Powered by Deep Web Technologies
Note: This page contains sample records for the topic "butylene isobutane isobutylene" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIA-802  

NLE Websites -- All DOE Office Websites (Extended Search)

Greater than 500 ppm sulfur 467 CODE 466 PADD 4 * Includes propane, propylene, ethane, ethylene, normal butane, butylene, isobutane, isobutylene, and pentanes plus. PADD 3 PADD...

2

Development of a catalyst for conversion of syngas-derived materials to isobutylene  

SciTech Connect

The initial objective of this program was to develop a catalyst and process for the conversion of synthesis gas to isobutylene via the isosynthesis process. Preliminary work directed at identifying potential catalysts for this reaction did not have promising results. Therefore, the objectives of this program were revised to the development of a catalyst and process for the conversion of synthesis gas to isobutanol. Two approaches have been investigated in this area: the direct conversion of synthesis gas to higher alcohols and indirect conversion via methanol produced using conventional methanol synthesis technology. The isosynthesis reaction for the conversion of synthesis gas to branched hydrocarbons was pioneered by German workers during World War II The primary products of this reaction are either isobutane or isobutylene depending on the catalyst system used. Thoria-based catalysts were found to give the highest yields, but virtually all of the products were alkanes. More recently, there have been several reports of olefin production using ZrO{sub 2}-based. The preliminary work in this program focussed on the evaluation of ZrO{sub 2} and modified ZrO{sub 2} catalysts for the direct conversion of CO/H{sub 2} to isobutylene via the isosynthesis reaction. All of the catalysts and conditions evaluated in this work gave isobutylene yields of less than 4% which is far below that required for an economically viable process. A summary of the key results from this portion of the project is given in Section 3.6. In view of the poor performance of these catalysts and the lack any encouraging results from other research groups working in the isosynthesis area, this approach was abandoned in favor of approaches related to higher alcohols synthesis.

Barger, P.T.; Spehlmann, B.C.; Gajda, G.J.

1996-10-01T23:59:59.000Z

3

Toughened blends of poly(butylene terephthalate) and BPA polycarbonate  

Science Journals Connector (OSTI)

The morphologies of melt blends of poly(butylene terephthalate) (PBT) and bisphenol A polycarbonate (PC) toughened with a core/shell impact modifier have been characterized by transmission and scanning electro...

S. Y. Hobbs; M. E. J. Dekkers; V. H. Watkins

1988-04-01T23:59:59.000Z

4

Toughened blends of poly(butylene terephthalate) and BPA polycarbonate  

Science Journals Connector (OSTI)

The toughening mechanisms of blends of poly(butylene terephthalate) (PBT) and bisphenol-A polycarbonate (PC) toughened with core/shell impact modifier have been studied by transmission electron microscopy, not...

M. E. J. Dekkers; S. Y. Hobbs; V. H. Watkins

1988-04-01T23:59:59.000Z

5

Isobutane oxidation in the presence of a soluble propylene glycol/vanadium catalyst  

SciTech Connect

A method is described for oxidizing isobutane with an oxygen-containing material in the presence of an effective amount of a soluble propylene glycol/vanadium catalyst.

Sanderson, J.R.; Marquis, E.T.

1989-01-31T23:59:59.000Z

6

The morphology and deformation behavior of poly(butylene terephthalate)/BPA polycarbonate blends  

Science Journals Connector (OSTI)

In this communication the results of a series of recent studies of the morphology and deformation behavior of toughened poly(butylene terephthalate) (PBT)/BPA polycarbonate (PC) blends are briefly summarized....

S. Y. Hobbs; M. E. J. Dekkers; V. H. Watkins

1987-04-01T23:59:59.000Z

7

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Plant Net Stocks Natural Gas Plant Net Stocks Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Butylene (C4H8) An olefinic hydrocarbon recovered from refinery processes. Ethane (C2H6) A normally gaseous straight-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of -127.48º F. It is extracted from natural gas and refinery gas streams. Isobutane (C4H10) A normally gaseous branch-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of 10.9º F. It is extracted from natural gas or refinery gas streams. Liquefied Petroleum Gases (LPG) A group of hydrocarbon-based gases derived from crude oil refining or nautral gas fractionation. They include: ethane, ethylene, propane, propylene, normal butane, butylene, isobutane, and isobutylene. For convenience of transportation, these gases are liquefied through pressurization.

8

TABLE27.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

7. 7. Exports of Crude Oil and Petroleum Products by PAD District, January 1998 Crude Oil a ....................................................................... 0 1,168 0 0 5,978 7,146 231 Natural Gas Liquids ...................................................... 24 752 885 6 451 2,118 68 Pentanes Plus ............................................................. 1 455 0 5 (s) 461 15 Liquefied Petroleum Gases ......................................... 24 297 885 (s) 450 1,657 53 Ethane/Ethylene ..................................................... 0 0 0 0 0 0 0 Propane/Propylene ................................................. 20 96 637 (s) 149 904 29 Normal Butane/Butylene ......................................... 3 201 248 0 301 753 24 Isobutane/Isobutylene ............................................ 0 0 0 0 0 0 0 Other Liquids ..................................................................

9

Refinery & Blender Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

& Blender Net Production & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha For Petro. Feed. Use Other Oils For Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

10

Insertion Mechanism of a Poly(ethylene oxide)-poly(butylene oxide) Block Copolymer into a DPPC Monolayer  

SciTech Connect

Interactions between amphiphilic block copolymers and lipids are of medical interest for applications such as drug delivery and the restoration of damaged cell membranes. A series of monodisperse poly(ethylene oxide)-poly(butylene oxide) (EOBO) block copolymers were obtained with two ratios of hydrophilic/hydrophobic block lengths. We have explored the surface activity of EOBO at a clean interface and under 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers as a simple cell membrane model. At the same subphase concentration, EOBO achieved higher equilibrium surface pressures under DPPC compared to a bare interface, and the surface activity was improved with longer poly(butylene oxide) blocks. Further investigation of the DPPC/EOBO monolayers showed that combined films exhibited similar surface rheology compared to pure DPPC at the same surface pressures. DPPC/EOBO phase separation was observed in fluorescently doped monolayers, and within the liquid-expanded liquid-condensed coexistence region for DPPC, EOBO did not drastically alter the liquid-condensed domain shapes. Grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XRR) quantitatively confirmed that the lattice spacings and tilt of DPPC in lipid-rich regions of the monolayer were nearly equivalent to those of a pure DPPC monolayer at the same surface pressures.

Leiske, Danielle L.; Meckes, Brian; Miller, Chad E.; Wu, Cynthia; Walker, Travis W.; Lin, Binhua; Meron, Mati; Ketelson, Howard A.; Toney, Michael F.; Fuller, Gerald G. (Stanford); (SLAC); (UC); (Alcan)

2012-02-06T23:59:59.000Z

11

Effect of Nanoclay Loading on the Thermal and Mechanical Properties of Biodegradable Polylactide/Poly[(butylene succinate)-co-adipate] Blend Composites  

Science Journals Connector (OSTI)

Polylactide/poly[(butylene succinate)-co-adipate] (PLA/PBSA)-organoclay composites were prepared via melt compounding in a batch mixer. The weight ratio of PLA to PBSA was kept at 70:30, while the weight fraction of the organoclay was varied from 0 to 9%. ...

Vincent Ojijo; Suprakas Sinha Ray; Rotimi Sadiku

2012-04-11T23:59:59.000Z

12

Structural and morphological development in poly(ethylene-co-hexene) and poly(ethylene-co-butylene) blends due to the competition between  

E-Print Network (OSTI)

Structural and morphological development in poly(ethylene-co-hexene) and poly(ethylene 30 November 2004; accepted 12 January 2005 Abstract Isothermal crystallization behavior of poly(ethylene-co-hexene) (PEH) and the 50/50 blend (H50) of PEH with amorphous poly(ethylene- co-butylene) (PEB) was studied

Wang, Howard "Hao"

13

Catalyst and process development for synthesis gas conversion to isobutylene. Quarterly report, January 1, 1993--March 31, 1993  

SciTech Connect

The objectives of this project are to develop a new catalyst, the kinetics for this catalyst, reactor models for trickle bed, slurry and fixed bed reactors, and simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene. The six main accomplishments for the quarter are the following: (1) activity testing with the 7% (wt) Ce-ZrO{sub 2}, (2) activity testing the same catalyst with CO from an aluminum cylinder, (3) preparation of ZrO{sub 2} by heating zirconyl nitrate, (4) preparation of an active zirconia prepared by a modified sol gel procedure and evaluation of the catalytic activity of a commercial zirconia and the catalysts prepared by the sol gel procedure, (5) determining the effect of separator temperatures and oil flow rate on the performance of a trickle bed reactor, and (6) calculation of the equilibrium composition of the C{sub 2} to C{sub 5} olefins, and initiation of the development of a macrokinetic model. The details of each of these accomplishments are discussed.

Anthony, R.G.; Akgerman, A.

1993-04-17T23:59:59.000Z

14

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

,980 842 4,204 1,948 672 -339 187 3,995 240 4,886 ,980 842 4,204 1,948 672 -339 187 3,995 240 4,886 Crude Oil 1,472 - - - - 1,839 556 -359 17 3,416 76 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 508 -17 115 63 -14 - - 75 105 71 404 Pentanes Plus 63 -17 - - 0 98 - - -18 37 53 72 Liquefied Petroleum Gases 444 - - 115 63 -112 - - 93 68 18 332 Ethane/Ethylene 163 - - - 0 -100 - - 11 - - 52 Propane/Propylene 186 - - 104 49 -22 - - 66 - 7 244 Normal Butane/Butylene 52 - - 16 5 5 - - 22 17 11 29 Isobutane/Isobutylene 43 - - -4 8 5 - - -6 50 - 7 Other Liquids - - 858 - - 12 -143 127 346 474 40 -6 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 858 - - 5 -547 -8 11 271 26 0 Hydrogen - - - - - - 23 - - 23 0 - -

15

table07.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

558 558 - 893 -73 1,935 -111 0 3,387 38 0 Natural Gas Liquids and LRGs ....... 283 89 116 - 9 -210 - 123 24 558 Pentanes Plus .................................. 37 - 1 - 17 7 - 25 15 9 Liquefied Petroleum Gases .............. 246 89 115 - -8 -217 - 98 10 550 Ethane/Ethylene ........................... 94 0 (s) - -71 -4 - 0 0 26 Propane/Propylene ....................... 100 116 86 - 31 -155 - 0 3 485 Normal Butane/Butylene .............. 37 -27 16 - 18 -48 - 74 6 12 Isobutane/Isobutylene ................... 15 (s) 13 - 14 -10 - 24 0 27 Other Liquids .................................... 24 - 0 - 38 40 - 46 (s) -24 Other Hydrocarbons/Oxygenates .... 45 - 0 - 0 7 - 37 (s) 0 Unfinished Oils ................................. - - 0 - -4 17 - 3 0 -24 Motor Gasoline Blend. Comp. .......... -21 - 0 - 42 16 - 6 (s) 0 Aviation Gasoline Blend. Comp. ....... - - 0 - 0 -1 - 1 0 0 Finished Petroleum Products .......... 71 3,648 9 - 646 154

16

TABLE13.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

3. 3. PAD District V - Daily Average Supply and Disposition of Crude Oil and Petroleum (Thousand Barrels per Day) January 1998 Crude Oil ............................................ 2,165 - 440 154 -73 101 0 2,393 193 0 Natural Gas Liquids and LRGs ........ 93 43 (s) - 0 -51 - 98 15 75 Pentanes Plus ................................... 51 - 0 - 0 (s) - 42 (s) 9 Liquefied Petroleum Gases .............. 42 43 (s) - 0 -51 - 56 15 66 Ethane/Ethylene ............................ (s) 0 0 - 0 0 - 0 0 (s) Propane/Propylene ....................... 12 47 (s) - 0 -26 - 0 5 80 Normal Butane/Butylene ............... 21 -8 0 - 0 -25 - 43 10 -15 Isobutane/Isobutylene ................... 10 5 0 - 0 (s) - 13 0 2 Other Liquids ..................................... 87 - 71 - 24 87 - 73 3 19 Other Hydrocarbons/Oxygenates ..... 109 - 28 - 0 14 - 121 3 0 Unfinished Oils ................................. - - 43 - 0 32 - -8 0 19 Motor

17

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

562 822 4,163 1,839 735 -69 52 3,955 244 4,801 562 822 4,163 1,839 735 -69 52 3,955 244 4,801 Crude Oil 1,116 - - - - 1,730 800 -87 62 3,442 55 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 446 -16 121 74 -25 - - -12 105 111 395 Pentanes Plus 50 -16 - - 1 82 - - -4 31 101 -12 Liquefied Petroleum Gases 396 - - 121 73 -107 - - -8 74 11 407 Ethane/Ethylene 163 - - - 0 -108 - - -2 - - 58 Propane/Propylene 156 - - 108 59 -24 - - -3 - 2 300 Normal Butane/Butylene 48 - - 11 9 10 - - -4 29 9 45 Isobutane/Isobutylene 29 - - 2 6 14 - - 1 46 - 5 Other Liquids - - 838 - - 5 -258 -159 8 408 25 -16 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 838 - - 3 -565 4 1 257 21 0 Hydrogen - - - - - - 22 - - 22 0 - -

18

TABLE18.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

8. 8. Refinery Stocks of Crude Oil and Petroleum Products by PAD and Refining Districts, January 1998 Crude Oil .................................................................... 14,835 511 15,346 8,591 1,779 2,386 12,756 Petroleum Products .................................................. 53,526 2,604 56,130 37,545 10,689 14,376 62,610 Pentanes Plus .......................................................... 0 0 0 4 209 225 438 Liquefied Petroleum Gases ...................................... 1,482 13 1,495 2,085 308 672 3,065 Ethane/Ethylene ................................................... 0 0 0 3 0 0 3 Propane/Propylene ............................................... 564 5 569 1,196 16 332 1,544 Normal Butane/Butylene ....................................... 584 6 590 608 205 232 1,045 Isobutane/Isobutylene ...........................................

19

table05.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

27 27 - 1,721 -65 -3 170 0 1,511 0 0 Natural Gas Liquids and LRGs ....... 27 18 40 - 153 -28 - 8 1 257 Pentanes Plus .................................. 3 - 0 - 0 (s) - 0 (s) 2 Liquefied Petroleum Gases .............. 24 18 40 - 153 -28 - 8 1 254 Ethane/Ethylene ............................ 8 0 0 - 0 0 - 0 0 8 Propane/Propylene ........................ 11 54 39 - 149 -8 - 0 1 261 Normal Butane/Butylene ............... 4 -27 1 - 3 -18 - 5 (s) -7 Isobutane/Isobutylene ................... 1 -9 0 - 0 -2 - 3 0 -8 Other Liquids .................................... -9 - 183 - 11 17 - 234 1 -67 Other Hydrocarbons/Oxygenates ..... 64 - 22 - 0 7 - 79 1 0 Unfinished Oils ................................. - - 34 - 0 -2 - 104 0 -68 Motor Gasoline Blend. Comp. ........... -72 - 126 - 11 12 - 54 (s) 0 Aviation Gasoline Blend. Comp. ....... - - 0 - 0 1 - -2 0 1 Finished Petroleum Products .......... 76 1,798 771 - 2,918 -104 - - 63 5,603 Finished

20

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

124 22 3,585 1,761 3,291 117 -137 3,532 241 5,264 124 22 3,585 1,761 3,291 117 -137 3,532 241 5,264 Crude Oil 34 - - - - 897 1 113 -43 1,084 3 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 90 0 25 32 86 - - 16 27 15 174 Pentanes Plus 15 0 - - - - - - 0 - 10 4 Liquefied Petroleum Gases 75 - - 25 32 86 - - 16 27 5 169 Ethane/Ethylene 1 - - 0 - - - - 0 - - 1 Propane/Propylene 51 - - 36 27 83 - - 24 - 4 168 Normal Butane/Butylene 16 - - -11 3 3 - - -8 17 1 0 Isobutane/Isobutylene 8 - - 0 2 - - - -1 9 - 0 Other Liquids - - 22 - - 555 1,614 193 -31 2,421 5 -10 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 22 - - 25 273 -19 -35 332 5 0 Hydrogen - - - - - - 4 - - 4 0 - - Oxygenates (excl. Fuel Ethanol)

Note: This page contains sample records for the topic "butylene isobutane isobutylene" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

1,164 20 3,171 1,425 308 193 28 2,990 349 2,914 1,164 20 3,171 1,425 308 193 28 2,990 349 2,914 Crude Oil 1,104 - - - - 1,209 - 140 10 2,443 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 61 0 66 4 - - - 36 59 13 22 Pentanes Plus 26 0 - - - - - - 5 18 3 -1 Liquefied Petroleum Gases 34 - - 66 4 - - - 30 41 10 23 Ethane/Ethylene 0 - - - - - - - - - - 0 Propane/Propylene 14 - - 49 4 - - - 12 - 10 45 Normal Butane/Butylene 5 - - 15 0 - - - 13 19 0 -11 Isobutane/Isobutylene 15 - - 1 - - - - 5 22 - -12 Other Liquids - - 20 - - 107 252 94 -71 488 13 43 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 20 - - 19 143 37 -2 219 3 0 Hydrogen - - - - - - 47 - - 47 0 - - Oxygenates (excl. Fuel Ethanol)

22

table09.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

3,434 3,434 - 5,080 -9 -1,729 230 0 6,546 0 0 Natural Gas Liquids and LRGs ....... 1,272 347 65 - -68 -208 - 229 29 1,566 Pentanes Plus .................................. 188 - 33 - -5 30 - 66 0 119 Liquefied Petroleum Gases .............. 1,084 347 31 - -63 -238 - 163 29 1,446 Ethane/Ethylene ........................... 503 24 18 - 112 -52 - 0 0 709 Propane/Propylene ....................... 363 301 4 - -158 -120 - 0 21 610 Normal Butane/Butylene .............. 76 3 6 - -11 -89 - 100 8 54 Isobutane/Isobutylene ................... 142 19 4 - -6 22 - 63 0 73 Other Liquids .................................... 172 - 223 - -73 82 - 216 65 -41 Other Hydrocarbons/Oxygenates .... 149 - 1 - 0 6 - 97 46 0 Unfinished Oils ................................. - - 221 - 4 72 - 195 0 -41 Motor Gasoline Blend. Comp. .......... 23 - 1 - -77 4 - -76 19 0 Aviation Gasoline Blend. Comp. ....... - - 0 - 0 (s) - (s) 0 0 Finished Petroleum Products

23

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

1,173 16 2,988 1,321 324 106 21 2,811 344 2,751 1,173 16 2,988 1,321 324 106 21 2,811 344 2,751 Crude Oil 1,111 - - - - 1,160 2 62 4 2,331 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 61 0 50 5 - - - 1 66 15 35 Pentanes Plus 28 0 - - - - - - 0 21 3 4 Liquefied Petroleum Gases 33 - - 50 5 - - - 1 45 12 31 Ethane/Ethylene 0 - - - - - - - - - - 0 Propane/Propylene 12 - - 46 4 - - - 1 - 10 51 Normal Butane/Butylene 6 - - 6 1 - - - 0 26 1 -14 Isobutane/Isobutylene 15 - - -2 0 - - - 0 20 - -7 Other Liquids - - 16 - - 74 245 103 11 414 13 1 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 16 - - 7 138 37 2 193 3 0 Hydrogen - - - - - - 43 - - 43 0 - - Oxygenates (excl. Fuel Ethanol) - - - - 1 1 0

24

TABLE11.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

1. 1. PAD District IV-Daily Average Supply and Disposition of Crude Oil and Petroleum (Thousand Barrels per Day) January 1998 Crude Oil ........................................... 356 - 204 52 -131 -1 0 483 0 0 Natural Gas Liquids and LRGs ........ 131 (s) 17 - -93 (s) - 19 (s) 35 Pentanes Plus .................................. 25 - 4 - -11 (s) - 5 (s) 12 Liquefied Petroleum Gases .............. 106 (s) 14 - -82 (s) - 14 (s) 23 Ethane/Ethylene ........................... 31 0 0 - -41 0 - 0 0 -10 Propane/Propylene ....................... 48 9 8 - -23 -2 - 0 (s) 43 Normal Butane/Butylene ............... 18 -7 6 - -10 1 - 11 0 -5 Isobutane/Isobutylene ................... 9 -3 0 - -8 1 - 2 0 -4 Other Liquids .................................... 11 - 0 - 0 18 - -5 0 -2 Other Hydrocarbons/Oxygenates .... 3 - 0 - 0 -1 - 4 0 0 Unfinished Oils ................................. - - 0 - 0 3 - -1 0 -2 Motor Gasoline

25

table03.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

3. 3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................... 6,541 - 8,339 60 389 0 14,319 231 0 Natural Gas Liquids and LRGs ........... 1,805 497 238 - -497 - 478 68 2,492 Pentanes Plus .................................... 303 - 38 - 37 - 138 15 151 Liquefied Petroleum Gases ................ 1,502 497 200 - -534 - 340 53 2,340 Ethane/Ethylene ............................ 636 24 18 - -55 - 0 0 734 Propane/Propylene ........................ 533 527 137 - -310 - 0 29 1,478 Normal Butane/Butylene ............... 155 -65 28 - -179 - 234 24 39 Isobutane/Isobutylene ................... 178 11 17 - 11 - 106 0 89 Other Liquids ........................................ 285 - 476 - 244 - 564 69 -116 Other Hydrocarbons/Oxygenates ...... 369 - 51 - 33 - 337 50 0 Unfinished Oils ...................................

26

TABLE35.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Thousand Thousand Barrels) January 1998 Crude Oil .................................................................. 344 433 -89 62,087 2,094 59,993 Petroleum Products ................................................ 103,659 8,121 95,538 34,597 13,141 21,456 Pentanes Plus ....................................................... 0 0 0 678 159 519 Liquefied Petroleum Gases ................................... 4,737 0 4,737 6,111 6,365 -254 Ethane/Ethylene ............................................... 0 0 0 773 2,988 -2,215 Propane/Propylene ........................................... 4,630 0 4,630 3,760 2,792 968 Normal Butane/Butylene ................................... 107 0 107 1,086 515 571 Isobutane/Isobutylene ...................................... 0 0 0 492 70 422 Unfinished Oils ......................................................

27

U.S. Refinery and Blender Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 559,639 599,643 591,916 616,905 613,451 578,101 1981-2013 Liquefied Refinery Gases 24,599 26,928 25,443 26,819 25,951 19,023 1981-2013 Ethane/Ethylene 464 426 407 441 487 379 1981-2013 Ethane 317 277 283 312 332 232 1993-2013 Ethylene 147 149 124 129 155 147 1993-2013 Propane/Propylene 16,840 17,792 16,966 17,839 18,063 17,254 1981-2013 Propane 8,051 8,949 8,756 9,002 9,153 8,816 1995-2013 Propylene 8,789 8,843 8,210 8,837 8,910 8,438 1993-2013 Normal Butane/Butylene 7,270 8,876 8,122 8,676 7,664 1,738 1981-2013 Normal Butane 7,447 9,044 8,314 8,832 8,067 1,743 1993-2013 Butylene -177 -168 -192 -156 -403 -5 1993-2013 Isobutane/Isobutylene

28

PSA Vol 1 Tables Revised Ver 2 Print.xls  

Annual Energy Outlook 2012 (EIA)

741 317 245 1,303 IsobutaneIsobutylene 206 7 213 155 55 184 394 Other HydrocarbonsHydrogenOxygenates 512 0 512 29 18 0 47 Other HydrocarbonsHydrogen 0 0 0 28 0 0 28...

29

untitled  

Annual Energy Outlook 2012 (EIA)

741 317 267 1,325 IsobutaneIsobutylene 206 7 213 155 55 170 380 Other HydrocarbonsHydrogenOxygenates 512 0 512 29 18 0 47 Other HydrocarbonsHydrogen 0 0 0 28 0 0 28...

30

U.S. Exports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

96,229 107,478 106,354 120,656 114,693 108,925 1981-2013 96,229 107,478 106,354 120,656 114,693 108,925 1981-2013 Crude Oil 3,965 3,863 3,591 3,029 2,052 2,975 1920-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 12,522 14,761 10,699 17,203 15,796 13,937 1981-2013 Pentanes Plus 3,327 4,292 1,655 7,308 5,315 2,989 1984-2013 Liquefied Petroleum Gases 9,194 10,468 9,044 9,895 10,481 10,947 1981-2013 Ethane/Ethylene 1981-1992 Propane/Propylene 8,363 9,542 8,057 8,407 9,125 10,040 1981-2013 Normal Butane/Butylene 832 927 987 1,488 1,356 907 1981-2013 Isobutane/Isobutylene 1984-1992 Other Liquids 7,489 6,277 6,728 7,063 5,570 6,579 1991-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 2,897 3,520 3,180 3,430 4,056 3,543 1991-2013 Oxygenates (excl. Fuel Ethanol)

31

U.S. Imports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

302,265 311,620 293,713 317,538 316,119 299,380 1981-2013 302,265 311,620 293,713 317,538 316,119 299,380 1981-2013 Crude Oil 231,793 239,848 231,900 250,207 251,054 237,344 1920-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 5,268 5,261 4,667 4,819 3,708 4,020 1981-2013 Pentanes Plus 1,366 2,222 730 1,461 316 772 1981-2013 Liquefied Petroleum Gases 3,902 3,039 3,937 3,358 3,392 3,248 1981-2013 Ethane 1993-2006 Ethylene 9 12 8 12 12 9 1993-2013 Propane 2,585 1,818 2,474 2,105 1,901 1,875 1995-2013 Propylene 728 680 814 595 722 728 1993-2013 Normal Butane 181 121 149 106 272 194 1995-2013 Butylene 143 241 162 153 146 139 1993-2013 Isobutane 256 167 330 387 339 303 1995-2013 Isobutylene 1993-2010 Other Liquids 43,066 47,595 40,206 44,400 38,927 40,118 1981-2013

32

table06.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

7,308 7,308 - 27,686 -2,263 59,993 -3,449 0 105,005 1,168 0 70,132 Natural Gas Liquids and LRGs ......... 8,763 2,756 3,599 - 265 -6,499 - 3,820 752 17,310 23,020 Pentanes Plus ................................... 1,146 - 42 - 519 214 - 769 455 269 1,988 Liquefied Petroleum Gases ............... 7,617 2,756 3,557 - -254 -6,713 - 3,051 297 17,041 21,032 Ethane/Ethylene ............................ 2,909 0 12 - -2,215 -110 - 0 0 816 2,868 Propane/Propylene ....................... 3,095 3,602 2,661 - 968 -4,799 - 0 96 15,029 13,173 Normal Butane/Butylene ............... 1,156 -837 486 - 571 -1,497 - 2,303 201 369 3,305 Isobutane/Isobutylene ................... 457 -9 398 - 422 -307 - 748 0 827 1,686 Other Liquids ..................................... 738 - 0 - 1,171 1,228 - 1,429 11 -759 26,014 Other Hydrocarbons/Oxygenates ..... 1,380 - 0 - 0 225 - 1,144 11 0 2,175 Unfinished Oils ..................................

33

table02.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

2. 2. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................... 202,756 - 258,506 1,851 12,065 0 443,902 7,146 0 880,184 Natural Gas Liquids and LRGs ............ 55,963 15,419 7,378 - -15,412 - 14,810 2,118 77,244 79,784 Pentanes Plus .................................... 9,388 - 1,185 - 1,137 - 4,282 461 4,693 6,852 Liquefied Petroleum Gases ................ 46,575 15,419 6,193 - -16,549 - 10,528 1,657 72,551 72,932 Ethane/Ethylene ............................ 19,726 751 556 - -1,715 - 0 0 22,748 17,192 Propane/Propylene ........................ 16,528 16,343 4,241 - -9,623 - 0 904 45,831 34,422 Normal Butane/Butylene ................ 4,818 -2,023 880 - -5,547 - 7,256 753 1,213 12,826 Isobutane/Isobutylene .................... 5,503 348 516 - 336 - 3,272 0 2,759 8,492

34

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

25,966 7,956 1,280,301 725,573 1,191,766 9,116 -19,377 1,260,324 25,966 7,956 1,280,301 725,573 1,191,766 9,116 -19,377 1,260,324 90,720 1,909,011 152,389 Crude Oil 9,418 - - - - 316,140 4,126 8,405 -1,574 336,230 3,434 0 8,328 Natural Gas Plant Liquids and Liquefied Refinery Gases 16,548 -84 14,202 18,043 26,704 - - -1,588 7,264 3,052 66,685 6,377 Pentanes Plus 2,828 -84 - - 185 -19 - - 12 63 315 2,520 43 Liquefied Petroleum Gases 13,720 - - 14,202 17,858 26,723 - - -1,600 7,201 2,737 64,165 6,334 Ethane/Ethylene 174 - - 93 - - - - 0 - - 267 - Propane/Propylene 9,223 - - 12,922 16,074 26,601 - - -793 - 1,230 64,383 5,184 Normal Butane/Butylene 2,091 - - 1,435 616 122 - - -866 3,435 1,507 188 837 Isobutane/Isobutylene 2,232 - - -248 1,168 - - - 59 3,766 - -673 313

35

U.S. Product Supplied for Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

556,591 575,071 561,721 590,423 591,817 573,483 1981-2013 556,591 575,071 561,721 590,423 591,817 573,483 1981-2013 Crude Oil 0 0 0 0 0 0 1981-2013 Natural Gas Liquids and LRGs 68,909 64,655 64,147 67,242 66,924 69,929 1981-2013 Pentanes Plus 1,561 1,486 3,400 -1,627 474 3,432 1981-2013 Liquefied Petroleum Gases 67,349 63,170 60,747 68,869 66,450 66,498 1981-2013 Ethane/Ethylene 27,620 28,821 26,806 29,847 29,153 30,817 1981-2013 Propane/Propylene 34,429 28,651 29,365 32,619 32,108 32,780 1981-2013 Normal Butane/Butylene 3,899 4,288 2,546 4,356 3,201 2,347 1981-2013 Isobutane/Isobutylene 1,400 1,409 2,030 2,047 1,988 554 1981-2013 Other Liquids 1,994 3,096 713 5,708 -1,348 5,977 1981-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 0 0 0 0 0 0 1991-2013

36

East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by  

U.S. Energy Information Administration (EIA) Indexed Site

Type: Net Receipts Receipts Shipments Type: Net Receipts Receipts Shipments Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total Crude Oil and Petroleum Products 96,936 96,489 98,076 99,950 102,408 98,737 1981-2013 Crude Oil -533 -654 -152 -479 -42 20 1981-2013 Petroleum Products 97,469 97,143 98,228 100,429 102,450 98,717 1986-2013 Pentanes Plus -2 1987-2013 Liquefied Petroleum Gases 2,739 1,357 1,555 1,342 1,959 2,568 1981-2013 Ethane/Ethylene 1989-2002 Propane/Propylene 2,739 1,357 1,555 1,342 1,959 2,483 1989-2013 Normal Butane/Butylene 85 1989-2013 Isobutane/Isobutylene 1989-2013

37

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

3,707 661 107,540 52,842 98,737 3,513 -4,105 105,957 7,218 3,707 661 107,540 52,842 98,737 3,513 -4,105 105,957 7,218 157,931 153,902 Crude Oil 1,020 - - - - 26,908 20 3,378 -1,285 32,517 94 0 10,326 Natural Gas Plant Liquids and Liquefied Refinery Gases 2,687 -11 747 945 2,568 - - 471 798 453 5,214 6,541 Pentanes Plus 443 -11 - - - - - - 2 - 300 130 82 Liquefied Petroleum Gases 2,244 - - 747 945 2,568 - - 469 798 153 5,084 6,459 Ethane/Ethylene 27 - - 9 - - - - 6 - - 30 15 Propane/Propylene 1,517 - - 1,078 813 2,483 - - 724 - 126 5,041 4,442 Normal Butane/Butylene 474 - - -333 80 85 - - -246 523 27 2 1,673 Isobutane/Isobutylene 226 - - -7 52 - - - -15 275 - 11 329 Other Liquids - - 672 - - 16,653 48,432 5,798 -936 72,642 156 -307 61,003

38

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

429,215 5,872 1,093,588 483,473 118,666 38,688 7,789 1,028,754 429,215 5,872 1,093,588 483,473 118,666 38,688 7,789 1,028,754 126,026 1,006,933 150,671 Crude Oil 406,791 - - - - 424,639 598 22,523 1,445 853,106 0 0 56,432 Natural Gas Plant Liquids and Liquefied Refinery Gases 22,424 -123 18,260 1,933 - - - 404 24,108 5,319 12,663 4,734 Pentanes Plus 10,215 -123 - - - - - - -20 7,565 1,094 1,453 51 Liquefied Petroleum Gases 12,209 - - 18,260 1,933 - - - 424 16,543 4,225 11,210 4,683 Ethane/Ethylene 34 - - - - - - - - - - 34 - Propane/Propylene 4,422 - - 16,669 1,593 - - - 335 - 3,714 18,635 1,915 Normal Butane/Butylene 2,360 - - 2,258 332 - - - 129 9,346 512 -5,037 2,249 Isobutane/Isobutylene 5,393 - - -667 8 - - - -40 7,197 - -2,423 519

39

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

302,630 5,088 230,918 121,366 -164,290 -11,531 4,472 221,774 5,269 302,630 5,088 230,918 121,366 -164,290 -11,531 4,472 221,774 5,269 252,667 39,043 Crude Oil 163,870 - - - - 115,845 -53,264 -13,771 3,101 209,575 5 0 18,928 Natural Gas Plant Liquids and Liquefied Refinery Gases 138,760 -110 3,391 3,503 -119,108 - - 94 6,946 4,261 15,135 1,470 Pentanes Plus 18,508 -110 - - - -13,355 - - 14 2,156 3,795 -922 194 Liquefied Petroleum Gases 120,252 - - 3,391 3,503 -105,753 - - 80 4,790 466 16,057 1,276 Ethane/Ethylene 63,265 - - - - -61,214 - - -6 - - 2,057 400 Propane/Propylene 36,541 - - 3,406 3,155 -28,078 - - 7 - 12 15,005 363 Normal Butane/Butylene 15,114 - - 294 255 -9,019 - - 88 2,241 455 3,860 366 Isobutane/Isobutylene 5,332 - - -309 93 -7,442 - - -9 2,549 - -4,866 147

40

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

315,006 29,943 578,101 299,380 14,453 11,088 543,388 108,925 315,006 29,943 578,101 299,380 14,453 11,088 543,388 108,925 573,483 1,831,621 Crude Oil 233,810 - - - - 237,344 8,334 7,688 468,825 2,975 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases 81,196 -552 19,023 4,020 - - 3,027 16,794 13,937 69,929 189,672 Pentanes Plus 11,167 -552 - - 772 - - -700 5,666 2,989 3,432 18,036 Liquefied Petroleum Gases 70,029 - - 19,023 3,248 - - 3,727 11,128 10,947 66,498 171,636 Ethane/Ethylene 30,015 - - 379 9 - - -414 - - 30,817 34,444 Propane/Propylene 25,545 - - 17,254 2,603 - - 2,582 - 10,040 32,780 67,782 Normal Butane/Butylene 6,893 - - 1,738 333 - - 999 4,711 907 2,347 58,942 Isobutane/Isobutylene 7,576 - - -348 303 - - 560 6,417 - 554 10,468

Note: This page contains sample records for the topic "butylene isobutane isobutylene" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

8,897 964 18,564 10,598 335 158 17,505 3,205 18,490 8,897 964 18,564 10,598 335 158 17,505 3,205 18,490 Crude Oil 6,489 - - - - 8,527 144 93 14,999 67 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 2,408 -18 630 170 - - 65 509 314 2,301 Pentanes Plus 317 -18 - - 29 - - -13 174 118 50 Liquefied Petroleum Gases 2,091 - - 630 141 - - 79 335 196 2,251 Ethane/Ethylene 974 - - 18 0 - - 34 - - 958 Propane/Propylene 712 - - 553 116 - - 36 - 171 1,175 Normal Butane/Butylene 179 - - 56 15 - - 5 143 26 77 Isobutane/Isobutylene 225 - - 3 9 - - 4 192 - 41 Other Liquids - - 981 - - 1,257 53 51 1,997 214 28 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 981 - - 40 151 5 1,050 116 0 Hydrogen - - - - - - 190 - - 190 0 - -

42

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

71 22 3,498 1,982 3,256 25 -53 3,444 248 5,216 71 22 3,498 1,982 3,256 25 -53 3,444 248 5,216 Crude Oil 26 - - - - 864 11 23 -4 919 9 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 45 0 39 49 73 - - -4 20 8 182 Pentanes Plus 8 0 - - 1 0 - - 0 0 1 7 Liquefied Petroleum Gases 37 - - 39 49 73 - - -4 20 7 175 Ethane/Ethylene 0 - - 0 - - - - 0 - - 1 Propane/Propylene 25 - - 35 44 73 - - -2 - 3 176 Normal Butane/Butylene 6 - - 4 2 0 - - -2 9 4 1 Isobutane/Isobutylene 6 - - -1 3 - - - 0 10 - -2 Other Liquids - - 22 - - 717 1,611 114 -5 2,505 10 -47 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 22 - - 29 291 -9 3 324 6 0 Hydrogen - - - - - - 4 - - 4 0 - - Oxygenates (excl. Fuel Ethanol) - - - - 0 - 0 0

43

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

44

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

34,932 594 95,116 42,741 9,239 5,791 830 89,707 10,470 87,406 34,932 594 95,116 42,741 9,239 5,791 830 89,707 10,470 87,406 142,840 Crude Oil 33,114 - - - - 36,279 - 4,213 311 73,295 - 0 52,719 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,818 -8 1,970 134 - - - 1,076 1,782 396 660 8,270 Pentanes Plus 794 -8 - - - - - - 163 552 92 -21 314 Liquefied Petroleum Gases 1,024 - - 1,970 134 - - - 913 1,230 304 681 7,956 Ethane/Ethylene 3 - - - - - - - - - - 3 - Propane/Propylene 420 - - 1,475 124 - - - 374 - 299 1,346 2,272 Normal Butane/Butylene 158 - - 451 10 - - - 378 556 5 -320 5,110 Isobutane/Isobutylene 443 - - 44 - - - - 161 674 - -348 574 Other Liquids - - 602 - - 3,200 7,556 2,809 -2,126 14,630 387 1,276 46,625

45

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

46

table04.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

4. 4. PAD District I-Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ........................................... 824 - 53,357 -2,000 -89 5,262 0 46,830 0 0 16,235 Natural Gas Liquids and LRGs ........ 829 569 1,233 - 4,737 -869 - 252 24 7,961 5,223 Pentanes Plus ................................ 79 - 0 - 0 7 - 0 1 71 19 Liquefied Petroleum Gases ............ 750 569 1,233 - 4,737 -876 - 252 24 7,889 5,204 Ethane/Ethylene ........................ 262 0 0 - 0 0 - 0 0 262 0 Propane/Propylene .................... 334 1,689 1,206 - 4,630 -262 - 0 20 8,101 4,043 Normal Butane/Butylene ............ 116 -843 27 - 107 -548 - 162 3 -210 821 Isobutane/Isobutylene ................ 38 -277 0 - 0 -66 - 90 0 -263 340 Other Liquids .................................... -272 - 5,668 - 350 537 - 7,268 17 -2,076 19,354 Other Hydrocarbons/Oxygenates ... 1,973

47

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

59,397 25,268 126,131 58,449 20,168 -10,157 5,610 119,848 7,211 59,397 25,268 126,131 58,449 20,168 -10,157 5,610 119,848 7,211 146,586 280,571 Crude Oil 44,167 - - - - 55,181 16,673 -10,758 505 102,476 2,282 0 102,610 Natural Gas Plant Liquids and Liquefied Refinery Gases 15,230 -515 3,462 1,887 -432 - - 2,252 3,146 2,129 12,105 58,830 Pentanes Plus 1,896 -515 - - 6 2,928 - - -549 1,119 1,599 2,146 7,743 Liquefied Petroleum Gases 13,334 - - 3,462 1,881 -3,360 - - 2,801 2,027 530 9,959 51,087 Ethane/Ethylene 4,901 - - - 9 -3,013 - - 339 - - 1,558 4,694 Propane/Propylene 5,587 - - 3,111 1,470 -650 - - 1,991 - 199 7,328 24,444 Normal Butane/Butylene 1,561 - - 475 162 156 - - 651 514 331 858 20,078 Isobutane/Isobutylene 1,285 - - -124 240 147 - - -180 1,513 - 215 1,871

48

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

49

U.S. Product Supplied for Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

18,553 18,551 18,724 19,046 19,091 19,116 1963-2013 18,553 18,551 18,724 19,046 19,091 19,116 1963-2013 Crude Oil 0 0 0 0 0 0 1981-2013 Natural Gas Liquids and LRGs 2,297 2,086 2,138 2,169 2,159 2,331 1981-2013 Pentanes Plus 52 48 113 -52 15 114 1981-2013 Liquefied Petroleum Gases 2,245 2,038 2,025 2,222 2,144 2,217 1973-2013 Ethane/Ethylene 921 930 894 963 940 1,027 1981-2013 Propane/Propylene 1,148 924 979 1,052 1,036 1,093 1973-2013 Normal Butane/Butylene 130 138 85 141 103 78 1981-2013 Isobutane/Isobutylene 47 45 68 66 64 18 1981-2013 Other Liquids 66 100 24 184 -43 199 1981-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 0 0 0 0 0 0 1991-2013 Unfinished Oils 67 100 24 184 -43 199 1981-2013 Motor Gasoline Blend. Comp. 0 0 0 0 0 0 1981-2013

50

TABLE12.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

2. 2. PAD District V-Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................ 67,121 - 13,641 4,786 -2,251 3,132 0 74,187 5,978 0 63,808 Natural Gas Liquids and LRGs ........ 2,884 1,346 5 - 0 -1,591 - 3,038 451 2,337 3,315 Pentanes Plus ................................... 1,572 - 0 - 0 -1 - 1,293 (s) 280 23 Liquefied Petroleum Gases .............. 1,312 1,346 5 - 0 -1,590 - 1,745 450 2,058 3,292 Ethane/Ethylene ............................ 2 0 0 - 0 0 - 0 0 2 0 Propane/Propylene ....................... 358 1,447 5 - 0 -805 - 0 149 2,466 1,676 Normal Butane/Butylene ............... 639 -241 0 - 0 -771 - 1,348 301 -480 1,111 Isobutane/Isobutylene ................... 313 140 0 - 0 -14 - 397 0 70 505 Other Liquids ..................................... 2,710 - 2,197 - 734 2,707 - 2,248 94 592 36,195 Other

51

table08.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

106,453 106,453 - 157,490 -279 -53,603 7,143 0 202,918 0 0 717,193 Natural Gas Liquids and LRGs ........ 39,438 10,759 2,005 - -2,109 -6,438 - 7,105 885 48,541 46,872 Pentanes Plus .................................. 5,820 - 1,031 - -167 925 - 2,057 0 3,702 4,603 Liquefied Petroleum Gases .............. 33,618 10,759 974 - -1,942 -7,363 - 5,048 885 44,839 42,269 Ethane/Ethylene ........................... 15,603 751 544 - 3,485 -1,605 - 0 0 21,988 14,111 Propane/Propylene ....................... 11,268 9,321 136 - -4,893 -3,707 - 0 637 18,902 15,091 Normal Butane/Butylene ............... 2,346 107 176 - -356 -2,748 - 3,088 248 1,685 7,266 Isobutane/Isobutylene ................... 4,401 580 118 - -178 697 - 1,960 0 2,264 5,801 Other Liquids .................................... 5,321 - 6,903 - -2,255 2,536 - 6,692 2,021 -1,280 65,913 Other Hydrocarbons/Oxygenates .... 4,613 - 22

52

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

53

U.S. Exports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 522,879 659,392 738,803 858,685 1,089,848 1,172,965 1981-2012 Crude Oil 10,006 10,464 15,985 15,198 17,158 24,693 1870-2012 Natural Gas Plant Liquids and Liquefied Refinery Gases 25,584 36,951 50,681 59,842 90,968 115,054 1981-2012 Pentanes Plus 4,776 12,393 14,337 11,792 36,837 43,136 1984-2012 Liquefied Petroleum Gases 20,809 24,558 36,344 48,050 54,131 71,918 1981-2012 Ethane/Ethylene 1983-1992 Propane/Propylene 15,501 19,264 30,925 39,860 45,243 62,490 1981-2012 Normal Butane/Butylene 5,308 5,294 5,419 8,189 8,888 9,428 1981-2012 Isobutane/Isobutylene 1984-1992 Other Liquids 32,049 23,477 23,625 44,514 67,981 78,359 1991-2012 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons

54

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

10,500 998 19,270 9,979 482 370 18,113 3,631 19,116 10,500 998 19,270 9,979 482 370 18,113 3,631 19,116 Crude Oil 7,794 - - - - 7,911 278 256 15,628 99 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 2,707 -18 634 134 - - 101 560 465 2,331 Pentanes Plus 372 -18 - - 26 - - -23 189 100 114 Liquefied Petroleum Gases 2,334 - - 634 108 - - 124 371 365 2,217 Ethane/Ethylene 1,001 - - 13 0 - - -14 - - 1,027 Propane/Propylene 852 - - 575 87 - - 86 - 335 1,093 Normal Butane/Butylene 230 - - 58 11 - - 33 157 30 78 Isobutane/Isobutylene 253 - - -12 10 - - 19 214 - 18 Other Liquids - - 1,015 - - 1,337 296 304 1,926 219 199 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 1,015 - - 75 121 -36 1,129 118 0 Hydrogen - - - - - - 208 - - 208 0 - -

55

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

56

untitled  

Gasoline and Diesel Fuel Update (EIA)

1,361 415 768 2,544 IsobutaneIsobutylene 151 4 155 99 62 164 325 Other HydrocarbonsHydrogenOxygenates 553 0 553 20 28 0 48 Other HydrocarbonsHydrogen 0 0 0 19 0 0 19...

57

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

58

Transport of Injected Isobutane by Thermal Groundwater in Long...  

Open Energy Info (EERE)

uses of isotopes have led to novel interpretations of the evolution of fluid and rock chemistry over time. New modelling techniques have allowed elucidation of multi-component...

59

Nanocomposites Derived from Sulfonated Poly(butylene terephthalate)  

Science Journals Connector (OSTI)

Bret J. Chisholm ,*† Robert B. Moore ,*‡ Grant Barber ,‡ Farid Khouri ,† Anne Hempstead ,† Michael Larsen ,† Eric Olson ,† Jim Kelley ,† Gary Balch ,† and Joel Caraher † ...

Bret J. Chisholm; Robert B. Moore; Grant Barber; Farid Khouri; Anne Hempstead; Michael Larsen; Eric Olson; Jim Kelley; Gary Balch; Joel Caraher

2002-06-07T23:59:59.000Z

60

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

0 0 December 2011 Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH3-(CH2)n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate. The product of an alkylation reaction. It usually refers to the high octane product from alkylation units. This alkylate is used in blending high octane gasoline. Alkylation. A refining process for chemically combining isobutane with olefin hydrocarbons (e.g., propylene, butylene) through the control of temperature and pressure in the presence of an acid catalyst,

Note: This page contains sample records for the topic "butylene isobutane isobutylene" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 September 2013 Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH3-(CH2)n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate. The product of an alkylation reaction. It usually refers to the high octane product from alkylation units. This alkylate is used in blending high octane gasoline. Alkylation. A refining process for chemically combining isobutane with olefin hydrocarbons (e.g., propylene, butylene) through the control of temperature and pressure in the presence of an acid catalyst,

62

Extended Catalyst Longevity via Supercritical Isobutane Regeneration of a Partially Deactivated USY Alkylation Catalyst  

Science Journals Connector (OSTI)

Box 1625, Idaho Falls, Idaho 83415-2208, and Marathon?Ashland Petroleum, LLC, P.O. ... 2 These processes present serious safety and environmental concerns arising from the need to transport and store the concentrated liquid acids, as well as from the need to dispose of acid?oil sludges produced as byproducts of the processes. ...

David N. Thompson; Daniel M. Ginosar; Kyle C. Burch; David J. Zalewski

2005-05-26T23:59:59.000Z

63

ETBE Synthesis via Reactive Distillation. 1. Steady-State Simulation and Design Aspects  

Science Journals Connector (OSTI)

To validate the simulation results without experimental data, Smith's MTBE column was simulated for the case described in his patent application (Smith, 1980) using both Pro/II and SpeedUp. ... The maximum conversion in a 10-stage ETBE reactive distillation column (Figure 5) and a 30-stage ETBE reactive distillation column based on a commercial MTBE column (Simulation Sciences, 1995) (where the co-objective is to essentially eliminate butylenes from the ether product) was determined for varying isobutylene concentrations in the hydrocarbon feed to the primary reactor, by simulations using Pro/II. ... 11.?Determine?column?diameter?from?simulation?data?for?vapor?and?liquid?loadings?and?column?height?from?stage?efficiency? estimates,?including?appropriate?allowances?for?uncertainties?in?flooding?factor?and?stage?efficiency. ...

Martin G. Sneesby; Moses O. Tadé; Ravindra Datta; Terence N. Smith

1997-05-05T23:59:59.000Z

64

@Title = Definitions of Petroleum Products and Other Terms  

U.S. Energy Information Administration (EIA) Indexed Site

Definitions of Petroleum Products and Other Terms (Revised January 2010) Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH 3 - (CH 2 )n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate. The product of an alkylation reaction. It usually refers to the high octane product from alkylation units. This alkylate is used in blending high octane gasoline. Alkylation. A refining process for chemically combining isobutane with olefin hydrocarbons (e.g., propylene, butylene) through the control of temperature and pressure in the presence of an acid catalyst, usually sulfuric acid or hydrofluoric acid. The product, alkylate, an

65

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Plant Field Production Plant Field Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Butylene (C4H8) An olefinic hydrocarbon recovered from refinery processes. Ethane (C2H6) A normally gaseous straight-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of -127.48º F. It is extracted from natural gas and refinery gas streams. Field Production Represents crude oil production on leases, natural gas liquids production at natural gas processing plants, new supply of other hydrocarbons/oxygenates and motor gasoline blending components, and fuel ethanol blended into finished motor gasoline. Isobutane (C4H10) A normally gaseous branch-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of 10.9º F. It is extracted from natural gas or refinery gas streams.

66

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

petroleum petroleum Alcohol: The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH(3)-(CH(2))n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate: The product of an alkylation reaction. It usually refers to the high-octane product from alkylation units. This alkylate is used in blending high octane gasoline. Alkylation: A refining process for chemically combining isobutane with olefin hydrocarbons (e.g., propylene, butylene) through the control of temperature and pressure in the presence of anacid catalyst, usually sulfuric acid or hydrofluoric acid. The product alkylate, an isoparaffin, has high octane value and is blended with motor and aviation gasoline to

67

U.S. Refinery  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil and Petroleum Products Crude Oil and Petroleum Products 354,918 353,802 345,413 343,062 345,025 342,763 1993-2013 Crude Oil 98,082 97,563 90,880 93,075 97,586 90,778 1981-2013 All Oils (Excluding Crude Oil) 256,836 256,239 254,533 249,987 247,439 251,985 1993-2013 Pentanes Plus 947 867 828 805 708 856 1993-2013 Liquefied Petroleum Gases 12,896 14,096 15,761 16,662 18,296 18,683 1993-2013 Ethane/Ethylene 281 321 261 242 205 171 1993-2013 Propane/Propylene 2,692 2,994 3,569 3,518 4,099 4,104 1993-2013 Normal Butane/Butylene 7,627 8,451 9,511 10,757 11,921 12,147 1993-2013 Isobutane/Butylene 2,296 2,330 2,420 2,145 2,071 2,261 1993-2013 Other Hydrocarbons 19 43 49 33 26 21 2009-2013 Oxygenates (excluding Fuel Ethanol) 116 99 100 82 71 78 2009-2013

68

U.S. Refinery  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil and Petroleum Products Crude Oil and Petroleum Products 346,915 338,782 331,615 339,907 336,327 341,211 1993-2012 Crude Oil 89,070 86,598 90,944 88,982 90,640 88,781 1981-2012 All Oils (Excluding Crude Oil) 257,845 252,184 240,671 250,925 245,687 252,430 1993-2012 Pentanes Plus 949 997 1,006 971 895 884 1993-2012 Liquefied Petroleum Gases 13,161 12,456 12,611 14,896 14,429 15,934 1993-2012 Ethane/Ethylene 31 185 118 220 223 214 1993-2012 Propane/Propylene 4,120 3,293 3,577 4,278 4,087 4,574 1993-2012 Normal Butane/Butylene 6,320 6,482 6,478 7,818 7,794 8,774 1993-2012 Isobutane/Butylene 2,690 2,496 2,438 2,580 2,325 2,372 1993-2012 Other Hydrocarbons 29 20 41 42 2009-2012 Oxygenates (excluding Fuel Ethanol) 47 24 58 112 2009-2012

69

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

70

U.S. Total Stocks  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil and Petroleum Products Crude Oil and Petroleum Products 1,665,345 1,736,739 1,776,375 1,794,099 1,750,087 1,807,777 1956-2012 Crude Oil 983,046 1,027,663 1,051,795 1,059,975 1,026,630 1,060,764 1913-2012 All Oils (Excluding Crude Oil) 682,299 709,076 724,580 734,124 723,457 747,013 1993-2012 Pentanes Plus 10,278 13,775 10,481 12,510 17,596 12,739 1981-2012 Liquefied Petroleum Gases 95,592 113,134 102,147 108,272 111,778 140,529 1967-2012 Ethane/Ethylene 14,869 27,591 20,970 24,323 22,892 35,396 1967-2012 Propane/Propylene 52,007 55,408 50,140 49,241 54,978 67,991 1967-2012 Normal Butane/Butylene 21,862 23,031 24,149 27,652 26,779 28,574 1981-2012 Isobutane/Butylene 6,854 7,104 6,888 7,056 7,129 8,568 1981-2012 Other Hydrocarbons 29 20 41 42 2009-2012

71

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

72

E. In Situ Polymerization of Cyclic Butylene Terephthalate(CBT) Oligomers with Conductive fillers for Thermal Management  

E-Print Network (OSTI)

copolymers with Thermal conductivity Composites This research is funded by Honeywell Corporation and the Florida High Tech Corridor. NOTE: Honeywell and Julie Harmon have signed an agreement with Cyclics Corp; these materials exhibit an intrinsic fiber TC as high as 913 W/mK (51). Earlier work with Honeywell focused

Harmon, Julie P.

73

Effects of Multiwalled Carbon Nanotubes on the Shear-Induced Crystallization Behavior of Poly(butylene terephthalate)  

E-Print Network (OSTI)

to disperse particles and to generate composition uniformity and is ac- complished using twin screw extruders

Fisher, Frank

74

Dynamics of H abstraction from alcohols (CH3OH, C2H5OH and 2-C3H7OH) using velocity map imaging in crossed molecular beams  

E-Print Network (OSTI)

investigation of the reactions with propane, isobutane,selectively deuterated propane and also methane. State-ratios were very similar for propane and isobutane. Andresen

Ahmed, M.

2011-01-01T23:59:59.000Z

75

Fluid catalytic cracking feed hydrotreatment and its severity impact on product yields and quality  

Science Journals Connector (OSTI)

This paper investigates the effect of fluid catalytic cracking (FCC) feed hydrotreatment and its severity increase on product yields and quality obtained in a commercial and a laboratory MAT FCC units. The hydrotreatment of Ural heavy vacuum gas oil reduces not only sulfur, nitrogen, Conradson carbon and metals content in the FCC feed but also increases the mononuclear aromatic hydrocarbons content by 8% absolute at almost no change in the total aromatics content. Regardless of this 8% increase of the mononuclear aromatics in the hydrotreated FCC feed the conversion increase in both commercial and laboratory MAT units was only 2%. The severity increase in the FCC feed hydrotreater leads to a higher conversion in the FCC, higher hydrogen transfer rate that results in higher isobutane/butylenes ratio, lower gasoline olefins content, and higher gasoline motor octane number. The hydrotreatment of the Ural heavy vacuum gas oil exhibited the same changes in FCC catalyst selectivities: lower coke and LCO selectivities and higher gasoline selectivity in both commercial riser FCC unit that has between 2 and 3 s time on stream, and the fixed bed reactor MAT unit, that has 30 s time on stream.

Dicho S. Stratiev; Ivelina K. Shishkova; Dimitar S. Dobrev

2012-01-01T23:59:59.000Z

76

Quantitative Determination of n-Propane, iso-Butane, and n-Butane by Headspace GC-MS in Intoxications by Inhalation of Lighter Fluid  

Science Journals Connector (OSTI)

......2-butanol, tetrahydrofuran, 1-bromopropane, n-heptane, 1,2-dichloroethane...due to toxic effects ofn-bu- tane inhalation and considered accidental in nature...in a 14-year-old boy after butane inhalation. Ir. Med. J.92(4): 344 (1999......

Marie-Paule L.A. Bouche; Willy E. Lambert; Jan F.P. Van Bocxlaer; Michel H. Piette; André P. De Leenheer

2002-01-01T23:59:59.000Z

77

Thermodynamics of Gaseous Hydrocarbons: Ethane, Ethylene, Propane, Propylene, n?Butane, Isobutane, 1?Butene, Cis and Trans 2?Butenes, Isobutene, and Neopentane (Tetramethylmethane)  

Science Journals Connector (OSTI)

It is pointed out that the assumption of completely free internal rotation in the simpler hydrocarbon molecules is probably responsible for the discrepancies between the results of previous statistical mechanical calculations and the experimental data. Using the formulas and tables of the preceding paper calculations are presented which show that for reasonable values of rotation restricting potentials complete agreement can be obtained with all experimental results. The uncertainty as to the exact height and shape of these potential barriers together with the possible errors in estimated vibration frequencies make highly precise calculations of thermodynamic functions out of the question at present. Nevertheless the general agreement with experiment indicates that the potentials and frequencies selected must be approximately correct. These molecular structure data together with the available values of heats of combustion and hydrogenation are then employed in calculations which yield thermodynamic constants and the free energy of formation as a function of the temperature in the range from 300 to 1500°K. The various calculations have been made for all of the hydrocarbons listed in the title.

Kenneth S. Pitzer

1937-01-01T23:59:59.000Z

78

Studies on Mechanical Properties, Thermal Degradation, and Combustion Behaviors of Poly(1,4-butylene terephthalate)/Glass Fiber/Cerium Hypophosphite Composites  

Science Journals Connector (OSTI)

For the GRPBT composite with 15 wt % of CHP, the storage modulus value at 30 °C was 3 times that of GRPBT. ... Yang, W.; Hu, Y.; Tai, Q. L.; Lu, H. D.; Song, L.; Yuen, R. K. K.Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles Composites, Part A 2011, 42, 794– 800 ...

Wei Yang; Ningning Hong; Lei Song; Yuan Hu; Richard K. K. Yuen; Xinglong Gong

2012-06-04T23:59:59.000Z

79

Role of nanoclay in determining microfibrillar morphology development in PP/PBT blend nanocomposite fibers  

Science Journals Connector (OSTI)

The aim of this work is to study the effect of organically modified montmorillonite (Cloisite 30B) on the microfibril formation of poly (butylene terephthalate) droplets in polypropylene/poly (butylene terephthal...

Ahmad Bigdeli; Hossein Nazockdast; Abosaeed Rashidi…

2012-10-01T23:59:59.000Z

80

Amphiphilic Maleic Acid-Containing Alternating Copolymers--2. Dilute Solution Characterization by Light  

E-Print Network (OSTI)

polyelectrolyte. The copolymer of maleic acid­sodium salt and di-isobutylene (DIBMA-Na) has a similar salting

Colby, Ralph H.

Note: This page contains sample records for the topic "butylene isobutane isobutylene" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Amphiphilic Maleic Acid-Containing Alternating Copolymers--1. Dissociation Behavior and Compositions  

E-Print Network (OSTI)

in aqueous CaCl2 (0.02 N) solution for copolymers of maleic acid and isobutylene, diisobutylene, and styrene

Colby, Ralph H.

82

Protonation sites and dissociation mechanisms of t-butylcarbamates in tandem mass  

E-Print Network (OSTI)

(isobutylene, i-C4H8) and carbon dioxide is shown by experi- ment and theory to proceed in two steps. Energy-methylpropene (isobutylene, i-C4H8) and carbon dioxide to result in the combined loss of 100Da neutral fragments of tert-butylcarbamate ions in the gas-phase and methanol solution were studied for simple secondary

Gelb, Michael

83

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

84

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

85

EARTH SCIENCES DIVISION. ANNUAL REPORT 1977.  

E-Print Network (OSTI)

as pure isobutane; turbine efficiency, 85%; generator, 98%;routine. Overall turbine efficiency may be computed as acomputes Off-Design turbine efficiency for changing mass

Witherspoon, P.A.

2011-01-01T23:59:59.000Z

86

Sandia National Laboratories: Synchrotron photoionization measurements...  

NLE Websites -- All DOE Office Websites (Extended Search)

photoionization measurements of fundamental autoignition reactions: Product formation in low-temperature isobutane oxidation Two CRF Papers Named "Distinguished" for 34th...

87

e-Polymers 2008, no. 033 http://www.e-polymers.org  

E-Print Network (OSTI)

with styrene-ethylene/butylene-styrene block copolymer (SEBS) added as a compatibilizer between the two main because of lower densities, easy maintenance and inexpensive prices [1]. Among a large variety of PBMs [2 polymers. A block copolymer SEBS (styrene- ethylene/butylene-styrene) contains in each segment two styrene

North Texas, University of

88

A Generalised and Easily Adoptable Gas Chromatographic Method for the Analysis of Gaseous Hydrocarbons  

Science Journals Connector (OSTI)

......2-Methylbutene-2. the case of ethane and ethylene, which were, however, com...Methane, (2) Ethane, (3) Ethylene, (4) Propane, (5) Isobutane...phases, whose relatively high price may be more than compensated...Stationary Phases. Hydrocarbon Ethylene Acetylene Propylene Isobutane......

N.C. Saha; S.K. Jain; R.K. Dua

1978-08-01T23:59:59.000Z

89

Polyurethane Binders for Condensed High-Energy-Content Systems  

Science Journals Connector (OSTI)

A procedure was developed for preparing poly(ethylene, butylene) glycol adipate urethane plasticized with 1,5-diazido-3-nitrazapentane. The correlation between the conditions of the polymer synthesis and its phys...

V. V. Bestuzheva; N. K. Nalimova; I. V. Tselinskii

2001-09-01T23:59:59.000Z

90

A BRIEF HISTORY OF INDUSTRIAL CATALYSIS  

E-Print Network (OSTI)

More recently, Air Products and Chemicals Corporation hasProcess Division of Air Products & Chemicals, Inc. HC Q)air oxidation of isobutane. T-butyl alcohol is a co- product

Heinemann, Heinz

2013-01-01T23:59:59.000Z

91

Observations of nonmethane organic compounds during ARCTAS - Part 1: Biomass burning emissions and plume enhancements  

E-Print Network (OSTI)

TOGA WAS Isobutane WAS Propane WAS Ethane TOGA WAS ButaneButane i-Butane Propene Propane Ethyne Ethene Ethane globallight alkanes against propane determined using the WAS data,

2011-01-01T23:59:59.000Z

92

Methods Development for On-Line Gas Chromatography  

Science Journals Connector (OSTI)

......contractual specifications. Used to determine value and sale price of product. Monitors liquid or gas effluent wastes for loss...vinyl chloride on dioctylsebacate and Car- bowax 550. (A) ethylene, (B) propane, (C) propylene, (D) isobutane, (E......

Richard Villalobos

1990-07-01T23:59:59.000Z

93

Direct contact, binary fluid geothermal boiler  

DOE Patents (OSTI)

Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

Rapier, Pascal M. (Richmond, CA)

1982-01-01T23:59:59.000Z

94

ADSORPTION/DESORPTION STUDIES ON SOLID ACID ALKYLATION CATALYSTS USING A TAPERED ELEMENT OSCILLATING MICROBALANCE (TEOM)  

E-Print Network (OSTI)

for the first time the adsorption/desorption characteristics of alkylation reactants and products on these zeolites and some mesoporous materials. Equilibrium adsorption isotherms were obtained on these catalysts using n-butane, isobutane, and propane....2.1. Zeolites 72 4.2.2. Mesoporous Materials 78 4.2.3. Chemicals 79 vi 4.3. Equilibrium Adsorption Isotherms of n-Butane, Isobutane, and Propane on b- zeolite and USY-zeolite 79 4.4. Equilibrium Adsorption Isotherms of CO2 on b-zeolite and USY-zeolite 89 4...

Gong, Kening

2008-10-23T23:59:59.000Z

95

e-Polymers 2008, no. 034 http://www.e-polymers.org  

E-Print Network (OSTI)

: 6 March, 2008) Abstract: Styrene-ethylene/butylene-styrene (SEBS) block copolymer was used prices [2]. Mechanics of PBMs is relatively well understood [3, 4]. However, perhaps even more needed. There are many kinds of PBMs available in the market with a wide range in properties and prices. Polypropylene

North Texas, University of

96

Amphiphilic diblock copolymer gels: the relationship between structure and rheology  

Science Journals Connector (OSTI)

...phase behavior of poly(ethylene oxide){poly(propylene oxide){poly(ethylene oxide) block copolymers...Padget, J. C., Price, C. & Booth, C. 1993...Ali-Adib, Z., Price, C. & Booth, C. 1998...triblock copolymer of ethylene oxide and 1,2-butylene...

2001-01-01T23:59:59.000Z

97

Silica nanocasting of lyotropic surfactant phases and organized organic matter: material science or an analytical tool?  

Science Journals Connector (OSTI)

...of polymers, such as poly(ethylene oxide), poly(methyl methacrylate...relevant templates with a very low price, polymer dispersions or latexes...systems far beyond water: poly(ethylene-co-butylene)-b-poly(ethylene oxide) (KLE-polymers...

2006-01-01T23:59:59.000Z

98

untitled  

Annual Energy Outlook 2012 (EIA)

Plus 32 - 0 0 - 8 22 2 0 Liquefied Petroleum Gases 36 68 2 0 - 23 36 15 32 EthaneEthylene 0 0 0 0 - 0 0 0 0 PropanePropylene 14 58 1 0 - 11 0 14 47 Normal ButaneButylene...

99

PSA Vol 1 Tables Revised Ver 2 Print.xls  

Annual Energy Outlook 2012 (EIA)

Pentanes Plus 37 - 0 0 - 0 28 1 8 Liquefied Petroleum Gases 40 68 2 0 - 0 39 18 53 EthaneEthylene 0 0 0 0 - 0 0 0 0 PropanePropylene 13 56 2 0 - 0 0 15 56 Normal ButaneButylene...

100

untitled  

Annual Energy Outlook 2012 (EIA)

Plus 37 - 0 0 - 0 25 1 11 Liquefied Petroleum Gases 40 69 2 0 - 0 38 18 55 EthaneEthylene 0 0 0 0 - 0 0 0 0 PropanePropylene 13 56 2 0 - 0 0 15 56 Normal ButaneButylene...

Note: This page contains sample records for the topic "butylene isobutane isobutylene" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

untitled  

Annual Energy Outlook 2012 (EIA)

Plus 38 - 0 0 - 1 26 1 11 Liquefied Petroleum Gases 40 77 3 0 - 9 34 19 58 EthaneEthylene 0 0 0 0 - 0 0 0 0 PropanePropylene 13 56 2 0 - 3 0 15 53 Normal ButaneButylene...

102

untitled  

Gasoline and Diesel Fuel Update (EIA)

Pentanes Plus 3 - 0 0 - 0 0 0 3 Liquefied Petroleum Gases 14 13 56 88 - -8 5 1 174 EthaneEthylene 0 0 0 0 - 0 0 0 1 PropanePropylene 9 45 50 88 - 1 0 0 191 Normal ButaneButylene...

103

Input to Flowsheet Simulation This appendix contains the input that was entered for alkylation model in the  

E-Print Network (OSTI)

-D C-607 Isobuatane Accumulator Pot C-614A Suction Trap C-614B Flash Drum C-615 Refrigerant Accumulator Isobutane chiller E-634-56 Refrigerant Partial Condenser E-640 Economizer Feed Cooler E-641-44 Depropanizer Charge Condenser E-695 Alky Deisobutanizer Reboiler E-696 Alky Deisobutanizer Side Reboiler E-6XX

Pike, Ralph W.

104

Roaming radical pathways for the decomposition of alkanes.  

SciTech Connect

CASPT2 calculations predict the existence of roaming radical pathways for the decomposition of propane, n-butane, isobutane and neopentane. The roaming radical paths lead to the formation of an alkane and an alkene instead of the expected radical products. The predicted barriers for the roaming radical paths lie {approx}1 kcal/mol below the corresponding radical asymptotes.

Harding, L. B.; Klippenstein, S. J. (Chemical Sciences and Engineering Division)

2010-01-01T23:59:59.000Z

105

Limits to Power Growth  

Science Journals Connector (OSTI)

...isobutane to drive turbines (Hammond, 1972a...effective conservation strategy would be for the...percent), natural gas (now approximately...progress are the development of cryogenic tankers...so that natural gas can be transported...high-temperature gas turbines or magnetohydrodynamic...

106

Table 39. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

State/Refiner/Location Alkylates Aromatics State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) Isooctane a

107

Catalytic oxidation of light alkanes in presence of a base  

DOE Patents (OSTI)

The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol.

Bhinde, Manoj V. (Boothwyn, PA); Bierl, Thomas W. (West Chester, PA)

1998-01-01T23:59:59.000Z

108

Catalytic oxidation of light alkanes in presence of a base  

DOE Patents (OSTI)

The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol. 1 fig.

Bhinde, M.V.; Bierl, T.W.

1998-03-03T23:59:59.000Z

109

Limits to Power Growth  

Science Journals Connector (OSTI)

...billion barrels are either offshore or in Alaska, finding them...to heat isobutane to drive turbines (Hammond, 1972a) and water...incorporation of high-temperature gas turbines or magnetohydrodynamic installations...1972b, 1972c; Berg, 1973), wind, and oceanic thermal gradients...

110

STATEMENT OF CONSIDERATIONS REQUEST BY SABIC INNOVATIVE PLASTICS FOR WAIVER OF U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SABIC INNOVATIVE PLASTICS FOR WAIVER OF U.S. SABIC INNOVATIVE PLASTICS FOR WAIVER OF U.S. AND FOREIGN RIGHTS IN AN IDENTIFIED INVENTION, DOE DOCKET NO . S-109,544 MADE UNDER DOE AWARD NO. DE-FC36-03G013000, SUBCONTRACT 60105 WITH GENERAL ELECTRIC. W(l)-08-009; CH- 1453 S-109 ,544 "SYNTHESIS OF POL Y(BUTYLENE-CO-ISOSORBIDE TEREPHTHALA TE) AND ITS PROPERTIES" The Petitioner, SABIC Innovative Plastics IP B.V. ("SABIC"), has requested a waiver of domestic and foreign patent rights in the subject invention entitled "SYNTHESIS OF POL Y(BUTYLENE-CO-ISOSORBIDE TEREPHTHALA TE) AND ITS PROPERTIES." The invention relates to copolymers made from biological materials. The invention was made under the above identified subcontract with General Electric Plastics (GE). GE was subsequently purchased by SABIC

111

PC-based control system complements NGL heat-recovery project  

SciTech Connect

Valero Hydrocarbons has employed a PC-based control system to realize the energy-savings potential of a heat-recovery project at its Corpus Christi, Tex., NGL fractionator (CCF). Valero Hydrocarbons' CCF was originally placed on-line in 1966. The operation of CCF as an isobutane-butane-natural gasoline fractionation complex started in 1982 after the plant's recovery section was replaced by the cryogenic unit at the nearby Shoup plant. The plant is still a significant Gulf Coast NGL processor, having a rated throughput of 10,000 b/d of the isobutane and heavier feedstock. The plant has operated successfully, however, at rates up to 11,300 b/d.

Young, R.M.

1988-05-02T23:59:59.000Z

112

democrite-00023416,version1-10Dec2004 DAPNIA 04-79  

E-Print Network (OSTI)

/10, Ar/Isobutane : 95/5, Ar/CF4 : 97/3. The drift field was 120 V/cm in the first case and 200 V for a Micromegas TPC are presented. In particular, using simulations and measurements, it is shown that an Argon-CF4 mixture is optimal for operation at a future Linear Collider. 1 Introduction The European TESLA

Paris-Sud XI, Université de

113

Raft River binary-cycle geothermal pilot power plant final report  

SciTech Connect

The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

Bliem, C.J.; Walrath, L.F.

1983-04-01T23:59:59.000Z

114

Coke profile and effect on methane/ethylene conversion process  

E-Print Network (OSTI)

balance in catalytic cracking. It is also extremely important in the dehydrogenation of butane to butadiene, because coke formation limits the cycle time before regeneration of the catalyst is needed. There are many add that equally important examples..., methane, ethane, ethylene, propane, iso-butane, butane, iso-pentane, pentane and hexanes. Also, the flow rate of the effluent stream is measured using the bubble meter. The mole percentages of methane and ethylene are subtracted of the effluent stream...

Al-Solami, Bandar

2002-01-01T23:59:59.000Z

115

Kinetics simulation for natural gas conversion to unsaturated C? hydrocarbons  

E-Print Network (OSTI)

value. The usual chemical composition range of natural gas is shown in Table I. l. Table 1. 1 Natural Gas Composition Component Methane Ethane Pro ane iso-Butane normal-Butane iso-Pentane normal-Pentane Hexane s lus Nitro en Carbon Dioxide... Acetylene Carbon Ethylene Hydrogen Methane Water Carbon Dioxide CHAPTER I INTRODUCTION Challenge for Natural Gas Natural Gas (NG), which is comprised priinarily of methane, is found throughout the world, burns cleanly, and processes a high caloric...

Yang, Li

2003-01-01T23:59:59.000Z

116

Advanced binary cycles: Optimum working fluids  

SciTech Connect

A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265 F to 375 F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265 F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375 F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

Gawlik, K.; Hassani, V. [National Renewable Energy Lab., Golden, CO (United States)

1997-12-31T23:59:59.000Z

117

Effect of in-situ bonding system and surface modification of montmorillonite on the properties of butyl rubber/MMT composites  

Science Journals Connector (OSTI)

Isobutylene-isoprene rubber (IIR)/nanoclay composites were prepared by solution intercalation method. Cloisite Na + nanoclays and organo-modified montmorillonite (OMT) Cloisite 10 A .15 A and 20 A were used in this study. The effect of In-situ bonding system HRH (hexametylene tetramine: resorcinol: hydrated silica) on the dispersion of used nanoclays in the rubber matrix were examined by X-ray diffraction and atomic force microscopy (AFM). Characterization of the prepared composites was performed by studying the rheometeric and mechanical properties. The burning out behavior of the nanocomposites with and without the bonding system was also measured.

2012-01-01T23:59:59.000Z

118

TABLE17.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

7. 7. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, January 1998 Liquefied Refinery Gases ........................................... 576 -7 569 2,415 -51 392 2,756 Ethane/Ethylene ..................................................... 0 0 0 0 0 0 0 Ethane ............................................................... W W W W W W W Ethylene ............................................................ W W W W W W W Propane/Propylene ................................................ 1,656 33 1,689 2,645 329 628 3,602 Propane ............................................................. W W W 1,979 W W W Propylene .......................................................... W W W 666 W W W Normal Butane/Butylene ........................................ -804 -39 -843 -320 -337 -180 -837 Normal Butane ..................................................

119

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 32. Blender Net Inputs of Petroleum Products by PAD District, September 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 308 5 313 45 44 345 434 Pentanes Plus ...................................................... - - - - 2 75 77 Liquefied Petroleum Gases .................................. 308 5 313 45 42 270 357 Normal Butane .................................................. 308 5 313 45 42 270 357 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

120

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

0.PDF 0.PDF Table 20. Blender Net Inputs of Petroleum Products by PAD Districts, January 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 158 5 163 47 18 168 233 Pentanes Plus ...................................................... 5 - 5 - - 5 5 Liquefied Petroleum Gases .................................. 153 5 158 47 18 163 228 Normal Butane .................................................. 153 5 158 47 18 163 228 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

Note: This page contains sample records for the topic "butylene isobutane isobutylene" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Blender Net Inputs of Petroleum Products by PAD Districts, 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 1,744 80 1,824 345 324 2,161 2,830 Pentanes Plus ...................................................... 63 - 63 - - 87 87 Liquefied Petroleum Gases .................................. 1,681 80 1,761 345 324 2,074 2,743 Normal Butane .................................................. 1,681 80 1,761 345 324 2,074 2,743 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

122

TABLE16.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

6. 6. Refinery Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 1998 Crude Oil ................................................................... 44,047 2,783 46,830 70,320 12,891 21,794 105,005 Natural Gas Liquids ................................................. 252 0 252 2,613 131 1,076 3,820 Pentanes Plus ....................................................... 0 0 0 202 45 522 769 Liquefied Petroleum Gases ................................... 252 0 252 2,411 86 554 3,051 Ethane ............................................................... 0 0 0 0 0 0 0 Propane ............................................................. 0 0 0 0 0 0 0 Normal Butane .................................................. 162 0 162 1,792 76 435 2,303 Isobutane ..........................................................

123

Chem 115Lithium-Halogen ExchangeMyers RLi + R'X RX + R'Li  

E-Print Network (OSTI)

Chem 115Lithium-Halogen ExchangeMyers RLi + R'X RX + R'Li Lithium-halogen exchange reactions are essentially inert. 2 t-BuLi t-BuI + RLi t-BuLi isobutene + isobutane + LiI Lithium-halogen exchange reactions, and lithium iodide. H OEtBr H H OEtLi H1.1 eq n-BuLi Et2O, !80 °C Lau, K. S.; Schlosser, M. J. Org. Chem. 1978

124

Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure  

DOE Patents (OSTI)

Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

Sachtler, W.M.H.; Huang, Y.Y.

1998-07-28T23:59:59.000Z

125

Natural Gas Plant Field Production: Natural Gas Liquids  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 PADD 1 1,525 1,439 2,394 2,918 2,821 2,687 1981-2013 East Coast 1993-2008 Appalachian No. 1 1,525 1,439 2,394 2,918 2,821 2,687 1993-2013 PADD 2 12,892 13,208 13,331 13,524 15,204 15,230 1981-2013 Ind., Ill. and Ky. 1,975 1,690 2,171 1,877 2,630 2,746 1993-2013

126

Natural Gas Plant Stocks of Natural Gas Liquids  

Gasoline and Diesel Fuel Update (EIA)

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5,419 6,722 6,801 5,826 6,210 6,249 1993-2013 PADD 1 122 121 115 189 246 248 1993-2013 East Coast 1993-2010 Appalachian No. 1 122 121 115 189 246 248 1993-2013 PADD 2 959 891 880 1,129 1,104 1,041 1993-2013 Ind., Ill. and Ky. 311 300 298 308 262 260 1993-2013 Minn., Wis., N. Dak., S. Dak. 56 64 58 60 51 64 1993-2013 Okla., Kans., Mo. 592 527 524 761 791 717 1993-2013 PADD 3 3,810 5,007 5,032 3,817 4,246 4,272 1993-2013

127

MTBE Prices Responded to Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: On top of the usual factors impacting gasoline prices, natural gas has had some influence recently. MTBE is an oxygenate used in most of the RFG consumed in the U.S. Generally, it follows gasoline prices and its own supply/demand balance factors. But this winter, we saw it respond strongly to natural gas prices. MTBE is made from methanol and isobutylene, which in turn come from methane and butane. Both methane and butane come from natural gas streams. Until this year, the price of natural gas has been so low that it had little effect. But the surge that occurred in December and January pulled MTBE up . Keep in mind that about 11% MTBE is used in a gallon of RFG, so a 30 cent increase in MTBE is only about a 3 cent increase in the price of RFG. While we look ahead at this summer, natural gas prices should be

128

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 September 2013 Table 49. Exports of Crude Oil and Petroleum Products by PAD District, September 2013 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1 ............................................................ 94 2,282 598 1 - 2,975 99 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 453 2,129 10,579 380 396 13,937 465 Pentanes Plus .................................................. 300 1,599 652 346 92 2,989 100 Liquefied Petroleum Gases .............................. 153 530 9,927 34 304 10,947 365 Ethane/Ethylene ........................................... - - - - - - - Propane/Propylene ....................................... 126 199 9,412 4 299 10,040 335 Normal Butane/Butylene ...............................

129

ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS  

Open Energy Info (EERE)

ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ANALYSES Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ANALYSES Details Activities (1) Areas (1) Regions (0) Abstract: Measurement of organic compounds in Karaha- Telaga Bodas and Coso fluid inclusions shows there are strong relationships between H2 concentrations and alkane/alkene ratios and benzene concentrations. Inclusion analyses that indicate H2 concentrations > 0.001 mol % typically have ethane > ethylene, propane > propylene, and butane > butylene. There are three end member fluid compositions: type 1 fluids in which alkane compounds predominate, type 2 fluids that have ethane and propylene and no

130

Preparation of synthetic hydrocarbon lubricants  

SciTech Connect

A process is described for preparing synthetic lubricating materials which process comprises: (a) reacting (i) at least a portion of a reaction product of the liquid phase oligomerization of propylene, butylene or mixtures thereof containing a C/sub 6/ olefin component, (ii) a linear olefin reactant having an average carbon number ranging from about 10 to about 18 in the presence of a catalyst, (b) separating from the reaction mixture of (a) hydrocarbons which distill at a temperature above about 660/sup 0/ F. (316/sup 0/ C.), and (c) hydrogenating the reaction product of (b) by contact with hydrogen with or without a catalyst at a temperature ranging from about 25/sup 0/ C. to about 300/sup 0/ C.

Johnson, T.H.

1986-10-07T23:59:59.000Z

131

Production of biodiesel using expanded gas solvents  

SciTech Connect

A method of producing an alkyl ester. The method comprises providing an alcohol and a triglyceride or fatty acid. An expanding gas is dissolved into the alcohol to form a gas expanded solvent. The alcohol is reacted with the triglyceride or fatty acid in a single phase to produce the alkyl ester. The expanding gas may be a nonpolar expanding gas, such as carbon dioxide, methane, ethane, propane, butane, pentane, ethylene, propylene, butylene, pentene, isomers thereof, and mixtures thereof, which is dissolved into the alcohol. The gas expanded solvent may be maintained at a temperature below, at, or above a critical temperature of the expanding gas and at a pressure below, at, or above a critical pressure of the expanding gas.

Ginosar, Daniel M [Idaho Falls, ID; Fox, Robert V [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID

2009-04-07T23:59:59.000Z

132

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

133

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

15, 2013 | Release Date: May 16, 15, 2013 | Release Date: May 16, 2013 | Next Release: May 23, 2013 Previous Issues Week: 12/29/2013 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Natural gas liquids price information added to the Natural Gas Weekly Upd Starting today, the Natural Gas Weekly Update will include a graph and a brief text overview of natural gas liquids (NGL) spot prices for five products: ethane, propane, butane, isobutane, and natural gasoline, as well as a volume-weighted composite of these prices. The natural gas plant liquids (NGPL) composite price is calculated by applying the proportionate yield of liquids produced at natural gas processing plants to the daily spot prices. Next week's Natural Gas Weekly Update will feature the NGL

134

PSADEFS.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions of Petroleum Products and Other Terms Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH 3 - (CH 2 )n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate. The product of an alkylation reaction. It usu- ally refers to the high octane product from alkylation units. This alkylate is used in blending high octane gaso- line. Alkylation. A refining process for chemically combining isobutane with olefin hydrocarbons (e.g., propylene, buty- lene) through the control of temperature and pressure in the presence of an acid catalyst, usually sulfuric acid or hydrofluoric acid. The product, alkylate, an isoparaffin, has high octane value and is blended with motor and aviation gasoline to improve the antiknock

135

EIA-816  

U.S. Energy Information Administration (EIA) Indexed Site

6281 6281 Receipts During Month Inputs During Month Production During Month Shipments During Month Plant Fuel Use & Losses 247 Pentanes Plus Isobutane Normal Butane 249 Month 220 243 Ethane Propane Stocks End of Month Product Code Stocks Beginning of Month FORM EIA-816 MONTHLY NATURAL GAS LIQUIDS REPORT A completed form must be received by the 20th calendar day following the end of the report month. This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure to comply may result in criminal fines, civil penalties and other sanctions as provided by law. Title 18 USC 1001 makes it a criminal offense for any person knowingly and willingly to make to any Agency or Department of the United States any false, fictitious, or fraudulent statements as to any matter within its jurisdiction. See Instructions for further details on

136

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

137

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Production Production Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Butane (C4H10) A normally gaseous straight-chain or branch-chain hydrocarbon extracted from natural gas or refinery gas streams. It includes isobutane and normal butane and is designated in ASTM Specification D1835 and Gas Processors Association Specifications for commercial butane.

138

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Receipts by Pipeline, Tanker, and Barge Between PAD Districts Receipts by Pipeline, Tanker, and Barge Between PAD Districts Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Butane (C4H10) A normally gaseous straight-chain or branch-chain hydrocarbon extracted from natural gas or refinery gas streams. It includes isobutane and normal butane and is designated in ASTM Specification D1835 and Gas Processors Association Specifications for commercial butane.

139

Performances of linseed oil-free bakelite RPC prototypes with cosmic ray muons  

E-Print Network (OSTI)

A comparative study has been performed on Resistive Plate Chambers (RPC) made of two different grades of bakelite paper laminates, produced and commercially available in India. The chambers, operated in the streamer mode using argon, tetrafluroethane and isobutane in 34:59:7 mixing ratio, are tested for the efficiency and the stability with cosmic rays. A particular grade of bakelite (P-120, NEMA LI-1989 Grade XXX), used for high voltage insulation in humid conditions, was found to give satisfactory performance with stable efficiency of > 96% continuously for more than 130 days. A thin coating of silicone fluid on the inner surfaces of the bakelite RPC is found to be necessary for operation of the detector.

Biswas, S; Bose, S; Chattopadhyay, S; Saha, S; Sharan, M K; Viyogi, Y P

2009-01-01T23:59:59.000Z

140

Process for producing gasoline of high octane number, in particular lead-free gasoline  

SciTech Connect

A process is described for producing gasoline of high octane number from C/sub 3/ and C/sub 4/ olefinic cuts, such as those obtained by fractional distillation of a C/sub 3/ / C/sub 4/ catalytic cracking cut. It includes the steps of: (A) oligomerizing propylene of the C/sub 3/ cut to obtain a first gasoline fraction, (B) reacting the isobutene of the C/sub 4/ cut with methanol to produce methyl tert.-butyl ether which is separated from the unreacted C/sub 4/ hydrocarbons to form a second gasoline fraction, (C) alkylating said unreacted C/sub 4/ hydrocarbons with isobutane in the presence of an alkylation catalyst such as hydrofluoric acid, to form a third gasoline fraction, and (D) admixing, at least partially, said first, second and third gasoline fractions, so as to obtain gasoline of high octane number.

Chauvin, Y.; Gaillard, J.; Hellin, M.; Torck, B.; Vu, Q.D.

1981-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "butylene isobutane isobutylene" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

An investigation of the correlation of core analysis data with original core saturations in the Kelly-Snyder Field, Scurry County, Texas  

E-Print Network (OSTI)

with the oil ?as obtained, a copy of which is included as Table I' GAS ANALYSES Gas From Line 0 Keli - der Field A 8c M Colic e sll Ro~ %el Mo Aver s vsrage Mo Gas Used in Ex rijasnta vsr 8 Mo Carbon Diomide Nitrogen Methane Ethane Propane Iso-Butane... Normal-Butane Iao-Pentane Normal Pentane Heaanes plus . 26 4-99 54. 58 lg 80 1*23 3+33 . 28 ~ 27 1-75 5. 60 . 80 1, $9 . 63 1. 0$ lP. O) 51. 31 19~?7 19 ' 3Q 17. 68 16. @ 93 30 1. 69 ~ 27 ~ 07 66 51. 25 19 gO 28. 83 100 00 100...

Van Meter, Orville Everett, Jr

1952-01-01T23:59:59.000Z

142

The Research and Motor octane numbers of Liquefied Petroleum Gas (LPG)  

Science Journals Connector (OSTI)

This paper presents an experimental study of the Research (RON) and Motor (MON) octane numbers of Liquefied Petroleum Gas (LPG). A comprehensive set of RON and MON data for mixtures of propane, propylene (propene), n-butane and iso-butane are presented, using a method that is consistent with the currently active ASTM Research and Motor test methods for liquid fuels. Empirical models which relate LPG composition to its RON and MON are then developed, such that the simplest relationships between the constituent species’ mole fractions and the mixture octane rating are achieved. This is used to determine the degree of non-linearity between the composition and the RON and MON of different LPG mixtures. Finally, implications for LPG fuel quality standards are discussed briefly, as part of a suggested, more substantial undertaking by the community which also revisits the standard test procedures for measuring the RON and MON of LPG.

Kai J. Morganti; Tien Mun Foong; Michael J. Brear; Gabriel da Silva; Yi Yang; Frederick L. Dryer

2013-01-01T23:59:59.000Z

143

Long duration hard X-ray transatlantic payload  

SciTech Connect

The HXR80M large-area hard X-ray experiment, to be flown aboard a transatlantic balloon, is described. The detectors are two multiwire spectroscopic proportional counters (MWSPC) with a 2700-sq-cm sensitive area each. The two detectors are filled with an extremely pure xenon-isobutane mixture at high pressure (3-6 atm) in order to obtain good spectral resolution and high efficiency. The onboard data handling is performed by microprocessor-controlled electronics. The scientific aim of the experiment is the survey of the sky belt around the 38th parallel and in particular the observation of faint galactic objects and galactic binary systems in the 15-200 keV range.

La Padula, C.D.; Bazzano, A.; Boccaccini, L.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Ubertini, P.

1981-01-01T23:59:59.000Z

144

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT_CODE","PORT_CITY  

U.S. Energy Information Administration (EIA) Indexed Site

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT_CODE","PORT_CITY","PORT_STATE","PORT_PADD","GCTRY_CODE","CNTRY_NAME","QUANTITY","SULFUR","APIGRAVITY","PCOMP_RNAM","PCOMP_SNAM","PCOMP_STAT","STATE_NAME","PCOMP_PADD" RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT_CODE","PORT_CITY","PORT_STATE","PORT_PADD","GCTRY_CODE","CNTRY_NAME","QUANTITY","SULFUR","APIGRAVITY","PCOMP_RNAM","PCOMP_SNAM","PCOMP_STAT","STATE_NAME","PCOMP_PADD" 41547,"AEROPRES CORP ",1,253,"Isobutane/Ngl",3402,"NOYES, MN","MINNESOTA",2,260,"CANADA",2,0,0,,,,," " 41547,"AEROPRES CORP ",2,252,"Normal Butane/Ngl",3402,"NOYES, MN","MINNESOTA",2,260,"CANADA",5,0,0,,,,," "

145

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

146

The selective catalytic cracking of Fischer-Tropsch liquids to high value transportation fuels. Final report  

SciTech Connect

Amoco Oil Company, investigated a selective catalytic cracking process (FCC) to convert the Fischer-Tropsch (F-T) gasoline and wax fractions to high value transportation fuels. The primary tasks of this contract were to (1) optimize the catalyst and process conditions of the FCC process for maximum conversion of F-T wax into reactive olefins for later production of C{sub 4}{minus}C{sub 8} ethers, and (2) use the olefin-containing light naphtha obtained from FCC processing of the F-T wax as feedstock for the synthesis of ethers. The catalytic cracking of F-T wax feedstocks gave high conversions with low activity catalysts and low process severities. HZSM-5 and beta zeolite catalysts gave higher yields of propylene, isobutylene, and isoamylenes but a lower gasoline yield than Y zeolite catalysts. Catalyst selection and process optimization will depend on product valuation. For a given catalyst and process condition, Sasol and LaPorte waxes gave similar conversions and product selectivities. The contaminant iron F-T catalyst fines in the LaPorte wax caused higher coke and hydrogen yields.

Schwartz, M.M.; Reagon, W.J.; Nicholas, J.J.; Hughes, R.D.

1994-11-01T23:59:59.000Z

147

DME-to-oxygenates process studies  

SciTech Connect

The feasibility of the production of hydrocarbons from dimethyl ether (DNM) has been illustrated in a fixed bed micro-reactor as well as a bench scale fluidized bed reactor by the University of Akron/EPRI DME-to-Hydrocarbon (DTG) Process. The DTG process has distinct advantages over its methanol based counterpart. Specifically, the DTG process excels in the area of higher productivity, higher per-pass conversion, and lower heat duties than the MTG process. Also of special importance is the production of oxygenates -- including MTBE, ETBE, and TAME. DME may be reacted with isobutylene to produce a mixture of MTBE and ETBE. The properties of ETBE excel over MTBE in the areas of lower RVP and higher RON. According to industrial reports, MTBE is the fastest growing chemical (1992 US capacity 135,350 BPD, with expected growth of 34%/year to 1997). Also, recent renewed interest as an octane-enhancer and as a source of oxygen has spurred a growing interest in nonrefinery synthesis routes to ETBE. TAME, with its lower RVP and higher RON has proven useful as a gasoline blending agent and octane enhancer and may also be produced directly from DME. DME, therefore, serves as a valuable feedstock in the conversion of may oxygenates with wide-scale industrial importance. It should be also noted that the interest in the utilization of DME as process feedstock is based on the favorable process economics of EPRI/UA`s liquid phase DME process.

Tartamella, T.L.; Sardesai, A.; Lee, S. [Univ. of Akron, OH (United States); Kulik, C.J. [Electric Power Research Inst., Palo Alto, CA (United States)

1994-12-31T23:59:59.000Z

148

Photooxidation and Photodesorption in the Photochemistry of Isobutene on TiO2(110)  

SciTech Connect

The photochemistry of isobutene was examined on the rutile TiO2(110) surface as a function of the surface pretreatment condition and irradiation temperature using temperature programmed desorption (TPD) and photon stimulated desorption (PSD). Isobutene adsorbs molecularly on the clean TiO2(110) surface without detectable thermal decomposition. Preadsorption of oxygen, either as atoms or chemisorbed molecules, did not promote thermal reactions with isobutene, but instead blocked isobutene adsorption sites. Ultraviolet (UV) light irradiation of isobutene adsorbed on the clean surface led to depletion through photodesorption without significant photodecomposition. Isobutene PSD yields increased with increasing surface temperature suggesting that activated molecules sample their physisorbed potential energy surface during photodesorption. Preadsorption of oxygen promoted partial photooxidation of adsorbed isobutene to acetone, methacrolein and isobutanal. Acetone was only detected when molecular oxygen was present, indicating that O2 addition occurred across the C=C bond. In contrast, results from use of D6-isobutene indicated that coadsorption with either O adatoms or O2 molecules led to photochemical production of methacrolein (and likely isobutanal) through C-H bond cleavage on a methyl group. Irradiation an adlayer comprised of isobutene isolated from the surface by 1 ML of preadsorbed O2 showed the most photoconversion of isobutene, which suggests that photoactivation of adsorbed O2 is a key step in partial photooxidation of isobutene. Comparison of the isobutene PSD and oxidation product yields as a function of surface temperature between 20 and 120 K indicates a competition between photooxidation and photodesorption that varies with temperature. ‘Direct’ charge transfer events between isobutene and the surface, favored at higher temperature, compete with partial oxidation pathways initiated by ‘indirect’ activation of isobutene by O2, which is favored at low temperature. Access of O2 to the surface is critical to achieving desired isobutene photooxidation rates and products, and isobutene photodesorption may provide a means of regulating the isobutene surface coverage. Work reported here was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences, and performed in the Williams R. Wiley Environmental Molecular Science Laboratory (EMSL), a Department of Energy user facility funded by the Office of Biological and Environmental Research. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U.S. Department of Energy by the Battelle Memorial Institute under contract DEAC05-76RL01830.

Henderson, Michael A.

2013-07-11T23:59:59.000Z

149

East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by  

U.S. Energy Information Administration (EIA) Indexed Site

Type: Net Receipts Receipts Shipments Type: Net Receipts Receipts Shipments Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Type Area 2007 2008 2009 2010 2011 2012 View History Total Crude Oil and Petroleum Products 1,009,989 959,458 1,099,509 1,131,797 1,168,599 1,191,766 1981-2012 Crude Oil -3,860 -5,544 8,672 5,983 5,106 4,126 1981-2012 Petroleum Products 1,013,849 965,002 1,090,837 1,125,814 1,163,493 1,187,640 1986-2012 Pentanes Plus -590 -452 -113 -19 1991-2012 Liquefied Petroleum Gases 32,846 32,207 20,384 34,725 33,545 26,723 1981-2012 Ethane/Ethylene 1989-2002 Propane/Propylene 32,199 31,673 19,415 33,585 33,025 26,601 1989-2012 Normal Butane/Butylene

150

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

3,256,148 352,785 6,794,407 3,878,852 122,574 57,691 6,406,693 3,256,148 352,785 6,794,407 3,878,852 122,574 57,691 6,406,693 1,172,965 6,767,418 1,807,777 Crude Oil 2,374,842 - - - - 3,120,755 52,746 34,134 5,489,516 24,693 0 1,060,764 Natural Gas Plant Liquids and Liquefied Refinery Gases 881,306 -6,534 230,413 62,192 - - 23,894 186,270 115,054 842,159 153,268 Pentanes Plus 116,002 -6,534 - - 10,680 - - -4,857 63,596 43,136 18,273 12,739 Liquefied Petroleum Gases 765,304 - - 230,413 51,512 - - 28,751 122,674 71,918 823,886 140,529 Ethane/Ethylene 356,592 - - 6,597 115 - - 12,504 - - 350,800 35,396 Propane/Propylene 260,704 - - 202,309 42,460 - - 13,013 - 62,490 429,970 67,991 Normal Butane/Butylene 65,555 - - 20,580 5,567 - - 1,795 52,246 9,428 28,233 28,574

151

U.S. Refinery Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 5,383,494 5,119,100 4,676,865 4,568,301 4,484,600 4,395,128 2005-2012 Liquefied Refinery Gases 238,904 230,431 227,470 240,454 225,992 230,413 2005-2012 Ethane/Ethylene 7,323 6,671 7,069 7,228 7,148 6,597 2005-2012 Ethane 5,145 4,608 5,229 5,200 5,105 4,835 2005-2012 Ethylene 2,178 2,063 1,840 2,028 2,043 1,762 2005-2012 Propane/Propylene 205,179 190,020 196,011 204,223 201,492 202,309 2005-2012 Propane 120,596 114,268 106,177 102,913 98,508 100,933 2005-2012 Propylene 84,583 75,752 89,834 101,310 102,984 101,376 2005-2012 Normal Butane/Butylene 24,285 30,887 24,148 30,281 17,449 20,580 2005-2012 Normal Butane 25,715 33,092 25,825 32,094 19,263 22,965 2005-2012

152

U.S. Refinery and Blender Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 6,567,929 6,641,293 6,527,069 6,735,067 6,815,590 6,794,407 1981-2012 Liquefied Refinery Gases 238,904 230,431 227,470 240,454 225,992 230,413 1981-2012 Ethane/Ethylene 7,323 6,671 7,069 7,228 7,148 6,597 1981-2012 Ethane 5,145 4,608 5,229 5,200 5,105 4,835 1993-2012 Ethylene 2,178 2,063 1,840 2,028 2,043 1,762 1993-2012 Propane/Propylene 205,179 190,020 196,011 204,223 201,492 202,309 1981-2012 Propane 120,596 114,268 106,177 102,913 98,508 100,933 1995-2012 Propylene 84,583 75,752 89,834 101,310 102,984 101,376 1993-2012 Normal Butane/Butylene 24,285 30,887 24,148 30,281 17,449 20,580 1981-2012 Normal Butane 25,715 33,092 25,825 32,094 19,263 22,965 1993-2012

153

Correlation between gas-phase and solution-phase reactivities of hydroxyl radicals toward saturated organic compounds  

SciTech Connect

The gas-phase and aqueous-solution-phase reactivities of hydroxyl radicals with a wide variety of organic compounds are compared. When kinetic data are available for the same reaction occurring in both phases, this comparison provides useful information about the reaction mechanism. Through this comparison the authors can demonstrate a linear correlation between the gas/solution-phase OH reactivities for numerous saturated organic compounds. This empirical relationship can be used together with mechanistic information to estimate the OH reactivity in one phase from the measured rate constant in the other. In order to develop and extend the correlation, they have used the flash photolysis resonance fluorescence technique to measure rate constants for the gas-phase reactions of OH radicals with methanol-d/sub 4/, ethanol-d/sub 6/, 2-chloroethanol, 2,2,2-trichloroethanol, 2,2,2-trifluoroethanol, acetone-d/sub 6/, 1,1,1-trifluoroacetone, and 1,2-butylene oxide at 298 K. These results are reported herein.

Wallington, T.J.; Dagaut, P.; Kurylo, M.J.

1988-08-25T23:59:59.000Z

154

Effect of surfactants on the interfacial tension and emulsion formation between water and carbon dioxide  

SciTech Connect

The lowering of the interfacial tension ({gamma}) between water and carbon dioxide by various classes of surfactants is reported and used to interpret complementary measurements of the capacity, stability, and average drop size of water-in-CO{sub 2} emulsions. {gamma} is lowered from {approximately}20 to {approximately}2 mN/m for the best poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(propylene oxide) (PPO-b-PEO-b-PPO) and PeO-b-PPO-b-PEO Pluronic triblock copolymers, 1.4 mN/m for a poly(butylene oxide)-b-PEO copolymer, 0.8 mN/m for a perfluoropolyether (PEPE) ammonium carboxylate and 0.2 mN/m for PDMS{sub 24}-g-EO{sub 22}. The hydrophilic-CO{sub 2}-philic balance (HCB) of the triblock Pluronic and PDMS-g-PEO-PPO surfactants is characterized by the CO{sub 2}-to-water distribution coefficient and V-shaped plots of log {gamma} vs wt % EO. A minimum in {gamma} is observed for the optimum HCB. As the CO{sub 2}-philicity of the surfactant tail is increased, the molecular weight of the hydrophilic segment increases for an optimum HCB. The stronger interactions on both sides of the interface lead to a lower {gamma}. Consequently, more water was emulsified for the PDMS-based copolymers than either the PPO- or PBO-based copolymers.

Rocha, S.R.P. da; Harrison, K.L.; Johnston, K.P. [Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering] [Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering

1999-01-19T23:59:59.000Z

155

FCC Tail Gas olefins conversion to gasoline via catalytic distillation with aromatics  

SciTech Connect

The goal of every refiner is to continually improve profitability by such means as increasing gasoline production, increasing gasoline octane pool and in cases where fuel balance becomes a problem, decreasing refinery fuel gas production. A new refinery process is currently being developed which accomplish these goals. Chemical Research and Licensing Company (CR and L) developed Catalytic Distillation technology in 1978 to produce MTBE. They have since used the Catalytic Distillation technique to produce cumene. CR and L has further developed this technology to convert olefin gases currently consumed as refinery fuel, to high octane gasoline components. The process, known as CATSTILL, alkylates olefin gases such as ethylene, propylene and butylene, present in FCC Tail Gas with light aromatics such as benzene, toluene and xylene, present in reformate, to produce additional quantities of high octane gasoline components. A portable CATSTILL demonstration plant has been constructed by Brown and Root U.S.A., under an agreement with CR and L, for placement in a refinery to further develop data necessary to design commercial plants. This paper presents current data relative to the CATSTILL development.

Partin, E.E. (Brown and Root U.S.A., Inc., Houston, TX (US))

1988-01-01T23:59:59.000Z

156

Intramolecular condensation reactions of {alpha}, {omega}- bis(triethoxy-silyl)alkanes. Formation of cyclic disilsesquioxanes  

SciTech Connect

Under acidic sol-gel polymerization conditions, 1,3-bis(triethoxysilyl)-propane (1) and 1,4-bis(triethoxysilyl)butane (2) were shown to preferentially form cyclic disilsesquioxanes 3 and 4 rather than the expected 1,3-propylene- and 1,4-butylene-bridged polysilsesquioxane gels. Formation of 3 and 4 is driven by a combination of an intramolecular cyclization to six and seven membered rings, and a pronounced reduction in reactivity under acidic conditions as a function of increasing degree of condensation. The ease with which these relatively unreactive cyclic monomers and dimers are formed (under acidic conditions) helps to explain the difficulties in forming gels from 1 and 2. The stability of cyclic disilsesquioxanes was confirmed withe the synthesis of 3 and 4 in gram quantities; the cyclic disilsesquioxanes react slowly to give tricyclic dimers containing a thermodynamically stable eight membered siloxane ring. Continued reactions were shown to perserve the cyclic structure, opening up the possibility of utilizing cyclic disilsesquioxanes as sol-gel monomers. Preliminary polymerization studies with these new, carbohydrate-like monomers revealed the formation of network poly(cyclic disilsesquioxanes) under acidic conditions and polymerization with ring-opening under basic conditions.

Loy, D.A.; Carpenter, J.P.; Myers, S.A.; Assink, R.A.; Small, J.H. [Sandia National Labs., Albuquerque, NM (United States); Greaves, J.; Shea, K.J. [California Univ., Irvine, CA (United States). Dept. of Chemistry

1996-08-01T23:59:59.000Z

157

Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report No. 1, May 1--August 1, 1998  

SciTech Connect

The overall aim of the project is to demonstrate the performance and practical use of a laser ultrasonic probe for measuring the thickness of coke deposits located within the high temperature tubes of a thermal cracking furnace. This aim will be met by constructing an optical probe that will be tested using simulated coke deposits that are positioned inside of a bench-scale furnace. Successful development of the optical coke detector will provide industry with the only available method for on-line measurement of coke deposits. The optical coke detector will have numerous uses in the refining and petrochemical sectors including monitoring of visbreakers, hydrotreaters, delayed coking units, vacuum tower heaters, and various other heavy oil heating applications where coke formation is a problem. The coke detector will particularly benefit the olefins industry where high temperature thermal crackers are used to produce ethylene, propylene, butylene and other important olefin intermediates. The ethylene industry requires development of an on-line method for gauging the thickness of coke deposits in cracking furnaces because the current lack of detailed knowledge of coke deposition profiles introduces the single greatest uncertainty in the simulation and control of modern cracking furnaces. The laser ultrasonic coke detector will provide operators with valuable new information allowing them to better optimize the decoking turnaround schedule and therefore maximize production capacity.

NONE

1998-08-15T23:59:59.000Z

158

Glycothermal Synthesis of Scheelite-Type LiEuW2O8 Nanophosphors and Their Structural Characterization  

Science Journals Connector (OSTI)

The formation of LiEuW2O8 from a tungsten source and acetates of lithium and europium(III) by autoclave treatment in 1,4-butylene glycol, i.e., by a glycothermal reaction, was studied to explore a novel low-temperature wet chemical synthesis of scheelite-type tungstate compounds with WO4 units. When dodecatungstophosphoric acid hexahydrate (DPA) was chosen as a tungsten source, a glycothermal reaction at 300 ?C produced crystalline scheelite-type LiEuW2O8 (LEW) nanophosphors in a single phase. In contrast, phase-pure crystalline LEW was not obtained using the other tungsten sources. According to the results obtained by inductively coupled plasma atomic emission spectroscopy, infrared absorption spectroscopy, and Raman spectroscopy, the DPA-derived sample contained PO4 groups, which had probably substitutionally replaced WO4. PO4 groups could play a significant role in the nucleation of scheelite-type LEW, which is composed of WO4 groups. We also discuss the nonstoichiometric structural properties of the crystalline scheelite-type LEW. LEW nanophosphors, which are an alternative for organic dyes, may be one of promising materials because of their optical function of color conversion from near UV and blue to red.

Ryo Kasuya; Tetsuhiko Isobe; Shinobu Yamao

2007-01-01T23:59:59.000Z

159

Different process schemes for converting light straight run and fluid catalytic cracking naphthas in a FCC unit for maximum propylene production  

Science Journals Connector (OSTI)

Light straight run (LSR) and fluid catalytic cracking (FCCN) naphthas were cracked in a transported bed reactor (MicroDowner) and in a fixed bed reactor (MAT) over a commercial Y zeolite based catalyst, over a commercial ZSM-5 zeolite based additive, and over a mixture of both at selected conditions. Based on the mechanisms through which naphtha hydrocarbons are converted, we evaluated the best alternatives for processing these streams to produce light olefins and/or to reduce olefins content in commercial gasoline. The experimental set-up allowed us to simulate the cracking behaviour of the different naphtha streams in a fluid catalytic cracking (FCC) unit by different processing schemes. Results indicate that LSR only cracks at high severity, yielding large amounts of dry gas. Despite its high olefins content, FCCN practically does not crack when it is fed together with gas oil feed. When cracking FCCN alone at typical gas oil cracking conditions, olefins are transformed preferentially into naphtha-range isoparaffins and aromatics, and when cracking FCCN at high severity, olefins are transformed preferentially into propylene and butylenes. Finally, cracking naphtha in the stripper produces some propylene and increases the aromatics in the remaining gasoline.

Avelino Corma; FranciscoV Melo; Laurent Sauvanaud; F.J Ortega

2004-01-01T23:59:59.000Z

160

U.S. Total Shell Storage Capacity at Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2008 2009 2010 2011 2012 2013 View History Total 765,593 758,619 710,413 -- -- -- 1982-2013 Crude Oil 180,830 179,471 180,846 -- -- -- 1985-2013 Liquefied Petroleum Gases 34,772 32,498 33,842 -- -- -- 1982-2013 Propane/Propylene 10,294 8,711 8,513 -- -- -- 1982-2013 Normal Butane/Butylene 24,478 23,787 25,329 -- -- -- 1982-2013 Other Liquids 95,540 96,973 96,157 -- -- -- 1982-2013 Oxygenates 1,336 1,028 1,005 -- -- -- 1994-2013

Note: This page contains sample records for the topic "butylene isobutane isobutylene" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

571,552 300,900 1,523,608 673,109 268,869 -25,130 18,853 1,447,490 571,552 300,900 1,523,608 673,109 268,869 -25,130 18,853 1,447,490 89,370 1,757,194 287,201 Crude Oil 408,314 - - - - 633,223 292,624 -31,767 22,602 1,259,826 19,966 0 115,743 Natural Gas Plant Liquids and Liquefied Refinery Gases 163,238 -6,037 44,417 27,019 -9,288 - - -4,496 38,476 40,729 144,640 43,693 Pentanes Plus 18,229 -6,037 - - 213 29,889 - - -1,599 11,319 36,827 -4,253 6,686 Liquefied Petroleum Gases 145,009 - - 44,417 26,806 -39,177 - - -2,897 27,157 3,902 148,893 37,007 Ethane/Ethylene 59,649 - - - 115 -39,435 - - -716 - - 21,045 3,590 Propane/Propylene 57,022 - - 39,605 21,464 -8,812 - - -1,114 - 580 109,813 22,020 Normal Butane/Butylene 17,564 - - 4,181 3,156 3,807 - - -1,354 10,449 3,322 16,291

162

U.S. Refinery & Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 526,996 566,851 559,032 581,600 578,456 543,388 1981-2013 Crude Oil 445,937 474,296 474,991 497,241 489,887 468,825 1981-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 12,805 11,759 12,769 13,227 13,760 16,794 1981-2013 Pentanes Plus 4,949 4,341 4,752 4,734 5,331 5,666 1981-2013 Liquefied Petroleum Gases 7,856 7,418 8,017 8,493 8,429 11,128 1981-2013 Ethane 1981-1992 Normal Butane 2,668 1,880 1,998 2,014 2,083 4,711 1981-2013 Isobutane 5,188 5,538 6,019 6,479 6,346 6,417 1981-2013 Other Liquids 68,254 80,796 71,272 71,132 74,809 57,769 1981-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 32,667 34,665 34,097 35,446 36,356 33,881 1981-2013

163

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Plant Processing Plant Processing Definitions Key Terms Definition Extraction Loss The reduction in volume of natural gas due to the removal of natural gas liquid constituents such as ethane, propane, and butane at natural gas processing plants. Natural Gas Processed Natural gas that has gone through a processing plant. Natural Gas Processing Plant A facility designed to recover natural gas liquids from a stream of natural gas which may or may not have passed through lease separators and/or field separation facilities. These facilities also control the quality of the natural gas to be marketed. Cycling plants are classified as natural gas processing plants. For definitions of related energy terms, refer to the EIA Energy Glossary. Sources Natural Gas Processed, Total Liquids Extracted, and Extraction Loss Volume: Form EIA-64A, "Annual Report of the Origin of Natural Gas Liquids Production" . Estimated Heat Content of Extraction Loss: Estimated, assuming the makeup to total liquids production as reported on Form EIA-64A for each State was proportional to the components and products ultimately separated in the States as reported on the 12 monthly reports on Energy Information Administration, Form EIA-816, "Monthly Natural Gas Liquids Report," and applying the following conversion factors to the individual component and product production estimates (million Btu extraction loss per barrel of liquid produced): ethane - 3.082; propane - 3.836; normal butane - 4.326; isobutane - 3.974; pentanes plus - 4.620.

164

U.S. Natural Gas Plant Field Production  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas Liquids 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 Pentanes Plus 9,772 10,464 10,689 11,270 11,542 11,167 1981-2013 Liquefied Petroleum Gases 64,284 66,268 64,249 67,770 70,834 70,029 1981-2013 Ethane 27,647 28,274 26,311 27,829 30,063 30,015 1981-2013 Propane 23,332 24,191 24,157 25,425 25,974 25,545 1981-2013 Normal Butane 5,876 6,383 6,543 6,399 6,508 6,893 1981-2013 Isobutane 7,429 7,420 7,238 8,117 8,289 7,576 1981-2013 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions, Sources, and Notes link above for more information on this table.

165

U.S. Refinery & Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 6,204,500 6,277,893 6,169,893 6,345,372 6,422,710 6,406,693 1981-2012 Crude Oil 5,532,097 5,361,287 5,232,656 5,374,094 5,404,347 5,489,516 1981-2012 Natural Gas Plant Liquids and Liquefied Refinery Gases 184,383 177,559 177,194 161,479 178,884 186,270 1981-2012 Pentanes Plus 64,603 55,497 59,100 56,686 63,385 63,596 1981-2012 Liquefied Petroleum Gases 119,780 122,062 118,094 104,793 115,499 122,674 1981-2012 Ethane 1981-1992 Normal Butane 48,292 50,024 48,509 43,802 47,571 52,246 1981-2012 Isobutane 71,488 72,038 69,585 60,991 67,928 70,428 1981-2012 Other Liquids 488,020 739,047 760,043 809,799 839,479 730,907 1981-2012 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons

166

U.S. Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total Input 1,184,435 1,522,193 1,850,204 2,166,784 2,331,109 2,399,318 2005-2012 Natural Gas Plant Liquids and Liquefied Refinery Gases 3,445 5,686 6,538 7,810 10,663 2008-2012 Pentanes Plus 2,012 474 1,808 1,989 2,326 4,164 2005-2012 Liquid Petroleum Gases 2,971 3,878 4,549 5,484 6,499 2008-2012 Normal Butane 2,943 2,971 3,878 4,549 5,484 6,499 2005-2012 Isobutane 2005-2006 Other Liquids 1,518,748 1,844,518 2,160,246 2,323,299 2,388,655 2008-2012 Oxygenates/Renewables 234,047 274,974 286,837 295,004 2009-2012 Methyl Tertiary Butyl Ether (MTBE) 2005-2006 Renewable Fuels (incl. Fuel Ethanol) 234,047 274,974 286,837 295,004 2009-2012 Fuel Ethanol 131,810 182,772 232,677 273,107 281,507 287,433 2005-2012

167

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 Table 5.10 Natural Gas Plant Liquids Production, Selected Years, 1949-2011 (Thousand Barrels per Day) Year Finished Petroleum Products 1 Liquefied Petroleum Gases Pentanes Plus 4 Total Ethane 2 Isobutane Normal Butane 3 Propane 2,3 Total 1949 53 8 11 61 74 155 223 430 1950 66 12 13 69 101 195 238 499 1955 68 34 30 120 205 390 313 771 1960 47 51 45 161 291 549 333 929 1965 41 92 67 185 390 734 434 1,210 1970 25 201 84 248 561 1,095 540 1,660 1975 7 337 90 237 552 1,217 409 1,633 1976 6 365 82 227 521 1,195 403 1,604 1977 5 397 81 223 513 1,214 399 1,618 1978 3 406 75 210 491 1,182 382 1,567 1979 26 400 104 212 500 1,216 342 1,584 1980 23 396 105 210 494 1,205 345 1,573 1981 18 397 117 224 519 1,256 334 1,609 1982 11 426 109 204 519 1,258 282 1,550 1983 12 456 100 217 541 1,314 233 1,559 1984 4 505 99 203 527 1,334 292 1,630 1985 14 493 127 171 521 1,313 282 1,609 1986 4 485 128 157 508 1,277

168

U.S. Natural Gas Plant Field Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Natural Gas Liquids 650,794 652,822 697,124 757,019 808,865 881,306 1981-2012 Pentanes Plus 95,899 96,530 98,904 101,155 106,284 116,002 1981-2012 Liquefied Petroleum Gases 554,895 556,292 598,220 655,864 702,581 765,304 1981-2012 Ethane 258,682 256,713 280,590 317,180 337,972 356,592 1981-2012 Propane 185,099 187,340 199,398 213,782 230,227 260,704 1981-2012 Normal Butane 46,833 48,976 49,528 56,655 57,399 65,555 1981-2012 Isobutane 64,281 63,263 68,704 68,247 76,983 82,453 1981-2012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions, Sources, and Notes link above for more information on this table.

169

U.S. Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total Input 206,541 217,867 212,114 216,075 219,783 208,203 2005-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 891 352 376 196 383 1,397 2008-2013 Pentanes Plus 261 301 313 67 287 393 2005-2013 Liquid Petroleum Gases 630 51 63 129 96 1,004 2008-2013 Normal Butane 630 51 63 129 96 1,004 2005-2013 Isobutane 2005-2006 Other Liquids 205,650 217,515 211,738 215,879 219,400 206,806 2008-2013 Oxygenates/Renewables 25,156 26,576 26,253 26,905 27,788 25,795 2009-2013 Methyl Tertiary Butyl Ether (MTBE) 2005-2006 Renewable Fuels (incl. Fuel Ethanol) 25,156 26,576 26,253 26,905 27,788 25,795 2009-2013 Fuel Ethanol 24,163 25,526 24,804 25,491 25,970 24,116 2005-2013

170

Recovery of energy from geothermal brine and other hot water sources  

DOE Patents (OSTI)

Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

1981-01-01T23:59:59.000Z

171

Characterization of a Spherical Proportional Counter in argon-based mixtures  

E-Print Network (OSTI)

The Spherical Proportional Counter is a novel type of radiation detector, with a low energy threshold (typically below 100 eV) and good energy resolution. This detector is being developed by the network NEWS, which includes several applications. We can name between many others Dark Matter searches, low level radon and neutron counting or low energy neutrino detection from supernovas or nuclear reactors via neutrino-nucleus elastic scattering. In this context, this works will present the characterization of a spherical detector of 1 meter diameter using two argon-based mixtures (with methane and isobutane) and for gas pressures between 50 and 1250 mbar. In each case, the energy resolution shows its best value in a wide range of gains, limited by the ballistic effect at low gains and by ion-backflow at high gains. Moreover, the best energy resolution shows a degradation with pressure. These effects will be discussed in terms of gas avalanche properties. Finally, the effect of an electrical field corrector in th...

Iguaz, F J; Castel, J F; Irastorza, I G

2015-01-01T23:59:59.000Z

172

Development of linseed oil-free bakelite resistive plate chambers  

E-Print Network (OSTI)

In this paper we would like to present a few characteristics of the Resistive Plate Chambers (RPC) made of a particular grade of bakelite paper laminates (P-120, NEMA LI-1989 Grade XXX), produced and commercially available in India. This particular grade is used for high voltage insulation in humid conditions. The chambers are tested with cosmic rays in the streamer mode using argon, tetrafluroethane and isobutane in 34:59:7 mixing ratio. In the first set of detectors made with such grade, a thin coating of silicone fluid on the inner surfaces of the bakelite was found to be necessary for operation of the detector. Those silicone coated RPCs were found to give satisfactory performance with stable efficiency of >90% continuously for a long period as reported earlier. Results of the crosstalk measurement of these silicone coated RPC will be presented in this paper. Very recently RPCs made with the same grade of bakelite but having better surface finish, are found to give equivalent performance even without any ...

Biswas, S; Bose, S; Chattopadhyay, S; Saha, S; Viyogi, Y P

2009-01-01T23:59:59.000Z

173

GAMMA-RAY DETECTION WITH PbO GLASS CONVERTERS IN MWPC: ELECTRON CONVERSION EFFICIENCY AND TIME RESOLUTION  

SciTech Connect

The development of glass tubing converters for efficient gamma-ray detection in multiwire proportional chambers (MWPC) has led to an investigation on the improvement of conductivity on glass surfaces and to an investigation of gas mixtures which will improve on the electron conversion efficiency and electron transit time within the tubes. Efforts to establish uniform electric field lines within small diameter tubes has resulted in an improved H{sub 2} reducing treatment. For a 0.91 mm I.D., 1.10 mm O.D., 2 cm thick converter the electron conversion efficiency {epsilon} was measured to be 9.0% and 10.4% at 511 keV, using Ar mixtures containing 10% CF{sub 4} and 30% isobutane, respectively. The effects of gas mixtures on {epsilon} and on {tau}, the mean transit time on conversion electrons within the converter, and the projection of these results on the performance of a modified MWPC positron camera will be presented.

Lum, G.K.; Perez-Mendez, V.; Sleaford, B.

1980-06-01T23:59:59.000Z

174

Carbon isotope separation by absorptive distillation. [Data between 77. 4 and 114. 3 K; Henry's law behavior  

SciTech Connect

The feasibility of separating carbon isotopes by absorptive distillation has been studied for CO absorption by cryogenic solvents. Phase equilibrium, isotopic separation, and mass transfer data were taken between 77.4 and 114.3 K for the following solvents: propane, propylene, 1:1 propane-propylene, 1-butene, isobutane and nitrogen. Carbon monoxide solubility followed Henry's Law, with a maximum experimental solubility of 6.5 mole per cent. Isotopic separation between CO in the gas and liquid phases using hydrocarbon solvents was several times that for pure CO vapor-liquid equilibrium. The maximum observed isotopic separation factor was 1.029 at 77.4 K with the propane-propylene solvent mixture. Mass transfer measurements yielded calculated HTU's of 2 to 5 cm for a possible separation system. An attempt has been made to correlate isotopic separation data using Hildebrand's theory of solutions. The differential absorption of isotopic CO species is expressed as a difference in solubility of the isotopic CO molecules. Data for propane, propylene, and 1-butene show approximately the same behavior at varying temperatures.

Mills, T.R.

1980-04-01T23:59:59.000Z

175

Exergy analysis of zeotropic mixtures as working fluids in Organic Rankine Cycles  

Science Journals Connector (OSTI)

Abstract The thermodynamic performance of non-superheated subcritical Organic Rankine Cycles (ORCs) with zeotropic mixtures as working fluids is examined based on a second law analysis. In a previous study, a mixture selection method based on a first law analysis was proposed. However, to assess the performance potential of zeotropic mixtures as working fluids the irreversibility distributions under different mixtures compositions are calculated. The zeotropic mixtures under study are: R245fa–pentane, R245fa–R365mfc, isopentane–isohexane, isopentane–cyclohexane, isopentane–isohexane, isobutane–isopentane and pentane–hexane. The second law efficiency, defined as the ratio of shaft power output and input heat carrier exergy, is used as optimization criterion. The results show that the evaporator accounts for the highest exergy loss. Still, the best performance is achieved when the condenser heat profiles are matched. An increase in second law efficiency in the range of 7.1% and 14.2% is obtained compared to pure working fluids. For a heat source of 150 °C, the second law efficiency of the pure fluids is in the range of 26.7% and 29.1%. The second law efficiency in function of the heat carrier temperature between 120 °C and 160 °C shows an almost linear behavior for all investigated mixtures. Furthermore, between optimized \\{ORCs\\} with zeotropic mixtures as working fluid the difference in second law efficiency varies less than 3 percentage points.

S. Lecompte; B. Ameel; D. Ziviani; M. van den Broek; M. De Paepe

2014-01-01T23:59:59.000Z

176

ASPEN modeling of the Tri-State indirect liquefaction process  

SciTech Connect

The ASPEN process simulator has been used to model an indirect liquefaction flowsheet patterned after that of the Tri-State project. This flowsheet uses Lurgi moving-bed gasification with synthesis gas conversion to methanol followed by further processing to gasoline using the Mobil MTG process. Models developed in this study include the following: Lurgi gasifier, Texaco gasifier, synthesis gas cooling, Rectisol, methanol synthesis, methanol-to-gasoline, CO-shift, methanation, and naphtha hydrotreating. These models have been successfully developed in modular form so that they can be used to simulate a number of different flowsheets or process alternatives. Simulations of the Tri-State flowsheet have been made using two different coal feed rates and two types of feed coal. The overall simulation model was adjusted to match the Tri-State flowsheet values for methanol, LPG, isobutane, and gasoline. As a result of this adjustment, the MTG reactor yield structure necessary to match the flowsheet product rates was determined. The models were exercised at different flow rates and were unaffected by such changes, demonstrating their range of operability. The use of Illinois No. 6 coal, with its lower ash content, resulted in slightly higher production rates for each of the products as compared to use of the Kentucky coal.

Begovich, J.M.; Clinton, J.H.; Johnson, P.J.; Barker, R.E.

1983-01-01T23:59:59.000Z

177

ASPEN modeling of the Tri-State indirect-liquefaction process  

SciTech Connect

The ASPEN process simulator has been used to model an indirect-liquefaction flowsheet patterned after that of the Tri-State project. This flowsheet uses Lurgi moving-bed gasification with synthesis-gas conversion to methanol folowed by further processing to gasoline using the Mobil MTG process. Models developed in this study include the following: Lurgi gasifier, Texaco gasifier, synthesis gas cooling, Rectisol, methanol synthesis, methanol-to-gasoline, CO-shift, methanation, and naphtha hydrotreating. These models have been successfully developed in modular form so that they can be used to simulate a number of different flowsheets or process alternatives. Simulations of the Tri-State flowsheet have been made using two different coal-feed rates and two types of feed coal. The overall simulation model was adjusted to match the Tri-State flowsheet values for methanol, LPG, isobutane, and gasoline. As a result of this adjustment, the MTG reactor yield structure necessary to match the flowsheet product rates was determined. The models were exercised at different flow rates and were unaffected by such changes, demonstrating their range of operability. The use of Illinois No. 6 coal, with its lower ash content, resulted in slightly higher production rates of each of the products as compared to use of the Kentucky coal.

Barker, R.E.; Begovich, J.M.; Clinton, J.H.; Johnson, P.J.

1983-10-01T23:59:59.000Z

178

Alkylate  

U.S. Energy Information Administration (EIA) Indexed Site

Day) Day) Product: Alkylate Aromatics Asphalt & Road Oil Isomers Isobutane Isopentane & Isohexane Isooctane Lubricants Marketable Petroleum Coke Hydrogen Sulfur Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2008 2009 2010 2011 2012 2013 View History U.S. 1,260,985 1,260,923 1,248,514 1,262,443 1,246,875 1,269,361 1982-2013 PAD District 1 110,229 110,229 95,500 108,629 79,429 91,429 1982-2013 Delaware 11,729 11,729 0 11,729 11,729 11,729 1982-2013 Florida 0 0 0 0 0 0 2007-2013 Georgia 0 0 0 0 0 0 2006-2013 Maryland 0 0 0 0 0 0 2007-2013 New Jersey 40,200 40,200 36,200 37,200 37,200 37,200 1982-2013

179

Prediction of refrigerant-lubricant viscosity using the general PC-SAFT friction theory  

Science Journals Connector (OSTI)

Abstract In this work, a friction theory (f-theory) viscosity model founded on the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (EoS) was used to calculate the viscosity of refrigerant-oil mixtures. The model, which links viscosity to the repulsive and attractive pressure terms of the PC-SAFT EoS, can provide satisfactory viscosity predictions of mixtures of carbon dioxide (R-744) and two synthetic lubricants, namely, a polyolester (POE) ISO VG 68 and an alkylbenzene (AB) ISO VG 32, as well as mixtures of isobutane (R-600a) and two other synthetic lubricants, a POE ISO VG 7 and an AB ISO VG 5. The root-mean square (RMS) deviations related to the viscosity prediction were 0.69% (R-600a/POE ISO 7), 0.99% (R-600a/AB ISO VG 5), 3.16% (R-744/POE ISO VG 68) and 3.18% (R-744/AB ISO VG 32).

Moisés A. Marcelino Neto; Jader R. Barbosa Jr.

2014-01-01T23:59:59.000Z

180

Effects of simulant mixed waste on EPDM and butyl rubber  

SciTech Connect

The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.

Nigrey, P.J.; Dickens, T.G.

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "butylene isobutane isobutylene" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Chemical compatibility screening test results  

SciTech Connect

A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60{degrees}C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m{sup 2} for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals.

Nigrey, P.J.; Dickens, T.G.

1997-12-01T23:59:59.000Z

182

Cyclization Phenomena in the Sol-Gel Polymerization of a,w-Bis(triethoxysilyl)alkanes and Incorporation of the Cyclic Structures into Network Silsesquioxane Polymers  

SciTech Connect

Intramolecular cyclizations during acid-catalyzed, sol-gel polymerizations of ct,co- bis(tietioxysilyl)aWmes substintidly lengtien gelties formonomers witietiylene- (l), propylene- (2), and butylene-(3)-bridging groups. These cyclizations reactions were found, using mass spectrometry and %i NMR spectroscopy, to lead preferentially to monomeric and dimeric products based on six and seven membered disilsesquioxane rings. 1,2- Bis(triethoxysilyl)ethane (1) reacts under acidic conditions to give a bicyclic drier (5) that is composed of two annelated seven membered rings. Under the same conditions, 1,3- bis(triethoxysilyl)propane (2), 1,4-bis(triethoxysilyl)butane (3), and z-1,4- bis(triethoxysilyl)but-2-ene (10) undergo an intramolecular condensation reaction to give the six membemd and seven membered cyclic disilsesquioxanes 6, 7, and 11. Subsequently, these cyclic monomers slowly react to form the tricyclic dirners 8,9 and 12. With NaOH as polymerization catalyst these cyclic silsesquioxanes readily ~aeted to afford gels that were shown by CP MAS z%i NMR and infr=d spectroscopes to retain some cyclic structures. Comparison of the porosity and microstructwe of xerogels prepared from the cyclic monomers 6 and 7 with gels prepared directly from their acyclic precursors 2 and 3, indicate that the final pore structure of the xerogels is markedly dependent on the nature of the precursor. In addition, despite the fact that the monomeric cyclic disilsesquioxane species can not be isolated from 1-3 under basic conditions due to their rapid rate of gelation, spectroscopic techniques also detected the presence of the cyclic structures in the resulting polymeric gels.

Alam, T.M.; Carpenter, J.P.; Dorhout, P.K.; Greaves, J.; Loy, D.A.; Shaltout, R.; Shea, K.J.; Small, J.H.

1999-01-04T23:59:59.000Z

183

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

926,785 32,969 2,665,992 1,875,331 -1,415,011 111,431 45,954 926,785 32,969 2,665,992 1,875,331 -1,415,011 111,431 45,954 2,448,351 861,579 1,841,613 1,178,473 Crude Oil 1,386,449 - - - - 1,630,908 -244,084 67,355 8,560 2,830,779 1,288 0 861,333 Natural Gas Plant Liquids and Liquefied Refinery Gases 540,336 -180 150,143 11,694 101,692 - - 29,480 109,476 61,693 603,036 96,994 Pentanes Plus 66,222 -180 - - 10,282 -16,515 - - -3,264 42,493 1,105 19,475 5,765 Liquefied Petroleum Gases 474,114 - - 150,143 1,412 118,207 - - 32,744 66,983 60,588 583,561 91,229 Ethane/Ethylene 233,470 - - 6,504 - 100,649 - - 13,226 - - 327,397 31,406 Propane/Propylene 153,496 - - 129,707 174 10,289 - - 14,578 - 56,954 222,134 38,509 Normal Butane/Butylene 28,426 - - 12,412 1,208 5,090 - - 3,798 26,775 3,633 12,930

184

U.S. Refinery Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 320,455 348,984 346,918 365,525 358,673 335,185 2005-2013 Crude Oil 445,937 474,296 474,991 497,241 489,887 468,825 2005-2013 Natural Gas Plant Liquids 11,914 11,407 12,393 13,031 13,377 15,397 2005-2013 Pentanes Plus 4,688 4,040 4,439 4,667 5,044 5,273 2005-2013 Liquefied Petroleum Gases 7,226 7,367 7,954 8,364 8,333 10,124 2005-2013 Normal Butane 2,038 1,829 1,935 1,885 1,987 3,707 2005-2013 Isobutane 5,188 5,538 6,019 6,479 6,346 6,417 2005-2013 Other Liquids -137,396 -136,719 -140,466 -144,747 -144,591 -149,037 2005-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 7,511 8,089 7,844 8,541 8,568 8,086 2005-2013 Hydrogen 5,792 6,200 6,050 6,477 6,520 6,226 2009-2013

185

Power production from a moderate temperature geothermal resource with regenerative Organic Rankine Cycles  

Science Journals Connector (OSTI)

Much remains to be done in binary geothermal power plant technology, especially for exploiting low-enthalpy resources. Due to the great variability of available resources (temperature, pressure, chemical composition), it is really difficult to “standardize the technology”.The problem involves many different variables: working fluid selection, heat recovery system definition, heat transfer surfaces sizing and auxiliary systems consumption. Electricity generation from geothermal resources is convenient if temperature of geothermal resources is higher than 130 °C. Extension of binary power technology to use low-temperature geothermal resources has received much attention in the last years. This paper analyzes and discusses the exploitation of low temperature, water-dominated geothermal fields with a specific attention to regenerative Organic Rankine Cycles (ORC). The geothermal fluid inlet temperatures considered are in the 100–130 °C range, while the return temperature of the brine is assumed to be between 70 and 100 °C. The performances of different configurations, two basic cycle configurations and two recuperated cycles are analyzed and compared using dry organic fluids as the working fluids. The dry organic fluids for this study are R134a, isobutane, n-pentane and R245fa. Effects of the operating parameters such as turbine inlet temperature and pressure on the thermal efficiency, exergy destruction rate and Second Law efficiency are evaluated. The possible advantages of recuperated configurations in comparison with basic configurations are analyzed, showing that in a lot of cases the advantage in terms of performance increase is minimal but significant reductions in cooling systems surface area can be obtained (up to 20%).

Alessandro Franco

2011-01-01T23:59:59.000Z

186

Phase identification and interfacial transitions in ternary polymer blends by ToF-SIMS  

Science Journals Connector (OSTI)

Abstract Phase identification and the study of the interphase region in multi-component polymer blends with a chemically similar structure using conventional techniques is a challenge. In this work, the detailed morphological analysis of such systems is examined. A ternary blend comprised of poly butylene succinate (PBS); poly lactic acid (PLA); and polycaprolactone (PCL) with a partial wetting morphology is carefully selected since all three components are polyesters with low interfacial tensions. It will be shown that a novel technique by applying multivariate analysis (MVA) on time-of-flight secondary ion mass spectrometry (ToF-SIMS) data can effectively identify the complex phase structure, especially in blends with chemically similar components. Furthermore, for the first time for such systems, this technique provides detailed information about interfacial thicknesses and transitions. By employing the principal component analysis (PCA) method on the ToF-SIMS data of pure polymers, specific peaks with a certain molecular ion mass related to each polymer are determined. Using overlaid mappings on the surface of the blend by ToF-SIMS and selected ion masses to identify each polymer results in the differentiation of the various phases represented as a morphological image. In a second step, the multivariate curve resolution (MCR) method is used as a “self modeling curve resolution” for the recovery of pure components from a multi-component mixture when little or no prior information is available. Total pseudo-color RGB images of PBS/PLA/PCL show that PLA droplets unambiguously partially wet the PBS and PCL phases. Since each pixel from the analysis in the high lateral resolution image represents a 200 nm diameter, the interfacial transitions can also be studied for both PLA/PBS and PLA/PCL interfaces. The results show the concentration variation of phases across the interfaces. A complete trace line across the two interfaces (PLA/PBS and PLA/PCL) allows for the quantitative determination of interfacial thickness for the first time for such systems.

Sepehr Ravati; Suzie Poulin; Konstantinos Piyakis; Basil D. Favis

2014-01-01T23:59:59.000Z

187

A study on coalbed methane reserve of Shanxi: Hedong coalfield reserve and its utilization  

SciTech Connect

Coalbed gas, i.e. coalbed methane, is considered an unconventional gas, formed during coal accumulation and preserved in coal seams. In the past, coalbed gas was considered a major hazard factor to the safety of mining and caused countless explosive events and great losses to the enterprises and even to the country. Early in 1960s and 70s, it was recognized that coalbed gas could be utilized as an energy resource and collected through tunnels in China. In 1995, the output of tunnel gas reached 500Mm{sup 3}, however, surface pumping is still at its beginning stage, test and appraisal; so far, no commercial development is being carried out in China. Hedong coalfield, situated in the west of Shanxi province and bordered by the Yellow River in the northwest and outcrop seams in the southeast, is 540km long (N-S) and 10--40 km wide (E-W) and covers an area of 17,000 km{sup 2} across 13 counties of Xinzou, Luliang, Linfen and Yuncheng prefectures. It is the No. 2 coalfield in Shanxi province and the well-known base of excellent coking coal and power coal in China. Hedong coalfield is not only rich in coal resource, but also in coalbed methane. This paper describes the geology of the coalfield (including structure, magmatic activity, coal seams and coal grade); the regularity of coalbed methane occurrence in the Hedong coalfield; the calculation of coalbed methane resource; and the use of coalbed methane for motor fuels and chemicals production. The total resource is 1468.93Gm{sup 3}. The production of motor fuels can be realized by the following processes: (a) synthetic methanol as substitute of gasoline; (b) F-T synthesis for synthetic gasoline and diesel oil; (c) Compressed natural gas as motor fuel; and (d) Liquefied natural gas as motor fuel. The production of organic chemicals is suggested with the following technology: (a) Two-stage steam reforming to convert methane to synthetic gas various organic chemicals can be produced therefrom; (b) Partial oxidation of methane to produce synthesis gas and acetylene; (c) Coalbed methane to produce hydrogen cyanide and chloromethanes; and (d) Coalbed methane to produce acrylonitrile, acetylene, ethylene, propylene and butylenes.

Kong, X.; Fan, R.; Hu, Y.; Wang, M.; Wang, M.; Chen, Z.; Li, M.; Peng, S. [Taiyuan Ke-jin Technology Development Service (China)

1997-12-31T23:59:59.000Z