ANNs architectures both in the renewable energy domain and in the time series forecasting. We have used a MLP and an ad hoc time series pre-processing to develop a methodology for the daily prediction of global solar radiation on a horizontal surface. First results are promising with nRMSE {proportional_to} 21% and RMSE {proportional_to} 3.59 MJ/m{sup 2}. The optimized MLP presents predictions similar to or even better than conventional and reference methods such as ARIMA techniques, Bayesian inference, Markov chains and k-Nearest-Neighbors. Moreover we found that the data pre-processing approach proposed can reduce significantly forecasting errors of about 6% compared to conventional prediction methods such as Markov chains or Bayesian inference. The simulator proposed has been obtained using 19 years of available data from the meteorological station of Ajaccio (Corsica Island, France, 41 55'N, 8 44'E, 4 m above mean sea level). The predicted whole methodology has been validated on a 1.175 kWc mono-Si PV power grid. Six prediction methods (ANN, clear sky model, combination..) allow to predict the best daily DC PV power production at horizon d + 1. The cumulated DC PV energy on a 6-months period shows a great agreement between simulated and measured data (R{sup 2} > 0.99 and nRMSE < 2%). (author)

Paoli, Christophe; Muselli, Marc; Nivet, Marie-Laure [University of Corsica, CNRS UMR SPE, Corte (France); Voyant, Cyril [University of Corsica, CNRS UMR SPE, Corte (France); Hospital of Castelluccio, Radiotherapy Unit, Ajaccio (France)

2010-12-15T23:59:59.000Z

12

Method to Improve Total Dose Radiation Hardness in a CMOS dc-dc Boost  

E-Print Network [OSTI]

in a wide range of radiation environment, with increasing total dose radiation, The efticieney also greatlyMethod to Improve Total Dose Radiation Hardness in a CMOS dc-dc Boost Converter Huadian Pan to natural radiation in space. Among the effects of ionizing radiation are shiftsin threshold voltageand

Wilamowski, Bogdan Maciej

13

RTOG 0913: A Phase 1 Study of Daily Everolimus (RAD001) in Combination With Radiation Therapy and Temozolomide in Patients With Newly Diagnosed Glioblastoma  

SciTech Connect (OSTI)

Purpose: To determine the safety of the mammalian target of rapamycin inhibitor everolimus (RAD001) administered daily with concurrent radiation and temozolomide in newly diagnosed glioblastoma patients. Methods and Materials: Everolimus was administered daily with concurrent radiation (60 Gy in 30 fractions) and temozolomide (75 mg/m{sup 2} per day). Everolimus was escalated from 2.5 mg/d (dose level 1) to 5 mg/d (dose level 2) to 10 mg/d (dose level 3). Adjuvant temozolomide was delivered at 150 to 200 mg/m{sup 2} on days 1 to 5, every 28 days, for up to 12 cycles, with concurrent everolimus at the previously established daily dose of 10 mg/d. Dose escalation continued if a dose level produced dose-limiting toxicities (DLTs) in fewer than 3 of the first 6 evaluable patients. Results: Between October 28, 2010, and July 2, 2012, the Radiation Therapy Oncology Group 0913 protocol initially registered a total of 35 patients, with 25 patients successfully meeting enrollment criteria receiving the drug and evaluable for toxicity. Everolimus was successfully escalated to the predetermined maximum tolerated dose of 10 mg/d. Two of the first 6 eligible patients had a DLT at each dose level. DLTs included gait disturbance, febrile neutropenia, rash, fatigue, thrombocytopenia, hypoxia, ear pain, headache, and mucositis. Other common toxicities were grade 1 or 2 hypercholesterolemia and hypertriglyceridemia. At the time of analysis, there was 1 death reported, which was attributed to tumor progression. Conclusions: Daily oral everolimus (10 mg) combined with both concurrent radiation and temozolomide followed by adjuvant temozolomide is well tolerated, with an acceptable toxicity profile. A randomized phase 2 clinical trial with mandatory correlative biomarker analysis is currently under way, designed to both determine the efficacy of this regimen and identify molecular determinants of response.

Chinnaiyan, Prakash, E-mail: prakash.chinnaiyan@moffitt.org [Department of Radiation Oncology, Experimental Therapeutics and Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida (United States); Won, Minhee [Radiation Therapy Oncology Group, Philadelphia, Pennsylvania (United States); Wen, Patrick Y. [Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (United States); Rojiani, Amyn M. [Department of Pathology, Medical College of Georgia, Augusta, Georgia (United States); Wendland, Merideth [Radiation Oncology, US Oncology-Willamette Valley Cancer Institute, Eugene, Oregon (United States); Dipetrillo, Thomas A. [Department of Radiation Oncology, Rhode Island Hospital, Providence, Rhode Island (United States); Corn, Benjamin W. [Department of Radiation Oncology, Tel Aviv Medical Center, Tel Aviv (Israel); Mehta, Minesh P. [Department of Radiation Oncology, University of Maryland, Baltimore, Maryland (United States)

2013-08-01T23:59:59.000Z

14

Spatial and Quantitative Approach to Incorporating Stakeholder Values into Total Maximum Daily Loads: Dominguez Channel Case Study  

SciTech Connect (OSTI)

The Federal Clean Water Act (CWA) Section 303(d)(1)(A) requires each state to identify those waters that are not achieving water quality standards. The result of this assessment is called the 303(d) list. The CWA also requires states to develop and implement Total Maximum Daily Loads (TMDLs) for these waters on the 303(d) list. A TMDL specifies the maximum amount of a pollutant that a water body can receive and still meet water quality standards, and allocates the pollutant loadings to point and non-point sources. Nationwide, over 34,900 segments of waterways have been listed as impaired by the Environmental Protection Agency (EPA 2006). The EPA enlists state agencies and local communities to submit TMDL plans to reduce discharges by specified dates or have them developed by the EPA. The Department of Energy requested Lawrence Livermore National Laboratory (LLNL) to develop appropriate tools to assist in improving the TMDL process. An investigation of this process by LLNL found that plans to reduce discharges were being developed based on a wide range of site investigation methods. Our investigation found that given the resources available to the interested and responsible parties, developing a quantitative stakeholder input process and using visualization tools to display quantitative information could improve the acceptability of TMDL plans. We developed a stakeholder allocation model (SAM) which uses multi-attribute utility theory to quantitatively structure the preferences of the major stakeholder groups. We then applied GIS to display allocation options in maps representing economic activity, community groups, and city agencies. This allows allocation options and stakeholder concerns to be represented in both space and time. The primary goal of this tool is to provide a quantitative and visual display of stakeholder concerns over possible TMDL options.

Stewart, J S; Baginski, T A; Greene, K G; Smith, A; Sicherman, A

2006-06-23T23:59:59.000Z

15

Locoregional Outcomes of Inflammatory Breast Cancer Patients Treated With Standard Fractionation Radiation and Daily Skin Bolus in the Taxane Era  

SciTech Connect (OSTI)

Purpose: To assess locoregional outcomes of inflammatory breast cancer (IBC) patients who received standard fractionation radiation with daily skin bolus and taxanes as part of combined-modality therapy (CMT). Methods and Materials: We retrospectively reviewed the charts of 107 patients diagnosed with IBC between January 1995 and March 2006 who presented to our department for adjuvant radiation therapy (RT). Results: All patients received chemotherapy (95% anthracycline and 95% taxane), modified radical mastectomy, and RT to the chest wall and regional lymphatics using standard fractionation to 50 Gy and daily skin bolus. The RT to the chest wall was delivered via electrons (55%) or photons (45%) in daily fractions of 180 cGy (73%) or 200 cGy (27%). Scar boost was performed in 11%. A majority (84%) of patients completed the prescribed treatment. Median follow-up was 47 months (range, 10-134 months). Locoregional control (LRC) at 3 years and 5 years was 90% and 87%, respectively. Distant metastases-free survival (DMFS) at 3 years and 5 years was 61% and 47%, respectively. Conclusions: Excellent locoregional control was observed in this population of IBC patients who received standard fractionation radiation with daily skin bolus and taxanes as part of combined-modality therapy. Distant metastases-free survival remains a significant therapeutic challenge.

Damast, Shari, E-mail: damasts@mskcc.or [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Ho, Alice Y. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Montgomery, Leslie [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Fornier, Monica N. [Department of Breast Cancer Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Ishill, Nicole; Elkin, Elena [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Beal, Kathryn; McCormick, Beryl [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

2010-07-15T23:59:59.000Z

16

Adaptive Liver Stereotactic Body Radiation Therapy: Automated Daily Plan Reoptimization Prevents Dose Delivery Degradation Caused by Anatomy Deformations  

SciTech Connect (OSTI)

Purpose: To investigate how dose distributions for liver stereotactic body radiation therapy (SBRT) can be improved by using automated, daily plan reoptimization to account for anatomy deformations, compared with setup corrections only. Methods and Materials: For 12 tumors, 3 strategies for dose delivery were simulated. In the first strategy, computed tomography scans made before each treatment fraction were used only for patient repositioning before dose delivery for correction of detected tumor setup errors. In adaptive second and third strategies, in addition to the isocenter shift, intensity modulated radiation therapy beam profiles were reoptimized or both intensity profiles and beam orientations were reoptimized, respectively. All optimizations were performed with a recently published algorithm for automated, multicriteria optimization of both beam profiles and beam angles. Results: In 6 of 12 cases, violations of organs at risk (ie, heart, stomach, kidney) constraints of 1 to 6 Gy in single fractions occurred in cases of tumor repositioning only. By using the adaptive strategies, these could be avoided (<1 Gy). For 1 case, this needed adaptation by slightly underdosing the planning target volume. For 2 cases with restricted tumor dose in the planning phase to avoid organ-at-risk constraint violations, fraction doses could be increased by 1 and 2 Gy because of more favorable anatomy. Daily reoptimization of both beam profiles and beam angles (third strategy) performed slightly better than reoptimization of profiles only, but the latter required only a few minutes of computation time, whereas full reoptimization took several hours. Conclusions: This simulation study demonstrated that replanning based on daily acquired computed tomography scans can improve liver stereotactic body radiation therapy dose delivery.

Leinders, Suzanne M. [Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Delft University of Technology, Delft (Netherlands); Breedveld, Sebastiaan; Mndez Romero, Alejandra [Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Schaart, Dennis [Delft University of Technology, Delft (Netherlands); Seppenwoolde, Yvette, E-mail: y.seppenwoolde@erasmusmc.nl [Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Heijmen, Ben J.M. [Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands)

2013-12-01T23:59:59.000Z

17

Total dose radiation response of plasma-damaged NMOS devices  

SciTech Connect (OSTI)

Plasma-damaged NMOS devices were subjected to the X-ray total dose irradiation. Unlike the traditional hot-carrier or Fowler-Nordheim (F-N) stress where the hole trap generation is less pronounced, this study shows enhanced hole trap and interface trap generation on plasma-damaged devices after total dose irradiation.

Yue, J.; Lo, E.; Flanery, M. [Honeywell Solid-State Electronic Center, Plymouth, MN (United States)] [Honeywell Solid-State Electronic Center, Plymouth, MN (United States)

1997-11-01T23:59:59.000Z

18

ESTIMATION OF TOTAL RADIATIVE POWER FROM THE 6-GEV RING LS-24  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TOTAL RADIATIVE POWER TOTAL RADIATIVE POWER FROM THE 6-GEV RING LS-24 G. K. Shenoy APRIL 18,1985 Here we make an estimation of the total power radiated from a positron trajectory through the bending magnets, undulators and wigglers. Bending Magnets The power P B per each bending magnet in the ring is given by (1) where E = 6 GeV B = field average over the magnet length = 0.67 T I = stored current = 0.1 A L = trajectory in each dipole magnet = 2.95 m (Ref. LS-12) This gives P B = 6021 watts. Since there are 64 such dipoles in the ring, the total power radiated from dipoles is T P B (watts) = P B (watts) x 64 = 385 kwatts 2 Undulators The total power radiated from a sinosoidal undulator is either given by P u (watts) (2) or by (3) where N = number of undulator periods of length AO (em), K is the deflection

19

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

20

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

22

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

23

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

24

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

25

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

26

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

27

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

28

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

29

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

30

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

31

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

32

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

33

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

34

The dosimetric impact of daily setup error on target volumes and surrounding normal tissue in the treatment of prostate cancer with intensity-modulated radiation therapy  

SciTech Connect (OSTI)

The purpose of this study was to evaluate the impact of daily setup error and interfraction organ motion on the overall dosimetric radiation treatment plans. Twelve patients undergoing definitive intensity-modulated radiation therapy (IMRT) treatments for prostate cancer were evaluated in this institutional review board-approved study. Each patient had fiducial markers placed into the prostate gland before treatment planning computed tomography scan. IMRT plans were generated using the Eclipse treatment planning system. Each patient was treated to a dose of 8100 cGy given in 45 fractions. In this study, we retrospectively created a plan for each treatment day that had a shift available. To calculate the dose, the patient would have received under this plan, we mathematically 'negated' the shift by moving the isocenter in the exact opposite direction of the shift. The individualized daily plans were combined to generate an overall plan sum. The dose distributions from these plans were compared with the treatment plans that were used to treat the patients. Three-hundred ninety daily shifts were negated and their corresponding plans evaluated. The mean isocenter shift based on the location of the fiducial markers was 3.3 {+-} 6.5 mm to the right, 1.6 {+-} 5.1 mm posteriorly, and 1.0 {+-} 5.0 mm along the caudal direction. The mean D95 doses for the prostate gland when setup error was corrected and uncorrected were 8228 and 7844 cGy (p < 0.002), respectively, and for the planning target volume (PTV8100) was 8089 and 7303 cGy (p < 0.001), respectively. The mean V95 values when patient setup was corrected and uncorrected were 99.9% and 87.3%, respectively, for the PTV8100 volume (p < 0.0001). At an individual patient level, the difference in the D95 value for the prostate volume could be >1200 cGy and for the PTV8100 could approach almost 2000 cGy when comparing corrected against uncorrected plans. There was no statistically significant difference in the D35 parameter for the surrounding normal tissue except for the dose received by the penile bulb and the right hip. Our dosimetric evaluation suggests significant underdosing with inaccurate target localization and emphasizes the importance of accurate patient setup and target localization. Further studies are needed to evaluate the impact of intrafraction organ motion, rotation, and deformation on doses delivered to target volumes.

Algan, Ozer, E-mail: oalgan@ouhsc.edu [Department of Radiation Oncology, Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Jamgade, Ambarish; Ali, Imad; Christie, Alana; Thompson, J. Spencer; Thompson, David; Ahmad, Salahuddin; Herman, Terence [Department of Radiation Oncology, Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

2012-01-01T23:59:59.000Z

35

Potential for Higher Treatment Failure in Obese Patients: Correlation of Elevated Body Mass Index and Increased Daily Prostate Deviations From the Radiation Beam Isocenters in an Analysis of 1,465 Computed Tomographic Images  

SciTech Connect (OSTI)

Purpose: Recent clinical outcome studies on prostate cancer have reported the influence of patient's obesity on the biochemical failure rates after various treatment modalities. In this study, we investigated the effect of patient's physical characteristics on prostate shift in external beam radiotherapy (EBRT) and hypothesized that there maybe a correlation between patient physique and tumor shift. Methods and Materials: A retrospective analysis was performed using data for 117 patients who received image-guided radiation therapy (IGRT) for prostate cancer between January 2005 and April 2007. A total of 1,465 CT scans were analyzed. The standard deviations (SDs) of prostate shifts for all patients, along with patient weight, body mass index (BMI), and subcutaneous adipose-tissue thickness (SAT), were determined. Spearman rank correlation analysis was performed. Results: Of the 117 patients, 26.5% were considered normal weight, 48.7% were overweight, 17.9% were mildly obese, and 6.9% were moderately to severely obese. Notably 1.3%, 1.5%, 2.0%, and 21.2% of the respective shifts were greater than 10 mm in the left-right (LR) direction for the four patient groups, whereas in the anterior-posterior direction the shifts are 18.2%, 12.6%, 6.7%, and 21.0%, respectively. Strong correlations were observed between SAT, BMI, patient weight, and SDs of daily shifts in the LR direction (p < 0.01). Conclusions: The strong correlation between obesity and shift indicates that without image-guided radiation therapy, the target volume (prostate with or without seminal vesicles) may not receive the intended dose for patients who are moderate to severely obese. This may explain the higher recurrence rate with conventional external beam radiation therapy.

Wong, James R. [Department of Radiation Oncology, Carol G. Simon Cancer Center, Morristown Memorial Hospital, Morristown, NJ (United States)], E-mail: jackie.vizoso@atlantichealth.org; Gao Zhanrong; Merrick, Scott; Wilson, Paula [Department of Radiation Oncology, Carol G. Simon Cancer Center, Morristown Memorial Hospital, Morristown, NJ (United States); Uematsu, Minoru [Radiation Oncology, Uematsu-Atsuchi-Serendipity Oncology Center, Terukuni, Kagoshima (Japan); Woo, Kevin; Cheng, C.-W. [Department of Radiation Oncology, The Carol G. Simon Cancer Center, Morristown Memorial Hospital, Morristown, NJ (United States)

2009-09-01T23:59:59.000Z

36

Toward the Development of Multi-Year Total and Special Solar Radiation Budgets at the Three ARM Locales  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Development of Multi-Year Total and Special the Development of Multi-Year Total and Special Solar Radiation Budgets at the Three ARM Locales Z. Li and M. C. Cribb Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Over the past decade, an unprecedented amount of high-quality observational data pertaining to atmospheric and surface parameters has been collected at Atmospheric Radiation Measurement (ARM) locales around the globe. These data have been critical in the development and validation of models used to study the complex interaction of cloud, aerosols, and the surface on the solar radiative budget (SRB), the primary force driving atmospheric circulation. As the next step forward, the challenge of

37

Daily Temperature Lag  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daily Temperature Lag Daily Temperature Lag Name: Shyammayi Status: teacher Grade: K-2 Country: Mauritius Date: Summer 2011 Question: At what time of the day is the temperature hottest? At what time of the day is the temperature coldest? Replies: In general, the hottest part of the day is late afternoon. The sun has passed its peak in the sky but still heats the Earth up until very late in the afternoon. The lowest temperatures are around dawn. Earth has had all night to get rid of the day's heat by radiating it into space. After sunrise, temperatures begin to climb. This can be changed by local storms, sea breezes or mountain breezes and even monsoon winds. Hope this helps. R. W. "Bob" Avakian Instructor Arts and Sciences/CRC Oklahoma State Univ. Inst. of Technology Shyammayi

38

85Kr management trade-offs: a perspective to total radiation dose commitment  

SciTech Connect (OSTI)

Radiological consequences arising from the trade-offs for /sup 85/Kr waste management from possible nuclear fuel resource recovery activities have been investigated. The reference management technique is to release all the waste gas to the atmosphere where it is diluted and dispersed. A potential alternative is to collect, concentrate, package and submit the gas to long-term storage. This study compares the radiation dose commitment to the public and to the occupationally exposed work force from these alternatives. The results indicate that it makes little difference to the magnitude of the world population dose whether /sup 85/Kr is captured and stored or chronically released to the environment. Further, comparisons of radiation exposures (for the purpose of estimating health effects) at very low dose rates to very large populations with exposures to a small number of occupationally exposed workers who each receive much higher dose rates may be misleading. Finally, cost studies (EPA 1976 and DOE 1979a) show that inordinate amounts of money will be required to lower this already extremely small 80-year cumulative world population dose of 0.05 mrem/person (<0.001% of natural background radiation for the same time period).

Mellinger, P.J.; Hoenes, G.R.; Brackenbush, L.W.; Greenborg, J.

1980-01-01T23:59:59.000Z

39

Water and ice structure in the range 220 - 365K from radiation total scattering experiments  

E-Print Network [OSTI]

The past decade or so has witnessed a large number of articles about water structure. The most incisive experiments involve radiation with a wavelength compatible with the observed inter-molecular separations found in water, of order $\\sim 3$\\AA, in other words mostly $$10keV x-rays. Because x-rays are scattered by electrons while neutrons are scattered by nuclei, the two probes give complementary information about the three site-site radial distribution functions for water, namely O-O, O-H and H-H. Here a version of Monte Carlo simulation called Empirical Potential Structure Refinement is used to devise an empirical intermolecular potential which attempts to drive the simulated radial distribution functions as close as possible to the data. New x-ray and neutron scattering data on water in the temperature range 280 - 365K are presented for the first time, alongside a new analysis of some much older neutron data on ice 1h at 220K. This temperature analysis, above and below the water freezing point of water, r...

Soper, Alan K

2014-01-01T23:59:59.000Z

40

Climate Reference Network Daily01 Product | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daily01 Product Daily01 Product Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Climate Reference Network Daily01 Product Dataset Summary Description The U.S. Climate Reference Network is designed specifically to monitor national climate change with best scientific practice and adherence to the accepted principles of climate observations. USCRN daily temperature mean, maximum, and minimum, daily precipitation, daily global solar radiation, and daily average surface infrared temperature data are available in the Daily01 file set for all stations in the network. Daily mean, maximum, and minimum relative humidity are available for most stations. Tags {"Climate Reference Network",USCRN,CRN,"air temperature",temperature,precipitation,"global solar radiation"," surface temperature","surface infrared temperature","relative humidity","natural resources",water,air,"soil "}

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Acceptable Daily Intake (ADI)  

Science Journals Connector (OSTI)

Abstract The acceptable daily intake (ADI) is commonly defined as the maximum amount of a chemical to which a person can be exposed, on a daily basis over an extended period of time, usually without suffering a deleterious effect. It represents a daily intake level of a chemical in humans that is associated with minimal or no risk of adverse effects, and if the ingestion exceeds, this amount may cause toxic effects. It is a numerical estimate of daily oral exposure to the human population, including sensitive subgroups such as children, that is not likely to cause harmful effects during a lifetime. The ADI is expressed in milligrams of the chemical, as it appears in the food, per kilogram of body weight per day (mgkg?1day?1).

J. Chilakapati; H.M. Mehendale

2014-01-01T23:59:59.000Z

42

A Balloon Observation of the Thermal Radiation from the Circumsolar Dust Cloud in the 1983 Total Eclipse  

Science Journals Connector (OSTI)

During the totality on June 11, 1983 in East Java, Indonesia, a near infrared photometric observation of the solar corona was made using a stratospheric balloon, which was successfully launched by a joint...? fro...

T. Maihara; K. Mizutani; N. Hiromoto

1985-01-01T23:59:59.000Z

43

Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure  

Science Journals Connector (OSTI)

In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescenceX-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34pg in aerosols which were collected for 1h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20min each. The particles were collected in four and ten size fractions of 10.08.0?m, 8.02.0?m, 2.00.13?m 0.130.015?m (aerodynamic particle size) and 1530nm, 3060nm, 60130nm, 130250nm, 250500nm, 0.51?m, 12?m, 24?m, 48?m, 816?m. Prior to the sampling bounce off effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 110% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions.

U.E.A. Fittschen; F. Meirer; C. Streli; P. Wobrauschek; J. Thiele; G. Falkenberg; G. Pepponi

2008-01-01T23:59:59.000Z

44

Magnetic Properties of Daily Sampled Total Suspended Particulates in Shanghai  

Science Journals Connector (OSTI)

Acquisition of isothermal remanent magnetization (IRM 10-5 Am2 kg-1) was made in fields of 20 mT, 30 mT, 1 T (SIRM) followed by demagnetiza tion in fields of ?20 mT, ?50 mT, ?100 mT, and ?300 mT using a Molspin pulse magnetizer and spinner magnetometer. ...

Jiong Shu; John A. Dearing; Andrew P. Morse; Lizhong Yu; Chaoyi Li

2000-05-09T23:59:59.000Z

45

Bacteria Total Maximum Daily Load Task Force Final Report  

E-Print Network [OSTI]

Research and Development Needs 51 References 64 Appendix 1: Bacteria TMDL Task Force Members and Expert Advisors 71 Appendix 2: Models Used in Bacteria Projects 73 as Described in EPA Publications... Appendix 3: EPA Bacteria TMDL Guidelines 78 Appendix 4: State Approaches to Bacteria TMDL 88 Development Appendix 5: Comments from Expert Advisory Group 100 1 Executive Summary In September 2006, the Texas...

Jones, C. Allan; Wagner, Kevin; Di Giovanni, George; Hauck, Larry; Mott, Joanna; Rifai, Hanadi; Srinivasan, Raghavan; Ward, George; Wythe, Kathy

46

Yesterday's Daily Summary - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Historical Weather Charts Contacts...

47

Daily Normal Precipitation - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Historical Weather Charts Contacts...

48

Unravelling daily human mobility motifs  

E-Print Network [OSTI]

Human mobility is differentiated by time scales. While the mechanism for long time scales has been studied, the underlying mechanism on the daily scale is still unrevealed. Here, we uncover the mechanism responsible for ...

Schneider, Christian M.

49

Dose optimization with first-order total-variation minimization for dense angularly sampled and sparse intensity modulated radiation therapy (DASSIM-RT)  

SciTech Connect (OSTI)

Purpose: A new treatment scheme coined as dense angularly sampled and sparse intensity modulated radiation therapy (DASSIM-RT) has recently been proposed to bridge the gap between IMRT and VMAT. By increasing the angular sampling of radiation beams while eliminating dispensable segments of the incident fields, DASSIM-RT is capable of providing improved conformity in dose distributions while maintaining high delivery efficiency. The fact that DASSIM-RT utilizes a large number of incident beams represents a major computational challenge for the clinical applications of this powerful treatment scheme. The purpose of this work is to provide a practical solution to the DASSIM-RT inverse planning problem. Methods: The inverse planning problem is formulated as a fluence-map optimization problem with total-variation (TV) minimization. A newly released L1-solver, template for first-order conic solver (TFOCS), was adopted in this work. TFOCS achieves faster convergence with less memory usage as compared with conventional quadratic programming (QP) for the TV form through the effective use of conic forms, dual-variable updates, and optimal first-order approaches. As such, it is tailored to specifically address the computational challenges of large-scale optimization in DASSIM-RT inverse planning. Two clinical cases (a prostate and a head and neck case) are used to evaluate the effectiveness and efficiency of the proposed planning technique. DASSIM-RT plans with 15 and 30 beams are compared with conventional IMRT plans with 7 beams in terms of plan quality and delivery efficiency, which are quantified by conformation number (CN), the total number of segments and modulation index, respectively. For optimization efficiency, the QP-based approach was compared with the proposed algorithm for the DASSIM-RT plans with 15 beams for both cases. Results: Plan quality improves with an increasing number of incident beams, while the total number of segments is maintained to be about the same in both cases. For the prostate patient, the conformation number to the target was 0.7509, 0.7565, and 0.7611 with 80 segments for IMRT with 7 beams, and DASSIM-RT with 15 and 30 beams, respectively. For the head and neck (HN) patient with a complicated target shape, conformation numbers of the three treatment plans were 0.7554, 0.7758, and 0.7819 with 75 segments for all beam configurations. With respect to the dose sparing to the critical structures, the organs such as the femoral heads in the prostate case and the brainstem and spinal cord in the HN case were better protected with DASSIM-RT. For both cases, the delivery efficiency has been greatly improved as the beam angular sampling increases with the similar or better conformal dose distribution. Compared with conventional quadratic programming approaches, first-order TFOCS-based optimization achieves far faster convergence and smaller memory requirements in DASSIM-RT. Conclusions: The new optimization algorithm TFOCS provides a practical and timely solution to the DASSIM-RT or other inverse planning problem requiring large memory space. The new treatment scheme is shown to outperform conventional IMRT in terms of dose conformity to both the targetand the critical structures, while maintaining high delivery efficiency.

Kim, Hojin; Li Ruijiang; Lee, Rena; Goldstein, Thomas; Boyd, Stephen; Candes, Emmanuel; Xing Lei [Department of Electrical Engineering, Stanford University, Stanford, California 94305-9505 (United States) and Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 (United States); Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 (United States); Department of Radiation Oncology, Ehwa University, Seoul 158-710 (Korea, Republic of); Department of Electrical Engineering, Stanford University, Stanford, California 94305-9505 (United States); Department of Statistics, Stanford University, Stanford, California 94305-4065 (United States); Department of Radiation Oncology, Stanford University, Stanford, California 94305-5304 (United States)

2012-07-15T23:59:59.000Z

50

Energy Assurance Daily | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Assurance Daily Energy Assurance Daily Energy Assurance Daily Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems, flows, and markets, it provides highlights of energy issues rather than a comprehensive coverage. Energy Assurance Daily covers: Major energy developments Electricity, petroleum, and natural gas industries Other relevant news Energy prices The Infrastructure Security and Energy Restoration (ISER) Division cannot guarantee the accuracy of the material in the Energy Assurance Daily. Any further use is subject to the copyright restrictions of the source document. The Energy Assurance Daily has workable hypertext links to the

51

Generating Multiyear Gridded Daily Rainfall over New Zealand  

Science Journals Connector (OSTI)

Daily rainfall totals are a key input for hydrological models that are designed to simulate water and pollutant flow through both soil and waterways. Within New Zealand there are large areas and many river catchments where no long-term rainfall ...

Andrew Tait; Richard Turner

2005-09-01T23:59:59.000Z

52

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

53

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

54

Total ionizing dose effect of ?-ray radiation on the switching characteristics and filament stability of HfOx resistive random access memory  

SciTech Connect (OSTI)

The total ionizing dose (TID) effect of gamma-ray (?-ray) irradiation on HfOx based resistive random access memory was investigated by electrical and material characterizations. The memory states can sustain TID level ?5.2 Mrad (HfO{sub 2}) without significant change in the functionality or the switching characteristics under pulse cycling. However, the stability of the filament is weakened after irradiation as memory states are more vulnerable to flipping under the electrical stress. X-ray photoelectron spectroscopy was performed to ascertain the physical mechanism of the stability degradation, which is attributed to the Hf-O bond breaking by the high-energy ?-ray exposure.

Fang, Runchen; Yu, Shimeng, E-mail: shimengy@asu.edu [School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, Arizona 85281 (United States); School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Gonzalez Velo, Yago; Chen, Wenhao; Holbert, Keith E.; Kozicki, Michael N.; Barnaby, Hugh [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States)

2014-05-05T23:59:59.000Z

55

Energy Assurance Daily (EAD): June 2012  

Broader source: Energy.gov [DOE]

Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

56

Energy Assurance Daily (EAD): July 2012  

Broader source: Energy.gov [DOE]

Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

57

Energy Assurance Daily (EAD): May 2012  

Broader source: Energy.gov [DOE]

Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

58

Energy Assurance Daily (EAD): April 2012  

Broader source: Energy.gov [DOE]

Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

59

Energy Assurance Daily (EAD): January- March 2012  

Broader source: Energy.gov [DOE]

Energy Assurance Daily provides a summary of public information concerning current energy issues. Published Monday through Friday to inform stakeholders of developments affecting energy systems,...

60

Yearly-averaged daily usefulness efficiency of heliostat surfaces  

SciTech Connect (OSTI)

An analytical expression for estimating the instantaneous usefulness efficiency of a heliostat surface is obtained. A systematic procedure is then introduced to calculate the usefulness efficiency even when overlapping of blocking and shadowing on a heliostat surface exist. For possible estimation of the reflected energy from a given field, the local yearly-averaged daily usefulness efficiency is calculated. This efficiency is found to depend on site latitude angle, radial distance from the tower measured in tower heights, heliostat position azimuth angle and the radial spacing between heliostats. Charts for the local yearly-averaged daily usefulness efficiency are presented for {phi} = 0, 15, 30, and 45 N. These charts can be used in calculating the reflected radiation from a given cell. Utilization of these charts is demonstrated.

Elsayed, M.M.; Habeebuallah, M.B.; Al-Rabghi, O.M. (King Abdulaziz Univ., Jeddah (Saudi Arabia))

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solar radiation on variously oriented sloping surfaces  

SciTech Connect (OSTI)

Monthly average daily irradiation on surfaces tilted towards the equator and also inclined at various azimuth angles are estimated for two locations in Lesotho and the results are presented. The isotropic model suggested by Liu and Jordan (Trans. of Ashrae, 526, 1962) along with the modified equation of Klein (Solar Energy, 19, 4, 1977) are employed for the estimation purposes. Surface orientations are selected at three inclinations for six different azimuth angles. Conclusions are reached for optimum tilt and orientation for summer, winter and annual collection. Total annual radiation values are computed for all the slopes and orientations.

Gopinathan, K.K. (National Univ. of Lesotho, Roma (South Africa))

1991-01-01T23:59:59.000Z

62

Effects of Solar UV Radiation on Morphology and Photosynthesis of Filamentous Cyanobacterium Arthrospira platensis  

Science Journals Connector (OSTI)

...time of exposure to solar radiation (E and F). (A and...E and F) daily solar doses during the exposure period...Cyanobacteria growth & development radiation effects ultrastructure Dose-Response Relationship, Radiation Photosynthesis radiation...

Hongyan Wu; Kunshan Gao; Virginia E. Villafae; Teruo Watanabe; E. Walter Helbling

2005-09-01T23:59:59.000Z

63

Daily HMS Extremes in Met Data - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hanford Meteorological Station > Daily HMS Extremes in Met Data Hanford Meteorological Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes...

64

Daily HMS Extremes in Met Data - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meteorological Station > Daily HMS Extremes in Met Data Hanford Meteorological Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met...

65

Motexafin-Gadolinium and Involved Field Radiation Therapy for Intrinsic Pontine Glioma of Childhood: A Children's Oncology Group Phase 2 Study  

SciTech Connect (OSTI)

Purpose: To evaluate the effects on 1-year event-free survival (EFS) and overall survival (OS) of combining motexafin and gadolinium (MGd), a potent radiosensitizer, with daily fractionated radiation therapy in children with newly diagnosed intrinsic pontine gliomas. Methods and Materials: Patients with newly diagnosed intrinsic pontine glioma were treated with MGd daily for 5 consecutive days each week, for a total of 30 doses. Patients received a 5- to 10-min intravenous bolus of MGd, 4.4 mg/kg/day, given 2 to 5 h prior to standard dose irradiation. Radiation therapy was administered at a daily dose of 1.8 Gy for 30 treatments over 6 weeks. The total dose was 54 Gy. Results: Sixty eligible children received MGd daily, concurrent with 6 weeks of radiation therapy. The estimated 1-year EFS was 18% {+-} 5%, and the estimated 1-year OS was 53% {+-} 6.5%. The most common grade 3 to 4 toxicities were lymphopenia, transient elevation of liver transaminases, and hypertension. Conclusions: Compared to historical controls, the addition of MGd to a standard 6-week course of radiation did not improve the survival of pediatric patients with newly diagnosed intrinsic pontine gliomas.

Bradley, Kristin A., E-mail: bradley@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin (United States); Zhou Tianni [Department of Preventive Medicine, University of Southern California, Los Angeles, California (United States)] [Department of Preventive Medicine, University of Southern California, Los Angeles, California (United States); McNall-Knapp, Rene Y. [Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States)] [Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Jakacki, Regina I. [Division of Pediatric Hematology/Oncology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States)] [Division of Pediatric Hematology/Oncology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Levy, Adam S. [Division of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York (United States)] [Division of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York (United States); Vezina, Gilbert [Department of Radiology, Children's National Medical Center, George Washington University School of Medicine, Washington, DC (United States)] [Department of Radiology, Children's National Medical Center, George Washington University School of Medicine, Washington, DC (United States); Pollack, Ian F. [Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States)] [Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States)

2013-01-01T23:59:59.000Z

66

acute radiation rectal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude. The net...

67

2011 Daily Log Report #: 2011-00168  

E-Print Network [OSTI]

2011 Daily Log March 2011 Report #: 2011-00168 Reported: 03/31/2011 1237 Occurred: 03/31/2011 1235 Incident: Medical Emergency Location: Outside of Student Union Disposition: Report--Closed Comments: Female transported to hospital by ambulance for medical treatment. Report #: 2011-00167 Reported: 03/31/2011 1116

Boyce, Richard L.

68

2009 Daily Log Report #: 2009-00202  

E-Print Network [OSTI]

2009 Daily Log March 2009 Report #: 2009-00202 Reported: 03/31/09 2045 Occurred: 03/29/09 1400 to 03/30/09 2000 Incident: Theft Location: Lot Q Disposition: Report--Open Comments: GPS System stolen from unlocked vehicle. Report #: 2009-00201 Reported: 03/31/09 1833 Occurred: Same Incident: Fire

Boyce, Richard L.

69

2009 Daily Log Report #: 2009-00269  

E-Print Network [OSTI]

2009 Daily Log April 2009 Report #: 2009-00269 Reported: 04/30/09 1508 Occurred: Same Incident: Traffic Crash Location: Johns Hill Road and Kenton Drive Disposition: Report--Closed Comments: Two vehicle accident; no injuries. Report #: 2009-00268 Reported: 04/30/09 1049 Occurred: Same Incident: Traffic Crash

Boyce, Richard L.

70

2011 Daily Log Report #: 2011-00229  

E-Print Network [OSTI]

2011 Daily Log April 2011 Report #: 2011-00229 Reported: 04/29/2011 2327 Occurred: 04/29/2011 2325 Incident: Medical Emergency Location: University Center Disposition: Report--Closed Comments: Female transported by ambulance to hospital for medical treatment. Report #: 2011-00228 Reported: 04/29/2011 1702

Boyce, Richard L.

71

2010 Daily Log Report #: 2010-00262  

E-Print Network [OSTI]

2010 Daily Log June 2010 Report #: 2010-00262 Reported: 06/30/10 0957 Occurred: 06/24/10 1630 to 0957 Incident: Theft Location: Founders Hall Disposition: Report--Open Comments: Several textbooks stolen from office. No Reportable Activity on 06/29/10 Report #: 2010-00261 Reported: 06/28/10 1720

Boyce, Richard L.

72

2009 Daily Log Report #: 2009-00327  

E-Print Network [OSTI]

2009 Daily Log June 2009 Report #: 2009-00327 Reported: 06/30/09 1118 Occurred: Same Incident: Fire/Smoke Alarm Location: Dorm--Kentucky Hall Disposition: Report--Closed Comments: Alarm activation caused by drywall dust from contractors; fire department responded and cleared the scene. No Reportable Activity

Boyce, Richard L.

73

2011 Daily Log Report #: 2011-00261  

E-Print Network [OSTI]

2011 Daily Log May 2011 Report #: 2011-00261 Reported: 05/31/2011 1300 Occurred: Same Incident: Medical Emergency Location: University Center Disposition: Report--Closed Comments: Male transported to hospital by ambulance for evaluation and treatment. No Reportable Activity on 05/30/2011 No Reportable

Boyce, Richard L.

74

2011 Daily Log Report #: 2011-00295  

E-Print Network [OSTI]

2011 Daily Log June 2011 Report #: 2011-00295 Reported: 6/30/2011 0813 Occurred: 6/29/2011 1430 Incident: Traffic Crash Location: Sidewalk on Plaza Level Disposition: Report--Closed Comments: Single vehicle accident; no injuries. Report #: 2011-00294 Reported: 06/29/2011 1909 Occurred: Same Incident

Boyce, Richard L.

75

2010 Daily Log Report #: 2010-00221  

E-Print Network [OSTI]

2010 Daily Log April 2010 Report #: 2010-00221 Reported: 04/30/10 1034 Occurred: Same Incident: Found/Recovered Property Location: Founders Hall Disposition: Report--Closed Comments: Small purse was found in classroom. Report #: 2010-00220 Reported: 04/30/10 1347 Occurred: 04/30/10 0820 to 0900

Boyce, Richard L.

76

2011 Daily Log Report #: 2011-00317  

E-Print Network [OSTI]

2011 Daily Log July 2011 Report #: 2011-00317 Reported: 07/30/2011 1446 Occurred: 07/30/2011 1435 Incident: Odor Related Complaint Location: Power Plant Disposition: Report--Closed Comments: Subject reported a strange odor emanating from somewhere in the vicinity; fire department responded and cleared

Boyce, Richard L.

77

Barge Truck Total  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

78

Background: Long-Term Daily and Monthly Climate Records from Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Background: Long-Term Daily and Monthly Climate Records from Stations Background: Long-Term Daily and Monthly Climate Records from Stations Across the Contiguous United States The United States Historical Climatology Network (USHCN) is a high-quality data set of daily and monthly records of basic meteorological variables from 1218 observing stations across the 48 contiguous United States. Daily data include observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth; monthly data consist of monthly-averaged maximum, minimum, and mean temperature and total monthly precipitation. Most of these stations are U.S. Cooperative Observing Network stations located generally in rural locations, while some are National Weather Service First-Order stations that are often located in more urbanized environments. The USHCN has been developed over the years at

79

Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint  

SciTech Connect (OSTI)

The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

Myers, D. R.

2009-03-01T23:59:59.000Z

80

DOE Solar Decathlon: 2009 Daily Journals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Richard King next to a deck and planter boxes. Decathlete Way and the U.S. Capitol are in the background. Richard King next to a deck and planter boxes. Decathlete Way and the U.S. Capitol are in the background. Solar Decathlon Director Richard King takes a break from the competition along Decathlete Way. Solar Decathlon 2009 Daily Journals The daily journals highlighted the events of the U.S. Department of Energy Solar Decathlon 2009. Each day, Richard King, Solar Decathlon director, covered the latest on the teams, their standings, and the events going on in the solar village. October 19, 2009 I personally believe one of the greatest discoveries in the field of energy from the 20th century is our ability to generate electricity from sunlight using photovoltaic solar cells. Read more. October 17, 2009 Solar Decathlon 2009 was intriguing and suspenseful to the very end. None

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Risk of Radiation Retinopathy in Patients With Orbital and Ocular Lymphoma  

SciTech Connect (OSTI)

Purpose: Radiation retinopathy is a potential long-term complication of radiation therapy to the orbit. The risk of developing this adverse effect is dose dependent; however, the threshold is unclear. The aim of this study was to identify the risk of developing radiation retinopathy at increasing radiation doses. Methods and Materials: A 40-year retrospective review was performed of patients who received external beam radiation therapy for ocular/orbital non-Hodgkin lymphoma (NHL). Results: Sixty-seven patients who had at least one ophthalmic follow-up examination were included in this study. Most patients (52%) were diagnosed with NHL involving the orbit. Patients received external beam radiation therapy at doses between 1886 and 5400 cGy (mean, 3033 {+-} 782 cGy). Radiation retinopathy developed in 12% of patients, and the median time to diagnosis was 27 months (range, 15-241months). The mean prescribed radiation dose in patients with retinopathy was 3309 {+-} 585 cGy, and the estimated retinal dose (derived by reviewing the dosimetry) was 3087 {+-} 1030 cGy. The incidence of retinopathy increased with dose. The average prescribed daily fractionated dose was higher in patients who developed retinopathy than in patients who did not (mean, 202 cGy vs 180 cGy, respectively; P = .04). More patients with radiation retinopathy had comorbid diabetes mellitus type 2 than patients without retinopathy (P = .015). In our study, the mean visual acuity of the eyes that received radiation was worse than that of the eyes that did not (P = .027). Other postradiotherapy ocular findings included keratitis (6%), dry eyes (39%), and cataract (33%). Conclusions: Radiation retinopathy, a known complication of radiotherapy for orbital tumors, relates to vascular comorbidities and dose. Higher total doses and larger daily fractions (>180 cGy) appear to be related to higher rates of retinopathy. Future larger studies are required to identify a statistically significant threshold for the development of retinopathy.

Kaushik, Megha; Pulido, Jose S. [Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota (United States)] [Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota (United States); Schild, Steven E. [Division of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona (United States)] [Division of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona (United States); Stafford, Scott, E-mail: stafford.scott@mayo.edu [Division of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)] [Division of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)

2012-12-01T23:59:59.000Z

82

Parameterization of daily solar irradiance variability  

Science Journals Connector (OSTI)

The effects of solar systems operation can be compared only under very similar weather conditions. Diagnostics of the solar systems requires unequivocal determination of solar irradiation. Development of a method for precise identification of solar radiation day time profile is needed, as the methods used so far in the cloud cover determination are not satisfactory. The paper presents two optional methods, developed by the authors, for identification of the solar radiation profile. Advantages and disadvantages of the methods are also specified.

D. Czekalski; A. Chochowski; P. Obstawski

2012-01-01T23:59:59.000Z

83

Daily HMS Extremes in Met Data - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daily HMS Extremes in Met Data Hanford Meteorological Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data...

84

Insolation data manual and direct normal solar radiation data manual  

SciTech Connect (OSTI)

The Insolation Data Manual presents monthly averaged data which describes the availability of solar radiation at 248 National Weather Service (NWS) stations, principally in the United States. Monthly and annual average daily insolation and temperature values have been computed from a base of 24--25 years of data, generally from 1952--1975, and listed for each location. Insolation values represent monthly average daily totals of global radiation on a horizontal surface and are depicted using the three units of measurement: kJ/m{sup 2} per day, Btu/ft{sup 2} per day and langleys per day. Average daily maximum, minimum and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3 C (65 F). For each station, global {bar K}{sub T} (cloudiness index) values were calculated on a monthly and annual basis. Global {bar K}{sub T} is an index of cloudiness and indicates fractional transmittance of horizontal radiation, from the top of the atmosphere to the earth's surface. The second section of this volume presents long-term monthly and annual averages of direct normal solar radiation for 235 NWS stations, including a discussion of the basic derivation process. This effort is in response to a generally recognized need for reliable direct normal data and the recent availability of 23 years of hourly averages for 235 stations. The relative inaccessibility of these data on microfiche further justifies reproducing at least the long-term averages in a useful format. In addition to a definition of terms and an overview of the ADIPA model, a discussion of model validation results is presented.

none,

1990-07-01T23:59:59.000Z

85

Estimation of Rectal Dose Using Daily Megavoltage Cone-Beam Computed Tomography and Deformable Image Registration  

SciTech Connect (OSTI)

Purpose: The actual dose delivered to critical organs will differ from the simulated dose because of interfractional organ motion and deformation. Here, we developed a method to estimate the rectal dose in prostate intensity modulated radiation therapy with consideration to interfractional organ motion using daily megavoltage cone-beam computed tomography (MVCBCT). Methods and Materials: Under exemption status from our institutional review board, we retrospectively reviewed 231 series of MVCBCT of 8 patients with prostate cancer. On both planning CT (pCT) and MVCBCT images, the rectal contours were delineated and the CT value within the contours was replaced by the mean CT value within the pelvis, with the addition of 100 Hounsfield units. MVCBCT images were rigidly registered to pCT and then nonrigidly registered using B-Spline deformable image registration (DIR) with Velocity AI software. The concordance between the rectal contours on MVCBCT and pCT was evaluated using the Dice similarity coefficient (DSC). The dose distributions normalized for 1 fraction were also deformed and summed to estimate the actual total dose. Results: The DSC of all treatment fractions of 8 patients was improved from 0.750.04 (mean SD) to 0.90 0.02 by DIR. Six patients showed a decrease of the generalized equivalent uniform dose (gEUD) from total dose compared with treatment plans. Although the rectal volume of each treatment fraction did not show any correlation with the change in gEUD (R{sup 2}=0.180.13), the displacement of the center of gravity of rectal contours in the anterior-posterior (AP) direction showed an intermediate relationship (R{sup 2}=0.610.16). Conclusion: We developed a method for evaluation of rectal dose using DIR and MVCBCT images and showed the necessity of DIR for the evaluation of total dose. Displacement of the rectum in the AP direction showed a greater effect on the change in rectal dose compared with the rectal volume.

Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Department of Radiology, Osaka University Hospital, Suita, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Fukuda, Shoichi [Department of Radiation Oncology, Osaka General Medical Center, Osaka (Japan); Maruoka, Shintaroh [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Takahashi, Yutaka [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota (United States); Yagi, Masashi [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Mizuno, Hirokazu [Department of Radiology, Osaka University Hospital, Suita, Osaka (Japan); Isohashi, Fumiaki [Oncology Center, Osaka University Hospital, Suita, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan)

2013-11-01T23:59:59.000Z

86

Solar Decathlon 2005 Daily Event Schedule  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DAILY EVENT SCHEDULE DAILY EVENT SCHEDULE Last updated on September 30, 2005 Note: This schedule is not part of the official Rules and Regulations and is subject to change at any time. Weds, Sept 28 12:00 AM 12:30 AM 1:00 AM 1:30 AM 2:00 AM 2:30 AM 3:00 AM 3:30 AM 4:00 AM 4:30 AM 5:00 AM 5:30 AM 6:00 AM 6:30 AM 7:00 AM 7:30 AM 8:00 AM 8:30 AM 9:00 AM 9:30 AM 10:00 AM 10:30 AM 11:00 AM 11:30 AM 12:00 PM 12:30 PM 1:00 PM 1:30 PM 2:00 PM 2:30 PM 3:00 PM 3:30 PM 4:00 PM 4:30 PM 5:00 PM 5:30 PM 6:00 PM 6:30 PM 7:00 PM 7:30 PM 8:00 PM 8:30 PM 9:00 PM 9:30 PM 10:00 PM 10:30 PM 11:00 PM 11:30 PM Registration Forrestal Bldg (DOE) Cafeteria National Mall Team/Organizer meeting and Safety Orientation Thurs, Sept 29 12:00 AM 12:30 AM 1:00 AM 1:30 AM 2:00 AM 2:30 AM 3:00 AM 3:30 AM 4:00 AM 4:30 AM 5:00 AM 5:30 AM 6:00 AM 6:30 AM 7:00

87

radiation.cdr  

Office of Legacy Management (LM)

Radiation-It's a Fact of Life Radiation-It's a Fact of Life It has been with us since the beginning of time. Everyone who has ever walked on this planet has been exposed to radiation. For the most part, nature is the largest source of exposure. It's in the air we breathe, the ground we walk on, and even the food we eat. The radiation we receive from all natural and some man-made sources is called "background radiation." The millirem (mrem) is a unit used for measuring radiation received by a person. The total average background for radiation received by people living in the United States is 360 millirem per year (mrem/yr), of which 300 mrem/yr is from natural sources, and 60 mrem/yr is man-made. Cosmic Radiation from the sun and stars Internal Radiation from naturally radioactive

88

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locatingdominating sets in graphs was pioneered by Slater[186, 187...], and this concept was later extended to total domination in graphs. A locatingtotal dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

89

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

90

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

91

MCBRIDE, GRAHAM B. Simple calculation of daily photosynthesis ...  

Science Journals Connector (OSTI)

Simple calculation of daily photosynthesis by means of five photosynthesis-light equations. Abstract-The performance of five well-known photosynthesis-light...

2000-03-19T23:59:59.000Z

92

Daily snow depth measurements from 195 stations in the United States  

SciTech Connect (OSTI)

This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

Allison, L.J. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H. [National Oceanic and Atmospheric Administration, Asheville, NC (United States). National Climatic Data Center

1997-02-01T23:59:59.000Z

93

SCIENTIFIC NOTE Variations in daily quality assurance dosimetry from device  

E-Print Network [OSTI]

SCIENTIFIC NOTE Variations in daily quality assurance dosimetry from device levelling, feet procedures are an essential part of radiotherapy medical physics. Devices such as the Sun Nuclear, DQA3 are effective tools for analysis of daily dosimetry including flatness, symmetry, energy, field size and central

Yu, K.N.

94

73Exploring Radiation in your Life Our exposure to many unavoidable sources of radiation is a fact of life, and one  

E-Print Network [OSTI]

and determine the consequences of human radiation impacts, have estimated that the average human accumulates to the daily radiation dose change when the Fukushima source is included in terms of microSeiverts/day? Space73Exploring Radiation in your Life Our exposure to many unavoidable sources of radiation is a fact

95

21 briefing pages total  

Broader source: Energy.gov (indexed) [DOE]

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

96

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

97

Summary Max Total Units  

Broader source: Energy.gov (indexed) [DOE]

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

98

Total Precipitable Water  

SciTech Connect (OSTI)

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

99

Total Sustainability Humber College  

E-Print Network [OSTI]

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

100

Predicting solar radiation fluxes for solar energy system applications  

Science Journals Connector (OSTI)

The mean daily global solar radiation flux is influenced by astronomical, climatological, geographical, geometrical, meteorological, and physical parameters. This paper deals with the study of the effects of i...

M. H. Saffaripour; M. A. Mehrabian

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Backstage at the Daily Show | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Backstage at the Daily Show Backstage at the Daily Show Backstage at the Daily Show Addthis Description Backstage footage from Secretary Chu's appearance on the Daily Show where he discuses the green room candy dish and possible lighting considerations. Speakers Secretary Steven Chu Duration 1:32 Topic Energy Efficiency Credit Energy Department Video SECRETARY STEVEN CHU: I'm in the famous green room of the Jon Stewart show. If you look around, I have all these games: Monopoly, a Rubik's Cube, Pictureka! Now if - this is to amuse myself, but in actual fact, the most famous part of this room is this. There's enough chocolate here to put you on a high that - (chuckles) - will really get you going. This is my wife, Jean. JEAN CHU: (Chuckles.) I'm - (chuckles) - edit this out! (Begin recorded segment.)

102

Daily Reporting Rainfall Station HERBERT RIVER Manual Heavy Rainfall Station  

E-Print Network [OSTI]

Daily Reporting Rainfall Station HERBERT RIVER Manual Heavy Rainfall Station Manual River Station Central Mill AL Tung Oil AL Corsis AL Innisfail Clump Point Tide TM Mourilyan Harbour TM 0 10 kilometres

Greenslade, Diana

103

Total isomerization gains flexibility  

SciTech Connect (OSTI)

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

104

Alpha Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics of Radiation Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments have been designed to measure alpha radiation. Special training in use of these instruments is essential for making accurate measurements. 4. A civil defense instrument (CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation.

105

Radiation: Radiation Control (Indiana)  

Broader source: Energy.gov [DOE]

It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

106

IONIZING RADIATION RISKS TO SATELLITE POWER SYSTEMS (SPS) WORKERS  

E-Print Network [OSTI]

Dose-Response Relationships for Radiation-Induced Cancer EstimationDose-Response Relationships for Radiation-Induced Cancer A general hypothesis for estimationof the total dose. Estimation of Space Radiation Induced

Lyman, J.T.

2010-01-01T23:59:59.000Z

107

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

108

Determination of Total Solids in Biomass and Total Dissolved...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

109

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Abstract--The HelioClim-1 database contains daily values of  

E-Print Network [OSTI]

-meteorology, solar energy, ocean, health, architecture, air quality, GEOSS. I. INTRODUCTION HE surface solar-- The HelioClim-1 database contains daily values of the solar radiation reaching the ground. This GEOSS-CORE) covers Europe, Africa and the Atlantic Ocean, from 1985 to 2005. It is freely accessible at no cost

Paris-Sud XI, Université de

110

ARM - Measurement - Net broadband total irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsNet broadband total irradiance govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model

111

Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2.  

SciTech Connect (OSTI)

More information: http://daymet.ornl.gov Presenter: Ranjeet Devarakonda Environmental Sciences Division Oak Ridge National Laboratory (ORNL) Daymet: Daily Surface Weather Data and Climatological Summaries provides gridded estimates of daily weather parameters for North America, including daily continuous surfaces of minimum and maximum temperature, precipitation occurrence and amount, humidity, shortwave radiation, snow water equivalent, and day length. The current data product (Version 2) covers the period January 1, 1980 to December 31, 2013 [1]. The prior product (Version 1) only covered from 1980-2008. Data are available on a daily time step at a 1-km x 1-km spatial resolution in Lambert Conformal Conic projection with a spatial extent that covers the conterminous United States, Mexico, and Southern Canada as meteorological station density allows. Daymet data can be downloaded from 1) the ORNL Distributed Active Archive Center (DAAC) search and order tools (http://daac.ornl.gov/cgi-bin/cart/add2cart.pl?add=1219) or directly from the DAAC FTP site (http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1219) and 2) the Single Pixel Tool [2] and THREDDS (Thematic Real-time Environmental Data Services) Data Server [3]. The Single Pixel Data Extraction Tool allows users to enter a single geographic point by latitude and longitude in decimal degrees. A routine is executed that translates the (lon, lat) coordinates into projected Daymet (x,y) coordinates. These coordinates are used to access the Daymet database of daily-interpolated surface weather variables. Daily data from the nearest 1 km x 1 km Daymet grid cell are extracted from the database and formatted as a table with one column for each Daymet variable and one row for each day. All daily data for selected years are returned as a single (long) table, formatted for display in the browser window. At the top of this table is a link to the same data in a simple comma-separated text format, suitable for import into a spreadsheet or other data analysis software. The Single Pixel Data Extraction Tool also provides the option to download multiple coordinates programmatically. A multiple extractor script is freely available to download at http://daymet.ornl.gov/files/daymet.zip. The ORNL DAAC s THREDDS data server (TDS) provides customized visualization and access to Daymet time series of North American mosaics. Users can subset and download Daymet data via a variety of community standards, including OPeNDAP, NetCDF Subset service, and Open Geospatial Consortium (OGC) Web Map/Coverage Service. The ORNL DAAC TDS also exposes Daymet metadata through its ncISO service to facilitate harvesting Daymet metadata records into 3rd party catalogs. References: [1] Thornton, P.E., M.M. Thornton, B.W. Mayer, N. Wilhelmi, Y. Wei, R. Devarakonda, and R.B. Cook. 2014. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. [2] Devarakonda R., et al. 2012. Daymet: Single Pixel Data Extraction Tool. Available on-line [http://daymet.ornl.go/singlepixel.html]. [3] Wei Y., et al. 2014. Daymet: Thematic Real-time Environmental Data Services. Available on-line [http://daymet.ornl.gov/thredds_tiles.html].

Thornton, Peter E [ORNL; Thornton, Michele M [ORNL; Mayer, Benjamin W [ORNL; Wilhelmi, Nate [National Center for Atmospheric Research (NCAR); Wei, Yaxing [ORNL; Devarakonda, Ranjeet [ORNL; Cook, Robert B [ORNL

2014-01-01T23:59:59.000Z

112

High-resolution maps of solar collector performance using a climatological solar radiation model  

SciTech Connect (OSTI)

This paper will present a new methodology for producing estimates of the monthly and annual average performance of different types of flat-plate and concentrating solar collectors. The estimates are made on a uniform spatial grid with 40 km resolution. These estimates should be highly useful both to create maps to facilitate visualization of the solar resource, and as the basic data behind analytical studies of solar resources, deployment scenarios, CO{sub 2} mitigation strategies, and economic assessments. Their initial use of this methodology will be in the continental United States, where supporting data is available to evaluate the model outputs. In future years the authors hope to utilize this technique world-wide, especially in areas where the surface data are lacking. The National Renewable Energy Laboratory (NREL, Golden, CO) has developed the Climatological Solar Radiation (CSR) model to estimate climatological averages of daily-total solar radiation at a 40 km spatial resolution. The CSR model is operational and has been usefully applied to the US as well as several international areas. The model uses, as input, monthly climatological mean values of cloud cover, precipitable water vapor, aerosol optical depth, surface albedo, and total column ozone. These input parameters are available from various sources such as NASA and NCDC (National Climatic Data Center). The outputs from the original version of CSR are monthly mean daily total values of Global Horizontal, Direct Normal, and Diffuse radiation. Their latest revision of the model allows them to calculate the monthly mean output for the various collector types such as tilted flat-plate surfaces, one- and two-axis flat-plate collectors, and concentrating collectors.

George, R.L.; Maxwell, E.L.

1999-07-01T23:59:59.000Z

113

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

114

Invisible Science: Lab Breakthroughs in Our Daily Lives | Department of  

Broader source: Energy.gov (indexed) [DOE]

Invisible Science: Lab Breakthroughs in Our Daily Lives Invisible Science: Lab Breakthroughs in Our Daily Lives Invisible Science: Lab Breakthroughs in Our Daily Lives April 24, 2012 - 2:30pm Addthis The Lab Breakthroughs video series focuses on the array of technological advancements and discoveries that stem from research performed in the National Labs, including improvements in industrial processes, discoveries in fundamental scientific research, and innovative medicines. See the Lab Breakthroughs topic page for the most recent videos and Q&As with researchers. The Lab Breakthroughs video series focuses on the array of technological advancements and discoveries that stem from research performed in the National Labs, including improvements in industrial processes, discoveries

115

Daylighter Daily Solar Roof Light | Open Energy Information  

Open Energy Info (EERE)

Daylighter Daily Solar Roof Light Daylighter Daily Solar Roof Light Jump to: navigation, search Name Daylighter Daily Solar Roof Light Address 1991 Crocker Road, Suite 600 Place Cleveland, Ohio Zip 44145 Sector Solar Product Installation; Manufacturing Phone number 440-892-3312 Website http://www.SolarLightisFree.co Coordinates 41.4648875°, -81.9506519° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4648875,"lon":-81.9506519,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Warm Weather and the Daily Commute | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Warm Weather and the Daily Commute Warm Weather and the Daily Commute Warm Weather and the Daily Commute May 7, 2013 - 12:02pm Addthis Biking to work helps you get some exercise while reducing your carbon footprint. | Photo courtesy of iStockphoto.com/olaser Biking to work helps you get some exercise while reducing your carbon footprint. | Photo courtesy of iStockphoto.com/olaser Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Check out options for busing or carpooling in your area or, if you live close, try walking or biking to work. You know the weather is starting to warm up when you start hearing about those "bike, bus, or walk to work" challenges. And while my local news just started drumming up publicity for theirs, I've seen these events pop up in

117

Bacterial total maximum daily load (TMDL): development and evaluation of a new classification scheme for impaired waterbodies of Texas  

E-Print Network [OSTI]

functions corresponding to NCDC and NEXRAD rainfall datasets ............................... 224 6.4 FOA results corresponding to NCDC ............................................................. 226 6.5 FOA results corresponding to NEXRAD... ................................................... 238 6.12 Means and standard deviations of FOA and MCS..........................................239 1 CHAPTER I INTRODUCTION According to the Code of Federal Regulations (CFR), Title 40, Part 131, all States, Territories, and authorized Tribes...

Paul, Sabu

2005-02-17T23:59:59.000Z

118

E-Print Network 3.0 - annual average daily traffic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Systems 2000. Annual Average Daily Truck Traffic on the California State... Lockout and Non-Lockout Weekdays Average Daily Traffic Volume (vehday) All Cars Trucks ......

119

E-Print Network 3.0 - average daily traffic Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Systems 2000. Annual Average Daily Truck Traffic on the California State... Lockout and Non-Lockout Weekdays Average Daily Traffic Volume (vehday) All Cars Trucks...

120

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Estimating Radiation Risk from Total Effective Dose Equivalent...  

National Nuclear Security Administration (NNSA)

0CTc itt 0 Tw (an) Tj 10.3 0 Tw (an) Tj 10.3 0 Tw (an) Tj 10.3 a ( )75 Tw5ndj 5.25 0 TD F1 10.5 Tf -0.3 33twithsj 24 0 .75059 0 TD(FactorsTw ( 32 ) Tj 5.25 0 TD F1 10.5 Tf...

122

Daily Cycle of Precipitation over the Northern Coast of Brazil  

Science Journals Connector (OSTI)

The daily cycle of precipitation (DCP) in the austral autumn on the northern coast of Brazil (NCB) is examined in detail. The Tropical Rainfall Measuring Mission 3B42 dataset was used to obtain the DCP, and the intradaily variability was measured ...

Sheila Santana de Barros Brito; Marcos Daisuke Oyama

2014-11-01T23:59:59.000Z

123

Modelling Daily Multivariate Pollutant Data at Multiple Sites  

E-Print Network [OSTI]

. In conducting such time series studies to investigate the relationship between air pollution and a health investigating the health effects of daily changes in air pollution, the exposures are essentially treated effects of air pollution. Alternative objectives include the design problem of the positioning of a new

Washington at Seattle, University of

124

A Feasibility Study: Mining Daily Traces for Home Heating Control  

E-Print Network [OSTI]

savings as well as 14.9%­59.2% reduction in miss time. Keywords Energy, home heating, daily traces, prediction 1. INTRODUCTION Heating, ventilation and cooling (HVAC) contributes most to a home's energy bills, accounting for 48% of residential energy consumption in the U.S. and 61% in the U.K., 64% in Canada where

Whitehouse, Kamin

125

ENVIRONMENTAL LEADER: THE EXECUTIVE'S DAILY GREEN BRIEFING APRIL 25, 2008  

E-Print Network [OSTI]

ENVIRONMENTAL LEADER: THE EXECUTIVE'S DAILY GREEN BRIEFING APRIL 25, 2008 Green Business Experts at MMA Renewable Ventures, a renewable energy firm in San Francisco and formerly the Business Solutions Fellow for the Pew Center on Global Climate Change. http://www.environmentalleader.com/2008/04/25/green-business

Hoffman, Andrew J.

126

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect (OSTI)

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

127

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

128

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

129

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

130

Radiation Modeling In Fluid Flow Iain D. Boyd  

E-Print Network [OSTI]

Collector #12;4 Fundamentals of Radiation (1) � All matter with non-zero temperature emits thermal radiation with energy flux given by the Stefan-Boltzmann Law: e.g., Sun: T=5800 K, total radiated power = 4 distribution (Planck spectrum) !q =T 4 W/m2 #12;5 Planck Radiation Spectrum #12;6 Solar Radiation Spectrum

Wang, Wei

131

Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation  

E-Print Network [OSTI]

wall power (MJ) kk Estimation of partial autocorrelations for time lag k PV Plant efficiency (%) R Networks, PV Plant, Energy Prediction, Stationarity *Corresponding author: Marc,MUSELLI, tél: +33 4 95 52 S Surface of PV wall [m²] x Parameter to optimize PR Performance ratio of the PV plant J Jacobian matrix hal

Paris-Sud XI, Université de

132

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

133

ARM - Measurement - Shortwave broadband total downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component BSRN : Baseline Solar Radiation Network

134

About Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from naturally occurring radioactive materials such as uranium, thorium, radon, and certain forms of potassium and carbon. The air we breathe contains radon, the food we eat contains uranium and thorium from the soil, and our bodies contain radioactive forms of potassium and carbon. Cosmic radiation from the sun also contributes to our natural radiation dose. We also receive radiation doses from man-made sources such as X-rays, nuclear medical procedures, power plants, smoke detectors and older television sets. Some people, such as nuclear plant operators, flight crews, and nuclear medicine staff may also receive an occupational radiation dose.

135

Danger radiations  

ScienceCinema (OSTI)

Le confrencier Mons.Hofert parle des dangers et risques des radiations, le contrle des zones et les prcautions prendre ( p.ex. film badge), comment mesurer les radiations etc.

None

2011-04-25T23:59:59.000Z

136

Solar and Infrared Radiation Station (SIRS) Handbook  

SciTech Connect (OSTI)

The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: Direct normal shortwave (solar beam) Diffuse horizontal shortwave (sky) Global horizontal shortwave (total hemispheric) Upwelling shortwave (reflected) Downwelling longwave (atmospheric infrared) Upwelling longwave (surface infrared)

Stoffel, T

2005-07-01T23:59:59.000Z

137

Mujeres Hombres Total Hombres Total 16 5 21 0 10  

E-Print Network [OSTI]

Julio de 2011 Tipo de Discapacidad Sexo CENTRO 5-Distribución del estudiantado con discapacidad por centro, tipo de discapacidad, sexo y totales. #12;

Autonoma de Madrid, Universidad

138

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

139

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

140

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

142

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

143

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

144

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

145

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

146

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

147

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

148

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

149

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

150

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

151

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

152

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

153

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

154

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

155

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

156

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

157

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

158

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

159

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

160

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

162

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

163

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

164

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

165

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

166

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

167

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

168

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

169

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

170

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

171

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

172

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 1.8 1.2 0.5 Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005 Million U.S. Housing Units Home Appliances...

173

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

174

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 3.1 1.0 2.2 Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005 Million U.S. Housing Units Home Appliances...

175

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

176

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 2.7 3.5 2.2 1.3 3.5 1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal...

177

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 3.4 2.0 1.4 Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005 Million U.S. Housing Units Home Appliances...

178

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

179

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

180

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 4.4 2.5 3.0 3.4 Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural...

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

182

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 4.9 2.3 1.1 1.5 Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region...

183

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 51.9 7.0 4.8 2.2 Not Asked (Mobile Homes or Apartment in Buildings with 5 or More Units)... 23.7...

184

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

185

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment... 1.2 Q Q N Q Have Main Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating...

186

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

187

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

188

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

189

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

190

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

191

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

192

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

193

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

194

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

195

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

196

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

197

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

198

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

199

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

200

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

202

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

203

Multilevel bioluminescence tomography based on radiative transfer equation  

E-Print Network [OSTI]

Multilevel bioluminescence tomography based on radiative transfer equation Part 2: total variation with both l1 and total- variation norm for bioluminescence tomography based on radiative transfer equation, Radiative Transfer (Dover Publications, 1960). 14. K. M. Case and P. F. PF Zweifel, Linear Transport Theory

Soatto, Stefano

204

Image Estimation from Marker Locations for Dose Calculation in Prostate Radiation Therapy  

Science Journals Connector (OSTI)

Tracking implanted markers in the prostate during each radiation treatment delivery provides an accurate approximation of prostate location, which enables the use of higher daily doses with tighter margins of ...

Huai-Ping Lee; Mark Foskey; Josh Levy

2010-01-01T23:59:59.000Z

205

Daily Dialysis Lessons from a Randomized, Controlled Trial  

Science Journals Connector (OSTI)

...as urea, which rapidly equilibrate among body-fluid compartments. With thrice-weekly hemodialysis, the relatively long interval between dialysis sessions results in a "peak-and-valley" effect characterized by fluctuations in the levels of toxins and body-fluid volume, affecting the ability of patients... The frequency of dialysis was established at three times a week in 1965,1 and this frequency has been used in most centers around the world. Soon after the establishment of this dialysis schedule, an analogue simulation concluded that daily (also known as ...

Twardowski Z.J.; Misra M.

2010-12-09T23:59:59.000Z

206

Radiative Rayleigh-Taylor instabilities  

E-Print Network [OSTI]

We perform analytic linear stability analyses of an interface separating two stratified media threaded by a radiation flux, a configuration relevant in several astrophysical contexts. We develop a general framework for analyzing such systems, and obtain exact stability conditions in several limiting cases. In the optically thin, isothermal regime, where the discontinuity is chemical in nature (e.g.\\ at the boundary of a radiation pressure-driven H \\textsc{ii} region), radiation acts as part of an effective gravitational field, and instability arises if the effective gravity per unit volume toward the interface overcomes that away from it. In the optically thick "adiabatic" regime where the total (gas plus radiation) specific entropy of a Lagrangian fluid element is conserved,for example at the edge of radiation pressure-driven bubble around a young massive star, we show that radiation acts like a modified equation of state, and we derive a generalized version of the classical Rayleigh-Taylor stability conditi...

Jacquet, Emmanuel

2011-01-01T23:59:59.000Z

207

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

208

Hypofractionated Radiation Therapy (66 Gy in 22 Fractions at 3 Gy per Fraction) for Favorable-Risk Prostate Cancer: Long-term Outcomes  

SciTech Connect (OSTI)

Purpose: To report long-term outcomes of low- and intermediate-risk prostate cancer patients treated with high-dose hypofractionated radiation therapy (HypoRT). Methods and Materials: Patients with low- and intermediate-risk prostate cancer were treated using 3-dimensional conformal radiation therapy to a dose of 66 Gy in 22 daily fractions of 3 Gy without hormonal therapy. A uniform 7-mm margin was created around the prostate for the planning target volume, and treatment was prescribed to the isocenter. Treatment was delivered using daily ultrasound image-guided radiation therapy. Common Terminology Criteria for Adverse Events, version 3.0, was used to prospectively score toxicity. Biochemical failure was defined as the nadir prostate-specific antigen level plus 2 ng/mL. Results: A total of 129 patients were treated between November 2002 and December 2005. With a median follow-up of 90 months, the 5- and 8-year actuarial biochemical control rates were 97% and 92%, respectively. The 5- and 8-year actuarial overall survival rates were 92% and 88%, respectively. Only 1 patient died from prostate cancer at 92 months after treatment, giving an 8-year actuarial cancer-specific survival of 98%. Radiation therapy was well tolerated, with 57% of patients not experiencing any acute gastrointestinal (GI) or genitourinary (GU) toxicity. For late toxicity, the worst grade ?2 rate for GI and GU toxicity was 27% and 33%, respectively. There was no grade >3 toxicity. At last follow-up, the rate of grade ?2 for both GI and GU toxicity was only 1.5%. Conclusions: Hypofractionation with 66 Gy in 22 fractions prescribed to the isocenter using 3-dimensional conformal radiation therapy produces excellent biochemical control rates, with moderate toxicity. However, this regimen cannot be extrapolated to the intensity modulated radiation therapy technique.

Patel, Nita [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada)] [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada); Faria, Sergio, E-mail: sergio.faria@muhc.mcgill.ca [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada)] [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada); Cury, Fabio; David, Marc; Duclos, Marie; Shenouda, George; Ruo, Russell; Souhami, Luis [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada)] [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada)

2013-07-01T23:59:59.000Z

209

76Radiation Dose and Dose Rate Radiation is measured in two  

E-Print Network [OSTI]

Seiverts per year. Hasty reports about the devastating Japan 2011 nuclear power plant radiation leakages have by Concorde, what are the total radiation doses for a passenger in each case? Problem 3 - The Japan 2011 earthquake damaged several nuclear reactors, causing radiation leakage across northern Japan. On March 22

210

Climbing and the daily energy cost of locomotion in wild chimpanzees: implications for hominoid locomotor evolution  

E-Print Network [OSTI]

Climbing and the daily energy cost of locomotion in wild chimpanzees: implications for hominoid in a population of wild chimpanzees and used published equations to calculate the relative daily energy costs, specifically whether arboreal adaptations serve to minimize daily locomotor energy costs by decreasing

Pontzer, Herman

211

Total Sky Imager (TSI) Handbook  

SciTech Connect (OSTI)

The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.

Morris, VR

2005-06-01T23:59:59.000Z

212

Radiation doses from some common paediatric X-ray examinations in Sudan  

Science Journals Connector (OSTI)

......and Technical Papers Radiation doses from some common...suliman@gmail.com Radiation Safety Institute, Sudan Atomic...3001, Khartoum, Sudan Radiation doses to patients from...settings using DosCal software. Totally, 459 patients......

I. I. Suliman; E. H. A. Elshiekh

2008-12-01T23:59:59.000Z

213

Form EIA-930 HOURLY AND DAILY BALANCING AUTHORITY OPERATIONS REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

930 930 HOURLY AND DAILY BALANCING AUTHORITY OPERATIONS REPORT INSTRUCTIONS Due Date: mm/dd/yyyy Approved: OMB No. 1905-0129 Approval Expires: 10/31/2016 Burden: 0.19 hours Page 1 Draft for Discussion only PURPOSE Form EIA-930 requires Internet posting of hourly balancing authority operating data. The posted data are used to monitor the current status and trends of the electric power industry, and to support enhancement of electric system operations. REQUIRED RESPONDENTS For the contiguous United States: all entities that are listed in NERC's Compliance Registry as a balancing authority must post balancing authority operating information required by this survey. Other than the Midwest ISO (MISO), registered balancing authorities that are parties

214

Plasma Radiation  

Science Journals Connector (OSTI)

... JUST over ten years ago the first book on plasma physics as a subject in its own right appeared; in a gradually swelling stream ... been surprisingly few monographs. One topic which has had scant coverage in any form is plasma radiation (except for spectral-line radiation which has been dealt with very fully in ...

T. J. M. BOYD

1967-07-01T23:59:59.000Z

215

ARM - Measurement - Shortwave broadband total upwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flights) MFR : Multifilter Radiometer MFRIRT : Multifilter Radiometer and Infrared Thermometer RAD : Radiation Measurements at AMF SIRS : Solar and Infrared Radiation Station...

216

7 - Estimation of Radiation Doses  

Science Journals Connector (OSTI)

Abstract Radiation doses to the Japanese population from inhalation of contaminated air, external irradiation, terrestrial and marine food contamination are estimated and compared with other sources of anthropogenic (global fallout, Chernobyl accident), natural (radionuclides in food, cosmic radiation) and medical applications (X-ray tests, CT-tests, etc.) of ionizing radiation. The estimated doses from inhalation, ingestion of terrestrial and marine food, and radiation exposure from radioactive clouds and deposited radionuclides were generally below the levels which could cause health damage of the Japanese population, as well as of the world population. The estimated total radiation doses to fish and shellfish in coastal waters during the largest radionuclide releases were by a factor of 10 lower than the baseline safe level postulated for the marine organisms, therefore no harmful effects are expected for the marine ecosystem as well.

Pavel P. Povinec; Katsumi Hirose; Michio Aoyama

2013-01-01T23:59:59.000Z

217

Sub-daily Statistical Downscaling of Meteorological Variables Using Neural Networks  

SciTech Connect (OSTI)

A new open source neural network temporal downscaling model is described and tested using CRU-NCEP reanal ysis and CCSM3 climate model output. We downscaled multiple meteorological variables in tandem from monthly to sub-daily time steps while also retaining consistent correlations between variables. We found that our feed forward, error backpropagation approach produced synthetic 6 hourly meteorology with biases no greater than 0.6% across all variables and variance that was accurate within 1% for all variables except atmospheric pressure, wind speed, and precipitation. Correlations between downscaled output and the expected (original) monthly means exceeded 0.99 for all variables, which indicates that this approach would work well for generating atmospheric forcing data consistent with mass and energy conserved GCM output. Our neural network approach performed well for variables that had correlations to other variables of about 0.3 and better and its skill was increased by downscaling multiple correlated variables together. Poor replication of precipitation intensity however required further post-processing in order to obtain the expected probability distribution. The concurrence of precipitation events with expected changes in sub ordinate variables (e.g., less incident shortwave radiation during precipitation events) were nearly as consistent in the downscaled data as in the training data with probabilities that differed by no more than 6%. Our downscaling approach requires training data at the target time step and relies on a weak assumption that climate variability in the extrapolated data is similar to variability in the training data.

Kumar, Jitendra [ORNL] [ORNL; Brooks, Bjrn-Gustaf J. [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign; Thornton, Peter E [ORNL] [ORNL; Dietze, Michael [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign

2012-01-01T23:59:59.000Z

218

The interaction of daily lighting period and light intensity on growth of some greenhouse plants  

Science Journals Connector (OSTI)

The effect of lighting period and light intensity on the growth of Begonia, Chrysanthemum, Hedera, Kalanchoe and Pelargonium was investigated. The growth of the plants usually increased more when the lighting period was extended from 12 to 18 h or 16 to 20 h than from 18 to 24 or 20 to 24 h when using a constant flux density. When using the same daily (photosynthetic active radiation) PAR the growth was best when the light was given in 20 h, instead of 16 or 24 h. Increasing the light intensity from 14 to 42 or 70 ?mol m?2 s?1 the plant growth increased and usually more when it was increased from 14 to 42 than when it was increased to 70 ?mol m?2 s?1. There was for Begonia and Kalanchoe a significant interaction between lighting period and light intensity on the dry-matter production, but not for the other plants. For Begonia there was a significant increase in number of buds and flowers when increasing the lighting period from 16 to 20 or 24 h a day, while this had no influence on number of days to flowering for either Begonia or Pelargonium. Number of days to flowering and number of buds for Begonia was significantly affected with increasing light intensity from 14 to 42 ?mol m?2 s?1, but there was no effect with a further increase.

H.R. Gislerd; I.M. Eidsten; L.M. Mortensen

1989-01-01T23:59:59.000Z

219

Radiation dosimeter  

DOE Patents [OSTI]

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, Richard J. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

220

Radiation dosimeter  

DOE Patents [OSTI]

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, R.J.

1981-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Daily HMS Extremes in Met Data - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sun Feb 01 00:04:15 PST 2015 For the day: Sat Jan 31 MAX MAX MIN Total Station Spd Time Temp Time Temp Time Precip 1 PROS 15.6 0:15 39.7 15:00 35.4 7:00 0.00 2 EOC 17.1 6:00 36.3...

222

Daily HMS Extremes in Met Data - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mon Jan 12 00:04:15 PST 2015 For the day: Sun Jan 11 MAX MAX MIN Total Station Spd Time Temp Time Temp Time Precip 1 PROS 11.9 22:30 40.2 15:15 32.2 5:00 0.00 2 EOC 14.6 20:00 37.2...

223

Daily HMS Extremes in Met Data - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thu Jan 08 00:04:15 PST 2015 For the day: Wed Jan 07 MAX MAX MIN Total Station Spd Time Temp Time Temp Time Precip 1 PROS 11.4 14:15 41.3 14:00 25.0 7:15 0.00 2 EOC 15.0 1:15 42.3...

224

Daily HMS Extremes in Met Data - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wed Jan 14 00:04:15 PST 2015 For the day: Tue Jan 13 MAX MAX MIN Total Station Spd Time Temp Time Temp Time Precip 1 PROS 10.8 16:45 37.5 14:15 34.1 7:30 0.00 2 EOC 9.3 23:30 38.8...

225

Daily HMS Extremes in Met Data - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fri Jan 09 00:04:21 PST 2015 For the day: Thu Jan 08 MAX MAX MIN Total Station Spd Time Temp Time Temp Time Precip 1 PROS 16.3 21:00 35.4 0:00 31.7 0:15 0.00 2 EOC 22.0 22:30 34.8...

226

Daily HMS Extremes in Met Data - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tue Jan 13 00:04:15 PST 2015 For the day: Mon Jan 12 MAX MAX MIN Total Station Spd Time Temp Time Temp Time Precip 1 PROS 10.2 19:15 42.7 13:45 33.0 3:00 0.00 2 EOC 10.0 17:30 39.1...

227

Appendix G. Radiation Appendix G. Radiation  

E-Print Network [OSTI]

-made sources. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation of radiation and its effects on the environment and biological systems. Radiation comes from natural and humanAppendix G. Radiation #12;#12;Appendix G. Radiation This appendix presents basic facts about

Pennycook, Steve

228

Biological effects of radiation from dental radiography. Council on Dental Materials, Instruments, and Equipment  

SciTech Connect (OSTI)

Clearly, there is ample evidence of adverse effects of radiation in sufficient doses. There is at present no proof of such effects from doses commonly employed in dental practice; however, it has not been possible to prove the absence of such effects. Most experts now agree that there may be a small, difficult to quantify risk of cancer or genetic mutation from diagnostic exposure in patients and in personnel exposed during work. Prudence dictates acceptance of this position until proof to the contrary is available. This report has presented recent attempts to quantify the risk to patients based on speculative calculations and extrapolations. Indices of population risks indicate that medical radiology is the largest source of human-made genetic and leukemogenic radiation burden to the American public. Dental radiology contributes a small-but not necessarily insignificant-portion. Of major concern is the increasing use of radiation for diagnostic purposes in both medicine and dentistry. Technological advances have reduced exposure per examination; presumably this trend will continue so that total exposure of populations to radiation in the healing arts will not increase. Recent analyses suggest that the cancer risk to a patient from a dental radiographic examination is of the order of one in a million; the genetic risk is substantially less, about one in a billion. The risks appear to be essentially equal for full-mouth intraoral and for panoramic examinations. These estimates are numerically quite small, but the effects are severe. Thus, these risks cannot be ignored. However, we currently accept risks of similar magnitude in our daily lives (Table 9)50,51 In addition, the risk of failure to make an accurate diagnosis may be greater than the risk from exposure to the radiation from a justified and properly conducted radiographic examination.

Gibbs, S.J.

1982-08-01T23:59:59.000Z

229

Does Dissipation in AGN Disks Couple to the Total Pressure?  

E-Print Network [OSTI]

Recent work on the transport of angular momentum in accretion disks suggests that the Velikhov-Chandrasekhar instability, in which a large scale magnetic field generates small scale eddys in a shearing environment, may be ultimately responsible for this process. Although there is considerable controversy about the origin and maintenance of this field in accretion disks, it turns out that it is possible to argue, quite generally, using scaling arguments, that this process is sensitive to the total pressure in an AGN disk, rather than the pressure contributed by gas alone. We conclude that the resolution of the conceptual difficulties implied by the presence of strong thermal and viscous instabilities in radiation pressure and electron scattering dominated does not lie in models that couple the total dissipation rate to the gas pressure alone, or to some weighted mean of the gas and radiation pressures.

E. T. Vishniac

1993-08-12T23:59:59.000Z

230

A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data  

SciTech Connect (OSTI)

Purpose: In this study, we present a novel markerless technique, based on cone beam computed tomography (CBCT) raw projection data, to evaluate lung tumor daily motion. Method and Materials: The markerless technique, which uses raw CBCT projection data and locates tumors directly on every projection, consists of three steps. First, the tumor contour on the planning CT is used to create digitally reconstructed radiographs (DRRs) at every projection angle. Two sets of DRRs are created: one showing only the tumor, and another with the complete anatomy without the tumor. Second, a rigid two-dimensional image registration is performed to register the DRR set without the tumor to the CBCT projections. After the registration, the projections are subtracted from the DRRs, resulting in a projection dataset containing primarily tumor. Finally, a second registration is performed between the subtracted projection and tumor-only DRR. The methodology was evaluated using a chest phantom containing a moving tumor, and retrospectively in 4 lung cancer patients treated by stereotactic body radiation therapy. Tumors detected on projection images were compared with those from three-dimensional (3D) and four-dimensional (4D) CBCT reconstruction results. Results: Results in both static and moving phantoms demonstrate that the accuracy is within 1 mm. The subsequent application to 22 sets of CBCT scan raw projection data of 4 lung cancer patients includes about 11,000 projections, with the detected tumor locations consistent with 3D and 4D CBCT reconstruction results. This technique reveals detailed lung tumor motion and provides additional information than conventional 4D images. Conclusion: This technique is capable of accurately characterizing lung tumor motion on a daily basis based on a conventional CBCT scan. It provides daily verification of the tumor motion to ensure that these motions are within prior estimation and covered by the treatment planning volume.

Yang Yin; Zhong Zichun; Guo Xiaohu [Department of Computer Science, University of Texas at Dallas, Richardson, TX (United States); Wang Jing; Anderson, John; Solberg, Timothy [Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States); Mao Weihua, E-mail: weihua.mao@utsouthwestern.edu [Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States)

2012-04-01T23:59:59.000Z

231

Performance Period Total Fee Paid  

Broader source: Energy.gov (indexed) [DOE]

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

232

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

233

ARM - Measurement - Total cloud water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

234

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

235

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

236

McGinness Hills Well 27A-10 Daily Drilling Report Data  

SciTech Connect (OSTI)

This data should be used with the daily drilling record and other data which can be obtained from the contact listed below

Knudsen, Steven

2014-03-25T23:59:59.000Z

237

McGinness Hills Well 27A-10 Daily Drilling Report Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data should be used with the daily drilling record and other data which can be obtained from the contact listed below

Knudsen, Steven

238

E-Print Network 3.0 - amplitude daily geomagnetic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

level of geomagnetic disturbances. The anomalies were registered daily... -speed solar wind, mag- netic field disturbances in the interplanetary space and in the geomagnetic...

239

Future projections of daily precipitation and its extremes in simulations of 21st century climate change.  

E-Print Network [OSTI]

??The current generation of climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) is used to assess the future changes in daily precipitation (more)

Yin, Lei

2013-01-01T23:59:59.000Z

240

Arctic daily temperature and precipitation extremes: Observed and simulated physical behavior.  

E-Print Network [OSTI]

??ARCTIC DAILY TEMPERATURE AND PRECIPITATION EXTREMES: OBSERVED AND SIMULATED PHYSICAL BEHAVIOR Justin M. Glisan Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa (more)

Glisan, Justin Michael

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Receptor modeling assessment of particle total exposure assessment methodology data  

SciTech Connect (OSTI)

Data from the 1991 Particle Total Exposure Assessment Methodology (PTEAM) study in Riverside, CA, were analyzed using a new receptor modeling method. In this study, ambient (outdoor), indoor, and personal particulate matter (PM) concentrations and elemental concentrations of PM{sub 2.5} and PM{sub 10} were measured for a number of participants. These measurements made is possible to relate the pollution to which people were exposed throughout their daily activities with the outdoor air conditions. Personal daytime concentrations of the PM{sub 10} and majority of elements were significantly higher than outdoor or indoor concentrations, suggesting that a significant part of personal aerosol exposure is the result of personal daily activities. Possible sources of additional particulate mass include resuspension of particles that penetrate from the outdoors and formation of new particles during cooking, smoking, etc. Positive matrix factorization analysis was performed to describe the sources of personal exposure. To identify relative contribution of different sources, regression of the particulate matter mass against the factor contributions was performed. Major sources of PM{sub 2.5} were oil combustion, nonferrous metal operations, and motor vehicles. The mass contributions of particles from these sources were similar for outdoor air and personal exposure. Personal exposure to particles from these sources can be controlled by changing outdoor sources. The primary source of PM{sub 10} was soil.

Yakovleva, E.; Hopke, P.K.; Wallace, L.

1999-10-15T23:59:59.000Z

242

Radiation receiver  

DOE Patents [OSTI]

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

Hunt, A.J.

1983-09-13T23:59:59.000Z

243

Attribution of the presentday total greenhouse effect Gavin A. Schmidt,1  

E-Print Network [OSTI]

Attribution of the presentday total greenhouse effect Gavin A. Schmidt,1 Reto A. Ruedy,1 Ron L to the presentday global greenhouse effect are among the most misquoted statistics in public discussions of climate though the magnitude of the total greenhouse effect is significantly larger than the initial radiative

244

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

245

Solar total energy project Shenandoah  

SciTech Connect (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

246

Grantee Total Number of Homes  

Broader source: Energy.gov (indexed) [DOE]

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

247

Daily torpor in mice: high foraging costs trigger energy-saving hypothermia  

Science Journals Connector (OSTI)

...high foraging costs trigger energy-saving hypothermia Kristin A. Schubert...the use of daily torpor as an energy-saving strategy. The finding that daily...metabolic rate over time represented energy savings which ranged from 1-8 kJ d1...

2010-01-01T23:59:59.000Z

248

Daily routines of body mass gain in birds: 2. An experiment with reduced food availability  

E-Print Network [OSTI]

; published online 31 July 2006; MS. number: 8608R) Theoretical models predict that small birds should adjust daily patterns of body mass gain in response to environmental and internal factors. In a companion paper, we described a model on daily fattening that allows the analysis of precise changes in the shape

Carrascal, Luis M.

249

Intra-daily variations in volatility and transaction costs in the Credit Default Swap market  

E-Print Network [OSTI]

Intra-daily variations in volatility and transaction costs in the Credit Default Swap market Andras : Credit Default Swap, Intra-daily patterns, Stochastic transaction costs, Volatility, Interdealer market on the Microstructure of Financial Markets in Hong Kong, the 2008 Credit conference in Venice, the Third Annual Risk

Del Moral , Pierre

250

Statistical Characteristics of Daily Precipitation: Comparisons of Gridded and Point Datasets  

E-Print Network [OSTI]

Statistical Characteristics of Daily Precipitation: Comparisons of Gridded and Point Datasets Gauge Dataset (URD) and those of its nearest (rain gauge) station. To further examine differences between the two datasets, return periods of daily precipitation were calculated over a region encompassing

Roy Chowdhury, Rinku

251

ELPIS-JP: a dataset of local-scale daily climate change scenarios for Japan  

Science Journals Connector (OSTI)

...the advanced research WRF version 3Boulder, CONational...Semenov1991A serial approach to local stochastic weather modelsEcol...ELPIS-JP: a dataset of local-scale daily climate...developed a dataset of local-scale daily climate...relative humidity; and wind speed) at 938 sites in...

2012-01-01T23:59:59.000Z

252

Changes in daily temperature and precipitation extremes in central and south Asia  

E-Print Network [OSTI]

Changes in daily temperature and precipitation extremes in central and south Asia A. M. G. Klein in indices of climate extremes are studied on the basis of daily series of temperature and precipitation, the indices of temperature extremes indicate warming of both the cold tail and the warm tail

Klein Tank, Albert

253

The environmental protection agency's research program on total human exposure  

Science Journals Connector (OSTI)

The U.S. Environmental Protection Agency's (U.S. EPA) research program on total human exposure to environmental pollution seeks to develop a newly emerging concept in the environmental sciences. Instead of focusing purely on the sources of pollution or their transport and movement through the environment, this research focuses on human beings as the receptors of these pollutants. People and daily activities become the center of attention. The methodology measures and models the pollutant concentrations found at the physical boundaries of people, regardless of whether the pollutants arrive through the air, water, food, or skin. It seeks to characterize quantitatively the impact of pollution on people by determining if an environmental problem exists at the human interface and, if so, by determining the sources, nature, extent, and severity of this environmental problem. By exploiting an emerging new arsenal of miniaturized instruments and by developing statistically representative survey designs for sampling the population of cities, significant progress has been made in recent years in providing previously unavailable human exposure field data needed for making valid risk assessments. The U.S. EPA total human exposure research program includes: development of measurement methods and instruments, development of exposure models and statistical protocols, microenvironmental field studies, total human exposure studies, validation of human exposure models with empirical data, and dosage research investigations.

Wayne Ott; Lance Wallace; David Mage; Gerald Akland; Robert Lewis; Harold Sauls; Charles Rodes; David Kleffman; Donna Kuroda; Karen Morehouse

1986-01-01T23:59:59.000Z

254

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

255

Radiation Protection Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

256

Principal Investigators: Long-Term Daily and Monthly Climate Records from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Principal Investigators: Long-Term Daily and Monthly Climate Records from Principal Investigators: Long-Term Daily and Monthly Climate Records from Stations Across the Contiguous United States M.J. Menne, C.N. Williams, Jr., and R.S. Vose National Climatic Data Center National Oceanic and Atmospheric Administration CDIAC and the USHCN PIs encourage users to make this site their main source for obtaining USHCN data, where you can take advantage of data plotting, and, for daily data, user-friendly station-specific downloading. This site will update both daily and monthly data near the beginning of each year, so as to include data through December of the previous year. However, if you need real-time data updates, you should visit the NCDC website. For NCDC-updated daily data please use the Global Historical Climatology Network (GHCN) website where you will find a directory of USHCN stations.

257

Today in Energy - Daily Prices - Prices - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

December 20, 2013Daily Prices December 20, 2013Daily Prices Daily wholesale and retail prices for various energy products are shown below, including spot prices and select futures prices at national or regional levels. Prices are updated each weekday (excluding federal holidays), typically between 7:30 and 8:30 a.m. This page is meant to provide a snapshot of selected daily prices only. Prices are republished by EIA with permission as follows: Wholesale Spot Petroleum Prices from Thomson Reuters, Retail Petroleum Prices from AAA Fuel Gauge Report, Prompt-Month Energy Futures from CME Group, and Select Spot Prices from SNL Energy. Daily Prices Wholesale Spot Petroleum Prices, 12/19/13 Close Product Area Price Percent Change* Crude Oil ($/barrel) WTI 98.40 +0.8 Brent 110.78 +1.1 Louisiana Light 108.27 +4.9

258

Total quality management implementation guidelines  

SciTech Connect (OSTI)

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

259

Total Heart Transplant: A Modern Overview  

E-Print Network [OSTI]

use of the total artificial heart. New England Journal ofJ. (1997). Artificial heart transplants. British medicala total artificial heart as a bridge to transplantation. New

Lingampalli, Nithya

2014-01-01T23:59:59.000Z

260

Radiation protection: Natural radiation risks  

Science Journals Connector (OSTI)

... radiation to which humans are exposed consists of four components - cosmic, gamma, internal, radon. The relative contribution that each makes to the sum is shown in the chart. ... but exposure of the whole body to terrestrial gamma rays and of the lungs to radon daughters are influenced by the nature and location of housing. Gamma rays are emitted ...

M. C. O'Riordan

1983-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

On the radiative and thermodynamic properties of the extragalactic far infrared background radiation using COBE FIRAS instrument data  

E-Print Network [OSTI]

Using the explicit form of the function to describe the average spectrum of the extragalactic far infrared background (FIRB) radiation measured by the COBE FIRAS instrument in the 0.15 - 2.4 THz frequency interval, the radiative and thermodynamic properties, such as the total emissivity, total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, pressure, enthalpy density, and internal energy density are calculated. The calculated value of the total intensity received in the 0.15 - 2.4 THz frequency interval is 13.6 nW m^-2 sr^-1, and comprises about 19.4 % of the total intensity expected from the energy released by stellar nucleosynthesis over cosmic history. The radiative and thermodynamic functions of the extragalactic far infrared background (FIRB) radiation are calculated at redshift z = 1.5.

Fisenko, Anatoliy I

2014-01-01T23:59:59.000Z

262

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

263

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

264

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

265

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network [OSTI]

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

266

Locating and total dominating sets in trees  

Science Journals Connector (OSTI)

A set S of vertices in a graph G = ( V , E ) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.

Teresa W. Haynes; Michael A. Henning; Jamie Howard

2006-01-01T23:59:59.000Z

267

Locating-total domination in graphs  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices in a graph G is a total dominating set in G if every vertex of G is adjacent to a vertex in S . We consider total dominating sets S which have the additional property that distinct vertices in V ( G ) ? S are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G , and the locating-total domination number of G is the minimum cardinality of a locating-total dominating set in G . We obtain new lower and upper bounds on the locating-total domination number of a graph. Interpolation results are established, and the locating-total domination number in special families of graphs, including cubic graphs and grid graphs, is investigated.

Michael A. Henning; Nader Jafari Rad

2012-01-01T23:59:59.000Z

268

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

269

Radiating gravastars  

SciTech Connect (OSTI)

Considering a Vaidya exterior spacetime, we study dynamical models of prototype gravastars, made of an infinitely thin spherical shell of a perfect fluid with the equation of state p = ?, enclosing an interior de Sitter spacetime. We show explicitly that the final output can be a black hole, an unstable gravastar, a stable gravastar or a 'bounded excursion' gravastar, depending on how the mass of the shell evolves in time, the cosmological constant and the initial position of the dynamical shell. This work presents, for the first time in the literature, a gravastar that emits radiation.

Chan, R. [Coordenao de Astronomia e Astrofsica, Observatrio Nacional, Rua General Jos Cristino, 77, So Cristvo 20921-400, Rio de Janeiro, RJ (Brazil); Silva, M.F.A. da [Departamento de Fsica Terica, Instituto de Fsica, Universidade do Estado do Rio de Janeiro, Rua So Francisco Xavier 524, Maracan 20550-900, Rio de Janeiro - RJ (Brazil); Rocha, Jaime F. Villas da [Instituto de Biocincias, Departamento de Cincias Naturais, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur 458, Urca, CEP 22290-240, Rio de Janeiro, RJ (Brazil); Wang, Anzhong, E-mail: chan@on.br, E-mail: mfasnic@gmail.com, E-mail: jfvroch@pq.cnpq.br, E-mail: anzhong_wang@baylor.edu [GCAP-CASPER, Department of Physics, Baylor University, Waco, TX 76798 (United States)

2011-10-01T23:59:59.000Z

270

Get Daily Energy Analysis Delivered to Your Website | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Get Daily Energy Analysis Delivered to Your Website Get Daily Energy Analysis Delivered to Your Website Get Daily Energy Analysis Delivered to Your Website August 8, 2011 - 3:39pm Addthis Get Daily Energy Analysis Delivered to Your Website Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs How can I participate? Go to EIA's outreach page for Today in Energy widgets, badges and banners. Now everyone can feature the U.S. Energy Information Administration's (EIA) Today in Energy content on their website and favorite social networking sites. Today in Energy, the agency's education product published every weekday, highlights current energy issues, topics, and data trends in short articles written in plain language. EIA has banners and widgets in different colors and sizes to fit many different websites.

271

A stochastic model for the daily coordination of pumped storage hydro plants and wind power plants  

Science Journals Connector (OSTI)

We propose a stochastic model for the daily operation scheduling of a generation system including pumped storage hydro plants and wind power plants, where the uncertainty is represented by the hourly wind power p...

Maria Teresa Vespucci; Francesca Maggioni

2012-03-01T23:59:59.000Z

272

U.S. Daily Temperatures: The Meaning of Extremes in the Context of Nonnormality  

Science Journals Connector (OSTI)

Variations in extreme daily temperatures are explored in relation to changes in seasonal mean temperature using 1218 high-quality U.S. temperature stations spanning 19002012. Extreme temperatures are amplified (or damped) by as much as 50% ...

P. Huybers; K. A. McKinnon; A. Rhines; M. Tingley

2014-10-01T23:59:59.000Z

273

Daily Reporting Rainfall Station TULLY & JOHNSTONE RIVERS Manual Heavy Rainfall Station  

E-Print Network [OSTI]

Daily Reporting Rainfall Station TULLY & JOHNSTONE RIVERS Manual Heavy Rainfall Station Manual Tide TM Bulgun Ck AL Bingil Bay The Boulders TM Nerada AL Tung Oil AL Fishers Ck TM Corsis AL Russell

Greenslade, Diana

274

Daily Reporting Rainfall Station TULLY & JOHNSTONE RIVERS Manual Heavy Rainfall Station  

E-Print Network [OSTI]

Daily Reporting Rainfall Station TULLY & JOHNSTONE RIVERS Manual Heavy Rainfall Station Manual The Boulders TM Nerada AL Tung Oil AL Fishers Ck TM Corsis AL RussellR Babinda Clyde Rd AL Central Mill AL

Greenslade, Diana

275

LCA comparison of windrow composting of yard wastes with use as alternative daily cover (ADC)  

E-Print Network [OSTI]

LCA comparison of windrow composting of yard wastes with use as alternative daily cover (ADC) Rob Assessment was made using the SimaPro LCA software and showed that the ADC scenario is more beneficial

Columbia University

276

Nanotechnology in our Daily Life Iridescent car paint: Based on interference colors  

E-Print Network [OSTI]

Nanotechnology in our Daily Life Iridescent car paint: Based on interference colors (like a butterly, no bleaching after 5 years Miami) #12;Nanotechnology on our Desktops Hard Disk Sensor Medium

Himpsel, Franz J.

277

Daily torpor in mice: high foraging costs trigger energy-saving hypothermia  

Science Journals Connector (OSTI)

...strategies to save energy. Facultative daily...between environmental quality, foraging behaviour...environmental quality|foraging costs|energy balance| 1. Introduction...foraging costs in poor quality habitat. As an...strategy to maintain energy balance, natural...

2010-01-01T23:59:59.000Z

278

Developing hourly weather data for locations having only daily weather data  

SciTech Connect (OSTI)

A methodology was developed to modify an hourly TMY weather tape to be representative of a location for which only average daily weather parameters were avilable. Typical hourly and daily variations in solar flux, and other parameters, were needed to properly exercise a computer model to predict the transient performance of a solar controlled greenhouse being designed for Riyadh, Saudi Arabia. The starting point was a TMY tape for Yuma, Arizona, since the design temperatures for summer and winter are nearly identical for Yuma and Riyadh. After comparing six of the most important weather variables, the hourly values on the Yuma tape were individually adjusted to give the same overall daily average conditions as existed in the long-term Riyadh data. Finally, a statistical analysis was used to confirm quantitatively that the daily variations between the long term average values for Riyadh and the modified TMY weather tape for Yuma matched satisfactorily.

Talbert, S.G.; Herold, K.E.; Jakob, F.E.; Lundstrom, D.K.

1983-06-01T23:59:59.000Z

279

Cakewalking into representation : Gabriele Mnter's America travels (1898-1900) and art of dailiness  

E-Print Network [OSTI]

This study explores the fashioning of Gabriele Mnter as a German modernist with a focus on the eclipse of her struggles in coming to representation, the rich complexity of her processes, and the importance of dailiness ...

Bible, Ann Vollmann

2008-01-01T23:59:59.000Z

280

Dynamic Shape Modeling of Consumers Daily Load Based on Data Mining  

Science Journals Connector (OSTI)

The shape characteristic of daily power consumption of consumers can be applied to guide their power consumption behaviors and improve load structures of power system. It is also the basis to obtain the shape cha...

Lianmei Zhang; Shihong Chen; Qiping Hu

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Micro-simulation of daily activity-travel patterns for travel demand forecasting  

Science Journals Connector (OSTI)

The development and initial validation results of a micro-simulator for the generation of daily activity-travel patterns are presented in this paper. The simulator assumes a sequential history and time-of-day ...

Ryuichi Kitamura; Cynthia Chen; Ram M. Pendyala; Ravi Narayanan

282

African Press International (API) This is your "Daily Online News Channel".  

E-Print Network [OSTI]

African Press International (API) This is your "Daily Online News Channel". Home A:Contact us powerful as before ­ Is this good for new Kenya? (api) The travelling man: Pope Benedict XVI is due

283

Review of Methods to Map Peoples Daily Activity Application for Smart Homes  

Science Journals Connector (OSTI)

Peoples daily activity in their home has widespread implications, including health and energy ... the winter of 2012. Within a smart home, these methods could potentially be used to...

Stephanie Gauthier; David Shipworth

2013-01-01T23:59:59.000Z

284

Automation: A Step toward Improving the Quality of Daily Temperature Data Produced by Climate Observing Networks  

Science Journals Connector (OSTI)

The research documented in this manuscript demonstrates that undeniable differences exist between values of daily temperature recorded by the National Weather Service Cooperative Observer Program network and data recorded by the Oklahoma Mesonet. ...

Christopher A. Fiebrich; Kenneth C. Crawford

2009-07-01T23:59:59.000Z

285

Grid History: A Geostationary Satellite Technique for Estimating Daily Rainfall in the Tropics  

Science Journals Connector (OSTI)

A new technique is described for estimating daily rainfall by means of visible and infrared geostationary satellite imagery. It is designed for the tropics and warm-season midlatitudes. Because it operates on a grid of points and measures time ...

David W. Martin; Michael R. Howland

1986-02-01T23:59:59.000Z

286

Two photo permits are available: Daily Photographer Permit and Annual Photographer Permit. Daily Photographer Permit is $75 and includes gate admission for up to 15 adults and photographer. To reserve  

E-Print Network [OSTI]

Two photo permits are available: Daily Photographer Permit and Annual Photographer Permit. Daily of the photo session will be $75 plus a $25 processing fee. Your Daily Photo Badge can be picked up the business day before. Any permits purchased on the day of the photo session will be $225 and subject

Netoff, Theoden

287

Radiative muon absorption in oxygen  

Science Journals Connector (OSTI)

The photon spectrum from radiative absorption of negative muons in O16 has been measured with a high-resolution pair spectrometer. The integrated branching ratio for photons with energies greater than 57 MeV relative to the total muon absorption rate is (3.80.4)10-5. The data are consistent with nuclear model calculations for a value of the induced pseudoscalar coupling in O16 of gP/gA=13.51.5.

A. Frischknecht; M. Dbeli; W. Stehling; G. Strassner; P. Trul; J. C. Alder; C. Joseph; J. F. Loude; J. P. Perroud; D. Ruegger; M. T. Tran; H. Panke

1988-11-01T23:59:59.000Z

288

DOE Radiation Exposure Monitoring System (REMS) Data Update  

SciTech Connect (OSTI)

This slide show presents the 2011 draft data for DOE occupational radiation exposure.Clarification is given on Reporting Data regarding: reporting Total Organ Dose (TOD); reporting Total Skin Dose (TSD), and Total Extremity Dose (TExD) ; and Special individuals reporting.

Rao, Nimi; Hagemeyer, Derek

2012-05-05T23:59:59.000Z

289

Natural and Radiation Carcinogenesis in Man. III. Radiation Carcinogenesis  

Science Journals Connector (OSTI)

...mice. NATURAL AND RADIATION CARCINOGENESIS IN MAN. 3. RADIATION CARCINOGENESIS. | Journal Article | Japan Neoplasms etiology Neoplasms, Radiation-Induced Radiation Genetics | JAPAN NEOPLASM ETIOLOGY NEOPLASMS, RADIATION-INDUCED RADIATION...

1965-01-01T23:59:59.000Z

290

State Residential Commercial Industrial Transportation Total  

Gasoline and Diesel Fuel Update (EIA)

schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total 2012 Total Electric Industry- Average Retail Price (centskWh) (Data from...

291

Total cost model for making sourcing decisions  

E-Print Network [OSTI]

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

292

Adaptors for radiation detectors  

DOE Patents [OSTI]

Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

Livesay, Ronald Jason

2014-04-22T23:59:59.000Z

293

Team Total Points Beta Theta Pi 2271  

E-Print Network [OSTI]

Bubbles 40 Upset City 30 Team Success 30 #12;Team Total Points Sly Tye 16 Barringer 15 Fire Stinespring 15

Buehrer, R. Michael

294

Radiation Safety  

Broader source: Energy.gov (indexed) [DOE]

Brotherhood of Locomotive Brotherhood of Locomotive Engineers & Trainmen Scott Palmer BLET Radiation Safety Officer New Hire Training New Hire study topics * GCOR * ABTH * SSI * Employee Safety * HazMat * Railroad terminology * OJT * 15-week class * Final test Hazardous Materials * Initial new-hire training * Required by OSHA * No specified class length * Open book test * Triennial module Locomotive Engineer Training A little bit older...a little bit wiser... * Typically 2-4 years' seniority * Pass-or-get-fired promotion * Intensive program * Perpetually tested to a higher standard * 20 Weeks of training * 15 of that is OJT * General Code of Operating Rules * Air Brake & Train Handling * System Special Instructions * Safety Instructions * Federal Regulations * Locomotive Simulators * Test Ride * Pass test with 90% Engineer Recertification

295

Pulsed Versus Conventional Radiation Therapy in Combination With Temozolomide in a Murine Orthotopic Model of Glioblastoma Multiforme  

SciTech Connect (OSTI)

Purpose: To evaluate the efficacy of pulsed low-dose radiation therapy (PLRT) combined with temozolomide (TMZ) as a novel treatment approach for radioresistant glioblastoma multiforme (GBM) in a murine model. Methods and Materials: Orthotopic U87MG hGBM tumors were established in Nu-Foxn1{sup nu} mice and imaged weekly using a small-animal micropositron emission tomography (PET)/computed tomography (CT) system. Tumor volume was determined from contrast-enhanced microCT images and tumor metabolic activity (SUVmax) from the F18-FDG microPET scan. Tumors were irradiated 7 to 10 days after implantation with a total dose of 14 Gy in 7 consecutive days. The daily treatment was given as a single continuous 2-Gy dose (RT) or 10 pulses of 0.2 Gy using an interpulse interval of 3 minutes (PLRT). TMZ (10 mg/kg) was given daily by oral gavage 1 hour before RT. Tumor vascularity and normal brain damage were assessed by immunohistochemistry. Results: Radiation therapy with TMZ resulted in a significant 3- to 4-week tumor growth delay compared with controls, with PLRT+TMZ the most effective. PLRT+TMZ resulted in a larger decline in SUVmax than RT+TMZ. Significant differences in survival were evident. Treatment after PLRT+TMZ was associated with increased vascularization compared with RT+TMZ. Significantly fewer degenerating neurons were seen in normal brain after PLRT+TMZ compared with RT+TMZ. Conclusions: PLRT+TMZ produced superior tumor growth delay and less normal brain damage when compared with RT+TMZ. The differential effect of PLRT on vascularization may confirm new treatment avenues for GBM.

Lee, David Y.; Chunta, John L.; Park, Sean S.; Huang, Jiayi; Martinez, Alvaro A.; Grills, Inga S.; Krueger, Sarah A.; Wilson, George D. [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Marples, Brian, E-mail: brian.marples@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States)

2013-08-01T23:59:59.000Z

296

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

297

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

298

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

299

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

300

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

302

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

303

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

304

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

305

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

306

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

307

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

308

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

309

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

310

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

311

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

312

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

313

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

314

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

315

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

316

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

317

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

318

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

319

TotalView Parallel Debugger at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Totalview Totalview Totalview Description TotalView from Rogue Wave Software is a parallel debugging tool that can be run with up to 512 processors. It provides both X Windows-based Graphical User Interface (GUI) and command line interface (CLI) environments for debugging. The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more about some of the advanced TotalView features. Accessing Totalview at NERSC To use TotalView at NERSC, first load the TotalView modulefile to set the correct environment settings with the following command: % module load totalview Compiling Code to Run with TotalView In order to use TotalView, code must be compiled with the -g option. We

320

On the Classical Radiation of Accelerated Electrons  

Science Journals Connector (OSTI)

This paper is concerned with the properties of the radiation from a high energy accelerated electron, as recently observed in the General Electric synchrotron. An elementary derivation of the total rate of radiation is first presented, based on Larmor's formula for a slowly moving electron, and arguments of relativistic invariance. We then construct an expression for the instantaneous power radiated by an electron moving along an arbitrary, prescribed path. By casting this result into various forms, one obtains the angular distribution, the spectral distribution, or the combined angular and spectral distributions of the radiation. The method is based on an examination of the rate at which the electron irreversibly transfers energy to the electromagnetic field, as determined by half the difference of retarded and advanced electric field intensities. Formulas are obtained for an arbitrary charge-current distribution and then specialized to a point charge. The total radiated power and its angular distribution are obtained for an arbitrary trajectory. It is found that the direction of motion is a strongly preferred direction of emission at high energies. The spectral distribution of the radiation depends upon the detailed motion over a time interval large compared to the period of the radiation. However, the narrow cone of radiation generated by an energetic electron indicates that only a small part of the trajectory is effective in producing radiation observed in a given direction, which also implies that very high frequencies are emitted. Accordingly, we evaluate the spectral and angular distributions of the high frequency radiation by an energetic electron, in their dependence upon the parameters characterizing the instantaneous orbit. The average spectral distribution, as observed in the synchrotron measurements, is obtained by averaging the electron energy over an acceleration cycle. The entire spectrum emitted by an electron moving with constant speed in a circular path is also discussed. Finally, it is observed that quantum effects will modify the classical results here obtained only at extraordinarily large energies.

Julian Schwinger

1949-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Multicenter Phase II Trial of S-1 With Concurrent Radiation Therapy for Locally Advanced Pancreatic Cancer  

SciTech Connect (OSTI)

Purpose: The aim of this trial was to evaluate the efficacy and toxicity of S-1 and concurrent radiation therapy for locally advanced pancreatic cancer (PC). Methods and Materials: Locally advanced PC patients with histologically or cytologically confirmed adenocarcinoma or adenosquamous carcinoma, who had no previous therapy were enrolled. Radiation therapy was delivered through 3 or more fields at a total dose of 50.4 Gy in 28 fractions over 5.5 weeks. S-1 was administered orally at a dose of 80 mg/m{sup 2} twice daily on the day of irradiation during radiation therapy. After a 2- to 8-week break, patients received a maintenance dose of S-1 (80 mg/m{sup 2}/day for 28 consecutive days, followed by a 14-day rest period) was then administered until the appearance of disease progression or unacceptable toxicity. The primary efficacy endpoint was survival, and the secondary efficacy endpoints were progression-free survival, response rate, and serum carbohydrate antigen 19-9 (CA19-9) response; the safety endpoint was toxicity. Results: Of the 60 evaluable patients, 16 patients achieved a partial response (27%; 95% confidence interval [CI], 16%-40%). The median progression-free survival period, overall survival period, and 1-year survival rate of the evaluable patients were 9.7 months (95% CI, 6.9-11.6 months), 16.2 months (95% CI, 13.5-21.3 months), and 72% (95%CI, 59%-82%), respectively. Of the 42 patients with a pretreatment serum CA19-9 level of {>=}100 U/ml, 34 (81%) patients showed a decrease of greater than 50%. Leukopenia (6 patients, 10%) and anorexia (4 patients, 7%) were the major grade 3-4 toxicities with chemoradiation therapy. Conclusions: The effect of S-1 with concurrent radiation therapy in patients with locally advanced PC was found to be very favorable, with only mild toxicity.

Ikeda, Masafumi, E-mail: masikeda@east.ncc.go.jp [Division of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Chiba (Japan)] [Division of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Chiba (Japan); Ioka, Tatsuya [Department of Hepatobiliary and Pancreatic Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan)] [Department of Hepatobiliary and Pancreatic Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Ito, Yoshinori [Department of Radiation Oncology, National Cancer Center Hospital, Tokyo (Japan)] [Department of Radiation Oncology, National Cancer Center Hospital, Tokyo (Japan); Yonemoto, Naohiro [Department of Epidemiology and Biostatistics, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo (Japan)] [Department of Epidemiology and Biostatistics, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo (Japan); Nagase, Michitaka [Department of Clinical Oncology, Jichi Medical University, Tochigi (Japan)] [Department of Clinical Oncology, Jichi Medical University, Tochigi (Japan); Yamao, Kenji [Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya (Japan)] [Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya (Japan); Miyakawa, Hiroyuki [Department of Gastroenterology, Sapporo Kosei General Hospital, Sapporo (Japan)] [Department of Gastroenterology, Sapporo Kosei General Hospital, Sapporo (Japan); Ishii, Hiroshi [Hepatobiliary and Pancreatic Division, Cancer Institute Hospital, Tokyo (Japan)] [Hepatobiliary and Pancreatic Division, Cancer Institute Hospital, Tokyo (Japan); Furuse, Junji [Department of Internal Medicine, Medical Oncology School of Medicine, Kyorin University, Tokyo (Japan)] [Department of Internal Medicine, Medical Oncology School of Medicine, Kyorin University, Tokyo (Japan); Sato, Keiko [Kyoto Unit Center, Japan Environment and Children's Study, Kyoto University Graduate School of Medicine, Kyoto (Japan)] [Kyoto Unit Center, Japan Environment and Children's Study, Kyoto University Graduate School of Medicine, Kyoto (Japan); Sato, Tosiya [Department of Biostatistics, Kyoto University School of Public Health, Kyoto (Japan)] [Department of Biostatistics, Kyoto University School of Public Health, Kyoto (Japan); Okusaka, Takuji [Hepatobiliary and Pancreatic Oncology Division, National Cancer Center Hospital, Tokyo (Japan)] [Hepatobiliary and Pancreatic Oncology Division, National Cancer Center Hospital, Tokyo (Japan)

2013-01-01T23:59:59.000Z

322

Nuclear radiation electronic gear  

Science Journals Connector (OSTI)

Nuclear radiation electronic gear ... Examines the line of nuclear radiation instrumentation offered by Nuclear-Chicago Corporation and Victoreen Instrument Company. ... Nuclear / Radiochemistry ...

S. Z. Lewin

1961-01-01T23:59:59.000Z

323

Radiation Control (Virginia)  

Broader source: Energy.gov [DOE]

The Department of Health is responsible for regulating radiation and radioactive materials in the Commonwealth of Virginia. Although the Department's Radiation Control Program primarily focuses on...

324

Low Dose Radiation Program: Radiation Biology and the Radiation Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and the Radiation Research Program Biology and the Radiation Research Program The Department of Energy (DOE) and its predecessor organizations, Energy Research and Development Agency (ERDA) and Atomic Energy Commission (AEC), always have been concerned about the health effects of ionizing radiation. Extensive research has been conducted under their sponsorship at all levels of biological organization from molecules to man. Over the past 60 years, studies using every type of radiation source have included exposure to both external radiation sources and to internally deposited radioactive materials. These exposures used different dose patterns and distributions delivered over a wide range of experimental times. This extensive research provided the basis for the new Low Dose Radiation Research Program, linking

325

148 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 18, NO. 1, JANUARY 1, 2006 Radiation Resistance of Single-Frequency 1310-nm  

E-Print Network [OSTI]

experiments, and for space and medical applications. Typical radiation doses in medical applications range to ionizing radiation using 200-MeV/c proton beams are reported. Twelve powered lasers survived a total radiation dose of up to 22.3 Mrad. One of the two not-powered lasers survived a total dose of 1.5 Mrad

Ye, Jingbo

326

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

327

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

328

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

329

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

330

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

331

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

332

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

333

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

334

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

335

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

336

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

337

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

338

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

339

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

340

ARM - Measurement - Shortwave spectral total downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shadowband Spectroradiometer SPEC-TOTDN : Shortwave Total Downwelling Spectrometer UAV-EGRETT : UAV-Egrett Value-Added Products VISST : Minnis Cloud Products Using Visst...

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"New York Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","12312014"...

342

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

343

Total Natural Gas Gross Withdrawals (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to...

344

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

345

Total Particulate Matter Air Sampling Data (TEOM) from Los Alamos National Laboratory  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

LANL measures the total particulate mass concentration in the air on a routine basis as well as during incidents that may affect ambient air. The collected data is added to the Air Quality Index (AQI). AQI is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act.

346

The structural characteristics of radiation oncology in Japan in 2003  

Science Journals Connector (OSTI)

Purpose: To ascertain the basic structural characteristics of radiation oncology facilities in Japan, we conducted a national survey on their status in 2003. The aims of the survey included the following: present status of radiation treatment facilities, equipment, personnel, patient loads, and other factors. Methods and Materials: A mail survey verified each potential facility delivering megavoltage radiation therapy and collected data on treatment devices, other equipment, personnel, new patients, and so on. Responses were obtained from 100% of potential facilities. Results: A total of 726 facilities delivered radiation therapy, with 859 megavoltage devices, 203 RALS (remote after-loading system) and other radioactive sources, with 941 FTE (full-time employee) radiation oncologists including 369 FTE Japanese Society of Therapeutic Radiation Oncology-certified radiation oncologists, 1555 FTE radiation therapists, and 70 FTE physicists in 2003. Megavoltage devices included two heavy ion units and four proton units. In total, there were 149,793 new patients and 146,351 (98%) by external irradiation; 4379 (3%) were treated by brachytherapy with or without external irradiation. Eighty-six percent of the facilities had treatment-planning computers, but 4% had no treatment-planning capability. Six percent (44 facilities) of all facilities used hyperthermia, 12% (85 facilities) intraoperative radiation therapy, and 2% (12 facilities) intensity-modulated radiation therapy. Conclusion: Facilities surveys continue to provide a source of census data on radiation oncology in Japan, allowing comparisons among facility groups and over time.

Hitoshi Shibuya; Hirohiko Tsujii

2005-01-01T23:59:59.000Z

347

The structural characteristics of radiation oncology in Japan in 2003  

SciTech Connect (OSTI)

Purpose: To ascertain the basic structural characteristics of radiation oncology facilities in Japan, we conducted a national survey on their status in 2003. The aims of the survey included the following: present status of radiation treatment facilities, equipment, personnel, patient loads, and other factors. Methods and Materials: A mail survey verified each potential facility delivering megavoltage radiation therapy and collected data on treatment devices, other equipment, personnel, new patients, and so on. Responses were obtained from 100% of potential facilities. Results: A total of 726 facilities delivered radiation therapy, with 859 megavoltage devices, 203 RALS (remote after-loading system) and other radioactive sources, with 941 FTE (full-time employee) radiation oncologists including 369 FTE Japanese Society of Therapeutic Radiation Oncology-certified radiation oncologists, 1555 FTE radiation therapists, and 70 FTE physicists in 2003. Megavoltage devices included two heavy ion units and four proton units. In total, there were 149,793 new patients and 146,351 (98%) by external irradiation; 4379 (3%) were treated by brachytherapy with or without external irradiation. Eighty-six percent of the facilities had treatment-planning computers, but 4% had no treatment-planning capability. Six percent (44 facilities) of all facilities used hyperthermia, 12% (85 facilities) intraoperative radiation therapy, and 2% (12 facilities) intensity-modulated radiation therapy. Conclusion: Facilities surveys continue to provide a source of census data on radiation oncology in Japan, allowing comparisons among facility groups and over time.

Shibuya, Hitoshi [JASTRO Database Committee, Department of Radiology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo (Japan)]. E-mail: shibuya.mrad@tmd.ac.jp; Tsujii, Hirohiko [National Institute of Radiological Sciences, Chiba-shi, Chiba (Japan)

2005-08-01T23:59:59.000Z

348

Radiation Hard AlGaN Detectors and Imager  

SciTech Connect (OSTI)

Radiation hardness of AlGaN photodiodes was tested using a 65 MeV proton beam with a total proton fluence of 3x10{sup 12} protons/cm{sup 2}. AlGaN Deep UV Photodiode have extremely high radiation hardness. These new devices have mission critical applications in high energy density physics (HEDP) and space explorations. These new devices satisfy radiation hardness requirements by NIF. NSTec is developing next generation AlGaN optoelectronics and imagers.

None

2012-05-01T23:59:59.000Z

349

hourly solar radiation | OpenEI  

Open Energy Info (EERE)

solar radiation solar radiation Dataset Summary Description (Abstract): A need for predicting hourly global radiation exists for many locations particularly in Bangladesh for which measured values are not available and daily values have to be estimated from sunshine data. The CPRG model has been used to predict values of hourly Gh for Dhaka (23.770N, 90.380E), Chittagong (22.270N, 91.820E) and Bogra (24.850N, 89.370E) for = ±7.50, ±22.50, ±37.50, ±52.50, ±67.50, ±82.50 and ±97.50 i.e., for ±1/2, ±3/2, ±5/2, ±7/2, ±9/2, ±11/2, ±13/2 hours before and after solar noon and the computed values for Source Renewable Energy Research Centre Date Released October 22nd, 2003 (11 years ago) Date Updated Unknown Keywords Bangladesh documentation hourly solar radiation SWERA

350

Total Synthesis of Irciniastatin A (Psymberin)  

E-Print Network [OSTI]

Total Synthesis of Irciniastatin A (Psymberin) Michael T. Crimmins,* Jason M. Stevens, and Gregory, North Carolina 27599 crimmins@email.unc.edu Received July 21, 2009 ABSTRACT The total synthesis of a hemiaminal and acid chloride to complete the synthesis. In 2004, Pettit and Crews independently reported

351

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S RENSEN a generalization of previously proposed batch distillation schemes. A simple feedback control strategy for total re verify the simulations. INTRODUCTION Although batch distillation generally is less energy e cient than

Skogestad, Sigurd

352

radiation.p65  

Office of Legacy Management (LM)

5 5 United States Department of Energy This fact sheet explains the potential health hazards associated with the radioactive decay of uranium and other radioactive elements found in ore and mill tailings. Potential Health Hazards of Radiation Man-made sources of radiation, most notably from medical uses and consumer products, contribute to the remaining radiation dose that individuals receive. A few household products, including smoke detectors, micro- wave ovens, and color televisions, emit small amounts of radiation. For most people, the benefits from using such products far outweigh the radiation risks. Radiation Dose Radiation is measured in various units. Individuals who have been exposed to radiation have received a radiation dose. Radiation dose to people is expressed in

353

Coherent Synchrotron Radiation: Theory and Simulations.  

SciTech Connect (OSTI)

The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum achievable emittance in the synchrotron light sources for short bunches.

Novokhatski, Alexander; /SLAC

2012-03-29T23:59:59.000Z

354

Detecting Eating Using a Wrist Mounted Device During Normal Daily Activities  

E-Print Network [OSTI]

Detecting Eating Using a Wrist Mounted Device During Normal Daily Activities Yujie Dong1, Adam method for automated monitoring of eating. Our method uses a single sensor that is worn on the wrist, similar in form to a watch. Wrist orientation was captured at a rate of 60 Hz for an entire day while four

Hoover, Adam

355

The Daily Princetonian -International fusion project will use Princeton physics lab Summer Program  

E-Print Network [OSTI]

to determine the viability of exploiting cold fusion as an energy source around the world. Much of the researchThe Daily Princetonian - International fusion project will use Princeton physics lab Summer Program | Previous | Next | Calendar International fusion project will use Princeton physics lab By ABBY WILLIAMS

356

Home Science One fish, two fish, dumb fish, dead fish DAILY SECTIONS  

E-Print Network [OSTI]

Home Science One fish, two fish, dumb fish, dead fish Home DAILY SECTIONS News Sports Opinion Arts America! Study Spanish & Volunteer ONE FISH, TWO FISH, DUMB FISH, DEAD FISH | Print | E- mail Written scientists say fish are capable of deducing how they stack up against the competition by simply watching

Fernald, Russell

357

A Model for Predicting Daily Peak Visitation and Implications for Recreation Management and Water Quality: Evidence  

E-Print Network [OSTI]

A Model for Predicting Daily Peak Visitation and Implications for Recreation Management and Water carrying capacity. Keywords Visitation model Á Recreation management Á Water quality Á River visitation Á Clark, Fort Collins, Colorado 80523, USA 123 Environmental Management DOI 10.1007/s00267-008-9079-5 #12

358

Using daily satellite observations to estimate emissions of short-lived  

E-Print Network [OSTI]

Chapter 4 Using daily satellite observations to estimate emissions of short-lived air pollutants on a mesoscopic scale Abstract Emission inventories of air pollutants are crucial information for pol- icy makers and form important input data for air quality models. Using satellite observations for emission estimates

Haak, Hein

359

Biomass burning emission inventory with daily resolution: Application to aircraft observations of Asian outflow  

E-Print Network [OSTI]

Biomass burning emission inventory with daily resolution: Application to aircraft observations for biomass burning using AVHRR satellite observations of fire activity corrected for data gaps and scan angle biomass burning in SE Asia was a major contributor to the outflow of Asian pollution observed in TRACE

Palmer, Paul

360

Water Research 37 (2003) 37563766 Seasonal and daily variations in concentrations of methyl-  

E-Print Network [OSTI]

by volume to gasoline from November to February, and blending 11% MTBE by volume during the rest of the year; accepted 24 March 2003 Abstract Methyl-tertiary-butyl ether (MTBE), an additive used to oxygenate gasoline of gasoline-powered watercraft. This paper documents and explains both seasonal and daily variations in MTBE

Toran, Laura

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Northwestern Researchers Develop Bistable Nanoswitch Science Daily --Carbon nanotubes (CNT) have been under intense study by  

E-Print Network [OSTI]

Northwestern Researchers Develop Bistable Nanoswitch Science Daily -- Carbon nanotubes (CNT) have been under intense study by scientists all over the world for more than a decade and are being thought with high-aspect ratio, carbon nanotubes have emerged as a promising material because of their many

Espinosa, Horacio D.

362

Daily foraging patterns in free-living birds: exploring the predationstarvation trade-off  

Science Journals Connector (OSTI)

...day, possibly in response to a low but non-trivial...predictable, high-energy food, we failed...feeders with greater frequency on colder days is...between gaining energy and avoiding predation...Daily patterns of energy storage in food-caching...

2013-01-01T23:59:59.000Z

363

Modeling and Generating Daily Changes in Market Variables Using A Multivariate Mixture of Normal Distributions  

E-Print Network [OSTI]

Modeling and Generating Daily Changes in Market Variables Using A Multivariate Mixture of Normal Distributions Jin Wang Department of Mathematics and Computer Science Valdosta State University Valdosta, GA 31698-0040 January 28, 2000 Abstract The mixture of normal distributions provides a useful extension

Wang, Jin

364

Image Source: http://activefiremaps.fs.fed.us Daily Wildfire Update  

E-Print Network [OSTI]

Page 1 Image Source: http://activefiremaps.fs.fed.us Daily Wildfire Update June 14, 2011 Current Large Fires in Colorado TRACK FIRE (Updated 12:00 p.m., June 14, 2011) Fire Jurisdiction: CSFS of approximately 500 people. Closures: In Colorado, Interstate 25 is currently closed south of Exit 11. Injuries

365

Geophysical Fluid Dynamics Laboratory Daily to decadal variability in sources of  

E-Print Network [OSTI]

over the western U.S.: Stratospheric intrusions, Asian pollution, and wildfires Meiyun Lin WESTAR.g. stratospheric [Langford et al., 2009]; wildfires [Pfister et al. 2008] 2. Rising Asian emissions [e.g., Jacob et.66) (Range ~100km) Daily max 8-hr surface O3 at Boulder (~2 km a.s.l.), Colorado Insights from satellite

Jacob, Daniel J.

366

Supervised Classification of Activities of Daily Living in Health Smart Homes using SVM  

E-Print Network [OSTI]

Supervised Classification of Activities of Daily Living in Health Smart Homes using SVM Anthony studies of our laboratory focus on the monitoring of elderly people at home. This aims at detect, as early Home is used to achieve this goal. This flat includes different sensors. The data from the various

Paris-Sud XI, Université de

367

Resting and daily energy expenditures of free-living field voles are positively correlated but reflect  

E-Print Network [OSTI]

, University of Oslo, P.O. Box 1050 Blindern, 0316 Oslo, Norway; Aberdeen Centre for Energy RegulationResting and daily energy expenditures of free-living field voles are positively correlated and Obesity, Division of Energy Balance and Obesity, Rowett Research Institute, Bucksburn, Aberdeen AB24 9SB

Lambin, Xavier

368

Time of birth and daily activity mediated by feeding rhythms in the pregnant rat  

E-Print Network [OSTI]

Time of birth and daily activity mediated by feeding rhythms in the pregnant rat M. J. BOSC, Agnès studied in rats submitted to different feeding rhythms. Animals, put under 14 h of light and 10 h to one of five groups. Group C was fed ad libitum, and groups 2PF, 9PF, 14PF and 21 PF had food available

Boyer, Edmond

369

Shortwave Spectral Radiative Forcing of Cumulus Clouds from Surface Observations  

SciTech Connect (OSTI)

The spectral changes of the total cloud radiative forcing (CRF) and its diffuse and direct components are examined by using spectrally resolved (visible spectral range) all-sky surface irradiances measured by Multi-Filter Rotating Shadowband Radiometer. We demonstrate: (i) the substantial contribution of the diffuse component to the total CRF, (ii) the well-defined spectral variations of total CRF in the visible spectral region, and (iii) the strong statistical relationship between spectral (500 nm) and shortwave broadband values of total CRF. Our results suggest that the framework based on the visible narrowband fluxes can provide important radiative quantities for rigorous evaluation of radiative transfer parameterizations and can be applied for estimation of the shortwave total CRF.

Kassianov, Evgueni I.; Barnard, James C.; Berg, Larry K.; Long, Charles N.; Flynn, Connor J.

2011-04-02T23:59:59.000Z

370

Effect of Alfaprostol, Lasalocid and Once Daily Suckling on postpartum interval in Brahman and Brahman crossbred cattle  

E-Print Network [OSTI]

by age, breed and date of calving to one of 8 treatments (Table 1): 1) Control; 2) Lasalocid (Hoffmann-LaRoche, Inc. , Nutley, N. J. ); 3) Once daily suckling; 4) Alfaprostol (Hoffmann-LaRoche, Inc. , Nutley, N. J. ); 5) Lasalocid and once daily... by age, breed and date of calving to one of 8 treatments (Table 1): 1) Control; 2) Lasalocid (Hoffmann-LaRoche, Inc. , Nutley, N. J. ); 3) Once daily suckling; 4) Alfaprostol (Hoffmann-LaRoche, Inc. , Nutley, N. J. ); 5) Lasalocid and once daily...

Del Vecchio, Ronald Paul

2012-06-07T23:59:59.000Z

371

Radiation Protection and Safety Training | Environmental Radiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The objective of this course is to provide students with an introduction to the fundamentals of ionizing radiation protection and safety. The course curriculum combines...

372

Atmospheric Radiation Measurement Radiative Atmospheric Divergence...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

radiation emitted by the earth. This instrument is onboard a European Union geostationary weather satellite launched in December 2005; it is collecting data over Niamey and the...

373

Interactive multiobjective daily volt/var control of distribution networks considering wind power and fuel-cell power plants  

Science Journals Connector (OSTI)

This paper deals with a multiobjective daily volt/var control (MDVVC) for radial distribution feeders integrated renewable energy sources (RES) by means of the tap position of the under load tap changer (ULTC) transformers shunt capacitors and active and reactive power of RES. The multiple objective functions to be minimized are the electrical energy losses the voltage deviations and the total emissions of RES and substations. Discrete behavior of equipments in the distribution systems and nonlinear power flow equations change the VVC problem into a mixed integer non-linear programming (MINLP). Hence a new optimization method based upon the shuffled frog leaping algorithm (SFLA) is presented to solve the optimization problem. The SFLA is modified for resolving the disadvantages of the original algorithm. Besides of accurately passing local optima the MSFLA takes less time to achieve the optimal response. Furthermore the tribe-MSFLA is proposed through using the concept of the tribe. Dealing with the multiobjective optimization problem an interactive fuzzy satisfying method is used while the objective functions are formulated by a fuzzy set theory. An 85-bus radial distribution system is used to test and assess the performance of the proposed algorithm.

Taher Niknam; Mohsen Zare; Jamshid Aghaei; Rasoul Azizipanah-Abarghooee

2012-01-01T23:59:59.000Z

374

Thunderhead Radiation Measurements and Radiative Flux Analysis in Support of STORMVEX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thunderhead Radiation Thunderhead Radiation Measurements and Radiative Flux Analysis in Support of STORMVEX Chuck Long Jay Mace Intent * Provide downwelling broadband radiation measurements at Thunderhead * Physically small footprint portable system * Designed to provide inputs necessary for Radiative Flux Analysis Basic RFA System COPS Hornisgrinde Deployment 1200m elevation System Components * Eppley ventilated PSP * Eppley ventilated PIR * Delta-T SPN-1 * Vaisala HMP-50 T/RH probe * Campbell CR23X datalogger SPN-1 Radiometer * Uses 7 thermopile detectors and a patented shading pattern * Measures Total and Diffuse SW with no moving parts * Includes internal heaters Relative accuracy StDev = 13.6 Winter Mountain Deployment Frost/Snow Mitigation * NSA Heated Ventilator Evaluation IOP - Testing various configurations and

375

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

376

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0

377

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Mississippi - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 2,343 2,320 1,979 5,732 1,669 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,673 337,168 387,026 429,829 404,457 From Oil Wells 7,542 8,934 8,714 8,159 43,421 From Coalbed Wells 7,250

378

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,735 6,426 7,303 7,470 7,903 Production (million cubic feet) Gross Withdrawals From Gas Wells R 6,681 R 7,419 R 16,046 R 23,086 20,375 From Oil Wells 0 0 0 0 0 From Coalbed Wells R 86,275 R 101,567

379

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Michigan - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 9,712 9,995 10,600 10,100 11,100 Production (million cubic feet) Gross Withdrawals From Gas Wells R 80,090 R 16,959 R 20,867 R 7,345 18,470 From Oil Wells 54,114 10,716 12,919 9,453 11,620 From Coalbed Wells 0

380

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Montana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,925 7,095 7,031 6,059 6,477 Production (million cubic feet) Gross Withdrawals From Gas Wells R 69,741 R 67,399 R 57,396 R 51,117 37,937 From Oil Wells 23,092 22,995 21,522 19,292 21,777 From Coalbed Wells

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Mississippi - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,315 2,343 2,320 1,979 5,732 Production (million cubic feet) Gross Withdrawals From Gas Wells R 259,001 R 331,673 R 337,168 R 387,026 429,829 From Oil Wells 6,203 7,542 8,934 8,714 8,159 From Coalbed Wells

382

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Indiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,350 525 563 620 914 Production (million cubic feet) Gross Withdrawals From Gas Wells 3,606 4,701 4,927 6,802 9,075 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

383

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 New York - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,680 6,675 6,628 6,736 6,157 Production (million cubic feet) Gross Withdrawals From Gas Wells 54,232 49,607 44,273 35,163 30,495 From Oil Wells 710 714 576 650 629 From Coalbed Wells 0

384

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Texas - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 76,436 87,556 93,507 95,014 100,966 Production (million cubic feet) Gross Withdrawals From Gas Wells R 4,992,042 R 5,285,458 R 4,860,377 R 4,441,188 3,794,952 From Oil Wells 704,092 745,587 774,821 849,560 1,073,301

385

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Ohio - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 34,416 34,963 34,931 46,717 35,104 Production (million cubic feet) Gross Withdrawals From Gas Wells 79,769 83,511 73,459 30,655 65,025 From Oil Wells 5,072 5,301 4,651 45,663 6,684 From Coalbed Wells 0

386

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Colorado - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 25,716 27,021 28,813 30,101 32,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 496,374 459,509 526,077 563,750 1,036,572 From Oil Wells 199,725 327,619 338,565

387

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 South Dakota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 71 71 89 102 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 422 R 1,098 R 1,561 1,300 933 From Oil Wells 11,458 10,909 11,366 11,240 11,516 From Coalbed Wells 0 0

388

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Illinois - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 43 45 51 50 40 Production (million cubic feet) Gross Withdrawals From Gas Wells RE 1,389 RE 1,188 RE 1,438 RE 1,697 2,114 From Oil Wells E 5 E 5 E 5 E 5 7 From Coalbed Wells RE 0 RE

389

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Colorado - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 22,949 25,716 27,021 28,813 30,101 Production (million cubic feet) Gross Withdrawals From Gas Wells R 436,330 R 496,374 R 459,509 R 526,077 563,750 From Oil Wells 160,833 199,725 327,619

390

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Alaska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 239 261 261 269 277 Production (million cubic feet) Gross Withdrawals From Gas Wells 165,624 150,483 137,639 127,417 112,268 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654

391

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Ohio - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 34,416 34,416 34,963 34,931 46,717 Production (million cubic feet) Gross Withdrawals From Gas Wells R 82,812 R 79,769 R 83,511 R 73,459 30,655 From Oil Wells 5,268 5,072 5,301 4,651 45,663 From Coalbed Wells

392

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Kentucky - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 16,563 16,290 17,152 17,670 14,632 Production (million cubic feet) Gross Withdrawals From Gas Wells 95,437 R 112,587 R 111,782 133,521 122,578 From Oil Wells 0 1,529 1,518 1,809 1,665 From Coalbed Wells 0

393

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Utah - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,197 5,578 5,774 6,075 6,469 Production (million cubic feet) Gross Withdrawals From Gas Wells R 271,890 R 331,143 R 340,224 R 328,135 351,168 From Oil Wells 35,104 36,056 36,795 42,526 49,947 From Coalbed Wells

394

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 California - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 1,540 1,645 1,643 1,580 1,308 Production (million cubic feet) Gross Withdrawals From Gas Wells 93,249 91,460 82,288 73,017 63,902 From Oil Wells R 116,652 R 122,345 R 121,949 R 151,369 120,880

395

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Utah - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,578 5,774 6,075 6,469 6,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,143 340,224 328,135 351,168 402,899 From Oil Wells 36,056 36,795 42,526 49,947 31,440 From Coalbed Wells 74,399

396

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Louisiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18,145 19,213 18,860 19,137 21,235 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,261,539 R 1,288,559 R 1,100,007 R 911,967 883,712 From Oil Wells 106,303 61,663 58,037 63,638 68,505

397

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Oklahoma - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 38,364 41,921 43,600 44,000 41,238 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,583,356 R 1,452,148 R 1,413,759 R 1,140,111 1,281,794 From Oil Wells 35,186 153,227 92,467 210,492 104,703

398

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 New Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 42,644 44,241 44,784 44,748 32,302 Production (million cubic feet) Gross Withdrawals From Gas Wells R 657,593 R 732,483 R 682,334 R 616,134 556,024 From Oil Wells 227,352 211,496 223,493 238,580 252,326

399

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 West Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 48,215 49,364 50,602 52,498 56,813 Production (million cubic feet) Gross Withdrawals From Gas Wells R 189,968 R 191,444 R 192,896 R 151,401 167,113 From Oil Wells 701 0 0 0 0 From Coalbed Wells

400

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Michigan - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 9,995 10,600 10,100 11,100 10,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 16,959 20,867 7,345 18,470 17,041 From Oil Wells 10,716 12,919 9,453 11,620 4,470 From Coalbed Wells 0

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 West Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 49,364 50,602 52,498 56,813 50,700 Production (million cubic feet) Gross Withdrawals From Gas Wells 191,444 192,896 151,401 167,113 397,313 From Oil Wells 0 0 0 0 1,477 From Coalbed Wells 0

402

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

80 80 Wyoming - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 27,350 28,969 25,710 26,124 26,180 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,649,284 R 1,764,084 R 1,806,807 R 1,787,599 1,709,218 From Oil Wells 159,039 156,133 135,269 151,871 152,589

403

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 New York - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,675 6,628 6,736 6,157 7,176 Production (million cubic feet) Gross Withdrawals From Gas Wells 49,607 44,273 35,163 30,495 25,985 From Oil Wells 714 576 650 629 439 From Coalbed Wells 0

404

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Wyoming - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 28,969 25,710 26,124 26,180 22,171 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,764,084 1,806,807 1,787,599 1,709,218 1,762,095 From Oil Wells 156,133 135,269 151,871 152,589 24,544

405

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,426 7,303 7,470 7,903 7,843 Production (million cubic feet) Gross Withdrawals From Gas Wells 7,419 16,046 23,086 20,375 21,802 From Oil Wells 0 0 0 0 9 From Coalbed Wells 101,567 106,408

406

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Kentucky - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 16,290 17,152 17,670 14,632 17,936 Production (million cubic feet) Gross Withdrawals From Gas Wells 112,587 111,782 133,521 122,578 106,122 From Oil Wells 1,529 1,518 1,809 1,665 0 From Coalbed Wells 0

407

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Pennsylvania - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 52,700 55,631 57,356 44,500 54,347 Production (million cubic feet) Gross Withdrawals From Gas Wells 182,277 R 188,538 R 184,795 R 173,450 242,305 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0

408

Total synthesis and study of myrmicarin alkaloids  

E-Print Network [OSTI]

I. Enantioselective Total Synthesis of Tricyclic Myrmicarin Alkaloids An enantioselective gram-scale synthesis of a key dihydroindolizine intermediate for the preparation of myrmicarin alkaloids is described. Key transformations ...

Ondrus, Alison Evelynn, 1981-

2009-01-01T23:59:59.000Z

409

Total synthesis of cyclotryptamine and diketopiperazine alkaloids  

E-Print Network [OSTI]

I. Total Synthesis of the (+)-12,12'-Dideoxyverticillin A The fungal metabolite (+)-12,12'-dideoxyverticillin A, a cytotoxic alkaloid isolated from a marine Penicillium sp., belongs to a fascinating family of densely ...

Kim, Justin, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

410

Provides Total Tuition Charge to Source Contribution  

E-Print Network [OSTI]

,262 1,938 TGR 4-20 0-3 2,871 2,871 - % of time appointed Hours of Work/Week Units TAL Provides Total

Kay, Mark A.

411

Enantioselective Total Synthesis of (?)-Acylfulvene and (?)- Irofulven  

E-Print Network [OSTI]

We report our full account of the enantioselective total synthesis of (?)-acylfulvene (1) and (?)-irofulven (2), which features metathesis reactions for the rapid assembly of the molecular framework of these antitumor ...

Movassaghi, Mohammad

412

A GENUINELY HIGH ORDER TOTAL VARIATION DIMINISHING ...  

E-Print Network [OSTI]

(TVD) schemes solving one-dimensional scalar conservation laws degenerate to first order .... where the total variation is measured by the standard bounded variation ..... interval Ij and into the jump discontinuities at cell interfaces, see [12].

413

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Texas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 87,556 93,507 95,014 100,966 96,617 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,285,458 4,860,377 4,441,188 3,794,952 3,619,901 From Oil Wells 745,587 774,821 849,560 1,073,301 860,675

414

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Alabama - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,860 6,913 7,026 7,063 6,327 Production (million cubic feet) Gross Withdrawals From Gas Wells 158,964 142,509 131,448 116,872 114,407 From Oil Wells 6,368 5,758 6,195 5,975 10,978

415

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Louisiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 19,213 18,860 19,137 21,235 19,792 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,288,559 1,100,007 911,967 883,712 775,506 From Oil Wells 61,663 58,037 63,638 68,505 49,380

416

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 South Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 71 89 102 100 95 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,098 1,561 1,300 933 14,396 From Oil Wells 10,909 11,366 11,240 11,516 689 From Coalbed Wells 0 0 0 0 0

417

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Kansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 17,862 21,243 22,145 25,758 24,697 Production (million cubic feet) Gross Withdrawals From Gas Wells 286,210 269,086 247,651 236,834 264,610 From Oil Wells 45,038 42,647 39,071 37,194 0 From Coalbed Wells 44,066

418

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Arkansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,592 6,314 7,397 8,388 8,538 Production (million cubic feet) Gross Withdrawals From Gas Wells 173,975 164,316 152,108 132,230 121,684 From Oil Wells 7,378 5,743 5,691 9,291 3,000

419

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 California - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 1,645 1,643 1,580 1,308 1,423 Production (million cubic feet) Gross Withdrawals From Gas Wells 91,460 82,288 73,017 63,902 120,579 From Oil Wells 122,345 121,949 151,369 120,880 70,900

420

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Oklahoma - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 41,921 43,600 44,000 41,238 40,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,452,148 1,413,759 1,140,111 1,281,794 1,394,859 From Oil Wells 153,227 92,467 210,492 104,703 53,720

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Alaska - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 261 261 269 277 185 Production (million cubic feet) Gross Withdrawals From Gas Wells 150,483 137,639 127,417 112,268 107,873 From Oil Wells 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918

422

Plutonium radiation surrogate  

DOE Patents [OSTI]

A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

Frank, Michael I. (Dublin, CA)

2010-02-02T23:59:59.000Z

423

Organ Preservation With Daily Concurrent Chemoradiotherapy Using Superselective Intra-Arterial Infusion via a Superficial Temporal Artery for T3 and T4 Head and Neck Cancer  

SciTech Connect (OSTI)

Purpose: To evaluate the therapeutic results and rate of organ preservation in patients with advanced head and neck cancer treated with superselective intra-arterial chemotherapy via a superficial temporal artery and daily concurrent radiotherapy. Methods and Materials: Between April 2002 and March 2006, 30 patients with T3 or T4a squamous cell carcinoma of the head and neck underwent intra-arterial chemoradiotherapy. Treatment consisted of superselective intra-arterial infusions (docetaxel, total 60 mg/m{sup 2}; cisplatin, total 150 mg/m{sup 2}) and daily concurrent radiotherapy (total, 60 Gy) for 6 weeks. Results: The median follow-up for all patients was 46.2 months (range, 10-90 months). The median follow-up for living patients was 49.7 months (range, 36-90 months). After intra-arterial chemoradiotherapy was administered, primary site complete response was achieved in 30 (100%) of 30 cases. Seven patients (23.3%) died. Using the Kaplan-Meier method, 1-year, 3-year, and 5-year survival rates were 96.7%, 83.1%, and 70.2%, respectively, while 1-year, 3-year, and 5-year local control rates were 83.3%, 79.7%, and 73.0%, respectively. Grade 3 or 4 mucositis occurred in 20 cases (66.7%). Grade 3 toxicities included dysphagia in 20 cases (66.7%), dermatitis in 6 cases (20%), nausea/vomiting in 2 cases (6.7%), and neutropenia and thrombocytopenia in 1 case (3.3%). No osteoradionecrosis of mandible and maxillary bones developed during follow-up. Conclusions: Intra-arterial chemoradiotherapy using a superficial temporal artery provided good overall survival and local control rates. This combination chemoradiotherapy approach can preserve organs and minimize functional disturbance, thus contributing to patients' quality of life.

Mitsudo, Kenji, E-mail: mitsudo@yokohama-cu.ac.j [Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama (Japan); Shigetomi, Toshio [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya (Japan); Fujimoto, Yasushi [Department of Otolaryngology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Nishiguchi, Hiroaki; Yamamoto, Noriyuki; Furue, Hiroki; Ueda, Minoru [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya (Japan); Itoh, Yoshiyuki [Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Fuwa, Nobukazu [Department of Radiation Oncology, Southern Tohoku Proton Therapy Center, Koriyama (Japan); Tohnai, Iwai [Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama (Japan)

2011-04-01T23:59:59.000Z

424

| Los Alamos National Laboratory | Total Scattering Developments forTotal Scattering Developments for  

E-Print Network [OSTI]

Laboratory | Total Scattering at the Lujan Center Neutron Powder Diffractometer (NPDF) High-Intensity Powder. Shoemaker, et al., Reverse Monte Carlo neutron scattering study of disordered crystalline materials neutron| Los Alamos National Laboratory | Total Scattering Developments forTotal Scattering Developments

Magee, Joseph W.

425

Ionizing Radiation Effects on CMOS Imagers Manufactured in Deep Submicron Process  

E-Print Network [OSTI]

, ionizing radiation, total dose, dark current, STI, hardening by design, RHDB 1. INTRODUCTION IonizingIonizing Radiation Effects on CMOS Imagers Manufactured in Deep Submicron Process Vincent Goiffona a large dynamic range. This can significantly impact the radiation hardness of "in-pixel" devices which

Mailhes, Corinne

426

Radiation Safety Program Annual Review  

E-Print Network [OSTI]

........................................................................10 AREA RADIATION SURVEYS AND CONTAMINATION CONTROL...........................................11.....................................................................................................13 RADIOACTIVE WASTE MANAGEMENT meetings of the Radiation Safety Committee where new users and uses of radioactive materials, radiation

Lyubomirsky, Ilya

427

Radiator Labs | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of steam buildings. Radiator Labs developed a mechanism that allows heating systems to control heat transfer at each radiator. The Radiator Labs design utilizes an...

428

The universal radiative transport equation  

E-Print Network [OSTI]

THE UNIVERSAL RADIATIVE TRANSPORT EQUATION Rudolph W.The Universal Radiative Transport Equation Rudolph W.The various radiative transport equations used in general

Preisendorfer, Rudolph W

1959-01-01T23:59:59.000Z

429

A cyclic time-dependent Markov process to model daily patterns in wind turbine power production  

E-Print Network [OSTI]

Wind energy is becoming a top contributor to the renewable energy mix, which raises potential reliability issues for the grid due to the fluctuating nature of its source. To achieve adequate reserve commitment and to promote market participation, it is necessary to provide models that can capture daily patterns in wind power production. This paper presents a cyclic inhomogeneous Markov process, which is based on a three-dimensional state-space (wind power, speed and direction). Each time-dependent transition probability is expressed as a Bernstein polynomial. The model parameters are estimated by solving a constrained optimization problem: The objective function combines two maximum likelihood estimators, one to ensure that the Markov process long-term behavior reproduces the data accurately and another to capture daily fluctuations. A convex formulation for the overall optimization problem is presented and its applicability demonstrated through the analysis of a case-study. The proposed model is capable of r...

Scholz, Teresa; Estanqueiro, Ana

2013-01-01T23:59:59.000Z

430

Operating experience with a daily-dispatched LM-5000 STIG cogeneration plant  

SciTech Connect (OSTI)

The Yuba City Cogeneration Plant is a unique facility as it is a daily-dispatched LM-5000 steam injected gas turbine (STIG) that operates only during the peak summer months. This paper discusses the unique design, operation and maintenance requirements of the LM-5000 STIG. Engine operating history and maintenance problems are discussed. Reliability and availability data for the first three summer peak seasons are presented and compared with other cogeneration plant performance data. Calculations are based on North American Reliability Council/Generating Availability Data System (NERC/GADS) as a basis for operating statistic comparisons (1990). The LM-5000 STIG has demonstrated operating reliability and availability under daily cycling operation that is comparable to other base loaded aero-derivative cogeneration plants.

Peltier, R.V. [Stewart and Stevenson Services, Inc., Houston, TX (United States). Gas Turbine Productions Division; Swanekamp, R.C. [Power Magazine, New York, NY (United States)

1994-12-31T23:59:59.000Z

431

Daily Stress Recognition from Mobile Phone Data, Weather Conditions and Individual Traits  

E-Print Network [OSTI]

Research has proven that stress reduces quality of life and causes many diseases. For this reason, several researchers devised stress detection systems based on physiological parameters. However, these systems require that obtrusive sensors are continuously carried by the user. In our paper, we propose an alternative approach providing evidence that daily stress can be reliably recognized based on behavioral metrics, derived from the user's mobile phone activity and from additional indicators, such as the weather conditions (data pertaining to transitory properties of the environment) and the personality traits (data concerning permanent dispositions of individuals). Our multifactorial statistical model, which is person-independent, obtains the accuracy score of 72.28% for a 2-class daily stress recognition problem. The model is efficient to implement for most of multimedia applications due to highly reduced low-dimensional feature space (32d). Moreover, we identify and discuss the indicators which have stron...

Bogomolov, Andrey; Ferron, Michela; Pianesi, Fabio; Alex,; Pentland,

2014-01-01T23:59:59.000Z

432

Radiation Dose Estimates from  

E-Print Network [OSTI]

Summary: Radiation Dose Estimates from Hanford Radioactive Material Releases to the Air- tantly, what radiation dose people may have received. An independent Technical Steering Panel (TSP, additionalProjectworkcouldresultin revisions of these dose estimates. April 21, 1994 Companion

433

Maryland Radiation Act (Maryland)  

Broader source: Energy.gov [DOE]

The policy of the state is to provide for the constructive use of radiation and control radiation emissions. This legislation authorizes the Department of the Environment to develop comprehensive...

434

WI Radiation Protection  

Broader source: Energy.gov [DOE]

This statute seeks to regulate radioactive materials, to encourage the constructive uses of radiation, and to prohibit and prevent exposure to radiation in amounts which are or may be detrimental...

435

ELPIS-JP: a dataset of local-scale daily climate change scenarios for Japan  

Science Journals Connector (OSTI)

...Centre for Climate Modelling and Analysis Canada A1B, B1, A2 Flato et al. [37] mean...minimum temperatures, precipitation, solar radiation, relative humidity and wind...temperatures, (f) maximum temperatures, (g) solar radiation, (h)-relative humidity and...

2012-01-01T23:59:59.000Z

436

An Instrumentation Complex for Atmospheric Radiation Measurements in Siberia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Instrumentation Complex for Atmospheric Radiation Instrumentation Complex for Atmospheric Radiation Measurements in Siberia S. M. Sakerin, F. V. Dorofeev, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Polkin, V. P. Shmargunov, S. A. Terpugova, S. A. Turchinovich, and V. N. Uzhegov Institute of Atmospheric Optics Tomsk, Russia Introduction The instrumentation complex is described, which has been prepared for radiative experiments in the region of Tomsk (West Siberia). The complex consists of three groups of devices to measure (a) the characteristics of the total downward radiation; (b) the most variable components of the atmospheric transparency directly affecting the income of radiation (aerosol optical depth [AOD], total content of water vapor, ozone, etc.); and (c) aerosol and meteorological parameters of the near-ground layer of the

437

LLaannggeerrhhaannss LLaabb PPrroottooccoollss Live Fish Care Daily Checklist.docx revised 8/9/13 Page 1 of 1  

E-Print Network [OSTI]

LLaannggeerrhhaannss LLaabb PPrroottooccoollss Live Fish Care Daily Checklist.docx revised 8/9/13 Page 1 of 1 Live Fish Care Daily Checklist D. Clark Labs rooms G-06 & G-08 morning visit: Turn) eggs from fridge in room 382; feed the live fish there Feed hatched Artemia (=brine shrimp) to fry

Langerhans, Brian

438

Patterns in the daily diary of the 41st president, George Bush  

E-Print Network [OSTI]

fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Frank M. Shipman, III Committee Members, Richard K. Furuta Lauren Cifuentes Head of Department, Valerie E. Taylor December 2005 Major... Subject: Computer Science iii ABSTRACT Patterns in the Daily Diary of the 41st President, George Bush. (December 2005) Shreyas Kumar, B. Arch., I.I.T. Roorkee Chair of Advisory Committee: Dr. Frank M. Shipman, III This thesis explores interfaces...

Kumar, Shreyas

2007-04-25T23:59:59.000Z

439

Infectious Disease Updates To minimize the risk of any infectious disease, practice these daily preventive  

E-Print Network [OSTI]

these daily preventive measures: · Cover your nose and mouth with a tissue when you cough or sneeze. Throw seconds), especially after you cough or sneeze. Alcohol-based hand cleaners are an alternative://www.sjsu.edu/studenthealth/cold_flu/index.html http://www.cdph.ca.gov/healthinfo/discond/pages/influenza(flu).aspx 2) Pertussis (Whooping Cough) http://www.sjsu.edu/studenthealth/docs/whooping_cough

Su, Xiao

440

Daily Thermal Predictions of the AGR-1 Experiment with Gas Gaps Varying with Time  

SciTech Connect (OSTI)

A new daily as-run thermal analysis was performed at the Idaho National Laboratory on the Advanced Gas Reactor (AGR) test experiment number one at the Advanced Test Reactor (ATR). This thermal analysis incorporates gas gaps changing with time during the irradiation experiment. The purpose of this analysis was to calculate the daily average temperatures of each compact to compare with experimental results. Post irradiation examination (PIE) measurements of the graphite holder and fuel compacts showed the gas gaps varying from the beginning of life. The control temperature gas gap and the fuel compact graphite holder gas gaps were linearly changed from the original fabrication dimensions, to the end of irradiation measurements. A steady-state thermal analysis was performed for each daily calculation. These new thermal predictions more closely match the experimental data taken during the experiment than previous analyses. Results are presented comparing normalized compact average temperatures to normalized log(R/B) Kr-85m. The R/B term is the measured release rate divided by the predicted birth rate for the isotope Kr-85m. Correlations between these two normalized values are presented.

Grant Hawkes; James Sterbentz; John Maki; Binh Pham

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Low Dose Radiation Exposure: Exploring Bystander Effects In Vivo.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exposure: Exploring Bystander Effects Exposure: Exploring Bystander Effects In Vivo. 1 Blyth, B.J., 1 Sykes, P.J. 1 Department of Haematology and Genetic Pathology, Flinders University and Medical Centre, Bedford Park, South Australia, 5042, The general population is daily exposed to chronic, low doses of ionizing radiation from both natural and artificial sources. The shape of the radiation dose-response curve at these low doses is currently linearly extrapolated from data obtained after high dose exposure due to the low sensitivity of traditional biological assays after near-background exposures. At odds with this Linear No-Threshold model, are the phenomena collectively referred to as the radiation-induced bystander effect. The bystander effect describes a collection of in vitro

442

RADIONUCLIDE RADIATION PROTECTION  

E-Print Network [OSTI]

COPYRIGHT 2002 Nuclear Technology Publishing #12;3 #12;4 #12;5 Radiation Protection Dosimetry Vol. 98, No'Energie Atomique, CEA/Saclay, France ISBN 1 870965 87 6 RADIATION PROTECTION DOSIMETRY Vol. 98 No 1, 2002 Published by Nuclear Technology Publishing #12;RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2nd Edition (2002

Healy, Kevin Edward

443

On the radiative and thermodynamic properties of the Cosmic Microwave Background radiation using COBE FIRAS instrument data  

E-Print Network [OSTI]

Use formulas to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, pressure, enthalpy density, and internal energy density in the finite range of frequencies are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60 - 600 GHz frequency interval at the temperature T = 2.728 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant are calculated. In the case of the dipole spectrum, the constants a and the Stefan-Bol...

Fisenko, Anatoliy I

2014-01-01T23:59:59.000Z

444

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

445

Property:TotalValue | Open Energy Information  

Open Energy Info (EERE)

TotalValue TotalValue Jump to: navigation, search This is a property of type Number. Pages using the property "TotalValue" Showing 25 pages using this property. (previous 25) (next 25) 4 44 Tech Inc. Smart Grid Demonstration Project + 10,000,000 + A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project + 3,088,007 + Amber Kinetics, Inc. Smart Grid Demonstration Project + 10,000,000 + American Transmission Company LLC II Smart Grid Project + 22,888,360 + American Transmission Company LLC Smart Grid Project + 2,661,650 + Atlantic City Electric Company Smart Grid Project + 37,400,000 + Avista Utilities Smart Grid Project + 40,000,000 + B Baltimore Gas and Electric Company Smart Grid Project + 451,814,234 + Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project + 177,642,503 +

446

SolarTotal | Open Energy Information  

Open Energy Info (EERE)

SolarTotal SolarTotal Jump to: navigation, search Name SolarTotal Place Bemmel, Netherlands Zip 6681 LN Sector Solar Product The company sells and installs PV solar instalations Coordinates 51.894112°, 5.89881° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.894112,"lon":5.89881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Total Cross Sections for Neutron Scattering  

E-Print Network [OSTI]

Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.

C. R. Chinn; Ch. Elster; R. M. Thaler; S. P. Weppner

1994-10-19T23:59:59.000Z

448

Properties of Natural Radiation and Radioactivity  

SciTech Connect (OSTI)

Ubiquitous natural sources of radiation and radioactive material (naturally occurring radioactive material, NORM) have exposed humans throughout history. To these natural sources have been added technologically-enhanced naturally occurring radioactive material (TENORM) sources and human-made (anthropogenic) sources. This chapter describes the ubiquitous radiation sources that we call background, including primordial radionuclides such as 40K, 87Rb, the 232Th series, the 238U series, and the 235U series; cosmogenic radionuclides such as 3H and 14C; anthropogenic radionuclides such as 3H, 14C, 137Cs, 90Sr, and 129I; radiation from space; and radiation from technologically-enhanced concentrations of natural radionuclides, particularly the short-lived decay products of 222Rn ("radon") and 220Rn ("thoron") in indoor air. These sources produce radiation doses to people principally via external irradiation or internal irradiation following intakes by inhalation or ingestion. The effective doses from each are given, with a total of 3.11 mSv y-1 (311 mrem y-1) to the average US resident. Over 2.5 million US residents receive over 20 mSv y-1 (2 rem y-1), primarily due to indoor radon. Exposure to radiation from NORM and TENORM produces the largest fraction of ubiquitous background exposure to US residents, on the order of 2.78 mSv (278 mrem) or about 89%. This is roughly 45% of the average annual effective dose to a US resident of 6.2 mSv y-1 (620 mrem y-1) that includes medical (48%), consumer products and air travel (2%), and occupational and industrial (0.1%). Much of this chapter is based on National Council on Radiation Protection and Measurements (NCRP) Report No. 160, "Ionizing Radiation Exposure of the Population of the United States," for which the author chaired the subcommittee that wrote Chapter 3 on "Ubiquitous Background Radiation."

Strom, Daniel J.

2009-07-13T23:59:59.000Z

449

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Broader source: Energy.gov (indexed) [DOE]

and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA...

450

Radioactivity and Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radioactivity and Radiation Radioactivity and Radiation Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects Radioactivity and Radiation Discussion of radioactivity and radiation, uranium and radioactivity, radiological health risks of uranium isotopes and decay products. Radioactivity Radioactivity is the term used to describe the natural process by which some atoms spontaneously disintegrate, emitting both particles and energy as they transform into different, more stable atoms. This process, also called radioactive decay, occurs because unstable isotopes tend to transform into a more stable state. Radioactivity is measured in terms of disintegrations, or decays, per unit time. Common units of radioactivity

451

TERSat: Trapped Energetic Radiation Satellite  

E-Print Network [OSTI]

Radiation damage caused by interactions with high-energy particles in the Van Allen Radiation Belts is a leading

Clements, Emily B.

2012-01-01T23:59:59.000Z

452

The Leica TCRA1105 Reflectorless Total Station  

SciTech Connect (OSTI)

This poster provides an overview of SLAC's TCRA1105 reflectorless total station for the Alignment Engineering Group. This instrument has shown itself to be very useful for planning new construction and providing quick measurements to difficult to reach or inaccessible surfaces.

Gaudreault, F.

2005-09-06T23:59:59.000Z

453

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S?RENSEN in this paper provides a generalization of previously proposed batch distillation schemes. A simple feedback been built and the experiments verify the simulations. INTRODUCTION Although batch distillation

Skogestad, Sigurd

454

Total Solar Irradiance Satellite Composites and their  

E-Print Network [OSTI]

Chapter 12 Total Solar Irradiance Satellite Composites and their Phenomenological Effect on Climate. Phenomenological solar signature on climate 310 9. Conclusion 312 1. INTRODUCTION A contiguoustotal solar from each other, in particular about whether the TSI minimum during solar Cycles 22e23 (1995

Scafetta, Nicola

455

Americans' Average Radiation Exposure  

SciTech Connect (OSTI)

We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each year in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body.

NA

2000-08-11T23:59:59.000Z

456

Radiation: Facts, Risks and Realities  

E-Print Network [OSTI]

of Radiation 3 Understanding Radiation Risks 6 Naturally Occurring (Background) Radiation 7 Man-Made Radiation, beta particles and gamma rays. Other types, such as x-rays, can occur naturally or be machine-produced. Scientists have also learned that radiation sources are naturally all around us. Radiation can come from

457

Response of intracerebral human glioblastoma xenografts to multifraction radiation exposures  

SciTech Connect (OSTI)

Purpose: We investigated the effects of fractionated radiation treatments on the life spans of athymic rats bearing intracerebral brain tumors. Methods and Materials: U-251 MG or U-87 MG human glioblastoma cells were implanted into the brains of athymic rats, and the resulting tumors were irradiated once daily with various doses of ionizing radiation for 5 consecutive days or for 10 days with a 2-day break after Day 5. Results: Five daily doses of 1 and 1.5 Gy, and 10 doses of 0.75 and 1 Gy, cured some U-251 MG tumors. However, five daily doses of 0.5 Gy increased the survival time of animals bearing U-251 MG tumors 5 days without curing any animals of their tumors. Ten doses of 0.3 Gy given over 2 weeks extended the lifespan of the host animals 9 days without curing any animals. For U-87 MG tumors, 5 daily doses of 3 Gy produced an increased lifespan of 8 days without curing any animals, and 10 doses of 1 Gy prolonged lifespan 5.5 days without curing any animals. The differences in extension of life span between the 5- and 10-fraction protocols were minor for either tumor type. Conclusion: The finding that the U-251 MG tumors are more sensitive than U-87 MG tumors, despite the fact that U-251 MG tumors contain many more hypoxic cells than U-87 MG tumors, suggests the intrinsic cellular radiosensitivities of these cell lines are more important than hypoxia in determining their in vivo radiosensitivities.

Ozawa, Tomoko [Brain Tumor Research Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA (United States); Faddegon, Bruce A. [Department of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States); Hu, Lily J. [Brain Tumor Research Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA (United States); Bollen, Andrew W. [Department of Pathology, University of California San Francisco, San Francisco, CA (United States); Lamborn, Kathleen R. [Brain Tumor Research Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA (United States); Deen, Dennis F. [Brain Tumor Research Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA (United States) and Department of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States)]. E-mail: ddeen@itsa.ucsf.edu

2006-09-01T23:59:59.000Z

458

Solar Radiative Heating in First Year Sea Ice M.J. McGuinness 1 , K.A. Landman 2 , H.J. Trodahl 3 , A.E. Pantoja 3  

E-Print Network [OSTI]

Solar Radiative Heating in First Year Sea Ice M.J. McGuinness 1 , K.A. Landman 2 , H.J. Trodahl 3 ice show daily oscillations consistent with heating by solar radiation. We present and solve a heat for solar power absorption based on Monte Carlo scatter­ ing simulations of penetrating photons. We observe

459

Proceedings of Eurosun 2004, published by PSE GmbH, Freiburg, Germany, pp. (3) 916-920, 2004 HelioClim: a long-term database on solar radiation for  

E-Print Network [OSTI]

- tions, urban air quality studies, sizing of space borne sensors, solar energy engineering or evenClim: a long-term database on solar radiation for Europe and Africa S. Cros, M. Albuisson, M. Lefèvre, C-series of solar radiation data. Daily irradiation values are available over Europe, Africa and Atlantic Ocean

Paris-Sud XI, Université de

460

A method to estimate the effect of deformable image registration uncertainties on daily dose mapping  

SciTech Connect (OSTI)

Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties.

Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin [Department of Radiation Oncology, Virginia Commonwealth University, Richmond Virginia 23298 (United States)

2012-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Contractor: Contract Number: Contract Type: Total Estimated  

Broader source: Energy.gov (indexed) [DOE]

Number: Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 $2,550,203 FY2009 $39,646,446 FY2010 $64,874,187 FY2011 $66,253,207 FY2012 $41,492,503 FY2013 $0 FY2014 FY2015 FY2016 FY2017 FY2018 Cumulative Fee Earned $214,816,546 Fee Available $2,550,203 Minimum Fee $77,931,569 $69,660,249 Savannah River Nuclear Solutions LLC $458,687,779 $0 Maximum Fee Fee Information $88,851,963 EM Contractor Fee Site: Savannah River Site Office, Aiken, SC Contract Name: Management & Operating Contract September 2013 DE-AC09-08SR22470

462

Total Neutron Scattering in Vitreous Silica  

Science Journals Connector (OSTI)

The structure of Corning superpure vitreous silica glass has been investigated with neutrons. A new method of analysis using variable neutron wavelengths and the measurement of total scattering cross sections from transmission experiments is developed and the results are compared with those from differential x-ray scattering. The total neutron scattering method permits a simple and direct structure analysis with resolution apparently superior to x-rays. The preliminary results compare well in a first approximation analysis with the basic structure model of Warren and others and in addition the neutron-determined atomic radial distribution curve exhibits some finer details than the x-ray results. Thermal inelastic scattering of neutrons was corrected for in an approximate way.

R. J. Breen; R. M. Delaney; P. J. Persiani; A. H. Weber

1957-01-15T23:59:59.000Z

463

Tropical Africa: Total Forest Biomass (By Country)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

464

Frustrated total internal reflection acoustic field sensor  

DOE Patents [OSTI]

A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

Kallman, Jeffrey S. (Pleasanton, CA)

2000-01-01T23:59:59.000Z

465

Daily Modulation as a Smoking Gun of Dark Matter with Significant Stopping  

E-Print Network [OSTI]

We point out that for a range of parameters, the flux of DM may be stopped significantly by its interactions with the Earth. This can significantly degrade the sensitivity of direct detection experiments to DM candidates with large interactions with terrestrial nuclei. We find that a significant region of parameter space remains unconstrained for DM $\\lesssim $ a few GeV. For DM candidates with moderate levels of stopping power, the flux of DM may be blocked from below but not above a detector thereby producing a novel daily modulation. This can be explored by low threshold detectors placed on the surface or in shallow sites in the south hemisphere.

Chris Kouvaris; Ian M. Shoemaker

2014-05-07T23:59:59.000Z

466

Daily Modulation as a Smoking Gun of Dark Matter with Significant Stopping  

E-Print Network [OSTI]

We point out that for a range of parameters, the flux of DM may be stopped significantly by its interactions with the Earth. This can significantly degrade the sensitivity of direct detection experiments to DM candidates with large interactions with terrestrial nuclei. We find that a significant region of parameter space remains unconstrained for DM $\\lesssim $ a few GeV. For DM candidates with moderate levels of stopping power, the flux of DM may be blocked from below but not above a detector thereby producing a novel daily modulation. This can be explored by low threshold detectors placed on the surface or in shallow sites in the south hemisphere.

Kouvaris, Chris

2014-01-01T23:59:59.000Z

467

Radiation physics, biophysics, and radiation biology  

SciTech Connect (OSTI)

Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood biological fingerprint'' of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

Hall, E.J.; Zaider, M.

1993-05-01T23:59:59.000Z

468

Radiation Effects in the Space Telecommunications Environment  

SciTech Connect (OSTI)

Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

Fleetwood, Daniel M.; Winokur, Peter S.

1999-05-17T23:59:59.000Z

469

Improved selection in totally monotone arrays  

SciTech Connect (OSTI)

This paper's main result is an O(({radical}{bar m}lgm)(n lg n) + mlg n)-time algorithm for computing the kth smallest entry in each row of an m {times} n totally monotone array. (A two-dimensional A = a(i,j) is totally monotone if for all i{sub 1} < i{sub 2} and j{sub 1} < j{sup 2}, < a(i{sub 1},j{sub 2}) implies a(i{sub 2},j{sub 1})). For large values of k (in particular, for k=(n/2)), this algorithm is significantly faster than the O(k(m+n))-time algorithm for the same problem due to Kravets and Park. An immediate consequence of this result is an O(n{sup 3/2} lg{sup 2}n)-time algorithm for computing the kth nearest neighbor of each vertex of a convex n-gon. In addition to the main result, we also give an O(n lg m)-time algorithm for computing an approximate median in each row of an m {times} n totally monotone array; this approximate median is an entry whose rank in its row lies between (n/4) and (3n/4) {minus} 1. 20 refs., 3 figs.

Mansour, Y. (Harvard Univ., Cambridge, MA (United States). Aiken Computation Lab.); Park, J.K. (Sandia National Labs., Albuquerque, NM (United States)); Schieber, B. (International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center); Sen, S. (AT and T Bell Labs., Murray Hill, NJ (United States))

1991-01-01T23:59:59.000Z

470

EQUUS Total Return Inc | Open Energy Information  

Open Energy Info (EERE)

EQUUS Total Return Inc EQUUS Total Return Inc Jump to: navigation, search Name EQUUS Total Return Inc Place Houston, Texas Product A business development company and VC investor that trades as a closed-end fund. EQUUS is managed by MCC Global NV, a Frankfurt stock exchange listed management and merchant banking group. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Atmospheric Radiation Measurement Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan - ARM in the next 5 years ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement ARM Status - Science ARM Status - Science * Steadily increasing productivity - Poster session - over 220 posters (may need to do something about submissions next year) - Peer-reviewed articles: 2.5 to 3 per year per

472

The flying radiation case  

SciTech Connect (OSTI)

The Los Alamos foil implosion program has the goal of producing an intense, high-energy density x-ray source by converting the energy of a magnetically imploded plasma into radiation and material energy. One of the methods for converting the plasma energy into thermal energy and radiation and utilizing it for experiments is called the flying radiation case (FRC). In this paper the authors shall model the FRC and provide a physical description of the processes involved. An analytic model of a planar FRC in the hydrodynamic approximation is used to describe the assembly and shock heating of a central cushion by a conducting liner driver. The results are also used to benchmark a hydrodynamics code for modeling an FRC. They then use a radiation-hydrodynamics computational model to explore the effects of radiation production and transport when a gold plasma assembles on a CH cushion. Results are presented for the structure and evolution of the radiation hohlraum.

Brownell, J.H.; Bowers, R.L. [Los Alamos National Lab., NM (United States). Applied Theoretical and Computational Physics Div.

1997-04-01T23:59:59.000Z

473

RHOBOT: Radiation hardened robotics  

SciTech Connect (OSTI)

A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

Bennett, P.C.; Posey, L.D. [Sandia National Labs., Albuquerque, NM (United States)

1997-10-01T23:59:59.000Z

474

Daily prediction of short-term trends of crude oil prices using neural networks exploiting multimarket dynamics  

Science Journals Connector (OSTI)

This paper documents a systematic investigation on the predictability of short-term trends of crude oil prices on a daily basis. In stark contrast with longer-term predictions of crude oil prices, short-term pred...

Heping Pan; Imad Haidar; Siddhivinayak Kulkarni

2009-06-01T23:59:59.000Z

475

Circulation patterns, daily precipitation in Portugal and implications for climate change simulated by the second Hadley Centre GCM  

Science Journals Connector (OSTI)

Based on principal component analysis (PCA) and a k...-means clustering algorithm, daily mean sea level pressure (MSLP) fields over the northeastern Atlantic and Western Europe, simulated by the Hadley Centre's ...

J. Corte-Real; B. Quian; H. Xu

1999-12-01T23:59:59.000Z

476

Atomic Radiation (Illinois)  

Broader source: Energy.gov [DOE]

This article states permissible levels of radiation in unrestricted areas, environmental standards for uranium fuel cycle and information about notification of incidents.

477

Radiation.cdr  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An average American's exposure is about 620 millirems per year from naturally occurring and other sources. Other Factors Background radiation varies with location....

478

Radiation Hazards Program (Minnesota)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

479

Radiation Safety September 2013  

E-Print Network [OSTI]

...................................................................................... 8 2.6 RUA Holder........................................................................................................ 11 3.3 Radiation Use Authorization (RUA).......................................................................................... 11 3.4 Review of RUA Applications

California at Irvine, University of

480

Radiative polarization of electrons  

Science Journals Connector (OSTI)

We present a new method of calculating the radiative polarization of electrons in homogeneous magnetic fields, using the modified electron propagation function.

Julian Schwinger and Wu-yang Tsai

1974-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "daily total radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

EIA - Daily Report 9/13/05 - Hurricane Katrina's Impact on U.S. Oil &  

U.S. Energy Information Administration (EIA) Indexed Site

Tuesday, September 13, 4:00 pm Tuesday, September 13, 4:00 pm According to the Minerals Management Service (MMS), as of 11:30 September 12, Gulf of Mexico oil production was reduced by 846,720 barrels per day as a result of Hurricane Katrina, equivalent to 56.45 percent of daily Gulf of Mexico oil production (which had been1.5 million barrels per day). The MMS also reported that 3.720 billion cubic feet per day of natural gas production was shut in, equivalent to 37.20 percent of daily Gulf of Mexico natural gas production (which had been 10 billion cubic feet per day). EIA released its monthly Short-Term Energy Outlook on Wednesday, September 7. Because considerable uncertainty remains regarding the extent of Katrina's damage, EIA established three basic recovery scenarios to represent a range of plausible outcomes for oil and natural gas supply over the next several months and through 2006: (1) Fast Recovery, which assumes a very favorable set of circumstances for getting supplies back to normal; (2) Slow Recovery, which assumes that significant outages in oil and natural gas production and delivery from the Gulf area continue at least into November; and (3) Medium Recovery, which assumes a path in between Slow and Fast Recovery.

482

Daily movements of female white-tailed deer relative to parturition and breeding.  

SciTech Connect (OSTI)

Abstract: To assess how white-tailed deer (Odocoileus virginianus) herd demographics influence reproductive behaviors, we examined 24-h diel movements of female whitetailed deer relative to parturition and breeding in a low-density population with a near even sex ratio at the Savannah River Site (SRS), South Carolina. We conducted a series of intensive, 24-h radio-tracking periods of 13 females during spring and fall 2002. We compared daily range (ha), rate of travel (m/h), and distance between extreme daily locations (m), among the periods of pre-parturition and post-parturition and pre-, peak-, and post-rut. From pre-parturition to post-parturition, we observed decreases in diel range size (?¢????38.2%), distance between extreme diel locations (?¢????17.0%), and diel rate of travel (?¢????18.2%). Diel range size, distance between extreme diel locations, and diel rate of travel during the pre-rut and rut exceeded those observed during post-rut. We further identified substantial increases in mobility during 12 24-h diel periods for eight females during our fall monitoring. Our data suggest that female white-tailed deer reduce mobility post-fawning following exaggerated movements during pre-parturition. Furthermore, despite a near equal sex ratio, estrous does may be required to actively seek potential mates due to low population density.

Gino J. D'Angelo; Christopher E. Comer; John C. Kilgo; Cory D. Drennan; David A. Osborn; Karl V. Miller

2005-10-01T23:59:59.000Z

483

Daily dispersion model calculations of the Kuwait oil fire smoke plume  

SciTech Connect (OSTI)

The Atmospheric Release Advisory Capability (ARAC) provided daily forecasts of the position and spatial character of the Kuwait oil fire smoke plume to the NSF-coordinated research aircraft missions in the Persian Gulf. ARAC also provided daily plume dispersion products to various nations in the Persian Gulf region under the auspices of the World Meteorological Organization for a period of nearly 5 months. Forecasted three dimensional winds were provided to ARAC from the US Air Force Global Weather Central`s Relocatable Wind Model (RWM). The RWM winds were spaced approximately 90 km in the horizontal and were located at the surface, 1000 ft., 2000 ft, 5000 ft and every 5000 ft up to 30,000 ft elevation. The forecast periods were 0, 6, 24, and 36 hours from both 0000 and 1200 UTC. A wind field model (MATHEW) corrected for terrain influences on the wind. The smoke plume was dispersed using a three dimensional particle-in-cell code (ADPIC) with buoyant plume rise capability. Multiple source locations were used to represent the burning oil fields. Improved estimates of the source term and emission factors for the smoke were incorporated into the ADPIC calculations as the field measurement data were made available.

Ellis, J.S.; Foster, C.S.; Foster, K.T.; Sullivan, T.J. [Lawrence Livermore National Lab., CA (United States); Baskett, R.L.; Nasstrom, J.S.; Schalk, W.W. III [EG and G Energy Measurements, Inc., Pleasanton, CA (United States); Greenly, G.D. [IT Corp., Irvine, CA (United States)

1992-03-26T23:59:59.000Z

484

Daily dispersion model calculations of the Kuwait oil fire smoke plume  

SciTech Connect (OSTI)

The Atmospheric Release Advisory Capability (ARAC) provided daily forecasts of the position and spatial character of the Kuwait oil fire smoke plume to the NSF-coordinated research aircraft missions in the Persian Gulf. ARAC also provided daily plume dispersion products to various nations in the Persian Gulf region under the auspices of the World Meteorological Organization for a period of nearly 5 months. Forecasted three dimensional winds were provided to ARAC from the US Air Force Global Weather Central's Relocatable Wind Model (RWM). The RWM winds were spaced approximately 90 km in the horizontal and were located at the surface, 1000 ft., 2000 ft, 5000 ft and every 5000 ft up to 30,000 ft elevation. The forecast periods were 0, 6, 24, and 36 hours from both 0000 and 1200 UTC. A wind field model (MATHEW) corrected for terrain influences on the wind. The smoke plume was dispersed using a three dimensional particle-in-cell code (ADPIC) with buoyant plume rise capability. Multiple source locations were used to represent the burning oil fields. Improved estimates of the source term and emission factors for the smoke were incorporated into the ADPIC calculations as the field measurement data were made available.

Ellis, J.S.; Foster, C.S.; Foster, K.T.; Sullivan, T.J. (Lawrence Livermore National Lab., CA (United States)); Baskett, R.L.; Nasstrom, J.S.; Schalk, W.W. III (EG and G Energy Measurements, Inc., Pleasanton, CA (United States)); Greenly, G.D. (IT Corp., Irvine, CA (United States))

1992-03-26T23:59:59.000Z

485

EIA - Daily Report 9/15/05 - Hurricane Katrina's Impact on U.S. Oil &  

U.S. Energy Information Administration (EIA) Indexed Site

Thursday, September 15, 3:00 pm Thursday, September 15, 3:00 pm According to the Minerals Management Service (MMS), as of 11:30 September 15, Gulf of Mexico oil production was reduced by 842,091 barrels per day as a result of Hurricane Katrina, equivalent to 56.14 percent of daily Gulf of Mexico oil production (which had been 1.5 million barrels per day). The MMS also reported that 3.411 billion cubic feet per day of natural gas production was shut in, equivalent to 34.11 percent of daily Gulf of Mexico natural gas production (which had been 10 billion cubic feet per day). EIA released its monthly Short-Term Energy Outlook on Wednesday, September 7, taking into consideration three Hurricane Katrina recovery scenarios. Petroleum As of the close of trading on Thursday, September 15, crude oil and petroleum product prices were lower, compared to the closing prices from Wednesday, September 14. The gasoline near-month futures price was down by 3.9 cents per gallon from Wednesday, settling at 189.9 cents per gallon, while the heating oil near-month futures price was down 1.3 cents per gallon, settling at 191.2 cents per gallon. The NYMEX West Texas Intermediate (WTI) crude oil futures price was down $0.34 per barrel from Wednesday, settling at $64.75.

486

EIA - Daily Report 9/12/05 - Hurricane Katrina's Impact on U.S. Oil &  

U.S. Energy Information Administration (EIA) Indexed Site

2, 5:00 pm 2, 5:00 pm According to the Minerals Management Service (MMS), as of 11:30 September 12, Gulf of Mexico oil production was reduced by 860,636 barrels per day as a result of Hurricane Katrina, equivalent to 57.38 percent of daily Gulf of Mexico oil production (which is 1.5 million barrels per day). The MMS also reported that 3.784 billion cubic feet per day of natural gas production was shut in, equivalent to 37.84 percent of daily Gulf of Mexico natural gas production (which is 10 billion cubic feet per day). EIA released its monthly Short-Term Energy Outlook on Wednesday, September 7. Because considerable uncertainty remains regarding the extent of Katrina's damage, EIA established three basic recovery scenarios to represent a range of plausible outcomes for oil and natural gas supply over the next several months and through 2006: (1) Fast Recovery, which assumes a very favorable set of circumstances for getting supplies back to normal; (2) Slow Recovery, which assumes that significant outages in oil and natural gas production and delivery from the Gulf area continue at least into November; and (3) Medium Recovery, which assumes a path in between Slow and Fast Recovery.

487

Appendix F. Radiation Appendix F. Radiation F-3  

E-Print Network [OSTI]

from natural and human-made sources. People are exposed to naturally occurring radiation constantlyAppendix F. Radiation #12;#12;Appendix F. Radiation F-3 Appendix F. Radiation This appendix presents basic facts about radiation. The information is intended to be a basis for understanding

Pennycook, Steve

488

Appendix F: Radiation Appendix F: Radiation F-3  

E-Print Network [OSTI]

. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation; radon effects on the environment and biological systems. Radiation comes from natural and human-made sourcesAppendix F: Radiation #12;#12;Appendix F: Radiation F-3 P P P E E E N NN HYDROGEN ATOM DEUTERIUM

Pennycook, Steve

489

Appendix F: Radiation Appendix F: Radiation F-3  

E-Print Network [OSTI]

to naturally occurring radiation constantly. For example, cosmic radiation; radon in air; potassium in food on the environment and biological systems. Radiation comes from natural and human-made sources. People are exposedAppendix F: Radiation #12;#12;Appendix F: Radiation F-3 Fig. F.1. The hydrogen atom and its

Pennycook, Steve

490

Appendix G. Radiation Appendix G. Radiation G-3  

E-Print Network [OSTI]

from natural and human-made sources. People are exposed to naturally occurring radiation constantlyAppendix G. Radiation #12;#12;Appendix G. Radiation G-3 Appendix G. Radiation This appendix presents basic facts about radiation. The information is intended to be a basis for un- derstanding

Pennycook, Steve

491

Appendix F. Radiation Appendix F. Radiation F-3  

E-Print Network [OSTI]

from natural and human-made sources. People are exposed to naturally occurring radiation constantlyAppendix F. Radiation #12;#12;Appendix F. Radiation F-3 Appendix F. Radiation This appendix presents basic facts about radiation. The information is intended to be a basis for un- derstanding

Pennycook, Steve

492

Spatial and temporal variability of the frequency of extreme daily rainfall regime in the La Plata Basin during the 20th century  

Science Journals Connector (OSTI)

We analyzed trends, interdecadal variability, and the quantification of the changes in the frequency of daily rainfall for two thresholds: 0.1mm and percentile 75th, using high quality daily series from 52 st...

Olga C. Penalba; Federico A. Robledo

2010-02-01T23:59:59.000Z

493

Radiation physics, biophysics, and radiation biology  

SciTech Connect (OSTI)

The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent.

Hall, E.J.

1992-05-01T23:59:59.000Z

494

Notices Total Estimated Number of Annual  

Broader source: Energy.gov (indexed) [DOE]

72 Federal Register 72 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update student financial aid records using telecommunication software. Eligible respondents include the following, but are not limited to, institutions of higher education that participate in Title IV, HEA assistance programs, third-party servicers of eligible institutions,

495

Total solar house description and performance  

SciTech Connect (OSTI)

The initial attempt to apply the Total Solar concept to a residence in the Philadelphia, Pennsylvania, area is described. A very large storage capacity has made it possible to use only solar energy for meeting the heating, cooling and hot water needs for the entire year, with a parasitic power penalty of about 3500 kWh. Winter temperatures were maintained at 68/sup 0/F with 60/sup 0/F night setback, summer at 76/sup 0/F. Occupant intervention was negligible and passive overheat was minimized. The extra cost for the system, approximately $30,000 is readily amortized by the savings in purchased energy.

Starobin, L. (Univ. of Pennsylvania, Philadelphia); Starobin, J.

1981-01-01T23:59:59.000Z

496

Neutron Total Cross Sections at 20 Mev  

Science Journals Connector (OSTI)

With the T(d,n)He4 reaction as a monoenergetic source of neutrons of about 20 Mev, the total cross sections of 13 elements have been measured by a transmission experiment. These cross sections vary approximately as A23 as is to be expected from the continuum theory of nuclear reactions. The cross section for hydrogen at 19.93 Mev is 0.5040.01 barn. This result, together with other results at lower energies, seems to require a Yukawa potential in both the singlet and triplet n-p states and a singlet effective range that is lower than that obtained from p-p scattering data.

Robert B. Day and Richard L. Henkel

1953-10-15T23:59:59.000Z

497

Impact of Concurrent Androgen Deprivation on Fiducial Marker Migration in External-beam Radiation Therapy for Prostate Cancer  

SciTech Connect (OSTI)

Purpose: To determine the extent of gold fiducial marker (FM) migration in patients treated for prostate cancer with concurrent androgen deprivation and external-beam radiation therapy (EBRT). Methods and Materials: Three or 4 gold FMs were implanted in 37 patients with prostate adenocarcinoma receiving androgen deprivation therapy (ADT) in conjunction with 70-78 Gy. Androgen deprivation therapy was started a median of 3.9 months before EBRT (range, 0.3-12.5 months). To establish the extent of FM migration, the distance between each FM was calculated for 5-8 treatments once per week throughout the EBRT course. For each treatment, the distance between FMs was compared with the distance from the digitally reconstructed radiographs generated from the planning CT. A total of 281 treatments were analyzed. Results: The average daily migration was 0.8 {+-} 0.3 mm, with distances ranging from 0.2 mm-2.6 mm. Two of the 281 assessed treatments (0.7%) showed migrations >2 mm. No correlation between FM migration and patient weight or time delay between ADT and start of EBRT was found. There was no correlation between the extent of FM migration and prostate volume. Conclusion: This is the largest report of implanted FM migration in patients receiving concomitant ADT. Only 0.7% of the 281 treatments studied had significant marker migrations (>2 mm) throughout the course of EBRT. Consequently, the use of implanted FMs in these patients enables accurate monitoring of prostate gland position during treatment.

Tiberi, David A.; Carrier, Jean-Francois; Beauchemin, Marie-Claude; Nguyen, Thu Van; Beliveau-Nadeau, Dominic [Departement de Radio-Oncologie, Centre hospitalier de l'Universite de Montreal-Hopital Notre-Dame, Montreal, Quebec (Canada)] [Departement de Radio-Oncologie, Centre hospitalier de l'Universite de Montreal-Hopital Notre-Dame, Montreal, Quebec (Canada); Taussky, Daniel, E-mail: daniel.taussky.chum@ssss.gouv.qc.ca [Departement de Radio-Oncologie, Centre hospitalier de l'Universite de Montreal-Hopital Notre-Dame, Montreal, Quebec (Canada)] [Departement de Radio-Oncologie, Centre hospitalier de l'Universite de Montreal-Hopital Notre-Dame, Montreal, Quebec (Canada)

2012-09-01T23:59:59.000Z

498

Total Pollution Effect and Total Energy Cost per Output of Different Products for Polish Industrial System  

Science Journals Connector (OSTI)

For many years a broad use has been made of the indices of total energy requirements in the whole large production system corresponding to unit output of particular goods (Boustead I., Hancock G.F., 1979). The...

Henryk W. Balandynowicz

1988-01-01T23:59:59.000Z

499

COLUMBIA UNIVERSITY Radiation Safety Program  

E-Print Network [OSTI]

DDE ESTIMATED DOSE FROM CONCEPTION TO DECLARATION: DDE Radiation Safety Officer Signature for increased protection from ionizing radiation for declared pregnant radiation workers. The radiation dose of the occupational dose limit of 50 mSv (5.0 rem). The CPMC Radiation Safety Office will provide education

Jia, Songtao

500

RADIATION ONCOLOGY TARGET YOUR FUTURE  

E-Print Network [OSTI]

. · Radiation therapist - a health professional who designs, calculates (plans) and provides the radiation dose and monitors the delivery of radiation therapy, taking into account the protection and safety of patientsRADIATION ONCOLOGY TARGET YOUR FUTURE #12;A Career in Radiation Oncology YOUR CHOICE SAVE LIVES

Tobar, Michael