National Library of Energy BETA

Sample records for daiichi nuclear power

  1. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Broader source: Energy.gov [DOE]

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  2. Study of Fukushima Dai-ichi Nuclear Power Station Unit 4 Spent...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Study of Fukushima Dai-ichi Nuclear Power Station Unit 4 Spent Fuel Pool Citation Details In-Document Search Title: Study of Fukushima Dai-ichi Nuclear Power...

  3. Statement from Deputy Secretary of Energy Elizabeth Sherwood-Randall after Visiting the Fukushima Dai-ichi Nuclear Power Station

    Broader source: Energy.gov [DOE]

    Deputy Secretary Elizabeth Sherwood-Randall's statement after visiting the Fukushima Dai-ichi Nuclear Power Station in Japan

  4. Aerial Radiation Measurements from the Fukushima Dai-ichi Nuclear Power Plant Accident

    SciTech Connect (OSTI)

    Guss, P. P.

    2012-07-16

    This document is a slide show type presentation concerning DOE and Aerial Measuring System (AMS) activities and results with respect to assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. These include ground monitoring and aerial monitoring.

  5. NARAC Modeling During the Response to the Fukushima Dai-ichi Nuclear Power Plant Emergency

    SciTech Connect (OSTI)

    Sugiyama, G; Nasstrom, J S; Probanz, B; Foster, K T; Simpson, M; Vogt, P; Aluzzi, F; Dillon, M; Homann, S

    2012-02-14

    This paper summarizes the activities of the National Atmospheric Release Advisory Center (NARAC) during the Fukushima Dai-ichi nuclear power plant crisis. NARAC provided a wide range of products and analyses as part of its support including: (1) Daily Japanese weather forecasts and hypothetical release (generic source term) dispersion predictions to provide situational awareness and inform planning for U.S. measurement data collection and field operations; (2) Estimates of potential dose in Japan for hypothetical scenarios developed by the Nuclear Regulatory Commission (NRC) to inform federal government considerations of possible actions that might be needed to protect U.S. citizens in Japan; (3) Estimates of possible plume arrival times and dose for U.S. locations; and (4) Plume model refinement and source estimation based on meteorological analyses and available field data. The Department of Energy/National Nuclear Security Administration (DOE/NNSA) deployed personnel to Japan and stood up 'home team' assets across the DOE complex to aid in assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. The DOE Nuclear Incident Team (NIT) coordinated response activities, while DOE personnel provided predictive modeling, air and ground monitoring, sample collection, laboratory analysis, and data assessment and interpretation. DOE deployed the Aerial Measuring System (AMS), Radiological Assistance Program (RAP) personnel, and the Consequence Management Response Team (CMRT) to Japan. DOE/NNSA home team assets included the Consequence Management Home Team (CMHT); National Atmospheric Release Advisory Center (NARAC); Radiation Emergency Assistance Center/Training Site (REAC/TS); and Radiological Triage. NARAC was activated by the DOE/NNSA on March 11, shortly after the Tohoku earthquake and tsunami occurred. The center remained on active operations through late May when DOE ended its deployment to Japan. Over 32 NARAC staff members

  6. Challenges in Determining the Isotopic Mixture for the Fukushima Daiichi Nuclear Power Plant

    SciTech Connect (OSTI)

    Shanks, Arthur; Fournier, Sean; Shanks, Sonoya

    2012-05-01

    As part of the United States response to the Fukushima Daiichi Nuclear Power Plant emergency, the National Nuclear Security Administration (NNSA) Consequence Management (CM) Teams were activated with elements deploying to Japan. The NNSA CM teams faced the urgent need for information regarding the potential radiological doses that citizens of might experience. This paper discusses the challenges and lessons learned associated with the analysis of field collected samples and gamma spectra in an attempt to determine the isotopic mixture present on the ground around the Plant. There were several interesting and surprising lessons to be learned from the sample analysis portion of the response. The paper discusses several elements of the response that were unique to the event occurring in Japan, as well as several elements that would have occurred in a U.S. nuclear reactor event. Sections of this paper address details of the specific analytical challenges faced during the efforts to analyze samples and try to understand the overall release source term.

  7. Agricultural approaches of remediation in the outside of the Fukushima Daiichi nuclear power plant

    SciTech Connect (OSTI)

    Sato, Nobuaki; Saso, Michitaka; Umeda, Miki; Fujii, Yasuhiko; Amemiya, Kiyoshi

    2013-07-01

    This paper outlines agricultural approaches of remediation activity done in contaminated areas around the Fukushima Daiichi Nuclear Power Plant. About the decontamination examination of contaminated areas, we have tried the land scale test of a rice field before and after planting by the use of currently recommended methods. Since farmers would carry out the land preparation by themselves, generation of secondary radioactive waste should be as low as possible through the decontamination works. For the radioactive nuclide migration control of rice by wet rice production, several types of decontamination methods such as zeolite addition and potassium fertilization in the soil have been examined. The results are summarized in the 4 following points. 1) Plowing and water discharge are effective for removing radioactive cesium from rice field. 2) Additional potassium fertilization is effective for reducing cesium radioactivity in the product. 3) No significant difference is observed with or without the zeolite addition. 4) Very low transfer factor of cesium from soil to brown rice has been obtained compared with literature values.

  8. Direction on characterization of fuel debris for defueling process in Fukushima Daiichi Nuclear Power Station

    SciTech Connect (OSTI)

    Yano, Kimihiko; Kitagaki, Toru; Ikeuchi, Hirotomo; Wakui, Ryohei; Higuchi, Hidetoshi; Kaji, Naoya; Koizumi, Kenji; Washiya, Tadahiro

    2013-07-01

    For the decommissioning of Fukushima Daiichi Nuclear Power Station (1F), defueling of the fuel debris in the reactor core of Units 1-3 is planned to start within 10 years. Preferential items in the characterization of the fuel debris were identified for this work, in which the procedure and handling tools were assumed on the basis of information on 1F and experience after the Three Mile Island Unit 2 (TMI-2) accident. The candidates for defueling tools for 1F were selected from among the TMI- 2 defueling tools. It was found that they could be categorized into six groups according to their operating principles. The important properties of the fuel debris for defueling were selected considering the effect of the target materials on the tool performance. The selected properties are shape, size, density, thermal conductivity, heat capacity, melting point, hardness, elastic modulus, and fracture toughness. Of these properties, the mechanical properties (hardness, elastic modulus, fracture toughness) were identified as preferential items, because too few data on these characteristics of fuel debris are available in past severe accident studies. (authors)

  9. Aerial Survey Results for 131I Deposition on the Ground after the Fukushima Daiichi Nuclear Power Plant Accident

    SciTech Connect (OSTI)

    Torii, Tatsuo; Sugita, Takeshi; Okada, Colin E.; Reed, Michael S.; Blumenthal, Daniel J.

    2013-08-01

    In March 2011 the second largest accidental release of radioactivity in history occurred at the Fukushima Daiichi nuclear power plant following a magnitude 9.0 earthquake and subsequent tsunami. Teams from the U.S. Department of Energy, National Nuclear Security Administration Office of Emergency Response performed aerial surveys to provide initial maps of the dispersal of radioactive material in Japan. The initial results from the surveys did not report the concentration of 131I. This work reports on analyses performed on the initial survey data by a joint Japan-US collaboration to determine 131I ground concentration. This information is potentially useful in reconstruction of the inhalation and external exposure doses from this short-lived radionuclide. The deposited concentration of 134Cs is also reported.

  10. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    SciTech Connect (OSTI)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke; Asano, Takashi; Tamata, Shin

    2013-07-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it

  11. Activities for the remediation of TEPCO's Fukushima Daiichi nuclear power plant

    SciTech Connect (OSTI)

    Kinoshita, Hirofumi; Kometani, Yutaka; Asano, Takashi; Ishiwata, Masayuki; Fukasawa, Tetsuo; Tadokoro, Takahiro; Nagumo, Yasushi; Kani, Yuko; Matsui, Tetsuya

    2013-07-01

    With the aim of fulfilling recovery work for the Fukushima Daiichi NPP, technological efforts have been made for the development of a survey robot system, adequate communication infrastructure technologies, high radiation environment compatible gamma cameras, heavy machinery-type robots (ASTACO-SoRa), remote decontamination devices (AROUNDER), and contaminated waste water treatment system. We have developed a new type of absorbents which remove cesium (Cs) and strontium (Sr) simultaneously at a high removal rate of 99 % or more. We will provide valuable solutions and rational systems for waste water treatment using this developed adsorbent as well as other various adsorbents for the recovery of Fukushima Daiichi NPP.

  12. Research subjects for analytical estimation of core degradation at Fukushima-Daiichi nuclear power plant

    SciTech Connect (OSTI)

    Nagase, F.; Ishikawa, J.; Kurata, M.; Yoshida, H.; Kaji, Y.; Shibamoto, Y.; Amaya, M; Okumura, K.; Katsuyama, J.

    2013-07-01

    Estimation of the accident progress and status inside the pressure vessels (RPV) and primary containment vessels (PCV) is required for appropriate conductance of decommissioning in the Fukushima-Daiichi NPP. For that, it is necessary to obtain additional experimental data and revised models for the estimation using computer codes with increased accuracies. The Japan Atomic Energy Agency (JAEA) has selected phenomena to be reviewed and developed, considering previously obtained information, conditions specific to the Fukushima-Daiichi NPP accident, and recent progress of experimental and analytical technologies. As a result, research and development items have been picked up in terms of thermal-hydraulic behavior in the RPV and PCV, progression of fuel bundle degradation, failure of the lower head of RPV, and analysis of the accident. This paper introduces the selected phenomena to be reviewed and developed, research plans and recent results from the JAEA's corresponding research programs. (authors)

  13. Removal of Radiocesium from Food by Processing: Data Collected after the Fukushima Daiichi Nuclear Power Plant Accident - 13167

    SciTech Connect (OSTI)

    Uchida, Shigeo; Tagami, Keiko

    2013-07-01

    Removal of radiocesium from food by processing is of great concern following the accident of TEPCO's Fukushima Daiichi Nuclear Power Plant accident. Foods in markets are monitored and recent monitoring results have shown that almost all food materials were under the standard limit concentration levels for radiocesium (Cs-134+137), that is, 100 Bq kg{sup -1} in raw foods, 50 Bq kg{sup -1} in baby foods, and 10 Bq kg{sup -1} in drinking water; those food materials above the limit cannot be sold. However, one of the most frequently asked questions from the public is how much radiocesium in food would be removed by processing. Hence, information about radioactivity removal by processing of food crops native to Japan is actively sought by consumers. In this study, the food processing retention factor, F{sub r}, which is expressed as total activity in processed food divided by total activity in raw food, is reported for various types of corps. For white rice at a typical polishing yield of 90-92% from brown rice, the F{sub r} value range was 0.42-0.47. For leafy vegetable (indirect contamination), the average F{sub r} values were 0.92 (range: 0.27-1.2) after washing and 0.55 (range: 0.22-0.93) after washing and boiling. The data for some fruits are also reported. (authors)

  14. Multi-Phased, Post-Accident Support of the Fukushima Dai-Ichi Nuclear Power Plant - 12246

    SciTech Connect (OSTI)

    Gay, Arnaud; Gillet, Philippe; Ytournel, Bertrand; Varet, Thierry; David, Laurent; Prevost, Thierry; Redonnet, Carol; Piot, Gregoire; Jouaville, Stephane; Pagis, Georges

    2012-07-01

    In the wake of the March 11 earthquake and tsunami and the subsequent flooding of several of the Fukushima Dai-Ichi reactors, Japan and the Japanese utility TEPCO faced a crisis situation with incredible challenges: substantial amounts of radioactive mixed seawater and freshwater accumulated in the basements of four reactor and other buildings on the site. This water held varying levels of contamination due to the fact that it had been in contact with damaged fuel elements in the cores and with other contaminated components. The overall water inventory was estimated at around 110,000 tons of water with contamination levels up to the order of 1 Ci/l. Time was of the essence to avoid overflow of this accumulated water into the ocean. AREVA proposed, designed and implemented a water treatment solution using a proven chemical coprecipitation process with ppFeNi reagent, which is currently in use for effluent treatment on several nuclear sites including AREVA sites. In addition to the extremely short schedule the other challenge was to adapt the chemical treatment process to the expected composition of the Fukushima water and, in particular, to evaluate the impact of salinity on process performance. It was also necessary to define operating conditions for the VEOLIA equipment that had been selected for implementation of the process in the future facility. The operation phase began on June 17, and by the end of July more than 30,000 tons of highly radioactive saltwater had been decontaminated - the Decontamination Factor (DF) for Cesium was ∼10{sup 4}. It allowed recycling the contaminated water to cool the reactors while protecting workers and the environment. This paper focuses on the Actiflo{sup TM}-Rad water treatment unit project that was part of the TEPCO general water treatment scheme. It presents a detailed look at the principles of the Actiflo{sup TM}-Rad, related on-the-fly R and D, an explanation of system implementation challenges, and a brief summary of

  15. Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

    2011-12-05

    Evidence of the release Pu from the Fukushima Daiichi nuclear power station to the local environment and surrounding communities and estimates on fraction of total fuel inventory released

  16. Suggestion of typical phases of in-vessel fuel-debris by thermodynamic calculation for decommissioning technology of Fukushima-Daiichi nuclear power station

    SciTech Connect (OSTI)

    Ikeuchi, Hirotomo; Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro; Kondo, Yoshikazu; Noguchi, Yoshikazu

    2013-07-01

    For the decommissioning of the Fukushima-Daiichi Nuclear Power Station (1F), the characterization of fuel-debris in cores of Units 1-3 is necessary. In this study, typical phases of the in-vessel fuel-debris were estimated using a thermodynamic equilibrium (TDE) calculation. The FactSage program and NUCLEA database were applied to estimate the phase equilibria of debris. It was confirmed that the TDE calculation using the database can reproduce the phase separation behavior of debris observed in the Three Mile Island accident. In the TDE calculation of 1F, the oxygen potential [G(O{sub 2})] was assumed to be a variable. At low G(O{sub 2}) where metallic zirconium remains, (U,Zr)O{sub 2}, UO{sub 2}, and ZrO{sub 2} were found as oxides, and oxygen-dispersed Zr, Fe{sub 2}(Zr,U), and Fe{sub 3}UZr{sub 2} were found as metals. With an increase in zirconium oxidation, the mass of those metals, especially Fe{sub 3}UZr{sub 2}, decreased, but the other phases of metals hardly changed qualitatively. Consequently, (U,Zr)O{sub 2} is suggested as a typical phase of oxide, and Fe{sub 2}(Zr,U) is suggested as that of metal. However, a more detailed estimation is necessary to consider the distribution of Fe in the reactor pressure vessel through core-melt progression. (authors)

  17. Results of detailed analyses performed on boring cores extracted from the concrete floors of the Fukushima Daiichi nuclear power plant reactor buildings

    SciTech Connect (OSTI)

    Maeda, Koji; Sasaki, S.; Kumai, M.; Sato, Isamu; Osaka, Masahiko; Fukushima, Mineo; Kawatsuma, Shinji; Goto, Tetsuo; Sakai, Hitoshi; Chigira, Takayuki; Murata, Hirotoshi

    2013-07-01

    Due to the massive earthquake and tsunami on March 11, 2011, and the following severe accident at the Fukushima Daiichi Nuclear Power Plant, concrete surfaces within the reactor buildings were exposed to radioactive liquid and vapor phase contaminants. In order to clarify the situation of this contamination in the reactor buildings of Units 1, 2 and 3, selected samples were transported to the Fuels Monitoring Facility in the Oarai Engineering Center of JAEA where they were subjected to analyses to determine the surface radionuclide concentrations and to characterize the radionuclide distributions in the samples. In particular, penetration of radiocesium in the surface coatings layer and sub-surface concrete was evaluated. The analysis results indicate that the situation of contamination in the building of Unit 2 was different from others, and the protective surface coatings on the concrete floors provided significant protection against radionuclide penetration. The localized penetration of contamination in the concrete floors was found to be confined within a millimeter of the surface of the coating layer of some millimeters. (authors)

  18. Independent technical support for the frozen soil barrier installation and operation at the Fukushima Daiichi Nuclear Power Station (F1 Site)

    SciTech Connect (OSTI)

    Looney, Brian B.; Jackson, Dennis G.; Truex, Michael J.; Johnson, Christian D.

    2015-02-23

    TEPCO is implementing a number of water countermeasures to limit the releases and impacts of contaminated water to the surrounding environment. The diverse countermeasures work together in an integrated manner to provide different types, and several levels, of protection. In general, the strategy represents a comprehensive example of a “defense in depth” concept that is used for nuclear facilities around the world. One of the key countermeasures is a frozen soil barrier encircling the damaged reactor facilities. The frozen barrier is intended to limit the flow of water into the area and provide TEPCO the ability to reduce the amount of contaminated water that requires treatment and storage. The National Laboratory team supports the selection of artificial ground freezing and the incorporation of the frozen soil barrier in the contaminated water countermeasures -- the technical characteristics of a frozen barrier are relatively well suited to the Fukushima-specific conditions and the need for inflow reduction. Further, our independent review generally supports the TEPCO/Kajima design, installation strategy and operation plan.

  19. Linear Free Energy Correlations for Fission Product Release from the Fukushima-Daiichi Nuclear Accident

    SciTech Connect (OSTI)

    Abrecht, David G.; Schwantes, Jon M.

    2015-03-03

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes, et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the source of the radionuclides to be from active reactors rather than the spent fuel pool. Linear correlations of the form ln⁡Χ=-α (ΔG_rxn^° (T_C ))/(RT_C )+β were obtained between the deposited concentration and the reduction potential of the fission product oxide species using multiple reduction schemes to calculate ΔG_rxn^° (T_C ). These models allowed an estimate of the upper bound for the reactor temperatures of T_C between 2130 K and 2220 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, 151Sm through atmospheric venting and releases during the first month following the accident were performed, and indicate large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  20. Public dialogue on physics and related technology after the Fukushima Daiichi nuclear accident

    SciTech Connect (OSTI)

    Sasao, Mamiko

    2015-12-31

    After the Fukushima Daiichi Nuclear Accident, the importance of bottom-up and two-way dialogue between scientists and the public has been recognized. In such dialogue, information provided must accurately match the public’s interest and ability regarding science and technology. We have started to investigate what people want to know about physics. Some were interested in energy security (a particular concern in Japan), but others were concerned about radioactivity in food and natural radiation background. The conversations revealed that physicists often give insufficient explanations of the biological effects of radiation and highlighted key points for physicists to make when talking with the public.

  1. The Fukushima Daiichi Accident Study Information Portal

    SciTech Connect (OSTI)

    Shawn St. Germain; Curtis Smith; David Schwieder; Cherie Phelan

    2012-11-01

    This paper presents a description of The Fukushima Daiichi Accident Study Information Portal. The Information Portal was created by the Idaho National Laboratory as part of joint NRC and DOE project to assess the severe accident modeling capability of the MELCOR analysis code. The Fukushima Daiichi Accident Study Information Portal was created to collect, store, retrieve and validate information and data for use in reconstructing the Fukushima Daiichi accident. In addition to supporting the MELCOR simulations, the Portal will be the main DOE repository for all data, studies and reports related to the accident at the Fukushima Daiichi nuclear power station. The data is stored in a secured (password protected and encrypted) repository that is searchable and accessible to researchers at diverse locations.

  2. Analysis of data from sensitive U.S. monitoring stations for the Fukushima Dai-ichi nuclear reactor accident

    SciTech Connect (OSTI)

    Biegalski, Steven R.; Bowyer, Ted W.; Eslinger, Paul W.; Friese, Judah I.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Hoffman, Ian; Keillor, Martin E.; Miley, Harry S.; Morin, Marc P.

    2012-12-01

    The March 11, 2011 9.0 magnitude undersea megathrust earthquake off the coast of Japan and subsequent tsunami waves triggered a major nuclear event at the Fukushima Dai-ichi nuclear power station. At the time of the event, units 1, 2, and 3 were operating and units 4, 5, and 6 were in a shutdown condition for maintenance. Loss of cooling capacity to the plants along with structural damage caused by the earthquake and tsunami resulted in a breach of the nuclear fuel integrity and release of radioactive fission products to the environment. Fission products started to arrive in the United States via atmospheric transport on March 15, 2011 and peaked by March 23, 2011. Atmospheric activity concentrations of 131I reached levels of 3.0 * 10*2 Bqm*3 in Melbourne, FL. The noble gas 133Xe reached atmospheric activity concentrations in Ashland, KS of 17 Bqm*3. While these levels are not health concerns, they were well above the detection capability of the radionuclide monitoring systems within the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty.

  3. Aerosol Sample Inhomogeneity with Debris from the Fukushima Daiichi Nuclear Accident

    SciTech Connect (OSTI)

    Gomez, Reynaido; Biegalski, Steven R.; Woods, Vincent T.

    2014-09-01

    Radionuclide aerosol sampling is a vital component in the detection of nuclear explosions, nuclear accidents, and other radiation releases. This was proven by the detection and tracking of emissions from the Fukushima Daiichi incident across the globe by IMS stations. Two separate aerosol samplers were operated in Richland, WA following the event and debris from the accident were measured at levels well above detection limits. While the atmospheric activity concentration of radionuclides generally compared well between the two stations, they did not agree within uncertainties. This paper includes a detailed study of the aerosol sample homogeneity of 134Cs and 137Cs, then relates it to the overall uncertainty of the original measurement. Our results show that sample inhomogeneity adds an additional 5–10% uncertainty to each aerosol measurement and that this uncertainty is in the same range as the discrepancies between the two aerosol sample measurements from Richland, WA.

  4. Fukushima Daiichi Information Repository FY13 Status

    SciTech Connect (OSTI)

    Curtis Smith; Cherie Phelan; Dave Schwieder

    2013-09-01

    The accident at the Fukushima Daiichi nuclear power station in Japan is one of the most serious in commercial nuclear power plant operating history. Much will be learned that may be applicable to the U.S. reactor fleet, nuclear fuel cycle facilities, and supporting systems, and the international reactor fleet. For example, lessons from Fukushima Daiichi may be applied to emergency response planning, reactor operator training, accident scenario modeling, human factors engineering, radiation protection, and accident mitigation; as well as influence U.S. policies towards the nuclear fuel cycle including power generation, and spent fuel storage, reprocessing, and disposal. This document describes the database used to establish a centralized information repository to store and manage the Fukushima data that has been gathered. The data is stored in a secured (password protected and encrypted) repository that is searchable and available to researchers at diverse locations.

  5. Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power & Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  6. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  7. Nuclear Crisis Communications: The Plan Worked. A Critique of NRC Communications in the Fukushima Daiichi Reactor Crisis - 12073

    SciTech Connect (OSTI)

    Brenner, Eliot; Harrington, Holly; Schmidt, Rebecca

    2012-07-01

    'Call the AV-Photo folks and get someone in here to shoot b-roll. We'll never be able to accommodate the network cameras and the only way I can get this to the media is to produce it ourselves'. Eliot Brenner, Director NRC Office of Public Affairs, March 12, 2011. For the past four years we have been speaking to audiences at Waste Management about communications issues. Last year, though we were kept from attending because of the federal budget crisis, our surrogates described to you the lessons the nuclear industry should draw from the BP Gulf oil spill crisis. Those remarks were delivered 11 days before the Fukushima Daiichi tragedy became the nuclear landmark of a generation - an industry changing event with worldwide ramifications, both in science and regulation and in communications. Eliot Brenner cut his teeth on crisis communication in the aviation industry where tragedy unfolds rapidly. He has been a speech-writer to three cabinet secretaries, spokesman for the Federal Aviation Administration and now spokesman for the Nuclear Regulatory Commission since 2004. Holly Harrington manages the NRC crisis response program and has 26 years federal public affairs experience, including eight years at the Federal Emergency Management Agency. Her crisis experience includes the 1989 Loma Prieta earthquake, numerous hurricanes and floods, Sept 11, and, now Fukushima Daiichi. Rebecca Schmidt is a veteran government relations professional whose decades in Washington include service with the House Armed Services Committee, the House Budget Committee and the Secretary of Defense. Collectively, the Offices of Public Affairs and Congressional Affairs conducted the largest outreach for the agency since Three Mile Island. We worked with the basic rule, described to Waste Management last year just 11 days before Fukushima - communicate early, often and clearly. The response - while not without its problems and lessons - went as smoothly as a chaotic event like Fukushima could go

  8. NUCLEAR POWER PLANT

    DOE Patents [OSTI]

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  9. Labor and nuclear power

    SciTech Connect (OSTI)

    Logan, R.; Nelkin, D.

    1980-03-01

    The AFL-CIO is officially pro-nuclear, but tensions within unions are taking issue over ideological differences. The Labor movement, having looked to nuclear power development as an economic necessity to avoid unemployment, has opposed efforts to delay construction or close plants. As many as 42% of union members or relatives of members, however, were found to oppose new power plants, some actively working against specific construction projects. The United Mine Workers and Teamsters actively challenged the nuclear industry while the auto workers have been ambivalent. The differences between union orientation reflects the history of unionism in the US and explains the emergence of social unionism with its emphasis on safety and working conditions as well as economic benefits. Business union orientation trends to prevail during periods of prosperity; social unions during recessions. The labor unions and the environmentalists are examined in this conext and found to be hopeful. 35 references. (DCK)

  10. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  11. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  12. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant ...

  13. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  14. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  15. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  16. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  17. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  18. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  19. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  20. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  1. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  2. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  3. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  4. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  5. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... Electric & Power Co" "2 Plants 4 Reactors","3,501","26,572",100.0 "Note: ...

  6. Overview paper on nuclear power

    SciTech Connect (OSTI)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

  7. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOE Patents [OSTI]

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  8. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect (OSTI)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  9. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  10. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  11. Topics in nuclear power (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    NUCLEAR POWER STATION; GAIN; JAPAN; NATURAL DISASTERS; NUCLEAR INDUSTRY; NUCLEAR POWER; NUCLEAR POWER PLANTS; PROBABILISTIC ESTIMATION; REACTOR ACCIDENTS; REACTOR MAINTENANCE;...

  12. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  13. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  14. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  15. 2012 Nuclear Safety Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Background In response to the March 2011 accident at the Fukushima Daiichi nuclear power plant, Secretary Chu initiated a series of actions to review the safety of the Department...

  16. Competitive economics of nuclear power

    SciTech Connect (OSTI)

    Hellman, R.

    1981-03-02

    Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics.

  17. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect (OSTI)

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to

  18. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even ...

  19. Siemens Nuclear Power GmbH AREVA Nuclear Power | Open Energy...

    Open Energy Info (EERE)

    Nuclear Power GmbH AREVA Nuclear Power Jump to: navigation, search Name: Siemens Nuclear Power GmbH (AREVA Nuclear Power) Place: Erlangen, Germany Zip: 91058 Sector: Services...

  20. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2 Reactors","1,705","13,994",100.0 "Note: Totals

  1. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal sum of components due to

  2. Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

    2012-09-10

    Measurements of several radionuclides within environmental samples taken from the Fukushima Daiichi nuclear facility and reported on the Tokyo Electric Power Company website following the recent tsunami-initiated catastrophe were evaluated for the purpose of identifying the source term, reconstructing the release mechanisms, and estimating the extent of the release. 136Cs/137Cs and 134Cs/137Cs ratios identified Units 1-3 as the major source of radioactive contamination to the surface soil close to the facility. A trend was observed between the fraction of the total core inventory released for a number of fission product isotopes and their corresponding Gibbs Free Energy of formation for the primary oxide form of the isotope, suggesting that release was dictated primarily by chemical volatility driven by temperature and reduction potential within the primary containment vessels of the vented reactors. The absence of any major fractionation beyond volatilization suggested all coolant had evaporated by the time of venting. High estimates for the fraction of the total inventory released of more volatile species (Te, Cs, I) indicated the damage to fuel bundles was likely extensive, minimizing any potential containment due to physical migration of these species through the fuel matrix and across the cladding wall. 238Pu/239,240Pu ratios close-in and at 30 km from the facility indicated that the damaged reactors were the major contributor of Pu to surface soil at the source but that this contribution likely decreased rapidly with distance from the facility. The fraction of the total Pu inventory released to the environment from venting units 1 and 3 was estimated to be ~0.003% based upon Pu/Cs isotope ratios relative to the within-reactor modeled inventory prior to venting and was consistent with an independent model evaluation that considered chemical volatility based upon measured fission product release trends. Significant volatile radionuclides within the spent fuel

  3. Electric Power Produced from Nuclear Reactor | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Electric Power Produced from Nuclear Reactor Electric Power Produced from Nuclear Reactor Arco, ID The Experimental Breeder Reactor No. 1 located at the National Reactor Testing ...

  4. Air Monitoring of Emissions from the Fukushima Daiichi Reactor

    SciTech Connect (OSTI)

    McNaughton, Michael; Allen, Shannon P.; Archuleta, Debra C.; Brock, Burgandy; Coronado, Melissa A.; Dewart, Jean M.; Eisele, William F. Jr.; Fuehne, David P.; Gadd, Milan S.; Green, Andrew A.; Lujan, Joan J.; MacDonell, Carolyn; Whicker, Jeffrey J.

    2012-06-12

    In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132, and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.

  5. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant name..."8,291",62.4,"NextEra Energy Point Beach LLC" "2 Plants 3 Reactors","1,584","13,281",100.0

  6. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal sum of components due to independent ...

  7. Nuclear power reactor instrumentation systems handbook. Volume...

    Office of Scientific and Technical Information (OSTI)

    Nuclear power reactor instrumentation systems handbook. Volume 1 Citation Details In-Document Search Title: Nuclear power reactor instrumentation systems handbook. Volume 1 You ...

  8. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  9. Owners of Nuclear Power Plants

    SciTech Connect (OSTI)

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  10. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Davis Besse Unit 1",894,"5,185",32.8,"FirstEnergy Nuclear Operating Company" "Perry Unit 1","1,240","10,620",67.2,"FirstEnergy Nuclear Operating Company" "2

  11. Topics in nuclear power

    SciTech Connect (OSTI)

    Budnitz, Robert J.

    2015-03-30

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of 'significant events' since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its 'lessons learned' have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come.

  12. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Monticello Unit 1",554,"4,695",34.8,"Northern States Power Co - Minnesota" "Prairie Island Unit 1, Unit 2","1,040","8,783",65.2,"Northern States Power Co -

  13. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Cooper Unit 1",767,"6,793",61.4,"Nebraska Public Power District" "Fort Calhoun Unit 1",478,"4,261",38.6,"Omaha Public Power District" "2 Plants 2

  14. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Edwin I Hatch Unit 1, Unit 2","1,759","13,902",41.5,"Georgia Power Co" "Vogtle Unit 1, Unit 2","2,302","19,610",58.5,"Georgia Power Co" "2 Plants 4

  15. (Nuclear power engineering in space)

    SciTech Connect (OSTI)

    Cooper, R.H. Jr.

    1990-06-18

    The principal purpose of this trip was to participate in the Anniversary Specialist Conference on Nuclear Power Engineering in Space hosted by the USSR Ministry of Atomic Power Engineering and Industry. The conference was held in Obninsk, USSR. A secondary purpose of the trip was to meet with the French Commissariat A L'Energie Atomique in Paris regarding the status of their space power program.

  16. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center (OSTI)

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  17. Source Term Estimation of Radioxenon Released from the Fukushima Dai-ichi Nuclear Reactors Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Biegalski, S.; Bowyer, Ted W.; Cooper, Matthew W.; Haas, Derek A.; Hayes, James C.; Hoffman, Ian; Korpach, E.; Yi, Jing; Miley, Harry S.; Rishel, Jeremy P.; Ungar, R. Kurt; White, Brian; Woods, Vincent T.

    2014-01-01

    Systems designed to monitor airborne radionuclides released from underground nuclear explosions detected radioactive fallout from the Fukushima Daiichi nuclear accident in March 2011. Atmospheric transport modeling (ATM) of plumes of noble gases and particulates were performed soon after the accident to determine plausible detection locations of any radioactive releases to the atmosphere. We combine sampling data from multiple International Modeling System (IMS) locations in a new way to estimate the magnitude and time sequence of the releases. Dilution factors from the modeled plume at five different detection locations were combined with 57 atmospheric concentration measurements of 133-Xe taken from March 18 to March 23 to estimate the source term. This approach estimates that 59% of the 1.24×1019 Bq of 133-Xe present in the reactors at the time of the earthquake was released to the atmosphere over a three day period. Source term estimates from combinations of detection sites have lower spread than estimates based on measurements at single detection sites. Sensitivity cases based on data from four or more detection locations bound the source term between 35% and 255% of available xenon inventory.

  18. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License expiration date" 1,685,"5,918",98.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,685,"5,918",98.7

  19. Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery

    SciTech Connect (OSTI)

    Layne Pincock; Wendell Hintze; Dr. Koji Shirai

    2012-07-01

    Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japan’s Central Research Institute of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.

  20. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Donald C Cook Unit 1, Unit 2","2,069","15,646",52.8,"Indiana Michigan Power Co" "Fermi Unit 2","1,085","7,738",26.1,"Detroit Edison Co" "Palisades Unit

  1. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Browns Ferry Unit 1, Unit 2, Unit 3","3,309","24,771",65.3,"Tennessee Valley Authority" "Joseph M Farley Unit 1, Unit 2","1,734","13,170",34.7,"Alabama Power

  2. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Crystal River Unit 3",860,0,"--","Progress Energy Florida Inc" "St Lucie Unit 1, Unit 2","1,678","12,630",52.8,"Florida Power & Light Co" "Turkey Point

  3. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0

  4. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon

  5. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Arkansas Nuclear One Unit 1, Unit 2","1,835","15,023",100.0,"Entergy Arkansas Inc" "1 Plant 2 Reactors","1,835","15,023",100.0

  6. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Diablo Canyon Unit 1, Unit 2","2,240","18,430",57.2,"Pacific Gas & Electric Co" "San Onofre Nuclear Generating Station Unit 2, Unit

  7. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Millstone Unit 2, Unit 3","2,103","16,750",100.0,"Dominion Nuclear Conn Inc" "1 Plant 2 Reactors","2,103","16,750",100.0

  8. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon

  9. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Sequoyah Unit 1, Unit 2","2,278","18,001",64.9,"Tennessee Valley Authority" "Watts Bar Nuclear Plant Unit 1","1,123","9,738",35.1,"Tennessee Valley

  10. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Comanche Peak Unit 1, Unit 2","2,406","20,208",48.9,"Luminant Generation Company LLC" "South Texas Project Unit 1, Unit 2","2,560","21,127",51.1,"STP Nuclear

  11. Nuclear Power Facilities (2008) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) (408.42 KB) More Documents & Publications Front-end Nuclear Facilities (2008) Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Transmission Infrastructure Investment Projects (2009)

  12. New Hampshire Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net ...

  13. Nuclear power high technology colloquium: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-12-10

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  14. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  15. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  16. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  17. Helping nuclear power help us

    SciTech Connect (OSTI)

    Schecker, Jay A

    2009-01-01

    After a prolonged absence, the word 'nuclear' has returned to the lexicon of sustainable domestic energy resources. Due in no small part to its demonstrated reliability, nuclear power is poised to playa greater role in the nation's energy future, producing clean, carbon-neutral electricity and contributing even more to our energy security. To nuclear scientists, the resurgence presents an opportunity to inject new technologies into the industry to maximize the benefits that nuclear energy can provide. 'By developing new options for waste management and exploiting new materials to make key technological advances, we can significantly impact the use of nuclear energy in our future energy mix,' says Chris Stanek, a materials scientist at Los Alamos National Laboratory. Stanek approaches the big technology challenges by thinking way small, all the way down to the atoms. He and his colleagues are using cutting edge atomic-scale simulations to address a difficult aspect of nuclear waste -- predicting its behavior far into the future. Their research is part of a broader, coordinated effort on the part of the Laboratory to use its considerable experimental, theoretical, and computational capabilities to explore advanced materials central to not only waste issues, but to nuclear fuels as well.

  18. Global warming and nuclear power

    SciTech Connect (OSTI)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  19. Microsoft PowerPoint - Fukushima_perspectives from FRMAC_Daniel...

    National Nuclear Security Administration (NNSA)

    Response to Radiological Releases from the Fukushima Dai-ichi Nuclear Power Plant Daniel Blumenthal, PhD, CHP Manager, Consequence Management Program U.S. Department of Energy ...

  20. Iowa Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit 1",601,"4,451",100.0,"NextEra Energy Duane Arnold LLC" "1 Plant 1 Reactor",601,"4,451",100.0

  1. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant Name/Total Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (Pprcent)","Owner" "River Bend Unit 1",974,"8,363",44.9,"Entergy Gulf States - LA LLC" "Waterford 3 Unit 3","1,168","10,276",55.1,"Entergy Louisiana Inc" "2 Plants 2

  2. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"System Energy Resources, Inc" "1 Plant 1 Reactor","1,251","9,643",100.0

  3. Missouri Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Callaway Unit 1","1,190","8,996",100.0,"Union Electric Co" "1 Plant 1 Reactor","1,190","8,996",100.0 "Note: Totals may not equal sum of components due to

  4. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 Reactors","3,937","31,200",100.0 "Note: Totals may not equal sum of

  5. Nuclear Power: High Hopes, Unfulfilled Promise (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Power: High Hopes, Unfulfilled Promise Citation Details In-Document Search Title: Nuclear Power: High Hopes, Unfulfilled Promise You are accessing a document from the Department ...

  6. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Not Available

    1982-11-01

    The list indicates percentage ownership of commercial nuclear power plants by utility companies as of September 1, 1982. The list includes all plants licensed to operate, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review. Part I lists plants alphabetically with their associated applicants and percentage ownership. Part II lists applicants alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses.

  7. Sabotage at Nuclear Power Plants

    SciTech Connect (OSTI)

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  8. Decontamination of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant - 13277

    SciTech Connect (OSTI)

    Parajuli, Durga; Minami, Kimitaka; Tanaka, Hisashi; Kawamoto, Tohru

    2013-07-01

    Peculiar binding of Cesium to the soil clay minerals remained the major obstacle for the immediate Cs-decontamination of soil and materials containing clay minerals like sludge. Experiments for the removal of Cesium from soil and ash samples from different materials were performed in the lab scale. For soil and sludge ash formed by the incineration of municipal sewage sludge, acid treatment at high temperature is effective while washing with water removed Cesium from ashes of plants or burnable garbage. Though total removal seems a difficult task, water-washing of wood-ash or garbage-ash at 40 deg. C removes >90% radiocesium, while >60% activity can be removed from soil and sludge-ash by acid washing at 95 deg. C. (authors)

  9. Role of nuclear power in the Philippine power development program

    SciTech Connect (OSTI)

    Aleta, C.R.

    1994-12-31

    The reintroduction of nuclear power in the Philippines is favored by several factors such as: the inclusion of nuclear energy in the energy sector of the science and technology agenda for national development (STAND); the Large gap between electricity demand and available local supply for the medium-term power development plan; the relatively lower health risks in nuclear power fuel cycle systems compared to the already acceptable power systems; the lower environmental impacts of nuclear power systems compared to fossil fuelled systems and the availability of a regulatory framework and trained personnel who could form a core for implementing a nuclear power program. The electricity supply gap of 9600 MW for the period 1993-2005 could be partly supplied by nuclear power. The findings of a recent study are described, as well as the issues that have to be addressed in the reintroduction of nuclear power.

  10. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    SciTech Connect (OSTI)

    Sugiyama, Gayle; Nasstrom, John; Pobanz, Brenda; Foster, Kevin; Simpson, Matthew; Vogt, Phil; Aluzzi, Fernando; Homann, Steve

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  11. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Wood, R.S.

    1991-07-01

    This report indicates percentage ownership of commercial nuclear power plants by utility companies. The report includes all plants operating, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review, but does not include those plants announced but not yet under review or those plants formally cancelled. Part 1 of the report lists plants alphabetically with their associated applicants or licensees and percentage ownership. Part 2 lists applicants or licensees alphabetically with their associated plants and percentage ownership. Part 1 also indicates which plants have received operating licenses (OLS).

  12. Powering the Nuclear Navy | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Programs Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and

  13. Anhui Wuhu Nuclear Power Co | Open Energy Information

    Open Energy Info (EERE)

    Wuhu Nuclear Power Co Jump to: navigation, search Name: Anhui Wuhu Nuclear Power Co. Place: Shenzhen, Guangdong Province, China Zip: 518031 Product: JV between Guangdong Nuclear...

  14. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  15. Nuclear power in the Soviet Union

    SciTech Connect (OSTI)

    Ponomarev-Stepnoi, N.N.

    1989-01-01

    The pros and cons of nuclear power are similar in many countries, but the following pro factors are specific to the Soviet Union: the major sources of conventional fuel are in one area of the country, but energy consumption is concentrated in another; and a large portion of energy is generated using oil and gas. The arguments against nuclear power are as follows: safety requirements and expectations have been increased; and public opinion is negative. A program of nuclear power generation has been developed. New techniques are being implemented to increase safety and enhance operations of different types of nuclear power plants. Its should be obvious in the future that a nuclear power plant has better economic and environmental parameters than existing methods of power generation.

  16. KiloPower Project - KRUSTY Experiment Nuclear Design (Technical...

    Office of Scientific and Technical Information (OSTI)

    KiloPower Project - KRUSTY Experiment Nuclear Design Citation Details In-Document Search Title: KiloPower Project - KRUSTY Experiment Nuclear Design This PowerPoint presentation ...

  17. Powering the Nuclear Navy | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. NNSA's Naval Reactors Program provides the design, development and operational support required to provide militarily effective nuclear propulsion plants and ensure their safe, reliable and long-lived operation. Learn More USS George H.W. Bush conducts flight operations USS George H.W. Bush conducts flight

  18. History of nuclear technology development in Japan

    SciTech Connect (OSTI)

    Yamashita, Kiyonobu

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  19. U.S. Forward Operating Base Applications of Nuclear Power

    SciTech Connect (OSTI)

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  20. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0

  1. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0

  2. Public opinion factors regarding nuclear power

    SciTech Connect (OSTI)

    Benson, B.

    1991-01-01

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible.

  3. Public opinion factors regarding nuclear power

    SciTech Connect (OSTI)

    Benson, B.

    1991-12-31

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry`s practices are aligned with public opinion, a more favorable regulatory climate is possible.

  4. Workshop on nuclear power growth and nonproliferation

    SciTech Connect (OSTI)

    Pilat, Joseph F

    2010-01-01

    It is widely viewed that an expansion of nuclear power would have positive energy, economic and environmental benefits for the world. However, there are concerns about the economic competitiveness, safety and proliferation and terrorism risks of nuclear power. The prospects for a dramatic growth in nuclear power will depend on the ability of governments and industry to address these concerns, including the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen nonproliferation, nuclear materials accountability and nuclear security. In his Prague speech, President Obama stated: 'we should build a new framework for civil nuclear cooperation, including an international fuel bank, so that countries can access peaceful power without increasing the risks of proliferation. That must be the right of every nation that renounces nuclear weapons, especially developing countries embarking on peaceful programs. And no approach will succeed if it's based on the denial of rights to nations that play by the rules. We must harness the power of nuclear energy on behalf of our efforts to combat climate change, and to advance peace opportunity for all people.' How can the President's vision, which will rekindle a vigorous public debate over the future of nuclear power and its relation to proliferation, be realized? What critical issues will frame the reemerging debate? What policies must be put into place to address these issues? Will US policy be marked more by continuity or change? To address these and other questions, the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars will host a workshop on the future of nuclear power and nonproliferation.

  5. Experiments ✚ Simulations = Better Nuclear Power Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments + Simulations = Better Nuclear Power Research Experiments ✚ Simulations = Better Nuclear Power Research Atomic Level Simulations Enhance Characterization of Radiation Damage July 31, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Radiation Damage PNNL In a study featured on the cover of a Journal of Materials Research focus issue, an international research collaboration used molecular dynamics simulations run at NERSC to identify atomic-level details of early-stage

  6. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8, ...

  7. Understanding seismic design criteria for Japanese nuclear power...

    Office of Scientific and Technical Information (OSTI)

    Understanding seismic design criteria for Japanese nuclear power plants Citation Details In-Document Search Title: Understanding seismic design criteria for Japanese nuclear power ...

  8. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Environmental Management (EM)

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8,...

  9. China Guangdong Nuclear Power Holding Co Ltd CGNPC | Open Energy...

    Open Energy Info (EERE)

    Nuclear Power Holding Co Ltd CGNPC Jump to: navigation, search Name: China Guangdong Nuclear Power Holding Co Ltd (CGNPC) Place: Shenzhen, Guangdong Province, China Zip: 518031...

  10. DOE Announces Loan Guarantee Applications for Nuclear Power Plant...

    Office of Environmental Management (EM)

    Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis ...

  11. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 ...

  12. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    of State nuclear net generation (percent)","Owner" "Columbia Generating Station Unit 2","1,097","9,241",100.0,"Energy Northwest" "1 Plant 1 Reactor","1,097","9,241",100.0

  13. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"System Energy Resources, Inc" "1 Plant 1 Reactor","1,251","9,643",100.0

  14. Iowa Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit 1",601,"4,451",100.0,"NextEra Energy Duane Arnold LLC" "1 Plant 1 Reactor",601,"4,451",100.0

  15. Insight from Fukushima Daiichi Unit 3 Investigations using MELCOR

    SciTech Connect (OSTI)

    Robb, Kevin R.; Francis, Matthew W.; Ott, Larry J.

    2014-01-01

    During the emergency response period of the accidents that took place at Fukushima Daiichi in March of 2011, researchers at Oak Ridge National Laboratory (ORNL) conducted a number of studies using the MELCOR code to help understand what was occurring and what had occurred. During the post-accident period, the Department of Energy (DOE) and the US Nuclear Regulatory Commission (NRC) jointly sponsored a study of the Fukushima Daiichi accident with collaboration among Oak Ridge, Sandia, and Idaho national laboratories. The purpose of the study was to compile relevant data, reconstruct the accident progression using computer codes, assess the codes predictive capabilities, and identify future data needs. The current paper summarizes some of the early MELCOR simulations and analyses conducted at ORNL of the Fukushima Daiichi Unit 3 accident. Extended analysis and discussion of the Unit 3 accident is also presented taking into account new knowledge and modeling refinements made since the joint DOE/NRC study.

  16. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect (OSTI)

    Kuzminski, Jozef; Ewing, Tom; Dickman, Debbie; Gavrilyuk, Victor; Drapey, Sergey; Kirischuk, Vladimir; Strilchuk, Nikolay

    2009-01-01

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  17. The American nuclear power industry. A handbook

    SciTech Connect (OSTI)

    Pearman, W.A.; Starr, P.

    1984-01-01

    This book presents an overview of the history and current organization of the American nuclear power industry. Part I focuses on development of the industry, including the number, capacity, and type of plants in commercial operation as well as those under construction. Part II examines the safety, environmental, antitrust, and licensing issues involved in the use of nuclear power. Part III presents case studies of selected plants, such as Three Mile Island and Seabrook, to illustrate some of the issues discussed. The book also contains a listing of the Nuclear Regulatory Commission libraries and a subject index.

  18. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Oyster Creek Unit 1",615,"4,601",14.0,"Exelon Nuclear" "PSEG Hope Creek Generating Station Unit 1","1,161","9,439",28.8,"PSEG Nuclear LLC" "PSEG Salem Generating

  19. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect (OSTI)

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  20. Blue Ribbon Commission, Yucca Mountain Closure, Court Actions - Future of Decommissioned Reactors, Operating Reactors and Nuclear Power - 13249

    SciTech Connect (OSTI)

    Devgun, Jas S.

    2013-07-01

    Issues related to back-end of the nuclear fuel cycle continue to be difficult for the commercial nuclear power industry and for the decision makers at the national and international level. In the US, the 1982 NWPA required DOE to develop geological repositories for SNF and HLW but in spite of extensive site characterization efforts and over ten billion dollars spent, a repository opening is nowhere in sight. There has been constant litigation against the DOE by the nuclear utilities for breach of the 'standard contract' they signed with the DOE under the NWPA. The SNF inventory continues to rise both in the US and globally and the nuclear industry has turned to dry storage facilities at reactor locations. In US, the Blue Ribbon Commission on America's Nuclear Future issued its report in January 2012 and among other items, it recommends a new, consent-based approach to siting of facilities, prompt efforts to develop one or more geologic disposal facilities, and prompt efforts to develop one or more consolidated storage facilities. In addition, the March 2011 Fukushima Daiichi accident had a severe impact on the future growth of nuclear power. The nuclear industry is focusing on mitigation strategies for beyond design basis events and in the US, the industry is in the process of implementing the recommendations from NRC's Near Term Task Force. (authors)

  1. The Fukushima Nuclear Event and its Implications for Nuclear Power

    SciTech Connect (OSTI)

    Golay, Michael

    2011-07-06

    The combined strong earthquake and super tsunami of 12 March 2011 at the Fukushima nuclear power plant imposed the most severe challenges ever experienced at such a facility. Information regarding the plant response and status remains uncertain, but it is clear that severe damage has been sustained, that the plant staff have responded creatively and that the offsite implications are unlikely to be seriously threatening to the health, if not the prosperity, of the surrounding population. Re-examination of the regulatory constraints of nuclear power will occur worldwide, and some changes are likely, particularly concerning reliance upon active systems for achieving critical safety functions and concerning treatments of used reactor fuel. Whether worldwide expansion of the nuclear power economy will be slowed in the long run is perhaps unlikely and worth discussion.

  2. Nuclear power and public acceptance

    SciTech Connect (OSTI)

    Hirschmann, H.

    1989-01-01

    Public acceptance is a decisive factor of growing importance, although economics has been and will remain the most decisive factor in ordering new nuclear capacity. Nuclear energy can make an important contribution toward preventing and reducing the greenhouse effect. Many politicians tend to base their decisions not on facts but rather on so called public opinion and consequently to overreact in particular on environmental issues. The entire debate hinges on public confidence rather than on a lack of information. There is no 100% guarantee that technical facilities will operate completely accident-free. Therefore, standards should be harmonized, plants should be operated safely and consequences of possible accidents should be limited. There needs to be some kind of early information system between countries concerning upcoming issues as a prerequisite for acting instead of reacting, because this is an essential tool in convincing the public that they can have more confidence. Technical information alone does not answer the real questions of the public. Political, technical, and economic matters as well as public opinion are interwoven and cannot be separated from each. Therefore, the exchange of experience gained in all these sectors on an international basis must be improved.

  3. Russian nuclear-powered submarine decommissioning

    SciTech Connect (OSTI)

    Bukharin, O.; Handler, J.

    1995-11-01

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems.

  4. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine

  5. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY APRIL 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Updates available at: www.energy.gov/ne NEXT UPDATE - July 2014 Page 1 News Updates  On February 20, Secretary Moniz announced the issuance of loan guarantees totalling approximately $6.5 billion to Georgia Power Company and Oglethorpe Power Company for the construction of two new nuclear reactors at the Alvin W. Vogtle Electric Generating Plant. The Department continues to work on the remaining conditional commitment for a $1.8 billion loan guarantee to Municipal Electric Authority of

  6. Atmospheric Dispersion Modeling: Challenges of the Fukushima Daiichi Response

    SciTech Connect (OSTI)

    Sugiyama, Gayle; Nasstrom, John; Pobanz, Brenda; Foster, Kevin; Simpson, Matthew; Vogt, Phil; Aluzzi, Fernando; Homann, Steve

    2012-05-01

    The U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident. This work encompassed: weather forecasts and atmospheric transport predictions, estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases, predictions of possible plume arrival times and dose levels at U.S. locations, and source estimation and plume model refinement. An overview of NARAC response activities is provided, along with a more in-depth discussion of some of NARAC’s preliminary source reconstruction analyses. NARAC optimized the overall agreement of model predictions to dose rate measurements using statistical comparisons of data and model values paired in space and time. Estimated emission rates varied depending on the choice of release assumptions (e.g., time-varying vs. constant release rates), the radionuclide mix, meteorology, and/or the radiological data used in the analysis. Results were found to be consistent with other studies within expected uncertainties, despite the application of different source estimation methodologies and the use of significantly different radiological measurement data. A discussion of some of the operational and scientific challenges encountered during the response, along with recommendations for future work, is provided.

  7. Report to the Secretary of Energy on Beyond Design Basis Event Pilot Evaluations, Results and Recommendations for Improvements to Enhance Nuclear Safety at DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    In the six months after the March 2011 Fukushima Daiichi nuclear power plant accident in Japan, the U.S. Department of Energy (DOE) took several actions to review the safety of its nuclear facilities and identify situations where near-term improvements could be made.

  8. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    DOE Patents [OSTI]

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  9. Nuclear power-accomplishments and prospects

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    Nuclear energy is probably unique in being an international endeavor. The US was correct in 1973 in embracing nuclear energy, and is correct even today in continuing to champion and push this technology. Several major events justify this view. They include: the world's growing dependence on oil and America's increasing dependence on the unstable Middle East; steady high growth in electricity demand; culminated in this summer's record peak demands across the country, and while it was a hot summer, most of that increased demand was industrial activity-economic activity-not due to heat and renewed emphasis on the environment. The job of nuclear utilities and manufacturers is to work with continuity towards greater reliability, safety, and economy of our plants as they exist today. Nuclear power offers clear objective advantages if one is able to look beyond the illusions of the immediate situation. Taipower believes that nuclear power should be the major energy resource for Taiwan in the future. The first problem facing Taipower is the long lead time required for project approval. The second problem Taipower faces is the difficulty in obtaining a public consensus. Three main rational and irrational reasons are decisive for this future development of nuclear energy in Germany: energy structure, economics, and public acceptance. The use of nuclear energy is ethically not irresponsible, but it is ethically irresponsible not to use nuclear energy. A lot of modifications on the European plants have taken place to try to minimize the chance of having an accident and, in case it should happen, to limit the consequences. Another problem is waste deposits. As long as there is no answer to this question, the public will continue to debate on this issue.

  10. SP-100, the US Space Nuclear Reactor Power Program. Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: SP-100, the US Space Nuclear Reactor Power Program. Technical information report Citation Details In-Document Search Title: SP-100, the US Space Nuclear Reactor ...

  11. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...

    Office of Environmental Management (EM)

    "For decades, we have worked in close partnership with Japan on nuclear issues, ranging from preventing the proliferation of nuclear weapons and confronting North Korea, to power ...

  12. Transactions of the fifth symposium on space nuclear power systems

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hoover, M.D.

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  13. Transactions of the fourth symposium on space nuclear power systems

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hoover, M.D.

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  14. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Brunswick Unit 1, Unit 2","1,858","14,808",36.3,"Progress Energy Carolinas Inc" "Harris Unit 1",900,"7,081",17.4,"Progress Energy Carolinas Inc" "McGuire

  15. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc"

  16. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Updates available at: www.energy.gov/ne NEXT UPDATE - October 2015 Page 1 News Updates  DTE Energy has received a license to build and operate an ESBWR light water reactor at its Fermi site in Newport, Michigan; the company has not committed to building a new plant, but is retaining the option for long-term planning purposes.  The Nuclear Regulatory Commission has voted to grant the Director of Nuclear Reactor Regulation authority to issue a full power operating license to Tennessee

  17. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  18. Autonomous Control of Nuclear Power Plants

    SciTech Connect (OSTI)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  19. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,855,"6,755",90.2,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  20. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date" 1,581,"4,948",97.2,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" ,581,"4,948",97.2

  1. Carbon pricing, nuclear power and electricity markets

    SciTech Connect (OSTI)

    Cameron, R.; Keppler, J. H.

    2012-07-01

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised

  2. Management of National Nuclear Power Programs for assured safety

    SciTech Connect (OSTI)

    Connolly, T.J.

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  3. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect (OSTI)

    Robert J. Goldston

    2011-04-28

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  4. Analysis of nuclear power plant component failures

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  5. Energy Department Nuclear Systems Are Powering Mars Rover | Department...

    Energy Savers [EERE]

    Nuclear power is uniquely suited to provide these missions with safe and reliable ... energy systems developed by DOE to power missions such as the Apollo and Viking missions; ...

  6. China Guangdong Nuclear Power Company | Open Energy Information

    Open Energy Info (EERE)

    Power Company Jump to: navigation, search Name: China Guangdong Nuclear Power Company Place: Guangzhou, China Coordinates: 23.129075, 113.264423 Show Map Loading map......

  7. Sandia Nuclear Power Safety Expert Elected to National Academy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... power plant accidents during his more than 40-year career, was elected a member of the National Academy of Engineering (NAE) "for contributions to commercial nuclear power plant ...

  8. Nuclear Power Corp L T JV | Open Energy Information

    Open Energy Info (EERE)

    Corp L T JV Jump to: navigation, search Name: Nuclear Power Corp-L&T JV Place: Mumbai, Maharashtra, India Zip: 400094 Product: JV between Nuclear Power Corp. and L&T. Coordinates:...

  9. Howard Baker Center for Public Policy Nuclear Power Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Howard Baker Center for Public Policy Nuclear Power Conference Howard Baker Center for Public Policy Nuclear Power Conference October 4, 2007 - 3:14pm Addthis Remarks as Prepared...

  10. Nuclear Power and the Environment - Energy Explained, Your Guide...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Exports How Much Coal Is Left Use of Coal Prices ... Unlike fossil fuel-fired power plants, nuclear reactors do ... the nuclear power plant, then the emissions from ...

  11. Nuclear energy is an important source of power, supplying 20

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy is an important source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear

  12. Linking Humans and Systems in Nuclear Power

    SciTech Connect (OSTI)

    Jacques Hugo

    2013-02-01

    Traditional engineering methods do not make provision for the integration of human considerations, while traditional human factors methods do not scale well to the complexity of large-scale nuclear power plant projects. Although the need for up-to-date human factors engineering processes and tools is recognised widely in industry, so far no formal guidance has been developed. This article proposes such a framework.

  13. Nuclear power generation and fuel cycle report 1997

    SciTech Connect (OSTI)

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  14. Tritiated Water Challenge in Fukushima Daiichi

    Office of Environmental Management (EM)

    Tritiated water Challenge in Fukushima Daiichi Steve Xiao, Ph.D. Hydrogen Processing ... decommissioned for training * Currently water is circulating to cool fuels * Radioactive ...

  15. Tritiated Water Challenge in Fukushima Daiichi | Department of...

    Office of Environmental Management (EM)

    Tritiated Water Challenge in Fukushima Daiichi Tritiated Water Challenge in Fukushima Daiichi Presentation from the 33rd Tritium Focus Group Meeting held in Aiken, South Carolina ...

  16. Seismic requirements for design of nuclear power plants and nuclear test facilities

    SciTech Connect (OSTI)

    Not Available

    1985-02-01

    This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

  17. Secretary Chu Visits Vogtle Nuclear Power Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in

  18. Expanding Options for Nuclear Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expanding Options for Nuclear Power Expanding Options for Nuclear Power April 15, 2013 - 10:12am Addthis The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. |

  19. Lesson 7 - Waste from Nuclear Power Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing

  20. Department of Energy Releases Conditional Agreement for New Nuclear Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants | Department of Energy Conditional Agreement for New Nuclear Power Plants Department of Energy Releases Conditional Agreement for New Nuclear Power Plants September 25, 2007 - 2:49pm Addthis Marks initial step for sponsors of new nuclear plants to qualify for up to $2 billion in federal risk insurance WASHINGTON, DC - The U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today released a Conditional Agreement for companies building new nuclear power plants in the United

  1. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  2. International Working Group Meeting Focuses on Nuclear Power Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Financing of New Nuclear Projects | Department of Energy Financing of New Nuclear Projects International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects December 15, 2009 - 1:09pm Addthis VIENNA, AUSTRIA - The multi-nation Infrastructure Development Working Group (IDWG) held its fifth meeting and also a workshop on the financing of international nuclear power projects in Vienna, Austria, on December 9-10, 2009.

  3. DOE Announces Loan Guarantee Applications for Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction | Department of Energy Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The

  4. Fukushima Daiichi Unit 3 MELCOR Investigation

    SciTech Connect (OSTI)

    Robb, Kevin R; Francis, Matthew W; Ott, Larry J

    2012-01-01

    The Department of Energy sponsored a Fukushima Daiichi accident study as a collaboration between Sandia, Oak Ridge (ORNL), and Idaho National Laboratories. The purpose of the effort was to compile relevant data, reconstruct the accident progression using computer codes, assess the codes predictive capabilities, and to identify future data needs. The following summarizes MELCOR simulations performed at ORNL on Fukushima Daiichi Unit 3.

  5. Nuclear power and the public: an update of collected survey research on nuclear power

    SciTech Connect (OSTI)

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

  6. Microsoft PowerPoint - Fukushima_perspectives from FRMAC_Daniel Blumenthal

    National Nuclear Security Administration (NNSA)

    Response to Radiological Releases from the Fukushima Dai-ichi Nuclear Power Plant Daniel Blumenthal, PhD, CHP Manager, Consequence Management Program U.S. Department of Energy National Nuclear Security Administration 2 2 Office of Emergency Response  Expert technical advice from the DOE/NNSA National Laboratories in response to:  Nuclear weapon accidents and incidents  Possible acts of nuclear terrorism  Lost or stolen radioactive materials  Radiological accidents  Expertise in

  7. Novel Nuclear Powered Photocatalytic Energy Conversion

    SciTech Connect (OSTI)

    White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

    2005-08-29

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and

  8. At Vogtle, Big Results with Nuclear Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    At Vogtle, Big Results with Nuclear Power At Vogtle, Big Results with Nuclear Power February 20, 2014 - 1:29pm Addthis Construction work inside the Vogtle 3 and 4 module assembly building. | Photo courtesy of Georgia Power Company. Construction work inside the Vogtle 3 and 4 module assembly building. | Photo courtesy of Georgia Power Company. A look inside the Vogtle Unite 3 containment vessel bottom head. | Photo courtesy of Georgia Power Company. A look inside the Vogtle Unite 3 containment

  9. Fukushima Daiichi Unit 1 Accident Progression Uncertainty Analysis and Implications for Decommissioning of Fukushima Reactors - Volume I.

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Mattie, Patrick D.

    2016-01-01

    Sandia National Laboratories (SNL) has conducted an uncertainty analysis (UA) on the Fukushima Daiichi unit (1F1) accident progression with the MELCOR code. The model used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). That study focused on reconstructing the accident progressions, as postulated by the limited plant data. This work was focused evaluation of uncertainty in core damage progression behavior and its effect on key figures-of-merit (e.g., hydrogen production, reactor damage state, fraction of intact fuel, vessel lower head failure). The primary intent of this study was to characterize the range of predicted damage states in the 1F1 reactor considering state of knowledge uncertainties associated with MELCOR modeling of core damage progression and to generate information that may be useful in informing the decommissioning activities that will be employed to defuel the damaged reactors at the Fukushima Daiichi Nuclear Power Plant. Additionally, core damage progression variability inherent in MELCOR modeling numerics is investigated.

  10. UNDERSTANDING SEISMIC DESIGN CRITERIA FOR JAPANESE NUCLEAR POWER...

    Office of Scientific and Technical Information (OSTI)

    FOR JAPANESE NUCLEAR POWER PLANTS Y.J. Park and C.H. Hofmayer Brookhaven National Laboratory Upton, Long Island, New York 11973 J.F. Costello U.S. Nuclear Regulatory ...

  11. President Obama Announces Loan Guarantees to Construct New Nuclear Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactors in Georgia | Department of Energy Loan Guarantees to Construct New Nuclear Power Reactors in Georgia President Obama Announces Loan Guarantees to Construct New Nuclear Power Reactors in Georgia February 16, 2010 - 12:00am Addthis Washington D.C. --- Underscoring his Administration's commitment to jumpstarting the nation's nuclear power industry, President Obama today announced that the Department of Energy has offered conditional commitments for a total of $8.33 billion in loan

  12. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Workers | Department of Energy Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC)

  13. NREL: Energy Analysis - Nuclear Power Results - Life Cycle Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harmonization Nuclear Power Results - Life Cycle Assessment Harmonization Over the last 30 years, analysts have conducted life cycle assessments on the environmental impacts associated with a variety of nuclear power technologies and systems. These life cycle assessments have had wide-ranging results. To better understand greenhouse gas (GHG) emissions from nuclear power systems, NREL completed a comprehensive review and analysis of life cycle assessments focused on light water reactors

  14. Nuclear Systems Powering a Mission to Mars | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Powering a Mission to Mars Nuclear Systems Powering a Mission to Mars November 28, 2011 - 11:23am Addthis Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy Curiosity Mission: investigate whether the Gale Crater on Mars has ever offered environmental conditions that support the

  15. Fatigue monitoring in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ware, A.G.; Shah, V.N.

    1995-04-01

    This paper summarizes fatigue monitoring methods and surveys their application in the nuclear power industry. The paper is based on a review of the technical literature. Two main reasons for fatigue monitoring are more frequent occurrence of some transients than that assumed in the fatigue design analysis and the discovery of stressors that were not included in the fatigue design analysis but may cause significant fatigue damage at some locations. One fatigue monitoring method involves use of plant operating data and procedures to update the fatigue usage. Another method involves monitoring of plant operating parameters using existing, or if needed, supplementary plant instrumentation for online computation of fatigue usage. Use of fatigue monitoring has better defined the operational transients. Most operational transients have been found less severe and fewer in numbers than anticipated in the design fatigue analysis. Use of fatigue monitoring has assisted in quantifying newly discovered stressors and has helped in detecting the presence of thermal stratification of unsuspected locations.

  16. SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT

    SciTech Connect (OSTI)

    Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

    2005-07-01

    Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

  17. Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks Citation Details In-Document Search Title: Pyroelectric Energy ...

  18. Design Concept and Application of Small Nuclear Power Reactor

    SciTech Connect (OSTI)

    Minato, Akio; Sekimoto, Hiroshi

    2009-03-31

    The outline of the recent design concepts and those features of the small nuclear power rector are described, including specifications, present design status, application and so on.

  19. Guangdong Nuclear Power and New Energy Industrial Investment...

    Open Energy Info (EERE)

    Investment Fund Management Company Jump to: navigation, search Name: Guangdong Nuclear Power and New Energy Industrial Investment Fund Management Company Place: Shenzhen,...

  20. State Nuclear Power Technology Corporation SNPTC | Open Energy...

    Open Energy Info (EERE)

    Technology Corporation SNPTC Jump to: navigation, search Name: State Nuclear Power Technology Corporation (SNPTC) Place: Beijing, Beijing Municipality, China Zip: 100032 Product:...

  1. The Use of Thorium within the Nuclear Power Industry - 13472...

    Office of Scientific and Technical Information (OSTI)

    for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized ...

  2. Economic Conditions and Factors Affecting New Nuclear Power Deployment...

    Office of Scientific and Technical Information (OSTI)

    ... With a multiple-year lead time, nuclear power plants are acutely vulnerable to market corrections. less Authors: Harrison, Thomas J. 1 + Show Author Affiliations Oak Ridge ...

  3. DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg

    SciTech Connect (OSTI)

    Koshcheev, L. A.; Shul'ginov, N. G.

    2011-05-15

    DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

  4. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect (OSTI)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L.; Lukic, Zarija; Masuda, Koji; Perry, John O.

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  5. Sandia Nuclear Power Safety Expert Elected to National Academy of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Nuclear Power Safety Expert Elected to National Academy of Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  6. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect (OSTI)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  7. Korea Hydro and Nuclear Power Company, Ltd Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Korea Hydro and Nuclear Power Co., Ltd. (KHNP), a large electric company based in the Republic of Korea, operates 20 nuclear power plants and has 8 more planned or under construction. The Korean government has given KHNP responsibility for permanent disposal of nuclear waste. The company has turned to Sandia' s Defense Waste Management Programs in Carlsbad, NM to lead an educational project for its staff on repository sciences based on Sandia's well- known expertise in the field. Sandia has

  8. Important technology considerations for space nuclear power systems

    SciTech Connect (OSTI)

    Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

  9. Recovery and Resilience After a Nuclear Power Plant Disaster: A Medical Decision model for Managing an Effective, Timely, and Balanced Response

    SciTech Connect (OSTI)

    Coleman, C. Norman; Blumenthal, Daniel J.

    2013-05-01

    Based on experiences in Tokyo responding to the Fukushima Daiichi nuclear power plant crisis, a real-time, medical decision model is presented by which to make key health-related decisions given the central role of health and medical issues in such disasters. Focus is on response and recovery activities that are safe, timely, effective, and well-organized. This approach empowers on-site decision makers to make interim decisions without undue delay using readily available and high-level scientific, medical, communication, and policy expertise. Key features of this approach include ongoing assessment, consultation, information, and adaption to the changing conditions. This medical decision model presented is compatible with the existing US National Response Framework structure.

  10. Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Touts Robust Economy | Department of Energy Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy August 4, 2006 - 8:42am Addthis ATLANTA, GA - After touring Georgia Power and speaking to its employees, U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced completion of the final rule that establishes the process for utility companies building

  11. Klotz visits Bettis Atomic Power Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Klotz visits Bettis Atomic Power Laboratory Wednesday, July 8, 2015 - 1:03pm Lt. Gen. Frank G. Klotz, DOE Undersecretary for Nuclear Security and NNSA Administrator, visited the Bettis Atomic Power Laboratory in West Mifflin, PA on July 2, 2015. NNSA Blog Gen. Klotz toured through several test facilities where Bettis personnel reviewed ongoing development efforts to qualify techniques for in-situ repairs of nuclear powered submarine components, discussed full scale

  12. The future of nuclear power and nuclear safety in the former Soviet Union

    SciTech Connect (OSTI)

    Potter, W.C.

    1993-03-01

    Although the international community is rightly concerned about the dangers of nuclear weapons proliferation in the former Soviet Union, the greatest nuclear threat emanating from that region has nothing to do with weapons. It stems, rather, from the deteriorating state of nuclear safety at the civilian nuclear power plants in Kazakhstan, Lithuanian, Russia, and Ukraine. This situation, caused by a combination of economic, political, and social factors, threatens to undermine the future of nuclear power in the former Soviet Union at the very time when the proponents of nuclear energy appear to be staging a remarkable comeback.

  13. Economic Conditions and Factors Affecting New Nuclear Power Deployment

    SciTech Connect (OSTI)

    Harrison, Thomas J.

    2014-10-01

    This report documents work performed in support of the US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (AdvSMR) program. The report presents information and results from economic analyses to describe current electricity market conditions and those key factors that may impact the deployment of AdvSMRs or any other new nuclear power plants. Thus, this report serves as a reference document for DOE as it moves forward with its plans to develop advanced reactors, including AdvSMRs. For the purpose of this analysis, information on electricity markets and nuclear power plant operating costs will be combined to examine the current state of the nuclear industry and the process required to successfully move forward with new nuclear power in general and AdvSMRs in particular. The current electricity market is generally unfavorable to new nuclear construction, especially in deregulated markets with heavy competition from natural gas and subsidized renewables. The successful and profitable operation of a nuclear power plant (or any power plant) requires the rate at which the electricity is sold to be sufficiently greater than the cost to operate. The wholesale rates in most US markets have settled into values that provide profits for most operating nuclear power plants but are too low to support the added cost of capital recovery for new nuclear construction. There is a strong geographic dependence on the wholesale rate, with some markets currently able to support new nuclear construction. However, there is also a strong geographic dependence on pronuclear public opinion; the areas where power prices are high tend to have unfavorable views on the construction of new nuclear power plants. The use of government-backed incentives, such as subsidies, can help provide a margin to help justify construction projects that otherwise may not seem viable. Similarly, low interest rates for the project will also add a positive margin to the economic

  14. Owners of nuclear power plants: Percentage ownership of commercial nuclear power plants by utility companies

    SciTech Connect (OSTI)

    Wood, R.S.

    1987-08-01

    The following list indicates percentage ownership of commercial nuclear power plants by utility companies as of June 1, 1987. The list includes all plants licensed to operate, under construction, docked for NRC safety and environmental reviews, or under NRC antitrust review. It does not include those plants announced but not yet under review or those plants formally canceled. In many cases, ownership may be in the process of changing as a result of altered financial conditions, changed power needs, and other reasons. However, this list reflects only those ownership percentages of which the NRC has been formally notified. Part I lists plants alphabetically with their associated applicants/licensees and percentage ownership. Part II lists applicants/licensees alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses (OL's). Footnotes for both parts appear at the end of this document.

  15. Risk communication with Fukushima residents affected by the Fukushima Daiichi accident at whole-body counting

    SciTech Connect (OSTI)

    Gunji, I.; Furuno, A.; Yonezawa, R.; Sugiyama, K.

    2013-07-01

    After the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi nuclear power plant accident, the Tokai Research and Development Center of the Japan Atomic Energy Agency (JAEA) have had direct dialogue as risk communication with Fukushima residents who underwent whole-body counting examination (WBC). The purpose of the risk communication was to exchange information and opinions about radiation in order to mitigate Fukushima residents' anxiety and stress. Two kinds of opinion surveys were performed: one survey evaluated residents' views of the nuclear accident itself and the second survey evaluated the management of WBC examination as well as the quality of JAEA's communication skills on risks. It appears that most Fukushima residents seem to have reduced their anxiety level after the direct dialogue. The results of the surveys show that Fukushima residents have the deepest anxiety and concern about their long-term health issues and that they harbor anger toward the government and TEPCO. On the other hand, many WBC patients and patients' relatives have expressed gratitude for help in reducing their feelings of anxiety.

  16. Experiments ✚ Simulations = Better Nuclear Power Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    various cladding materials and fuels used in reactors respond to radiation damage. ... and extending their study to look at accident-tolerant nuclear fuel cladding. "This marriage ...

  17. Nuclear power program and technology development in Korea

    SciTech Connect (OSTI)

    Cho, Byung-Oke

    1994-12-31

    KEPCO has successfully implemented the construction and operation of nuclear power plants since the early 1970s, and will continue to build safer and more efficient nuclear plants in the future in accordance with the nuclear power development plan previously established. KEPCO will also make every effort to enhance nuclear safety and obtain the public`s acceptance for nuclear power. We are, however, facing the same difficulties, as United States and other countries have, in strengthened regulatory requirements, public acceptance, radwaste disposal, and acquisition of new plant sites despite an active nuclear power program. Story of Ted Turner, CNN; {open_quotes}It ain`t as easy as it looks.{close_quotes} Yes! It is difficult. But we will cope with these issues so that we can promote the nuclear power development and continue to supply a highly economical and clean energy to the world. In this regard, it is my sincere wish that each organization participating in the nuclear industry, especially Korea and United States strengthen their ties and help each other so that we together can successfully accomplish our goals.

  18. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2014

    Energy Savers [EERE]

    ... COMPANY REACTOR SIZE (MWE) APPLICATION EXPECTED DC SUBMITTAL DATE Light Water Reactors Babcock &Wilcox mPower, Inc. mPower SMR 180 DCCP TBD Holtec International SMR-160 160 DC Q4 ...

  19. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY OCTOBER 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... COMPANY REACTOR SIZE (MWE) APPLICATION EXPECTED DC SUBMITTAL DATE Light Water Reactors Babcock &Wilcox mPower, Inc. mPower SMR 180 DC TBD Holtec International SMR-160 160 DC TBD ...

  20. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2015

    Broader source: Energy.gov (indexed) [DOE]

    ... COMPANY R EACTOR SIZE (MWE) APPLICATION EXPECTED DC SUBMITTAL DATE Light Water Reactors Babcock &Wilcox mPower, Inc. mPower SMR 180 DC TBD Holtec International SMR-160 160 DC TBD ...

  1. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY APRIL 2015

    Energy Savers [EERE]

    ... COMPANY R EACTOR SIZE (MWE) APPLICATION EXPECTED DC SUBMITTAL DATE Light Water Reactors Babcock &Wilcox mPower, Inc. mPower SMR 180 DCCP TBD Holtec International SMR-160 160 DC Q4 ...

  2. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JANUARY 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... REACTOR SIZE (MWE) APPLICATION EXPECTED DC SUBMITTAL DATE Light Water Reactors Babcock &Wilcox mPower, Inc. mPower SMR 180 DCCP TBD Holtec International SMR-160 160 DC Q4 CY ...

  3. Business risks to utilities as new nuclear power costs escalate

    SciTech Connect (OSTI)

    Severance, Craig A.

    2009-05-15

    A nuclear power megaproject carries with it severe business risks. Despite attempts to shift these risks to taxpayers and ratepayers, ultimately there are no guarantees for utility shareholders. Utility management needs to keep some core principles in mind. (author)

  4. Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60 years ago, scientists in Arco, Idaho successfully used nuclear energy to power four light bulbs. They laid the groundwork for decades of clean electricity and put the U.S. at...

  5. Presentation: R&D for the Future of Nuclear Power

    Broader source: Energy.gov [DOE]

    The Secretary of Energy Advisory Board (SEAB) received a briefing on R&D for the future of nuclear power. The presentation was given by Mark Peters, Director of Idaho National Laboratory, on June 14, 2016.

  6. Annex: Attributes of Proliferation Resistance for Civilian Nuclear Power Systems

    Broader source: Energy.gov [DOE]

    The NERAC1 Task Force on Technology Opportunities for Increasing the Proliferation Resistance of Global Civilian Nuclear Power Systems (TOPS) determined at its first meeting in November 1999 that a...

  7. Renewing America's Nuclear Power Partnership for Energy Security and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Growth | Department of Energy Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8, 2008 - 4:14pm Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you, Jamie, for that kind introduction. And many thanks as well to Secretary Gutierrez, Deputy Secretary Sullivan and the entire Commerce team for convening this important event. As always, it's

  8. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect (OSTI)

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  9. Nuclear stopping power in warm and hot dense matter

    SciTech Connect (OSTI)

    Faussurier, Gerald; Blancard, Christophe; Gauthier, Maxence

    2013-01-15

    We present a method to estimate the nuclear component of the stopping power of ions propagating in dense matter. Three kinds of effective pair potentials are proposed. Results from the warm dense matter regime and the domain of high energy density physics are presented and discussed for proton and helium. The role of ionic temperature is examined. The nuclear stopping power can play a noticeable role in hot dense matter.

  10. Erosion/corrosion-induced pipe wall thinning in US Nuclear Power...

    Office of Scientific and Technical Information (OSTI)

    Erosioncorrosion-induced pipe wall thinning in US Nuclear Power Plants Citation Details In-Document Search Title: Erosioncorrosion-induced pipe wall thinning in US Nuclear Power ...

  11. International Working Group Meeting Focuses on Nuclear Power Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Needs | Department of Energy Needs International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Needs June 2, 2010 - 12:02pm Addthis VIENNA, Austria - The multi-nation Infrastructure Development Working Group (IDWG) of the Global Nuclear Energy Partnership (GNEP) held its sixth meeting on May 26-27, 2010, in Vienna, Austria. The two-day event included workshops on nuclear energy regulatory agency engagement and the infrastructure needs for

  12. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solbrig, Charles W.

    2011-01-01

    Nuclear islands, which are integrated power production sites, could effectively sequester and safeguard the US stockpile of plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides) produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage ofmore » already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.« less

  13. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Updates available at: www.energy.gov/ne NEXT UPDATE - October 2014 Page 1 News Updates  The NRC Atomic Safety and Licensing Board (ASLB) has ruled that Toshiba's participation in Nuclear Innovation North America's South Texas Project does not violate federal rules on foreign ownership, control or domination of nuclear reactors. NRC staff had previously stated that despite having only a 10% ownership stake in the project, Toshiba's level of financial support constituted an impermissible

  14. Report to the Secretary of Energy on Beyond Design Basis Event Pilot Evaluations, Results and Recommendations for Improvements to Enhance Nuclear Safety at DOE Nuclear Facilities, January 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    In the six months after the March 2011 Fukushima Daiichi nuclear power plant accident in Japan, the U.S. Department of Energy (DOE) took several actions to review the safety of its nuclear facilities and identify situations where near-term improvements could be made. These actions and recommendations were addressed in an August 2011 report to the Secretary of Energy, Review of Requirements and Capabilities for Analyzing and Responding to Beyond Design Basis Events.

  15. Markov Model of Accident Progression at Fukushima Daiichi

    SciTech Connect (OSTI)

    Cuadra A.; Bari R.; Cheng, L-Y; Ginsberg, T.; Lehner, J.; Martinez-Guridi, G.; Mubayi, V.; Pratt, T.; Yue, M.

    2012-11-11

    On March 11, 2011, a magnitude 9.0 earthquake followed by a tsunami caused loss of offsite power and disabled the emergency diesel generators, leading to a prolonged station blackout at the Fukushima Daiichi site. After successful reactor trip for all operating reactors, the inability to remove decay heat over an extended period led to boil-off of the water inventory and fuel uncovery in Units 1-3. A significant amount of metal-water reaction occurred, as evidenced by the quantities of hydrogen generated that led to hydrogen explosions in the auxiliary buildings of the Units 1 & 3, and in the de-fuelled Unit 4. Although it was assumed that extensive fuel damage, including fuel melting, slumping, and relocation was likely to have occurred in the core of the affected reactors, the status of the fuel, vessel, and drywell was uncertain. To understand the possible evolution of the accident conditions at Fukushima Daiichi, a Markov model of the likely state of one of the reactors was constructed and executed under different assumptions regarding system performance and reliability. The Markov approach was selected for several reasons: It is a probabilistic model that provides flexibility in scenario construction and incorporates time dependence of different model states. It also readily allows for sensitivity and uncertainty analyses of different failure and repair rates of cooling systems. While the analysis was motivated by a need to gain insight on the course of events for the damaged units at Fukushima Daiichi, the work reported here provides a more general analytical basis for studying and evaluating severe accident evolution over extended periods of time. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accidents.

  16. Infrastructure development assistance modeling for nuclear power plant

    SciTech Connect (OSTI)

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M.

    2012-07-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to

  17. Research and development on waste management for the Fukushima Daiichi NPS by JAEA

    SciTech Connect (OSTI)

    Koma, Yoshikazu; Ashida, Takashi; Meguro, Yoshihiro; Miyamoto, Yasuaki; Sasaki, Toshiki; Yamagishi, Isao; Kameo, Yutaka; Terada, Atsuhiko; Hiyama, T.; Koyama, Tomozo; Kaminishi, Shuji; Saito; Noriyuki; Denda, Yasutaka

    2013-07-01

    Technologies for waste management of Fukushima Daiichi Nuclear Power Station (F1NPS) have been investigated. It is expected that the amount of wastes will be considerable. It is considered that F1NPS wastes were contaminated with radionuclides contained in spent fuel and with activation products, therefore the number of nuclides which needs to be considered in evaluating disposal safety is high. As a result, it is possible that the technologies selected will be different from those of the current wastes from nuclear reactors and fuel cycle facilities. The secondary waste from the accumulated water treatment, contaminated rubble and trees were analyzed, and the data obtained was provided for inventory evaluation. Demand on analytical data is strong, and sampling at the site and analysis have been continued. Storage safety of the secondary waste, especially for zeolite and sludge is under investigation. Investigation on conditioning and disposal was initiated, for survey on existing disposal concept assuming that both inventory and waste classification are uncertain. Different from usual methodology, these research and development activities should be conducted side-by-side.

  18. Assessment of ceramic composites for MMW space nuclear power systems

    SciTech Connect (OSTI)

    Besmann, T.M.

    1987-01-01

    Proposed multimegawatt nuclear power systems which operate at high temperatures, high levels of stress, and in hostile environments, including corrosive working fluids, have created interest in the use of ceramic composites as structural materials. This report assesses the applicability of several ceramic composites in both Brayton and Rankine cycle power systems. This assessment considers an equilibrium thermodynamic analysis and also a nonequilibrium assessment. (FI)

  19. Estimation of average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors by using the {sup 134}Cs/{sup 137}Cs ratio method

    SciTech Connect (OSTI)

    Endo, T.; Sato, S.; Yamamoto, A.

    2012-07-01

    Average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors is estimated, using the {sup 134}Cs/{sup 137}Cs ratio method for measured radioactivities of {sup 134}Cs and {sup 137}Cs in contaminated soils within the range of 100 km from the Fukushima Dai-ichi nuclear power plants. As a result, the measured {sup 134}Cs/{sup 137}Cs ratio from the contaminated soil is 0.996{+-}0.07 as of March 11, 2011. Based on the {sup 134}Cs/{sup 137}Cs ratio method, the estimated burnup of damaged fuels is approximately 17.2{+-}1.5 [GWd/tHM]. It is noted that the numerical results of various calculation codes (SRAC2006/PIJ, SCALE6.0/TRITON, and MVP-BURN) are almost the same evaluation values of {sup 134}Cs/ {sup 137}Cs ratio with same evaluated nuclear data library (ENDF-B/VII.0). The void fraction effect in depletion calculation has a major impact on {sup 134}Cs/{sup 137}Cs ratio compared with the differences between JENDL-4.0 and ENDF-B/VII.0. (authors)

  20. Institute of Nuclear Power Operations annual report, 1993

    SciTech Connect (OSTI)

    1993-12-31

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1993 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry.

  1. Quarterly Nuclear Power Deployment Scorecard - January 2013 ...

    Broader source: Energy.gov (indexed) [DOE]

    On November 28 Lehigh Heavy Forge Corporation announced an agreement with Babcock and Wilcox Company to fabricate and qualify large forgings for the B&W mPower SMR. Forgings would ...

  2. Method for assigning sites to projected generic nuclear power plants

    SciTech Connect (OSTI)

    Holter, G.M.; Purcell, W.L.; Shutz, M.E.; Young, J.R.

    1986-07-01

    Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for the site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.

  3. Nuclear heated and powered metal excimer laser

    SciTech Connect (OSTI)

    Womack, D. R.

    1985-03-19

    A laser using heat and thermionic electrical output from a nuclear reactor in which heat generated by the reactor is utilized to vaporize metal lasants. Voltage output from a thermionic converter is used to create an electric discharge in the metal vapors. In one embodiment the laser vapors are excited by a discharge only. The second embodiment utilizes fission coatings on the inside of heat pipes, in which fission fragment excitation and ionization is employed in addition to a discharge. Both embodiments provide efficient laser systems that are capable of many years of operation without servicing. Metal excimers are the most efficient electronic transition lasers known with output in the visible wavelengths. Use of metal excimers, in addition to their efficiency and wavelengths, allows utilization of reactor waste heat which plagues many nuclear pumped laser concepts.

  4. Nuclear heated and powered metal excimer laser

    SciTech Connect (OSTI)

    Womack, D.R.

    1982-02-11

    A laser uses heat and thermionic electrical output from a nuclear reactor in which heat generated by the reactor is utilized to vaporize metal lasants. Voltage output from a thermionic converter is used to create an electric discharge in the metal vapors. In one embodiment the laser vapors are excited by a discharge only. The second embodiment utilizes fission coatings on the inside of heat pipes, in which fission fragment excitation and ionization is employed in addition to a discharge. Both embodiments provide efficient laser systems that are capable of many years of operation without servicing. Metal excimers are the most efficient electronic transition lasers known with output in the visible wavelengths. Use of metal excimers, in addition to their efficiency and wavelengths, allows utilization of reactor waste heat which plagues many nuclear pumped laser concepts.

  5. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J. )

    1991-05-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  6. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J. )

    1989-10-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  7. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Benkovitz, C.

    1981-11-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.

  8. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect (OSTI)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  9. What future for nuclear power? Workshop report

    SciTech Connect (OSTI)

    1998-12-31

    A Workshop on this highly controversial subject, organized by the Energy and Environment Programme of the RIIA, was held on 10th November 1997 at Green College, Oxford. The meeting was attended by some forty people from eight countries, coming from the nuclear and electricity generating industry, governments, research organizations, academic institutions, environmental pressure groups and inter-governmental organizations. In addition, subsequent to this Workshop, there have been a number of smaller, more informal discussions on various aspects of the subject. This paper summarizes the main conclusions arising from the Workshop and from these later discussions.

  10. HIGH TEMPERATURE, HIGH POWER HETEROGENEOUS NUCLEAR REACTOR

    DOE Patents [OSTI]

    Hammond, R.P.; Wykoff, W.R.; Busey, H.M.

    1960-06-14

    A heterogeneous nuclear reactor is designed comprising a stationary housing and a rotatable annular core being supported for rotation about a vertical axis in the housing, the core containing a plurality of radial fuel- element supporting channels, the cylindrical empty space along the axis of the core providing a central plenum for the disposal of spent fuel elements, the core cross section outer periphery being vertically gradated in radius one end from the other to provide a coolant duct between the core and the housing, and means for inserting fresh fuel elements in the supporting channels under pressure and while the reactor is in operation.