Powered by Deep Web Technologies
Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ORNL DAAC for Biogeochemical Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Welcome about us image About Us Provides detailed information about the ORNL DAAC. projects image About Data Lists the data products available from the ORNL DAAC. access image Get Data Guides you through the steps needed to acquire the data. tools image Data Tools Some tools to help you work with the data. uso image Help Need assistance? Our staff is happy to help. ORNL DAAC The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) for biogeochemical dynamics is one of the National Aeronautics and Space Administration (NASA) Earth Observing System Data and Information System (EOSDIS) data centers managed by the Earth Science Data and Information System (ESDIS) Project. The ORNL DAAC archives data produced by NASA's Terrestrial Ecology Program. The DAAC provides data and information

2

ORNL DAAC OGC Tutorial  

NLE Websites -- All DOE Office Websites (Extended Search)

DAAC ORNL DAAC: http:daac.ornl.gov uso@daac.ornl.gov Accessing ORNL DAAC OGC services Overview: Accessing ORNL DAAC Open Geospatial Consortium (OGC) services using popular GIS...

3

ORNL DAAC News  

NLE Websites -- All DOE Office Websites (Extended Search)

New 2013-07-31 - LBA-ECO CD-34 Landsat Images Published New 2013-07-26 - LBA-ECO CD-32 and TG-06 Data Sets Published New 2013-07-17 - ORNL DAAC Summer 2013 Newsletter...

4

About ORNL DAAC Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Products Products About ORNL DAAC Data Products and Services ORNL DAAC Product Overview The biogeochemical and ecological data products and services available from the ORNL DAAC are organized by project and classified into four primary categories: Field Campaigns, Land Validation, Regional and Global Data, and Model Archive. The following provides access to all available data products: Product Overview Catalog Field Campaigns Field campaigns combine ground-, aircraft-, and satellite-based measurements of biogeochemical features in specific ecosystems over multi-year time periods. The ORNL DAAC compiles, archives, and distributes more than 600 products from the following NASA-funded field campaigns: BOREAS and BOREAS Follow-On FIFE and FIFE Follow-On LBA OTTER SAFARI 2000

5

ORNL DAAC Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map ORNL DAAC Site Map About Us About ORNL DAAC Who We Are User Working Group Biogeochemical Dynamics Data Citation Policy News Newsletters Workshops Site Map Products...

6

ORNL DAAC News ORNL DAAC News  

NLE Websites -- All DOE Office Websites (Extended Search)

T he ORNL Distrib- uted Active Archive Center (DAAC) is a NASA-sponsored source for biogeochemical and ecological data and services useful in environmental research. The ORNL DAAC...

7

ORNL DAAC News ORNL DAAC News  

NLE Websites -- All DOE Office Websites (Extended Search)

09 09 T he ORNL Distrib- uted Active Archive Center (DAAC) is a NASA-sponsored source for biogeochemical and ecological data and services useful in environmental research. The ORNL DAAC cur- rently archives and dis- tributes more than 825 products categorized as Field Campaign, Land Validation, Regional and Global, or Model Archive. Please visit us online at http://daac.ornl.gov for a comprehensive description of data, ser vices, and tools available from the ORNL DAAC. Archived news can be found at http://daac.ornl.gov/ news.shtml. http://www.nasa.gov Spatial Data Access * Tool (SDAT) Fifteen LBA Data * Sets Released DAAC Gets New * Look Survey * Contents: National Aeronautics and Space Administration T he ORNL DAAC is pleased to announce the release of a new Spatial Data Access

8

ORNL DAAC News ORNL DAAC News  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 T he ORNL Distrib- uted Active Archive Center (DAAC) is a NASA-sponsored source for biogeochemical and ecological data and services useful in environmental research. The ORNL DAAC cur- rently archives and distributes nearly 900 products categorized as Field Campaign, Land Validation, Regional and Global, or Model Archive. Please visit us online at http://daac.ornl.gov for a comprehensive description of data, ser- vices, and tools avail- able from the ORNL DAAC. Current and past news can be found at http://daac.ornl. gov/news.shtml. http://www.nasa.gov * Changes For the DAAC * Best Practices Document Updated * Six LBA Data Sets Published * SDAT * 2010 Survey Participation Contents: National Aeronautics and Space Administration T he DAAC has undergone several changes in the past

9

ORNL DAAC News ORNL DAAC News  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 T he ORNL Distrib- uted Active Archive Center (DAAC) is a NASA-sponsored source for biogeochemical and ecological data and services useful in environmental research. The ORNL DAAC cur- rently archives and dis- tributes more than 780 products categorized as Field Campaign, Land Validation, Regional and Global, or Model Archive. Please visit us online at http://daac.ornl.gov for a comprehensive description of data, ser- vices, and tools avail- able from the ORNL DAAC. Archived news items can be found at http://daac.ornl.gov/ news.shtml. http://www.nasa.gov LBA-ECO Data Sets * DAAC WebGIS * FLUXNET Web * Cameras NASA survey * Contents: National Aeronautics and Space Administration Downward view from atop the Para Western (Santarem), Primary Forest Tower.

10

ORNL DAAC News ORNL DAAC News  

NLE Websites -- All DOE Office Websites (Extended Search)

09 09 T he ORNL Distrib- uted Active Archive Center (DAAC) is a NASA-sponsored source for biogeochemical and ecological data and services useful in environmental research. The ORNL DAAC cur- rently archives and dis- tributes more than 810 products categorized as Field Campaign, Land Validation, Regional and Global, or Model Archive. Please visit us online at http://daac.ornl.gov for a comprehensive description of data, ser- vices, and tools avail- able from the ORNL DAAC. Archived news items can be found at http://daac.ornl.gov/ news.shtml. http://www.nasa.gov 12 LBA Data Sets * TransCom3 Data Set * New BigFoot * Data Set Digital Object * Identifiers Contents: National Aeronautics and Space Administration T he ORNL DAAC recently released 12 data sets associated with the LBA-ECO component

11

ORNL DAAC News ORNL DAAC News  

NLE Websites -- All DOE Office Websites (Extended Search)

taken. Reflectometers were inserted horizontally into shaft walls beneath the surface. 2 ORNL DAAC Newsletter - Summer 2010 (continued on p. 3) (continued) Seven LBA Data Sets...

12

ORNL DAAC News ORNL DAAC News  

NLE Websites -- All DOE Office Websites (Extended Search)

WINTER 2007 he ORNL Dis- tributed Active Archive Center (DAAC) is a NASA-sponsored source for biogeochem- ical and ecological data and services useful in environmental research....

13

ORNL DAAC News ORNL DAAC News  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 T he ORNL Distrib- uted Active Archive Center (DAAC) is a NASA-sponsored source for biogeochemical and ecological data and services useful i n e n v i r o n m e n t a l research. The ORNL D A A C c u r r e n t l y archives and distributes more than 900 prod- ucts categorized as Field Campaign, Land Validation, Regional and Global, or Model Archive. Please visit us online at http://daac.ornl.gov for a comprehensive description of data, and tools available from the ORNL DAAC. Archived news can be found at http://daac.ornl.gov/ news.shtml. http://www.nasa.gov * 2 NACP Data Sets Published * 13 LBA Data Sets Published * 4 ISLSCP II Data Sets Published * NASA Customer Satisfaction Survey Contents: National Aeronautics and Space Administration T he ORNL DAAC is pleased to announce the release of two data sets associated with

14

ORNL DAAC News ORNL DAAC News  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 T he ORNL Distrib- uted Active Archive Center (DAAC) is a NASA-sponsored source for biogeochemical and ecological data and services useful in environmental research. The ORNL DAAC cur- rently archives and dis- tributes more than 850 products categorized as Field Campaign, Land Validation, Regional and Global, or Model Archive. Please visit us online at http://daac.ornl.gov for a comprehensive description of data, ser- vices, and tools avail- able from the ORNL DAAC. Current and past news can be found at http://daac.ornl. gov/news.shtml. http://www.nasa.gov * Global Vegetation Data Set Released * Ten ISLSCP II Data Sets Released * Twelve LBA Data Sets Released * Do You Subscribe, RSS? Contents: National Aeronautics and Space Administration

15

ORNL DAAC News ORNL DAAC News  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 T he ORNL Distrib- uted Active Archive Center (DAAC) is a NASA-sponsored source for biogeochemical data and services use- ful in environmental research. The ORNL D A A C c u r r e n t l y archives and distrib- utes more than 1,000 products categorized as Field Campaign, Land Validation, Regional and Global, or Model Ar- chive. Please visit us online at http://daac.ornl.gov for a comprehensive description of data, and tools available from the ORNL DAAC. Archived news can be found at http://daac.ornl.gov/ news.shtml. http://www.nasa.gov * Spatial Data Access Tool (SDAT) * MODIS Subsetting Tool * WebGIS * 27 Data Sets Published * DataOne Contents: National Aeronautics and Space Administration Tools Issue T he Spatial Data Access Tool (SDAT) developed at the Oak Ridge National Laboratory

16

About ORNL DAAC Data  

NLE Websites -- All DOE Office Websites (Extended Search)

that can be extended across biomes and across both spatial and temporal scales. The ORNL DAAC compiles, archives, and distributes more than 600 field campaign data products...

17

ORNL DAAC Who We Are  

NLE Websites -- All DOE Office Websites (Extended Search)

Who We Are: ORNL DAAC Organizational Information Mission Statement and Goals The mission of the ORNL DAAC is to assemble, distribute, and provide data services for a comprehensive...

18

ORNL DAAC News ORNL DAAC News  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 T he ORNL Distrib- uted Active Archive Center (DAAC) is a NA- SA-sponsored source f o r b i o g e o ch e m i c a l a n d e c o l o g i c a l d a t a and services useful in environmental research. The ORNL DAAC cur- r e n t ly a rch i ve s a n d distributes nearly 900 products categorized as Field Campaign, Land Validation, Regional and Global, or Model Archive. Please visit us online at http://daac.ornl.gov for a comprehensive de- scription of data, services, and tools available from the ORNL DAAC. Cur- rent and past news can be found at http://daac. ornl.gov/news.shtml. http://www.nasa.gov * New Model Re-leased * NACP Data sets released * BIGFOOT Meteoro- logical data set. * 24 LBA data sets released * NASA Customer Survey Contents: National Aeronautics and Space Administration

19

ORNL DAAC Newsletter Announced  

NLE Websites -- All DOE Office Websites (Extended Search)

funded by NASA, is pleased to present the Summer 2013 issue of the ORNL DAAC Newsletter. This edition of the newsletter highlights the publication of 21 new data sets and announces...

20

ORNL DAAC User Services  

NLE Websites -- All DOE Office Websites (Extended Search)

User Services Ready to Answer Your Questions The ORNL DAAC's User Services Office is the first point of contact for answering your questions concerning data and information held by...

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Survey Results In ORNL DAAC News ORNL DAAC News  

NLE Websites -- All DOE Office Websites (Extended Search)

Results In Results In ORNL DAAC News ORNL DAAC News WINTER 2008 T he ORNL Distrib- uted Active Archive Center (DAAC) is a NASA-sponsored source for biogeochemical and ecological data and services useful in environmental research. The ORNL DAAC cur- rently archives and distr ibutes greater than 780 products cat- egorized as Field Cam- paign, Land Validation, Regional and Global or Model Archive. Please visit us online at http://daac.ornl.gov for a comprehensive description of data, ser- vices, and tools avail- able from the ORNL DAAC. Archived news can be found at http:// daac.ornl.gov/news. shtml. http://www.nasa.gov MAPSS Vegetation Distribution Model Available MAPSS Model * Web Site Outage * Gap-Filled and * Smoothed LAI/fPAR New Search Tools *

22

ORNL DAAC News ORNL DAAC News New Data  

NLE Websites -- All DOE Office Websites (Extended Search)

New Data New Data SUMMER 2006 he ORNL Dis- tributed Active Archive Center (DAAC) is a NASA-sponsored source for biogeochem- ical and ecological data and services useful in environmental research. The ORNL DAAC cur- rently archives and dis- tributes more than 760 data sets categorized as Field Campaign, Land Validation, or Regional and Global Data. Please visit us online at http://daac.ornl.gov/ for a comprehensive description of data, ser- vices, and tools avail- able from the ORNL DAAC. Archived news can be found at http:// daac.ornl.gov/news. shtml. T National Aeronautics and Space Administration http://www.nasa.gov VALERI (VAlidation of Land European Remote sensing Instruments) campaign sites ( * ). D uring the past six months the ORNL DAAC has archived and begun distributing a

23

ORNL DAAC: Amazon Data Release  

NLE Websites -- All DOE Office Websites (Extended Search)

Amazon Data Released Amazon Data Released The ORNL DAAC announces the release of a data set associated with the LBA-ECO component of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). The data set "LBA-ECO CD-07 GOES-8 L3 Gridded Surface Radiation and Rain Rate for Amazonia: 1999" contains surface down-welling solar radiation, photosynthetically active radiation (PAR) and infrared radiation, as well as precipitation rates for the LBA study area at 8x8-km and half-hourly resolutions. The data cover the time periods March 1, 1999 - April 30, 1999, and September 1, 1999 - October 31, 1999. LBA is an international research initiative under the leadership of Brazil. The project focuses on the climatological, ecological, biogeochemical, and hydrological functions of Amazonia; the impact of land use change on these

24

ORNL DAAC Announces Mercury EOS  

NLE Websites -- All DOE Office Websites (Extended Search)

Announces Mercury EOS Search and Order April 21, 2003: Mercury EOS, the ORNL DAAC's new search and order system that works with NASA's EOS ClearingHouse (ECHO), is now operational....

25

ORNL DAAC: Amazon Data Release  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiance Data Set Released The ORNL DAAC announces the release of a data set associated with the LBA-ECO component of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia...

26

Redesigned ORNL DAAC Web Site  

NLE Websites -- All DOE Office Websites (Extended Search)

will be releasing a major revision to its Web site on Thursday, May 27, 2010. To implement this revision, the ORNL DAAC Web Site will be unavialable on May 27, from 10:00 a.m. EDT...

27

ORNL DAAC WebGIS  

NLE Websites -- All DOE Office Websites (Extended Search)

WebGIS Overview WebGIS is an Internet based technology that enables users to browse, query, and display spatial data using a standard web browser. The ORNL DAAC WebGIS is based...

28

ORNL DAAC Data Set Change Information  

NLE Websites -- All DOE Office Websites (Extended Search)

the ORNL DAAC on-line archive before May 06, 2004 you should download it again from the ORNL DAAC. Please note that the BOREAS CD-ROM Set of 12 disks was not affected. Data Set...

29

ORNL DAAC, Net Primary Productivity Data, Feb. 5, 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

Compilation Available Compilation Available The ORNL DAAC announces the release of a Net Primary Productivity (NPP) compilation that brings together individual detailed site NPP data from the ORNL DAAC holdings in a form that is especially useful for comparative study and ecosystem modeling. "NPP Multi-Biome: Grassland, Boreal Forest, and Tropical Forest Sites, 1939-1996" offers NPP estimates, vegetation type, and climate information for 53 sites in the ORNL DAAC archive. Selection of the sites was originally based on the availability of consistent NPP and biomass data from the literature. The data set encompasses 34 grasslands, 14 tropical forest sites, and 5 boreal forest sites. Half of the sites include estimates of belowground NPP. Visit the NPP project page to access the NPP data and documentation

30

Search for Publications Related to ORNL DAAC Holdings, September 8, 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Related to ORNL DAAC Holdings Publications Related to ORNL DAAC Holdings The ORNL DAAC has expanded its searchable bibliographic database so that users can locate publications related to a wide range of data sets in its archive. Projects such as FLUXNET, BOREAS, BOREAS Follow-On, SAFARI 2000, LBA, Net Primary Productivity, and VEMAP are represented, along with Climate, Soil, and Vegetation collections, among others. The database contains bibliographic entries for more than 7200 publications that are directly or indirectly related to specific research projects and their general topics. It includes entries for publications that users have sent to the ORNL DAAC. Users can search for entries project by project, or they can search the entire series of projects at once. To access the bibliographic database, look for "Bibliographic Search" under

31

Redesigned ORNL DAAC Web Site  

NLE Websites -- All DOE Office Websites (Extended Search)

released a major revision to its Web site on Thursday, released a major revision to its Web site on Thursday, May 27, 2010. The new site includes many enhancements aimed at helping users locate and obtain data products and services. The simplified menu bar allows users to navigate quickly to products and services of interest and to access data through a variety of tools. The DAAC's Web site address remains unchanged (http://daac.ornl.gov), and as always, our products and services are available free of charge. Please note that your user account information will work on the new Web site. The Sign-in and Registration pages have a different look and will accept your email address as the User Name and retain your current password. If you have any problems accessing, signing-in, or registering with our new Web site, please contact our User Services Office, at +1 (865) 241-3952, or

32

Environmental Data from ORNL's Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics  

DOE Data Explorer (OSTI)

\tThe Prototype Validation Exercise (PROVE) The ORNL DAAC also provides access to data for many regional and global projects and to a model archive. (Specialized Interface)(Registration Required)

33

ORNL DAAC, Biogeochemical Parameters for Ecosystem Modeling,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Parameters for Ecosystem Modeling The ORNL DAAC announces the release of a data set entitled "Literature-Derived Parameters for the BIOME-BGC Terrestrial Ecosystem...

34

Expanded Web Map Server and WebGIS Tools Available for ORNL DAAC Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Expanded Web Map Server and WebGIS Tools Available for ORNL DAAC Data Expanded Web Map Server and WebGIS Tools Available for ORNL DAAC Data The ORNL DAAC has developed a WebGIS system that consolidates earlier project-centric viewers into one system to help users locate data, including site characteristics, from flux tower sites, MODIS ASCII Subset Sites, and NPP field sites from around the world. WebGIS is an internet-based technology that enables users to browse, query, display, and download spatial data using a standard web browser. The ORNL DAAC WebGIS includes a number of land cover, biophysical, elevation, and geopolitical layers, as well as access to other relevant Open Geospatial Consortium (OGC) layers. Users can interrogate map features and extract and download selected map features including map layers (shape files).

35

DAAC WEB Site Outage, March 8, 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2007 The ORNL DAAC web site will be unavailable between the hours of 9:00 a.m. and 10:00 a.m., Eastern Standard Time (EST), on Thursday, March 8, 2007 due to...

36

DAAC WEB Site Outage, February 10, 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

0, 2007 The ORNL DAAC web site will be unavailable between the hours of 9:00 a.m. and 12:00 p.m., Eastern Standard Time (EST), on Saturday, February 10, 2007 due...

37

DAAC WEB Site Outage, March 14, 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

14, 2007 The ORNL DAAC web site will be unavailable between the hours of 8:30 a.m. and 9:30 a.m., Eastern Standard Time (EST), on Wednesday, March 14, 2007 due to...

38

DAAC WEB Site Outage, February 14, 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2007 The ORNL DAAC web site will be unavailable between the hours of 9:00 a.m. and 12:00 p.m., Eastern Standard Time (EST), on Wednesday, February 14, 2007 due...

39

ORNL NASA DAAC Announces Advanced Search  

NLE Websites -- All DOE Office Websites (Extended Search)

New Release of Mercury Advanced Search Tool The ORNL NASA DAAC is pleased to announce the public release of the new version of our Mercury Advanced Search tool. Mercury is a...

40

Manhattan Project: People Images  

Office of Scientific and Technical Information (OSTI)

PEOPLE IMAGES PEOPLE IMAGES Resources > Photo Gallery Scroll down to see each of these images individually. The images are: 1. J. Robert Oppenheimer, Enrico Fermi, and Ernest Lawrence (courtesy the Lawrence Berkeley National Laboratory); 2. Hanford, Washington, workers sending money home (reproduced from the photo insert in F. G. Gosling, The Manhattan Project: Making the Atomic Bomb (Washington: History Division, Department of Energy, October 2001)); 3. Oppenheimer and Leslie Groves at the Trinity Site, September 1945 (reproduced from the cover of the Office of History and Heritage Resources publication: The Signature Facilities of the Manhattan Project (Washington: History Division, Department of Energy, 2001)); 4. A WAC detachment marching at Oak Ridge, Tennessee, June 1945 (courtesy the Army Corps of Engineers; it is reprinted in Rachel Fermi and Esther Samra, Picturing the Bomb: Photographs from the Secret World of the Manhattan Project (New York: Harry N. Abrams, Inc., Publishers, 1995), 40);

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Rate Us - ORNL DAAC Feedback Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

Help > Feedback Help > Feedback Rate Us - ORNL DAAC Feedback Forum To improve service to our customers, this forum provides a means to monitor user satisfaction. Please take a moment to tell us about your experience. Consider Data availability, accessibility, and value Web navigation and content Customer service Your responses will remain anonymous in keeping with our Privacy Policy. Select one of the following options that best describes your experience with the ORNL DAAC. Positive Mixed Negative If you wish to add comments or to explain your rating, please enter your comments in the box below. If you would like us to reply to your comments or concern, please enter your e-mail address here: Please solve the following simple math problem: 4 x 2 = help icon Submit Feedback Clear form

42

Physical Oceanography Distributed Active Archive Center (PO.DAAC) |  

NLE Websites -- All DOE Office Websites (Extended Search)

Physical Oceanography Distributed Active Archive Center (PO.DAAC) Physical Oceanography Distributed Active Archive Center (PO.DAAC) Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov » Communities » Ocean » Data Physical Oceanography Distributed Active Archive Center (PO.DAAC) Dataset Summary Description PO.DAAC is an element of the Earth Observing System Data Information System (EOSDIS). PO.DAAC's primary responsibility is to provide distribution and archive support for NASA's physical oceanography missions such as TOPEX/Poseidon and SeaWinds on QuikSCAT. However, PO.DAAC additionally collaborates with other institutes to acquire complementary data products and value-added services. Tags {Oceans,"ocean dynamics","Earth observing system",EOS,navigation,"information systems",NASA,JPL,"Jet Propulsion Laboratory"}

43

Manhattan Project: Trinity Images  

Office of Scientific and Technical Information (OSTI)

IMAGES IMAGES Trinity Test Site (July 16, 1945) Resources > Photo Gallery The first 0.11 seconds of the Nuclear Age These seven photographs of the Trinity test were taken by time-lapse cameras. The last is 109 milliseconds, or 0.109 seconds, after detonation. Scroll down to view each individual image. The photographs are courtesy the Los Alamos National Laboratory, via the Federation of American Scientists web site. The animation is original to the Office of History and Heritage Resources. The dawn of the Nuclear Age (Trinity image #1) The dawn of the Nuclear Age Trinity image #2 Trinity image #3 Trinity image #4 Trinity image #5 Trinity, 0.09 seconds after detonation (Trinity image #6) Trinity, 0.09 seconds after detonation Trinity, 0.11 seconds after detonation (Trinity image #7)

44

ORNL DAAC, Effects of Increased Carbon Dioxide, Dec. 11, 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Increased Carbon Dioxide on Vegetation The ORNL DAAC announces the release of a data set entitled "Effects of Elevated Carbon Dioxide on Litter Chemistry and Decomposition." The...

45

Manhattan Project: Places Images  

Office of Scientific and Technical Information (OSTI)

PLACES IMAGES PLACES IMAGES Resources > Photo Gallery Scroll down to see each of these images individually. The images are: 1. Remains of a Shinto Shrine, Nagasaki, October 1945 (courtesy the United States Marine Corps, Lieutenant R. J. Battersby, photographer, via the National Archives); 2. University of California, Berkeley, 1940 (courtesy the Lawrence Berkeley National Laboratory); 3. Aerial photograph of the Trinity Site after the test (courtesy the Federation of American Scientists); 4. Aerial photograph of Hiroshima before the bombing; 5. Columbia University, 1903 (courtesy the Library of Congress; this photograph originated from the Detroit Publishing Company; it was a 1949 gift to the Library of Congress from the State Historical Society of Colorado).

46

Manhattan Project: Image Retouching`  

Office of Scientific and Technical Information (OSTI)

Image Retouching Image Retouching Resources > Photo Gallery Smyth Report (original) Smyth Report (retouched) Images on this web site have sometimes been "retouched." In every case, however, the intention has been only to restore the image as much as possible to its original condition. Above is a rather extreme example-"before and after" versions of the cover of the Smyth Report (Henry DeWolf Smyth, Atomic Energy for Military Purposes: The Official Report on the Development of the Atomic Bomb under the Auspices of the United States Government, 1940-1945 (Princeton, NJ: Princeton University Press, 1945)). The Smyth Report was commissioned by Leslie Groves and originally issued by the Manhattan Engineer District. Princeton University Press reprinted it in book form as a "public service" with "reproduction in whole or in part authorized and permitted.") Larger versions of the same images are below.

47

Manhattan Project: Science Images  

Office of Scientific and Technical Information (OSTI)

SCIENCE IMAGES SCIENCE IMAGES Resources > Photo Gallery Scroll down to see each of these images individually. The images are: 1. Fission (this graphic is adapted from a graphic originally produced by the Washington State Department of Health; the modifications are original to the History Division, now Office of History and Heritage Resources, 2003); 2. Fat Man (plutonium bomb), August 1945 (courtesy the U.S. Army Corps of Engineers (via theNational Archives)); 3. F Reactor Plutonium Production Complex Hanford, Washington, 1945; 4. A Cockroft-Walton machine at Los Alamos, New Mexico (courtesy the Los Alamos National Laboratory; it is reprinted in John F. Hogerton, ed., "Cockroft-Walton Machine," The Atomic Energy Deskbook (New York: Reinhold Publishing Corporation, 1963, prepared under the auspices of the Division of Technical Information, U.S. Atomic Energy Commission), 102);

48

Manhattan Project: Events Images  

Office of Scientific and Technical Information (OSTI)

Resources Resources About this Site How to Navigate this Site Library Maps Note on Sources Nuclear Energy and the Public's Right to Know Photo Gallery Site Map Sources and Notes Suggested Readings EVENTS IMAGES Resources > Photo Gallery Page Content Here Scroll down to see each of these images individually. The images are: 1. Albert Einstein and Leo Szilard (courtesy the Federation of American Scientists); 2. Painting of CP-1 going critical (courtesy the National Archives); 3. An Alpha Racetrack inside the Y-12 Electromagnetic Plant, Clinton Engineer Works, Oak Ridge, Tennessee; 4. Eric Jette, Charles Critchfield, and J. Robert Oppenheimer, Los Alamos, New Mexico (this photograph is reprinted from Los Alamos Scientific Laboratory, Los Alamos: Beginning of an Era, 1943-1945 (Los Alamos: Public Relations Office, Los Alamos Scientific Laboratory, ca. 1967-1971), 20);

49

ORNL DAAC, global climate data, GIS formats  

NLE Websites -- All DOE Office Websites (Extended Search)

Data in GIS Formats Data in GIS Formats ORNL DAAC has re-released a key climatology data set in two additional formats especially suitable for geographic information system (GIS) users. Version 2.1 of "Global 30-Year Mean Monthly Climatology, 1930-1960 (Cramer and Leemans)" now offers the data in ASCII GRID format and binary format. These formats can be read directly into software packages such as ESRI's ARC/INFO and ERDAS' IMAGINE. The Cramer and Leemans climatology data set contains monthly averages of mean temperature, temperature range, precipitation, rain days, and sunshine hours for the terrestrial surface of the globe. It is gridded at a 0.5-degree longitude/latitude resolution. The Cramer and Leemans data are also available in the original ASCII format, which can be read in FORTRAN or with programs such as SAS.

50

ORNL DAAC, Southern African CD-ROM, July 8, 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

CD-ROM for Southern Africa Goes Public The ORNL DAAC announces that the second CD-ROM volume prepared for the Southern African Regional Science Initiative ( 2000 is now...

51

ORNL DAAC, Southern African Data Release, March 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

African Regional Science Initiative ("SAFARI 2000") are now available on-line from the ORNL DAAC, along with their documentation. The data were earlier released on CD-ROM. The...

52

ORNL DAAC, Map Server for Flux Data, June 12, 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

for FLUXNET Data The ORNL DAAC has developed a Web map server to help users locate flux tower sites from around the world. Users can choose from more than 210 sites in the FLUXNET...

53

ORNL DAAC: Amazon Data Release, Sept. 15, 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

Amazon Data Released The ORNL DAAC announces the release of 19 spatial data sets associated with the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). The data sets...

54

ORNL NASA DAAC Announces Beta Test Version for Advanced Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Version for Advanced Search The ORNL NASA DAAC is pleased to announce the public beta test release of the new version of our Mercury Advanced Search tool. Mercury is a...

55

Net Primary Production (NPP) Project Page  

NLE Websites -- All DOE Office Websites (Extended Search)

RegionalGlobal > Net Primary Production (NPP) Net Primary Production (NPP) Project Overview The ORNL DAAC Net Primary Production (NPP) data set collection contains field...

56

ORNL NASA DAAC WEB Site Maintenance, Thursday Mornings August...  

NLE Websites -- All DOE Office Websites (Extended Search)

Thursdays, August 7, and August 21, 2008 8:30-9:30 a.m. EDT The ORNL DAAC web site will be unavailable between 8:30 a.m. and 9:30 a.m., Eastern Daylight Saving Time (EDT), on...

57

ORNL NASA DAAC WEB Site Maintenance, Thursday Morning November...  

NLE Websites -- All DOE Office Websites (Extended Search)

Thursday, November 13, 2008 8:30-9:30 a.m. EST The ORNL DAAC web site will be unavailable between 8:30 a.m. and 9:30 a.m., Eastern Standard Time (EST), on Thursday, November 11,...

58

ORNL NASA DAAC Web Site Maintenance, Saturday Evening March 28...  

NLE Websites -- All DOE Office Websites (Extended Search)

Saturday, March 28, 2009 8:00-10:00 p.m. EDT The ORNL DAAC Web site will be unavailable between 8:00 p.m. and 10:00 p.m., Eastern Daylight Time (EDT), on Saturday, March 28...

59

ORNL NASA DAAC Web Site Maintenance, Thursday Morning February...  

NLE Websites -- All DOE Office Websites (Extended Search)

Thursday, February 19, 2009 8:30-9:30 a.m. EST The ORNL DAAC Web site will be unavailable between 8:30 a.m. and 9:30 a.m., Eastern Standard Time (EST), on Thursday, February 19...

60

FIFE Project Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Geophysical Research. FIFE Resources The following FIFE resources are maintained by the ORNL DAAC: FIFE CampaignProject Document FIFE Follow-On CampaignProject Document Get FIFE...

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SAR Image: Niwot Ridge (Long term Ecological  

NLE Websites -- All DOE Office Websites (Extended Search)

Image: Baltimore Ecosystem study (BES1), Image: Baltimore Ecosystem study (BES1), 2009-07-28 SAR Image: Niwot Ridge (Long term Ecological Research Site in Colorado), 2010-12-14 ORNL DAAC News ORNL DAAC News SUMMER 2011 T he ORNL Distrib- uted Active Archive Center (DAAC) is a NASA-sponsored source for biogeochemical and ecological data and services useful i n e n v i r o n m e n t a l research. The ORNL D A A C c u r r e n t l y archives and distributes greater than 900 prod- ucts categorized as Field Campaign, Land Validation, Regional and Global, or Model Archive. Please visit us online at http://daac.ornl.gov for a comprehensive description of data, and tools available from the ORNL DAAC. Archived news can be found at http://daac.ornl.gov/ news.shtml. http://www.nasa.gov * Synthetic Aperture Radar (SAR) Subsets

62

ORNL DAAC MODIS Subsetting and Visualization tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Architecture: WebGIS System Architecture: ESRI ArcIMS 9.3 Image Server Extract Server Query Server Minnesota Mapserver 5.2.0 WCS Server v1.0.0 MS SQL Server 2005 ESRI ArcSDE 9.3...

63

ORNL DAAC, Global Root Data, April 9, 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

Root Data On-Line Root Data On-Line The ORNL DAAC announces the release of four global data sets on root characteristics. The data were compiled from a variety of scientific literature dating as far back as the 1950s. "Global Distribution of Fine Root Biomass in Terrestrial Ecosystems"details root biomass, rooting profiles, and nutrient concentrations in roots. "Global Distribution of Root Nutrient Concentrations in Terrestrial Ecosystems" contains nutrient measurements for fine roots. "Global Distribution of Root Profiles in Terrestrial Ecosystems" gives estimates of rooting depth. "Global Distribution of Root Turnover in Terrestrial Ecosystems" provides estimates of root turnover rates calculated from measurements of live root standing crop and from belowground net primary production.

64

ORNL DAAC, Southern African CD-ROM Vol. 3, March 8, 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

Third CD-ROM for Southern Africa Now Available The ORNL DAAC announces the release of the third and final in a series of CD-ROMs prepared for the Southern African Regional Science...

65

ORNL NASA DAAC WEB Site Maintenance, November 12 2007 9:00-11...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 12, 2007 9:00-11:00 EST The ORNL DAAC web site will be unavailable between 9:00 a.m. and 11:00 a.m., Eastern Standard Time (EST), on Monday, November 12, 2007...

66

ORNL DAAC, Regional and Global Data in Mercury, April 25, 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

can now be located and acquired through the Mercury metadata search system at the ORNL DAAC. Thirty-five data sets were added in the past 3 months. A variety of data held by...

67

Image processing pipeline in the educational project venus transit 2004  

Science Conference Proceedings (OSTI)

Digital image processing is a means by which the valuable information in observed raw image data can be revealed. A web-based image processing pipeline was created under the ambitious educational program Venus Transit 2004 (VT-2004). The active participants ... Keywords: WEB pipeline, educational project, image processing

Stanislava imberov

2006-01-01T23:59:59.000Z

68

OTTER Project Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Campaigns > OTTER (Oregon) Field Campaigns > OTTER (Oregon) The Oregon Transect Ecosystem Research (OTTER) Project Overview The purpose of the Oregon Transect Ecosystem Research (OTTER) Project was to estimate major fluxes of carbon, nitrogen, and water in forest ecosystems using an ecosystem-process model driven by remotely sensed data. The project was conducted from 1990 to 1991. The DAAC's data holdings include background data from 1989. OTTER data sets include: Canopy Chemistry Meteorology Field Sunphotometer Airborne Sunphotometer Timber Measurements These data were transferred to the ORNL DAAC from the Ames Research Center node of the Pilot Land Data System (PLDS). The ORNL DAAC LBA Data archive includes 14 data products. Study sites included a coastal forest of western hemlock, sitka spruce, and

69

ORNL NASA DAAC WEB Site Reboot, September 13 2007 8-8:15 EDT  

NLE Websites -- All DOE Office Websites (Extended Search)

September 13, 2007 8-8:15 EDT The ORNL DAAC web site will be unavailable between 8:00 a.m. and 8:15 a.m., Eastern Daylight Time (EDT), on Thursday, September 13, 2007 due to...

70

ORNL NASA DAAC WEB Site Reboot, October 16 2007 9-9:15 EDT  

NLE Websites -- All DOE Office Websites (Extended Search)

October 16, 2007 9-9:15 EDT The ORNL DAAC web site will be unavailable between 9:00 a.m. and 9:15 a.m., Eastern Daylight Time (EDT), on Tuesday, October 16, 2007 due to scheduled...

71

ORNL NASA DAAC Web Site Outage, Saturday May 15 from 3:00 a.m...  

NLE Websites -- All DOE Office Websites (Extended Search)

Outage, Saturday, May 15, 2010 3:00 a.m.-5:00 p.m. EDT The ORNL DAAC Web site will be unavailable between 3:00 a.m. and 5:00 p.m., Eastern Daylight Time (EDT), on Saturday, May 15,...

72

ORNL NASA DAAC WEB Site Maintenance, February 6, 2008 7:30-8...  

NLE Websites -- All DOE Office Websites (Extended Search)

February 6, 2008 7:30-8:00 a.m. EST The ORNL DAAC web site will be unavailable between 7:30 a.m. and 8:00 a.m., Eastern Standard Time (EST), on Wednesday, February 6, 2008...

73

OpenEI:Projects/Images | Open Energy Information  

Open Energy Info (EERE)

Images Images Jump to: navigation, search This page is used to coordinate the OpenEI project's plans to collect energy-related images (that have appropriate licensing terms) in the OpenEI Wiki. Tasks Import appropriately-licensed energy images from external sources Use Wiki categories to organize images Reference images from appropriate OpenEI pages Develop one or more templates (and associated semantic properties?) for tracking image licensing, source, etc. Develop a mechanism (Widget?) to display attractive image galleries from OpenEI pages Develop a mechanism (MediaWiki Extension?) to attach default alt text content to a Wiki image Might be accomplished via MediaWiki's "ParserMakeImageParams" hook (in combination with a special semantic property that would be set on the

74

ORNL DAAC Pre-Packaged Data Set List  

NLE Websites -- All DOE Office Websites (Extended Search)

Make Your Own CD Sets Make Your Own CD Sets You can download CD images (.ISO files) from this page and make (burn) your own CDs on your personal CD writeable (CD-R / CD+R) or rewriteable (CD-RW / CD+RW) drive. Note that some CD sets have user interfaces that require that you set the volume label of your CD to specific names in order to operate. See the readme.txt file for details. You do not have to register or sign in to download CD images. If you are not sure how to burn an ISO image to a CD, put the term "burn ISO image" into your favorite search engine or into the help for your CD burning software and you should find a number of useful hints. Note that on many operating systems, you can also "mount" the ISO file so it appears like a CD and use it that way, without burning a disc.

75

Augmented reality image overlay projection for image guided open liver ablation of metastatic liver cancer  

Science Conference Proceedings (OSTI)

This work presents an evaluation of a novel augmented reality approach for the visualisation of real time guidance of an ablation tool to a tumor in open liver surgery. The approach uses a portable image overlay device, directly integrated into a liver ... Keywords: ablation, augmented reality, image guidance, metastatic liver cancer, projection

Kate Alicia Gavaghan; Sylvain Anderegg; Matthias Peterhans; Thiago Oliveira-Santos; Stefan Weber

2011-09-01T23:59:59.000Z

76

NPP Temperate Forest: OTTER Project Sites, Oregon, U.S.A.  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperate Forest: OTTER Project Sites, Oregon, U.S.A., 1989-1991 Temperate Forest: OTTER Project Sites, Oregon, U.S.A., 1989-1991 [PHOTOGRAPH] Photograph: Forest in the western coastal range of Oregon (click on the photo to view a series of images from the OTTER sites) Data Citation Cite this data set as follows: Waring, R. H., B. Law, and B. Bond. 1999. NPP Temperate Forest: OTTER Project Sites, Oregon, U.S.A., 1989-1991. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description The Oregon Transect Ecosystem Research Project (OTTER) was conducted to develop a strategy to extrapolate point measurements and estimates of ecosystem structure and function across large geographic regions that varied in climate and vegetation. The full spectrum of remote-sensing data

77

Projection imaging of photon beams by the Cerenkov effect  

SciTech Connect

Purpose: A novel technique for beam profiling of megavoltage photon beams was investigated for the first time by capturing images of the induced Cerenkov emission in water, as a potential surrogate for the imparted dose in irradiated media. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire 2D projection images of Cerenkov emission from a 4 Multiplication-Sign 4 cm{sup 2} 6 MV linear accelerator (LINAC) x-ray photon beam operating at a dose rate of 400 MU/min incident on a water tank with transparent walls. The ICCD acquisition was gated to the LINAC sync pulse to reduce background light artifacts, and the measurement quality was investigated by evaluating the signal to noise ratio and measurement repeatability as a function of delivered dose. Monte Carlo simulations were used to derive a calibration factor for differences between the optical images and deposited dose arising from the anisotropic angular dependence of Cerenkov emission. Finally, Cerenkov-based beam profiles were compared to a percent depth dose (PDD) and lateral dose profile at a depth of d{sub max} from a reference dose distribution generated from the clinical Varian ECLIPSE treatment planning system (TPS). Results: The signal to noise ratio was found to be 20 at a delivered dose of 66.6 cGy, and proportional to the square root of the delivered dose as expected from Poisson photon counting statistics. A 2.1% mean standard deviation and 5.6% maximum variation in successive measurements were observed, and the Monte Carlo derived calibration factor resulted in Cerenkov emission images which were directly correlated to deposited dose, with some spatial issues. The dose difference between the TPS and PDD predicted by Cerenkov measurements was within 20% in the buildup region with a distance to agreement (DTA) of 1.5-2 mm and {+-}3% at depths beyond d{sub max}. In the lateral profile, the dose difference at the beam penumbra was within {+-}13% with a DTA of 0-2 mm, {+-}5% in the central beam region, and 2%-3% in the beam umbra. Conclusions: The results from this initial study demonstrate the first documented use of Cerenkov emission imaging to profile x-ray photon LINAC beams in water. The proposed modality has several potential advantages over alternative methods, and upon future refinement may prove to be a robust and novel dosimetry method.

Glaser, Adam K.; Davis, Scott C.; McClatchy, David M.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

2013-01-15T23:59:59.000Z

78

Superior National Forest Project/Campaign Document  

NLE Websites -- All DOE Office Websites (Extended Search)

Superior National Forest Project/Campaign Document Superior National Forest Project/Campaign Document Summary: This project was an intensive remote sensing and field study of the boreal forest in the Superior National Forest (SNF). The purpose of this experiment was to investigate the ability of remote-sensing data to provide estimates of biophysical properties of ecosystems, such as leaf area index (LAI), biomass, and net primary productivity (NPP). The SNF is mostly covered by boreal forest. Boreal forests were chosen for this project because of their relative taxonomic simplicity, their great extent, and their potential sensitivity to climatic change. Information on the SNF project is available by accessing the SNF pages maintained by the ORNL DAAC at http://daac.ornl.govSNF/summary.html. Table of Contents:

79

Deep Sky Astronomical Image Database Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Deep Sky Astronomical Image Deep Sky Astronomical Image Database Deep Sky Astronomical Image Database Key Challenges: Develop, store, analyze, and make available an astronomical image database of unprecedented depth, temporal breadth, and sky coverage, consisting of images from the seven-year span of the Palomar-Quest and Near-Earth Astroid Tracking (NEAT) transient surveys and the current Palomar Transient Factory (PTF). The database currently has over 13 million images stored on the NERSC Global Filesystem but data from the PTF are accumulating at the rate of about 105TB per year. The challenge is not only archiving the data but processing it in near-real time to observe rare and fleeting cosmic events as they happen so that experimental astronomers can be alerted. Why it Matters: The PTF will probe gaps in the transient phase space and

80

Optimized image acquisition for breast tomosynthesis in projection and reconstruction space  

SciTech Connect

Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomy specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular span, the performance rolled off beyond a certain number of projections, indicating that simply increasing the number of projections in tomosynthesis may not necessarily improve its performance. The best performance for both projection images and tomosynthesis slices was obtained for 15-17 projections spanning an angular arc of {approx}45 deg. - the maximum tested in our study, and for an acquisition dose equal to single-view mammography. The optimization framework developed in this framework is applicable to other reconstruction techniques and other multiprojection systems.

Chawla, Amarpreet S.; Lo, Joseph Y.; Baker, Jay A.; Samei, Ehsan [Department of Radiology and Department of Biomedical Engineering, Duke Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Department of Medical Physics, and Department of Biomedical Engineering, Duke Advanced Imaging Laboratories, Duke University Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Durham, North Carolina 27705 (United States); Department of Radiology, Department of Medical Physics, and Department of Biomedical Engineering, Duke Advanced Imaging Laboratories, Duke University Durham, North Carolina 27705 (United States)

2009-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Irene Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Irene Station, African Weather Bureau Irene Station, African Weather Bureau The photos on this site come from the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Additional photos can be found on the SHADOZ Project Web Site. Photo of the Dobson 89 Instrument The Irene Weather Office Agnes Phahlane sits behind the Dobson and collects Total Ozone Data The lab at the Irene station Cal Archer Prepares an ozonesonde Flight Preparations The balloon is readied The release Back to the SAFARI 2000 Photo Page Index Other Sites: Skukuza, MISR Validation Site | Skukuza, Eddy Covariance Site | C-130 Flight Photos | Sua Pan Site | Irene Weather Station | Fire Studies | Kalahari Transect | Kalahari Transect Sites for Canopy Structure Data | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data

82

Vegetation Collections Project Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Vegetation Collections Vegetation Collections Vegetation Collections Overview Vegetation regulates the flow of numerous biogeochemical cycles, most critically those of water, carbon, and nitrogen; it is also of great importance in local and global energy balances. Vegetation collections data include: Biomass Biome Characteristics Litter Chemistry and Decomposition Geoecology Nutrient Concentration, Profiles, and Turnover Global Fire Emissions, Vegetation, and Leaf Area Index (LAI) Ecosystem Structure and Function Phenoregions Carbon Flux Vegetation Resources The following resources related to Vegetation Collections are maintained by the ORNL DAAC: Global Leaf Area Index Data Net Primary Production Project Get Vegetation Data Find and order data sets: See list of data sets and download data

83

ORNL DAAC BOREAS Follow-On CD-ROM Set, 6 disks  

NLE Websites -- All DOE Office Websites (Extended Search)

BOREAS Follow-On CD-ROM Set, 6 disks Get Data BOREAS Follow-On ProjectCampaign Document Summary: The Boreal Ecosystem-Atmosphere Study (BOREAS) Follow-on project extended and...

84

Data:Ccb58e89-b2a4-4c2a-8551-52daac340c0b | Open Energy Information  

Open Energy Info (EERE)

8e89-b2a4-4c2a-8551-52daac340c0b 8e89-b2a4-4c2a-8551-52daac340c0b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Reading, Massachusetts (Utility Company) Effective date: 2006/07/30 End date if known: Rate name: GREEN CHOICE RATE Sector: Residential Description: pplicability: The GREEN CHOICE RATE is available to all customers receiving service under any rate schedule of the Department. Customers signing up for this optional rate must purchase the rate in blocks of 100 kilowatthours of Renewable Energy Certificates (RECs). Customers may elect to purchase multiple blocks. Source or reference: http://www.rmld.com/Pages/RMLDMA_Ratestab/Green

85

A scaled gradient projection method for the X-ray imaging of solar flares  

E-Print Network (OSTI)

In this paper we present a new optimization algorithm for the reconstruction of X-ray images of solar flares by means of the data collected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The imaging concept of the satellite is based of rotating modulation collimator instruments, which allow the use of both Fourier imaging approaches and reconstruction techniques based on the straightforward inversion of the modulated count profiles. Although in the last decade a greater attention has been devoted to the former strategies due to their very limited computational cost, here we consider the latter model and investigate the effectiveness of a scaled gradient projection method for the solution of the corresponding constrained minimization problem. Moreover, regularization is introduced through either an early stopping of the iterative procedure, or a Tikhonov term added to the discrepancy function, by means of a discrepancy principle accounting for the Poisson nature of the noise affecting th...

Bonettini, S

2013-01-01T23:59:59.000Z

86

BOREAS Project/Campaign Document  

NLE Websites -- All DOE Office Websites (Extended Search)

Selected data and imagery files are available from the ORNL DAAC Web site (http:daac.ornl.gov). Data can be downloaded through FTP, and they are also available on CD-ROM and...

87

OTTER Project/Campaign Document  

NLE Websites -- All DOE Office Websites (Extended Search)

Media: Selected data and imagery are available from the ORNL DAAC Web site (http:daac.ornl.gov). Data can be downloaded through FTP, and they are available on CD-ROM and on...

88

FIFE Project/Campaign Document  

NLE Websites -- All DOE Office Websites (Extended Search)

Selected data and imagery files are available from the ORNL DAAC Web site (http:daac.ornl.gov). Data can be downloaded through FTP, and they are available on CD-ROM and on...

89

Improved visual detection of moving objects in astronomical images using color intensity projections with hue cycling  

E-Print Network (OSTI)

While fully automated methods for detecting faint moving objects in astronomical images - such as Kuiper belt objects (KBOs) - are constantly improving, visual detection still has a role to play especially when the fixed background is cluttered with stars. Color intensity projections (CIPs) using hue cycling - which combines a sequence of greyscale images into a single color image - aids in the visual detection of moving objects by highlighting them using color in an intuitive way. To demonstrate the usefulness of CIPs in detecting faint moving objects a sequence of 16 images from the SuprimeCam camera of the Subaru telescope were combined into a CIPs image. As well has making even faint moving objects easier to visually detect against a cluttered background, CCD artefacts were also more easily recognisable. The new Hyper SuprimeCam for the Subaru telescope - which will allow many short exposure images to be acquired with little dead time between images - should provide ideal data for use with the CIPs algori...

Cover, Keith S

2012-01-01T23:59:59.000Z

90

SAFARI 2000 Project  

NLE Websites -- All DOE Office Websites (Extended Search)

SAFARI 2000 (S.Africa) SAFARI 2000 (S.Africa) The SAFARI 2000 (S2K) Project Overview [SAFARI 2000 Logo] The SAFARI 2000 (S2K) Project was an international science initiative to study the linkages between land and atmosphere processes in the southern African region. In addition, SAFARI 2000 examined the relationship of biogenic, pyrogenic, and anthropogenic emissions and the consequences of their deposition to the functioning of the biogeophysical and biogeochemical systems. This initiative began in 1999 and concluded in 2001, and was built around a number of ongoing, already-funded activities by NASA, the international community, and African nations in the southern African region. Historical data from 1973 through 1995 were compiled as background data. The ORNL DAAC SAFARI 2000 Data archive includes 109 data products from the

91

Data:1cfe4daa-c208-4709-a485-7a325fe669b0 | Open Energy Information  

Open Energy Info (EERE)

cfe4daa-c208-4709-a485-7a325fe669b0 cfe4daa-c208-4709-a485-7a325fe669b0 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Omaha Public Power District Effective date: 2013/01/01 End date if known: Rate name: 236 DUSK TO DAWN LIGHTING 400 watt Sector: Lighting Description: Source or reference: http://ww3.oppd.com/rates/OppdRateManual.pdf#nameddest=110 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

92

Automatic tracking of implanted fiducial markers in cone beam CT projection images  

SciTech Connect

Purpose: This paper describes a novel method for simultaneous intrafraction tracking of multiple fiducial markers. Although the proposed method is generic and can be adopted for a number of applications including fluoroscopy based patient position monitoring and gated radiotherapy, the tracking results presented in this paper are specific to tracking fiducial markers in a sequence of cone beam CT projection images. Methods: The proposed method is accurate and robust thanks to utilizing the mean shift and random sampling principles, respectively. The performance of the proposed method was evaluated with qualitative and quantitative methods, using data from two pancreatic and one prostate cancer patients and a moving phantom. The ground truth, for quantitative evaluation, was calculated based on manual tracking preformed by three observers. Results: The average dispersion of marker position error calculated from the tracking results for pancreas data (six markers tracked over 640 frames, 3840 marker identifications) was 0.25 mm (at iscoenter), compared with an average dispersion for the manual ground truth estimated at 0.22 mm. For prostate data (three markers tracked over 366 frames, 1098 marker identifications), the average error was 0.34 mm. The estimated tracking error in the pancreas data was < 1 mm (2 pixels) in 97.6% of cases where nearby image clutter was detected and in 100.0% of cases with no nearby image clutter. Conclusions: The proposed method has accuracy comparable to that of manual tracking and, in combination with the proposed batch postprocessing, superior robustness. Marker tracking in cone beam CT (CBCT) projections is useful for a variety of purposes, such as providing data for assessment of intrafraction motion, target tracking during rotational treatment delivery, motion correction of CBCT, and phase sorting for 4D CBCT.

Marchant, T. E.; Skalski, A.; Matuszewski, B. J. [Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom and Manchester Academic Health Science Centre, University of Manchester, Manchester M20 4BX (United Kingdom); AGH University of Science and Technology, al. A. Mickiewicza 30, Krakow 30-059 (Poland); School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston PR1 2HE (United Kingdom)

2012-03-15T23:59:59.000Z

93

ORNL DAAC Newsletter Announced  

NLE Websites -- All DOE Office Websites (Extended Search)

semiannual newsletter announces the release of 35 new data sets: Model Archive (1 data set) North American Carbon Program (NACP) (2 data sets) ISLSCP II (1 data set) BigFoot (1...

94

ORNL DAAC - Registration  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Registration Site Registration First (Given) Name(s) Last (Family or Sur) Name(s) Email Confirm Email Password Confirm Password Send Newsletters, Product Announcements, and updates and revisions to data I have ordered. Send only emails concerning updates or revisions to data I have ordered. Mailing Address Phone Number with Area Code (If not in U.S. or Canada, start with + and country code.) Areas of Interest (Check all that apply) -ACCP -BigFoot -BOREAS -BOREAS_FO -CLIMATE -FIFE -FIFE_FO -FLUXNET -HYDRO -ISLSCP II -LAND VAL -LBA -MODELS -MODIS -NACP -NPP -OTTER -PROVE -RIVDIS -RLC -S2K -SNF -SOIL -TransCom -VEG -VEMAP Please solve the following simple math problem: 2 + 2 = Register | Clear Form | Close Window Click here for help. Contact Us | Privacy Policy

95

DAAC Data Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

WebGIS WebGIS is an Internet based technology that enables users to browse, query, and display spatial data using a standard web browser. Tool Link Help Point Gridded...

96

Synchrotron-based coherent scatter x-ray projection imaging using an array of monoenergetic pencil beams  

SciTech Connect

Traditional projection x-ray imaging utilizes only the information from the primary photons. Low-angle coherent scatter images can be acquired simultaneous to the primary images and provide additional information. In medical applications scatter imaging can improve x-ray contrast or reduce dose using information that is currently discarded in radiological images to augment the transmitted radiation information. Other applications include non-destructive testing and security. A system at the Canadian Light Source synchrotron was configured which utilizes multiple pencil beams (up to five) to create both primary and coherent scatter projection images, simultaneously. The sample was scanned through the beams using an automated step-and-shoot setup. Pixels were acquired in a hexagonal lattice to maximize packing efficiency. The typical pitch was between 1.0 and 1.6 mm. A Maximum Likelihood-Expectation Maximization-based iterative method was used to disentangle the overlapping information from the flat panel digital x-ray detector. The pixel value of the coherent scatter image was generated by integrating the radial profile (scatter intensity versus scattering angle) over an angular range. Different angular ranges maximize the contrast between different materials of interest. A five-beam primary and scatter image set (which had a pixel beam time of 990 ms and total scan time of 56 min) of a porcine phantom is included. For comparison a single-beam coherent scatter image of the same phantom is included. The muscle-fat contrast was 0.10 {+-} 0.01 and 1.16 {+-} 0.03 for the five-beam primary and scatter images, respectively. The air kerma was measured free in air using aluminum oxide optically stimulated luminescent dosimeters. The total area-averaged air kerma for the scan was measured to be 7.2 {+-} 0.4 cGy although due to difficulties in small-beam dosimetry this number could be inaccurate.

Landheer, Karl [Ottawa Medical Physics Institute and Ottawa-Carleton Institute for Physics, Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6 (Canada); Johns, Paul C. [Ottawa Medical Physics Institute and Ottawa-Carleton Institute for Physics, Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6 (Canada); Department of Radiology, University of Ottawa (Canada)

2012-09-15T23:59:59.000Z

97

INDUCED POLARIZATION WITH ELECTROMAGNETIC COUPLING: 3D SPECTRAL IMAGING THEORY: EMSP PROJECT NO. 73836  

Science Conference Proceedings (OSTI)

The principal objective of the project was to develop a non-invasive imaging technique, based on spectral induced polarization (SIP), to characterize in-situ distribution of organic and inorganic contaminants. This was to be an advance over a similar technique offered by the DC resistivity method. The motivation for the choice of IP over resistivity is rooted in the fact that resistivity response is governed by volume distributions of electrical parameters and therefore is relatively insensitive to small changes contributed by the presence of contaminants. IP response on the other hand is governed by the electrochemical properties of the rock-grain pore-fluid interface, which can be significantly altered by the incoming contaminant (ions) over long residence times. Small concentrations of contaminants are the rule rather than the exception thus, the detection threshold for IP, which is more sensitive to small concentrations, is much lower than for resistivity (IP field threshold for PCE/TCE is about 1mg/g). Additionally, the observation that IP depends on the chemistry of the contaminants provided the motivation that a spectral IP response could lead to a database of identifying signatures by which contaminants can be discriminated.

Morgan, F. Dale; Lesmes, David

2004-12-31T23:59:59.000Z

98

Title: PedSono -High Frequency Pediatric Ultrasound Imaging Systems Project Team  

E-Print Network (OSTI)

Ultrasonic Transducer Technology Abstract: Non-invasive imaging of internal organs without radiation exposure

Mel, Bartlett

99

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

100

A subspace method for projective reconstruction from multiple images with missing data  

Science Conference Proceedings (OSTI)

In this paper, we consider the problem of projective reconstruction based on the subspace method. Unlike existing subspace methods which require that all the points are visible in all views, we propose an algorithm to estimate projective shape, projective ... Keywords: Factorization method, Multiple views, Structure from motion, Subspace method

W. K. Tang; Y. S. Hung

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

FIFE Follow-On Project/Campaign Document  

NLE Websites -- All DOE Office Websites (Extended Search)

Selected data and imagery files are available from the ORNL DAAC Web site (http:daac.ornl.gov). Data can be downloaded through FTP, and they are available on CD-ROM and on...

102

NASA PLDS Project  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA's land-science community. The functions of PLDS have now been transferred to the ORNL DAAC, the U.S. Geological Survey's Earth Resources Observation System (EROS) Data...

103

Similarity motion estimation and active tracking through spatial-domain projections on log-polar images  

Science Conference Proceedings (OSTI)

To cope with the huge amount of visual data in the environment, foveal sensing is not only an elegant biological solution, but also an appropriate mechanism in computer-based vision of artificial agents such as robots. An extremely important visual behavior ... Keywords: active tracking, active vision, log-polar mapping, motion estimation, projections

V. Javier Traver; Filiberto Pla

2005-02-01T23:59:59.000Z

104

Projecting independent components of SPECT images for computer aided diagnosis of Alzheimer's disease  

Science Conference Proceedings (OSTI)

Finding sensitive and appropriate technologies for early detection of the Alzheimer's disease (AD) are of fundamental importance to develop early treatments. Single Photon Emission Computed Tomography (SPECT) images are non-invasive observation tools ... Keywords: Alzheimer's disease, Computer aided diagnosis, Independent Component Analysis, Supervised learning, Support vector machine

I. lvarez Illn; J. M. Grriz; J. Ramrez; D. Salas-Gonzalez; M. Lpez; F. Segovia; P. Padilla; C. G. Puntonet

2010-08-01T23:59:59.000Z

105

ORNL DAAC Data Set Retired  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline Data (NBCD 2000), U.S.A., 2000, due to the release of a new version of the data set, NACP Aboveground Biomass and Carbon Baseline Data, Version. 2 (NBCD 2000), U.S.A.,...

106

ORNL DAAC Who We Are  

NLE Websites -- All DOE Office Websites (Extended Search)

FIFE Follow-On LBA (Amazon) NACP (North America) OTTER (Oregon) SAFARI 2000 (S.Africa) SNF (Minnesota) Validation BIGFOOT Canopy Chemistry (ACCP) EOS Land Validation...

107

Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Print Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in the "water window" (300-500 eV). Nanomagnetism studies require the energy range characteristic of iron, cobalt, and nickel (600-900 eV). Mid- and far-infrared (energies below 1 eV) microprobes using synchrotron radiation are being used to address problems such as chemistry in biological tissues, chemical identification and molecular conformation, environmental biodegradation, mineral phases in geological and astronomical specimens, and electronic properties of novel materials. Infrared synchrotron radiation is focused through, or reflected from, a small spot on the specimen and then analyzed using a spectrometer. Tuning to characteristic vibrational frequencies serves as a sensitive fingerprint for molecular species. Images of the various species are built up by raster scanning the specimen through the small illuminated spot.

108

LBA-ECO Image and Land Cover Transition Data Sets Published  

NLE Websites -- All DOE Office Websites (Extended Search)

Image and Land Cover Transition Data Sets Published Image and Land Cover Transition Data Sets Published The ORNL DAAC announces the publication of image and land cover transition data sets for Mato Grosso, Brazil, for the years 2000-2001 and 2003-2004. These data sets were prepared by D.A. Roberts, I. Numata, K.W. Holmes, G.T. Batista, T. Krug, A.L. Monteiro, R.L. Powell, and O.A. Chadwick. LBA-ECO ND-01 Fractional Land Cover Images, Rondonia, Brazil: 1984-2000. This data set provides fractional land cover type images for shade, green vegetation (GV), non-photosynthetic vegetation (NPV), and soil for the regions of JiParana, PortoVelho, Luiza, Ariquemes, and Cacoal in the state of Rondonia, Brazil, for the period 1984 to 2000. The images were derived with a spectral mixture analysis (SMA) of Landsat Thematic Mapper (TM) time

109

Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part II. Implementation on abdomen and thorax phantoms using cross sectional CT images and scanned projection radiograph images  

SciTech Connect

Purpose: To estimate attenuation using cross sectional CT images and scanned projection radiograph (SPR) images in a series of thorax and abdomen phantoms. Methods: Attenuation was quantified in terms of a water cylinder with cross sectional area of A{sub w} from both the CT and SPR images of abdomen and thorax phantoms, where A{sub w} is the area of a water cylinder that would absorb the same dose as the specified phantom. SPR and axial CT images were acquired using a dual-source CT scanner operated at 120 kV in single-source mode. To use the SPR image for estimating A{sub w}, the pixel values of a SPR image were calibrated to physical water attenuation using a series of water phantoms. A{sub w} and the corresponding diameter D{sub w} were calculated using the derived attenuation-based methods (from either CT or SPR image). A{sub w} was also calculated using only geometrical dimensions of the phantoms (anterior-posterior and lateral dimensions or cross sectional area). Results: For abdomen phantoms, the geometry-based and attenuation-based methods gave similar results for D{sub w}. Using only geometric parameters, an overestimation of D{sub w} ranging from 4.3% to 21.5% was found for thorax phantoms. Results for D{sub w} using the CT image and SPR based methods agreed with each other within 4% on average in both thorax and abdomen phantoms. Conclusions: Either the cross sectional CT or SPR images can be used to estimate patient attenuation in CT. Both are more accurate than use of only geometrical information for the task of quantifying patient attenuation. The SPR based method requires calibration of SPR pixel values to physical water attenuation and this calibration would be best performed by the scanner manufacturer.

Wang Jia; Christner, Jodie A.; Duan Xinhui; Leng Shuai; Yu Lifeng; McCollough, Cynthia H. [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

2012-11-15T23:59:59.000Z

110

Image  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Domestic Source Recovery- Domestic Source Recovery- FY 2013 Program or Field Office: Los Alamos Site Office (DOE/NNSA) Locationls) ICity/County/State): Los Alamos, NM Proposed Action Description: Submit by E-mail J The DOE/NNSA's Off-Site Source Recovery Project (OSRP), managed at Los Alamos National Laboratory (LANL), proposes to recover up to 4000 domestic actinide and non-actinide sealed sources in Fiscal Year (FY) 2013 as it continues to implement NNSA's Global Threat Reduction Initiative (GTRI). Based on performance planning for FY 2013, LANL has identified that sufficient handling and storage facilities exist at LANL to support OSRP operations. The OSRP Program is the same as that described in the 2008 LANL SWEIS (DOE/EIS-0380; May 2008). Program and activities must comply with the LANL Hazardous Waste Permit (issued December 2010 and subsequent revisions). The Permit has specific

111

Image  

NLE Websites -- All DOE Office Websites (Extended Search)

MARTINI:'!, MARTINI:'!, Governor JOHN A SANCHI":Z Lieutenant Governor NEW MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.nmenv.state.nm.us CERTIFIED MAIL - RETURN RECEIPT REQUESTED October 13,2013 Jose R. Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 Carlsbad, New Mexico 88221-3090 M. Farok Sharif, Project Manager Nuclear Waste Partnership LLC P.O. Box 2078 Carlsbad, New Mexico 88221-5608 RE: CLASS 1 MODIFICATION, AUGUST 29, 2013 WIPP HAZARDOUS WASTE FACILITY PERMIT EPA I.D. NUMBER NM4890139088 Dear Messrs. Franco and Sharif: RYAN rLYNN Cabinet Secretary Designate BUTCH TON(iATI: Deputy Secretary TOM BLAINE, P.E.

112

Image  

NLE Websites -- All DOE Office Websites (Extended Search)

MA!n!NEZ MA!n!NEZ Governor JOHN A, SANCHEZ Lieutenant Governor July 29, 2013 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 NEW MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505·6303 Phone (505) 476·6000 Fax (505) 476·6030 www.nmenv.state.nm.us CERTIFIED MAIL' RETURN RECEIPT REQUESTED M. Farok Sharif, Project Manager Nuclear Waste Partnership LLC P.O. Box 2078 Carlsbad, New Mexico 88221·5608 Carlsbad, New Mexico 88221·3090 RE: NOTICE OF ADMINISTRATIVE COMPLETENESS CLASS 3 PERMIT MODIFICATION REQUEST WIPP HAZARDOUS WASTE FACILITY PERMIT EPA 1.0. NUMBER NM4890139088 Dear Messrs. Franco and Sharif: !{ Y AN FI,YNN Cabinet Secrel,lry-De.sigllate BUTCH TONGAn:

113

Image  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONMENTAL POLICY ACT (NEPAl ENVIRONMENTAL POLICY ACT (NEPAl RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Brief Description of Proposed Action: The proposed activities would demolish Cottages formerly utilized as summer housing identified as Building 368, Units 1 - 30, and dispose of materials according to classification as hazardous or clean construction debris. Each cottage is approximately 1,000 square feet. These structures were constructed in 1968 and are beyond their useful life. The scope of work for this project would include characterization, packaging and disposal of all debris according to current practices. B. Number and Title of the Categorical Exclusion Being Applied: B 1.23 Demolition/disposal of buildings C. Regulatory Reguirements in 10 CFR 1021.410 (b): (See full text in regulation.)

114

Image  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTRACT!D CODE IPAU!£ 0, PAGeS 1 10 Z, AMENOMENT/MOO[PICATIQN NO, 3, EFI'tECT!Va DATE 4. REQU!SmoNtPuRCHASE'REQ. NO. 15, PROJECT NO. ("appllen!)I,,) 178. See BIQC¥ 16C 1080008480 6: I$SueD- BY COOE 00518 7. ADMINJSTERED ay lffothOrffum Item 6) CODE 100518 Oak Rl.

115

Image  

NLE Websites -- All DOE Office Websites (Extended Search)

AM!;NDMENT OFSOI.ICFl'ATlONlMPDIFICATION OF CONTRACT AM!;NDMENT OFSOI.ICFl'ATlONlMPDIFICATION OF CONTRACT 2. AMt;N.DMENT/MOD!FICATION' NO, S', EFFECTIVE DAlE 179 See Bl'ock 16C 6.ISSUEUBY COPE 00518 Oak Ridge U~S. Departmerit of Erergy P,Q. Box. 2001 Oak Ridge TN 37831 8. NAME ANDADOR6S$ OF CONTRACTOR (No" Wrw/. ;JOWl/y. stllffl IiWJ ZIP Code) AK RIDGE ASSOCIA'rED UNIVERSITIES, o p .0. BOX 117 o 11K RIDGE TN 37830-6.218 INC. j 1. CONTRACT 10 CqDE I PAGE Of PAGES 11 5 ' 4, HEQUlSrTlONIPURCHASE ,REO:. NO. r PROJECT NO, flf applfcabla) lCSCOO8480 7. ADMINISTEREO BY (If QllletlharJ ltein 6) CODE 100518 Oak Ridg", U.S. ~partment of Energy P.O. Box 200;1. Oak Ridge 'l'N 37831 1:2 GA. AMENDMENT OHlOLICjTAT10N NO. 98. DATED '(SEE ITEM 11) x H}A, \l400IFICATION {)FCO>":'lu,AC,TrORDER NQ,

116

Image  

NLE Websites -- All DOE Office Websites (Extended Search)

SOLICWfATION/MODIFICATlON OF CONTRACT SOLICWfATION/MODIFICATlON OF CONTRACT 2< AMENDMt;NT/MODIFfCAnON NO, 3.'EFFEC1fVE DArE 202 See Block 16C 6. ISSUED BY CODE 00518 Oak Ridge U.S. Department of Energy P.O. Box 2001 Oak Ridge 'l'N 37831 8. N~MEAND ADDRE~ OF CONTRACTOR INc..,~, emmly, SUlf9andljpCode} AK RIDGE Q P Q .0. BOX AKRIDGE ASSOCIATED UNIVERSITIES, INC. 117 TN 37830-6218 1" CONlRACTIP WDE I PAG!±: OF PAGES 1 I 1 4. Re:aUiS!ilON:!PURCHASE REQ. NQ. IS. PROJECT NO. (lfspp/kJabfe) 10SCQ0874 7 Itt0tl'\ 5 7. ADMINlSTEf{EO BY (If otn"!f th$tf Item 6) COOE 100518 Oak Ridge U.S. Department of Energy P.O. Box 2001 Oak Ridge TN 37831 .\'Q ';SA. AMENDMENT OF SOUq.ITATION NO . 9S~ DATED (SEE ITEM tt) x fOA. MQD1F1CAT)ON 'OF cemMer/ORDER NO, DE-AC05-

117

Project information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information Amistad Project (Texas) Collbran Project (Colorado) Colorado River Storage Project Dolores Project (Colorado) Falcon Project (Texas) Provo River Project (Utah)...

118

Cell Image Visualization  

Science Conference Proceedings (OSTI)

... Biological cell image analysis projects include methods to measure cell segmentation accuracy and new segmentation methods to track live cells. ...

2011-06-17T23:59:59.000Z

119

Event Images from ArgoNeuT: Mini LArTPC Exposure to Fermilab's NuMI Beam Project  

DOE Data Explorer (OSTI)

ArgoNeuT is a joint NSF/DOE R&D project at Fermilab to expose a small-scale liquid argon time projection chamber (LArTPC) to the NuMI neutrino beam. Liquid argon detectors are an exciting class of neutrino experiments because they can provide bubble chamber quality images and excellent background rejection. In these detectors, neutrinos passing through a large volume of argon interact with an argon atom, producing light and ionization particles. An electric field within the detector causes these charged particles to drift through the volume of argon, leaving a path of ionization electrons. As they drift, the ionization electrons induce current in two wire planes and are collected at a third plane. Measurement of the signals created within the wires, the position of the wires within the planes, the drift velocity of the ionization particles, and time of drift (from scintillation light or elsewhere) provides all the information needed for 3D reconstruction of the event. ArgoNeuT's neutrino source is the NuMI (Neutrinos at the Main Injector) beam. The beam passes through the MINOS (Main Injector Neutrino Oscillation search) near and far detectors, positioned at 1 km and 735 km from the target at Fermilab. ArgoNeuT is located at Fermilab upstream of the MINOS near detector, and is calibrated using muons that traverse the chamber and penetrate several layers into MINOS[Copied with editing from http://t962.fnal.gov/index.html]. A small selection of event images are made available.

120

SAR Imagery: Rain Forests, South America  

NLE Websites -- All DOE Office Websites (Extended Search)

Images of Rain Forests in South America Images of Rain Forests in South America The ORNL DAAC now offers a CD-ROM volume containing Synthetic Aperture Radar (SAR) imagery of the rain forest region of South America, including the Amazon Basin. The images were collected during 1995-1996 as part of an international project led by the National Space Development Agency of Japan (NASDA) to map the world's rain forest regions to high resolution by means of SAR. The 4-disc volume--entitled "JERS-1 SAR Global Rain Forest Mapping Project: Vol. AM-1, South America"--is made available under the auspices of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). These CDs can be ordered through the ORNL DAAC at http://daac.ornl.gov/prepaks.shtml (look for the "LBA" listings).

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation of the CO Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford University, School of Earth Sciences U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Project Benefits * Technical Status * Imaging at mm- to micron-scales using CT - Permeability measurements and application of the Klinkenberg effect - Molecular Dynamics simulations for permeability and viscosity estimates * Accomplishments to Date * Summary Stanford University 3 Benefit to the Program * Carbon Storage Program major goals

122

Split image optical display  

DOE Patents (OSTI)

A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

Veligdan, James T. (Manorville, NY)

2007-05-29T23:59:59.000Z

123

Rigollier C., Wald L., 1999. The HelioClim Project: from satellite images to solar radiation maps. In Proceedings of the ISES Solar World Congress 1999, Jerusalem, Israel, July 4-9, 1999, volume I, pp 427-431.  

E-Print Network (OSTI)

from satellite images. Solar Energy, 56, 3, 207212, 1996. Cano D., Monget J.M., Albuisson M meteorological satellites data. Solar Energy, 37, 3139, 1986. Diabaté L., Demarcq H., MichaudRegas N by geostationary satellites : the Heliosat Project. International Journal of Solar Energy, 5, 261278

Paris-Sud XI, Université de

124

NIST Hyperspectral Image Projector (HIP)  

Science Conference Proceedings (OSTI)

... In DLP systems, the projected image is made from a composite of grayscale images representing each of the RGB colors (red, green, and blue). ...

2013-08-02T23:59:59.000Z

125

2013 Global Carbon Project  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Global Carbon Project 2013 Global Carbon Project DOI: 10.3334/CDIAC/GCP_2013_V1.1 image 2013 Budget v1.1 (November 2013) image 2013 Budget v1.3 (December 2013, contains typographical corrections to 2011 Australia emissions from v1.1 and corrections to the 2011 Australia transfer and consumption emissions from v1.2) image image image image Global Carbon Dioxide Emissions to Reach 36 Billion Tonnes in 2013 Global emissions of carbon dioxide from the combustion of fossil fuels will reach 36 billion tonnes for the year 2013. "This is a level unprecedented in human history," says CSIRO's Dr Pep Canadell, Executive-Director of the Global Carbon Project (GCP) and co-author of a new report. Global emissions due to fossil fuel alone are set to grow this year at a slightly lower pace of 2.1% than the average 3.1% since 2000, reaching 36

126

ORNL DAAC Data Set Change Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Biome Gridded Data Revised Data Set: NPP Multi-Biome: Gridded Estimates for Selected Regions Worldwide, 1989-2001, Revision1 Effective Date of Revision: February 7, 2003...

127

ORNL DAAC, Vegetation Data, March 10, 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

data pertaining to terrain and soils, water resources, forestry, vegetation, agriculture, land use, wildlife, air quality, climate, natural areas, and endangered species at...

128

ORNL DAAC, global soil respiration rates  

NLE Websites -- All DOE Office Websites (Extended Search)

W. Raich and W. H. Schlesinger, the newly released data set contains soil respiration rates from sites in terrestrial and wetland ecosystems as reported in scientific literature...

129

LBL Whole Frog Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Whole Frog Project Summary Whole Frog Project Summary WILLIAM JOHNSTON, WING NIP, CRAIG LOGAN Imaging and Distributed Computing Group Information and Computing Sciences Division Lawrence Berkeley Laboratory Berkeley, CA 94720 Publication number: LBL-32476 Credits Sophisticated image-based applications have the potential to play an important part in enhancing curriculum in a variety of disciplines, both cultural and scientific, and in providing K-12 students with the involvement and motivation to learn a wide variety of computer skills. An example of this is our ``Whole Frog'' project. In this project the idea is two fold: First is to demonstrate the utility of image based applications in biological sciences through a demonstration of whole body, 3D imaging of anatomy as a curriculum tool; and second, to introduce the concepts of

130

ATP Project Brief - 00-00-6033  

Science Conference Proceedings (OSTI)

Project Brief. Open Competition 1 - Information Technology. Automated Wave-Equation Imaging for Oil and Gas Exploration. ...

131

Multimedia from the U.S. Extended Continental Shelf Project  

DOE Data Explorer (OSTI)

This website provides images, videos, graphics, and maps illustrating concepts and events related to the project.

132

Environment/Climate Programs/Projects in PML  

Science Conference Proceedings (OSTI)

Environment/Climate Programs/Projects in PML. Aperture area measurements. Applied spectroradiometry and imaging metrology. ...

2010-10-05T23:59:59.000Z

133

Synthetic stereoscopic panoramic images  

Science Conference Proceedings (OSTI)

Presented here is a discussion of the techniques required to create stereoscopic panoramic images. Such images allow interactive exploration of 3D environments with stereoscopic depth cues. If projected in a surround display environment they can engage ...

Paul Bourke

2006-10-01T23:59:59.000Z

134

Project Rulison  

Office of Legacy Management (LM)

Rulison Rulison 1970 Environmerstal Surveillance Summary Report J - - Colorado Department of Health DIVISION OF OCCUPATIONAL AND RADIOLOGICAL HEALTH DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. STATE OF COLORADO P R O J E C T R U L I S O N Environments 1 S u r v e i l l a n c e Summary R e p o r t C o l o r a d o D e p a r t m e n t o f H e a l t h D i v i s i o n o f O c c u p a t i o n a l and R a d i o l o g i c a l 3 e a l t h This page intentionally left blank FOREWORD Project Rulison is an experimental Plowshare project undertaken cooperatively by the Atomic Energy Commission (AEC) and the Department of Interior for the government, and Austral Oil Company and CER Geo- nuclear Corporation for private industry. As required by law, the AEC

135

A Novel Passive Millimeter Imager for Broad-Area Search - Final Report on Project PL09-NPMI-PD07 (PNNL-55180)  

SciTech Connect

This report describes research and development efforts toward a novel passive millimeter-wave (mm-wave) electromagnetic imaging device for broad-area search. It addresses the technical challenge of detecting anomalies that occupy a small fraction of a pixel. The purpose of the imager is to pinpoint suspicious locations for cuing subsequent higher-resolution imaging. The technical basis for the approach is to exploit thermal and polarization anomalies that distinguish man-made features from natural features.

Tedeschi, Jonathan R.; Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.; Harris, Robert V.; Hall, Thomas E.; Hatchell, Brian K.; Knopik, Clint D.; Lechelt, Wayne M.; McMakin, Douglas L.; Mendoza, Albert; Severtsen, Ronald H.; Valdez, Patrick LJ

2011-12-31T23:59:59.000Z

136

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart: project timeline - Project Milestones - Budget - Bibliography * Thank you 29 30 Organization Chart * Project team: Purdue University - Dr. Brenda B. Bowen: PI, student...

137

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Ketzin Collaboration Ketzin Collaboration ESD-09-056 Barry Freifeld Earth Sciences Division Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and objectives * Success Criteria * Technical Status * Latest developments in Integrated Monitoring * Summary and Lessons Learned 3 Image from: www.co2ketzin.de 4 Benefit to the Program * Program goal being addressed: - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * The Ketzin collaboration leverages information gained through the mid-scale geological sequestration experiment in Ketzin, Germany.

138

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Geodesy and Geochemistry Space Geodesy and Geochemistry Applied to Monitoring and Verification of Carbon Capture and Storage Award # DE-FE0002184 Peter Swart University of Miami Tim Dixon University of South Florida U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * What is the Award For? * What Research Work is being Supported? * Geochemical Research What is the Award For? * Provides Support for the Training of Two Graduate Students - Student 1: Involved in analysis of SAR images - Student 2: Involved in modeling of sub-surface geochemistry and application of models for policy decisions

139

Improved resolution and reduced clutter in ultra-wideband microwave imaging using cross-correlated back projection: experimental and numerical results  

Science Conference Proceedings (OSTI)

Microwave breast cancer detection is based on the dielectric contrast between healthy and malignant tissue. This radar-based imaging method involves illumination of the breast with an ultra-wideband pulse. Detection of tumors within the breast is achieved ...

S. Jacobsen; Y. Birkelund

2010-01-01T23:59:59.000Z

140

Project Accounts  

NLE Websites -- All DOE Office Websites (Extended Search)

» Project Accounts » Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the project account are traceable back to the individual who used the project account to perform those actions via gsisshd accounting logs. Requesting a Project Account PI's, PI proxies and project managers are allowed to request a project account. In NIM do "Actions->Request a Project Account" and fill in the form. Select the repository that the Project Account is to use from the drop-down menu, "Sponsoring Repository". Enter the name you want for the account (8 characters maximum) and a description of what you will use the account for and then click on the "Request Project Account" button. You

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Project 244  

NLE Websites -- All DOE Office Websites (Extended Search)

PROJECT PARTNER Advanced Technology Systems, Inc. Pittsburgh, PA PROJECT PARTNERS Ohio University Athens, OH Texas A&M University-Kingsville Kingsville, TX WEBSITES http:...

142

Projects | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

and Conferences Supporting Organizations Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Projects Projects 1-10 of 180 Results Prev...

143

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit...

144

Soils Collections Project Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Soil Collections Soil Collections Soil Collections Overview Soil covers a major portion of the Earth's surface, and is an important natural resource that either directly or indirectly supports most of the planet's life. Soil is a mixture of mineral and organic materials plus air and water. The contents of soil vary by location and are constantly changing. The ORNL DAAC Soil Collections archive contains data on the physical and chemical properties of soils, including: soil carbon and nitrogen soil water-holding capacity soil respiration soil texture Most data sets are globally gridded, while a few are of a regional nature. Get Soils Data Find and order data sets: See list of data sets and download data Browse Soils Data Holdings by selected attributes Retrieve Soils data by FTP browse

145

Argonne's Pilot Electric Vehicle Charging Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Pilot Electric Vehicle Charging Project solar array and charging station Solar array and charging station. View larger image. As part of Argonne's continuing efforts to...

146

Public Safety/Security Programs/Projects in PML  

Science Conference Proceedings (OSTI)

Public Safety/Security Programs/Projects in PML. Biomagnetic Imaging Standards and Microsystems. Calibration of Beta ...

2010-10-05T23:59:59.000Z

147

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Frequency Comb, Ultrafast Laser. ...

148

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Iron-Based Superconductors. Description ...

149

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Space Weather Forecasts. Description ...

150

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Organic Solar Power. Description ...

151

Ferroelectric optical image comparator  

DOE Patents (OSTI)

A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image. 7 figures.

Butler, M.A.; Land, C.E.; Martin, S.J.; Pfeifer, K.B.

1993-11-30T23:59:59.000Z

152

Ferroelectric optical image comparator  

DOE Patents (OSTI)

A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image.

Butler, Michael A. (Albuquerque, NM); Land, Cecil E. (Albuquerque, NM); Martin, Stephen J. (Albuquerque, NM); Pfeifer, Kent B. (Los Lunas, NM)

1993-01-01T23:59:59.000Z

153

Introductory Talk: Whole Frog Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Introductory Talk: Whole Frog Project Introductory Talk: Whole Frog Project Introduction Scientific Visualization The Technique for Acquiring and Processing the Frog Data Examples of 3D Reconstructions Virtual Frog Dissection over the Web INTRODUCTION Dual Purpose: + Education . Introduce the concepts of modern, computer based 3D visualization Modeling and displaying 3D structures directly from 3D images obtained, for example, from MRI imaging (biological specimens), X-ray CT imaging (industrial imaging of non-biological objects), and direct generation from mathematical descriptions, is an important aspect of visualization. . Demonstrate the power of whole body, 3D imaging of anatomy The education goal of the Whole Frog Project is to provide high school biology classes the ability to explore the anatomy of a frog by

154

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image 150 DPI Image 300 DPI Image . Title: Nanotechnology; Biotechnology/Health; Nanocrystals; Hwang. ...

155

SNAP Image Gallery  

NLE Websites -- All DOE Office Websites (Extended Search)

Images Images Cutaway image of SNAP A cutaway illustration of SNAP showing some of the interior optics. Cutaway image of SNAP A computer generated cutaway illustration of SNAP Cutaway image of SNAP's primary mirror A computer generated cutaway illustration of SNAP's primary mirror image of SNAP spacecraft A computer generated illustration of the SNAP spacecraft computer generated image of SNAP A computer generated illustration of SNAP Before-and-after pictures (and Hubble Space Telescope picture) of a high-redshift supernovae discovered by the Supernova Cosmology Project in March, 1998. Before-and-after pictures (and Hubble Space Telescope picture) of a high-redshift supernovae discovered in March, 1998. This observaton showed that the expansion of the universe was accelerarting. Credit: High Redshift Supernova Search Supernova Cosmology Project

156

VEMAP Data Release, Dec. 13, 2000  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Release, Dec. 13 The ORNL DAAC announces the release of data from the VegetationEcosystem Modeling and Analysis Project (VEMAP). VEMAP is an international project studying...

157

Silver Peak Innovative Exploration Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Innovative Exploration Project Geothermal Project Innovative Exploration Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Silver Peak Innovative Exploration Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The scope of this three phase project includes tasks to validate a variety of innovative exploration and drilling technologies which aim to accurately characterize the geothermal site and thereby reduce project risk. Phase 1 exploration will consist of two parts: 1) surface and near surface investigations and 2) subsurface geophysical surveys and modeling. The first part of Phase 1 includes: a hyperspectral imaging survey (to map thermal anomalies and geothermal indicator minerals), shallow temperature probe measurements, and drilling of temperature gradient wells to depths of 1000 feet. In the second part of Phase 1, 2D & 3D geophysical modeling and inversion of gravity, magnetic, and magnetotelluric datasets will be used to image the subsurface. This effort will result in the creation of a 3D model composed of structural, geological, and resistivity components. The 3D model will then be combined with the temperature data to create an integrated model that will be used to prioritize drill target locations.

158

Science Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Argonne Science Project Ideas! Our Science Project section provides you with sample classroom projects and experiments, online aids for learning about science, as well as ideas for Science Fair Projects. Please select any project below to continue. Also, if you have an idea for a great project or experiment that we could share, please click our Ideas page. We would love to hear from you! Science Fair Ideas Science Fair Ideas! The best ideas for science projects are learning about and investigating something in science that interests you. NEWTON has a list of Science Fair linkd that can help you find the right topic. Toothpick Bridge Web Sites Toothpick Bridge Sites! Building a toothpick bridge is a great class project for physics and engineering students. Here are some sites that we recommend to get you started!

159

FY10 LDRD Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

0 LDRD Projects 0 LDRD Projects 2010 Projects Page 1 LDRD Proj. No. Project Title P.I. Dept./Bldg. 07-005 Sensitive Searches for CP-Violation in Hadronic Systems Semertzidis, Y. PHYS/510A 08-002 Strongly Correlated Systems: From Graphene to Quark-Gluon Plasma Kharzeev, D. & Tsvelik, A. PHYS/CMP 08-004 Getting to Know Your Constituents: Studies of Partonic Matter at the EIC Vogelsang, W. PHYS/510A 08-005 Development of the Deuteron EDM Proposal Semertzidis, Y. PHYS/510A 08-008 Development of a Small Gap Magnets and Vacuum Chamber for eRHIC Litvinenko, V. C-AD/817 08-022 Novel Methods for Microcrystal Structure Determination at NSLS and NSLS-II Orville, A. M. BIO/463 08-025 Combined PET/MRI Multimodality Imaging Probe Schlyer, D. Med/490 08-028 Genomic DNA Methylation: The Epigenetic Response of Arabidopsis Thaliana Genome

160

Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Spectrographic imaging system  

DOE Patents (OSTI)

An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.

Morris, Michael D. (Ann Arbor, MI); Treado, Patrick J. (Ann Arbor, MI)

1991-01-01T23:59:59.000Z

162

Pediatric cardiovascular interventional devices: effect on CMR images at 1.5 and 3 Tesla  

E-Print Network (OSTI)

with SPIDER: steady-state projection imaging with dynamicMaximum intensity projection (MIP) in the coronal planemaximum intensity projections, coronal plane, arterial

Khan, Sarah N; Rapacchi, Stanislas; Levi, Daniel S; Finn, J

2013-01-01T23:59:59.000Z

163

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit to the Program * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * This research project develops a reservoir scale CO 2 plume migration model at the Sleipner project, Norway. The Sleipner project in the Norwegian North Sea is the world's first commercial scale geological carbon storage project. 4D seismic data have delineated the CO 2 plume migration history. The relatively long history and high fidelity data make

164

OpenEI:Projects | Open Energy Information  

Open Energy Info (EERE)

Projects are focused efforts to improve some piece of OpenEI. Each Projects are focused efforts to improve some piece of OpenEI. Each effort is coordinated via one or more project pages within the "OpenEI:" wiki namespace. Anyone is free to participate in any projects. If you'd like to start an OpenEI Project, simply create a new project page and link to it in the "Active Projects" section below. OpenEI Projects are largely based on the concept of Wikiprojects in Wikipedia. Active Projects Motion Charts - describes how OpenEI admins can create widgets for motion charts Geographic Pages - developing perfect "place energy profile" pages in OpenEI. Images - collecting energy-related images in the OpenEI wiki. Public Resources - identifying energy datasets and other digital resources that are already public and could be made available in OpenEI.

165

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image 150 DPI Image 300 DPI Image . Title: Quantum Physics; Quantum Communications; Ultrafast Photon Detector; Nam. ...

166

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image 150 DPI Image 300 DPI Image . Title: Energy; Fossil Fuels;Distillation Curves for Complex Fuel Mixtures. ...

167

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image 150 DPI Image 300 DPI Image . Title: Scanning Electron Microscope with Spin Polarization Analysis. ...

168

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image 150 DPI Image 300 DPI Image . Title: Metrology, Basic Units; Mass; Electronic Kilogram. Description ...

169

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... nist.gov. 72 DPI Image 150 DPI Image 300 DPI Image . Title: Public safety & Smart Grid. Description: Electrical engineer ...

170

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline I. Benefits II. Project Overview III. Technical Status A. Background B. Results IV. Accomplishments V. Summary 3 Benefit to the Program * Program goals. - Prediction of CO 2 storage capacity. * Project benefits. - Workforce/Student Training: Support of 3 student GAs in use of multiphase flow and geochemical models simulating CO 2 injection. - Support of Missouri DGLS Sequestration Program. 4 Project Overview: Goals and Objectives Project Goals and Objectives. 1. Training graduate students in use of multi-phase flow models related to CO 2 sequestration. 2. Training graduate students in use of geochemical models to assess interaction of CO

171

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Coal's Center for Coal's FY10 Carbon Sequestration Peer Review February 8 - 12, 2010 2 Collaborators * Tissa Illangasekare (Colorado School of Mines) * Michael Plampin (Colorado School of Mines) * Jeri Sullivan (LANL) * Shaoping Chu (LANL) * Jacob Bauman (LANL) * Mark Porter (LANL) 3 Presentation Outline * Benefit to the program * Project overview * Project technical status * Accomplishments to date * Future Plans * Appendix 4 Benefit to the program * Program goals being addressed (2011 TPP): - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefit: - This project is developing system modeling capabilities that can be used to address challenges associated with infrastructure development, integration, permanence &

172

Project 364  

NLE Websites -- All DOE Office Websites (Extended Search)

765-494-5623 lucht@purdue.edu DEVELOPMENT OF NEW OPTICAL SENSORS FOR MEASUREMENT OF MERCURY CONCENTRATIONS, SPECIATION, AND CHEMISTRY Project Description The feasibility of...

173

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State...

174

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background information - Project Concept (MICP) - Ureolytic Biomineralization, Biomineralization Sealing * Accomplishments to Date - Site Characterization - Site Preparation - Experimentation and Modeling - Field Deployable Injection Strategy Development * Summary

175

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL's Consolidated Sequestration Research Program (CSRP) Project Number FWP ESD09-056 Barry Freifeld Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefits and Goals of GEO-SEQ * Technical Status - Otway Project (CO2CRC) - In Salah (BP, Sonatrach and Statoil) - Ketzin Project (GFZ, Potsdam) - Aquistore (PTRC) * Accomplishments and Summary * Future Plans 3 Benefit to the Program * Program goals being addressed: - Develop technologies to improve reservoir storage capacity estimation - Develop and validate technologies to ensure 99 percent storage permanence.

176

Project 283  

NLE Websites -- All DOE Office Websites (Extended Search)

NJ 07039 973-535 2328 ArchieRobertson@fwc.com Sequestration ADVANCED CO 2 CYCLE POWER GENERATION Background This project will develop a conceptual power plant design...

177

Project 197  

NLE Websites -- All DOE Office Websites (Extended Search)

will bring economic value to both the industrial customers and to the participating companies. * Complete project by June 2006. Accomplishments A ceramic membrane and seal...

178

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CCUS Pittsburgh,...

179

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Interdisciplinary Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford...

180

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for...

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* Concrete products in this project * Standard 8" concrete blocks * Standard 4' x 8' fiber-cement boards CO 2 The Goals * Maximizing carbon uptake by carbonation (at least...

182

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Evaluating Potential Groundwater Impacts and Natural Geochemical...

183

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date...

184

Project 252  

NLE Websites -- All DOE Office Websites (Extended Search)

Stanford Global Climate Energy Project Terralog Technologies TransAlta University of Alaska Fairbanks Washington State Department of Natural Resources Western Interstate...

185

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

research partnership to improve the understanding of CO 2 within coal and shale reservoirs. 2 2 3 Presentation Outline * Program Goal and Benefits Statement * Project...

186

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

mechanistic insights 5 Project Overview: Scope of work * Task 1 - Pipeline and Casing Steel Corrosion Studies * Evaluate corrosion behavior of pipeline steels in CO 2 mixtures...

187

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project Program Goals * Technical...

188

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* This project pinpoints the critical catalyst features necessary to promote carbon dioxide conversion to acrylate, validate the chemical catalysis approach, and develop an...

189

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources...

190

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number...

191

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis multi-scale sample characterization & imaging coupling of stress fields and flow CO 2 flooding processes with X-CT Laser Scanning Confocal Microscope, 20x Complex...

192

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image No 150 DPI Version 300 DPI Image. Title: Ultrafast Laser Speeds Up Quest for Atomic Control. ...

193

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: House; Trees. Description: *BFRL. Subjects (names): ...

194

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image 150 DPI Image 300 DPI Image . Title: New Imaging Tool is Boon to Fuel Cell Research. Description: NIST ...

195

BIGFOOT Project Page  

NLE Websites -- All DOE Office Websites (Extended Search)

BIGFOOT BIGFOOT The BigFoot Project Overview [bigfoot Logo] The goal of the BigFoot project was to support the validation of land products from the Moderate Resolution Imaging Spectrometer (MODIS) onboard NASA's Earth Observing System (EOS) satellite, Terra. Reflectance data from MODIS were used to produce several science products including land cover, leaf area index (LAI), and net primary production (NPP). The BigFoot project began in 1999,concluded in 2003, and was funded by NASA's Terrestrial Ecology Program. To validate these products, BigFoot combined ground measurements, high-resolution remote-sensing data, and ecosystem process models at nine flux tower sites representing different biomes to evaluate the effects of the spatial and temporal patterns of ecosystem characteristics on MODIS

196

Artificial Retina Project Collaborators  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaborators map Map of project collaborators and descriptions of their primary contributions. Click on map for larger image. Artificial Retina Project Collaborators An effort spanning 6 DOE national laboratories, 4 universities, and private industry Multidisciplinary groups across the United States are using a highly focused and coordinated approach to develop a dramatically improved retinal prosthetic device to restore sight to the blind. The Doheny Eye Institute, Oak Ridge National Laboratory, and Second Sight(tm) Medical Products, Inc., lead the collaborative effort through an executive committee. Meet the Team Doheny logo Doheny Eye Institute at the University of Southern California Provided medical direction and performs preclinical and clinical testing of the electrode array implants. Leads the Artificial Retina Project.

197

FY 2004 funded projects  

NLE Websites -- All DOE Office Websites (Extended Search)

4 LDRD PROJECTS 4 LDRD PROJECTS LDRD Proj. Project Title P.I. Dept/Bldg. 02-02 Crystallization and X-ray Analysis of Membrane Proteins D. Fu BIO/463 02-08 Creating a MicroMRI Facility for Research and Development H. Benveniste MED/490 02-09 Targeting Tin-117m to Estrogen Receptors for Breast Cancer Therapy K. Kolsky MED/801 02-22 Electrical Systems Reliability R. Bari ES&T/475B 02-45 Combined Use of Radiotracers and Positron Emission Imaging in Understanding the Integrated Response of Plants to Environmental Stress R. Ferrieri CHEM/901 02-70 Theory of Electronic Transport in Nanostructures and Low-Dimensional Systems A. Tsvelik CMP/510A 02-71 Pressure in Nanopores T. Vogt CMP/510B 02-84a Genomic SELEX to Study Protein DNA/RNA Interactions in Ralstonia metallidurans CH34

198

GTL Image Gallery  

NLE Websites -- All DOE Office Websites (Extended Search)

Human Genome Project Information • Genomic Science • Microbial Genome Program • sitemap • home Human Genome Project Information • Genomic Science • Microbial Genome Program • sitemap • home Announcing the New Image Gallery Visit the new Image Gallery for an expanded suite of images Biofuels Browse the 2010 "Bioenergy Research Centers: An Overview of the Science" Brochure Gallery. Browse the 2006 "Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda" Report Gallery. Browse more biofuels images (includes the June 2006 "Understanding Biomass" Primer Gallery). Systems Biology Browse the August 2005 "Genomics:GTL Roadmap: Systems Biology for Energy and Environment" Gallery. Basic Genomics Browse the Human Chromosome Gallery. Browse more Basic Genomics images. Carbon Cycling

199

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Geodesy, Seismology, Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites DE-FE0001580 Tim Dixon, University of South Florida Peter Swart, University of Miami U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to program * Goals & objectives * Preliminary InSAR results (site selection phase) * Project location * Project installed equipment * Specific project results * Summary 3 Benefit to the Program * Focused on monitoring, verification, and accounting (MVA) * If successful, our project will demonstrate the utility of low cost, surface

200

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 DE-FE0001159 Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations Gary Mavko Rock Physics Project/Stanford University 2 Presentation Outline * Benefit to the Program * Project Overview * Motivating technical challenge * Approach * Technical Status - Laboratory results - Theoretical modeling * Summary Mavko: Stanford University 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations. - Develop technologies to demonstrate that 99% of injected CO 2 remains in injection zones. * Project benefits statement.

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Volume Injection of CO Large Volume Injection of CO 2 to Assess Commercial Scale Geological Sequestration in Saline Formations in the Big Sky Region Project Number: DE-FC26-05NT42587 Dr. Lee Spangler Big Sky Carbon Sequestration Partnership Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and Objectives * Project overview * Kevin Dome characteristics * Project design philosophy * Infrastructure * Modeling * Monitoring * Project Opportunities 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

202

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Research on Probabilistic and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D. Colorado School of Mines U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program (Program goals addressed and Project benefits) * Project goals and objectives * Technical status - Project tasks * Technical status - Key findings * Lessons learned * Summary - Accomplishments to date 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

203

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Snøhvit CO Snøhvit CO 2 Storage Project Project Number: FWP-FEW0174 Task 4 Principal Investigators: L. Chiaramonte, *J.A. White Team Members: Y. Hao, J. Wagoner, S. Walsh Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Summary & Accomplishments * Appendix 3 Benefit to the Program * The research project is focused on mechanical

204

Project title:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Requested By: David Young Mail Code : N1410 Phone: 916-353-4542 Date Submitted: 5/4/2011 Date Required: 5/7/2011 Description of the Project: Purpose and Need The Western Area Power Administration (Western), Sierra Nevada Region (SNR), is responsible for the operation and maintenance (O&M) of federally owned and operated transmission lines, Switchyards, and facilities throughout California. Western and Reclamation must comply with the National Electric Safety Code, Western States Coordinating Council (WECC), and internal directives for protecting human safety, the physical environment, and maintaining the reliable operation of the transmission system. There is an existing OPGW communications fiber on the transmission towers between Roseville and Elverta

205

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

InSalah CO InSalah CO 2 Storage Project Project Number: FWP-FEW0174 Task 2 Principal Investigator: W. McNab Team Members: L. Chiaramonte, S. Ezzedine, W. Foxall, Y. Hao, A. Ramirez, *J.A. White Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Accomplishments * Summary * Appendix 3 Benefit to the Program * The research project is combining sophisticated

206

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Complexity and Choice of Complexity and Choice of Model Approaches for Practical Simulations of CO 2 Injection, Migration, Leakage, and Long- term Fate Karl W. Bandilla Princeton University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Project Number DE-FE0009563 2 Presentation Outline * Project Goals and Objectives * Project overview * Accomplishments * Summary 3 Benefit to the Program * The aim of the project is to develop criteria for the selection of the appropriate level of model complexity for CO 2 sequestration modeling at a given site. This will increase the confidence in modeling results, and reduce computational cost when appropriate.

207

Western LNG project - Project summary  

Science Conference Proceedings (OSTI)

The Western LNG Project is a major new undertaking involving the liquefaction of conventional natural gas from the Western Canadian Sedimentary Basin at a plant on the British Columbia north coast. The gas in its liquid form will be shipped to Japan for consumption by utility companies. The Project represents a new era in gas processing and marketing for the Canadian natural gas industry.

Forgues, E.L.

1984-02-01T23:59:59.000Z

208

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Leakage Mitigation Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number: FE0004478 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background Information * Accomplishments to Date - Injection strategy development (control and prediction) - Large core tests - ambient pressure - Large core tests - high pressure - Small core tests - high pressure - MCDP, permeability and porosity assessments * Progress Assessment and Summary

209

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Leakage Mitigation CO2 Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number FE0004478 Lee H Spangler, Al Cunningham, Robin Gerlach Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation * Background information * Large core tests - ambient pressure * Large core tests - high pressure 3 Benefit to the Program Program goals being addressed. Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Project benefits statement. The Engineered Biomineralized Sealing Technologies

210

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS CCS Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program goals being addressed. - Increased control of reservoir pressure, reduced risk of CO2 migration, and expanded formation storage capacity. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints on CCS deployment and provide insight into

211

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Multiphase of Multiphase Flow for Improved Injectivity and Trapping 4000.4.641.251.002 Dustin Crandall, URS PI: Grant Bromhal, NETL ORD Morgantown, West Virginia U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program * Project overview * Breakdown of FY12 project tasks * Facilities and personnel * Task progress to date * Planned task successes * Tech transfer and summary 3 Benefit to the Program * Program goal being addressed - Develop technologies that will support industries' ability to predict CO

212

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS: CCS: Life Cycle Water Consumption for Carbon Capture and Storage Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Benefit to the Program * Program goals being addressed. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints

213

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Resources International, Inc. Advanced Resources International, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Program goal being addressed: - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Project benefits statement: - This research seeks to develop a set of robust mathematical modules to predict how coal and shale permeability and

214

--No Title--  

NLE Websites -- All DOE Office Websites (Extended Search)

Set Released The ORNL DAAC announces the release of a data set from the Radiation and Clouds category of the International Satellite Land-Surface Climatology Project (ISLSCP)...

215

SAFARI 2000 Photo Pages  

NLE Websites -- All DOE Office Websites (Extended Search)

Campaign Photos Available The ORNL DAAC announces the availability of photographs associated with several field campaigns. These photographs, which supplement project data files...

216

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Web-based CO Web-based CO 2 Subsurface Modeling Geologic Sequestration Training and Research Project Number DE-FE0002069 Christopher Paolini San Diego State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and goals. * Web interface for simulating water-rock interaction. * Development of, and experience teaching, a new Carbon Capture and Sequestration course at San Diego State University. * Some noteworthy results of student research and training in CCS oriented geochemistry. * Status of active student geochemical and geomechancal modeling projects.

217

Project Title:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repair flowline 61-66-SX-3 Repair flowline 61-66-SX-3 DOE Code: Project Lead: Wes Riesland NEPA COMPLIANCE SURVEY # 291 Project Information Date: 3/1 1/2010 Contractor Code: Project Overview In order to repair this line it was decided to trench a line aproximately 100 feet and tie it into the line at 71-3- 1. What are the environmental sx-3. This will get us out of the old flow line which has been repaired 5-6 times. this will mitigate the chances impacts? of having spills in the future. 2. What is the legal location? This flowline runs from the well77-s-1 0 to the B-2-10 manifold.+ "/-,~?X3 3. What is the duration of the project? Approximately 10 hours(1 day) to complete 4. What major equipment will be used backhoe and operator and one hand if any (work over rig. drilling rig.

218

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Co-Sequestration Co-Sequestration Studies Project Number 58159 Task 2 B. Peter McGrail Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 and mixed gas storage capacity in various geologic settings - Demonstrate fate of injected mixed gases * Project benefits statement:

219

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of CO 2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural- Genetic Algorithm Project DE FE0009284 Boyun Guo, Ph.D. University of...

220

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMNER SUMNER COUNTY, KANSAS Project Number DE-FE0006821 W. Lynn Watney Kansas Geological Survey Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Fountainview Wednesday 8-21-12 1:10-1:35 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Acknowledgements & Disclaimer Acknowledgements * The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE- FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

0-22, 2013 0-22, 2013 Collaborators Zhengrong Wang, Yale University Kevin Johnson, University of Hawaii 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 storage capacity - Demonstrate fate of injected CO 2 and most common contaminants * Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of basalt formations for long term subsurface storage of CO 2 . Findings from this project

222

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

behavior of shales as behavior of shales as seals and storage reservoirs for CO2 Project Number: Car Stor_FY131415 Daniel J. Soeder USDOE/NETL/ORD U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Project Overview: Goals and Objectives * Program Goals - Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness * Project Objectives - Assess how shales behave as caprocks in contact with CO 2 under a variety of conditions - Assess the viability of depleted gas shales to serve as storage reservoirs for sequestered CO

223

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 leakage and cap rock remediation DE-FE0001132 Runar Nygaard Missouri University of Science and Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the program * Project overview * Technical status * Accomplishments to date * Summary 2 3 Benefit to the Program * Program goals being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefits statement. - The project develops a coupled reservoir and geomechanical modeling approach to simulate cap rock leakage and simulate the success of remediation

224

LUCF Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

RZWR'HVLJQDQG RZWR'HVLJQDQG +RZWR'HVLJQDQG ,PSOHPHQW&DUERQ ,PSOHPHQW&DUERQ 0HDVXULQJDQG0RQLWRULQJ 0HDVXULQJDQG0RQLWRULQJ $.WLYLWLHVIRU/8&) $.WLYLWLHVIRU/8&) 3URMH.WV 3URMH.WV Sandra Brown Winrock International sbrown@winrock.org Winrock International 2 3URMH.WGHVLJQLVVXHV 3URMH.WGHVLJQLVVXHV z Baselines and additionality z Leakage z Permanence z Measuring and monitoring z Issues vary with projects in developed versus developing countries Winrock International 3 /HDNDJH /HDNDJH z Leakage is the unanticipated loss or gain in carbon benefits outside of the project's boundary as a result of the project activities-divide into two types: - Primary leakage or activity shifting outside project area - Secondary leakage or market effects due to

225

Project 265  

NLE Websites -- All DOE Office Websites (Extended Search)

The goal of this project is to develop an on-line instrument using multi- wavelength lasers that is capable of characterizing particulate matter (PM) generated in fossil energy...

226

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

"Carbonsheds" as a Framework for Optimizing US CCS Pipeline Transport on a Regional to National Scale DOE-ARRA Project Number DE-FE0001943 Lincoln Pratson Nicholas School of the...

227

Project 114  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototech Company SRI International Kellogg, Brown, and Root ChevronTexaco Sd-Chemie, Inc. COST Total Project Value 20,320,372 DOENon-DOE Share 15,326,608 4,993,764...

228

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

229

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Laboratory U.S. Department of Energy Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

230

Project 134  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Goal To demonstrate a "whole plant" approach using by-products from a coal-fired power plant to sequester carbon in an easily quantifiable and verifiable form. Objectives...

231

MANHATTAN PROJECT  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy traces its origins to World War II and the Manhattan Project effort to build the first atomic bomb. As the direct descendent of the Manhattan Engineer District, the...

232

Project 310  

NLE Websites -- All DOE Office Websites (Extended Search)

carbohydrate generated from agricultural enterprises in the U.S., such as corn wet-milling. This project is studying the production of a suite of specialty chemicals by...

233

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

G., 2011, Design and package of a 14CO2 field analyzer: the Global Monitor Platform (GMP). Proceedings of SPIE, v 8156, p. 81560E 17 DOE-NETL PROJECT REVIEW MEETING 08-21-2012...

234

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Complexity in Geological Carbon Model Complexity in Geological Carbon Sequestration: A Design of Experiment (DoE) & Response Surface (RS) Uncertainty Analysis Project Number: DE-FE-0009238 Mingkan Zhang 1 , Ye Zhang 1 , Peter Lichtner 2 1. Dept. of Geology & Geophysics, University of Wyoming, Laramie, Wyoming 2. OFM Research, Inc., Santa Fe, New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project major goals and benefits; * Detailed project objectives & success criteria; * Accomplishments to date; * Summary of results; * Appendix (organization chart; Gantt chart; additional results). Dept. of Geology & Geophysics, University of Wyoming

235

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Region Region DE-FE0001812 Brian J. McPherson University of Utah U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 4 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 5 Benefit to the Program Program Goals Being Addressed by this Project

236

Project 297  

NLE Websites -- All DOE Office Websites (Extended Search)

of this project is to utilize pure oxygen at a feed rate of less than 10% of the stoichiometric requirement in demonstrating the use of oxygen-enhanced combustion in meeting...

237

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D...

238

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D....

239

Alum Innovative Exploration Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Innovative Exploration Project Geothermal Project Innovative Exploration Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Alum Innovative Exploration Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Phase 1 exploration will consist of two parts: 1) surface and near surface investigations and 2) subsurface geophysical surveys and modeling. The first part of Phase 1 includes: a hyperspectral imaging survey (to map thermal anomalies and geothermal indicator minerals), shallow (6 ft) temperature probe measurements, and drilling of temperature gradient wells to depths of 1000 feet. In the second part of Phase 1, 2D & 3D geophysical modeling and inversion of gravity, magnetic, and magnetotelluric datasets will be used to image the subsurface. This effort will result in the creation of a 3D model composed of structural, geological, and resistivity components. The 3D model will then be combined with the temperature and seismic data to create an integrated model that will be used to prioritize drill target locations. Four geothermal wells will be drilled and geologically characterized in Phase 2. The project will use a coiled-tube rig to test this drilling technology at a geothermal field for the first time. Two slimwells and two production wells will be drilled with core collected and characterized in the target sections of each well. In Phase 3, extended flow tests will be conducted on the producible wells to confirm the geothermal resource followed by an overall assessment of the productivity of the Alum geothermal area. Finally, Phase 3 will evaluate the relative contribution of each exploration technique in reducing risk during the early stages of the geothermal project.

240

BNG5122 Medical Imaging Analysis REGISTRATION  

E-Print Network (OSTI)

16.04.2013 1 BNG5122 Medical Imaging Analysis Project REGISTRATION Gökhan Gökay Istanbul Bahçeehir University Advisor: Asst. Prof. Dr. Devrim ?nay Outline 16 April 2013 2 BNG5122 Medical Imaging Analysis 2013 3 BNG5122 Medical Imaging Analysis Registration is technique for medical image analysis To combine

?nay, Devrim

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Ferroelectric optical image comparator  

DOE Patents (OSTI)

The property of ferroelectric ceramics such as lead lanthanum zirconate titanate (PLZT) to store information has been known for many years. This relates to the property of ferroelectric ceramic materials to become permanently polarized when an electric signal is applied to the material. A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image. 5 figs.

Butler, M.A.; Land, C.E.; Martin, S.J.; Pfeifer, K.B.

1989-08-30T23:59:59.000Z

242

Overview of image reconstruction  

SciTech Connect

Image reconstruction (or computerized tomography, etc.) is any process whereby a function, f, on R/sup n/ is estimated from empirical data pertaining to its integrals, ..integral..f(x) dx, for some collection of hyperplanes of dimension k < n. The paper begins with background information on how image reconstruction problems have arisen in practice, and describes some of the application areas of past or current interest; these include radioastronomy, optics, radiology and nuclear medicine, electron microscopy, acoustical imaging, geophysical tomography, nondestructive testing, and NMR zeugmatography. Then the various reconstruction algorithms are discussed in five classes: summation, or simple back-projection; convolution, or filtered back-projection; Fourier and other functional transforms; orthogonal function series expansion; and iterative methods. Certain more technical mathematical aspects of image reconstruction are considered from the standpoint of uniqueness, consistency, and stability of solution. The paper concludes by presenting certain open problems. 73 references. (RWR)

Marr, R.B.

1980-04-01T23:59:59.000Z

243

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Number (DE-FE0002056) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 Brighton 1&2 2:40 August 20, 2013 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary ORGANIZATIONAL STRUCTURE Modeling CO 2 Sequestration in Saline A quifer and Depleted Oil Reservoir to Evaluate Regional CO 2 Sequestration Potential of Ozark Plateau A quifer System, South-Central Kansas Co-Principal Investigators Co-Principal Investigators Kerry D. Newell -- stratigraphy, geochemistry

244

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks DE-FE0004847 Jennifer Hall Columbia University in the City of New York U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Conservative and Reactive Tracer Techniques * Accomplishments to Date * Summary 3 Benefit to the Program * The goal of the project is to develop and test novel geochemical tracer techniques for quantitative monitoring, verification and accounting of stored CO 2 . These techniques contribute to the Carbon Storage Program's

245

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO 2 Rich Flue Gas Direct Injection Facility Project Number DOE Grant FE0001833 Paul Metz Department of Mining & Geological Engineering University of Alaska Fairbanks U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix: Not Included in Presentation 3 Benefit to the Program * Carbon Storage Program Major Goals: - Develop technologies that will support industries' ability to

246

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale CO Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources International U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Program Goals * Benefits Statement * Project Overview - Goals - Objectives * Technical Status * Accomplishments to Date * Summary * Appendix USDOE/NETL Program Goals * Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop and validate technologies to ensure 99 percent storage permanence. * Develop technologies to improve reservoir storage

247

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMNER COUNTY, KANSAS DE-FE0006821 W. Lynn Watney, Jason Rush, Joint PIs Kansas Geological Survey The University of Kansas Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Brighton 1&2 Wednesday 8-21-13 1:10-1:35 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 2 Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Project Team DOE-NETL Contract #FE0006821 KANSAS STATE UNIVERSITY 3 L. Watney (Joint PI), J. Rush (Joint PI), J. Doveton, E. Holubnyak, M. Fazelalavi, R. Miller, D. Newell, J. Raney

248

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Seal Repair Using Seal Repair Using Nanocomposite Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Ed Matteo, Thomas Dewers Sandia National Laboratories 2 Presentation Outline * Introduction and overview * Materials synthesis * Materials testing and characterization * Annular seal system testing * Numerical simulation * Summary 3 Benefit to the Program * BENEFITS STATEMENT: The project involves the development and testing of polymer-cement nanocomposites for repairing flaws in annular wellbore seals. These materials will have superior characteristics compared to conventional

249

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity Project Number DE-FE0002112 PIs Drs. John Kaszuba and Kenneth Sims Virginia Marcon University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status - Results - Conclusions - Next Steps * Summary 3 Benefit to the Program * Program goal being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. - Monitoring, Verification, and Accounting (MVA). MVA technologies seek to monitor, verify, and

250

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of CO Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number (DEFE0002421) Dr. Yiran Dong Drs. Bruce W. Fouke, Robert A. Sanford, Stephen Marshak University of Illinois-Urbana Champaign U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Technical status * Results and discussion * Summary * Appendix 3 Benefit to the Program This research project has developed scientific, technical and institutional collaborations for the development of

251

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Mohammad Piri and Felipe Pereira Mohammad Piri and Felipe Pereira University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 2013 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status o Experimentation: core-flooding and IFT/CA o Pore-scale modeling modeling * Accomplishments to Date * Summary University of Wyoming 3 Benefit to the Program * Program goal: o 'Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.' * Benefits statement: o The research project is focused on performing reservoir conditions experiments to measure steady-state relative permeabilities,

252

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring Geological CO Monitoring Geological CO 2 Sequestration using Perfluorocarbon and Stable Isotope Tracers Project Number FEAA-045 Tommy J. Phelps and David R. Cole* Oak Ridge National Laboratory Phone: 865-574-7290 email: phelpstj@ornl.gov (*The Ohio State University) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Developing the Technologies and Building the Infrastructure for CO 2 Storage August 22, 2013 2 Project Overview: Goals and Objectives Goal: Develop methods to interrogate subsurface for improved CO 2 sequestration, field test characterization and MVA, demonstrate CO 2 remains in zone, and tech transfer. Objectives: 1. Assessment of injections in field. PFT gas tracers are analyzed by GC-ECD to

253

Project Homepage  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle School Home Energy Audit Middle School Home Energy Audit Project Homepage NTEP Home - Project Homepage - Teacher Homepage - Student Pages Abstract: This set of lessons provides an opportunity for midlevel students to gain a basic understanding of how energy is turned into power, how power is measured using a meter, the costs of those units and the eventual reduction of energy consumption and cost to the consumer. Introduction to Research: By conducting energy audits of their own homes and completing exercises to gain baclground information, students begin to see the importance of energy in their daily lives. By using the Internet as a research tool, students gain develop research skills as they gain knowledge for their project. They use e-mail to collaborate with energy experts and share results with other

254

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Title: DEVELOPING A Title: DEVELOPING A COMPREHENSIVE RISK ASSESMENT FRAMEWORK FOR GEOLOGICAL STORAGE OF CO2 Ian Duncan University of Texas U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline 1. Benefit to the Program 2. Goals and Objectives 3. Technical Status Project 4. Accomplishments to Date 5. Summary 3 Benefit to the Program The research project is developing a comprehensive understanding of the programmatic (business), and technical risks associated with CCS particularly the likelihood of leakage and its potential consequences. This contributes to the Carbon Storage Program's effort of ensuring 99 percent CO

255

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Acknowledgments Dave Harris, Kentucky Geological Survey Dave Barnes, Western Michigan University John Rupp, Indiana Geological Survey Scott Marsteller, Schlumberger Carbon Services John McBride, Brigham Young University * Project is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute * ConocoPhillips: in-kind match * Western Kentucky Carbon Storage Foundation: matching funding * SeisRes 2020, Houston: VSP acquisition and processing

256

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

to Analyze Spatial and Temporal to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO 2 Sequestration Prediction, Simulation, and Monitoring Project Number DE-FE0001852 Dr. Brenda B. Bowen Purdue University (now at the University of Utah) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction to the project * Tasks * Student training * Student research successes * Lessons learned and future plans 3 Benefit to the Program * Addresses Carbon Storage Program major goals: - Develop technologies that will support industries' ability to predict CO

257

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Results from Simulation Project Results from Simulation Framework for Regional Geologic CO 2 Storage Infrastructure along Arches Province of Midwest United States DOE Award No. DE-FE0001034 Ohio Dept. of Dev. Grant CDO/D-10-03 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting August 21-23, 2012 Joel Sminchak and Neeraj Gupta Battelle Energy Systems sminchak@battelle.org, 614-424-7392 gupta@battelle.org, 614-424-3820 BUSINESS SENSITIVE 2 Presentation Outline 1. Technical Status 2. Background (CO 2 Sources, Geologic Setting) 3. Injection Well history 4. Geocellular Model Development 5. Geological Data (Geological dataset, Geostatistics) 6. Geocellular porosity/permeability model development 7. Pipeline Routing Analysis

258

Research projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Yuan » Research projects Yuan » Research projects Research projects Research Interests Scientific computing, domain decomposition methods Linear solvers for sparse matrices Computational plasma physics Grid generation techniques GPU computing Current Research PDSLin: A hybrid linear solver for large-scale highly-indefinite linear systems The Parallel Domain decomposition Schur complement based Linear solver (PDSLin), which implements a hybrid (direct and iterative) linear solver based on a non-overlapping domain decomposition technique called chur complement method, and it has two levels of parallelism: a) to solve independent subdomains in parallel and b) to apply multiple processors per subdomain. In such a framework, load imbalance and excessive communication lead to the performance bottlenecks, and several techniques are developed

259

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB Anthropogenic Test: SECARB Anthropogenic Test: CO 2 Capture/Transportation/Storage Project # DE-FC26-05NT42590 Jerry Hill, Southern Sates Energy Board Richard A. Esposito, Southern Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - CO 2 Capture - CO 2 Transportation - CO 2 Storage * Accomplishments to Date * Organization Chart * Gantt Chart * Bibliography * Summary Benefit to the Program 1. Predict storage capacities within +/- 30% * Conducted high resolution reservoir characterization of the Paluxy saline formation key

260

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Fidelity Computational Analysis of Fidelity Computational Analysis of CO2 Trappings at Pore-scales Project Number: DE-FE0002407 Vinod Kumar (vkumar@utep.edu) & Paul Delgado (pmdelgado2@utep.edu) University of Texas at El Paso U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Collaborators: Dr. C. Harris (Shell Oil Company/Imperial College), Dr. G. Bromhal (NETL), Dr. M. Ferer (WVU/NETL), Dr. D. Crandall (NETL-Ctr), and Dr. D. McIntyre (NETL). 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - Pore-network modeling - Conductance derivation for irregular geom. - Pore-to-CFD Computations

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Number (DE-FE0002056) W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary KANSAS STATE UNIVERSITY Bittersweet Energy Inc. Partners FE0002056 Devilbiss Coring Service Basic Energy Services Wellington Field Operator Industrial and Electrical Power Sources of CO 2 Southwest Kansas CO 2 -EOR Initiative Industry Partners (modeling 4 Chester/Morrowan oil fields to make CO2 ready) +drilling and seismic contractors TBN

262

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

MVA Tools MVA Tools Sam Clegg, Kristy Nowak-Lovato, Ron Martinez, Julianna Fessenden, Thom Rahn, & Lianjie Huang Los Alamos National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview - Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix - Organization Chart - Bibliography 3 Project Overview: Goals and Objectives * Surface MVA - Frequency Modulated Spectroscopy - Quantitatively identify CO2, H2S and CH4 seepage from geologic sequestration sites - Distinguish anthropogenic CO2 from natural CO2 emissions * CO2 carbon stable isotope measurements

263

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image 150 DPI Image 300 DPI Image . Title: Homeland Security; Chem., Bio, and Other Threats; Standards for Radiation Detection. ...

264

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. No 72 DPI Version No 150 DPI Version 300 DPI Image. Title: Gold Nano Anchors Put Nanowires in Their Place. ...

265

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image 150 DPI Image 300 DPI Image . Title: Iron-based and Copper-Oxide High-Temperature Superconductors. ...

266

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-FE0002225: DE-FE0002225: Actualistic and geochemical modeling of reservoir rock, CO 2 and formation fluid interaction, Citronelle oil field, Alabama West Virginia University & University of Alabama Presenter: Dr. Amy Weislogel (WVU) Co-PI: Dr. Rona Donahoe (UA) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Overview & Project Map * Reservoir Geochemical Characterization * Formation Fluid Geochemistry * Geochemical Modeling * Summary 3 Benefit to the Program * Develop technologies that will support industries'

267

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 BROWN 2 Presentation Outline * Benefits & overview of deriving acrylates from coupling carbon dioxide and ethylene * Chemical catalysis approach: background and battles left to fight * Experimental assessment of the viability of thermochemical acrylate production * Perspectives for the future BROWN 3 Benefit to the Program * This project identifies the critical catalyst features necessary to promote carbon dioxide coupling with ethylene to acrylate at molybdenum catalysts. This research demonstrates the viability of acrylate production

268

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool to Improve CO2 Sequestration DE FE0004542 Larry Murdoch, Clemson University Stephen Moysey, Clemson University Leonid Germanovich, Georgia Tech Cem Ozan, Baker Hughes Sihyun Kim, Georgia Tech Glenn Skawski, Clemson University Alex Hanna, Clemson University Johnathan Ebenhack, Clemson University Josh Smith, Clemson University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 23 Aug. 2013 2 Presentation Outline * Preliminaries

269

Hallmark Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message integrity, supervisory control and data acquisition (SCADA) systems require a method to validate device-to- device communication and verify that information has come from a trusted source and not been altered in transit. The Secure SCADA Communications Protocol (SSCP) provides message

270

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-FE0001836: DE-FE0001836: Numerical modeling of geomechanical processes related to CO 2 injection within generic reservoirs Andreas Eckert & Runar Nygaard Missouri University of Science & Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Objectives, Benefits and Outcomes * Technical status: Project summary - Teaching - Reservoir scale (Geomechanics & Fluid flow simulation) - Borehole scale (Wellbore integrity & wellbore trajectory planning) * Conclusions * Appendix 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

271

A direct method for estimating planar projective transform  

Science Conference Proceedings (OSTI)

Estimating planar projective transform (homography) from a pair of images is a classical problem in computer vision. In this paper, we propose a novel algorithm for direct registering two point sets in R2 using projective transform without using intensity ...

Yu-Tseh Chi; Jeffrey Ho; Ming-Hsuan Yang

2010-11-01T23:59:59.000Z

272

The STACEE Project  

E-Print Network (OSTI)

The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a telescope designed to explore the gamma-ray sky between 20 and 250 GeV using the atmospheric Cherenkov technique. STACEE is currently under construction. When completed, it will use 48 large heliostat mirrors at the solar research facility at Sandia National Laboratories (Albuquerque, NM) to reflect Cherenkov light created in gamma-ray air showers to secondary mirrors on a central tower. The secondary mirrors image this light onto photomultiplier tube cameras. This paper provides an overview of the STACEE project, including a description of the experimental site and an outline of the current design for the detector components.

Rene A. Ong; Corbin E. Covault

1997-11-25T23:59:59.000Z

273

6.161 Modern Optics Project Laboratory, Fall 2002  

E-Print Network (OSTI)

Lectures, laboratory exercises, and projects in modern optics. Topics: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, imaging and transforming ...

Warde, Cardinal

274

ORNL DAAC, Arctic Tundra Flux Data, February 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

atmospheric fluxes in the Arctic tundra are now available on-line. The newly released data set "Arctic Tundra Flux Study in the Kuparuk River Basin (Alaska), 1994-1996" contains...

275

ORNL DAAC, Land Validation Data in Mercury, June 4, 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

collected at field sites for comparison with satellite-derived products. A total of 51 land validation data sets are currently registered in Mercury. The data include land...

276

ORNL DAAC, Southern African Data, April 25, 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

2000") and their documentation are available on-line. The data were earlier released on CD-ROM. The data sets, listed as follows, were extracted from global data sets for the...

277

ORNL DAAC, Net Primary Productivity Web Map Server, Feb. 28,...  

NLE Websites -- All DOE Office Websites (Extended Search)

helps users more readily find NPP data for 61 locations around the world. Users simply "Query" the map and select a site marker. In response, the server provides links to all the...

278

ORNL DAAC, Southern African Data Release, July 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

data were extracted from global data sets for the bounding coordinates of southern Africa (5 W to 60 E and 5 N to 35 S). All of the data sets are available on-line (http:...

279

ORNL DAAC NPP TEMPERATE FOREST: HUMBOLDT REDWOODS STATE PARK...  

NLE Websites -- All DOE Office Websites (Extended Search)

data include site characteristics, redwood stand descriptors, and measured and calculated biomass and ANPP data. In 1972, Dr. Fujimori placed a 120 x 120 m plot (1.44 ha) in a...

280

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

capillary trapping (FE0004956), Bryant, UT-Austin capillary trapping (FE0004956), Bryant, UT-Austin Influence of Local Capillary Trapping on Containment System Effectiveness DE-FE0004956 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and objectives * Carbon gasification * Carbon reactivity studies * Catalyst development * Techno-economic analysis * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

282

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Caprock Integrity and Improved Caprock Integrity and Risk Assessment Techniques Project Number (FE0009168) Michael Bruno, PhD, PE GeoMechanics Technologies U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Introduction and Motivation 2 A primary requirement for long-term geologic storage and containment of carbon dioxide is ensuring caprock integrity. Large-scale CO2 injection requires improved and advanced simulation tools and risk assessment techniques to better predict and help control system failures, and to enhance performance of geologic storage. GeoMechanics Technologies is developing enhanced simulation and risk analysis approaches to assess and

283

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive Monitoring and Uncertainty Assessment of CO 2 Plume Migration DOE-FE0004962 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin

284

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Basin-Scale Leakage Risks from Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on CCS Energy Market Competitiveness Catherine A. Peters Jeffery P. Fitts Michael A. Celia Princeton University Paul D. Kalb Vatsal Bhatt Brookhaven National Laboratory Elizabeth J. Wilson Jeffrey M. Bielicki Melisa Pollak University of Minnesota DOE Award DE-FE0000749 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to CCUS research program * Project Goals & Objectives * Technical Status  Thrust I - Reservoir-scale simulations of leakage potential with permeability evolution

285

Project Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Description Project Description The Energy Policy Act of 2005 (EPAct 2005), the Energy Independence and Security Act of 2007 (EISA 2007), and Presidential Executive Order 13423 all contain requirements for Federal facilities to decrease energy consumption and increase the use of renewable energy by the year 2015. To provide leadership in meeting these requirements, DOE, in partnership with the General Services Administration (GSA), has installed a rooftop solar electric, or PV, system on the roof of DOE's headquarters in Washington, D.C. The 205 kilowatt (kW) installation is one of the largest of its kind in the Nation's capital. A display in the For- restal building will show the power output of the PV system during the day and the energy produced over

286

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

for Modeling CO for Modeling CO 2 Processes: Pressure Management, Basin-Scale Models, Model Comparison, and Stochastic Inversion ESD09-056 Jens T. Birkholzer with Abdullah Cihan, Marco Bianchi, Quanlin Zhou, Xiaoyi Liu, Sumit Mukhopadhyay, Dorothee Rebscher, Barbara Fialeix Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview and Technical Status - Task 1: Optimization of Brine Extraction for Pressure Management and Mitigation - Task 2: Basin-scale Simulation of CO 2 Storage in the Northern Plains - Prairie Basal Aquifer - Task 3: Sim-SEQ Model Comparison

287

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Beneficial Use of CO Beneficial Use of CO 2 in Precast Concrete Production DE-FE0004285 Yixin Shao, Yaodong Jia Liang Hu McGill University 3H Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation outline * Goals and objectives * Benefits to the program * Project overview * Technical status * Accomplishment to date * Summary 2 Objective Masonry blocks Fiber-cement panels Prefabricated buildings Concrete pipes To develop a carbonation process to replace steam curing in precast concrete production for energy reduction, and carbon storage and utilization. Goals * CO 2 sequestration capacity by cement:

288

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Kansas Center for Research University of Kansas Center for Research Kansas Geological Survey U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 Presentation Outline * Benefits, objectives, overview * Methods * Background & setting * Technical status * Accomplishments * Summary Benefit to the Program * Program goal addressed: Develop technologies that will support the industries' ability to predict CO 2 storage capacity in geologic formations to within ± 30 percent. * Program goal addressed: This project will confirm - via a horizontal test boring - whether fracture attributes derived from 3-D seismic PSDM Volumetric Curvature (VC) processing are real. If

289

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project benefits and objectives * Carbon reactivity studies * Catalyst mechanism studies * Catalyst development * Test results * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

290

FUSRAP Project  

Office of Legacy Management (LM)

Project Project 23b 14501 FUSRAP TECHNICAL BULLETIN N O . - R 3 v . L DATE: 1.2 9-99 SUBJECT : Pr.pec.d BY T r m L u d Approval Summary of the results for the Springdale characterization activities performed per WI-94-015, Rev. 0. TUO separate radiological characterization surveys and a limited cherical characterization survey were performed on the Springdale Site in Octcjer and December, 1993. The design of the radiological surveys were to supplement and define existing ORNL surveys. The limited cher.ica1 characterization survey was performed to assist in the completion of waste disposal paperwork. Radiological contamination is primarily ir. the 'belt cutting and belt fabrication'areas of the building with a small erea of contamination in the south end of the building. The chemiccl sac~le

291

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating the Fundamental Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide Project Number DE-FE0000397 Lee H Spangler Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Computational tool development * Laboratory studies to understand subsurface CO 2 behavior * Analog studies to inform risk analysis * Near surface detection technologies / testing * Mitigation method development 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

292

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

FE/NETL CTS Cost Models and FE/NETL CTS Cost Models and Benefits Assessment of Carbon Storage R&D Program David Morgan Benefits Division Office of Program Planning and Analysis National Energy Technology Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 OFFICE OF FOSSIL ENERGY 2 Presentation Outline * Overview of benefits assessment * Overview of FE/NETL models used to assess benefits of CO 2 capture and storage * Benefits evaluation of Storage Program's R&D projects using a model to estimate costs of CO 2 storage in a saline aquifer * Description of model used to estimate costs of

293

Project 307  

NLE Websites -- All DOE Office Websites (Extended Search)

INTEGRATING MONO ETHANOL AMINE (MEA) INTEGRATING MONO ETHANOL AMINE (MEA) REGENERATION WITH CO 2 COMPRESSION AND PEAKING TO REDUCE CO 2 CAPTURE COSTS Background In Phase I, Trimeric Corporation, in collaboration with the University of Texas at Austin, performed engineering and economic analyses necessary to determine the feasibility of novel MEA processing schemes aimed at reducing the cost of CO 2 capture from flue gas. These novel MEA-based CO 2 capture schemes are designed for integration into coal-fired power plants with the aim of reducing costs and improving efficiency. Primary Project Goal The primary goal of this project was to reduce the cost of MEA scrubbing for the recovery of CO 2 from flue gas by improved process integration. CONTACTS Sean I. Plasynski Sequestration Technology Manager

294

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline * Benefit to the program * Project overview: Why 14 C for MVA? * Technical status: Cartridges, injections, lasers * Summary * Organizational chart * Collaborators 3 Benefit to the Program * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Permanent storage of CO 2 can be demonstrated by adding carbon-14 ( 14 C) prior to injection. This research project aims to demonstrate this by tagging fossil CO 2 with 14 C at a field site. When completed, this system will show that 14 C can be a safe and effective tracer for sequestered CO 2 . A laser-based 14 C measurement method is being adapted for continuous monitoring. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent

295

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Leakage Pathways and Leakage Pathways and Mineralization within Caprocks for Geologic Storage of CO 2 Project DE-FC26-0xNT4 FE0001786 James P. Evans Utah State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Goals and Objectives * Relationship to overall program goals * Overview of seal bypass * Technical status; bypass systems - Field based studies - Technological advances * Accomplishments and Summary * Appendices 3 Benefit to the Program * Program goals addressed * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

296

Project 301  

NLE Websites -- All DOE Office Websites (Extended Search)

2006 2006 Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Arun C. Bose Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4467 arun.bose@netl.doe.gov ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION Background Over the past years, environmental concerns regarding pollutants have grown dramatically. Current annual greenhouse gas (GHG) emissions are 12% higher than they were in 1992. In addition, carbon dioxide (CO 2 ) emissions are projected to increase by an additional 34% over the next 20 years. About one third of carbon emissions in the

297

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Michael G. Waddell Earth Sciences and Resources Institute University of South Carolina U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 2 Presentation Outline * Project goals and benefits * Overview of the geology of the South Georgia Rift basin in SC * Results of petrographic and core analysis from the Rizer #1 * Future investigations in the SGR * Summary 3 Benefit to the Program Program Goals: * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected

298

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Micro-Structured Sapphire Fiber Sensors for Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments DE-FE0001127 Investigators: Hai Xiao, Hai-Lung Tsai, Missouri University of Science and Technology Junhang Dong, University of Cincinnati Program Manager: Norm Popkie, Gasification Division, NETL DOE Project Kickoff Meeting in the NETL Pittsburgh December 15, 2009 Outline * Background * Objectives * Project Elements * Management Plan * Research Plan and Approaches * Risk Management * Summary Background * Demands: High-performance, reliable, in situ sensors are highly demanded for advanced process control and lifecycle management in existing and future advanced power and fuel systems - Improved efficiency/safety/reliability/availability/maintainability

299

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Mart Oostrom Mart Oostrom Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline  Project overview  Sub-Task 1: Investigation of CO 2 migration in heterogeneous porous media  Sub-Task 2: Modeling CCUS deployment in China  Summary Collaboration with China on Clean Energy Research 3 Benefit to the Program The Clean Energy Partnership was established by a memorandum of understanding between the Chinese Academy of Sciences, the National Energy Technology Laboratory and the Pacific Northwest National Laboratory in May of 2009 with the goal of significantly reducing the environmental emissions and improving the efficiency of

300

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Evaluation of Geophysical Methods for Monitoring and Tracking CO 2 Migration in the Subsurface PI: Jeffrey Daniels Co-PI: Robert Burns & Franklin Schwartz Students: Michael Murphy & Kyle Shalek The Ohio State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 FOA Number: DE-FOA-0000032 NETL Award Number: DE-FE0002441 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 3 Benefit to the Program * Program Goal: Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

0-22, 2013 0-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Advanced simulation tool for quantifying transport in porous and fractured geological formations during CO 2 sequestration that includes all mechanisms: convection, diffusion, dissolution and chemical reactions * A simulator that can fully model these processes does not currently exist * Simulator will contribute to our ability to predict CO 2 storage capacity in geologic formations, to within ±30 percent 4 Project Overview: Goals and Objectives Comprehensive reservoir simulator for investigation of CO 2 non-isothermal, multiphase flow and long-term storage in

302

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas J. Wolery Thomas J. Wolery Lawrence Livermore National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 LLNL-PRES-574632 2 Team Members * Roger Aines * Bill Bourcier * Tom Wolery * Tom Buscheck * Tom Wolfe (consultant) * Mike DiFilippo (consultant) * Larry Lien (Membrane Development Specialists) 3 Presentation Outline * Overview of Active CO 2 Reservoir Management (ACRM) * Subsurface Reservoir Management: Made Possible by Brine Production, Yielding Many Benefits * Brine Disposal Options - What brines are out there? - What are the treatment options? 4 Benefit to the Program * This project is identifying and evaluating

303

Project Payette  

SciTech Connect

This is the concept for Project Payette, a nuclear event in the Seismic Detection Research Program. For this experiment, a nuclear explosive in the range of 5 to 10 kt will be detonated at a depth of 2000 to 3000 ft in an underground cavity of sufficient size that the walls of the cavity experience only elastic motion. The site will be located in a salt dome. Project Payette has been divided into three phases. Phase I will include site evaluation and engineering design of the construction of the cavity. It is estimated to require about 1 year. Phase II will include construction of the cavity and emplacement hole. It is estimated to require about 2 years. Phase III will include emplacement of instruments and the device, the detonation and the post-shot program including cavity re-entry. This is estimated to require about 1 year. The scope of this concept is intended to define Project Payette sufficiently will that Phase I work may proceed.

Warner, D.

1966-08-01T23:59:59.000Z

304

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix Introduction * Most storage modeling studies assume a discrete reservoir/caprock interface with simple (uniform) flow conditions. * We address the question of whether or not heterogeneities at the interface influence transmission of CO 2 into the caprock 3 4 Reservoir Caprock Reservoir Introduction The nature of reservoir/caprock interfaces 4 Organization 5 Peter Mozley (PD/PI) NMT Sedimentology James Evans (Co-PI) USU Structure Thomas Dewers (Co-I) Jason Heath (Staff) SNL Modeling Mark Person (Cooperating Scientist) NMT Modeling Stefan Raduha NMT Sedimentology

305

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

William Bourcier William Bourcier Lawrence Livermore National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Saline Aquifer Brine Production Well Brine Injection Well Chiller Pretreatment Desalination Brine Permeate To power plant or other use Storage pump CO 2 injection Concept is to extract and desalinate aquifer brines to create fresh water and space for CO 2 storage cap-rock 3 Presentation Outline * Overview, Purpose, Goals and Benefits * Technical status - Brine treatment and disposition - Reservoir management * Accomplishments * Summary and Planned work Goals and Objectives Technical Goals Potential advantages of brine

306

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Metrics for Screening CO Metrics for Screening CO 2 Utilization Processes Peter Kabatek Energy Sector Planning and Analysis (ESPA) Services / WorleyParsons U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * NETL's Carbon Storage Program * Introduction of the metrics * Review of the case study technology * Application of metrics to the case study technology * Discussion of metrics interpretation and grouping 3 NETL Carbon Storage Program * The Carbon Storage Program contains three key elements: - Infrastructure - Global Collaborations - Core Research and Development: * Monitoring, Verification and Accounting (MVA) * Geologic Storage

307

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Reservoir Simulation Model * Intelligent Leakage Detection System (ILDS) * Accomplishments * Summary Objective * Develop an in-situ CO 2 leak detection technology based on the concept of Smart Fields. - Using real-time pressure data from permanent downhole gauges to estimate the location and the rate of CO 2 leakage. CO2 Leakage(X,Y,Q) Artificial Intelligence & Data Mining Industrial Advisory Committee (IAC) * Project goes through continuous peer-review by an Industrial Review Committee. * Meetings: - November 6 th 2009 : * Conference call * Site selection criteria - November 17 th 2009: * A meeting during the Regional Carbon Sequestration Partnership Meeting in Pittsburgh

308

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Factors Influencing Factors Influencing CO 2 Storage Capacity and Injectivity in Eastern Gas Shales Contract No. DE-FE0004633 Michael Godec, Vice President Advanced Resources International mgodec@adv-res.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Benefits * Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefits to the Program * Program Goals Addressed - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

309

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Training and Research Peter M. Walsh University of Alabama at Birmingham U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CCUS Pittsburgh, Pennsylvania August 21-23, 2012 DE-FE0002224 * Evaluation of the sealing capacity of caprocks serving as barriers to upward migration of CO 2 sequestered in geologic formations. * Education and training of undergraduate and graduate students, through independent research on geologic sequestration. * Education, through an advanced undergraduate/graduate level course on coal combustion and gasification, climate change, and carbon sequestration. * Simulation of CO 2 migration and trapping in storage

310

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Building the Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction - Objective - Industrial Review Committee - Background * Steps Involved - Geological and Reservoir Simulation Modeling - Leakage Modeling & Real-Time Data Processing - Pattern Recognition & Intelligent Leakage Detection System (ILDS) * Accomplishments to Date * Summary Objective * Develop an in-situ CO 2 leak detection technology based on the concept of Smart Fields. - Using real-time pressure data from permanent downhole gauges to estimate the location and the rate of CO 2 leakage. Industrial Advisory Committee (IAC) * Project goes through continuous peer-review by an Industrial Review Committee. * Meetings: - November 6 th 2009 :

311

LBNL DSD Whole Frog Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Science Education: The Whole Frog Project Enhanced Science Education: The Whole Frog Project Computers can't teach everything in anatomy, but they can teach some things better, either by themselves or through synergy with conventional methods. Try out this award-winning virtual frog- as a case in point. Jump right into the Virtual Frog Dissection Kit. Sample images from the virtual frog dissection kit: Example 1 viewable GIF file.. Example 1 printable TIF file.. Example 2 viewable GIF file.. Example 2 printable TIF file.. Read an introductory lecture on the Whole Frog project that explains its pedagogical and technological basis, or a summary paper that emphasizes its Web aspects. For live frog lovers .... Sounds of North American Frogs (a CD from Smithsonian Folkways). WHOLE FROG PROJECT Introduction

312

ProjectList 11072013.xlsx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LDRD Project List - FY 2013 LDRD Project List - FY 2013 Project ID Project Name FY Total FY2013-AKI-0310 Demistifying the hydration layer on nano oxide in suspensions by liquid cell TEM $50,758 FY2013-FAN-0313 In Situ, Real Time Imaging of Single Site Catalysts under Turnover Conditions $94,056 FY2013-GOR-1218 Dynamic Whitelist Generation for Automated Intrusion Response $69,043 FY2013-HUA-0413 Atomic and electronic level control of nanocluster catalysts encapsulated in MOFs $100,073 FY2013-JON-0114 Rapid, Small-Scale, High-Purity Rare Earth Metal Preparation $55,284 FY2013-WAN-0113 Femtosecond-Resolved Polarimetry Probes of Electronic Nematicity in Iron Pnictides $48,391 P/ANL2010-194 Acceleration of Cloud Microphysical Retrievals for Climate Models $102,400

313

Moveable Interactive Projected Displays  

E-Print Network (OSTI)

Video projectors have typically been used to display images on surfaces whose geometric relationship to the projector remains constant, such as walls or pre-calibrated surfaces. In this paper, we present a technique for projecting content onto moveable surfaces that adapts to the motion and location of the surface to simulate an active display. This is accomplished using a projector based location tracking techinque. We use light sensors embedded into the moveable surface and project low-perceptibility Graycoded patterns to first discover the sensor locations, and then incrementally track them at interactive rates. We describe how to reduce the perceptibility of tracking patterns, achieve interactive tracking rates, use motion modeling to improve tracking performance, and respond to sensor occlusions. A group of tracked sensors can define quadrangles for simulating moveable displays while single sensors can be used as control inputs. By unifying the tracking and display technology into a single mechanism, we can substantially reduce the cost and complexity of implementing applications that combine motion tracking and projected imagery.

Using Projector Based; Johnny C. Lee; Scott E. Hudson; Jay W. Summet; Paul H. Dietz

2005-01-01T23:59:59.000Z

314

Fluid Imaging | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Fluid Imaging Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Fluid Imaging 2 Geothermal ARRA Funded Projects for Fluid Imaging Geothermal Lab Call Projects for Fluid Imaging Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

315

Project 320  

NLE Websites -- All DOE Office Websites (Extended Search)

Philip Goldberg Philip Goldberg Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-5806 philip.goldberg@netl.doe.gov Marek Wojtowicz Advanced Fuel Research, Inc. 87 Church Street East Hartford, CT 06108 860-528-9806 marek@AFRinc.com Sequestration CARBON DIOXIDE RECOVERY FROM COMBUSTION FLUE GAS USING CARBON- SUPPORTED AMINE SORBENTS Background In Phase I, Advanced Fuel Research, Inc. will initiate development of a novel sorbent for the removal of carbon dioxide from combustion/incineration flue gas. The sorbent, based on amines supported on low-cost activated carbon, will be produced from scrap tires. Liquid-based amine systems are limited to relatively low concentrations to avoid corrosion. Corrosion should not be a

316

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

RISK ASSESSMENT AND MONITORING OF RISK ASSESSMENT AND MONITORING OF STORED CO 2 IN ORGANIC ROCKS UNDER NON- EQUILIBRIUM CONDITIONS DOE (NETL) Award Number: DE-FE0002423 Investigator: Vivak (Vik) Malhotra DOE supported undergraduate student participants: Jacob Huffstutler, Ryan Belscamper, Stephen Hofer, Kyle Flannery,, Bradley Wilson, Jamie Pfister, Jeffrey Pieper, Joshua T. Thompson, Collier Scalzitti-Sanders, and Shaun Wolfe Southern Illinois University-Carbondale Carbondale, Illinois 62901-4401 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Carbon Storage Program * Program goals being addressed: - To attempt to answer whether CO

317

Project Status  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Generation Simulator Hybrid Generation Simulator HybSim© 1.0 DAVID TRUJILLO SANDIA NATIONAL LABORATORY Presented by Joshua Bartlett - University of Michigan Introduction * HybSim© 1.0 copyrighted 2006 * First license to University of Michigan Introduction HybSim© Model What - "Hybrid Simulator"; Tool designed to evaluate the economic and environmental benefits of adding renewable energy to the fossil fuel generation mix in remote and difficult-accessible locations. Why - Benefits of energy storage, decision analysis, risk analysis, load growth issues, load management, economic analysis, planning (what-ifs) Who - Availability to coops, field techs, project managers, administrative personnel Where - Remote villages, military installations, remote industrial systems; any climate

318

PROJECT TITLE:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Baltimore Baltimore PROJECT TITLE: EECBG - GHG Scrubbing System Page 1 of2 STATE: MD Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-EE0000738 GFO-0000738-002 0 Based all my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: All Technical advice and planning assistance to international, national, state, and local organizations. 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

319

Project 328  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 CONTACTS Gary J. Stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Jenny Tennant Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4830 Jenny.Tennant@netl.doe.gov Gasification Technologies Conceptual drawing of Rocketdyne's gasification system ADVANCED GASIFICATION SYSTEMS DEVELOPMENT Description Rocketdyne will apply rocket engine technology to gasifier design, allowing for a paradigm shift in gasifier function, resulting in significant improvements in capital and maintenance costs. Its new gasifier will be an oxygen-blown, dry-feed, plug-flow entrained reactor able to achieve carbon conversions of nearly 100 percent by rapidly heating low coal particles

320

Project 199  

NLE Websites -- All DOE Office Websites (Extended Search)

Heino Beckert Heino Beckert Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4132 heino.beckert@netl.doe.gov Ramin Yazdani Senior Civil Engineer Yolo County Planning and Public Works Department 292 West Beamer Street Woodland, CA 95695 530-666-8848 ryazdani@yolocounty.org Sequestration Yolo County Landfill Methane Production Compared to Other Landfills FULL-SCALE BIOREACTOR LANDFILL Background Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for the disposal of about 217 million tons of waste annually (U.S. EPA, 1997). The annual production of municipal waste in the United States has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Project 258  

NLE Websites -- All DOE Office Websites (Extended Search)

MONITORING POWER PLANT EFFICIENCY USING MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED PHOTOACOUSTIC EFFECT TO MEASURE UNBURNED CARBON Objective The objective of this project is to explore the use of the microwave-excited photoacoustic (MEPA) effect for quantitative analysis of unburned carbon in fly ash, an extremely important parameter to the electric utility industry. Specific objectives include: * Determine factors that influence accuracy and precision of the MEPA effect; * Evaluate the microwave spectra of fly ash and other divided solids of importance to the power industry; and * Determine the feasibility of an on-line carbon-in-ash monitor based on the MEPA effect. Benefits High carbon levels in coal ash indicate poor combustion efficiency, resulting in additional fuel requirements and higher emissions of pollutants, such as acid-rain

322

Project311  

NLE Websites -- All DOE Office Websites (Extended Search)

Lang Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov John Bowser Principal Investigator Compact Membrane Systems, Inc. 325 Water Street Wilmington, DE 19804 302-999-7996 john.bowser@compactmembrane.com Sequestration CARBON DIOXIDE CAPTURE FROM LARGE POINT SOURCES Background Capture of carbon dioxide at the source of its emission has been a major focus in greenhouse gas emission control. Current technologies used for capturing CO 2 suffer from inefficient mass transfer and economics. In Phase I, Compact Membrane Systems, Inc. will fabricate and test a membrane-based absorption system for the removal of carbon dioxide from a simulated power-plant flue gas. The stability of the membrane system under various operating conditions

323

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

09 09 January 2010 Doc. No. S06172 Page 1 1.3 Peripheral Properties (Private and City-Owned) * No land use or supplemental standards compliance issues were observed or reported by LTSM on-site staff. Monticello National Priorities List Sites Federal Facilities Agreement (FFA) Quarterly Report: October 1-December 31, 2009 This report summarizes project status and activities implemented October through December 2009, and provides a schedule of near-term activities for the Monticello Mill Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) sites. This report also includes disposal cell and Pond 4 leachate collection data, quarterly site inspection reports, site meteorological data, and a performance summary for the ex situ groundwater treatment system.

324

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Water-Rock Interactions Water-Rock Interactions and the Integrity of Hydrodynamic Seals FWP FE-10-001 Bill Carey Los Alamos National Laboratory Los Alamos, NM U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program Goal: Ensure retention of 99% of injected CO 2 * Focus: Wellbore integrity * Approach: Use field, experimental and computational methods - Determine long-term compatibility of wellbore materials with CO 2 - Determine leakage mechanisms - Predict well performance * Benefit: The research will provide a basis for evaluating the long-term performance of wells, guide remediation

325

Project 371  

NLE Websites -- All DOE Office Websites (Extended Search)

Brent Marquis Brent Marquis Project Manager Sensor Research and Development 17 Godfrey Dr. Orono, ME. 04473 207-866-0100 ext. 241 SEMI-CONDUCTOR METAL OXIDE TECHNOLOGY FOR IN SITU DETECTION OF COAL-FIRED COMBUSTION GASES Description Sensor Research and Development Corporation is developing a robust prototype sensor system for in situ, real-time detection, identification, and measurement of coal-fired combustion gases. The sensor system is comprised of several unique semi-conducting metal oxide (SMO) sensor arrays in tandem with novel gas prefiltration techniques. The sensor array will be able to selectively detect and measure nitric oxide (NO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), and ammonia (NH 3 ). The SMO sensor array is the heart of the combustion gas analyzer being developed

326

Project 298  

NLE Websites -- All DOE Office Websites (Extended Search)

Reaction Engineering Reaction Engineering International Salt Lake City, UT www.reaction-eng.com CONTACTS Bruce W. Lani Project Manager National Energy Technology Laboratory 412-386-5819 bruce.lani@netl.doe.gov Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory 412-386-6134 thomas.feeley@netl.doe.gov Michael Bockelie Reaction Engineering International 801-364-69255 bockelie@reaction-eng.com WEBSITE http://www.netl.doe.gov NO X CONTROL OPTIONS AND INTEGRATION FOR U.S. COAL FIRED BOILERS (RICH REAGENT INJECTION) Background Enacted regulations pertaining to the NO X SIP Call and potential future regulations in proposed legislation such as the President's Clear Skies Act or EPA's Clean Air Interstate Rule require power producers to seek the most cost effective methods to achieve compliance. In order to address present and

327

Project 398  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Gasification Technologies CONTACTS Gary J. Stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Ronald Breault Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4486 ronald.breault@netl.doe.gov Michael Swanson Principal Investigator University of North Dakota Energy and Environmental Research Center 15 North 23rd Street P.O. Box 9018 Grand Forks, ND 58202 701-777-5239 mswanson@eerc.und.nodak.edu ADVANCED HIGH TEMPERATURE, HIGH-PRESSURE TRANSPORT REACTOR Description Today, coal supplies over 55 percent of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being

328

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Jennifer A. Kozak, Jennifer A. Kozak, 1,2 Dr. Fritz Simeon, 2 Prof. T. Alan Hatton,* ,2 and Prof. Timothy F. Jamison* ,1 1 Department of Chemistry and 2 Department of Chemical Engineering Massachusetts Institute of Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation, Goals, Objectives * Background * Cyclic Carbonate Synthesis via Catalytic Coupling of CO 2 and Epoxides * New Catalysts and Reaction Scope * Mechanism - A New Paradigm for Activating Epoxides * Conclusions 3 Benefit to the Program * Identify the Program goals being addressed. - Develop technologies to demonstrate that 99 percent

329

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Verification and Accounting of Geologic Carbon Sequestration Using a Field Ready 14 C Isotopic Analyzer DEFE 0001116 Bruno D.V. Marino PhD CEO, Founder Planetary Emissions Management, Inc. 485 Massachusetts Ave. Cambridge, MA 02139 bruno.marino@pem-carbon.com www.pem-carbon.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Benefits of a 14 CO 2 Field Analyzer to DOE MVA Program Goals Program Goals: 99% Containment Identify/Quantify CCS Credits Direct Tracking Verification Tight/Leaky Account for Natural Baseline MVA Atmosphere MVA Groundwater Ecosystem Health, Community Safety

330

Project 339  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Jenny Tennant Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4830 jenny.tennant@netl.doe.gov Dr. Tomasz Wiltowski Southern Illinios University Dept. of Mechanical Engineering & Energy Processes Carbondale, IL 62901-4709 618-536-5521 tomek@siu.edu QUALIFICATIONS OF CANDLE FILTERS FOR COMBINED CYCLE COMBUSTION APPLICATIONS Background In order to make oxygen-fired combined cycle combustion feasible, it is necessary to have a reliable high temperature particulate cleanup system. It is well established

331

Project 350  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrates Gas Hydrates CONTACTS Ray Boswell Acting Technology Manager Gas Technology Management Division 304-285-4541 ray.boswell@netl.doe.gov James Ammer Director Gas Technology Management Division 304-285-4383 james.ammer@netl.doe.gov Kelly Rose Project Manager Gas Technology Management Division 304-285-4157 kelly.rose@netl.doe.gov Joseph Wilder Research Group Leader Simulation, Analysis and Computational Science Division 304-285-0989 joseph.wilder@netl.doe.gov NETL - DIRECTING THE DEVELOPMENT OF WORLD-CLASS GAS HYDRATE RESERVOIR SIMULATORS Development of reliable simulators that accurately predict the behavior methane hydrates in nature is a critical component of NETL's program to appraise the gas supply potential of hydrates. NETL is leading the development of a suite of modeling tools that are providing

332

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Building the Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix Introduction * Most storage modeling studies involve a caprock/reservoir interface, and assume a discrete contact with simple (uniform) flow conditions. * We address the question of whether or not heterogeneities at the interface influence transmission of CO 2 into the caprock 3 Introduction The nature of reservoir/caprock interfaces 4 Triassic-Jurassic Strata, San Rafael Swell, UT Organization 5 Peter Mozley (PD/PI) NMT Sedimentology James Evans (Co-PI) USU Structure Thomas Dewers (Co-I) Jason Heath (Staff) SNL Modeling Mark Person

333

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Verification and Verification and Accounting of Geologic Carbon Sequestration Using a Field Ready 14 C Isotopic Analyzer CCS Public Outreach: Pathway to Tradable CCS Securities DEFE 0001116 Bruno D.V. Marino PhD CEO, Founder Planetary Emissions Management, Inc. One Broadway, 14 th Floor Cambridge, MA 02142 bruno.marino@pem-carbon.com www.pem-carbon.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 All RIGHTS RESERVED © Benefits: Public Outreach CCS-MVA LINKED TRADABLE SECURITY Increase Public Confidence in CCS Increase Public involvement in CCS "Leakage Rate" Product Distinct from GHG "Credits"

334

PROJECT TITLE:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Richmond Richmond PROJECT TITLE: EECBG - Solar Compactors and Recycling Units Page 1 of2 STATE: VA Funding Opportunity Announcement Number DE-FOA-0000013 Procurement Instrument Number DE-EE0000878 NEPA Control Number cm Number GFO-0000878-003 0 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical assistance to individuals (such as builders, owners, consultants, designers), organizations (such as utilities), and state

335

Project 370  

NLE Websites -- All DOE Office Websites (Extended Search)

crshadd@sandia.gov crshadd@sandia.gov O 2 /CO 2 RECYCLE COAL COMBUSTION TO MINIMIZE POLLUTANTS Description O 2 /CO 2 recycle coal combustion is a promising, retrofittable technique for electric power production, while producing a nearly pure stream of CO 2 for subsequent use or sequestration. Most pollutant emissions, including NO x , are lower in this process, compared to conventional pulverized coal combustion. However, laboratory and pilot-scale tests to date have shown a wide variation in the fractional reduction of NO x when adopting this technology, suggesting that further improvements in NO x reduction are possible, given a better understanding of the dominant routes of NO x production and destruction in these systems. Goals The goal of this project is to determine the relative influence of three different

336

Project 346  

NLE Websites -- All DOE Office Websites (Extended Search)

Sara Pletcher Sara Pletcher Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-385-4236 sara.pletcher@netl.doe.gov Gary M. Blythe URS Corporation PO Box 201088 Austin, TX 78720 512-419-5321 gary_blythe@urscorp.com BENCH SCALE KINETICS OF MERCURY REACTIONS IN FGD LIQUORS Background When research into the measurement and control of Hg emissions from coal-fired power plants began in earnest in the early 1990s, it was observed that oxidized mercury can be scrubbed at high efficiency in wet FGD systems, while elemental mercury cannot. In many cases, elemental mercury concentrations were observed to increase slightly across wet FGD systems, but this was typically regarded as within the variability of the measurement methods. However, later measurements have

337

Project 261  

NLE Websites -- All DOE Office Websites (Extended Search)

NOVEL CORROSION SENSOR FOR ADVANCED NOVEL CORROSION SENSOR FOR ADVANCED FOSSIL ENERGY POWER SYSTEMS Description The overall objective of this proposed project is to develop a new technology for on-line corrosion monitoring based on an innovative concept. The specific objectives and corresponding tasks are (1) develop the sensor and electronic measurement system; (2) evaluate and improve the system in a laboratory muffle furnace; and (3) evaluate and improve the system through tests conducted in a pilot-scale coal combustor (~1 MW). Fireside corrosion refers to the metal loss caused by chemical reactions on surfaces exposed to the combustion environment. Such corrosion is the leading mechanism for boiler tube failures and is a serious concern for current and future energy plants due to the introduction of technologies targeting emissions

338

Project 278  

NLE Websites -- All DOE Office Websites (Extended Search)

Karen Cohen Karen Cohen Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6667 karen.cohen@netl.doe.gov Ken Nemeth Executive Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 nemeth@sseb.org Sequestration SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB) Background The U.S. Department of Energy has selected the seven partnerships of state agencies, universities, and private companies that will form the core of a nationwide network that will help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. All together, the partnerships include more than 240 organizations, spanning 40 states, three Indian nations, and

339

FLUXNET Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation > FLUXNET Validation > FLUXNET The FLUXNET Project Overview [FLUXNET Logo] FLUXNET is a global network of micrometeorological tower sites that use eddy covariance methods to measure the exchanges of carbon dioxide, water vapor, and energy between terrestrial ecosystems and the atmosphere. More that 500 tower sites from about 30 regional networks across five continents are currently operating on a long-term basis. The overarching goal of FLUXNET is to provide information for validating remote sensing products for net primary productivity (npp), evaporation, and energy absorption. FLUXNET provides information to FLUXNET investigators and to the public. The primary functions of FLUXNET are: To provide information about tower location, site characteristics, data availability, and where to obtain the data

340

Project 296  

NLE Websites -- All DOE Office Websites (Extended Search)

McDermott Technology McDermott Technology Alliance, OH www.mcdermott.com CONTACTS Bruce W. Lani Project Manager National Energy Technology Laboratory 412-386-5819 bruce.lani@netl.doe.gov Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory 412-386-6134 thomas.feeley@netl.doe.gov Hamid Farzan Babcock & Wilcox Company 330-860-6628 HFarzan@babcock.com WEBSITE http://www.netl.doe.gov NO X CONTROL FOR UTILITY BOILER OTR COMPLIANCE Background Enacted regulations pertaining to the NO X SIP Call and potential future regulations in proposed legislation such as the President's Clear Skies Act or EPA's Clean Air Interstate Rule require power producers to seek the most cost effective methods to achieve compliance. In order to address present and anticipated NO X emissions control legislation targeting the current fleet of U.S. coal-fired boilers, the Department

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Project 253  

NLE Websites -- All DOE Office Websites (Extended Search)

Anna Lee Tonkovich Anna Lee Tonkovich Technical Contact Velocys, Inc. 7950 Corporate Blvd. Plain City, OH 43064 614-733-3330 tonkovich@velocys.com Sequestration UPGRADING METHANE STREAMS WITH ULTRA-FAST TSA Background Most natural gas streams are contaminated with other materials, such as hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), and nitrogen. Effective processes for removal of H 2 S and CO 2 exist, but because of its relative inertness, nitrogen removal is more difficult and expensive. This project will focus on the separation of nitrogen from methane, which is one of the most significant challenges in recovering low-purity methane streams. The approach is based on applying Velocys' modular microchannel process technology (MPT) to achieve ultra-fast thermal swing adsorption (TSA). MPT

342

Project 397  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Gasification Technologies CONTACTS Gary J. Stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov John Stipanovich Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6027 john.stipanovich@netl.doe.gov Derek Aldred Principal Investigator Stamet, Inc. 8210 Lankershim Blvd. #9 North Hollywood, CA 91605 818-768-1025 dlaldred@stametinc.com CONTINUOUS PRESSURE INJECTION OF SOLID FUELS INTO ADVANCED COMBUSTION SYSTEM PRESSURES Description Operators and designers of high-pressure combustion systems universally agree that one of the major problems inhibiting the success of this technology relates to solid

343

Project 303  

NLE Websites -- All DOE Office Websites (Extended Search)

CONCEPTUAL DESIGN OF OXYGEN-BASED CONCEPTUAL DESIGN OF OXYGEN-BASED PC BOILER Background Because of growing concern that a link exists between global climatic change and emission of greenhouse gases, such as CO 2 , it is prudent to develop new coal combustion technologies to meet future emissions standards, should it become necessary to limit CO 2 emissions to the atmosphere. New technology is needed to ensure that the U.S. can continue to generate power from its abundant domestic coal resources. This project will design an optimized combustion furnace to produce a low-cost, high-efficiency power plant that supports the U.S. Department of Energy's (DOE) goal of developing advanced combustion systems that have the potential to control CO 2 through an integrated power system that produces a concentrated

344

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Geologic Characterization of the Triassic Newark Basin of Southeastern New York and Northern New Jersey (DE-FE0002352) Daniel J. Collins, PG, RG Sandia Technologies, LLC U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 * Acknowledgment: This material is based upon work supported by the Department of Energy [National Energy Technology Laboratory] under Award Number DE- FE0002352, Contract No. 18131 from the New York State Energy Research & Development Authority [NYSERDA], and "In Kind" Cost Share from Schlumberger Carbon Services, Weatherford Laboratories, National Oilwell Varco, New York State Museum, and Rutgers University.

345

Project 143  

NLE Websites -- All DOE Office Websites (Extended Search)

George Rizeq George Rizeq Principal Investigator GE Global Research 18A Mason Irvine, CA 92618 949-330-8973 rizeq@research.ge.com FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF HYDROGEN AND SEQUESTRATION-READY CARBON DIOXIDE Description Projections of increased demands for energy worldwide, coupled with increasing environmental concerns have given rise to the need for new and innovative technologies for coal-based energy plants. Incremental improvements in existing plants will likely fall short of meeting future capacity and environmental needs economically. Thus, the implementation of new technologies at large scale is vital. In order to prepare for this inevitable paradigm shift, it is necessary to have viable alternatives that have been proven both theoretically and experimentally

346

Project 270  

NLE Websites -- All DOE Office Websites (Extended Search)

SILICON CARBIDE MICRO-DEVICES FOR SILICON CARBIDE MICRO-DEVICES FOR COMBUSTION GAS SENSING UNDER HARSH CONDITIONS Description Reducing pollution and improving energy efficiency require sensitive, rugged sensors that can quantitatively detect gases that are produced in advanced combustion systems. Most materials cannot withstand the high temperature, chemically reactive environments encountered in power plants. This project is focused on developing solid state sensors based on the wide bandgap semiconductor silicon carbide (SiC), which can tolerate high temperatures and pressures as well as corrosive gases. Drawing upon the tools of semiconductor physics, surface science and chemistry, at the level of individual atoms and molecules, an understanding of the underlying physical mechanisms leading to

347

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

1 1 July 2011 Doc. No. S07978 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: April 1-June 30, 2011 This report summarizes project status and activities implemented April through June 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental Protection Agency (EPA) National Priorities List (NPL) in 1989 and 1986, respectively. The U.S. Department of Energy (DOE) implemented remedial actions at the MVP in 1986 and at the MMTS in 1989, to conform to requirements of the Comprehensive Environmental Response, Compensation, and Liability

348

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

FFA Quarterly Report: April 1-June 30, 2009 FFA Quarterly Report: April 1-June 30, 2009 July 2009 Doc. No. S05572 Page 1 Monticello National Priorities List Sites Federal Facilities Agreement (FFA) Quarterly Report: April 1-June 30, 2009 This report summarizes project status and activities implemented April through June 2009, and provides a schedule of near-term activities for the Monticello Mill Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) sites. This report also includes disposal cell and Pond 4 leachate collection data, quarterly site inspection reports, site meteorological data, and a performance summary for the ex situ groundwater treatment system. 1.0 MMTS Activities/Status 1.1 Disposal Cell and Pond 4 * Monthly and quarterly inspections of the repository identified livestock damage to a

349

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

31, 2011 31, 2011 April 2011 Doc. No. S07666 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: January 1-March 31, 2011 This report summarizes project status and activities implemented January through March 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental Protection Agency (EPA) National Priorities List (NPL) in 1989 and 1986, respectively. The U.S. Department of Energy (DOE) implemented remedial actions at the MVP in 1986 and at the MMTS in 1989, to conform to requirements of the Comprehensive Environmental Response, Compensation, and Liability

350

Project 333  

NLE Websites -- All DOE Office Websites (Extended Search)

José D. Figueroa José D. Figueroa Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4966 jose.figueroa@netl.doe.gov C. Jeffrey Brinker Sandia Fellow, Sandia National Laboratories Professor of Chemical & Nuclear Engineering The University of New Mexico Advanced Materials Laboratory 1001 University Blvd. SE, Suite 100 Albuquerque, NM 87106 505-272-7627 cjbrink@sandia.gov Sequestration NOVEL DUAL FUNCTIONAL MEMBRANE FOR CONTROLLING CARBON DIOXIDE EMISSIONS FROM FOSSIL FUELED POWER PLANTS Background There is growing concern among climate scientists that the buildup of greenhouse gases (GHG), particularly carbon dioxide, in the atmosphere is affecting the global climate in ways that could have serious consequences. One approach to reducing GHG emissions

351

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

© 2012 Paulsson, Inc. (PI) Development of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration DE-FE0004522 Björn N.P. Paulsson Paulsson, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 ® © 2012 Paulsson, Inc. (PI) © 2012 Paulsson, Inc. (PI) * Goals: Design, build, and test a high performance borehole seismic receiver system to allow cost effective geologic Carbon Capture and Storage (CCS) * Objectives: A: Develop technology to allow deployment of a 1,000 level drill pipe deployed 3C Fiber Optic Geophone (FOG) receiver array for deep

352

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

fluid-driven fracture fluid-driven fracture DE-FE0002020 Joseph F. Labuz Civil Engineering University of Minnesota U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits statement * Goal, objectives * Technical status: fracture code, experimental results (poro, AE) * Accomplishments * Summary 0 50 100 150 200 250 300 350 0.00 0.05 0.10 0.15 0.20 Lateral displacement [mm] Load [kN] 0 300 600 900 1200 1500 AE events inelastic deformation peak 3 Benefit to the Program * Goal: develop technologies to predict CO2 storage capacity in geologic formations. * Benefits statement: develop 3D boundary element code & experimental techniques

353

Project Flow.qxp  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Testing Partner RESPONSIBILITIES Tailgate Safety Project Execution 907 North Poplar, Suite 150 Casper, WY 82601 888.599.2200 www.rmotc.doe.gov Project Planning Project...

354

Hydrology Group - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Bonneville Project Powerhouse 2 Fish Guidance Efficiency Simulations Bonneville Tailrace Project: Three-Dimensional CFD Models and Flow Measurements Chandler Fish Handling...

355

ALS Project Management Manual  

E-Print Network (OSTI)

management practices across all ALS projects. It describesthat the primary weakness in ALS project management effortsrich projects common at the ALS. It is sometimes difficult

Krupnick, Jim; Harkins, Joe

2000-01-01T23:59:59.000Z

356

EV Project Overview Report  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Project Overview Report Project to Date through March 2011 Charging Infrastructure Number of EV Project Number of Electricity Charging Units Charging Events Consumed Region...

357

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image 150 DPI Image No 300 DPI Version. Title: NIST Finds that Ethanol-Loving Bacteria Accelerate Cracking of Pipeline Steels. ...

358

A Fisher-Rao Metric for Paracatadioptric Images of Lines  

Science Conference Proceedings (OSTI)

In a central paracatadioptric imaging system a perspective camera takes an image of a scene reflected in a paraboloidal mirror. A 360 field of view is obtained, but the image is severely distorted. In particular, straight lines in the scene project ... Keywords: Central projection, Fisher-Rao metric, Hough transform, Line detection, Paraboloidal mirror, Paracatadioptric system, Sobel operator, Trace transform

Stephen J. Maybank; Siohoi Ieng; Ryad Benosman

2012-09-01T23:59:59.000Z

359

Kenya-GEF Projects | Open Energy Information  

Open Energy Info (EERE)

GEF Projects GEF Projects Jump to: navigation, search Name Kenya-GEF Projects Agency/Company /Organization Global Environment Facility Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Forestry, Agriculture Topics Background analysis Country Kenya Eastern Africa References GEF Project database[1] GEF Climate Projects in Kenya 1780 Kenya Joint Geophysical Imaging (JGI) Methodology for Geothermal Reservoir Assessment Climate Change UNEP Medium Size Project, GEF Grant-979,059.000, Co-financing total-1,754,264.0 IA Approved 2870 Kenya Market Transformation for Efficient Biomass Stoves for Institutions and Small and Medium-Scale Enterprises Climate Change UNDP Medium Size Project GEF Grant-975,000.000 Co-financing total-5,646,467.0 IA Approved 3249 Kenya Adaptation to Climate Change in Arid Lands (KACCAL)

360

EV Project Overview Report  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2012 Note: EV Project charging units may be used by vehicles that are not part of the EV Project. Likewise, EV Project vehicles may connect to non-EV Project charging units....

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Manhattan Project: Potsdam Note  

Office of Scientific and Technical Information (OSTI)

POTSDAM NOTE POTSDAM NOTE Potsdam, Germany (July 1945) Resources > Photo Gallery Note written by President Harry S. Truman, in which he brags that Stalin did not understand when Truman hinted at Potsdam of a powerful new American weapon. (Scroll down to see the note.) Due to the success of Soviet espionage, however, Truman was incorrect-in fact, Stalin knew about the atomic bomb project three years before Truman did. Truman wrote this note on the back of a photograph of the Potsdam Conference taken on July 19, 1945. In the photograph Stalin talks with Truman and Secretary of State James Byrnes (both have their backs to the camera). The photograph of Potsdam is courtesy the Office of the Chief Signal Officer, War Department, U.S. Army; this image, and the photograph of Truman's writing on the back of it, are courtesy the National Archives.

362

MHK Projects/Ogdensburg Kinetic Energy Project | Open Energy Information  

Open Energy Info (EERE)

Ogdensburg Kinetic Energy Project Ogdensburg Kinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6942,"lon":-75.4863,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

363

MHK Projects/Avondale Bend Project | Open Energy Information  

Open Energy Info (EERE)

Avondale Bend Project Avondale Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9301,"lon":-90.2215,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

364

MHK Projects/New Madrid Bend Project | Open Energy Information  

Open Energy Info (EERE)

Madrid Bend Project Madrid Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.5515,"lon":-89.4613,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

365

MHK Projects/Cat Island Project | Open Energy Information  

Open Energy Info (EERE)

Cat Island Project Cat Island Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9431,"lon":-91.0932,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

366

MHK Projects/Kempe Bend Project | Open Energy Information  

Open Energy Info (EERE)

Kempe Bend Project Kempe Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.8622,"lon":-91.3073,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

367

MHK Projects/Coal Creek Project | Open Energy Information  

Open Energy Info (EERE)

Creek Project Creek Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3617,"lon":-101.094,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

368

MHK Projects/Reliance Light Project | Open Energy Information  

Open Energy Info (EERE)

Reliance Light Project Reliance Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3219,"lon":-91.1956,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

369

MHK Projects/Helena Reach Project | Open Energy Information  

Open Energy Info (EERE)

Helena Reach Project Helena Reach Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5795,"lon":-90.5722,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

370

MHK Projects/Fortyeight Mile Point Project | Open Energy Information  

Open Energy Info (EERE)

Fortyeight Mile Point Project Fortyeight Mile Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0447,"lon":-90.6659,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

371

MHK Projects/Chitokoloki Project | Open Energy Information  

Open Energy Info (EERE)

Chitokoloki Project Chitokoloki Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-13.8336,"lon":23.2047,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

372

MHK Projects/Wrangell Narrows Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Wrangell Narrows Tidal Energy Project Wrangell Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.6324,"lon":-132.936,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

373

MHK Projects/Milliken Bend Project | Open Energy Information  

Open Energy Info (EERE)

Milliken Bend Project Milliken Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.5594,"lon":-91.1119,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

374

MHK Projects/40MW Lewis project | Open Energy Information  

Open Energy Info (EERE)

40MW Lewis project 40MW Lewis project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.791595089019,"lon":-6.7286683246493,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

375

MHK Projects/Griffin Project | Open Energy Information  

Open Energy Info (EERE)

Griffin Project Griffin Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-31.9529,"lon":115.857,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

376

MHK Projects/Greenville Bend Project | Open Energy Information  

Open Energy Info (EERE)

Greenville Bend Project Greenville Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9231,"lon":-90.1433,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

377

MHK Projects/Jackson Point Project | Open Energy Information  

Open Energy Info (EERE)

Jackson Point Project Jackson Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.264,"lon":-91.5854,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

378

MHK Projects/Highlands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3432,"lon":-73.9977,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

379

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Piscataqua Tidal Hydrokinetic Energy Project Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

380

MHK Projects/Hope Field Point Project | Open Energy Information  

Open Energy Info (EERE)

Hope Field Point Project Hope Field Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1552,"lon":-90.0716,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

MHK Projects/College Point Project | Open Energy Information  

Open Energy Info (EERE)

Point Project Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30,"lon":-90.8357,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

382

MHK Projects/Wickliffe Project | Open Energy Information  

Open Energy Info (EERE)

Wickliffe Project Wickliffe Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.9756,"lon":-89.1193,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

383

MHK Projects/Claiborne Island Project | Open Energy Information  

Open Energy Info (EERE)

Claiborne Island Project Claiborne Island Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2055,"lon":-91.0732,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

384

MHK Projects/Passamaquoddy Tribe Hydrokinetic Project | Open Energy  

Open Energy Info (EERE)

Passamaquoddy Tribe Hydrokinetic Project Passamaquoddy Tribe Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

385

MHK Projects/Point Menoir Project | Open Energy Information  

Open Energy Info (EERE)

Menoir Project Menoir Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.6436,"lon":-91.3029,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

386

MHK Projects/Malone Field Light Project | Open Energy Information  

Open Energy Info (EERE)

Malone Field Light Project Malone Field Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8923,"lon":-91.0632,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

387

MHK Projects/Duncan Point Project | Open Energy Information  

Open Energy Info (EERE)

Duncan Point Project Duncan Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3743,"lon":-91.2403,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

388

MHK Projects/Little Prairie Bend Project | Open Energy Information  

Open Energy Info (EERE)

Little Prairie Bend Project Little Prairie Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.2522,"lon":-89.657,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

389

MHK Projects/Ashley Point Project | Open Energy Information  

Open Energy Info (EERE)

Ashley Point Project Ashley Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8354,"lon":-90.432,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

390

MHK Projects/Algiers Light Project | Open Energy Information  

Open Energy Info (EERE)

Light Project Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9502,"lon":-90.0558,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

391

MHK Projects/Huffman Light Project | Open Energy Information  

Open Energy Info (EERE)

Huffman Light Project Huffman Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9806,"lon":-89.7263,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

392

MHK Projects/Ironton Light Project | Open Energy Information  

Open Energy Info (EERE)

Ironton Light Project Ironton Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.6755,"lon":-89.9653,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

393

MHK Projects/Atchafalaya River Hydrokinetic Project II | Open Energy  

Open Energy Info (EERE)

Atchafalaya River Hydrokinetic Project II Atchafalaya River Hydrokinetic Project II < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.9828,"lon":-91.7994,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

394

MHK Projects/Humboldt County Wave Project | Open Energy Information  

Open Energy Info (EERE)

Wave Project Wave Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7381,"lon":-123.928,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

395

MHK Projects/Point Pleasant Project | Open Energy Information  

Open Energy Info (EERE)

Pleasant Project Pleasant Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2571,"lon":-91.1172,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

396

MHK Projects/Kingsbridge Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Kingsbridge Tidal Energy Project Kingsbridge Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1008,"lon":-74.0495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

397

MHK Projects/Woodland Light Project | Open Energy Information  

Open Energy Info (EERE)

Light Project Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0482,"lon":-90.5032,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

398

MHK Projects/Williams Point Project | Open Energy Information  

Open Energy Info (EERE)

Point Project Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.4755,"lon":-89.5308,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

399

MHK Projects/Carrolton Bend Project | Open Energy Information  

Open Energy Info (EERE)

Carrolton Bend Project Carrolton Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.95,"lon":-90.1551,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

400

MHK Projects/Sakonnet River Hydrokinetic Project | Open Energy Information  

Open Energy Info (EERE)

Sakonnet River Hydrokinetic Project Sakonnet River Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6224,"lon":-71.2153,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MHK Projects/Plum Point Project | Open Energy Information  

Open Energy Info (EERE)

Point Project Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.735,"lon":-89.9154,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

402

MHK Projects/Grand Manan Channel Project | Open Energy Information  

Open Energy Info (EERE)

Manan Channel Project Manan Channel Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8586,"lon":-66.9836,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

403

MHK Projects/Aquantis Project | Open Energy Information  

Open Energy Info (EERE)

Project Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3719,"lon":-119.538,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

404

MHK Projects/Anconia Point Project | Open Energy Information  

Open Energy Info (EERE)

Anconia Point Project Anconia Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.2952,"lon":-91.168,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

405

MHK Projects/Gouldsboro Bend Project | Open Energy Information  

Open Energy Info (EERE)

Gouldsboro Bend Project Gouldsboro Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9177,"lon":-90.0673,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

406

MHK Projects/Algiers Cutoff Project | Open Energy Information  

Open Energy Info (EERE)

Cutoff Project Cutoff Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.5439,"lon":-90.3386,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

407

MHK Projects/Scotlandville Bend Project | Open Energy Information  

Open Energy Info (EERE)

Scotlandville Bend Project Scotlandville Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5166,"lon":-91.218,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

408

MHK Projects/Oyster 800 Project | Open Energy Information  

Open Energy Info (EERE)

800 Project 800 Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.969,"lon":-3.362,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

409

MHK Projects/Walker Bend Project | Open Energy Information  

Open Energy Info (EERE)

Walker Bend Project Walker Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.3678,"lon":-91.1315,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

410

MHK Projects/Deception Pass Tidal Energy Hydroelectric Project | Open  

Open Energy Info (EERE)

Deception Pass Tidal Energy Hydroelectric Project Deception Pass Tidal Energy Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.4072,"lon":-122.643,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

411

MHK Projects/Bonnybrook Wastewater Facility Project 1 | Open Energy  

Open Energy Info (EERE)

Bonnybrook Wastewater Facility Project 1 Bonnybrook Wastewater Facility Project 1 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.0097,"lon":-114.02,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

412

MHK Projects/Hickman Bend Project | Open Energy Information  

Open Energy Info (EERE)

Hickman Bend Project Hickman Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.6007,"lon":-89.21,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

413

MHK Projects/Twelve Mile Point Project | Open Energy Information  

Open Energy Info (EERE)

Twelve Mile Point Project Twelve Mile Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9177,"lon":-89.9307,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

414

MHK Projects/UEK Yukon River Project | Open Energy Information  

Open Energy Info (EERE)

Yukon River Project Yukon River Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.7881,"lon":-141.2,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

415

MHK Projects/Newton Bend Project | Open Energy Information  

Open Energy Info (EERE)

Newton Bend Project Newton Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.218,"lon":-90.9891,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

416

MHK Projects/Tidal Energy Project Portugal | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Portugal Tidal Energy Project Portugal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.702,"lon":-9.13445,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

417

MHK Projects/Morgan Bend Crossing Project | Open Energy Information  

Open Energy Info (EERE)

Morgan Bend Crossing Project Morgan Bend Crossing Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.7879,"lon":-91.5469,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

418

MHK Projects/Belair Project | Open Energy Information  

Open Energy Info (EERE)

Belair Project Belair Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7975,"lon":-90.8231,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

419

MHK Projects/Sara Bend Project | Open Energy Information  

Open Energy Info (EERE)

Sara Bend Project Sara Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.751,"lon":-91.3999,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

420

MHK Projects/Kenner Bend Project | Open Energy Information  

Open Energy Info (EERE)

Kenner Bend Project Kenner Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9596,"lon":-90.2868,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MHK Projects/Bonnybrook Wastewater Facility Project 2 | Open Energy  

Open Energy Info (EERE)

Bonnybrook Wastewater Facility Project 2 Bonnybrook Wastewater Facility Project 2 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.0097,"lon":-114.02,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

422

MHK Projects/Penobscot Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Penobscot Tidal Energy Project Penobscot Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5404,"lon":-68.7838,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

423

MHK Projects/Luangwa Zambia Project | Open Energy Information  

Open Energy Info (EERE)

Luangwa Zambia Project Luangwa Zambia Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-15.6265,"lon":30.4041,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

424

MHK Projects/Brilliant Point Project | Open Energy Information  

Open Energy Info (EERE)

Point Project Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0835,"lon":-90.912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

425

MHK Projects/TWEC Project | Open Energy Information  

Open Energy Info (EERE)

TWEC Project TWEC Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.8926,"lon":-6.91181,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

426

MHK Projects/CETO Precommercial Pilot Project | Open Energy Information  

Open Energy Info (EERE)

Precommercial Pilot Project Precommercial Pilot Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-32.2509,"lon":115.651,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

427

MHK Projects/Miller Bend Project | Open Energy Information  

Open Energy Info (EERE)

Miller Bend Project Miller Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.4887,"lon":-91.1612,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

428

MHK Projects/Pulse Stream 100 Demonstration Project | Open Energy  

Open Energy Info (EERE)

Pulse Stream 100 Demonstration Project Pulse Stream 100 Demonstration Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.6405,"lon":-0.16257,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

429

MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Admirality Inlet Tidal Energy Project Admirality Inlet Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.1169,"lon":-122.76,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

430

MHK Projects/Yukon River Hydrokinetic Turbine Project | Open Energy  

Open Energy Info (EERE)

Yukon River Hydrokinetic Turbine Project Yukon River Hydrokinetic Turbine Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.7883,"lon":-141.198,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

431

MHK Projects/Maine 1 Project | Open Energy Information  

Open Energy Info (EERE)

1 Project 1 Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9062,"lon":-66.99,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

432

MHK Projects/Fashion Light Project | Open Energy Information  

Open Energy Info (EERE)

Fashion Light Project Fashion Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9898,"lon":-90.4186,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

433

MHK Projects/Oyster 1 Project | Open Energy Information  

Open Energy Info (EERE)

1 Project 1 Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.972,"lon":-3.36,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

434

MHK Projects/Live Oak Project | Open Energy Information  

Open Energy Info (EERE)

Live Oak Project Live Oak Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7638,"lon":-90.0278,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

435

MHK Projects/White Alder Project | Open Energy Information  

Open Energy Info (EERE)

Alder Project Alder Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2165,"lon":-91.1593,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

436

MHK Projects/Remy Bend Project | Open Energy Information  

Open Energy Info (EERE)

Remy Bend Project Remy Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0121,"lon":-90.754,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

437

MHK Projects/Manchac Point Project | Open Energy Information  

Open Energy Info (EERE)

Manchac Point Project Manchac Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3421,"lon":-91.1832,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

438

MHK Projects/Newfound Harbor Project | Open Energy Information  

Open Energy Info (EERE)

Newfound Harbor Project Newfound Harbor Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.5557,"lon":-81.7826,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

439

MHK Projects/General Hampton Project | Open Energy Information  

Open Energy Info (EERE)

General Hampton Project General Hampton Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.1019,"lon":-90.9562,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

440

Weatherization & Intergovernmental Program: Projects  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Intergovernmental Program Projects Site Map Bookmark and Share Projects From energy efficiency initiatives - such as residential weatherization and state capitol...

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Title: Scanning tunneling microscope; Semiconductor; Spintronics. Description: [Left] A high resolution STM image of a manganese ...

442

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Title: Nanotechnology--Nanomanufacturing; Optical Nano Vision. Description: A new optical imaging technology under ...

443

SPIE Medical Imaging Medical Imaging  

E-Print Network (OSTI)

1 SPIE Medical Imaging 2006 1 Medical Imaging Fundamentals Kenneth H. Wong, Ph.D. Division of Computer Assisted Interventions and Medical Robotics (CAIMR) Imaging Science and Information Systems (ISIS) Center Department of Radiology Georgetown University SPIE Medical Imaging 2006 2 Main Themes · Describe

Miga, Michael I.

444

Turbine Imaging Technology Assessment  

DOE Green Energy (OSTI)

The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

Moursund, Russell A.; Carlson, Thomas J.

2004-12-31T23:59:59.000Z

445

PROJECT MANAGEMENT PLANS Project Management Plans  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANAGEMENT PLANS MANAGEMENT PLANS Project Management Plans  Overview  Project Management Plan Suggested Outline Subjects  Crosswalk between the Suggested PMP Outline Subjects and a Listing of Project Planning Elements  Elements of Deactivation Project Planning  Examples From Project Management Plans Overview The purpose here is to assist project managers and project planners in creating a project plan by providing examples and pointing to information that have been successfully used by others in the past. Section 4.2 of DOE Guide 430.1-3, DEACTIVATION IMPLEMENTATION GUIDE discusses the content and purpose of deactivation project management plans. It is presented as a suggested outline followed by other potential subjects. For the convenience of readers, that information is repeated below.

446

NSLS-II Project Pages  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Project Pages Project Management Team Project Schedule Integrated Project Team (IPT) Monthly Status Meetings Advisory Committees Project Reviews Documents NSLS-II...

447

LBA Land Use and Land Cover Data Set Released  

NLE Websites -- All DOE Office Websites (Extended Search)

Images Published The ORNL DAAC announces the release of two Landsat images of Manaus, Brazil, for October 14, 2004, and for July 29, 2005. The images were obtained and processed...

448

NREL: Biomass Research - Biomass Characterization Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

449

PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Organization Examples Organization Examples Example 8 4.0 PROJECT ORGANIZATION Chapter 4.0 describes the principle project organizations, including their responsibilities and relationships. Other organizations, that have an interest in the project, also are described. 4.1 Principal Project Organizations and Responsibilities The management organization for the 324/327 Buildings Stabilization/Deactivation Project represents a partnership between four principal project organizations responsible for the project. The four project organizations and their associated summary responsibilities are described in the following paragraphs. 4.1.1 U.S. Department of Energy, Headquarters (HQ) The DOE-HQ Office of Nuclear Material and Facility Stabilization (EM-60) is primarily responsible for policy and budget decisions

450

IX disposition project, project management plan  

SciTech Connect

This subproject management plan defines the roles, responsibilities, and actions required for the execution of the IX Disposition Project.

WILLIAMS, N.H.

1999-05-11T23:59:59.000Z

451

The Manhattan Project -- Its Story  

NLE Websites -- All DOE Office Websites (Extended Search)

Project -- Its Story Project -- Its Story Establishment · Operations · Immediate Influences · Long-term Influences · Other Info More About the Manhattan Project atom image Courtesy Argonne National Laboratory The Manhattan Project -- Its Background This year is the 70th anniversary of the establishment of the Manhattan Project, a predecessor of the U.S. Department of Energy. To honor its impacts on science and history, various aspects of its background, establishment, operations, and immediate and long-term influences will be revisited. It started during the fall of 1939, when President F. D. Roosevelt was made aware of the possibility that German scientists were racing to build an atomic bomb and was warned that Hitler would be more than willing to resort to such a weapon. As a result, Roosevelt set up the Advisory Committee on Uranium, consisting of both civilian and military representatives, to study the current state of research on uranium and to recommend an appropriate role for the federal government. The result was limited military funding for isotope separation and the work on chain reactions by Enrico Fermi and Leo Szilard at Columbia University.

452

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Title: Carbon Nanotube Measurements. Description: Scanning electron microscope image of 'cleaned' carbon nanotubes at NIST (color added for ...

453

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Description: Engineering design image shows a cross-section of part of the planned ITER fusion reaction vessel. Diverter ...

454

EOS Land Validation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

EOS Land Validation The EOS Land Validation Project Overview EOS Land Validation Logo The objective of the EOS Land Validation Project is to achieve consistency, completeness,...

455

RLC Project Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Russian Land Cover (RLC) The Russian Land Cover (RLC) Project Overview The Russian Land Cover (RLC) project provides 12 geospatial data products including land cover, forested...

456

ESIF Project Proposal Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Integration Project Submittal Form Title of Project: Date Submitted: Name of PI at NREL: Name of PI: InstituteEmployer: Phone: Fax: Street Address: City: State: Country:...

457

Science Fair Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Fair Projects NEWTON Ask A Scientist program is not designed to provide science fair ideas or deal with individual project problems. Our program is designed to answer...

458

Clean Coal Projects (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

459

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011...

460

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second Quarter Overall Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY...

462

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fourth Quarter Overall Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY...

463

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 4 th Quarter Metrics Final Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2008 Target FY 2008 Actual...

464

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Final FY...

465

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

466

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 st Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

467

Production Project Accounts  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Project Accounts Production Project Accounts Overview Most NERSC login accounts are associated with specific individuals and must not be shared. Sometimes it is...

468

Header with Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

AL05205018 - Analysis of Gas Turbine Thermal Performance FACT SHEET I. PROJECT PARTICIPANTS Ames National Laboratory Oak Ridge National Laboratory (funded separately) II. PROJECT...

469

Heavy Oil Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Select Reports from Heavy Oil Projects Project Number Performer Title Heavy Oil Recovery US (NIPERBDM-0225) BDM-Oklahoma, Inc. Feasibility Study of Heavy Oil Recovery in the...

470

CARINA Data Synthesis Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Synthesis Project By The CARINA Group The CARINA (CARbon dioxide IN the Atlantic Ocean) data synthesis project is an international collaborative effort of the EU IP...

471

Planning and Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning Ten-Year Capital Program Projects Lovell-Yellowtail Transmission Line Rebuild project Studies WACM Wind production summary overview (Oct. 2006)...

472

NIST Research Projects  

Science Conference Proceedings (OSTI)

... NIST Human Identity Project Teams within the Applied Genetics Group ... NIST Projects ... NYC OCME & NY/NJ Labs (April 18, 2012) Statistics ...

2012-06-04T23:59:59.000Z

473

NIST Research Projects  

Science Conference Proceedings (OSTI)

... Applied Genetics Page 8. NIST Human Identity Project Teams ... Current NIST Projects Short Overviews ... NYC OCME & NY/NJ Labs (April 18, 2012) ...

2012-06-04T23:59:59.000Z

474

JGI - DOE Sequencing Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Sequencing Projects For status information, see the Genome Projects section Organism Est. Genome Size Branchiostoma floridae (Florida lancelet) 600 Mb Chlamydomonas reinhardtii...

475

EV Project Overview Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Project to date through March 2013 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity...

476

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Turbulent Flame Speed Measurements and Modeling of Syngas Fuels Georgia Tech Jerry Seitzman Project Dates: 812007 - 9302010 Area of Research: Combusion Federal Project...

477

Falls Creek Hydroelectric Project  

DOE Green Energy (OSTI)

This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

2007-06-12T23:59:59.000Z

478

NREL: Computational Science - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Enzymatic Conversion of Biomass to Fuels Wind Energy Simulations Inverse Design Staff Printable Version Projects The Computational Science Center supports projects across a wide...

479

Manhattan Project: Photo Gallery  

Office of Scientific and Technical Information (OSTI)

Leslie Groves and J. Robert Oppenheimer PHOTO GALLERY Leslie Groves and J. Robert Oppenheimer PHOTO GALLERY Resources Additional information is available regarding the following "animated gifs" and other photographs: Alpha Racetrack, Y-12 Berkeley Meeting The "Big House" Blast (Animation) Events Images First Atomic Energy Commissioners Fuller Lodge F Reactor Plutonium Production Complex Hiroshima Images Image Retouching Kasparov, Kamen, and Kheifits Los Alamos Scientists Los Alamos Street Scene "Met Lab" Alumni Nagasaki Images Nixon and the Atomic Pioneers People Images Places Images Potsdam Note "Rad Lab" Staff S-1 Committee San Ildefonso Pueblo Party Science Images Solvay Physics Conference Tech Area Gallery (Large) Tech Area Gallery (Small) Trinity Images Trinity (Color Photograph)

480

Quantitative Luminescence Imaging System  

SciTech Connect

The goal of the MEASUREMENT OF CHEMILUMINESCENCE project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R&D Magazine 1991 R&D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support.

Batishko, C.R.; Stahl, K.A.; Fecht, B.A.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "daac projects image" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Image Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Mosaic of earth and sky images Mosaic of earth and sky images Image Resources Free image resources covering energy, environment, and general science. Here are some links to energy- and environment-related photographic databases. Berkeley Lab Photo Archive Berkeley Lab's online digital image collection. National Science Digital Library (NSDL) NSDL is the Nation's online library for education and research in science, technology, engineering, and mathematics. The World Bank Group Photo Library A distinctive collection of over 11,000 images that illustrate development through topics such as Agriculture, Education, Environment, Health, Trade and more. Calisphere Compiles the digital collections of libraries, museums, and cultural heritage organizations across California, and organizes them by theme, such

482

Ground Penetrating Imaging Radar Phase II  

Science Conference Proceedings (OSTI)

EPRI project "Ground Penetrating Imaging Radar Phase II," also called the "GPiR Project," started in August 1998 at Schlumberger-Doll Research, a division of Schlumberger Technology Corporation. Its goal was to determine if modern ground-penetrating radar (GPR) could make three-dimensional (3D) images of buried utility lines accurate and detailed enough to help utility companies better manage their underground infrastructure. Work began with a comparison of commercial and prototype GPR systems in the lab...

2001-06-20T23:59:59.000Z

483

Acronyms  

NLE Websites -- All DOE Office Websites (Extended Search)

Acronyms Acronyms ADEOS Advanced Earth Observing Satellite (Japan) AERONET Aerosol Robotic Network AirMISR Airborne MISR ARM Atmospheric Radiation Measurement Program ASTER Advanced Spaceborne Thermal Emission and Reflection radiometer ATBD Algorithm Theoretical Basis Document AVHRR Advanced Very High Resolution Radiometer AVIRIS Airborne Visible/Infrared Imaging Spectrometer BRDF Bidirectional Reflectance Distribution Function CART Clouds and Radiation Testbed CERES Clouds and the Earth's Radiant Energy System DAAC Distributed Active Archive Center EOS Earth Observing System EOSDIS EOS Data and Information System GCIP GEWEX Continental-Scale International Project GEWEX Global Energy and Water Cycle Experiment GLI Global Imager GOES Geostationary Operational Environmental Satellite

484

Geysers Project Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Geysers Project Geothermal Project Project Location Information Coordinates 38.790555555556°, -122.75583333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.790555555556,"lon":-122.75583333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

Manhattan Project: About the Site  

Office of Scientific and Technical Information (OSTI)

ABOUT THIS SITE ABOUT THIS SITE Resources Project Directors: Terrence R. Fehner, Chief Historian F. G. Gosling, former Chief Historian (retired) Assisted By: David Rezelman, Glenn T. Seaborg Fellow in Nuclear History Stephanie Young, Edward Teller Fellow in Science and National Security Studies Andrew Mamo, Edward Teller Fellow in Science and National Security Studies Emily Hamilton, Edward Teller Fellow in Science and National Security Studies Douglas O’Reagan, Edward Teller Fellow in Science and National Security Studies James Skee, Edward Teller Fellow in Science and National Security Studies Site Designer: Jennifer Johnson, Archivist Summary Words (estimate): 120,000 Total Pages if Printed (estimate): 430 Total Images: 500+ Photographs: 450+ Maps and Diagrams: 64 Total Images (counting varying sizes, etc.): 1,000+

486

Prototype Validation Exercise (PROVE) Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation > PROVE Validation > PROVE The Prototype Validation Exercise (PROVE) Project Overview The Prototype Validation Exercise (PROVE) was a mini field campaign conducted at the Jornada Experimental Range in the Chihuahuan Desert, near Las Cruces, New Mexico in May 1997. The goals of PROVE were to: Gain experience in the collection and use of field data for EOS product validation Develop protocols for coordination, measurement, and data archival Compile a synoptic land and atmospheric data set for testing algorithms The remote-sensing portion of PROVE involved investigators from three NASA Earth Observing System (EOS) instrument teams: MODIS (Moderate-Resolution Imaging Spectrometer) ASTER (Advanced Space-borne Thermal Emission and Reflectance Radiometer) MISR (Multi-Angle Imaging Spectro Radiometer)

487

Software project effort assessment  

Science Conference Proceedings (OSTI)

Software project assessments and postmortem analyses can increase the success of future projects and forthcoming project phases. However, although assessments and analyses are well-presented in the software engineering literature, they are short of descriptions ... Keywords: assessment, effort, final report, postmortem, project management, retrospective

Topi Haapio; Anne Eerola

2010-12-01T23:59:59.000Z

488

Solar Energy Science Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, conductionconvection, seasons, trigonometry) Grade...

489

Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power Projects Combined Heat and Power Projects Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles. Search the project profiles database. Project profiles can be searched by state, CHP TAP, market sector, North American Industry Classification System (NAICS) code, system size, technology/prime mover, fuel, thermal energy use, and year installed. View a list of project profiles by market sector. To view project profiles by state, click on a state on the map or choose a state from the drop-down list below. "An image of the United States representing a select number of CHP project profiles on a state-by-state basis View Energy and Environmental Analysis Inc.'s (EEA) database of all known

490

Results of WetNet PIP-2 Project  

Science Conference Proceedings (OSTI)

The second WetNet Precipitation Intercomparison Project (PIP-2) evaluates the performance of 20 satellite precipitation retrieval algorithms, implemented for application with Special Sensor Microwave/Imager (SSM/I) passive microwave (PMW) ...

E. A. Smith; J. E. Lamm; R. Adler; J. Alishouse; K. Aonashi; E. Barrett; P. Bauer; W. Berg; A. Chang; R. Ferraro; J. Ferriday; S. Goodman; N. Grody; C. Kidd; D. Kniveton; C. Kummerow; G. Liu; F. Marzano; A. Mugnai; W. Olson; G. Petty; A. Shibata; R. Spencer; F. Wentz; T. Wilheit; E. Zipser

1998-05-01T23:59:59.000Z

491

On the Incomplete Oblique Projections Method for Solving Box ...  

E-Print Network (OSTI)

plications [5, 24], as image reconstruction from projections, radiation therapy ..... of the norm of the residual, reporting the number of iterations needed for satisfying ... we tested some randomly generated dense matrices with DQRT15(

492

Forrest County Geothermal Energy Project Geothermal Project ...  

Open Energy Info (EERE)

of replacing the existing air cooled chiller with geothermal water to water chillers for energy savings at the Forrest County Multi Purpose Center. The project will also replace...

493

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% - Two projects completed in the 2 nd Qtr FY09. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A Near-term Baselines established for all EM cleanup projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12, respectively.

494

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... on the availability of this image. Title: Tiny Tubes May Aid Pharmacuetical R&D. Description: NIST scientists used pairs of ...

495

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Magneto-optical image of magnetic fields within a YBCO superconductor showing electrically ... PHY, High-Temp Superconductors See also http ...

496

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Title: New Imaging Tool is Boon to Fuel Cell Research. ... water being produced and removed inside the maze-like solid housing of fuel cells under a ...

497

Solid-state NMR imaging system  

DOE Patents (OSTI)

An apparatus for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

Gopalsami, Nachappa (Naperville, IL); Dieckman, Stephen L. (Elmhurst, IL); Ellingson, William A. (Naperville, IL)

1992-01-01T23:59:59.000Z

498

Solid-state NMR imaging system  

DOE Patents (OSTI)

An accessory for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

Gopalsami, N.; Dieckman, S.L.; Ellingson, W.A.

1990-01-01T23:59:59.000Z

499

Thermal Imaging Control of Furnaces and Combustors  

Science Conference Proceedings (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

500

Solid-state NMR imaging system  

DOE Patents (OSTI)

An accessory for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

Gopalsami, N.; Dieckman, S.L.; Ellingson, W.A.

1990-12-31T23:59:59.000Z