Powered by Deep Web Technologies
Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

APS Floor Coordinators  

NLE Websites -- All DOE Office Websites (Extended Search)

to: cee@aps.anl.gov SecurityPrivacy Notice APS Floor Coordinators LOM COORDINATORS CAT INFORMATION 431 A,B,D Vacant SRI-CAT, Sectors 1-3 C FC Office E SRI-CAT, Sector 4 432 A...

2

Maine Rivers Policy (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as outstanding...

3

Sheraton Seattle Hotel Floor Plans  

Science Conference Proceedings (OSTI)

139th Annual Meeting & Exhibition. Sheraton Seattle Hotel Floor Plans. MEETING ROOMS. RESTROOMS. LEVEL 1. LEVEL. MEETING INFORMATION.

4

WOOD FLOORING 1. INTRODUCTION TO WARM AND WOOD FLOORING  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood flooring beginning at the waste generation reference point. 1 The WARM GHG emission factors are used to compare the net emissions associated with wood flooring in the following three waste management alternatives: source reduction, combustion, and landfilling.

unknown authors

2012-01-01T23:59:59.000Z

5

Control of human induced floor vibrations  

E-Print Network (OSTI)

With the growing demand for open, column-free floor spaces and the advances in material strength, floor vibration serviceability criterion has been of growing importance within the past 20-30 years. All floor systems are ...

Homen, Sean Manuel

2007-01-01T23:59:59.000Z

6

U.S. Department of Energy Categorical Exclusion ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Degraded Chemical Hood Exhaust (CHEX) Duct in 735-A, D-wing Service Floor Savannah River Site AikenAikenSouth Carolina The main chemical hood exhaust (CHEX) duct serving the...

7

Impact of Thermally Insulated Floors  

E-Print Network (OSTI)

Presently in Kuwait the code of practice for energy conservation in the air conditioned buildings implemented by the Ministry of Electricity and Water (MEW) which has been in effect since 1983 has no consideration taken for thermally insulating the floors of residential and commercial buildings with unconditioned basements. As a part of a comprehensive research program conducted by the Building and Energy Technologies Department of Kuwait Institute for Scientific Research for revision of the code this paper analyzes the effect of using un-insulated floors on the peak cooling demand and energy consumption of a middle income residential private villa and a onebedroom multi-story apartment building in Kuwait. These floors typically separate air-conditioned spaces with ambient environment or un-conditioned spaces. This was done using the ESP-r, a building's energy simulation program, in conjunction with typical meteorological year for Kuwait. The study compared such typical floors with three types of insulated floors. It was found that using an R- 10 floors in multi-story apartment buildings greatly reduce both the peak cooling demand as well as the energy consumption by about 15%, whereas only minimal savings (about 4%) were detected in the case of the residential villas.

Alghimlas, F.; Omar, E. A.

2004-01-01T23:59:59.000Z

8

News from the Expo floor  

Science Conference Proceedings (OSTI)

Sustainability, the recession, and challenges to the biodiesel industry were three major topics raised by a number of exhibitors at the 101st AOCS Annual Meeting & Expo in Phoenix, Arizona, USA, May 1619, 2010. News from the Expo floor Inform Magazine I

9

NBTC Safety Orientation Second Floor Duffield Hall  

E-Print Network (OSTI)

­ EVACUATE THE BUILDING. IF THERE IS A GAS ALARM ­ EVACUATE THE FLOOR. IF THE GAS ALARM IS ON ALL FLOORS&S) - Laser Safety - Centrifuge Rotor Safety - Fire Extinguisher Education · ENTER THE LABS BY SWIPING YOUR ID

Wu, Mingming

10

Sheraton Seattle Hotel Floor Plans - TMS  

Science Conference Proceedings (OSTI)

LEARN NETWORK ADVANCE. Sheraton Seattle Hotel Floor Plans. MEETING ROOMS. RESTROOMS. LEVEL. PIKE ST. TOWER. UNION ST. TOWER.

11

From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency  

Open Energy Info (EERE)

From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency Agency/Company /Organization: Pew Center on Global Climate Change Sector: Energy Focus Area: Energy Efficiency Topics: Policies/deployment programs Resource Type: Lessons learned/best practices Website: www.pewclimate.org/docUploads/PEW_EnergyEfficiency_FullReport.pdf References: From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency[1] FROM SHOP FLOOR TO TOP FLOOR: BEST BUSINESS PRACTICES IN ENERGY EFFICIENCY. Pew Center on Global Climate Change. William R. Prindle. April 2010. In the last decade, rising and volatile energy prices coupled with

12

Main Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Lattice Definitions Up: APS Storage Ring Parameters Previous: APS Storage Ring Parameters Main Parameters Storage Ring Parameters Notation Model Value General Parameters Nominal...

13

Maine Profile  

U.S. Energy Information Administration (EIA)

Alternative Fueled Vehicles in Use : 3,111 vehicles 0.3% 2011 find more: Ethanol Plants ... Electric Power Industry Emissions: Maine: Share of U.S. Period: find more:

14

Efficiency Maine Residential Lighting Program (Maine) | Open...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Efficiency Maine Residential Lighting Program (Maine) This is the approved revision of this page, as well as being the most...

15

Northern Maine Independent System Administrator (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Northern Maine Independent System Administrator (NMISA) is a non-profit entity responsible for the administration of the northern Maine transmission system and electric power markets in...

16

Kalman-type positioning filters with floor plan information  

Science Conference Proceedings (OSTI)

A family of Kalman-type filters that estimate the user's position indoors, using range measurements and floor plan data, is presented. The floor plan information is formulated as a set of linear constraints and is used to truncate the Gaussian posterior ... Keywords: Kalman filter, floor plan, inequality constraints, nonlinear filtering, positioning

Tommi Perl; Simo Ali-Lytty

2008-11-01T23:59:59.000Z

17

Floor Support | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Floor Support Floor Support Service Responsible Person BLDG Extension (650) 926-XXXX Beam Status Duty Operator 120 926-2326 (BEAM) Duty Operator Cell Duty Operator 120 926-4040 Scheduling X-ray/VUV Macromolecular Crystallography Cathy Knotts Lisa Dunn 120 120 3191 2087 User Check-In/Badging Jackie Kerlegan 120 2079 User Financial Accounts Jackie Kerlegan 120 2079 Beam Lines/ VUV Bart Johnson 120 3858 Beam Lines/ X-ray Bart Johnson 120 3858 Beam Lines/ X-ray Mechanical Chuck Troxel, Jr. 120 2700 Beam Lines/ X-ray-VUV Electronics Alex Garachtchenko 120 3440 Beam Lines/ Macromolecular Crystallography Mike Soltis 277 3050 SMB XAS Beam Lines & Equipment Matthew Latimer Erik Nelson 274 274 4944 3938 MEIS XAS Beam Lines & Equipment Matthew Latimer

18

User ESH Support (UES)/Floor Coordinators  

NLE Websites -- All DOE Office Websites (Extended Search)

User ESH Support (UES) / Floor Coordinators User ESH Support (UES) / Floor Coordinators Bruce Glagola, Group Leader Building 431, Room Z005 Phone: 630-252-9797 Fax: 630-252-1664 E-mail: glagola@aps.anl.gov Nena Moonier Building 431, Room Z008 Phone: 630-252-8504 Fax: 630-252-1664 E-mail: nmoonier@aps.anl.gov Karen Kucer Building 401, Room C3257C Phone: 630-252-9091 Fax: 630-252-5948 E-mail: kucer@aps.anl.gov Floor Coordinators Bruno Fieramosca Building 432, Room C001 Phone: 630-252-0201 Fax: 630-252-1664 On-site page: 4-0201 E-mail: bgf@aps.anl.gov Shane Flood Building 436, Room C001 Phone: 630-252-0600 Fax: 630-252-1664 On-site pager: 4-0600 E-mail: saf@aps.anl.gov Patti Pedergnana Building 434, Room C001 Phone: 630-252-0401 Fax: 630-252-1664 On-site pager: 4-0401 E-mail: neitzke@aps.anl.gov Wendy VanWingeren Building 435, Room C001

19

Natural Gas Price Uncertainty: Establishing Price Floors  

Science Conference Proceedings (OSTI)

This report presents the results of comprehensive calculations of ceiling and floor prices for natural gas. Ceiling prices are set by the price levels at which it is more economic to switch from natural gas to residual fuel oil in steam units and to distillate in combined cycle units. Switching to distillate is very rare, whereas switching to fuel oil is quite common, varying between winter and summer and increasing when natural gas prices are high or oil prices low. Monthly fuel use was examined for 89 ...

2007-01-11T23:59:59.000Z

20

Efficiency Maine - Replacement Heating Equipment Program (Maine...  

Open Energy Info (EERE)

announced its closure November 2011. According to Efficiency Maine, almost 2,600 homeowners participated in the program trading in older, less-efficient space andor water...

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

AEDG Implementation Recommendations: Floors | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Floors Floors The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on mass floors; steel joist or wood frame floors; slab-on-grade floors. Publication Date: Wednesday, May 13, 2009 air_floors.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: AEDG Implementation Recommendations Target Audience: Architect/Designer Builder Contractor Engineer State: All States Contacts Web Site Policies U.S. Department of Energy

22

Energy Saving in Office Building by Floor Integration System...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Saving in Office Building by Floor Integration System: Reducing Total Energy of HVAC and Lighting system using daylight Speaker(s): Yoshifumi Murakami Date: May 20, 2004 -...

23

Property:Building/FloorAreaChurchesChapels | Open Energy Information  

Open Energy Info (EERE)

Churches and chapels Retrieved from "http:en.openei.orgwindex.php?titleProperty:BuildingFloorAreaChurchesChapels&oldid285978" What links here Related changes Special pages...

24

Property:Building/FloorAreaGroceryShops | Open Energy Information  

Open Energy Info (EERE)

for Grocery shops Retrieved from "http:en.openei.orgwindex.php?titleProperty:BuildingFloorAreaGroceryShops&oldid286018" What links here Related changes Special pages...

25

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solar thermal rebate program maintains a list of Efficiency Maine registered vendorsinstallers. July 12, 2013 Solar Easements Maine allows for the creation of easements to...

26

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine May 27, 2011 EA-1792: DOE...

27

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine September 26, 2011 EA-1792:...

28

Pressure Fluctuations on the Open Ocean Floor Over a Broad Frequency Range: New Program and Early Results  

Science Conference Proceedings (OSTI)

A two-month ocean-floor pressure record obtained 330 km to the east of the main island of Hawaii by means of a Bourdon tube-type transducer with optical readout is discussed in detail. An approach to subtraction of the drift component associated ...

J. H. Filloux

1980-12-01T23:59:59.000Z

29

Impact of Solar Heat Gain on Radiant Floor Cooling System Design  

E-Print Network (OSTI)

Bauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant Floor

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

30

Maine Natural Gas Summary  

Annual Energy Outlook 2012 (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

31

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Heat Pump Program (Maine) Bangor Hydro Electric Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps...

32

,"Maine Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

33

Property:Building/FloorAreaRestaurants | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaRestaurants Jump to: navigation, search This is a property of type Number. Floor area for Restaurants Pages using the property "Building/FloorAreaRestaurants" Showing 13 pages using this property. S Sweden Building 05K0007 + 1,990 + Sweden Building 05K0008 + 300 + Sweden Building 05K0013 + 215 + Sweden Building 05K0038 + 345 + Sweden Building 05K0046 + 200 + Sweden Building 05K0058 + 330 + Sweden Building 05K0060 + 256 + Sweden Building 05K0065 + 520 + Sweden Building 05K0081 + 98 + Sweden Building 05K0089 + 155 + Sweden Building 05K0098 + 170 + Sweden Building 05K0105 + 2,450 + Sweden Building 05K0114 + 400 + Retrieved from "http://en.openei.org/w/index.php?title=Property:Building/FloorAreaRestaurants&oldid=285973#SMWResults"

34

Property:Building/FloorAreaMiscellaneous | Open Energy Information  

Open Energy Info (EERE)

FloorAreaMiscellaneous FloorAreaMiscellaneous Jump to: navigation, search This is a property of type Number. Floor area for Miscellaneous Pages using the property "Building/FloorAreaMiscellaneous" Showing 25 pages using this property. S Sweden Building 05K0002 + 360 + Sweden Building 05K0005 + 110 + Sweden Building 05K0013 + 3,550 + Sweden Building 05K0016 + 445 + Sweden Building 05K0021 + 250 + Sweden Building 05K0025 + 254 + Sweden Building 05K0035 + 1,629 + Sweden Building 05K0037 + 175 + Sweden Building 05K0040 + 869 + Sweden Building 05K0044 + 1,234 + Sweden Building 05K0047 + 1,039 + Sweden Building 05K0051 + 1,489.92 + Sweden Building 05K0052 + 200 + Sweden Building 05K0062 + 140 + Sweden Building 05K0063 + 654 + Sweden Building 05K0068 + 746 + Sweden Building 05K0071 + 293 +

35

NSLS-II Source Properties and Floor Layout  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Source Properties and Floor Layout NSLS-II Source Properties and Floor Layout April 12, 2010 Contents Basic Storage Ring Parameters Basic and Advanced Source Parameters Brightness Flux Photon Source Size and Divergence Power Infrared Sources Distribution of Sources Available for User Beamlines Floor Layout This document provides a summary of the current NSLS-II source and floor layout parameters. For a more complete description of the NSLS-II accelerator properties planned for NSLS-II, see the NSLS-II Preliminary Design Report Basic NSLS-II Storage Ring Parameters at NSLS-II website. We note that this document summarizes the present status of the design, but that the design continues to be refined and that these parameters may change as part of this process. NSLS-II is designed to deliver photons with high average spectral brightness in the 2 keV to 10 keV

36

Production system improvement : floor area reduction and cycle time analysis  

E-Print Network (OSTI)

A medical device company challenged a research team to reduce the manufacturing floor space required for an occlusion system product by one third. The team first cataloged equipment location and size, detailed the processes ...

Peterson, Jennifer J. (Jennifer Jeanne)

2012-01-01T23:59:59.000Z

37

Moisture Control in Insulated Raised Floor Systems in Southern Louisiana  

E-Print Network (OSTI)

polyisocyanurate foam, open-cell sprayed polyurethane foams of vary- ing vapor permeance, closed-cell sprayed in guidance for insulating raised floors in the hot and humid climate of the Gulf Houses with pier foundations

38

Test Plan for K Basin floor sludge consolidated sampling equipment  

SciTech Connect

The purpose of this document is to provide the test procedure for the function and acceptance testing of the K Basin Floor Sludge Consolidated Sampling Equipment. This equipment will be used to transfer K Basin floor sludge to a sludge sampling container for subsequent shipment to an analysis or testing facility. This equipment will provide sampling consistent with data quality objectives and sampling plans currently being developed.

OLIVER, J.W.

1998-10-30T23:59:59.000Z

39

Climate Action Plan (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

In June 2003, the Maine State Legislature passed a bill charging the Department of Environmental Protection (DEP) with developing an action plan with the goal of reducing greenhouse gas (GHG)...

40

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2010 CX-001188: Categorical Exclusion Determination Deep C Wind Consortium National Research Program CX(s) Applied: B3.1 Date: 03212010 Location(s): Maine Office(s): Energy...

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Maine Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

42

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

projects. May 31, 2013 Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Energy Department-Supported Project Deploys First of its Kind...

43

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Golden Field Office May 18, 2010 CX-002374: Categorical Exclusion Determination Maine Tidal Power Initiative CX(s) Applied: B3.1, B3.3, B3.6, A9 Date: 05182010 Location(s):...

44

Main Generator Rotor Maintenance  

Science Conference Proceedings (OSTI)

Main generator rotors are constructed and designed to provide decades of reliable and trouble-free operation. However, a number of incidences have occurred over the years that can adversely impact reliable operation of generator rotors and, ultimately, production of electrical power. This report is a guide for power plant personnel responsible for reliable operation and maintenance of main generators. As a guide, this report provides knowledge and experience from generator experts working at power plants...

2006-11-27T23:59:59.000Z

45

Maine.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

46

Property:Building/FloorAreaHeatedGarages | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaHeatedGarages Jump to: navigation, search This is a property of type Number. Floor area for Heated garages (> 10 °C) Pages using the property "Building/FloorAreaHeatedGarages" Showing 15 pages using this property. S Sweden Building 05K0002 + 900 + Sweden Building 05K0007 + 400 + Sweden Building 05K0020 + 300 + Sweden Building 05K0022 + 3,300 + Sweden Building 05K0031 + 2,331 + Sweden Building 05K0033 + 465 + Sweden Building 05K0035 + 1,276 + Sweden Building 05K0037 + 130 + Sweden Building 05K0039 + 580 + Sweden Building 05K0047 + 1,076 + Sweden Building 05K0048 + 340 + Sweden Building 05K0061 + 90 + Sweden Building 05K0067 + 856 + Sweden Building 05K0093 + 2,880 +

47

Property:Building/TotalFloorArea | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/TotalFloorArea Jump to: navigation, search This is a property of type Number. Total floor area (BRA), m2 Pages using the property "Building/TotalFloorArea" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,855 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,310 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 +

48

Energy Saving in Office Building by Floor Integration System: Reducing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Saving in Office Building by Floor Integration System: Reducing Energy Saving in Office Building by Floor Integration System: Reducing Total Energy of HVAC and Lighting system using daylight Speaker(s): Yoshifumi Murakami Date: May 20, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Naoya Motegi Information Technology that is featured by standard communication protocol like Lon Works, BACnet is very useful for managing building systems. Now we can collect much data quickly and easily and to analyze them in detail with this technology. Under the circumstances in that saving energy and reducing CO2 are required strongly, important thing is finding the effective information for building operation and control from collected data and the analysis of them. In our project, the floor integration controller that integrates the each building systems was proposed. It

49

Property:Building/FloorAreaShops | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaShops Jump to: navigation, search This is a property of type Number. Floor area for Shops Pages using the property "Building/FloorAreaShops" Showing 19 pages using this property. S Sweden Building 05K0002 + 900 + Sweden Building 05K0009 + 800 + Sweden Building 05K0012 + 1,587 + Sweden Building 05K0013 + 154 + Sweden Building 05K0017 + 3,150 + Sweden Building 05K0018 + 245 + Sweden Building 05K0019 + 5,600 + Sweden Building 05K0035 + 292 + Sweden Building 05K0046 + 530 + Sweden Building 05K0062 + 940 + Sweden Building 05K0081 + 530 + Sweden Building 05K0086 + 920 + Sweden Building 05K0088 + 1,170 + Sweden Building 05K0089 + 976 + Sweden Building 05K0092 + 360 +

50

Main Page - NWChem  

NLE Websites -- All DOE Office Websites (Extended Search)

Log in / create account Log in / create account Search Go Search Navigation Main page Science Benchmarks Download Code Documentation News Community Developers SEARCH TOOLBOX LANGUAGES Forum Menu Page Discussion View source History modified on 17 May 2013 at 21:51 *** 6,254,554 views Main Page From NWChem Jump to: navigation, search NWChem: Delivering High-Performance Computational Chemistry caption NWChem aims to provide its users with computational chemistry tools that are scalable both in their ability to treat large scientific computational chemistry problems efficiently, and in their use of available parallel computing resources from high-performance parallel supercomputers to conventional workstation clusters. NWChem software can handle Biomolecules, nanostructures, and solid-state From quantum to classical, and all combinations

51

Maine coast winds  

DOE Green Energy (OSTI)

The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

Avery, Richard

2000-01-28T23:59:59.000Z

52

REACTOR MAIN COOLANT LOOP  

SciTech Connect

A parametric study was made for the POPR with temperature gradients of 610 to 670 deg F and 6l0 to 684.5 deg F at organic flow rates of 17.8 x l0/sup 6/ and l4.4 x l0/sup 6/ lbs/hr, respectively; and steam turbine conditions at the throttle of 600 and 650 deg F at 800 to l200 psig. The study was made to obtain the most economical layout of the main heat transfer loop system. (B.O.G.)

Terpe, G.R.; Katz, B.

1961-08-01T23:59:59.000Z

53

Property:Building/FloorAreaOffices | Open Energy Information  

Open Energy Info (EERE)

FloorAreaOffices FloorAreaOffices Jump to: navigation, search This is a property of type Number. Floor area for Offices Pages using the property "Building/FloorAreaOffices" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 5,000 + Sweden Building 05K0003 + 4,360 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,150 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 21,765 + Sweden Building 05K0008 + 7,500 + Sweden Building 05K0009 + 33,955 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 14,080 + Sweden Building 05K0012 + 20,978 + Sweden Building 05K0013 + 15,632 + Sweden Building 05K0014 + 1,338.3 + Sweden Building 05K0015 + 1,550 + Sweden Building 05K0016 + 2,101 +

54

Better Buildings Neighborhood Program: Maine  

NLE Websites -- All DOE Office Websites (Extended Search)

Program: Maine on Twitter Bookmark Better Buildings Neighborhood Program: Maine on Google Bookmark Better Buildings Neighborhood Program: Maine on Delicious Rank Better...

55

Thermal Behavior of Floor Tubes in a Kraft Recovery Boiler  

DOE Green Energy (OSTI)

The temperatures of floor tubes in a slope-floored black liquor recovery boiler were measured using an array of thermocouples located on the tube crowns. It was found that sudden, short duration temperature increases occurred with a frequency that increased with distance from the spout wall. To determine if the temperature pulses were associated with material falling from the convective section of the boiler, the pattern of sootblower operation was recorded and compared with the pattern of temperature pulses. During the period from September, 1998, through February, 1999, it was found that more than 2/3 of the temperature pulses occurred during the time when one of the fast eight sootblowers, which are directed at the back of the screen tubes and the leading edge of the first superheater bank, was operating.

Barker, R.E.; Choudhury, K.A.; Gorog, J.P.; Hall, L.M.; Keiser, J.R.; Sarma, G.B.

1999-09-12T23:59:59.000Z

56

SIMON: A mobile robot for floor contamination surveys  

SciTech Connect

The Robotics Development group at the Savannah River Site is developing an autonomous robot to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The contamination levels are low to moderate. The robot, a Cybermotion K2A, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It has an ultrasonic collision avoidance system as well as two safety bumpers that will stop the robot's motion when they are depressed. Paths for the robot are preprogrammed and the robot's motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/O interface for remote operation. Up to 30 detectors may be configured with the RM22A. For our purposes, two downward-facing gas proportional detectors are used to scan floors, and one upward-facing detector is used for radiation background compensation. SIMON is interfaced with the RM22A in such a way that it scans the floor surface at one-inch/second, and if contamination is detected, the vehicle stops, alarms, and activates a voice synthesizer. Future development includes using the contamination data collected to provide a graphical contour map of a contaminated area. 3 refs.

Dudar, E.; Teese, G.; Wagner, D.

1991-01-01T23:59:59.000Z

57

SIMON: A mobile robot for floor contamination surveys  

SciTech Connect

The Robotics Development group at the Savannah River Site is developing an autonomous robot to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The contamination levels are low to moderate. The robot, a Cybermotion K2A, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It has an ultrasonic collision avoidance system as well as two safety bumpers that will stop the robot`s motion when they are depressed. Paths for the robot are preprogrammed and the robot`s motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/O interface for remote operation. Up to 30 detectors may be configured with the RM22A. For our purposes, two downward-facing gas proportional detectors are used to scan floors, and one upward-facing detector is used for radiation background compensation. SIMON is interfaced with the RM22A in such a way that it scans the floor surface at one-inch/second, and if contamination is detected, the vehicle stops, alarms, and activates a voice synthesizer. Future development includes using the contamination data collected to provide a graphical contour map of a contaminated area. 3 refs.

Dudar, E.; Teese, G.; Wagner, D.

1991-12-31T23:59:59.000Z

58

PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE  

DOE Green Energy (OSTI)

Passive solar systems integrated into residential structures significantly reduce heating energy consumption. Taking advantage of latent heat storage has further increased energy savings. This is accomplished by the incorporation of phase change materials into building materials used in passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. Increasing the thermal storage of floor tile by the addition of encapsulated paraffin wax is the proposed topic of research. Latent heat storage of a phase change material (PCM) is obtained during a change in phase. Typical materials use the latent heat released when the material changes from a liquid to a solid. Paraffin wax and salt hydrates are examples of such materials. Other PCMs that have been recently investigated undergo a phase transition from one solid form to another. During this process they will release heat. These are known as solid-state phase change materials. All have large latent heats, which makes them ideal for passive solar applications. Easy incorporation into various building materials is must for these materials. This proposal will address the advantages and disadvantages of using these materials in floor tile. Prototype tile will be made from a mixture of quartz, binder and phase change material. The thermal and structural properties of the prototype tiles will be tested fully. It is expected that with the addition of the phase change material the structural properties will be compromised to some extent. The ratio of phase change material in the tile will have to be varied to determine the best mixture to provide significant thermal storage, while maintaining structural properties that meet the industry standards for floor tile.

Douglas C. Hittle

2002-10-01T23:59:59.000Z

59

Property:Building/FloorAreaTotal | Open Energy Information  

Open Energy Info (EERE)

FloorAreaTotal FloorAreaTotal Jump to: navigation, search This is a property of type Number. Total Pages using the property "Building/FloorAreaTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,454 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 14,348 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,300 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 + Sweden Building 05K0014 + 1,338.3 + Sweden Building 05K0015 + 1,550 + Sweden Building 05K0016 + 2,546 +

60

Efficiency Maine Residential Appliance Program (Maine) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance Program (Maine) Appliance Program (Maine) Efficiency Maine Residential Appliance Program (Maine) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Water Heating Program Info Funding Source Efficiency Maine Start Date 10/01/2012 Expiration Date 06/30/2014 State Maine Program Type State Rebate Program Rebate Amount Ductless Heat Pumps: $500 Heat pump water heaters: $300 Provider Efficiency Maine Efficiency Maine offers rebates for the purchase of Energy Star certified water heaters, and ductless heat pumps. Purchases must be made between September 1, 2013 and June 30, 2014. See the program web site for the mail-in rebate forms and to locate a participating retailer. In addition, in partnership with Maine Libraries, Efficiency Maine has made

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Main  

NLE Websites -- All DOE Office Websites (Extended Search)

Way, Berkeley, CA Reception (SSL Addition Lobby and Conference Room) THEMIS Spacecraft Tour Saturday, June 3, 2006 8:30 AM Pers Hall; 50A-5132; 50B-4205; Pers Hall Annex; 2-100B...

62

Low Floor Americans with Disabilities Compliant Alternate Fuel Vehicle Project  

SciTech Connect

This project developed a low emission, cost effective, fuel efficient, medium-duty community/transit shuttle bus that meets American's with Disabilities Act (ADA) requirements and meets National Energy Policy Act requirements (uses alternative fuel). The Low Profile chassis, which is the basis of this vehicle is configured to be fuel neutral to accommodate various alternative fuels. Demonstration of the vehicle in Yellowstone Park in summer (wheeled operation) and winter (track operation) demonstrated the feasibility and flexibility for this vehicle to provide year around operation throughout the Parks system as well as normal transit operation. The unique configuration of the chassis which provides ADA access with a simple ramp and a flat floor throughout the passenger compartment, provides maximum access for all passengers as well as maximum flexibility to configure the vehicle for each application. Because this product is derived from an existing medium duty truck chassis, the completed bus is 40-50% less expensive than existing low floor transit buses, with the reliability and durability of OEM a medium duty truck.

James Bartel

2004-11-26T23:59:59.000Z

63

Property:Building/FloorAreaSchoolsChildDayCare | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search This is a property of type Number. Floor area for Schools, including child day-care centres Pages using the property "Building...

64

STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS  

SciTech Connect

Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F?Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume?proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non?overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primary sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide1, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analytes measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.

Shine, G.

2012-08-03T23:59:59.000Z

65

STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS  

SciTech Connect

Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F?Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume?proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non?overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primary sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analytes measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.

Shine, E.

2012-08-01T23:59:59.000Z

66

STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS  

Science Conference Proceedings (OSTI)

Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primary sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, radionuclide, inorganic, and anion concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogeneous across composite samples.

Shine, E.

2012-03-14T23:59:59.000Z

67

Statistical Analysis Of Tank 5 Floor Sample Results  

Science Conference Proceedings (OSTI)

Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primary sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.

Shine, E. P.

2012-08-01T23:59:59.000Z

68

Maine | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

69

Ubiquitous Indoor Localization and Worldwide Automatic Construction of Floor Plans  

E-Print Network (OSTI)

Although GPS has been considered a ubiquitous outdoor localization technology, we are still far from a similar technology for indoor environments. While a number of technologies have been proposed for indoor localization, they are isolated efforts that are way from a true ubiquitous localization system. A ubiquitous indoor positioning system is envisioned to be deployed on a large scale worldwide, with minimum overhead, to work with heterogeneous devices, and to allow users to roam seamlessly from indoor to outdoor environments. Such a system will enable a wide set of applications including worldwide seamless direction finding between indoor locations, enhancing first responders' safety by providing anywhere localization and floor plans, and providing a richer environment for location-aware social networking applications. We describe an architecture for the ubiquitous indoor positioning system (IPS) and the challenges that have to be addressed to materialize it. We then focus on the feasibility of automating ...

Youssef, Moustafa; Elkhouly, Reem; Lotfy, Amal

2012-01-01T23:59:59.000Z

70

Strategy Guideline: Quality Management in Existing Homes; Cantilever Floor Example  

SciTech Connect

This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented. The goal of existing home high performing remodeling quality management systems (HPR-QMS) is to establish practices and processes that can be used throughout any remodeling project. The research presented in this document provides a comparison of a selected retrofit activity as typically done versus that same retrofit activity approached from an integrated high performance remodeling and quality management perspective. It highlights some key quality management tools and approaches that can be adopted incrementally by a high performance remodeler for this or any high performance retrofit. This example is intended as a template and establishes a methodology that can be used to develop a portfolio of high performance remodeling strategies.

Taggart, J.; Sikora, J.; Wiehagen, J.; Wood, A.

2011-12-01T23:59:59.000Z

71

Microsoft Word - maine.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Maine NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 4,430 42 Electric Utilities ...................................................................................................... 19 49 Independent Power Producers & Combined Heat and Power ................................ 4,410 25 Net Generation (megawatthours) ........................................................................... 17,018,660 43 Electric Utilities ...................................................................................................... 1,759 49

72

Microsoft Word - maine.doc  

Gasoline and Diesel Fuel Update (EIA)

Maine Maine NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 4,430 42 Electric Utilities ...................................................................................................... 19 49 Independent Power Producers & Combined Heat and Power ................................ 4,410 25 Net Generation (megawatthours) ........................................................................... 17,018,660 43 Electric Utilities ...................................................................................................... 1,759 49

73

Maine Waterway Development and Conservation Act (MWDCA) (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Maine Waterway Development and Conservation Act requires a permit to be obtained prior to starting any hydropower project that may alter water levels or water flow. The Act functions as a...

74

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network (OSTI)

As a comfortable and energy-efficient air conditioning system, the application of floor radiant heating system is used increasingly greatly in the north of China. As a result, the feasibility of floor radiant cooling has gained more attention. To examine the thermodynamic performance of the floor radiant cooling system, we measured the operational conditions including the minimum floor surface temperature, the cooling capacity, and the indoor temperature field distribution under different outdoor temperatures in Beijing. Because the ground temperature changes with the mean temperature of the supplied and returned water and room temperature, the mean temperature of the supplied and retuned water was obtained. Finally, we analyzed the phenomenon of dewing and developed measures for preventing it. The dry air layer near the floor formed by a displacement ventilation system can effectively prevent dews on the surface of the floor in the wet and hot days in summer. In addition, for the sake of the displacement ventilation system, the heat transfer effect between floor and space is enhanced. Our analysis pointed out that floor radiant cooling system combined with displacement ventilation ensures good comfort and energy efficiency.

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

75

Property:Building/FloorAreaUnheatedRentedPremises | Open Energy Information  

Open Energy Info (EERE)

FloorAreaUnheatedRentedPremises FloorAreaUnheatedRentedPremises Jump to: navigation, search This is a property of type Number. Floor area for Unheated but rented-out premises (garages) < 10 °C Pages using the property "Building/FloorAreaUnheatedRentedPremises" Showing 6 pages using this property. S Sweden Building 05K0021 + 700 + Sweden Building 05K0050 + 760 + Sweden Building 05K0058 + 1,200 + Sweden Building 05K0080 + 2,000 + Sweden Building 05K0081 + 700 + Sweden Building 05K0102 + 234 + Retrieved from "http://en.openei.org/w/index.php?title=Property:Building/FloorAreaUnheatedRentedPremises&oldid=285964#SMWResults" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

76

Numerical Simulation of Thermal Performance of Floor Radiant Heating System with Enclosed Phase Change Material  

E-Print Network (OSTI)

In the present paper, a kind of enclosed phase change material (PCM) used in solar and low-temperature hot water radiant floor heating is investigated. On the basis of obtaining the best performance of PCM properties, a new radiant heating structure of the energy storage floor is designed,which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The PCM thermal storage time is studied in relation to the floor surface temperature under different low-temperature hot water temperatures. With the method of enthalpy , the PCM thermal storage time is studied under different supply water temperatures, supply water flows, distances between water wipe in the floor construction, floor covers and insulation conditions.

Qiu, L.; Wu, X.

2006-01-01T23:59:59.000Z

77

Main Results of Grossversuch IV  

Science Conference Proceedings (OSTI)

The main results of a randomized hail suppression experiment, Grossversuch IV, are presented in this paper. Grossversuch IV tested the Soviet hail prevention method during five years (197781). The field experiment took place in central ...

B. Federer; A. Waldvogel; W. Schmid; H. H. Schiesser; F. Hampel; Marianne Schweingruber; W. Stahel; J. Bader; J. F. Mezeix; Nadie Doras; G. D'Aubigny; G. DerMegreditchian; D. Vento

1986-07-01T23:59:59.000Z

78

Recovery Act State Memos Maine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Maine For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

79

Experiment System Analysis of an Indirect Expansion Solar Assisted Water Source Heat Pump Radiant Floor Heating System  

Science Conference Proceedings (OSTI)

A solar assisted water source heat pump for Radiant Floor Heating (SWHP-RFH) experimental system with heat pipe vacuum tube solar collector as heating source and radiant floor as terminal device is proposed in the paper. The Mathematics Model of dynamic ... Keywords: solar energy, water source heat pump, radiant floor heating systems, system dynamic COP

Qu Shilin; Ma Fei; Liu Li; Yue Jie

2009-10-01T23:59:59.000Z

80

Energy Crossroads: Utility Energy Efficiency Programs Maine ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Central Maine Power...

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Production system improvement at a medical devices company : floor layout reduction and manpower analysis  

E-Print Network (OSTI)

Due to the low demand and the need to introduce other production lines in the floor, the medical devices company wants to optimize the utilization of space and manpower for the occlusion system product. This thesis shows ...

AlEisa, Abdulaziz A. (Abdulaziz Asaad)

2012-01-01T23:59:59.000Z

82

Pressure Fluctuations on the Open-Ocean Floor off the Gulf of California: Tides, Earthquakes, Tsunamis  

Science Conference Proceedings (OSTI)

This paper supplements an initial article on sea-floor pressure observations conducted with a sensitive though not perfectly stable transducer. A variety of examples are used to demonstrate that a wide range of research subjects in the fields ...

Jean H. Filloux

1983-05-01T23:59:59.000Z

83

Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System  

E-Print Network (OSTI)

The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more comfortable. First, the authors devised an experimental scheme and set up the laboratory. Second, we collected a great deal of data on the system in different situations. Finally, we conclude that such heating system is feasible and one of the best heating methods.

Wu, Z.; Li, D.

2006-01-01T23:59:59.000Z

84

YNPS main coolant system decontamination  

SciTech Connect

The Yankee Nuclear Power Station (YNPS) located in Rowe, Massachusetts, is a four-loop pressurized water reactor that permanently ceased power operation on February 26, 1992. Decommissioning activities, including steam generator removal, reactor internals removal, and system dismantlement, have been in progress since the shutdown. One of the most significant challenges for YNPS in 1996 was the performance of the main coolant system chemical decontamination. This paper describes the objectives, challenges, and achievements involved in the planning and implementation of the chemical decontamination.

Metcalf, E.T. [Yankee Atomic Electric Co., Bolton, MA (United States)

1996-12-31T23:59:59.000Z

85

Maine/Incentives | Open Energy Information  

Open Energy Info (EERE)

Maine/Incentives Maine/Incentives < Maine Jump to: navigation, search Contents 1 Financial Incentive Programs for Maine 2 Rules, Regulations and Policies for Maine Download All Financial Incentives and Policies for Maine CSV (rows 1 - 91) Financial Incentive Programs for Maine Download Financial Incentives for Maine CSV (rows 1 - 25) Incentive Incentive Type Active Bangor Hydro Electric Company - Residential and Small Commercial Heat Pump Program (Maine) Utility Rebate Program Yes Community Based Renewable Energy Production Incentive (Pilot Program) (Maine) Performance-Based Incentive Yes Efficiency Maine - Home Appliance Rebate Program (Maine) State Rebate Program No Efficiency Maine - Home Energy Savings Program (Maine) State Rebate Program No Efficiency Maine - Replacement Heating Equipment Program (Maine) State Rebate Program No

86

Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.  

E-Print Network (OSTI)

??In bachelors thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case (more)

Chuduk, Svetlana

2010-01-01T23:59:59.000Z

87

Maine Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

MaineGasPrices.com (Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Maine Gas Prices (Ciudades Selectas) - GasBuddy.com Maine Gas Prices (Organizado por Condado) -...

88

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

89

Analysis of sludge from K East basin floor and weasel pit  

Science Conference Proceedings (OSTI)

Sludge samples from the floor of the Hanford K East Basin fuel storage pool have been retrieved and analyzed. Both chemical and physical properties have been determined. The results are to be used to determine the disposition of the bulk of the sludge and possibly assess the impact of residual sludge on dry storage of the associated intact metallic uranium fuel elements.

Makenas, B.J., Westinghouse Hanford

1996-05-04T23:59:59.000Z

90

Achieving effective floor control with a low-bandwidth gesture-sensitive videoconferencing system  

Science Conference Proceedings (OSTI)

Multiparty videoconferencing with even a small number of people is often infeasible due to the high network bandwidth required. Bandwidth can be significantly reduced if most of the advantages of using full-motion video can be achieved with low-frame-rate ... Keywords: floor control, frame rate, multiparty videoconferencing

Milton Chen

2002-12-01T23:59:59.000Z

91

Wind-Wave Nonlinearity Observed at the Sea Floor. Part I: Forced-Wave Energy  

Science Conference Proceedings (OSTI)

This is Part 1 of a study of nonlinear effects on natural wind waves. Array measurements of pressure at the sea floor and middepth, collected 30 km offshore in 13-m depth, are compared to an existing theory for weakly nonlinear surface gravity ...

T. H. C. Herbers; R. T. Guza

1991-12-01T23:59:59.000Z

92

Efficiency Maine Trust | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Trust Efficiency Maine Trust Efficiency Maine Trust < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Public Benefits Fund Maine's public benefits fund for energy efficiency was authorized originally in 1997 by the state's electric-industry restructuring legislation. Under the initial arrangement, the administration of certain efficiency programs was divided among the State Planning Office (SPO), the state's electric utilities and the Maine Public Utilities Commission (PUC). However, general dissatisfaction by the Maine Legislature (and many other stakeholders) with the administration of the fund prompted revisions in

93

Forestry Policies (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine) Maine) Forestry Policies (Maine) < Back Eligibility Commercial Agricultural Program Info State Maine Program Type Environmental Regulations Provider Maine Forest Service Maine has diverse forest lands which support a diverse and strong forest products industry. The vast majority of forest lands in the state are privately owned. The Maine Forest Service completed its State Forest Assessment and Strategy in 2010, a plan that includes the goal of enhanced benefit from the production of renewable energy using wood and wood wastes. The combination of markets including a growing biomass energy industry and increased wood heating have created significant demand for wood material in Maine. The Maine Forest Service together with the University of Maine issued its "Woody Biomass Retention Guidelines" in 2010. This document

94

Alternative Fuels Data Center: Maine Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Information to Maine Information to someone by E-mail Share Alternative Fuels Data Center: Maine Information on Facebook Tweet about Alternative Fuels Data Center: Maine Information on Twitter Bookmark Alternative Fuels Data Center: Maine Information on Google Bookmark Alternative Fuels Data Center: Maine Information on Delicious Rank Alternative Fuels Data Center: Maine Information on Digg Find More places to share Alternative Fuels Data Center: Maine Information on AddThis.com... Maine Information This state page compiles information related to alternative fuels and advanced vehicles in Maine and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

95

CX-007674: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-007674: Categorical Exclusion Determination Replace Degraded Chemical Hood Exhaust Duct in 735-A, D-wing Service Floor CX(s) Applied: B2.3 Date: 10252011...

96

Categorical Exclusion Determinations: Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Maine Categorical Exclusion Determinations: Maine Location Categorical Exclusion Determinations issued for actions in Maine. DOCUMENTS AVAILABLE FOR DOWNLOAD February 4, 2013 CX-010231: Categorical Exclusion Determination Hywind Maine CX(s) Applied: A9, B3.1, B3.6 Date: 02/04/2013 Location(s): Maine Offices(s): Golden Field Office January 17, 2013 CX-009915: Categorical Exclusion Determination The University of Maine's "New England Aqua Ventus I" Program CX(s) Applied: A9, B3.6 Date: 01/17/2013 Location(s): Maine Offices(s): Golden Field Office November 5, 2012 CX-009425: Categorical Exclusion Determination Partial Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: B3.3, B3.16, B5.18 Date: 11/05/2012 Location(s): Maine

97

Maine PACE Loans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine PACE Loans Maine PACE Loans Maine PACE Loans < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Other Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Bioenergy Solar Buying & Making Electricity Wind Program Info Funding Source American Recovery and Reinvestment Act (ARRA) Start Date 04/04/2011 State Maine Program Type PACE Financing Provider Efficiency Maine Note: Maine's PACE program is accepting applications from homeowners in participating municipalities. Applications are submitted online. Property-Assessed Clean Energy (PACE) financing allows property owners to

98

Efficiency Maine Business Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Business Program Efficiency Maine Business Program Efficiency Maine Business Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $50,000 Program Info State Maine Program Type State Rebate Program Rebate Amount Retrofits: up to 35% of total project cost New construction/Major renovations/Failed equipment replacement: 75% of incremental cost Custom: $0.14/kWh Provider Efficiency Maine The Efficiency Maine Business Program provides cash incentives and free, independent technical advice to help non-residential electric customers

99

Better Buildings Neighborhood Program: Maine - SEP  

NLE Websites -- All DOE Office Websites (Extended Search)

- SEP to - SEP to someone by E-mail Share Better Buildings Neighborhood Program: Maine - SEP on Facebook Tweet about Better Buildings Neighborhood Program: Maine - SEP on Twitter Bookmark Better Buildings Neighborhood Program: Maine - SEP on Google Bookmark Better Buildings Neighborhood Program: Maine - SEP on Delicious Rank Better Buildings Neighborhood Program: Maine - SEP on Digg Find More places to share Better Buildings Neighborhood Program: Maine - SEP on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI Maine - SEP Maine Makes Multifamily Units Energy-Efficient and Cost-Effective

100

Development of Energy Trading Floors - Implications for Company Operations and Regional Energy Markets: Report Series on Fuel and Po wer Market Integration  

Science Conference Proceedings (OSTI)

A variety of different firms have established energy trading floors over the past several years, to such an extent that trading floors are increasingly being viewed as a mandatory part of the generation business. Increasing in number and scope, trading floors are undergoing rapid evolution, with inevitable -- but as yet uncertain -- impacts on alignment of fuel and power prices. This report provides a snapshot of the development and implications of energy trading floors, drawing on leading examples from ...

1998-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Climate Action Plan (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine) Maine) Climate Action Plan (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Climate Policies Provider Department of Environmental Protection In June 2003, the Maine State Legislature passed a bill charging the Department of Environmental Protection (DEP) with developing an action plan

102

Energy Incentive Programs, Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Maine Energy Incentive Programs, Maine October 29, 2013 - 11:29am Addthis Updated December 2012 What public purpose-funded energy efficiency programs are available in my state? Maine's restructuring law provides for energy efficiency programs through a statewide charge of up to 1.5 mills per kWh. These costs are included in the rates of the local electric distribution utilities. Almost $25 million was spent in 2011 on electric and gas energy efficiency programs. These funds were augmented, starting in 2009, by Maine's portion of proceeds from the northeastern states' Regional Greenhouse Gas Initiative (RGGI). Efficiency Maine , a state-chartered corporation under direction from the Efficiency Maine Trust, administers efficiency programs for businesses and

103

Central Maine Power Co | Open Energy Information  

Open Energy Info (EERE)

Central Maine Power Co Central Maine Power Co (Redirected from Central Maine Power Company) Jump to: navigation, search Name Central Maine Power Co Place Augusta, Maine Service Territory Maine Website www.cmpco.com/ Green Button Reference Page www.whitehouse.gov/sites/ Green Button Committed Yes Utility Id 3266 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Maine Power Company Smart Grid Project was awarded $95,858,307

104

Maine's Weatherization Milestones | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine's Weatherization Milestones Maine's Weatherization Milestones Maine's Weatherization Milestones August 24, 2010 - 5:44pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Thanks to $41.9 million in funding from the Recovery Act, the state of Maine expects to weatherize more than 4,400 homes Maine's state motto - "dirigo," Latin for "I lead," - is very fitting, especially when it comes to weatherization. With the help of nearly $41.9 million in funding from the Recovery Act, the state expects to weatherize more than 4,400 homes - creating jobs, reducing carbon emissions, and saving money for Maine's low-income families. Cathy Zoi, DOE's Assistant Secretary for Energy Efficiency and Renewable Energy and Maine's Governor John Baldacci spoke on a conference call last

105

Maine's Weatherization Milestones | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine's Weatherization Milestones Maine's Weatherization Milestones Maine's Weatherization Milestones August 24, 2010 - 5:44pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Thanks to $41.9 million in funding from the Recovery Act, the state of Maine expects to weatherize more than 4,400 homes Maine's state motto - "dirigo," Latin for "I lead," - is very fitting, especially when it comes to weatherization. With the help of nearly $41.9 million in funding from the Recovery Act, the state expects to weatherize more than 4,400 homes - creating jobs, reducing carbon emissions, and saving money for Maine's low-income families. Cathy Zoi, DOE's Assistant Secretary for Energy Efficiency and Renewable Energy and Maine's Governor John Baldacci spoke on a conference call last

106

Pore-Level Modeling of Carbon Dioxide Infiltrating the Ocean Floor  

NLE Websites -- All DOE Office Websites (Extended Search)

Infiltrating the Ocean Floor Infiltrating the Ocean Floor Grant S. Bromhal, Duane H. Smith, US DOE, National Energy Technology Laboratory, Morgantown, WV 26507-0880; M. Ferer, Department of Physics, West Virginia University, Morgantown, WV 26506-6315 Ocean sequestration of carbon dioxide is considered to be a potentially important method of reducing greenhouse gas emissions (US DOE, 1999). Oceans are currently the largest atmospheric carbon dioxide sink; and certainly, enough storage capacity exists in the oceans to hold all of the CO 2 that we can emit for many years. Additionally, technologies exist that allow us to pump liquid CO 2 into the oceans at depths between one and two kilometers for extended periods of time and five times that deep for shorter durations. The biggest unknown in the ocean sequestration process, however, is the fate and

107

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network (OSTI)

Today energy sources are decreasing and saving energy conservation becomes more important. Therefore, it becomes an important investigative direction how to use reproducible energy sources in the HVAC field. The feasibility and necessity of using solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter.

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

108

Floor response spectra for seismic qualification of Kozloduy VVER 440-230 NPP  

Science Conference Proceedings (OSTI)

In this paper the floor response spectra generation methodology for Kozloduy NPP, Unit 1-2 of VVER 440-230 is presented. The 2D coupled soil-structure interaction models are used combined with a simplified correction of the final results for accounting of torsional effects. Both time history and direct approach for in-structure spectra generation are used and discussion of results is made.

Kostov, M.K. [Bulgarian Academy of Sciences, Sofia (BG). Central Lab. for Seismic Mechanics and Earthquake Engineering; Ma, D.C. [Argonne National Lab., IL (United States); Prato, C.A. [Univ. of Cordoba (AR); Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (US)

1993-08-01T23:59:59.000Z

109

Wastewater Discharge Program (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The wastewater discharge regulations require that a license be obtained for the discharge of wastewater to a stream, river, wetland, or lake of the

110

Small Generator Aggregation (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generator Aggregation (Maine) Generator Aggregation (Maine) Small Generator Aggregation (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Green Power Purchasing Provider Public Utilities Commission This section establishes requirements for electricity providers to purchase

111

Maine Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

112

TREC 2007 Legal Track: Main Task Glossary  

Science Conference Proceedings (OSTI)

TREC 2007 Legal Track: Main Task Glossary. Revision History. 2007 Oct 2: st: first draft. qrelsL07.normal. The qrelsL07.normal ...

113

Green Power Purchasing (Maine) | Open Energy Information  

Open Energy Info (EERE)

Maine Name Green Power Purchasing Incentive Type Green Power Purchasing Applicable Sector State Government Eligible Technologies Biomass, Fuel Cells, Fuel Cells using Renewable...

114

Floor Plan  

Science Conference Proceedings (OSTI)

VAW Aluminium. Technology. EDAX/TSL. KHD Humboldt. Wedag AG. Moeller. GmbH. SciDoc. Inc. Kluwer Academic. Publishers. Edison. Welding Inst. Resco.

115

Evening Temperature Rises on Valley Floors and Slopes: Their Causes and Their Relationship to the Thermally Driven Wind System  

Science Conference Proceedings (OSTI)

At slope and valley floor sites in the Owens Valley of California, the late afternoon near-surface air temperature decline is often followed by a temporary temperature rise before the expected nighttime cooling resumes. The spatial and temporal ...

C. David Whiteman; Sebastian W. Hoch; Gregory S. Poulos

2009-04-01T23:59:59.000Z

116

Central Maine Power Co | Open Energy Information  

Open Energy Info (EERE)

Central Maine Power Co Central Maine Power Co Place Augusta, Maine Service Territory Maine Website www.cmpco.com/ Green Button Reference Page www.whitehouse.gov/sites/ Green Button Committed Yes Utility Id 3266 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Maine Power Company Smart Grid Project was awarded $95,858,307 Recovery Act Funding with a total project value of $191,716,614. Utility Rate Schedules

117

Wind Energy Act (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Act (Maine) Wind Energy Act (Maine) Wind Energy Act (Maine) < Back Eligibility Developer Utility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Solar/Wind Access Policy Siting and Permitting The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the regulatory process for

118

Clean Cities: Maine Clean Communities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Clean Communities Coalition Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Maine Clean Communities coalition Contact Information Steven Linnell 207-774-9891 slinnell@gpcog.org Coalition Website Clean Cities Coordinator Steven Linnell Photo of Steven Linnell Steven Linnell has been the coordinator of the statewide Maine Clean Communities coalition since its designation in 1997. The coalition's greatest achievement so far has been helping the Greater Portland METRO build the first fast-fill compressed natural gas (CNG) fueling infrastructure in the state, which currently serves 13 CNG transit buses and four CNG school buses. The coalition has also played a role in shaping

119

Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.253783,"lon":-69.4454689,"alt":0,"address":"Maine","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Maine Mountain Power | Open Energy Information  

Open Energy Info (EERE)

Maine Mountain Power Maine Mountain Power Place Yarmouth, Maine Zip 4096 Sector Wind energy Product Wind farm development company focused on projects in Maine. It is a subsidiary of Endless Energy Corporation. Coordinates 41.663318°, -70.198987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.663318,"lon":-70.198987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CECG Maine, LLC | Open Energy Information  

Open Energy Info (EERE)

search Name CECG Maine, LLC Place Maryland Utility Id 4166 Utility Location Yes Ownership R NERC Location RFC NERC RFC Yes Activity Retail Marketing Yes References EIA Form EIA-861...

122

Linked Investment Program for Commercial Enterprises (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Linked Investment Program for Commercial Enterprises reduces a borrowers interest rate. The Maine State Treasurer makes a certificate of deposit at up to 2% less than the prevailing rate on...

123

Main Street Loan Program (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Main Street Loan Program loans of up to $24,999 through the Certified Development Corporation (CDC) in participation with local lenders or economic development organizations for small...

124

Gas Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Utilities (Maine) Gas Utilities (Maine) Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Siting and Permitting Provider Public Utilities Commission Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one customer when any portion

125

Direct Energy Services (Maine) | Open Energy Information  

Open Energy Info (EERE)

Maine) Maine) Jump to: navigation, search Name Direct Energy Services Place Maine Utility Id 54820 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.1070/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Direct_Energy_Services_(Maine)&oldid=412516" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

126

Method and apparatus for recovering a gas from a gas hydrate located on the ocean floor  

DOE Patents (OSTI)

A method and apparatus for recovering a gas from a gas hydrate on the ocean floor includes a flexible cover, a plurality of steerable base members secured to the cover, and a steerable mining module. A suitable source for inflating the cover over the gas hydrate deposit is provided. The mining module, positioned on the gas hydrate deposit, is preferably connected to the cover by a control cable. A gas retrieval conduit or hose extends upwardly from the cover to be connected to a support ship on the ocean surface.

Wyatt, Douglas E. (Aiken, SC)

2001-01-01T23:59:59.000Z

127

Maine/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Maine/Wind Resources < Maine Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

128

Main Coast Winds - Final Scientific Report  

DOE Green Energy (OSTI)

The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

Jason Huckaby; Harley Lee

2006-03-15T23:59:59.000Z

129

Categorical Exclusion Determinations: Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 9, 2010 September 9, 2010 CX-003770: Categorical Exclusion Determination Maine-County-York CX(s) Applied: A1, A9, A11, B2.5, B5.1 Date: 09/09/2010 Location(s): York County, Maine Office(s): Energy Efficiency and Renewable Energy September 9, 2010 CX-003713: Categorical Exclusion Determination Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: A9, B3.1, B3.3, B3.6 Date: 09/09/2010 Location(s): Maine Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 23, 2010 CX-003544: Categorical Exclusion Determination Environmental Impact Protocols for Tidal Power CX(s) Applied: A9, B3.1, B3.3, B3.6 Date: 08/23/2010 Location(s): Cobscook Bay, Maine Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

130

Waste: main source of sustainable energy  

E-Print Network (OSTI)

Waste: main source of sustainable energy Dr. K.D. van der Linde President of Afval Energie Bedrijf ­ Waste and Energy Company City of Amsterdam Institute of Physics, London, 16th March 2005 #12;March, 16th 2005 Afval Energie Bedrijf 2 Afval Energie Bedrijf (AEB)Afval Energie Bedrijf (AEB) for wastefor waste

Columbia University

131

Maine Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

132

Eastern Maine Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Coop Coop Jump to: navigation, search Name Eastern Maine Electric Coop Place Maine Utility Id 5609 Utility Location Yes Ownership C NERC Location NPCC NERC NPCC Yes ISO Other Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Industrial Service Industrial Large Commercial Commercial Residential Residential Seasonal Residential Residential Average Rates Residential: $0.0909/kWh Commercial: $0.0771/kWh Industrial: $0.0620/kWh

133

Sebago, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sebago, Maine: Energy Resources Sebago, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8917267°, -70.6709435° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8917267,"lon":-70.6709435,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Bradley, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bradley, Maine: Energy Resources Bradley, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9209017°, -68.6280864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9209017,"lon":-68.6280864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Naples, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Naples, Maine: Energy Resources Naples, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.971739°, -70.6092258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.971739,"lon":-70.6092258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Camden, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2098011°, -69.0647593° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2098011,"lon":-69.0647593,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Stacyville, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Stacyville, Maine: Energy Resources Stacyville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.8636618°, -68.5053088° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.8636618,"lon":-68.5053088,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Kingsbury, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kingsbury, Maine: Energy Resources Kingsbury, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1194988°, -69.6492194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1194988,"lon":-69.6492194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Prentiss, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Prentiss, Maine: Energy Resources Prentiss, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4917309°, -68.081681° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.4917309,"lon":-68.081681,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Brewer, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brewer, Maine: Energy Resources Brewer, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7967378°, -68.7614246° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7967378,"lon":-68.7614246,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Lee, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3600615°, -68.2864076° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3600615,"lon":-68.2864076,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Hampden, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hampden, Maine: Energy Resources Hampden, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7445159°, -68.836982° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7445159,"lon":-68.836982,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Guilford, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Guilford, Maine: Energy Resources Guilford, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1689426°, -69.3844921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1689426,"lon":-69.3844921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Maine Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name Maine Tow Tank Overseeing Organization University of Maine Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 30.5 Beam(m) 2.4 Depth(m) 1.2 Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Simulated beach is framed with PVC/mesh. Has a 4:9 slope. Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition

145

Newport, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Newport, Maine: Energy Resources Newport, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8353424°, -69.2739365° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8353424,"lon":-69.2739365,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

Categorical Exclusion Determinations: Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2, 2010 March 2, 2010 CX-001043: Categorical Exclusion Determination Verso Paper Corporation Waste Energy Recovery (Jay) CX(s) Applied: B1.24, B5.1 Date: 03/02/2010 Location(s): Jay, Maine Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 2, 2010 CX-001042: Categorical Exclusion Determination Verso Paper Corporation Waste Energy Recovery (Bucksport) CX(s) Applied: B1.24, B5.1 Date: 03/02/2010 Location(s): Bucksport, Maine Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 21, 2010 CX-002154: Categorical Exclusion Determination Recovery Act: DeepCwind Consortium National Research Program: Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: B3.1, B3.3, B3.6, A9

147

Maine Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

148

Orono, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8831249°, -68.671977° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8831249,"lon":-68.671977,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Patten, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Patten, Maine: Energy Resources Patten, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.9964392°, -68.4461424° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.9964392,"lon":-68.4461424,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

150

Levant, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Levant, Maine: Energy Resources Levant, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8692358°, -68.9347611° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8692358,"lon":-68.9347611,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

151

Woolwich, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woolwich, Maine: Energy Resources Woolwich, Maine: Energy Resources (Redirected from Woolwich, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9186904°, -69.8011576° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9186904,"lon":-69.8011576,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Sangerville, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sangerville, Maine: Energy Resources Sangerville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1647763°, -69.356436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1647763,"lon":-69.356436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

153

Orrington, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Orrington, Maine: Energy Resources Orrington, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7311829°, -68.8264258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7311829,"lon":-68.8264258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Passadumkeag, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Passadumkeag, Maine: Energy Resources Passadumkeag, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1853362°, -68.6166937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1853362,"lon":-68.6166937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Bridgton, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bridgton, Maine: Energy Resources Bridgton, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0547926°, -70.7128399° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0547926,"lon":-70.7128399,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Milford, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.946179°, -68.6439202° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.946179,"lon":-68.6439202,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Sebec, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sebec, Maine: Energy Resources Sebec, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2714408°, -69.1167087° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2714408,"lon":-69.1167087,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Abbot, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Abbot, Maine: Energy Resources Abbot, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1976844°, -69.458819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1976844,"lon":-69.458819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Standish, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Standish, Maine: Energy Resources Standish, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7359114°, -70.5519993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7359114,"lon":-70.5519993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Warren, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Warren, Maine: Energy Resources Warren, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1203577°, -69.2400452° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1203577,"lon":-69.2400452,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Eddington, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Eddington, Maine: Energy Resources Eddington, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8261817°, -68.6933667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8261817,"lon":-68.6933667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Harpswell, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harpswell, Maine: Energy Resources Harpswell, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7560618°, -69.9645482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7560618,"lon":-69.9645482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Stetson, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Stetson, Maine: Energy Resources Stetson, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8917325°, -69.1428215° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8917325,"lon":-69.1428215,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Twombly, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Twombly, Maine: Energy Resources Twombly, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2748647°, -68.237681° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2748647,"lon":-68.237681,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

165

Corinth, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Corinth, Maine: Energy Resources Corinth, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0002251°, -69.0340404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0002251,"lon":-69.0340404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Kenduskeag, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kenduskeag, Maine: Energy Resources Kenduskeag, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9195128°, -68.9317049° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9195128,"lon":-68.9317049,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

167

Kingman, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kingman, Maine: Energy Resources Kingman, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5495057°, -68.1994627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5495057,"lon":-68.1994627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Maxfield, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maxfield, Maine: Energy Resources Maxfield, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3076853°, -68.7532578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3076853,"lon":-68.7532578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Mattawamkeag, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mattawamkeag, Maine: Energy Resources Mattawamkeag, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5136701°, -68.3544669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5136701,"lon":-68.3544669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

Casco, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Casco, Maine: Energy Resources Casco, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0067388°, -70.5228358° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0067388,"lon":-70.5228358,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Criehaven, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Criehaven, Maine: Energy Resources Criehaven, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8339726°, -68.889201° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8339726,"lon":-68.889201,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Charleston, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Charleston, Maine: Energy Resources Charleston, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0850615°, -69.0405949° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0850615,"lon":-69.0405949,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Brownville, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brownville, Maine: Energy Resources Brownville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3069957°, -69.0333737° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3069957,"lon":-69.0333737,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

Parkman, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Parkman, Maine: Energy Resources Parkman, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1336651°, -69.4331038° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1336651,"lon":-69.4331038,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

Drew, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Drew, Maine: Energy Resources Drew, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.6013167°, -68.0942848° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6013167,"lon":-68.0942848,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

University of Maine Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamics Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Maine Address 208 Boardman Hall Place Orono, Maine Zip 04469 Sector Hydro Phone number (207) 581-2129 Website http://gradcatalog.umaine.edu/ Coordinates 44.9024546°, -68.6638413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9024546,"lon":-68.6638413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Scarborough, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Scarborough, Maine: Energy Resources Scarborough, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.597774°, -70.331846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.597774,"lon":-70.331846,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Maine Maritime Academy | Open Energy Information  

Open Energy Info (EERE)

Academy Academy Jump to: navigation, search Name Maine Maritime Academy Address Engineering Department Pleasant Street Place Castine Zip 4420 Sector Marine and Hydrokinetic Phone number 207-326-2365 Website http://http://www.mainemaritim Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Castine Harbor Badaduce Narrows Tidal Energy Device Evaluation Center TIDEC This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Maine_Maritime_Academy&oldid=678366" Categories: Clean Energy Organizations Companies Organizations Stubs

179

Pownal, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pownal, Maine: Energy Resources Pownal, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9087662°, -70.1821738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9087662,"lon":-70.1821738,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

Hermon, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hermon, Maine: Energy Resources Hermon, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.81007°, -68.9133724° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.81007,"lon":-68.9133724,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Holden, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Holden, Maine: Energy Resources Holden, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7528499°, -68.6789218° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7528499,"lon":-68.6789218,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

Dixmont, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dixmont, Maine: Energy Resources Dixmont, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.6803471°, -69.1628221° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6803471,"lon":-69.1628221,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Lowell, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lowell, Maine: Energy Resources Lowell, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1878373°, -68.4677999° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1878373,"lon":-68.4677999,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

WIPP SEIS-II - Main Menu  

NLE Websites -- All DOE Office Websites (Extended Search)

Start Here Start Here Volume III Comment Response Document Summary Supplement Volume I Volume I Chapters Supplement Volume II Volume II Appendices MAIN MENU To view a particular volume of the Waste Isolation Pilot Plant Disposal Phase Supplemental Environmental Impact Statement, click on the corresponding box. NOTE Volume III, the Comment Response Document, contains links to original comments and to DOE responses. Tips for using those links are contained in a note represented by the following icon: When you see this icon, double-click on it to read the tips. To return to this menu at any time, click on the first bookmark called "Main Menu" in every volume. To return to the "Start Here" file, which contains instructions for navigating through Acrobat Reader, click here

185

Gray, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gray, Maine: Energy Resources Gray, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.885632°, -70.3317195° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.885632,"lon":-70.3317195,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Castine, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Castine, Maine: Energy Resources Castine, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3878547°, -68.7997522° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3878547,"lon":-68.7997522,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Greenbush, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Greenbush, Maine: Energy Resources Greenbush, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0803409°, -68.6508635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0803409,"lon":-68.6508635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

188

Lubec, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lubec, Maine: Energy Resources Lubec, Maine: Energy Resources (Redirected from Lubec, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8606355°, -66.9841453° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8606355,"lon":-66.9841453,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Vinalhaven, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vinalhaven, Maine: Energy Resources Vinalhaven, Maine: Energy Resources (Redirected from Vinalhaven, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0481374°, -68.8316985° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0481374,"lon":-68.8316985,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Edinburg, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edinburg, Maine: Energy Resources Edinburg, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1650821°, -68.6751748° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1650821,"lon":-68.6751748,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Winn, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Winn, Maine: Energy Resources Winn, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4856144°, -68.372245° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.4856144,"lon":-68.372245,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

Lagrange, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lagrange, Maine: Energy Resources Lagrange, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1667248°, -68.844479° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1667248,"lon":-68.844479,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

Main dimensions of human practical directives system  

SciTech Connect

A hypothesis is made that due to the uncertainty and complexity of the practical inference schemes, the acting subject exerts his/her own system of beliefs about efficient ways of attaining the given goals. These beliefs are termed here: Practical Directives, and their system: Practical Attitude. An attempt was made to reconstruct such a system and its main dimensions. To this end, an instrument was constructed: the Questionnaire of Practical Directives (QPD), which is meant as an operational definition of Practical Attitude. A group of 218 subjects was tested with the aid of QPD and the factor analysis of the results revealed nine factors interpreted as main dimensions of the system of Practical Directives. 19 refs.

Lewicka-Strzalecka, A.

1992-12-31T23:59:59.000Z

194

Corinna, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Corinna, Maine: Energy Resources Corinna, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.921174°, -69.2617131° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.921174,"lon":-69.2617131,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Veazie, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Veazie, Maine: Energy Resources Veazie, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8386814°, -68.7053114° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8386814,"lon":-68.7053114,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

196

Westbrook, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6770252°, -70.3711617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6770252,"lon":-70.3711617,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

Eastport, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Eastport, Maine: Energy Resources Eastport, Maine: Energy Resources (Redirected from Eastport, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9061906°, -66.9899785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9061906,"lon":-66.9899785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Newburgh, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Newburgh, Maine: Energy Resources Newburgh, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7249508°, -69.0157987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7249508,"lon":-69.0157987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Gorham, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gorham, Maine: Energy Resources Gorham, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6795245°, -70.4442186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6795245,"lon":-70.4442186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Brunswick, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brunswick, Maine: Energy Resources Brunswick, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9145244°, -69.9653278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9145244,"lon":-69.9653278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Howland, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Howland, Maine: Energy Resources Howland, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2386668°, -68.6636391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2386668,"lon":-68.6636391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

Glenburn, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glenburn, Maine: Energy Resources Glenburn, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9168455°, -68.8536313° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9168455,"lon":-68.8536313,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Seboeis, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Seboeis, Maine: Energy Resources Seboeis, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3631091°, -68.7111424° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3631091,"lon":-68.7111424,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Rockport, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rockport, Maine: Energy Resources Rockport, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1845236°, -69.0761491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1845236,"lon":-69.0761491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Milo, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Milo, Maine: Energy Resources Milo, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2536633°, -68.9858713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2536633,"lon":-68.9858713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Maine Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Volumes Delivered to Consumers

207

Commissioning Tools for Heating/Cooling System in Residence - Verification of Floor Heating System and Room Air Conditioning System Performance  

E-Print Network (OSTI)

Tools of evaluating the performance of floor heating and room air conditioner are examined as a commissioning tool. Simple method is needed to check these performance while in use by residents, because evaluation currently requires significant time and effort. Therefore, this paper proposes a) two methods of evaluating the floor heating efficiency from the room / crawl space temperature and the energy consumption and b) method of evaluating COP of the room air conditioner from the data measured at the external unit. Case studies in which these tools were applied to actual residences are presented to demonstrate their effectiveness.

Miura, H.; Hokoi, S.; Iwamae, A.; Umeno, T.; Kondo, S.

2004-01-01T23:59:59.000Z

208

STATE OF INDIANA OFFICE OF THE GOVERNOR State House, Second Floor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDIANA INDIANA OFFICE OF THE GOVERNOR State House, Second Floor Indianapolis, Indiana 46204 Mitchell E. Daniels, Jr. Governor March 12,2009 The Honorable Steven Chu Secretary U.S. Department of Energy 1000 Independence Avenue, S. W Washington, D.C. 20585 Re: State Energy Program Assurances Dear Secretary Chu: As a condition of receiving our State's share of the $3.1 billion funding for the State Energy Program (SEP) under the American Recovery and Renewal Act of 2009 (H.R. I)(ARRA), I am providing the following assurances. I have requested our public utility commission (the Indiana Utility Regulatory Commission) to consider additional actions to promote energy efficiency, consistent with the federal statutory language contained in H.R. 1 and their obligations to

209

Report Period: EIA ID NUMBER: Instructions: (e.g., Street Address, Bldg, Floor, Suite)  

U.S. Energy Information Administration (EIA) Indexed Site

Report Period: Report Period: EIA ID NUMBER: Instructions: (e.g., Street Address, Bldg, Floor, Suite) Secure File Transfer option available at: (e.g., PO Box, RR) Electronic Transmission: The PC Electronic Data Reporting Option (PEDRO) is available. Zip Code: - If interested in software, call (202) 586-9659. Email form to: Fax form to: (202) 586-9772 - - Mail form to: Oil & Gas Survey - - U.S. Department of Energy Ben Franklin Station PO Box 279 Washington, DC 20044-0279 Questions? Call toll free: 1-800-638-8812 OOG.SURVEYS@eia.doe.gov Contact Name: Version No.: 2013.01 Date of this Report: Mo Day State: Year Phone No.: DOMESTIC CRUDE OIL FIRST PURCHASE REPORT Company Name: A completed form must be filed by the 30th calendar day following the end of the report

210

Stress Analysis of Floor Slab from Hyster 550 FS Lift Truck with 55 Kip Pay Load  

Science Conference Proceedings (OSTI)

The objective of this calculation is to determine the probable moments and stresses that will be induced into the slab on grade floor at building 2404WA from operation of a Hyster 550 FS lift truck having tire pressures of 124 psi while moving and placing SWDB boxes within building 2404WA. It was found that the probable reinforcing steel stress induced in the grade 60 reinforcing steel for the 124 psi tire pressure is about 35.55 ksi and the factor of safety against yield is about 1.7:l. The probable maximum concrete compression stress is expected to be about 2.21 ksi resulting in a factor of safety of about 2.04:1 against concrete compression failure. Slab on grade design is not subject to building code factors of safety requirements.

BLACK, D.G.

2003-06-05T23:59:59.000Z

211

Slip stacking experiments at Fermilab main injector  

SciTech Connect

In order to achieve an increase in proton intensity, Fermilab Main Injector will use a stacking process called ''slip stacking''. The intensity will be doubled by injecting one train of bunches at a slightly lower energy, another at a slightly higher energy, then bringing them together for the final capture. Beam studies have started for this process and we have already verified that, at least for a low beam intensity, the stacking procedure works as expected. For high intensity operation, development work of the feedback and feedforward systems is under way.

Kiyomi Koba et al.

2003-06-02T23:59:59.000Z

212

Crack Width Analysis of Floor Slabs from Hyster 550 FS Lift Truck with 55 Kip Pay Load  

Science Conference Proceedings (OSTI)

This calculation determines the probable crack width experienced by the slab on grade floor at Building 2404WA from a Hyster 550 FS lift truck having tire pressures of 124 psi while moving and placing Standard Waste Disposal Boxes within the building.

BLACK, D.G.

2003-06-05T23:59:59.000Z

213

An assessment of a partial pit ventilation system to reduce emission under slatted floor - Part 1: Scale model study  

Science Conference Proceedings (OSTI)

Emissions of ammonia and greenhouse gases from naturally ventilated livestock houses cause contamination of the surrounding atmospheric environment. Requests to reduce ammonia emissions from livestock farms are growing in Denmark. It is assumed that ... Keywords: Livestock, Pit ventilation, Scale model, Slatted floor, Tracer gas, Wind tunnel

Wentao Wu; Peter Kai; Guoqiang Zhang

2012-04-01T23:59:59.000Z

214

Experimental Study on Operating Characteristic of the System of Ground Source Heat Pump Combined with Floor Radiant Heating of Capillary Tube  

Science Conference Proceedings (OSTI)

At first, the article presented particularly the working theory of the system of ground source heat pump combined with floor radiant heating of capillary tube, the characteristic of soil layers and the arrangement form of capillary tube mat and the floor ... Keywords: Ground source heat pump, Capillary tube, Radiant heating, Characteristic, Experiment

Yunzhun Fu; Cai Yingling; Jing Li; Yeyu Wang

2009-10-01T23:59:59.000Z

215

SOAJ Search : Main View : Deep Federated Search  

Office of Scientific and Technical Information (OSTI)

SOAJ Search SOAJ Search Search Powered By Deep Web Technologies New Search Preferences Powered by Deep Web Technologies HOME ABOUT ADVANCED SEARCH CONTACT US HELP Science Open Access Journals (SOAJ) Science Open Access Journals Main View This view is used for searching all possible sources. Additional Information Keyword: Title: Additional Information Author: Fields to Match: All Any Field(s) Additional Information Date Range: Beginning Date Range Pick Year 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 toEnding Date Range Pick Year 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 DWT Logo Search Clear All Help Simple Search Select All

216

Intensity Limitations in Fermilab Main Injector  

SciTech Connect

The design beam intensity of the FNAL Main Injector (MI) is 3 x 10{sup 13} ppp. This paper investigates possible limitations in the intensity upgrade. These include the space charge, transition crossing, microwave instability, coupled bunch instability, resistive wall, beam loading (static and transient), rf power, aperture (physical and dynamic), coalescing, particle losses and radiation shielding, etc. It seems that to increase the intensity by a factor of two from the design value is straightforward. Even a factor of five is possible provided that the following measures are to be taken: an rf power upgrade, a {gamma}{sub t}-jump system, longitudinal and transverse feedback systems, rf feedback and feedforward, stopband corrections and local shieldings.

Chan, W.

1997-06-01T23:59:59.000Z

217

Maine Public Service Co | Open Energy Information  

Open Energy Info (EERE)

Public Service Co Public Service Co Place Maine Utility Id 11522 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Produce Storage Rate (F) Commercial Backup and Maintenance Service-Primary (B) Commercial Backup and Maintenance Service-Secondary (B) Commercial Backup and Maintenance Service-Sub-Transmission(B) Commercial Backup and Maintenance Service-Transmission(B) Commercial General service (C) Commercial Large Power service - Primary-Time of use (E-P-T) Industrial

218

State Energy Program Assurances - Maine Governor Baldacci | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Assurances - Maine Governor Baldacci State Energy Program Assurances - Maine Governor Baldacci Letter from Maine Governor Baldacci Rounds providing Secretary...

219

PP-43 Maine Electric Power Company, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Maine Electric Power Company, Inc. PP-43 Maine Electric Power Company, Inc. Presidential Permit authorizing Maine Electric Power Company, Inc. to construct, operate, and maintain...

220

EA-1792: University of Maine's Deepwater Offshore Floating Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's...

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

PP-32 Eastern Maine Electric Cooperative Inc | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Eastern Maine Electric Cooperative Inc PP-32 Eastern Maine Electric Cooperative Inc Presidential permit authorizing Eastern Maine Electric Cooperative Inc to construct, operate,...

222

Mercury concentrations in Maine sport fishes  

Science Conference Proceedings (OSTI)

To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterus salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.

Stafford, C.P. [Univ. of Maine, Orono, ME (United States); Haines, T.A. [Geological Survey, Orono, ME (United States)

1997-01-01T23:59:59.000Z

223

GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM  

SciTech Connect

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. A prototype system was built for low-pressure cast-iron mains and tested in a spider- and serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The prototype unit combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-slave architecture to collect data from a distributed spider-arrangement, and in a master-repeater-slave configuration in serial or ladder-network arrangements. It was found that the system was capable of performing all data-sampling and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and valuable data was collected in order to determine how to improve on range and data-quality in the future.

Hagen Schempf, Ph.D.

2003-02-27T23:59:59.000Z

224

The AGS main magnet power supply upgrade  

SciTech Connect

The AGS Main Magnet Power Supply consists of a group of thyristor controlled power converters that operate from full rectify to full invert. In order to minimize ripple during the critical periods of injection and extraction 24 pulse converters are used for these portions of the cycle. The maximum voltage available in this mode is nominally 2,000 volts. The converters that are functional during this portion of the cycle are called the flat-top bank or ``F`` bank modules. During acceleration and invert where voltages of up to 12,000 volts are needed and where the ripple requirements are less stringent, groups of twelve pulse converters are operational. These converters are called the Pulsed bank or ``P`` bank modules. The original controlled rectifier system consisted of 96 large mercury filled excitron tubes divided equally between the P bank and F bank converters. These devices were extremely durable and ran successfully for over twenty years. It was, decided to replace the excitron farm with multiple arrangements of three-phase, full-wave, bridge modules that utilize silicon controlled rectifiers (SCR`s or thyristors) as the switching element. In order to match the existing transformer connections and buswork, eight identical modules were required; four for the P bank system and four for the F bank system. In order to reduce noise pickup and provide electrical isolation the high level SCR gate triggers are provided via fiberoptic cable. The status of various parameters such as water flow, auxiliary power supply performance, trigger circuitry failure, over voltage, overcurrent, and loss of phase reference are monitored via a programmable logic controller (PLCs). The PLCs use isolated input and output modules for various voltage levels from TTL to 150 Vdc to 125 Vac. These devices are extremely flexible and have allowed modifications and improvements that have enhanced the performance over any equivalent hard wired system.

Sandberg, J.N.; Casella, R.; Geller, J.; Marneris, I.; Soukas, A.; Schumburg, N.

1995-05-01T23:59:59.000Z

225

GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM  

Science Conference Proceedings (OSTI)

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. In Phase II of this three-phase program, an improved prototype system was built for low-pressure cast-iron and high-pressure steel (including a no-blow installation system) mains and tested in a serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The experiment was carried out in several open-hole excavations over a multi-day period. The prototype units (3 total) combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-repeater-slave configuration in serial or ladder-network arrangements. It was verified that the system was capable of performing all data-sampling, data-storage and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and the system was demonstrated to run off in-ground battery- and above-ground solar power. The remote datalogger access and storage-card features were demonstrated and used to log and post-process system data. Real-time data-display on an updated Phase-I GUI was used for in-field demonstration and troubleshooting.

Hagen Schempf

2004-09-30T23:59:59.000Z

226

Inspection of the objects on the sea floor by using 14 MeV tagged neutrons  

SciTech Connect

Variety of objects found on the sea floor needs to be inspected for the presence of materials which represent the threat to the environment and to the safety of humans. We have demonstrated that the sealed tube 14 MeV neutron generator with the detection of associated alpha particles can be used underwater when mounted inside ROV equipped with the hydraulic legs and variety of sensors for the inspection of such objects for the presence of threat materials. Such a system is performing the measurement by using the NaI gamma detector and an API-120 neutron generator which could be rotated in order to maximize the inspected target volume. The neutron beam intensity during the 10-30 min. measurements is usually 1 x 10{sup 7} n/s in 4{pi}. In this report the experimental results for some of commonly found objects containing TNT explosive or its simulant are presented. The measured gamma spectra are dominant by C, O and Fe peaks enabling the determination of the presence of explosives inside the ammunition shell. Parameters influencing the C/O ratio are discussed in some details. (authors)

Valkovic, V. [A.C.T.d.o.o., Prilesje 4, Zagreb (Croatia); Sudac, D.; Obhodas, J. [Dept. of Experimental Physics, Inst. Ruder Boskovic, Zagreb (Croatia); Matika, D. [Inst. for Researches and Development of Defense Systems, Zagreb (Croatia); Kollar, R. [A.C.T.d.o.o., Prilesje 4, Zagreb (Croatia); Nad, K.; Orlic, Z. [Dept. of Experimental Physics, Inst. Ruder Boskovic, Zagreb (Croatia)

2011-07-01T23:59:59.000Z

227

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium was established in 1999 to assemble leaders in gas hydrates research. The group is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently received increased attention and the group of researchers working on the station has expanded to include several microbial biologists. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments are planned for fall 2005 and center about the use of the vessel M/V Ocean Quest and its two manned submersibles. The subs will be used to effect bottom surveys, emplace sensors and sea floor experiments and make connections between sensor data loggers and the integrated data power unit (IDP). Station/observatory completion is anticipated for 2007 following the construction, testing and deployment of the horizontal line arrays, not yet funded. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

2006-03-01T23:59:59.000Z

228

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION P  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-06NT42877 Semiannual Progress Report HYDRATE RESEARCH ACTIVITIES THAT BOTH SUPPORT AND DERIVE FROM THE MONITORING STATION/SEA-FLOOR OBSERVATORY, MISSISSIPPI CANYON 118, NORTHERN GULF OF MEXICO Submitted by: CENTER FOR MARINE RESOURCES AND ENVIRONMENTAL TECHNOLOGY 111 BREVARD HALL, UNIVERSITY, MS 38677 Principal Author: Carol Lutken, PI Prepared for: United States Department of Energy National Energy Technology Laboratory August, 2011 Office of Fossil Energy ii HYDRATE RESEARCH ACTIVITIES THAT BOTH SUPPORT AND DERIVE FROM THE MONITORING STATION/SEA-FLOOR OBSERVATORY, MISSISSIPPI CANYON 118, NORTHERN GULF OF MEXICO SEMIANNUAL PROGRESS REPORT 1 JANUARY, 2011 THROUGH 30 JUNE, 2011

229

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION P  

NLE Websites -- All DOE Office Websites (Extended Search)

2NT00041628 2NT00041628 Final Report Covering research during the period 1 June, 2002 through 30 September, 2008 Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project Submitted by: University of Mississippi Center for Marine Resources and Environmental Technology 310 Lester Hall, University, MS 38677 Principal Authors: J. Robert Woolsey, Thomas M. McGee, Carol B. Lutken Prepared for: United States Department of Energy National Energy Technology Laboratory January, 2009 Office of Fossil Energy ii SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT DOE Award Number DE-FC26-02NT41628 FINAL TECHNICAL REPORT

230

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has already succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. As funding for this project, scheduled to commence December 1, 2002, had only been in place for less than half of the reporting period, project progress has been less than for other reporting periods. Nevertheless, significant progress has been made and several cruises are planned for the summer/fall of 2003 to test equipment, techniques and compatibility of systems. En route to reaching the primary goal of the Consortium, the establishment of a monitoring station on the sea floor, the following achievements have been made: (1) Progress on the vertical line array (VLA) of sensors: Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, Cabling upgrade to allow installation of positioning sensors, Incorporation of capability to map the bottom location of the VLA, Improvements in timing issues for data recording. (2) Sea Floor Probe: The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed; The probe has been modified to penetrate the <1m blanket of hemipelagic ooze at the water/sea floor interface to provide the necessary coupling of the accelerometer with the denser underlying sediments. (3) Electromagnetic bubble detector and counter: Initial tests performed with standard conductivity sensors detected nonconductive objects as small as .6mm, a very encouraging result, Components for the prototype are being assembled, including a dedicated microcomputer to control power, readout and logging of the data, all at an acceptable speed. (4) Acoustic Systems for Monitoring Gas Hydrates: Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate; these measurements will be used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station; A scattering system and bubble-producing device, being assembled at USM, will be tested in the next two months, and the results compared to a physical scattering model. (5) Mid-Infrared Sensor for Continuous Methane Monitoring: Progress has been made toward minimizing system maintenance through increased capacity and operational longevity, Miniaturization of many components of the sensor systems has been completed, A software package has been designed especially for the MIR sensor data evaluation, Custom electronics have been developed that reduce power consumption and, therefore, increase the length of time the system can remain operational. (6) Seismo-acoustic characterization of sea floor properties and processes at the hydrate monitoring station. (7) Adaptation of the acoustic-logging device, developed as part of the European Union-funded research project, Sub-Gate, for monitoring temporal variations in seabe

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2004-03-01T23:59:59.000Z

231

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 (MC118) in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. These delays caused scheduling and deployments difficulties but many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). The CMRET has conducted one very significant research cruise during this reporting period: a March cruise to perform sea trials of the Station Service Device (SSD), the custom Remotely Operated Vehicle (ROV) built to perform several of the unique functions required for the observatory to become fully operational. March's efforts included test deployments of the SSD and Florida Southern University's mass spectrometer designed to measure hydrocarbon gases in the water column and The University of Georgia's microbial collector. The University of Georgia's rotational sea-floor camera was retrieved as was Specialty Devices storm monitor array. The former was deployed in September and the latter in June, 2006. Both were retrieved by acoustic release from a dispensable weight. Cruise participants also went prepared to recover any and all instruments left on the sea-floor during the September Johnson SeaLink submersible cruise. One of the pore-fluid samplers, a small ''peeper'' was retrieved successfully and in fine condition. Other instrumentation was left on the sea-floor until modifications of the SSD are complete and a return cruise is accomplished.

J. Robert Woolsey; Thomas M. McGee; Carol Blanton Lutken; Elizabeth Stidham

2007-03-31T23:59:59.000Z

232

Maine Electric Power Co, Inc | Open Energy Information  

Open Energy Info (EERE)

Maine Electric Power Co, Inc Jump to: navigation, search Name Maine Electric Power Co, Inc Place Maine Utility Id 11521 Utility Location Yes Ownership I NERC Location NPCC NERC...

233

Androscoggin County, Maine ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Androscoggin County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Androscoggin County, Maine ASHRAE Standard ASHRAE 169-2006 Climate...

234

Maine Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Pipeline and Distribution...

235

Maine Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Maine Natural Gas Pipeline and Distribution Use (Million Cubic...

236

Better Buildings: Workforce, Spotlight on Maine: Contractor Sales...  

NLE Websites -- All DOE Office Websites (Extended Search)

visit betterbuildings.energy.govneighborhoods. Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions When Efficiency Maine launched a new residential...

237

Maine Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Maine Natural Gas % of Total Residential - Sales (Percent) Maine Natural Gas % of Total Residential - Sales (Percent) Decade...

238

Fatigue analysis of stringer to floor beam connections in through plate girder and through truss railroad bridges  

E-Print Network (OSTI)

The objective of this thesis is to determine fatigue stresses in the stringer to floor beam connections of through plate girder (TPG) and through truss (TT) bridges in order to predict failure. Field observations by the Association of American Railroads (AAR) indicate failure in the stringer to floor beam connections of both the TPG and TT bridges, although a higher frequency of failure appears in the TT bridges. Accordingly, this study includes 1) creating analytical models for the TPG and TT bridges, 2) determining member internal forces, 3) developing force envelopes, 4) determining maximum internal stresses, and 5) comparing these results to field observations. First, bridge models for the TPG and TT bridge were assembled using a finite element analysis program in order to evaluate member internal forces. The TPG bridge model was taken from the plans of an existing bridge designed in 1912 and located near TX Highway 21 between College Station and Caldwell, TX. The TT bridge model was taken from the plans of an existing bridge designed in 1902 in the Chicago Office of the American Bridge Company. Next, a finite element analysis was conducted to obtain member internal forces. The resulting forces were compiled to create axial load, shear force, and moment envelopes. These envelopes were constructed to provide the magnitudes and location of the maximum forces required for analysis. These forces were also used to develop maximum tensile stresses for the rivets in the floor beams. After examining the results, the following conclusions were drawn. Axial load was predicted to be a source of higher failure frequency within TT bridges versus TPG bridges. Lower chord deformation in the TT bridge caused elongation of the floor system that, in turn, produced axial loads in the bridge members. The TPG bridge members, however, carried no axial load. Shear force was not predicted to be a contributing factor for increased connection failure rates in the TT bridges as compared to the TPG bridges, but bending moment was. This result, however, was sensitive to the degree of fixity in the stringer to floor beam connection.

Evans, Leslie Virginia

1999-01-01T23:59:59.000Z

239

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort was made to locate and retain the services of a suitable vessel and submersibles or Remotely Operated Vehicles (ROVs) following the storms and the loss of the contracted vessel, the M/V Ocean Quest and its two submersibles, but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

J. Robert Woolsey; Tom McGee; Carol Lutken; Elizabeth Stidham

2006-06-01T23:59:59.000Z

240

DIY FLOATING FLOOR CHECKLIST The information below is general in nature and will only give you a basic guide to the process involved.  

E-Print Network (OSTI)

DIY FLOATING FLOOR CHECKLIST The information below is general in nature and will only give you Takeextracarewhenusingpowertools Formoredetailedtipshavealookatour: · General safety tips http://news.domain.com.au/domain/ diy/diy

Peters, Richard

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Walking on daylight : the application of translucent floor systems as a means of achieving natural daylighting in mid and low rise architecture  

E-Print Network (OSTI)

This thesis is concerned with the introduction of quality daylight to buildings by means of translucency in the horizontal planes or floors within the building. Since people began to build, the concept of translucency in ...

Widder, James

1985-01-01T23:59:59.000Z

242

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

Science Conference Proceedings (OSTI)

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has already succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. As funding for this project, scheduled to commence December 1, 2002, had only been in place for less than half of the reporting period, project progress has been less than for other reporting periods. Nevertheless, significant progress has been made and several cruises are planned for the summer/fall of 2003 to test equipment, techniques and compatibility of systems. En route to reaching the primary goal of the Consortium, the establishment of a monitoring station on the sea floor, the following achievements have been made: (1) Progress on the vertical line array (VLA) of sensors: Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, Cabling upgrade to allow installation of positioning sensors, Incorporation of capability to map the bottom location of the VLA, Improvements in timing issues for data recording. (2) Sea Floor Probe: The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed; The probe has been modified to penetrate the Systems for Monitoring Gas Hydrates: Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate; these measurements will be used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station; A scattering system and bubble-producing device, being assembled at USM, will be tested in the next two months, and the results compared to a physical scattering model. (5) Mid-Infrared Sensor for Continuous Methane Monitoring: Progress has been made toward minimizing system maintenance through increased capacity and operational longevity, Miniaturization of many components of the sensor systems has been completed, A software package has been designed especially for the MIR sensor data evaluation, Custom electronics have been developed that reduce power consumption and, therefore, increase the length of time the system can remain operational. (6) Seismo-acoustic characterization of sea floor properties and processes at the hydrate monitoring station. (7) Adaptation of the acoustic-logging device, developed as part of the European Union-funded research project, Sub-Gate, for monitoring temporal variations in seabe

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2004-03-01T23:59:59.000Z

243

Plancher solaire direct mixte \\`a double r\\'eseau en habitat bioclimatique - Conception et bilan thermique r\\'eel. Double direct solar floor heating in boclimatic habitation - Design and real energetical balance  

E-Print Network (OSTI)

This study presents a new direct solar floor heating technique with double heating network wich allows simultaneous use of solar and supply energy. Its main purpose is to store and to diffuse the whole available solar energy while regulating supply energy by physical means without using computer controlled technology. This solar system has been tested in real user conditions inside a bioclimatic house to study the interaction of non-inertial and passive walls on the solar productivity. Daily, monthly and annual energy balances were drawn up over three years and completed by real-time measurements of several physical on-site parameters. As a result the expected properties of this technique were improved. The use of per-hour solar productivity, saved primary energy and corrected solar covering ratio is recommended to analyze the performances of this plant and to allow more refined comparisons with other solar systems

De Larochelambert, Thierry

2009-01-01T23:59:59.000Z

244

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Shuttle Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on AddThis.com... Oct. 13, 2012 Propane Buses Shuttle Visitors in Maine W atch how travelers in Bar Harbor, Maine, rely on propane-powered shuttle buses. For information about this project, contact Maine Clean Communities.

245

Maine's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Maine's 1st congressional district: Energy Resources Maine's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Maine. Contents 1 US Recovery Act Smart Grid Projects in Maine's 1st congressional district 2 Registered Energy Companies in Maine's 1st congressional district 3 Registered Financial Organizations in Maine's 1st congressional district 4 Utility Companies in Maine's 1st congressional district US Recovery Act Smart Grid Projects in Maine's 1st congressional district Central Maine Power Company Smart Grid Project Registered Energy Companies in Maine's 1st congressional district Ascendant Energy Company Inc Criterium Engineers International WoodFuels LLC

246

Alternative Fuels Data Center: Maine Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Laws and Maine Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Maine. Your Clean Cities coordinator at

247

Alternative Fuels Data Center: Maine Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Points of Maine Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Maine Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Maine Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Maine Points of Contact on Google Bookmark Alternative Fuels Data Center: Maine Points of Contact on Delicious Rank Alternative Fuels Data Center: Maine Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Maine Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Points of Contact The following people or agencies can help you find more information about Maine's clean transportation laws, incentives, and funding opportunities.

248

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

Science Conference Proceedings (OSTI)

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Noteworthy achievements one year into the extended life of this cooperative agreement include: (1) Progress on the vertical line array (VLA) of sensors: (1a) Repair attempts of the VLA cable damaged in the October >1000m water depth deployment failed; a new design has been tested successfully. (1b) The acoustic modem damaged in the October deployment was repaired successfully. (1c) Additional acoustic modems with greater depth rating and the appropriate surface communications units have been purchased. (1d) The VLA computer system is being modified for real time communications to the surface vessel using radio telemetry and fiber optic cable. (1e) Positioning sensors--including compass and tilt sensors--were completed and tested. (1f) One of the VLAs has been redesigned to collect near sea floor geochemical data. (2) Progress on the Sea Floor Probe: (2a) With the Consortium's decision to divorce its activities from those of the Joint Industries Program (JIP), due to the JIP's selection of a site in 1300m of water, the Sea Floor Probe (SFP) system was revived as a means to emplace arrays in the shallow subsurface until arrangements can be made for boreholes at >1000m water depth. (2b) The SFP penetrometer has been designed and construction begun. (2c) The SFP geophysical and pore-fluid probes have been designed. (3) Progress on the Acoustic Systems for Monitoring Gas Hydrates: (3a) Video recordings of bubbles emitted from a seep in Mississippi Canyon have been analyzed for effects of currents and temperature changes. (3b) Several acoustic monitoring system concepts have been evaluated for their appropriateness to MC118, i.e., on the deep sea floor. (3c) A mock-up system was built but was rejected as too impractical for deployment on the sea floor. (4) Progress on the Electromagnetic Bubble Detector and Counter: (4a) Laboratory tests were performed using bubbles of different sizes in waters of different salinities to test the sensitivity of the. Differences were detected satisfactorily. (4b) The system was field tested, first at the dock and then at the shallow water test site at Cape Lookout Bight where methane bubbles from the sea floor, naturally, in 10m water depth. The system successfully detected peaks in bubbling as spike decreases in conductivity. (5) Progress on the Mid-Infrared Sensor for Continuous Methane Monitoring: (5a) Modeling and design of an optics platform complementary to the constructed electronics platform for successful incorporation into ''sphereIR'' continues. AutoCAD design and manual construction of mounting pieces for major optical components have been completed. (5b) Initial design concepts for IR-ATR sensor probe geometries have been established and evaluated. Initial evaluations of a horizontal ATR (HATR) sensing probe with fiber optic guiding light have been performed and validate the design concept as a potentially viable deep sea sensing pr

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2005-11-01T23:59:59.000Z

249

Floor Sweeper-Scrubbers: Demonstration of Advanced Lead-Acid Batteries and High-Power Charging in Commercial Warehouse Operations  

Science Conference Proceedings (OSTI)

Electric walk-behind and riding floor scrubbers are in widespread and growing use in the commercial and industrial building sectors. This demonstration indicates that the weight, bulk, and battery capacity of existing equipment could be significantly reduced in equipment used for certain "spot-cleaning" and other limited use duty-cycles. Further, results show that for sealed lead-acid batteries, recharge rates on the same order as discharge rates are sufficient for extending peak daily run-time to 200 pe...

2001-07-11T23:59:59.000Z

250

Maine Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Recovery Act State Memo Maine Recovery Act State Memo Maine Recovery Act State Memo Maine has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Maine are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind. Through these investments, Maine's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Maine to play an important role in the new energy economy of the future. Maine Recovery Act State Memo More Documents & Publications Slide 1 District of Columbia Recovery Act State Memo

251

Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Exemptions The list below contains summaries of all Maine laws and incentives related

252

Alternative Fuels Data Center: Maine Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for EVs The list below contains summaries of all Maine laws and incentives related to EVs. State Incentives

253

Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Biodiesel The list below contains summaries of all Maine laws and incentives related

254

Consolidated Edison Sol Inc (Maine) | Open Energy Information  

Open Energy Info (EERE)

Consolidated Edison Sol Inc (Maine) Jump to: navigation, search Name Consolidated Edison Sol Inc Place Maine Utility Id 4191 References EIA Form EIA-861 Final Data File for 2010 -...

255

Hess Retail Natural Gas and Elec. Acctg. (Maine) | Open Energy...  

Open Energy Info (EERE)

Maine) Jump to: navigation, search Name Hess Retail Natural Gas and Elec. Acctg. Place Maine Utility Id 22509 References EIA Form EIA-861 Final Data File for 2010 - File220101...

256

Alternative Fuels Data Center: Maine Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Other The list below contains summaries of all Maine laws and incentives related

257

Alternative Fuels Data Center: Maine Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives Listed below are the summaries of all current Maine laws, incentives, regulations, funding opportunities, and other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. You

258

Alternative Fuels Data Center: Maine Laws and Incentives for Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants to someone by E-mail Grants to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Grants The list below contains summaries of all Maine laws and incentives related

259

Alternative Fuels Data Center: Maine Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Other The list below contains summaries of all Maine laws and incentives related

260

Alternative Fuels Data Center: Maine Laws and Incentives for NEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NEVs to someone by E-mail NEVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for NEVs The list below contains summaries of all Maine laws and incentives related to NEVs.

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alternative Fuels Data Center: Maine Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Other The list below contains summaries of all Maine laws and incentives related

262

Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Ethanol The list below contains summaries of all Maine laws and incentives related

263

Uniform System of Accounts for Gas Utilities (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

This rule establishes a uniform system of accounts and annual report filing requirements for natural gas utilities operating in Maine.

264

Efficiency Maine Multifamily Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Multifamily Efficiency Program Efficiency Maine Multifamily Efficiency Program Efficiency Maine Multifamily Efficiency Program < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Maine Program Type State Rebate Program Rebate Amount Upon approval of Energy Reduction Plan: $100 prescriptive path per apartment unit; $200 modeling path per apartment unit Upon approval of installations: $1400 all paths or 50% of installed cost (whichever is less) Efficiency Maine's Multifamily Efficiency Program offers incentives to multifamily residency building owners for improving energy efficiency. Residencies must have 5 to 20 apartment units to qualify for this rebate.

265

Natural Resources Protection Act (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protection Act (Maine) Protection Act (Maine) Natural Resources Protection Act (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection Maine's Department of Environmental Protection requires permits for most

266

Residuals, Sludge, and Composting (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The Maine Department of Environmental Protection's Residuals, Sludge, and Composting program regulates the land application and post-processing of organic wastes, including sewage sludge, septage, food waste, and wood

267

Nuclear Power Generating Facilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Radiation Control Program The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in Maine. The Legislature

268

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The primary objective of the group has been to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently achieved reality via the National Institute for Undersea Science and Technology's (NIUST) solicitation for proposals for research to be conducted at the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, have had to be postponed and the use of the vessel M/V Ocean Quest and its two manned submersibles sacrificed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort is being made to locate and retain the services of a replacement vessel and submersibles or Remotely Operated Vehicles (ROVs) but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in the previous report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs.

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

2006-05-18T23:59:59.000Z

269

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The CMRET has conducted several research cruises during this reporting period: one in April, one in June, one in September. April's effort was dedicated to surveying the mound at MC118 with the Surface-Source-Deep-Receiver (SSDR) seismic surveying system. This survey was completed in June and water column and bottom samples were collected via box coring. A microbial filtering system developed by Consortium participants at the University of Georgia was also deployed, run for {approx}12 hours and retrieved. The September cruise, designed to deploy, test, and in some cases recover, geochemical and microbial instruments and experiments took place aboard Harbor Branch's Seward Johnson and employed the Johnson SeaLink manned submersible. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in a previously submitted report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs. In addition, Barrodale Computing Services Ltd. (BCS) completed their work; their final report is the bulk of the semiannual report that precedes (abstract truncated)

Carol Lutken

2006-09-30T23:59:59.000Z

270

Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy Efficiency Programs (Maine) Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy Efficiency Programs (Maine) < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info State Maine Program Type Utility Rebate Program Rebate Amount Furnaces; $1000 Condensing Boilers: $1500 - $4500 Non-Condensing Boilers: $750-$3,000 Steam Boiler: $800 or $1/MBtuh Infrared Unit Heaters: $500 Natural Gas Warm-Air Unit Heaters: $600 Custom/ECM: Contact Unitil Cooking Equipment: $600-$2000 Provider Rebate Program Efficiency Maine offers natural gas efficiency rebates to Unitil customers.

271

Alternative Fuels Data Center: Maine Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Driving / Idling

272

Efficiency Maine Trust - Renewable Resource Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Trust - Renewable Resource Fund Efficiency Maine Trust - Renewable Resource Fund Efficiency Maine Trust - Renewable Resource Fund < Back Eligibility Institutional Nonprofit Residential Rural Electric Cooperative Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Maine Program Type Public Benefits Fund Maine's public benefits fund for renewable energy was established as part of the state's electric-industry restructuring legislation, enacted in May 1997. The law directed the Maine Public Utilities Commission (PUC) to develop a voluntary program allowing customers to contribute to a fund that supports renewable-energy projects. This fund was originally known as the Renewable Resource Fund (now it is part of Efficiency Maine Trust).

273

Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Vehicle Owner/Driver

274

Alternative Fuels Data Center: Maine Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

275

Small Power Production and Cogeneration (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Power Production and Cogeneration (Maine) Small Power Production and Cogeneration (Maine) Small Power Production and Cogeneration (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Generating Facility Rate-Making Provider Maine Public Utilities Commission Maine's Small Power Production and Cogeneration statute says that any small

276

Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

277

Energy Secretary Hails University of Maine's Wind Research | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hails University of Maine's Wind Research Hails University of Maine's Wind Research Energy Secretary Hails University of Maine's Wind Research June 16, 2010 - 10:51am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Energy Secretary Steven Chu praised the University of Maine on Monday, calling the school's offshore wind technology program "truly impressive." Secretary Chu visited the university's Orono campus to learn more about its 10-year plan to design and deploy deepwater wind technology, an effort that could pave the way for the first floating commercial wind farm in the United States. "It's part of the leadership Maine has shown in going toward a sustainable economy," Chu told the university's newspaper. Invited by Maine Sen. Susan Collins, Chu was given a tour of the

278

Alternative Fuels Data Center: Maine Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

279

Alternative Fuels Data Center: Maine Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com... More in this section... Federal State

280

Site Location of Development Act (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Location of Development Act (Maine) Location of Development Act (Maine) Site Location of Development Act (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The Site Location of Development Act regulates the locations chosen for

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

282

NON-SYMMETRICAL MAIN COOLANT SYSTEM ANALYSIS (NOMACS). PART I  

SciTech Connect

Non-symmetrical main coolant system analysis is an IBM-704 digital program for calculating the reactor generation, primary coolant temperature distribution, and steam temperature, pressure, and flow to the main and auxiliary turbines during a transient period. The program represents a system composed of a two-pass high pressure water cooled reactor ivith tivo main primary coolant loops each having its own steam generator, separator, and drum. The generated steam from each loop is piped into a common header which is then piped to the main and auxiliary turbines and other steam loads in the system. The mathematical representation for solution is described. (M.H.R.)

Larsen, R.C.

1957-09-11T23:59:59.000Z

283

PP-300 Maine Public Service Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

maintain electric transmission facilities at the U.S-Canada border. PP-300 Maine Public Service Company More Documents & Publications Application to export electric energy OE...

284

Safety of Gas Transmission and Distribution Systems (Maine) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission These regulations describe requirements for the participation of natural gas utilities in the Underground Utility Damage Prevention Program,

285

Mandatory Shoreland Zoning Act (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Shoreland Zoning Act (Maine) Mandatory Shoreland Zoning Act (Maine) Mandatory Shoreland Zoning Act (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The Mandatory Shoreline Zoning Act functions as a directive for

286

Omnibus Energy Bill of 2013 (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Omnibus Energy Bill of 2013 (Maine) Omnibus Energy Bill of 2013 (Maine) Omnibus Energy Bill of 2013 (Maine) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Water Wind Program Info State Maine Program Type Climate Policies Generating Facility Rate-Making Green Power Purchasing Interconnection Line Extension Analysis Loan Program Public Benefits Fund Renewables Portfolio Standards and Goals

287

Maine - Compare - U.S. Energy Information Administration (EIA...  

U.S. Energy Information Administration (EIA) Indexed Site

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

288

Maine - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... Maine made its renewable capacity goal a mandatory target in 2007. Last updated in October 2009. Thank You.

289

Price of Maine Natural Gas Exports (Dollars per Thousand Cubic...  

Annual Energy Outlook 2012 (EIA)

Natural Gas Exports (Dollars per Thousand Cubic Feet) (Dollars per Thousand Cubic Feet) Price of Maine Natural Gas Exports (Dollars per Thousand Cubic Feet) (Dollars per Thousand...

290

,"Maine Natural Gas Industrial Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

291

Alternative Fuels Data Center: Maine Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Climate Change Energy Initiatives to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Climate Change Energy Initiatives on Facebook Tweet...

292

EA-1792-S1: University of Maine's Deepwater Offshore Floating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site EA-1792-S1:...

293

Better Buildings: Financing and Incentives: Spotlight on Maine...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Efficiency Maine program participants live in oil-heated homes. Average annual home heating oil consumption in the state is nearly 800 gallons, but early participants...

294

Sampling and analysis plan for sludge located on the floor and in the pits of the 105-K basins  

Science Conference Proceedings (OSTI)

This Sampling and Analysis Plan (SAP) provides direction for the sampling of the sludge found on the floor and in the remote pits of the 105-K Basins to provide: (1) basic data for the sludges that have not been characterized to-date and (2) representative Sludge material for process tests to be made by the SNF Project/K Basins sludge treatment process subproject. The sampling equipment developed will remove representative samples of the radioactive sludge from underwater at the K Basins, depositing them in shielded containers for transport to the Hanford Site laboratories. Included in the present document is the basic background logic for selection of the samples to meet the requirements established in the Data Quality Objectives (DQO), HNF-2033, for this sampling activity. The present document also includes the laboratory analyses, methods, procedures, and reporting that will be required to meet the DQO.

BAKER, R.B.

1998-11-20T23:59:59.000Z

295

Maine DOE/EPSCoR: 5-year planning grant  

SciTech Connect

Maine EPSCoR has developed a five year plan to further improve Maine`s research and education capacity in the field of Energy. The initiatives of this Energy Education and Research Plan are integrated with other major science policy initiatives in the state, specifically the state`s Science and Technology Strategic Plan (1992), the NSF Statewide Systemic Initiative (1992), and the Report of the Maine Commission on Comprehensive Energy Planning. The plan was developed with the support of US Department of Energy and State of Maine funds. The planning process was led by the Maine DOE EPSCoR planning committee of Maine EPSCoR. Researchers, educators, and business people assisted the committee in the development of the plan. This plan draws from priorities established by focus groups, the strengths and weaknesses revealed by the resource assessment, and the suggestions offered in the solicited research and education briefs. The plan outlines strategies for the improvement of energy education, communication networks, support of individual research, and the formation of collaborative research groups in targeted areas. Five energy-related areas have been targeted for possible development of collaborative research groups: Energy Technology Research, Energy and the Environment, the Gulf of Maine and Its Watershed, the Human Genome, and Renewable Energy. The targeted areas are not boundaries limiting the extent of collaborations to be pursued but represent research themes through which the state`s resources can be combined and improved.

Hawk, B.

1992-09-28T23:59:59.000Z

296

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 6750 of 28,905 results. 41 - 6750 of 28,905 results. Download CX-005867: Categorical Exclusion Determination 735-A, D-wing, Main Floor ? ARGUS Halon Suppression System Replacement CX(s) Applied: B2.5 Date: 03/09/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office http://energy.gov/nepa/downloads/cx-005867-categorical-exclusion-determination Download CX-005868: Categorical Exclusion Determination Fire Department Flow Test of N-Area Hydrants CX(s) Applied: B1.3 Date: 03/09/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office http://energy.gov/nepa/downloads/cx-005868-categorical-exclusion-determination Download CX-002208: Categorical Exclusion Determination Monitor Instruments Mass Spectrometer at Aiken County Technology Laboratory

297

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 - 9910 of 26,764 results. 01 - 9910 of 26,764 results. Download CX-005867: Categorical Exclusion Determination 735-A, D-wing, Main Floor ? ARGUS Halon Suppression System Replacement CX(s) Applied: B2.5 Date: 03/09/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office http://energy.gov/nepa/downloads/cx-005867-categorical-exclusion-determination Download CX-005868: Categorical Exclusion Determination Fire Department Flow Test of N-Area Hydrants CX(s) Applied: B1.3 Date: 03/09/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office http://energy.gov/nepa/downloads/cx-005868-categorical-exclusion-determination Download CX-005869: Categorical Exclusion Determination Waste Analysis Characterization Methods in the Analytical Development Wet

298

Categorical Exclusion Determinations: South Carolina | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 14, 2013 May 14, 2013 CX-010493: Categorical Exclusion Determination Determining Distribution Coefficients by Surface-Enhanced Raman Spectroscopy (SERS) CX(s) Applied: B3.6 Date: 05/14/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office May 14, 2013 CX-010492: Categorical Exclusion Determination Permeation Testing Metals, Ceramics, and Polymers CX(s) Applied: B3.6 Date: 05/14/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office May 9, 2013 CX-010498: Categorical Exclusion Determination Crush and Disperse Specimen Preparation Technique CX(s) Applied: B3.6 Date: 05/09/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office May 7, 2013 CX-010499: Categorical Exclusion Determination 735-A, D-Wing, Main Floor - ARGUS Halon Suppression System Replacement

299

EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1792: University of Maine's Deepwater Offshore Floating Wind EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine Summary This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals of DOE's Office of Energy Efficiency and Renewable Energy Wind and Water Power Program to improve performance, lower costs, and accelerate deployment of innovative wind power technologies. Development of offshore wind energy technologies would help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and

300

Central Maine Power Company Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Maine Power Company Smart Grid Project Maine Power Company Smart Grid Project Jump to: navigation, search Project Lead Central Maine Power Company Country United States Headquarters Location Augusta, Maine Recovery Act Funding $95858307 Total Project Value $191716614 Coverage Area Coverage Map: Central Maine Power Company Smart Grid Project Coordinates 44.3106241°, -69.7794897° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Expedited Permitting of Grid-Scale Wind Energy Development (Maine) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expedited Permitting of Grid-Scale Wind Energy Development (Maine) Expedited Permitting of Grid-Scale Wind Energy Development (Maine) Expedited Permitting of Grid-Scale Wind Energy Development (Maine) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Maine's Expedited Permitting of Grid-Scale Wind Energy Development statue provides an expedited permitting pathway for proposed wind developments in

302

Qualifying RPS State Export Markets (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine) Maine) Qualifying RPS State Export Markets (Maine) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Maine as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

303

Major Business Expansion Bond Program (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expansion Bond Program (Maine) Expansion Bond Program (Maine) Major Business Expansion Bond Program (Maine) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Bond Program Provider Finance Authority of Maine The Major Business Expansion Bond Program provides long-term, credit-enhanced financing up to $25,000,000 at taxable bond rates for businesses creating or retaining at least 50 jobs; up to $10,000,000 is available for businesses which expand their manufacturing services. The bond proceeds may be used to acquire real estate, machinery, equipment, or rehabilitate or expand an existing facility. The interest rate is determined by market forces at the time of the bond sale

304

Air Permits, Licenses, Certifications (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Permits, Licenses, Certifications (Maine) Air Permits, Licenses, Certifications (Maine) Air Permits, Licenses, Certifications (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection This program regulates and limits air emissions from a variety of sources within Maine through a statewide permitting program. Separate regulations exist for limiting emissions of nitrogen oxides (NOx), sulfur dioxide

305

Efficiency Maine Residential Lighting Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Program Lighting Program Efficiency Maine Residential Lighting Program < Back Eligibility Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Maine's System Benefit Charge, Regional Greenhouse Gas Initiative, Forward Capacity Market and Maine Power Reliability Program State Maine Program Type State Rebate Program Rebate Amount Typically $1.25/bulb Efficiency Maine's Residential Lighting Program works directly with retailers and manufacturers to encourage residential customers to purchase energy-efficient lighting. Rebate amounts average $1.25/bulb and are available at the point of sale at participating retailers. Participating retailers will deduct the rebate amount at the cash register. (See the program web site for a list of participating retailers and additional

306

Support of Gulf of Mexico Hydrate Research Consortium: Activities of Support Establishment of a Sea Floor Monitoring Station Project  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research that shared the need for a way to conduct investigations of gas hydrates and their stability zone in the Gulf of Mexico in situ on a more-or-less continuous basis. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (SFO) on the sea floor in the northern Gulf of Mexico, in an area where gas hydrates are known to be present at, or just below, the sea floor and to discover the configuration and composition of the subsurface pathways or 'plumbing' through which fluids migrate into and out of the hydrate stability zone (HSZ) to the sediment-water interface. Monitoring changes in this zone and linking them to coincident and perhaps consequent events at the seafloor and within the water column is the eventual goal of the Consortium. This mission includes investigations of the physical, chemical and biological components of the gas hydrate stability zone - the sea-floor/sediment-water interface, the near-sea-floor water column, and the shallow subsurface sediments. The eventual goal is to monitor changes in the hydrate stability zone over time. Establishment of the Consortium succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among those involved in gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative methods and construct necessary instrumentation. Following extensive investigation into candidate sites, Mississippi Canyon 118 (MC118) was chosen by consensus of the Consortium at their fall, 2004, meeting as the site most likely to satisfy all criteria established by the group. Much of the preliminary work preceding the establishment of the site - sensor development and testing, geophysical surveys, and laboratory studies - has been reported in agency documents including the Final Technical Report to DOE covering Cooperative Agreement DEFC26-00NT40920 and Semiannual Progress Reports for this award, DE-FC26-02NT41628. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in MC118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. SFO completion, now anticipated for 2009-10, has, therefore, been delayed. Although delays caused scheduling and deployment difficulties, many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). During the life of this Cooperative Agreement (CA), the CMRET conducted many cruises. Early in the program these were executed primarily to survey potential sites and test sensors and equipment being developed for the SFO. When MC118 was established as the observatory site, subsequent cruises focused on this location. Beginning in 2005 and continuing to the present, 13 research cruises to MC118 have been conducted by the Consortium. During September, 2006, the Consortium was able to secure 8 days aboard the R/V Seward Johnson with submersible Johnson SeaLink, a critical chapter in the life of the Observatory project as important documentation, tests, recoveries and deployments were accomplished during this trip (log appended). Consortium members have participated materially in a number of additional cruises including several of the NIUST autonomous underwater vehicle (AUV), Ea

J. Robert Woolsey; Thomas McGee; Carol Lutken

2008-05-31T23:59:59.000Z

307

Improved control strategies correct main fractionator operating problems  

SciTech Connect

Heat and mass balance control of refinery main fractionators can be improved through simple process design changes. Metering flows of internal reflux streams improves unit operability and controllability. Modifying the process system design to measure small internal reflux flow is another inexpensive way to control main fractionators. Three case histories show how simple design changes in refinery main fractionators can solve advanced control problems, thus changing product yields and improving refinery economics. The three cases are a delayed coker, a crude unit, and a FCC unit.

Golden, S.W. [Process Consulting Services Inc., Dallas, TX (United States)

1995-08-21T23:59:59.000Z

308

Sale of Water Resource Land (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sale of Water Resource Land (Maine) Sale of Water Resource Land (Maine) Sale of Water Resource Land (Maine) < Back Eligibility Municipal/Public Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting This rule requires an eight month advance notice period whenever a consumer-owned water utility intends to transfer water resource land, defined as any land or real property owned by a water utility for the purposes of providing a source of supply, storing water or protecting sources of supply or water storage, including reservoirs, lakes, ponds, rivers or streams, wetlands and watershed areas. The rule also provides an assignable right of first refusal to the municipality or municipalities

309

Maine Company Growing with Weatherization Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Company Growing with Weatherization Work Maine Company Growing with Weatherization Work Maine Company Growing with Weatherization Work January 5, 2010 - 2:15pm Addthis BIOSAFE Environmental Services Inc. touts itself as a leader in lead and asbestos removal and has worked for more than a decade making homes hazard-free. So it came as a surprise to Mark Coleman, president and founder of BIOSAFE, when in 2003 he received an interesting proposal from Maine's regional community action programs. "They realized we had talent in . . . lead abatement and home repair and approached us about expanding into weatherization," he said. Mark welcomed the chance to collaborate with the community action groups to grow the business and offer employment to out-of-work individuals, he says. "We saw an opportunity to create job growth through federal funding and

310

Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Commercial Heating & Cooling Heating & Cooling Solar Water Heating Maximum Rebate $15,000 Program Info Funding Source American Recovery and Reinvestment Act (ARRA) Start Date 07/27/2011 State Maine Program Type Local Loan Program Rebate Amount Up to $15,000 Provider The Goggin Company Homeowners in the towns of Eliot, Kittery, North Berwick, South Berwick, Ogunquit, and York (located in Southern York County) may be eligible a loan of up to $15,000 to make energy efficiency improvements in their homes.

311

Small Enterprise Growth Fund (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Small Enterprise Growth Fund (Maine) Small Enterprise Growth Fund (Maine) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Equity Investment Provider Small Enterprise Growth Fund The Small Enterprise Growth Fund is a professionally-managed venture capital fund that invests in Maine companies which demonstrate high potential for growth and public benefit. The fund has received $13 million in capital contributions from the state and operates as a revolving fund. Companies in nearly any industry are eligible for funding, including seed and early stage companies. On average, $100,000 to $300,000 is invested per

312

Maine Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Maine Regions Maine Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Maine Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Maine Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

313

Pollution Control: Storm Water Management (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pollution Control: Storm Water Management (Maine) Pollution Control: Storm Water Management (Maine) Pollution Control: Storm Water Management (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection A person may not construct, or cause to be constructed, a project that

314

Maine biofuels project saves livelihood of town | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine biofuels project saves livelihood of town Maine biofuels project saves livelihood of town Maine biofuels project saves livelihood of town January 7, 2010 - 2:21pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Since 1860, the mill in Old Town, Maine, has been an economic mainstay of this small town. Over time, it's been a sawmill, a soda mill, a hardwood pulp mill and a paper mill. Through all these incarnations, it has grown and evolved, and it's provided for the workers of Old Town. The 8,000 residents have always looked to the mill as a source of pride - and income. When the mill faltered and closed in 2006, the town's future looked grim. But opportunities in the clean energy economy have given the employees of the mill a new life. "It was a typical mill town depending on a single company for its tax

315

Maine Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Maine Regions Maine Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Maine Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Maine Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

316

Mitigation Action Implementation Network (MAIN) | Open Energy Information  

Open Energy Info (EERE)

Mitigation Action Implementation Network (MAIN) Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Mitigation Action Implementation Network (MAIN) Year founded 2011 Website http://www.ccap.org/index.php? References MAIN[1] LinkedIn Connections "CCAP is working in collaboration with the World Bank Institute (WBI) and INCAE Business School to support the design and implementation of Nationally Appropriate Mitigation Actions (NAMAs) and Low-Carbon Development (LCD) strategies in developing countries through regionally based dialogues, web-based exchanges, and practitioner networks. Recent UNFCCC negotiations have made it clear that climate protection will depend on actions on the ground in both developing and developed countries. In recent years, developing countries have shown a significant commitment to

317

Maine Natural Gas LNG Storage Withdrawals (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Withdrawals (Million Cubic Feet) Maine Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's...

318

Maine Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Net Withdrawals (Million Cubic Feet) Maine Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

319

Maine Natural Gas LNG Storage Additions (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Additions (Million Cubic Feet) Maine Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0...

320

Event:MAIN Latin America Dialogue | Open Energy Information  

Open Energy Info (EERE)

networks. Event Details Name MAIN Latin America Dialogue Date 20120401 Location Peru Organizer CCAP Tags CLEAN, LEDS, Training Ret LikeLike UnlikeLike You like this.Sign Up...

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Maine Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption (Million Cubic Feet) Maine Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

322

Maine Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

323

World Energy Projection System Plus Model Documentation: Main Model  

Reports and Publications (EIA)

This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS+) Main Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

Information Center

2011-01-20T23:59:59.000Z

324

Maine - State Energy Profile Overview - U.S. Energy Information...  

U.S. Energy Information Administration (EIA) Indexed Site

Maine - State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama...

325

Maine Natural Gas Imports Price (Dollars per Thousand Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

326

Maine Natural Gas Imports (No intransit Receipts) (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Imports (No intransit Receipts) (Million Cubic Feet) Maine Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

327

,"Maine U.S. Natural Gas Imports & Exports"  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Natural Gas Imports & Exports" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine...

328

An internal seal for repairing natural gas mains  

E-Print Network (OSTI)

Joint leakage from low pressure natural gas distribution mains (typical value: 0.25 ft[superscript 3] at 6 inwg gas pressure) is a persistent source of maintenance problems for utitlites. External encapsulation is the usual ...

Cooper, Samuel A.

1984-01-01T23:59:59.000Z

329

Pollution Control: Erosion and Sedimentation Control (Maine) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Erosion and Sedimentation Control (Maine) Erosion and Sedimentation Control (Maine) Pollution Control: Erosion and Sedimentation Control (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Proection A person who conducts, or causes to be conducted, an activity that involves

330

Constellation NewEnergy, Inc (Maine) | Open Energy Information  

Open Energy Info (EERE)

Maine) Maine) Jump to: navigation, search Name Constellation NewEnergy, Inc Place Maine Utility Id 13374 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0954/kWh Industrial: $0.0888/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Constellation_NewEnergy,_Inc_(Maine)&oldid=412492" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here Related changes Special pages Printable version

331

Nuclear Maintenance Applications Center: Main Feedwater Pump Maintenance Guide  

Science Conference Proceedings (OSTI)

Loss of a main feedwater pump can have severe economic impact on a nuclear utility. The majority of forced outages or power reductions are believed to be attributed to nondesign issues. Case leaks, excessive vibration, seal leaks, and lubrication system problems are shown to significantly impact feedwater pump availability. Improved maintenance practices and increased attention to these issues are critical for realizing longevity of main feedwater ...

2012-11-14T23:59:59.000Z

332

Fuel gas main replacement at Acme Steel's coke plant  

SciTech Connect

ACME Steel's Chicago coke plant consists of two 4-meter, 50-oven Wilputte underjet coke-oven batteries. These batteries were constructed in 1956--1957. The use of blast furnace gas was discontinued in the late 1960's. In 1977--1978, the oven walls in both batteries were reconstructed. Reconstruction of the underfire system was limited to rebuilding the coke-oven gas reversing cocks and meter in orifices. By the early 1980's, the 24-in. diameter underfire fuel gas mains of both batteries developed leaks at the Dresser expansion joints. These leaks were a result of pipe loss due to corrosion. Leaks also developed along the bottoms and sides of both mains. A method is described that permitted pushing temperatures to be maintained during replacement of underfire fuel gas mains. Each of Acme's two, 50-oven, 4-metric Wilputte coke-oven, gas-fired batteries were heated by converting 10-in. diameter decarbonizing air mains into temporary fuel gas mains. Replacement was made one battery at a time, with the temporary 10-in. mains in service for five to eight weeks.

Trevino, O. (Acme Steel Co., Chicago, IL (United States). Chicago Coke Plant)

1994-09-01T23:59:59.000Z

333

Confirmatory radiological survey for the 190-C Main Pumphouse Facility decommissioning at the Hanford Site, Richland, Washington  

Science Conference Proceedings (OSTI)

An independent assessment of remedial action activities at the 190-C Main Pumphouse Facility at the Hanford Site, Richland, Washington has been accomplished by the Oak Ridge National Laboratory Environmental Assessments Group. The purpose of the assessment was to confirm the site`s compliance with DOE applicable guidelines and provide independent measurements of the activity levels in the 190-C trenches and 105-C process water tunnels. The assessment included reviews of the Decontamination and Decommissioning Plan and data provided in the pre- and post-remedial action surveys. An on-site independent verification survey of the facility was conducted during the period of November 19--21, 1996. The independent verification survey included beta and gamma scans, smears for removable contamination, and direct measurements for beta-gamma activity in the trenches and tunnels. The same measurements and scans, with the addition of alpha measurements, were performed on the floor in the filter repair confinement area. The facility was also spot-checked for direct alpha and beta-gamma activity.

Coleman, R.L. [Oak Ridge National Lab., TN (United States); Forbes, G.H. [Oak Ridge National Lab., Grand Junction, CO (United States). Environmental Technology Section

1997-06-01T23:59:59.000Z

334

Natural Gas Utility Conservation Programs (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Natural Gas Utility Conservation Programs (Maine) Natural Gas Utility Conservation Programs (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Mandatory Utility Green Power Option Provider Public Utilities Commission This Chapter describes how natural gas utilities serving more than 5,000 residential customers must implement natural gas energy conservation programs. The regulations describe

335

Town of Madison, Maine (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Maine (Utility Company) Maine (Utility Company) Jump to: navigation, search Name Madison Town of Place Maine Utility Id 11477 Utility Location Yes Ownership M NERC Location NPCC Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ETS (Electric Heat Thermal Storage) Residential Rate)(Up to 50KW) Residential ETS (Electric Thermal Storage) Commercial Rate(less than 50kw) Commercial General Electric Rate General Service Commercial(Up to 50KW) Commercial Average Rates Industrial: $0.1380/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

336

E-print Network : Main View : Deep Federated Search  

Office of Scientific and Technical Information (OSTI)

E-print Network E-print Network Search Powered By Deep Web Technologies New Search Preferences E-print Network E-print Network Skip to main content FAQ * HELP * SITE MAP * CONTACT US Home * About * Advanced Search * Browse by Discipline * Scientific Societies * E-print Alerts * Add E-prints Powered by Deep Web Technologies E-print Network E-print Network Skip to main content FAQ * HELP * SITE MAP * CONTACT US Home * About * Advanced Search * Browse by Discipline * Scientific Societies * E-print Alerts * Add E-prints Main View This view is used for searching all possible sources. Due to the varied configuration and diversity of web pages and databases searched by E-prints, Full Record will search whatever data is searchable at each site. Multiple arXiv sites under one general heading are combined

337

Widget:MainPageGallery | Open Energy Information  

Open Energy Info (EERE)

MainPageGallery MainPageGallery Jump to: navigation, search This widget displays a gallery of images for the main page. Dependencies: /w/skins/openei/js/jquery/jquery-galleryview-1.1/* The Siemens Velero high-speed train High-Speed Rail Florida will develop the first high-speed rail corridor in the U.S., from Tampa to Orlando, eventually connecting to Miami. The Ecobuild America conference Ecobuild America The Ecobuild America conference will feature leading Japanese smart grid companies. Chu announces white house solar roof White House solar roof U.S. Department of Energy Secretary Steven Chu announces plans for solar installation on the White House roof. A view of a resident's smart meter Smart Water Meters The city of Dubuque, Iowa is engaging in a pilot project with I.B.M. to see

338

Maine/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Maine/Wind Resources/Full Version < Maine‎ | Wind Resources Jump to: navigation, search Print PDF Maine Wind Resources MaineMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

339

Property:Main Overseeing Organization | Open Energy Information  

Open Energy Info (EERE)

Main Overseeing Organization Main Overseeing Organization Jump to: navigation, search Pages using the property "Main Overseeing Organization" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + Aquamarine Power + MHK Projects/ADM 3 + Wavebob + MHK Projects/ADM 4 + Wavebob + MHK Projects/ADM 5 + Wavebob + MHK Projects/AW Energy EMEC + AW Energy + MHK Projects/AWS II + AWS Ocean Energy formerly Oceanergia + MHK Projects/Admirality Inlet Tidal Energy Project + Public Utility District No 1 of Snohomish County + MHK Projects/Agucadoura + Pelamis Wave Power formerly Ocean Power Delivery + MHK Projects/Alaska 1 + Hydro Green Energy + MHK Projects/Alaska 13 + Hydro Green Energy + MHK Projects/Alaska 17 + Hydro Green Energy + MHK Projects/Alaska 18 + Hydro Green Energy +

340

Do Main Chain Hydrogen Bonds Create Dominant Electron Transfer Pathways?  

NLE Websites -- All DOE Office Websites (Extended Search)

Main Chain Hydrogen Bonds Create Dominant Electron Transfer Pathways? An Main Chain Hydrogen Bonds Create Dominant Electron Transfer Pathways? An Investigation in Designed Proteins Yongjian Zheng, Martin A. Case, James F. Wishart, and George L. McLendon J. Phys. Chem. B, 107, 7288-7292 (2003). [Find paper at ACS Publications] Abstract: We have investigated the contribution of main chain hydrogen bond (H-bond) pathways to the tunneling matrix elements which control electron transfer (ET) rates across an alpha-helical protein matrix. The paradigm system for these investigations is a metal ion-assembled parallel three-helix bundle protein that contains a ruthenium(II) tris(bipyridyl) electron donor and a ruthenium(III) pentammine electron acceptor separated by a direct metal to metal distance of ca. 19 Å, requiring tunneling through 15 Å of

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

State Traffic Safety Information - Fatal Crashes Involving Speeding : Maine  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving Speeding : Maine (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet

342

Fallon-Main Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Fallon-Main Geothermal Project Fallon-Main Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Fallon-Main Geothermal Project Project Location Information Coordinates 39.425°, -118.70277777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.425,"lon":-118.70277777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Science Conference Proceedings : Main View : Deep Web Business Search  

Office of Scientific and Technical Information (OSTI)

Main View Main View This view is used for searching all possible sources. A SCIENCE Accelerator Resource Additional Information Search: Search Clear All Conference Collections Welcome to the DOE Office of Scientific and Technical Information's (OSTI) Science Conference Proceedings Portal. This distributed portal provides access to science and technology conference proceedings and conference papers from a number of authoritative sites (professional societies and national labs, largely) whose areas of interest in the physical sciences and technology intersect those of the Department of Energy. Proceedings and papers from scientific meetings can be found in these fields, among others: particle physics, nuclear physics, chemistry, petroleum, aeronautics and astronautics, meteorology, engineering, computer science, electric power,

344

Integrated main rail, feed rail, and current collector  

DOE Patents (OSTI)

A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.

Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.

1994-11-08T23:59:59.000Z

345

Integrated main rail, feed rail, and current collector  

DOE Patents (OSTI)

A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.

Petri, Randy J. (Crete, IL); Meek, John (Downers Grove, IL); Bachta, Robert P. (Chicago, IL); Marianowski, Leonard G. (Mount Prospect, IL)

1994-01-01T23:59:59.000Z

346

Mitigation Action Implementation Network (MAIN) Feed | Open Energy  

Open Energy Info (EERE)

Mitigation Action Implementation Network (MAIN) Feed Mitigation Action Implementation Network (MAIN) Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ)

347

West Virginia University -Main Campus Students' Right to Know Report  

E-Print Network (OSTI)

West Virginia University - Main Campus Students' Right to Know Report Four, Five, and Six Year% 52% Male - Black, Non Hispanic 76 76 6 17 19 8% 22% 25% Male - Hispanic 43 43 1 5 13 14 12% 31% 33% Male - White, Non Hispanic 2,204 2,183 14 602 1,043 1,180 28% 48% 54% Male - Race & Ethnicity Unknown

Mohaghegh, Shahab

348

Maine Yankee Decommissioning - Experience Report: Detailed Experiences 1997-2004  

Science Conference Proceedings (OSTI)

Several U.S. nuclear power plants began the decommissioning process in the 1990s. Based on current information, it will be several years before the next group of plant licenses expires, and the plants begin decommissioning. This report provides detailed information on the decommissioning of one power reactor, Maine Yankee, in order to document their experience for future plants.

2005-05-04T23:59:59.000Z

349

Main elements for pig price forecasting A. VIGNE M. RIEU  

E-Print Network (OSTI)

Main elements for pig price forecasting A. VIGNE M. RIEU I.T.P., Service Economie, 34, boulevard de the analysis of the past results. Forecasting consists in modelizing each component of pig price from la Gare, 31500 Toulouse The highly fluctuating variation of pig prices results from several

Recanati, Catherine

350

Life Cycle Management Planning Sourcebooks, Volume 5: Main Generator  

Science Conference Proceedings (OSTI)

EPRI is producing a series of "Life Cycle Management Planning Sourcebooks," each containing a compilation of industry experience and data on aging degradation and historical performance for a specific type of system, structure, or component (SSC). This sourcebook provides information and guidance for implementing cost-effective life cycle management (LCM) planning for main generators.

2003-07-28T23:59:59.000Z

351

Answering the Main Problem : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Answering the main problem: Answering the main problem: Why do we need to stop using gasoline in our vehicles and factories? Answer: Because it is putting too much carbon dioxide into the air. CARBON DEMO Show students a large piece of coal and a cup of raw oil. These natural resources are formed from carbon deposits captured in the earth and compressed over millions of years. Questions: Does anyone know how the carbon got in the earth? (It comes from decaying plants and animals.) Background Information: Coal mines permanently alter the landscape. We do not know how long will it take for the environment to recover after the coal has been mined.This does not consider the CO2 added to our pollution caused by the burning of this coal. What do we do with the carbon when we consume it? (We use the carbon

352

Science Conference Proceedings : Main View : Deep Web Business Search  

Office of Scientific and Technical Information (OSTI)

Main View Main View This view is used for searching all possible sources. Additional Information Search: Title: Additional Information Author: Match: All Any Field(s) Additional Information Date Range: Beginning Date Range Pick Year 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 toEnding Date Range Pick Year 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 Search Clear All Notice to searchers: Due to the varied configuration and diversity of web pages and databases searched by Science Conference Proceedings, Full Record will search whatever data that is searchable at each site. Author and Title queries are only available on AIAA, AIP, ASCE, ASME, ECD,

353

Frye Island, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Frye Island, Maine: Energy Resources Frye Island, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8472979°, -70.5189444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8472979,"lon":-70.5189444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Penobscot Indian Island, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Indian Island, Maine: Energy Resources Indian Island, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1218285°, -68.6290394° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1218285,"lon":-68.6290394,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Falmouth Foreside, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Foreside, Maine: Energy Resources Foreside, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7348031°, -70.2078262° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7348031,"lon":-70.2078262,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

356

Sagadahoc County, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sagadahoc County, Maine: Energy Resources Sagadahoc County, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8171265°, -69.7825531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8171265,"lon":-69.7825531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

South Thomaston, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0514702°, -69.1278199° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0514702,"lon":-69.1278199,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

New Gloucester, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.962853°, -70.2825536° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.962853,"lon":-70.2825536,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Waldo County, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waldo County, Maine: Energy Resources Waldo County, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.5106837°, -69.2077895° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5106837,"lon":-69.2077895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Isle au Haut, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Isle au Haut, Maine: Energy Resources Isle au Haut, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0753601°, -68.6333583° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0753601,"lon":-68.6333583,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Kennebec County, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kennebec County, Maine: Energy Resources Kennebec County, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4499153°, -69.7038278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4499153,"lon":-69.7038278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

362

Chebeague Island, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chebeague Island, Maine: Energy Resources Chebeague Island, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7409154°, -70.1081034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7409154,"lon":-70.1081034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Mount Chase, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.0777595°, -68.4894535° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.0777595,"lon":-68.4894535,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

North Haven, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1281362°, -68.8741989° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1281362,"lon":-68.8741989,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Owls Head, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Owls Head, Maine: Energy Resources Owls Head, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.082303°, -69.0572612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.082303,"lon":-69.0572612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Penobscot County, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Penobscot County, Maine: Energy Resources Penobscot County, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3230777°, -68.5806727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3230777,"lon":-68.5806727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Cumberland Center, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Center, Maine: Energy Resources Center, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7964679°, -70.2589388° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7964679,"lon":-70.2589388,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

South Eliot, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Eliot, Maine: Energy Resources Eliot, Maine: Energy Resources (Redirected from South Eliot, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.1081433°, -70.7775543° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1081433,"lon":-70.7775543,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

369

Oxford County, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4906897°, -70.7840564° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4906897,"lon":-70.7840564,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Little Falls-South Windham, Maine: Energy Resources | Open Energy  

Open Energy Info (EERE)

Falls-South Windham, Maine: Energy Resources Falls-South Windham, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7333197°, -70.4270734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7333197,"lon":-70.4270734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Piscataquis County, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Piscataquis County, Maine: Energy Resources Piscataquis County, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.7049857°, -69.3375071° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.7049857,"lon":-69.3375071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

Aroostook County, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.819941°, -68.4766064° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.819941,"lon":-68.4766064,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

Matinicus Isle, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Isle, Maine: Energy Resources Isle, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8650834°, -68.8869788° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8650834,"lon":-68.8869788,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

East Central Penobscot, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Penobscot, Maine: Energy Resources Penobscot, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1155166°, -68.4228803° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1155166,"lon":-68.4228803,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

St. George, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0164709°, -69.1989341° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0164709,"lon":-69.1989341,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Fermilab Main Injector Collimation Systems: Design, Commissioning and Operation  

Science Conference Proceedings (OSTI)

The Fermilab Main Injector is moving toward providing 400 kW of 120 GeV proton beams using slip stacking injection of eleven Booster batches. Loss of 5% of the beam at or near injection energy results in 1.5 kW of beam loss. A collimation system has been implemented to localize this loss with the design emphasis on beam not captured in the accelerating RF buckets. More than 95% of these losses are captured in the collimation region. We will report on the construction, commissioning and operation of this collimation system. Commissioning studies and loss measurement tools will be discussed. Residual radiation monitoring of the Main Injector machine components will be used to demonstrate the effectiveness of these efforts.

Brown, Bruce; Adamson, Philip; Capista, David; Drozhdin, A.I.; Johnson, David E.; Kourbanis, Ioanis; Mokhov, Nikolai V.; Morris, Denton K.; Rakhno, Igor; Seiya, Kiyomi; Sidorov, Vladimir; /Fermilab

2009-05-01T23:59:59.000Z

377

Beam Loss Control for the Fermilab Main Injector  

E-Print Network (OSTI)

From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Losses were at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

Brown, Bruce C

2013-01-01T23:59:59.000Z

378

The zero age main sequence of WIMP burners  

SciTech Connect

We modify a stellar structure code to estimate the effect upon the main sequence of the accretion of weakly-interacting dark matter onto stars and its subsequent annihilation. The effect upon the stars depends upon whether the energy generation rate from dark matter annihilation is large enough to shut off the nuclear burning in the star. Main sequence weakly-interacting massive particles (WIMP) burners look much like proto-stars moving on the Hayashi track, although they are in principle completely stable. We make some brief comments about where such stars could be found, how they might be observed and more detailed simulations which are currently in progress. Finally we comment on whether or not it is possible to link the paradoxically hot, young stars found at the galactic center with WIMP burners.

Fairbairn, Malcolm; Scott, Pat; Edsjoe, Joakim [PH-TH, CERN, Geneva, Switzerland and King's College London, WC2R 2LS (United Kingdom); Cosmology, Particle Astrophysics and String Theory, Physics, Stockholm University and High Energy Astrophysics and Cosmology Centre (HEAC), AlbaNova University Centre, SE-106 91 Stockholm (Sweden)

2008-02-15T23:59:59.000Z

379

Main Injector Particle Production Experiment (MIPP) at Fermilab  

DOE Green Energy (OSTI)

The Main Injector Particle Production Experiment at Fermilab uses particle beams of charged pions, kaons, proton and anti-proton with beam momenta of 5 to 90 GeV/c and thin targets spanning the periodic table from (liquid) hydrogen to uranium to measure particle production cross sections in a full acceptance spectrometer with charged particle identification for particles from 0.1 to 120 GeV/c using Time Projection Chamber, Time of Flight, multicell Cherenkov, and Ring Imaging Cherenkov detectors and Calorimeter for neutrons. Particle production using 120 GeV/c protons from Main Injector on the MINOS target was also measured. We describe the physics motivation to perform such cross section measurements and highlight the impact of hadronic interaction data on neutrino physics. Recent results on forward neutron cross sections and analysis of MINOS target data are also presented.

Mahajan, Sonam; /Panjab U. /Fermilab

2010-12-09T23:59:59.000Z

380

Dover-Foxcroft, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dover-Foxcroft, Maine: Energy Resources Dover-Foxcroft, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1833883°, -69.2269893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1833883,"lon":-69.2269893,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Cape Elizabeth, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cape Elizabeth, Maine: Energy Resources Cape Elizabeth, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.563696°, -70.2000467° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.563696,"lon":-70.2000467,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Old Town, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9342349°, -68.6453092° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9342349,"lon":-68.6453092,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Maine Yankee steam generator tube modification from a radiobiological prospective  

SciTech Connect

Maine Yankee installed permanent sleeving in the primary secondary interface tubing of their steam generators. This repair was necessary because of numerous defects approaching or exceeding technical specification requirements. This project was accomplished under budget, and for a radiation exposure of 141.974 person-rem. This paper addresses the ALARA considerations, temporary lead shielding, mockup training, radiation worker training, radiological initiatives, and lessons learned.

Heath, E.; Granados, B. [Maine Yankee, Wiscasset, MA (United States)

1996-06-01T23:59:59.000Z

384

Main Injector Particle Production Experiment (MIPP) at Fermilab  

Science Conference Proceedings (OSTI)

The Main Injector Particle Production Experiment at Fermilab uses particle beams of charged pions kaons proton and anti?proton with beam momenta of 5 to 90 GeV/c and thin targets spanning the periodic table from (liquid) hydrogen to uranium to measure particle production cross sections in a full acceptance spectrometer with charged particle identification for particles from 0.1 to 120 GeV/c using Time Projection Chamber

Sonam Mahajan; The MIPP Collaboration

2011-01-01T23:59:59.000Z

385

The Fork+ Developmental Measurement Campaign at Maine Yankee  

Science Conference Proceedings (OSTI)

The use of burnup credit in the design of spent-fuel storage and transportation systems significantly reduces risks and decreases costs. However, approval of storage and transportation designs using burnup credit will likely require independent measurement of the spent-fuel assembly burnup. EPRI's Fork(plus) system has been designed for measuring spent-fuel burnup without recourse to reactor records. This report presents results from testing of the Fork(plus) system prototype at the Maine Yankee reactor ...

1999-06-22T23:59:59.000Z

386

Results of the radiological survey at the former Herring-Hall-Marvin Safe Company (3rd floor), 1550 Grand Boulevard, Hamilton, Ohio (HO001)  

SciTech Connect

At the request of the US Department of Energy (DOE), a group from the Oak Ridge National Laboratory conducted a radiological survey at the former Herring-Hall-Marvin Safe Company (third floor), 1550 Grand Boulevard, Hamilton, Ohio (HO001) in August 1993. The purpose of the survey was to determine whether the property was contaminated with radioactive residues, principally {sup 238}U, derived from the former Manhattan Engineer District project. The survey included gamma scans; direct and transferable measurements of alpha, beta, and gamma radiation levels; and debris sampling for radionuclide analyses. Results of the survey demonstrated {sup 238}U surface contamination in excess of the DOE criteria for surface contamination. The third floor was generally contaminated over 25 percent of its area with isolated spots in the remaining area. Although three isolated spots of contamination were found in areas other than on the third floor (in the same southeastern comer of the facility), they were remediated by sampling. Based on the survey results, this site is recommended for remediation.

Murray, M.E.; Johnson, C.A.

1994-03-01T23:59:59.000Z

387

Exhibit Floor Plan  

Science Conference Proceedings (OSTI)

Jan 7, 2010 ... Techmo Car S.p.A. 310. APT Aluminium and Aluminium Journal. 601 ... Hydro Aluminium. 608. Outotec. 319. Hertwich Engineering. 612.

388

Exhibit Floor Plan  

Science Conference Proceedings (OSTI)

Jan 25, 2007 ... Tri State. Ref. SMV. Natl Elec. Carbon. Blasch. Carl Zeiss. Micro. Imaging. Mid- ... LP Royer ... New. Orleans. C&VB. Graphite. Machining. Xothermic. MetSoc ... York. Linings. Carl Zeiss. SMT. Darco. Southern. Bruno. Presezzi.

389

Exhibit Floor Plan  

Science Conference Proceedings (OSTI)

Feb 20, 2008 ... Industries. Bloom. Engr. Murlin. Chemical. North ... Ovens BV. SMV AS. HRV. Engr. AUMUND ... Industries. Parker. Hannifin. KBM. Affilips BV.

390

Exhibition Hall Floor Plan  

Science Conference Proceedings (OSTI)

Jan 13, 2005 ... Industry. 645. FEI. Cytec. Industries. ENERGOPROM. MAS Inc. Parker ... STAS. Thermal. Ceramics. Thermcon. Ovens. Thorpe. Technologies.

391

Exhibit Floor Plan - TMS  

Science Conference Proceedings (OSTI)

Manufacturing. Alum Times. LANL. Elsevier. Science. Holton. Process. Engineering. Resources. Norsmelt. Murlin Chem Kabert. Metallurg. Aluminium. Pechiney.

392

Theoretical mass loss rates of cool main-sequence stars  

E-Print Network (OSTI)

We develop a model for the wind properties of cool main-sequence stars, which comprises their wind ram pressures, mass fluxes, and terminal wind velocities. The wind properties are determined through a polytropic magnetised wind model, assuming power laws for the dependence of the thermal and magnetic wind parameters on the stellar rotation rate. We use empirical data to constrain theoretical wind scenarios, which are characterised by different rates of increase of the wind temperature, wind density, and magnetic field strength. Scenarios based on moderate rates of increase yield wind ram pressures in agreement with most empirical constraints, but cannot account for some moderately rotating targets, whose high apparent mass loss rates are inconsistent with observed coronal X-ray and magnetic properties. For fast magnetic rotators, the magneto-centrifugal driving of the outflow can produce terminal wind velocities far in excess of the surface escape velocity. Disregarding this aspect in the analyses of wind ram pressures leads to overestimations of stellar mass loss rates. The predicted mass loss rates of cool main-sequence stars do not exceed about ten times the solar value. Our results are in contrast with previous investigations, which found a strong increase of the stellar mass loss rates with the coronal X-ray flux. Owing to the weaker dependence, we expect the impact of stellar winds on planetary atmospheres to be less severe and the detectability of magnetospheric radio emission to be lower then previously suggested. Considering the rotational evolution of a one solar-mass star, the mass loss rates and the wind ram pressures are highest during the pre-main sequence phase.

V. Holzwarth; M. Jardine

2006-11-14T23:59:59.000Z

393

Forward Neutron Production at the Fermilab Main Injector  

DOE Green Energy (OSTI)

We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58 GeV/c, 84 GeV/c, and 120 GeV/c. The cross section dependence on the atomic weight (A) of the targets was found to vary as A{sup a} where a is 0.46 {+-} 0.06 for a beam momentum of 58 GeV/c and 0.54 {+-} 0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo. The MIPP (Main Injector Particle Production) experiment (FNAL E907) [1] acquired data in the Meson Center beam line at Fermilab. The primary purposes of the experiment were to investigate scaling laws in hadron fragmentation [2], to obtain hadron production data for the NuMI (Neutrinos at the Main Injector [3]) target to be used for calculating neutrino fluxes, and to obtain inclusive pion, neutron, and photon production data to facilitate proton radiography [4]. While there is considerable data available on inclusive charged particle production [5], there is little data on neutron production. In this article we present results for forward neutron production using proton beams of 58 GeV/c, 84 GeV/c, and 120 GeV/c on hydrogen, beryllium, carbon, bismuth, and uranium targets, and compare these data with predictions from Monte Carlo simulations.

Nigmanov, T.S.; /Michigan U.; Rajaram, D.; /Michigan U.; Longo, M.J.; /Michigan U.; Akgun, U.; /Iowa U.; Aydin, G.; /Iowa U.; Baker, W.; /Fermilab; Barnes, P.D., Jr.; /LLNL, Livermore; Bergfeld, T.; /South Carolina U.; Bujak, A.; /Purdue U.; Carey, D.; /Fermilab; Dukes, E.C.; /Virginia U. /Iowa U.

2010-10-01T23:59:59.000Z

394

Status of slip stacking at Fermilab Main Injector  

SciTech Connect

In order to achieve an increase in proton intensity, the Fermilab Main Injector (MI) will use a stacking process called ''slip stacking'' [1]. The intensity will be doubled by injecting one train of bunches at a slightly lower energy, another at a slightly higher energy, then bringing them together for the final capture. Beam studies have been performed for this process and we have already verified that, at least for low beam intensities, the stacking procedure works as expected [2]. For high intensity operation, development work of the feedback and feedforward systems was done during the last machine shut down, from August to November 2004 [3].

Seiya, K.; Berenc, T.; Dey, J.; Chase, B.; Rivetta, C.; Kourbanis, I.; MacLachlan, J.; Meisner, K.; Pasquinelli, R.; Reid, J.; Steimel, J.; /Fermilab

2005-05-01T23:59:59.000Z

395

Main line natural gas sales to industrial users: 1978  

Science Conference Proceedings (OSTI)

Main line natural gas sales (in million cubic feet) by interstate natural gas companies to industrial users are itemized for 1974 to 1978. Information includes company name, customer name, customer's Standard Industrial Classification (SIC), the type of sale (where available and applicable), the delivery point, and the state involved in transactions. Tabulations summarize sales by SIC, by state and SIC, and by natural gas companies and SIC. Also summarized in the tables are sales by state and type (offpeak, interruptible, and not specified) for 1978. A brief narrative highlights recent trends and makes comparisons between the two most recent years. 5 tables.

Not Available

1980-01-08T23:59:59.000Z

396

Main line natural gas sales to industrial users, 1980  

Science Conference Proceedings (OSTI)

Main line natural gas sales (in million cubic feet) by interstate natural gas companies to industrial users and other public authorities are itemized for each year from 1976 through 1980. Information includes company name, customer name, customer's Standard Industrial Classification (SIC), the type of sale (where available and applicable), the delivery point, and the state involved in transactions. Tabulations summarize sales by SIC, by State and SIC, and by Natural Gas Companies and SIC. Also summarized in the tables and sales by State and type (offpeak interruptible, and not specified) for 1980 A brief narrative highlights recent trends and makes comparisons between the two most recent years. 5 tables.

Dillard, F.B.

1981-12-01T23:59:59.000Z

397

Main-line natural gas sales to industrial users 1979  

Science Conference Proceedings (OSTI)

Main line natural gas sales by interstate natural gas companies to industrial users are itemized for 1975 to 1979. Information includes company name, customer name, customer's standard industrial classification (SIC), the type of sale (where available), the delivery point, and the state involved in transactions. Tabulations summarize sales by SIC, by state and SIC, and by natural gas companies and SIC. Also summarized are sales by state and type (offpeak, interruptible, and not specified) for the year 1979. An accompanying narrative highlights recent trends and makes comparisons between the two most recent years. 5 tables.

Not Available

1981-02-01T23:59:59.000Z

398

China-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

China-The Mitigation Action Implementation Network (MAIN) China-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name China-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

399

The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Mitigation Action Implementation Network (MAIN) Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

400

Panama-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Panama-The Mitigation Action Implementation Network (MAIN) Panama-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Panama-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Malaysia-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Malaysia-The Mitigation Action Implementation Network (MAIN) Malaysia-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Malaysia-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

402

Peru-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Peru-The Mitigation Action Implementation Network (MAIN) Peru-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Peru-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

403

Thailand-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Thailand-The Mitigation Action Implementation Network (MAIN) Thailand-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Thailand-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

404

Uruguay-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Uruguay-The Mitigation Action Implementation Network (MAIN) Uruguay-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Uruguay-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

405

Dominican Republic-The Mitigation Action Implementation Network (MAIN) |  

Open Energy Info (EERE)

Dominican Republic-The Mitigation Action Implementation Network (MAIN) Dominican Republic-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Dominican Republic-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

406

Costa Rica-The Mitigation Action Implementation Network (MAIN) | Open  

Open Energy Info (EERE)

Costa Rica-The Mitigation Action Implementation Network (MAIN) Costa Rica-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Costa Rica-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

407

Pakistan-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Pakistan-The Mitigation Action Implementation Network (MAIN) Pakistan-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Pakistan-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

408

Mexico-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Mexico-The Mitigation Action Implementation Network (MAIN) Mexico-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Mexico-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

409

Colombia-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Colombia-The Mitigation Action Implementation Network (MAIN) Colombia-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Colombia-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

410

Philippines-The Mitigation Action Implementation Network (MAIN) | Open  

Open Energy Info (EERE)

Philippines-The Mitigation Action Implementation Network (MAIN) Philippines-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Philippines-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

411

Vietnam-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Vietnam-The Mitigation Action Implementation Network (MAIN) Vietnam-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Vietnam-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

412

Brazil-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Brazil-The Mitigation Action Implementation Network (MAIN) Brazil-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Brazil-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

413

Chile-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Chile-The Mitigation Action Implementation Network (MAIN) Chile-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Chile-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

414

India-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

India-The Mitigation Action Implementation Network (MAIN) India-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name India-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

415

Indonesia-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Indonesia-The Mitigation Action Implementation Network (MAIN) Indonesia-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Indonesia-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

416

National Library of Energy : Main View : Deep Federated Search  

Office of Scientific and Technical Information (OSTI)

National Library of Energy National Library of Energy Search Powered By Deep Web Technologies Modify Search Preferences Powered by Deep Web Technologies HOME About NLE Communications FAQs Help Site Map Feedback/Contact Us Main View This view is used for searching all possible sources. SEARCH OPTIONS Additional Information Keyword: Title: Additional Information Author: Fields to Match: All Any Field(s) Additional Information Date Range: Beginning Date Range Pick Year 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 toEnding Date Range Pick Year 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 Search Clear All Help Simple Search Expand Category All Sources

417

Microsoft Word - Longview_SewerMainProject_CX_2012.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dawneen Dostert Project Manager - TERR-LMT Proposed Action: City of Longview Pump Stations and Force Main Project Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021): B4.9 - Multiple use of DOE powerline rights-of-way Location: Longview, Cowlitz County, Washington T7N, R2W, Section 5: T8N, R2W, Section 32: and T8N, R2W, Section 31 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to grant a multiple use request submitted by the City of Longview, Washington, to permanently install an underground sewer line and temporarily locate staging areas within a BPA transmission line right-of-way. The proposed

418

U.S. hydropower resource assessment for Maine  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Maine.

Francfort, J.E.; Rinehart, B.N.

1995-07-01T23:59:59.000Z

419

Small Wind Electric Systems: A Maine Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Maine Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

420

Neutron-induced prompt gamma activation analysis (PGAA) of metalsand non-metals in ocean floor geothermal vent-generated samples  

DOE Green Energy (OSTI)

Neutron-induced prompt gamma activation analysis (PGAA) hasbeen used to analyze ocean floor geothermal vent-generated samples thatare composed of mixed metal sulfides, silicates, and aluminosilicates.The modern application of the PGAA technique is discussed, and elementalanalytical results are given for 25 elements observed in the samples. Theelemental analysis of the samples is consistent with the expectedmineralogical compositions, and very consistent results are obtained forcomparable samples. Special sensitivity to trace quantities of hydrogen,boron, cadmium, dysprosium, gadolinium, and samarium isdiscussed.

Perry, D.L.; Firestone, R.B.; Molnar, G.L.; Revay, Zs.; Kasztovszky, Zs.; Gatti, R.C.; Wilde, P.

2002-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Tevatron energy and luminosity upgrades beyond the main injector  

E-Print Network (OSTI)

The Fermilab Tevatron will be the world's highest energy hadron collider until the LHC is commissioned, it has the world's highest energy fixed target beams, and Fermilab will be the leading high energy physics laboratory in the US for the foreseeable future. Following the demise of the SSC, a number of possible upgrades to the Tevatron complex, beyond construction of the Main Injector, are being discussed. Using existing technology, it appears possible to increase the luminosity of the \\bar{p}p Collider to at least 10^{33}cm^{-2}sec^{-1} (Tevatron-Star) and to increase the beam energy to 2 TeV (DiTevatron). Fixed target beam of energy about 1.5 TeV could also be delivered. Leaving the existing Tevatron in the tunnel and constructing bypasses around the collider halls would allow simultaneous 800 GeV fixed target and \\sqrt{s} = 4 TeV collider operation. These upgrades would give Fermilab an exciting physics program which would be complementary to the LHC, and they would lay the groundwork for the construction...

Amidei, D; Foster, G W; Jackson, G P; Kamon, T; Lpez, J L; McIntyre, P; Strait, J B; White, J

1996-01-01T23:59:59.000Z

422

Tevatron energy and luminosity upgrades beyond the Main Injector  

E-Print Network (OSTI)

The Fermilab Tevatron will be the world's highest energy hadron collider until the LHC is commissioned, it has the world's highest energy fixed target beams, and Fermilab will be the leading high energy physics laboratory in the US for the foreseeable future. Following the demise of the SSC, a number of possible upgrades to the Tevatron complex, beyond construction of the Main Injector, are being discussed. Using existing technology, it appears possible to increase the luminosity of the $\\bar{p}p$ Collider to at least $10^{33}$cm$^{-2}$sec$^{-1}$ (Tevatron-Star) and to increase the beam energy to 2 TeV (DiTevatron). Fixed target beam of energy about 1.5 TeV could also be delivered. Leaving the existing Tevatron in the tunnel and constructing bypasses around the collider halls would allow simultaneous 800 GeV fixed target and $\\sqrt{s}$ = 4 TeV collider operation. These upgrades would give Fermilab an exciting physics program which would be complementary to the LHC, and they would lay the groundwork for the construction of a possible post-LHC ultra-high energy hadron collider. (Presented at the Eighth Meeting of the Division of Particles and Fields Albuquerque, New Mexico, August 2-6, 1994.)

D. Amidei; A. Baden; G. Foster; G. Jackson; T. Kamon; J. Lopez; P. McIntyre; J. Strait; J. White

1994-08-20T23:59:59.000Z

423

he chain of calamity now known as Japan's Triple Disaster began with a massive rupture in the ocean floor.  

E-Print Network (OSTI)

that pumped water to cool the reactors. Radioac- tive decay in the reactors continued to generate heat. 50 miles from the epicenter, the trembling lasted a full six minutes. When it finally stopped, parts of the main island of Honshu had moved eight meters, or 26 feet, to the east. Damage from the earthquake

Anderson, Donald M.

424

Maine Regional Science Bowl | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

Maine Regions Maine Regional Science Bowl National Science Bowl (NSB) NSB Home About NSB High School High School Students High School Coaches High School Regionals High School...

425

Aroostook County, Maine ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Aroostook County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aroostook County, Maine ASHRAE Standard ASHRAE 169-2006 Climate Zone...

426

Table WH10. Consumption Intensity by Main Water Heating Fuel Used ...  

U.S. Energy Information Administration (EIA)

Main Water Heating Fuel Used (physical units/number of household members) Electricity Table WH10. Consumption Intensity by Main Water Heating Fuel Used, 2005

427

Table WH11. Expenditures Intensity by Main Water Heating Fuel Used ...  

U.S. Energy Information Administration (EIA)

Main Water Heating Fuel Used (Dollars/number of household members) Electricity Table WH11. Expenditures Intensity by Main Water Heating Fuel Used, 2005

428

Table SH7. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil (gallons) Main Space Heating Fuel Used (physical units of consumption per household using the fuel as a main heating source) Table SH7.

429

Total U.S. Main Space Heating Fuel Used U.S. Using Any Households ...  

U.S. Energy Information Administration (EIA)

Average Heating Degree Days by Main Space Heating Fuel Used, ... 2005 Residential Energy Consumption Survey: ... Any Fuel Natural Gas Fuel Oil Age of Main Heating ...

430

Table SH8. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Main Space Heating Fuel Used (million Btu of consumption per household using the fuel as a main heating source) Any Major Fuel 4 Table SH8.

431

Engineering Evaluation Report on K-311-1 Floor Subsidence (2008 Annual Report) at the East Tennessee Technology Park, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

The purpose of this task is to evaluate the effect of floor settlement on building structure, piping, and equipment foundations between column lines 1 and 2 and B and K of Bldg. K-311-1 (see Fig. A-1 in Appendix A) at East Tennessee Technology Park (ETTP), Oak Ridge, Tennessee. Revision 0 of this document covers the 2005 annual inspection. Revision 1 addresses the 2006 annual inspection, Revision 2 addresses the 2007 annual inspection, and Revision 3 covers the 2008 annual inspection, as indicated by the changed report title. A civil survey and visual inspection were performed. Only a representative number of points were measured during the 2008 survey. The exact location of a number of survey points in Table A-1 could not be accurately determined in the 2008 survey since these points had not been spray painted since 2003. The points measured are deemed adequate to support the conclusions of this report. Based on the survey and observations, there has been no appreciable change in the condition of the unit since the 2007 inspection. The subsidence of the floor presents concerns to the building structure due to the possible indeterminate load on the pipe gallery framing. Prior to demolition activities that involve the piping or removal of the equipment, such as vent, purge and drain and foaming, engineering involvement in the planning is necessary. The piping connected to the equipment is under stress, and actions should be implemented to relieve this stress prior to disturbing any of the equipment or associated piping. In addition, the load on the pipe gallery framing needs to be relieved prior to any activities taking place in the pipe gallery. Access to this area and the pipe gallery is not allowed until the stress is released.

Knott R.B.

2008-11-13T23:59:59.000Z

432

Arecibo Technical & Operations Memo ATOMS 2000-03 MAIN BEAM AND FIRST SIDELOBE PARAMETERS FOR ARECIBO'S  

E-Print Network (OSTI)

4 describes observational results for the more esoteric main beam parameters ellipticity and coma. x

433

Rapsodia - Main  

NLE Websites -- All DOE Office Websites (Extended Search)

Rapsodia tool is the result of a collaboration between Rapsodia tool is the result of a collaboration between Isabelle Charpentier at Laboratoire d'Étude des Microstructures et de Mécanique des Matériaux (LEM3) , Université de Metz and Jean Utke at the Mathematics and Computer Science Division of Argonne National Laboratory. It is intended for the computation of higher order derivative information of numerical models written in Fortran, C or C++ by automatic differentiation. Rapsodia consists of two parts: A Python-based code generator that produces a C++ or Fortran library for the propagation of univariate Taylor polynomials for a given derivative order and number of directions. The code generator relies on inlining and loop unrolling to aid subsequent compiler optimization. Implementations of the algorithm that interpolates derivative tensor

434

Methane Main  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 Report of the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 i CONTENTS What is Methane Hydrate? ............................................................................................. 1 Why Methane Hydrate Matters for the United States? ..................................................... 4 Resource Potential of Methane Hydrate .......................................................................... 5 Implications of Methane Hydrate on Safety and Seafloor Stability

435

Main Title  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50 State Street, Suite 3 50 State Street, Suite 3 Montpelier, VT 05602 Phone: 802-223-8199 web: www.raponline.org Roadmap 2050: A practical guide to a prosperous, low-carbon Europe A project of the European Climate Foundation Presentation to the U.S. Department of Energy Electricity Advisory Committee Michael Hogan, Senior Advisor, RAP 12 July 2011 Month dd, yyyy The objective was to develop a fact based report - supported by key stakeholders and feeding directly into EU decision making 2 Key deliverables ▪ A set of plausible and visionary emissions pathways with an 80% reduction across the EU-27 below 1990 levels by 2050 ▪ Deep dive on the decarbonization of the power sector ▪ Implications on strategic options for the EU ▪ A related set of policy options highlighting poten-

436

Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Propane (LPG) The list below contains summaries of all Maine laws and incentives related

437

Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Maine laws and incentives related

438

Alternative Fuels Data Center: Maine Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Natural Gas The list below contains summaries of all Maine laws and incentives related

439

Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Taxes  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Taxes to someone by E-mail Fuel Taxes to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Taxes on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Taxes on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Taxes on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Taxes on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Taxes on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Taxes on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Fuel Taxes The list below contains summaries of all Maine laws and incentives related

440

The Main Steam Temperature Cascade Control of High Order Differential of Feedback Controller  

Science Conference Proceedings (OSTI)

The main steam temperature of boiler is a big time-lag signal, and the great change of its dynamic characteristics occurs with the load change. In addition, the main steam temperature control is particularly significant for the safety and economic operation ... Keywords: main steam temperature, high order differentiator, high order differential feedback controller, cascade control

Xue Wei; Mu Jingjing; Jia Hongyan; Ye Fei

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center: Maine Laws and Incentives for Idle Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Idle Reduction

442

Wave-Energy Company Looks to Test Prototypes in Maine Waters | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave-Energy Company Looks to Test Prototypes in Maine Waters Wave-Energy Company Looks to Test Prototypes in Maine Waters Wave-Energy Company Looks to Test Prototypes in Maine Waters April 9, 2010 - 4:19pm Addthis Lindsay Gsell Resolute Marine Energy - a Boston-based, wave-energy technology company - hopes to test ocean wave energy conversion prototypes in Maine sometime in the summer of 2011. The company has already completed two of the three testing stages, the first using computer simulation and the second with reduced-scale prototypes in a controlled environment. Now, the company is ready to take the technology offshore to begin ocean testing. Its eyes are set on the waters of its Northern neighbor, Maine. Maine is an ideal location for Resolute Marine Energy to conduct testing for a few reasons, said CEO and President Bill Staby. Working in Maine

443

Maine Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Maine Regions » Maine Regional High School Maine Regions » Maine Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Maine Regions Maine Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Rob Sanford Email: rsanford@usm.maine.edu Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 20

444

Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Tax Incentives

445

Alternative Fuels Data Center: Maine Laws and Incentives for Hydrogen Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Hydrogen Fuel Cells

446

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

447

Maine Community Seeing Things in a New Light | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Community Seeing Things in a New Light Maine Community Seeing Things in a New Light Maine Community Seeing Things in a New Light June 23, 2011 - 6:11pm Addthis Fort Fairfield's new energy effificent streetlights | Courtesy of: Paul Cyr©2011 NorthernMainePhotos.com Fort Fairfield's new energy effificent streetlights | Courtesy of: Paul Cyr©2011 NorthernMainePhotos.com Chris Galm Marketing & Communications Specialist, Office of Energy Efficiency & Renewable Energy As one of the northernmost communities in the "Lower 48," Fort Fairfield, Maine (population 3,500) averages less sunlight every year than towns in the southern part of the state. In the summer months, this isn't a big problem since it stays lighter much later in the evening. In the winter, however, the hours of actual

448

Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

449

Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

450

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

451

Alternative Fuels Data Center: Maine Laws and Incentives for Fueling / TSE  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Fueling / TSE Infrastructure Owner on AddThis.com...

452

PP-20-1 Eastern Maine Electric Cooperative Inc | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Electric Cooperative Inc More Documents & Publications PP-18 Glacier Electric Cooperative, Inc PP-22 British Columbia Hydro and Power Authority, Amendment 1967 PP-230-3...

453

Maine Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

2014 Maximum Number of Teams: 20 Maximum Number of Teams per School: 2 Registration Fee: NA Regional Geographic Information: Maine Team Approval Process Teams are approved on a...

454

Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2  

SciTech Connect

Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

2011-03-01T23:59:59.000Z

455

An Act to Facilitate Testing and Demonstration of Renewable Ocean Energy Technology (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

This law streamlines and coordinates State permitting and submerged lands leasing requirements for renewable ocean energy demonstration projects, aiding Maine's goal to become an international...

456

Exhibit Floor Plan (PDF) - TMS  

Science Conference Proceedings (OSTI)

Jan 27, 2011 ... Exxon Mobil Oil Corp. Fives Solios. FL Smidth. GE Global Research. Graftech. Harbin Dongsheng. Harbison-Walker Refractories. Hatch.

457

Robust controller design for main steam pressure based on SPEA2  

Science Conference Proceedings (OSTI)

Main steam pressure is an important physical quantity that reflects the energy supply-demand relationship between the boiler and turbine. It has a significant role in the unit operation. Because boiler burning behavior varies greatly and the model of ... Keywords: H? robust control, SPEA2, main steam pressure, weighing function matrix

Shuan Wang; Dapeng Hua; Zhiguo Zhang; Ming Li; Ke Yao; Zhanyou Wen

2011-08-01T23:59:59.000Z

458

Failure Analysis of the Beam Vacuum in the Superconducting Cavities of the TESLA Main Linear Accelerator  

E-Print Network (OSTI)

1 Failure Analysis of the Beam Vacuum in the Superconducting Cavities of the TESLA Main Linear Hamburg, Germany Abstract For the long term successful operation of the superconducting TESLA accelerator The beam vacuum system of the TESLA main linear accelerators contains about 20.000 superconducting cavities

459

Laboratoire Langues, Littratures, Linguistique des Universits d'Angers et du Maine (3L.AM) -  

E-Print Network (OSTI)

Laboratoire Langues, Littératures, Linguistique des Universités d'Angers et du Maine (3L.AM) - EA n Laboratoire Langues, Littératures, Linguistique des universités d'Angers et du Maine (Labo 3L.AM), ?quipe d

Di Girolami, Cristina

460

The Experimental Study on the Optimization Control of Main Steam Pressure System in the Biomass Boiler  

Science Conference Proceedings (OSTI)

Combustion adjusting system in biomass fuel boiler is the research objective and its dynamic characteristics are also analyzed. The optimal control algorithm is provided, according to the main subsystem in main steam pressure control system of combustion ... Keywords: biomass fuel boiler, combustion control system, steam pressure control, fuzzy-SMITH

Junman Sun; Chun Huang; Junran Jin; Huijun Sun; Liping Li

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "d-wing main floor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461