Powered by Deep Web Technologies
Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Control Study of Ethyl tert-Butyl Ether Reactive Distillation Muhammad A. Al-Arfaj  

E-Print Network [OSTI]

-butyl ether (ETBE) for gasoline blending as a replacement for methyl tert-butyl ether (MTBE) because and be blended with ETBE in the gasoline pool. Even for neat operation, if the conversion is low, the unconverted

Al-Arfaj, Muhammad A.

2

State Restrictions on Methyl Tertiary Butyl Ether (released in AEO2006)  

Reports and Publications (EIA)

By the end of 2005, 25 states had barred, or passed laws banning, any more than trace levels of methyl tertiary butyl ether (MTBE) in their gasoline supplies, and legislation to ban MTBE was pending in 4 others. Some state laws address only MTBE; others also address ethers such as ethyl tertiary butyl ether (ETBE) and tertiary amyl methyl ether (TAME). Annual Energy Outlook 2006 assumes that all state MTBE bans prohibit the use of all ethers for gasoline blending.

2006-01-01T23:59:59.000Z

3

Atmospheric chemistry of diethyl ether and ethyl tert-butyl ether  

SciTech Connect (OSTI)

The mechanisms for the Cl-initiated and OH-initiated atmospheric oxidation of diethyl ether and ethyl tert-butyl ether (ETBE) have been determined. For diethyl ether the products are ethyl formate and formaldehyde and its atmospheric oxidation can be represented by C{sub 2}H{sub 5}OC{sub 2}H{sub 5} + OH + 2NO {yields} C{sub 2}H{sub 5}OC(O)H + HCHO + 2NO{sub 2} + HO{sub 2}. The mechanism for the atmospheric oxidation of ETBE is more complex, with 80% of the reaction being accounted for in terms of tert-butyl formate and formaldehyde. The remaining 20% the authors ascribe to 2-ethoxy-2-methylpropanal. The atmospheric oxidation of ETBE can be represented by ETBE + OH + 1.8NO {yields} 0.8HCOOC(CH{sub 3}){sub 3} + 0.2C{sub 2}H{sub 5}OC(CH{sub 3}){sub 2}CHO + HO{sub 2} + 0.8HCHO + 1.8NO{sub 2}. THe subsequent atmospheric chemistry of 2-ethoxy-2-methylpropanal the authors estimate to be represented by C{sub 2}H{sub 5}OC(CH{sub 3}){sub 2}CHO + OH + 3NO {yields} CO{sub 2} + H{sub 2}CO + C{sub 2}H{sub 5}OC(O)CH{sub 3} + HO{sub 2} + 3NO{sub 2}. These results are discussed in terms of the reactivity of these compounds in urban atmospheres.

Wallington, T.J.; Japar, S.M. (Ford Motor Company, Dearborn, MI (USA))

1991-03-01T23:59:59.000Z

4

Separation of methyl t-butyl ether from close boiling C[sub 5] hydrocarbons by extractive distillation  

SciTech Connect (OSTI)

A method for recovering methyl t-butyl ether from a mixture of methyl t-butyl ether and 1-pentene which comprises distilling a mixture of methyl t-butyl ether and 1-pentene in the presence of about one part of an extractive agent per part of methyl t-butyl ether -- 1-pentene mixture, recovering the 1-pentene as overhead product and obtaining the methyl t-butyl ether and the extractive agent from the still pot, wherein said extractive agent consists of one material selected from the group consisting of sulfolane, nitroethane, t-butanol, ethylene glycol diacetate, 1-methoxy-2-propanol acetate, methyl isoamyl ketone, ethylene glycol methyl ether, propylene glycol phenyl ether and diethyl malonate.

Berg, L.

1993-07-20T23:59:59.000Z

5

IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE  

E-Print Network [OSTI]

IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE SURVEYS By Michael J. Moran, Rick M. Clawges, and John S. Zogorski U.S. Geological Survey 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly added to gasoline

6

Whole-Genome Analysis of Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1  

E-Print Network [OSTI]

Sato, and N. Kato. 2003. Propane monooxygenase and NAD + -alcohol dehydrogenase in propane metabolism by Gordonia sp.tert-butyl ether by propane-grown Mycobacterium vaccae JOB5.

2007-01-01T23:59:59.000Z

7

Dynamic Simulation of Startup in Ethyl tert-Butyl Ether Reactive Distillation with Input Multiplicity  

Science Journals Connector (OSTI)

Dynamic Simulation of Startup in Ethyl tert-Butyl Ether Reactive Distillation with Input Multiplicity ... However, smaller internal rates inside the column that result from lower reboiler and condenser duty could increase the potential risk of flooding in the column and reduce the availability of reactants in the reactive section. ... Column simulations performed using both Pro/II and SpeedUp showed excellent agreement with previously published exptl. ...

Budi H. Bisowarno; Moses O. Tadé

2000-05-09T23:59:59.000Z

8

Detection and Quantification of Methyl tert-Butyl Ether-Degrading Strain PM1 by Real-Time TaqMan PCR  

Science Journals Connector (OSTI)

...purification Fresh Water microbiology Geologic...Polymerase metabolism Water Pollution, Chemical...bioremediation detection ethers ground water hydrocarbons methyl tert-butyl...pollutants pollution remediation sampling water resources...

Krassimira R. Hristova; Christian M. Lutenegger; Kate M. Scow

2001-11-01T23:59:59.000Z

9

Methyl tert-butyl ether (MTBE) is a volatile organic com-pound (VOC) derived from natural gas that is added to gas-  

E-Print Network [OSTI]

Methyl tert-butyl ether (MTBE) is a volatile organic com- pound (VOC) derived from natural gas Water in Urban and Agricultural Areas made from methanol, which is derived primarily from natural gas that is added to gas- oline either seasonally or year round in many parts of the United States to increase

10

Kinetic mechanism of dimethyl ether production process using syngas from integrated gasification combined cycle power plant  

Science Journals Connector (OSTI)

In a 1-step synthesis gas-to-dimethyl ether process, synthesis gas is converted into dimethyl ether (DME) in a single reactor. Three reactions are involved in this process: methanol synthesis, methanol dehydra...

Hee-Woo Park; Jin-Kuk Ha; Euy Soo Lee

2014-07-01T23:59:59.000Z

11

E-Print Network 3.0 - anhydride-vinyl methyl ether Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4-Methyl-2-pentanol Other secondary alcohols... - quire handling with precautions. Acrolein tert-Butyl methyl ether Di(1-propynl) ether n... Methoxy-1,3,5,7- cyclooctatetraene...

12

Ditertiary butyl peroxide recovery  

SciTech Connect (OSTI)

A process is described wherein a feed material comprising significant amounts of tertiary butyl hydroperoxide and tertiary butyl alcohol and minor amounts of ditertiary butyl peroxide and other impurities is charged to a reactor together with propylene and a soluble epoxidation catalyst. At least a portion of the tertiary butyl hydroperoxide is reacted in the reactor with the propylene to form a reaction product composed of unreacted feed components, propylene oxide, an additional quantity of tertiary butyl alcohol, and impurities, including a minor amount of ditertiary butyl peroxide. The improvement for recovering substantially pure ditertiary butyl peroxide from the reaction product after the reaction product is discharged from the reactor comprises the steps of: charging the reaction product to a first distillation zone and separating therein a first unreacted propylene distillate recycle fraction, charging the remaining heavier components of the reaction product from the first distillation zone to a second distillation zone and separating a second propylene oxide distillate product fraction therein charging the heavier components from the second distillation zone to a third distillation zone and separating a third distillate fraction comprising a major amount of tertiary butyl alcohol and a minor amount of ditertiary butyl peroxide, and recovering the second propylene oxide distillate fraction, the heavier tertiary butyl alcohol product fraction and the ditertiary butyl peroxide raffinate fraction.

Sanderson, J.R.; Meyer, R.A.; Smith, W.A.; Marquis, E.T.

1989-03-07T23:59:59.000Z

13

Thermodynamic properties of organic oxygen compounds XLIII. Vapour pressures of some ethers  

Science Journals Connector (OSTI)

Vapour pressures of methyl propyl, isopropyl methyl, butyl methyl, ethyl propyl, t-butyl methyl, dipropyl, di-isopropyl, di-t-butyl, and decyl methyl ethers were measured at pressures up to 205 kPa. The measured values were fitted by Antoine and by Chebyshev equations, values already published from this laboratory for three aromatic ethers were recomputed uniformly with the present results, and published values for four additional compounds were incorporated in a scheme for correlation of the vapour pressures of ethers. Estimates were made of the vapour pressures of 10 other ethers. Between 5 and 200 kPa the vapour pressures of ethers may be represented by a single equation in which carbon number or an effective carbon number is a parameter. Chebyshev equations are given for interpolation between the upper bounds of the measurements and the critical pressures of 11 ethers for which this property has been previously determined.

D Ambrose; J.H Ellender; C.H.S Sprake; R Townsend

1976-01-01T23:59:59.000Z

14

Production of methyl tert-alkyl ethers  

SciTech Connect (OSTI)

The transition to the use of unleaded gasolines has required the replacement of tetraethyl lead by oxygen-containing compounds such as methanol, ethanol, and ethers, which are termed {open_quotes}oxygenates{close_quotes} in the technical literature. These may be used in commercial gasolines in amounts of 10-15% by volume, equivalent to 2% oxygen by weight. When methyl tert-butyl ether (MTBE) is used, the oxygen content may amount to 2.7% by weight. This oxygenate gives a significant improvement of knock resistance of naphtha fractions, the greatest effects being observed for straight-run naphthas and reformer naphthas produced under normal conditions; the MTBE also improves the engine power and economy characteristics and lowers the carbon monoxide content in the exhaust by 15-30% and the hydrocarbon content by 7-8%. This paper describes methods for the production of MTBE and also methyl tert-alkyl ethers.

Trofimov, V.A.

1995-01-01T23:59:59.000Z

15

E-Print Network 3.0 - alkyl-tert alkyl ethers Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

> >> 1 7198 J. Org. Chem. 1995,60, 7198-7208 Gas Phase Decomposition of Conjugate Acid Ions of Simple Summary: of ProtonatedAlkyl tert-ButylEthers RO(H)C(CH&+ (To.6 Values in meV...

16

Reaction Pathways and Energetics of Etheric C?O Bond Cleavage Catalyzed by Lanthanide Triflates  

SciTech Connect (OSTI)

Efficient and selective cleavage of etheric C?O bonds is crucial for converting biomass into platform chemicals and liquid transportation fuels. In this contribution, computational methods at the DFT B3LYP level of theory are employed to understand the efficacy of lanthanide triflate catalysts (Ln(OTf)3, Ln = La, Ce, Sm, Gd, Yb, and Lu) in cleaving etheric C?O bonds. In agreement with experiment, the calculations indicate that the reaction pathway for C?O cleavage occurs via a C?H ? O?H proton transfer in concert with weakening of the C?O bond of the coordinated ether substrate to ultimately yield a coordinated alkenol. The activation energy for this process falls as the lanthanide ionic radius decreases, reflecting enhanced metal ion electrophilicity. Details of the reaction mechanism for Yb(OTf)3-catalyzed ring opening are explored in depth, and for 1-methyl-d3-butyl phenyl ether, the computed primary kinetic isotope effect of 2.4 is in excellent agreement with experiment (2.7), confirming that etheric ring-opening pathway involves proton transfer from the methyl group alpha to the etheric oxygen atom, which is activated by the electrophilic lanthanide ion. Calculations of the catalytic pathway using eight different ether substrates indicate that the more rapid cleavage of acyclic versus cyclic ethers is largely due to entropic effects, with the former C?O bond scission processes increasing the degrees of freedom/particles as the transition state is approached.

Assary, Rajeev S.; Atesin, Abdurrahman C.; Li, Zhi; Curtiss, Larry A.; Marks, Tobin J.

2013-07-15T23:59:59.000Z

17

Propenyl ether monomers for photopolymerization  

DOE Patents [OSTI]

Propenyl ether monomers of formula A(OCH{double_bond}CHCH{sub 3}){sub n} wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of the above formula together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

Crivello, J.V.

1996-10-22T23:59:59.000Z

18

Use of superconductor type catalysts in the preparation of tertiary butyl alcohol from tertiary butyl hydroperoxide  

SciTech Connect (OSTI)

In a method wherein a solution of a tertiary butyl hydroperoxide charge stock in tertiary butyl alcohol is brought into contact with a catalytically effective amount of a hydroperoxide decomposition catalyst in a hydroperoxide decomposition reaction zone in liquid phase with agitation to convert said tertiary butyl hydroperoxide to decomposition products, principally tertiary butyl alcohol, the improvement is described which comprises: (a) using a superconductor as said hydroperoxide decomposition catalyst, and (b) recovering tertiary butyl alcohol from the products of said hydroperoxide decomposition reaction.

Sanderson, J.R.; Stockton, M.E.

1993-08-17T23:59:59.000Z

19

Process for producing high purity isoolefins and dimers thereof by dissociation of ethers  

DOE Patents [OSTI]

Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150 to 250 F at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C[sub 3] to C[sub 6] and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom. 2 figs.

Smith, L.A. Jr.; Jones, E.M. Jr.; Hearn, D.

1984-05-08T23:59:59.000Z

20

Modelling the fate of polybrominated diphenyl ethers (PBDEs) during the municipal sewage treatment process  

Science Journals Connector (OSTI)

Sewage treatment plants (STPs) are an important source to the environment for many chemicals of concern (COCs). Polybrominated diphenyl ethers (PBDEs) are one such group of COCs of present day concern for which studies on fate and transport during the ... Keywords: chemical fate and transport, mass balance model, polybrominated diphenyl ethers, risk assessment, sewage treatment, water and wastewater management

Kerry N. McPhedran; Rajesh Seth

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Accelerated aging of EPDM and butyl elastomers  

SciTech Connect (OSTI)

This study was composed of three parts: a post cure study to optimize final properties of an ethylene-propylene-diene (EPDM) formulation, an accelerated aging study to compare the stress relaxation behavior of a butyl and an EPDM elastomer under compression, and a cursory evaluation of a new 70 Shore A EPDM. The optimum postcure for the EPDM was found to be 2 to 4 hours at 182{degrees}C in a vacuum. The EPDM was also shown to have superior aging characteristics compared to the butyl and is recommended for use instead of the butyl material. The physical properties for new 70 Shore A EPDM are satisfactory, and the stress relaxation behavior was only slightly inferior to the other EPDM.

Wilson, M.H.

1996-06-01T23:59:59.000Z

22

Use of ethers as high-octane components of gasolines  

SciTech Connect (OSTI)

This article reports on a study of the possible utilization of methyl tert-amyl ether (MTAE) as an automotive gasoline component, both by itself and in combination with methyl tert-butyl ether (MTBE). The naphtha used in these studies consisted of 80% reformer naphtha produced under severe conditions and 20% straight-run IBP-62/sup 0/C cut. The physicochemical properties of the MTAE, the MTBE, and the naphtha base stock are given. It is determined that MTAE, which has a slightly poorer knock resistance than MTBE, is fully equal to MTBE in all other respects and can be used as an automotive gasoline component; that a gasoline blend prepared from 89% naphtha base stock, 5.5% MTAE, and 5.5% MTBE meets all of the requirements of the standard GOST 2084-77 for Grade AI-93 gasoline; and that the use of MTAE offers a means for expanding the resources of high-octane components, lowering the toxicity of the gasolines and the exhaust gas (in comparison with organometallic antiknock agents), and bringing non-petroleum raw materials into the fuel production picture.

Gureev, A.A.; Baranova, G.N.; Korotkov, I.V.; Levinson, G.I.

1984-01-01T23:59:59.000Z

23

E-Print Network 3.0 - alkyl tert-butyl ether Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

> >> 1 7198 J. Org. Chem. 1995,60, 7198-7208 Gas Phase Decomposition of Conjugate Acid Ions of Simple Summary: .S.Patent 5,091,590,1992. 0 1995American Chemical Society...

24

Treatment of Methyl tert-Butyl Ether Vapors in Biotrickling Filters. 1.  

E-Print Network [OSTI]

because of its low cost and blending characteristics. Depending on the season, reformulated gasoline of reactor per hour, a value comparable to other gasoline constituents. Such high performance could enhancer in gasoline. The use of MTBE increased rapidly after the 1990 Clean Air Act Amendments required

25

Environmental Microbiology (2001) 3(6), 407416 Methyl tert-butyl ether (MTBE) degradation by a  

E-Print Network [OSTI]

Tank (LUFT) remediation programme. A recent USGS study has estimated that as many as 9000 community, remediation actions are implemented at costs usually 10± 30% higher than those at sites without MTBE contamina- tion. The evaluation of innovative and cost-effective treatment such as bioremediation for MTBE spills

26

Biodegradation of Methyl tert-Butyl Ether by a Pure Bacterial Culture  

Science Journals Connector (OSTI)

...identify cost-effective remediation technologies. Relatively...treated with ENV735 as a remediation biocatalyst, but the strain...through the Small Business Innovative Research program (grant...situ bioaugmentation for remediation of chlorinated solvents in...

Paul B. Hatzinger; Kevin McClay; Simon Vainberg; Marina Tugusheva; Charles W. Condee; Robert J. Steffan

2001-12-01T23:59:59.000Z

27

Treatment of Methyl tert-Butyl Ether Contaminated Water Using a Dense  

E-Print Network [OSTI]

discharge of organic compounds require that new, innovative tech- nologies and methods of remediation dioxide, making the DMP reactor a promising tool in the future remediation of water. Chemical and physical is transformed into a more toxic material or a substance that is more difficult to remediate, the treatment

Dandy, David

28

High octane ethers from synthesis gas-derived alcohols. Final technical report, September 25, 1990--December 24, 1993  

SciTech Connect (OSTI)

The objective of the research was to develop the methodology for the catalytic synthesis of ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from alcohol mixtures that are rich in methanol and 2-methyl-1-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. The last stage of the synthesis involves direct coupling of synthesis gas-derived methanol and isobutanol that has been previously demonstrated by us to occur over superacid catalysts to yield MIBE and smaller amounts of MTBE at moderate pressures and a mixture of methanol and isobutene at low pressures. A wide range of organic resin catalysts and inorganic oxide and zeolite catalysts have been investigated for activity and selectivity in directly coupling alcohols, principally methanol and isobutanol, to form ethers and in the dehydration of isobutanol to isobutene in the presence of methanol. All of these catalysts are strong acids, and it was found that the organic and inorganic catalysts operate in different, but overlapping, temperature ranges, i.e. mainly 60--120{degrees}C for the organic resins and 90--175{degrees}C for the inorganic catalysts. For both types of catalysts, the presence of strong acid centers is required for catalytic activity, as was demonstrated by lack of activity of fully K{sup +} ion exchanged Nafion resin and zirconia prior to being sulfated by treatment with sulfuric acid.

Klier, K.; Herman, R.G.

1994-05-01T23:59:59.000Z

29

Catalytic distillation for the synthesis of tertiary butyl alcohol.  

E-Print Network [OSTI]

??Catalytic Distillation for the synthesis of tertiary butyl alcohol (TBA) is investigated in this thesis. The solvent, ethylene glycol, is proposed as a means of… (more)

Safinski, Tomasz

2005-01-01T23:59:59.000Z

30

Near-Infrared Electrochromism in Electroactive Pentacenediquinone-Containing Poly(aryl ether)s  

E-Print Network [OSTI]

Near-Infrared Electrochromism in Electroactive Pentacenediquinone-Containing Poly(aryl etherVed October 21, 2005 The synthesis and near-infrared electrochromic properties of pentacenediquinone-infrared electrochromic properties of pentacenediquinone-containing poly(aryl ether)s were studied

Wan, Xin-hua

31

E-Print Network 3.0 - ammoniated glycyrrhizin butylated Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ammoniated glycyrrhizin butylated Search Powered by Explorit Topic List Advanced Search Sample search results for: ammoniated glycyrrhizin butylated Page: << < 1 2 3 4 5 > >> 1...

32

Crown Ethers in Graphene Bring Strong, Selective Binding | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Characterization Crown Ethers in Graphene Bring Strong, Selective Binding November 14, 2014 Schematic showing a graphene sheet containing an array of ideal crown ethers....

33

Ethers have good gasoline-blending attributes  

SciTech Connect (OSTI)

Because of their compatibility with hydrocarbon gasoline-blending components, their high octane blending values, and their low volatility blending values, ethers will grow in use as gasoline blending components. This article discusses the properties of ethers as blending components, and environmental questions.

Unzelman, G.H.

1989-04-10T23:59:59.000Z

34

Purification of aqueous cellulose ethers  

SciTech Connect (OSTI)

Manufacture of cellulose ethers usually involves high amounts of salt by-products. For application of the product, salt must be removed. In this work, we have studied the injection of high-pressure CO{sub 2} into an aqueous polymer-salt solution; we find that upon addition of isopropanol in addition to CO{sub 2}, the solution separates into two phases. One phase is rich in polymer and water, and the other phase contains mostly isopropanol, water and CO{sub 2}. The salt distributes between the two phases, thereby offering interesting possibilities for development of a new purification process for water-soluble polymers. This work presents experimental phase-equilibrium data for hydroxyethyl cellulose and sodium carboxymethyl cellulose with sodium acetate and potassium sulfate, respectively, in the region 40{degree}C and 30 to 80 bar. Based on these data, we suggest a process for the manufacture and purification of water-soluble cellulose ethers. 15 refs., 14 figs., 9 tabs.

Bartscherer, K.A.; de Pablo, J.J.; Bonnin, M.C.; Prausnitz, J.M.

1990-07-01T23:59:59.000Z

35

Impacts of Ethanol on Anaerobic Production of Tert-Butyl Alcohol (TBA) from Methyl Tert-Butyl Ether (MTBE) in Groundwater  

E-Print Network [OSTI]

Project title: Impacts of Ethanol on Anaerobic Production oftert-butanol (TBA). As ethanol is being promoted as ainvestigate the effect of ethanol release on existing MTBE

Scow, K M; MacKay, Douglas

2008-01-01T23:59:59.000Z

36

Biodegradation of Methyl tert-Butyl Ether and Other Fuel Oxygenates by a New Strain, Mycobacterium austroafricanum IFP 2012  

Science Journals Connector (OSTI)

...and the O2 consumption rate was measured with a 12-mm...France). The measured rates were corrected for endogenous...Cells were broken by three passes through a French press...from 105 to 200C at a rate of 10C/min. Helium...flushed with a Spectra-Physics SCM 400 vacuum flusher...

Alan François; Hugues Mathis; Davy Godefroy; Pascal Piveteau; Françoise Fayolle; Frédéric Monot

2002-06-01T23:59:59.000Z

37

Induction of Methyl Tertiary Butyl Ether (MTBE)-Oxidizing Activity in Mycobacterium vaccae JOB5 by MTBE  

Science Journals Connector (OSTI)

...directly from the culture vessels. In experiments that followed...time course of organic acid consumption as well as MTBE oxidation...determine the extent of MTBE consumption and the accumulation of TBA...detectable growth or MTBE consumption occurred when cells were incubated...

Erika L. Johnson; Christy A. Smith; Kirk T. O'Reilly; Michael R. Hyman

2004-02-01T23:59:59.000Z

38

Enhancing Transport of Hydrogenophaga flava ENV735 for Bioaugmentation of Aquifers Contaminated with Methyl tert-Butyl Ether  

Science Journals Connector (OSTI)

...column was washed with the surfactant solution. d The sand was prewashed with the surfactant solution, and the cells...washed with BSM without surfactant. This work was supported...bacteria through a sandy soil. Appl. Environ. Microbiol...

Sheryl H. Streger; Simon Vainberg; Hailiang Dong; Paul B. Hatzinger

2002-11-01T23:59:59.000Z

39

Treatment of methyl t-butyl ether contaminated water using a dense medium plasma reactor, a mechanistic and kinetic investigation  

E-Print Network [OSTI]

, a mechanistic and kinetic investigation Derek C. Johnson1 , Vasgen A. Shamamian2 , John H. Callahan2 , Ferencz S in the future remediation of water. Chemical and physical mechanisms, together with carbon balances, are used

Dandy, David

40

Effects of Gasoline Formulation on Methyl tert-Butyl Ether (MTBE) Contamination in Private Wells near Gasoline Stations  

Science Journals Connector (OSTI)

New York State Department of Health, Bureau of Environmental Exposure Investigation, 547 River Street, Room 300, Troy, New York 12180, and New York State Department of Health, Wadsworth Center for Laboratories and Research, P.O. ... Wells with contamination of ?20 ?g/L were scheduled for periodic or follow-up sampling by local county health departments or scheduled for remedial action, as appropriate. ... (13)?Delzer, G. C.; Zogorski, J. S.; Lopes, T. J.; Bosshart, R. L. Occurrence of the gasoline Oxygenate MTBE and BTEX compounds in urban stormwater in the United States, 1991?1995; U.S. Geologic Survey Water-Resources Investigations Report, WRIR 96-4145, Rapid City, SD, 1996. ...

Daniel P. Lince; Lloyd R. Wilson; Gordon A. Carlson; Anthony Bucciferro

2001-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Enhancing Transport of Hydrogenophaga flava ENV735 for Bioaugmentation of Aquifers Contaminated with Methyl tert-Butyl Ether  

Science Journals Connector (OSTI)

...National Science Foundation Small Business Innovative Research (SBIR) program (award no...Ontario, Canada. Ground Water Monit. Remediation 18: 113-122. 52 Scholl, M. A...evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater...

Sheryl H. Streger; Simon Vainberg; Hailiang Dong; Paul B. Hatzinger

2002-11-01T23:59:59.000Z

42

Measurement of Trihalomethanes and Methyl Tertiary-Butyl Ether in Tap Water Using Solid-Phase Microextraction GC-MS  

Science Journals Connector (OSTI)

......ductive age living in Corpus Christi, Texas and Cobb...micro extraction with gas chromatography-mass...determinations using gas chromatog- raphy...of fulvic acids in natural waters. Env. Sci...trihalomethane by headspace-gas chromatog- raphy......

Frederick L. Cardinali; David L. Ashley; John C. Morrow; Deborah M. Moll; Benjamin C. Blount

2004-04-01T23:59:59.000Z

43

The Thermal Decomposition of Diethyl Ether. V. The Production of Ethanol from Diethyl Ether and the Pyrolysis of Ethanol  

Science Journals Connector (OSTI)

...The Thermal Decomposition of Diethyl Ether. V. The Production of Ethanol from Diethyl Ether and the Pyrolysis of Ethanol G. R. Freeman The two modes of decomposition of ethanol at 525 degrees C, namely dehydration and dehydrogenation, are affected...

1958-01-01T23:59:59.000Z

44

Process for making propenyl ethers and photopolymerizable compositions containing them  

DOE Patents [OSTI]

Propenyl ether monomers of formula A(OCH{double_bond}CHCH{sub 3}){sub n} (V) wherein n is an integer from one to six and A is selected from cyclic ethers, polyether, and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

Crivello, J.V.

1996-01-23T23:59:59.000Z

45

Crown Ethers Flatten in Graphene for Strong, Specific Binding...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crown Ethers Flatten in Graphene for Strong, Specific Binding ORNL discovery holds potential for separations, sensors, batteries, biotech and more This sheet of graphene contains...

46

Densities and isobaric vapor-liquid equilibria for the mixtures formed by four butyl esters and 1-butanol  

SciTech Connect (OSTI)

Densities of 298.15 K and the vapor-liquid equilibria for 1-butanol + butyl methanoate, + butyl ethanoate, + butyl propanoate, and + butyl butanoate have been measured at 101.32 kPa in small capacity ebulliometer. All results were found to be thermodynamically consistent with a point-to-point test. The mixtures containing butyl methanoate and butyl ethanoate show azeotropes at T = 379.14 K, x = 0.871 and T = 389.64 K, x = 0.222, respectively. Different group-contribution methods were applied to these mixtures.

Gonzalez, E.; Ortega, J. [Univ. of Las Palmas de Gran Canaria (Spain)] [Univ. of Las Palmas de Gran Canaria (Spain)

1996-01-01T23:59:59.000Z

47

Solvent Effects on Metal Complexation with Crown Ethers from Liquid to Supercritical Fluids (DE-FG07-98ER 149 13)  

SciTech Connect (OSTI)

The purpose of this project is to study the salvation effects of metal-crown ether complexation in different solvents. It has been suggested in the literature that supercritical fluid carbon dioxide (SF-CO2) is a tunable solvent because its salvation environment can be varied with the fluid density. In this project, spectroscopic techniques including nuclear magnetic resonance (NMR) and Fourier Transform Infrared (FTIR) were used to evaluate salvation effects of metal crown complexation in organic solvents and in SF-CO2. In most solvent extraction systems, water is often involved in the extraction processes. We have carried out extensive studies of water-crown ether interactions in different solvents and in SF-CO2 using NMR and FTIR techniques. Water molecules can be attached to crown ethers through hydrogen bonding of H-0-H to the oxygen atoms of crown ether cavities. This type of interaction is like a Lewis acid-Lewis base complexation. During the course of this project, we noticed that some CO2 soluble Lewis base such as tri-n-butyl-phosphate (TBP) can also form such Lewis acid-Lewis base complexes with water and other inorganic acids including nitric acid and hydrochloric acid. Inorganic acids (e.g. nitric acid) are normally not soluble in SF-CO2. However, because TBP is highly soluble in SF-CO2, an inorganic acid bound to TBP via hydrogen bonding becomes CO2 soluble. This Lewis acid-Lewis base complex approach provides a method of introducing inorganic acids into supercritical fluid CO2 for chemical reactions.

Wai, C.M.

2002-06-01T23:59:59.000Z

48

Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries  

SciTech Connect (OSTI)

The effects of three crown ethers, 12-crown-4, 15-crown-5, and 18-crown-6, as additives and co-solvents in non-aqueous electrolytes on the cell performance of primary Li/air batteries operated in a dry air environment were investigated. Crown ethers have large effects on the discharge performance of non-aqueous electrolytes in Li/air batteries. A small amount (normally less than 10% by weight or volume in electrolytes) of 12-Crown-4 and 15-crown-5 reduces the battery performance and a minimum discharge capacity appears at the crown ether content of ca. 5% in the electrolytes. However, when the content increases to about 15%, both crown ethers improve the capacity of Li/air cells by about 28% and 16%, respectively. 15-Crown-5 based electrolytes even show a maximum discharge capacity in the crown ether content range from 10% to 15%. On the other hand, the increase of 18-crown-6 amount in the electrolytes continuously lowers of the cell performance. The different battery performances of these three crown ethers in electrolytes are explained by the combined effects from the electrolytes’ contact angle, oxygen solubility, viscosity, ionic conductivity, and the stability of complexes formed between crown ether molecules and lithium ions.

Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

2010-02-04T23:59:59.000Z

49

Shear viscosity measurements in the binary mixture butyl cellosolve-water near its upper and lower critical consolute points  

E-Print Network [OSTI]

has been measured for a two-component critical liquid system, butyl cellosolve-water, in the region to report measurements of the shear viscosity of critical binary mixture butyl cello- solve (2-n353 Shear viscosity measurements in the binary mixture butyl cellosolve-water near its upper

Boyer, Edmond

50

Identification of volatile butyl rubber thermal-oxidative degradation products by cryofocusing gas chromatography/mass spectrometry (cryo-GC/MS).  

SciTech Connect (OSTI)

Chemical structure and physical properties of materials, such as polymers, can be altered as aging progresses, which may result in a material that is ineffective for its envisioned intent. Butyl rubber formulations, starting material, and additives were aged under thermal-oxidative conditions for up to 413 total days at up to 124 %C2%B0C. Samples included: two formulations developed at Kansas City Plant (KCP) (%236 and %2310), one commercially available formulation (%2321), Laxness bromobutyl 2030 starting material, and two additives (polyethylene AC-617 and Vanax MBM). The low-molecular weight volatile thermal-oxidative degradation products that collected in the headspace over the samples were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). The majority of identified degradation species were alkanes, alkenes, alcohols, ketones, and aldehydes. Observations for Butyl %2310 aged in an oxygen-18 enriched atmosphere (18O2) were used to verify when the source of oxygen in the applicable degradation products was from the gaseous environment rather than the polymeric mixture. For comparison purposes, Butyl %2310 was also aged under non-oxidative thermal conditions using an argon atmosphere.

Smith, Jonell Nicole; White, Michael Irvin; Bernstein, Robert; Hochrein, James Michael

2013-02-01T23:59:59.000Z

51

Properties Investigation of Sulfonated Poly(ether ether ketone)/Polyacrylonitrile Acid–Base Blend Membrane for Vanadium Redox Flow Battery Application  

Science Journals Connector (OSTI)

Acid–base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-...

Zhaohua Li; Wenjing Dai; Lihong Yu; Le Liu; Jingyu Xi; Xinping Qiu; Liquan Chen

2014-10-15T23:59:59.000Z

52

Atmospheric and combustion chemistry of dimethyl ether  

SciTech Connect (OSTI)

It has been demonstrated that dimethyl ether (DME) is an ideal diesel fuel alternative. DME, CH{sub 3}OCH{sub 3}, combines good fuel properties with low exhaust emissions and low combustion noise. Large scale production of this fuel can take place using a single step catalytic process converting CH{sub 4} to DME. The fate of DME in the atmosphere has previously been studied. The atmospheric degradation is initiated by the reaction with hydroxyl radicals, which is also a common feature of combustion processes. Spectrokinetic investigations and product analysis were used to demonstrate that the intermediate oxy radical, CH{sub 3}OCH{sub 2}O, exhibits a novel reaction pathway of hydrogen atom ejection. The application of tandem mass spectrometry to chemi-ions based on supersonic molecular beam sampling has recently been demonstrated. The highly reactive ionic intermediates are sampled directly from the flame and identified by collision activation mass spectrometry and ion-molecule reactions. The mass spectrum reflects the distribution of the intermediates in the flame. The atmospheric degradation of DME as well as the unique fuel properties of a oxygen containing compound will be discussed.

Nielsen, O.J.; Egsgaard, H.; Larsen, E.; Sehested, J. [Risoe National Lab., Roskilde (Denmark); Wallington, T.J. [Ford Motor Co., Dearborn, MI (United States)

1997-12-31T23:59:59.000Z

53

Hydrogen Generation from Dimethyl Ether for Fuel Cell Auxiliary Power Units  

Science Journals Connector (OSTI)

Hydrogen Generation from Dimethyl Ether for Fuel Cell Auxiliary Power Units ... Vehicle manufacturers are rushing ahead with research into alternative fuels such as dimethyl ether (DME), biodiesel, methanol, ethanol, and hydrogen. ...

Marita Nilsson; Lars J. Pettersson; Bård Lindström

2006-07-29T23:59:59.000Z

54

Effects of simulant mixed waste on EPDM and butyl rubber  

SciTech Connect (OSTI)

The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.

Nigrey, P.J.; Dickens, T.G.

1997-11-01T23:59:59.000Z

55

The Effect of the Di-Tertiary Butyl Peroxide (DTBP) additive on HCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether  

E-Print Network [OSTI]

Ignition Using Isooctane, Ethanol and Natural Gas - AModel for High Temperature Ethanol Oxidation," Internationalof Bio-Derived Carbon from Ethanol-in-Diesel Blends in the

Mack, John Hunter; Buchholz, Bruce A; Flowers, Daniel L; Dibble, Robert W

2005-01-01T23:59:59.000Z

56

RELATIONS BETWEEN THE DETECTION OF METHYL TERT-BUTYL ETHER (MTBE) IN SURFACE AND GROUND WATER AND ITS CONTENT IN GASOLINE  

E-Print Network [OSTI]

AND ITS CONTENT IN GASOLINE By Michael J. Moran, Mike J. Halde, Rick M. Clawges and John S. Zogorski U in the United States as an octane enhancer and oxygenate in gasoline. Octane enhancement began in the late 1970's with the phase-out of tetraethyl lead from gasoline. The use of oxygenates was expanded

57

Synthesis of Medium Ring Ethers. 5. The Synthesis of (+)-Laurencin  

Science Journals Connector (OSTI)

The eight-membered medium ring ether natural product (+)-laurencin 1 is the prototypical member of a growing family of marine natural product cyclic ethers isolated from red algae and those marine organisms which feed on Laurencia species. ... The reaction mixture immediately became yellow and gradually turned dark red as gas was evolved. ... We thank the Engineering and Physical Sciences Research Council (EPSRC) UK for a research grant, Pfizer Central Research, and Corpus Christi College Cambridge for the award of a studentship and a Junior Research Fellow ship (J.W.B.), the Cambridge European Overseas Trust, Ciba (Novartis) and the Swiss Foundation for Gifted Students (scholarship to S.D.), and the Commission of the European Communities (TMR award to T.C.S.) for generous financial support. ...

Jonathan W. Burton; J. Stephen Clark; Sam Derrer; Thomas C. Stork; Justin G. Bendall; Andrew B. Holmes

1997-08-13T23:59:59.000Z

58

Dimethyl Ether Autoignition at Engine-Relevant Conditions  

Science Journals Connector (OSTI)

† Key Laboratory for Power Machinery and Engineering of M.O.E., Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China ... The autoignition of dimethyl ether (DME), an alternative diesel engine fuel, has been studied at elevated pressures. ... In addition to studies aimed at ascertaining the performance of compression–ignition internal combustion engines fuel with DME,(2, 3) there have been a number of studies focused on experimental characterization of fundamental combustion properties for DME. ...

Zhenhua Li; Weijing Wang; Zhen Huang; Matthew A. Oehlschlaeger

2013-04-01T23:59:59.000Z

59

2' and 3' Carboranyl uridines and their diethyl ether adducts  

DOE Patents [OSTI]

There is disclosed a process for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. Said carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of said compounds in methods for boron neutron capture therapy in mammalian tumor cells.

Soloway, Albert H. (Worthington, OH); Barth, Rolf F. (Columbus, OH); Anisuzzaman, Abul K. (Columbus, OH); Alam, Fazlul (Anaheim, CA); Tjarks, Werner (Columbus, OH)

1992-01-01T23:59:59.000Z

60

Palladium/Tris(tert-butyl)phosphine-Catalyzed Suzuki Cross-Couplings in the Presence of Water  

E-Print Network [OSTI]

Dipalladiumtris(dibenzylideneacetone)/tris(tert-butyl)phosphonium tetrafluoroborate/potassium fluoride dihydrate [Pd2(dba)3/[HP(t-Bu)3]BF4/KF?2?H2O] serves as a mild, robust, and user-friendly method for the efficient ...

Lou, Sha

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The interactions of water and perfluorodiethyl ether on Ru(100)  

SciTech Connect (OSTI)

We have studied the interactions of water and perfluorodiethyl ether on Ru(100) in order to model the effects of surface structure and humidity on the bonding and decomposition of perfluoroalkyl ether lubricants with metal surfaces. In order to understand the interactions on Ru(100), we have first investigated the interactions of each of these adsorbates alone on the clean surface. The interactions of water with Ru(100) have been studied using both thermal desorption spectroscopy (TDS) and electron energy loss spectroscopy (EELS). From these studies we conclude that a small amount of water dissociates on this surface (5--10% of a monolayer), but water is adsorbed in a predominantly molecular form on this surface with an increasing degree of hydrogen-bonding with increasing coverage. The effects of hydrogen and oxygen coadsorption on the interactions of water with this surface have also been studied using TDS. Finally, the interactions of coadsorbed water and perfluorodiethyl ether on Ru(100) have been investigated using TDS.

Leavitt, P.

1990-09-21T23:59:59.000Z

62

Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization  

SciTech Connect (OSTI)

Carbon-oxygen bonds are the primary inter-monomer linkages lignin polymers in plant cell walls, and as such, catalyst development to cleave these linkages is of paramount importance to deconstruct biomass to its constituent monomers for the production of renewable fuels and chemicals. For many decades, acid catalysis has been used to depolymerize lignin. Lignin is a primary component of plant cell walls, which is connected primarily by aryl-ether linkages, and the mechanism of its deconstruction by acid is not well understood, likely due to its heterogeneous and complex nature compared to cellulose. For effective biomass conversion strategies, utilization of lignin is of significant relevance and as such understanding the mechanisms of catalytic lignin deconstruction to constituent monomers and oligomers is of keen interest. Here, we present a comprehensive experimental and theoretical study of the acid catalysis of a range of dimeric species exhibiting the b-O-4 linkage, the most common inter-monomer linkage in lignin. We demonstrate that the presence of a phenolic species dramatically increases the rate of cleavage in acid at 150 degrees C. Quantum mechanical calculations on dimers with the para-hydroxyl group demonstrate that this acid-catalyzed pathway differs from the nonphenolic dimmers. Importantly, this result implies that depolymerization of native lignin in the plant cell wall will proceed via an unzipping mechanism wherein b-O-4 linkages will be cleaved from the ends of the branched, polymer chains inwards toward the center of the polymer. To test this hypothesis further, we synthesized a homopolymer of b-O-4 with a phenolic hydroxyl group, and demonstrate that it is cleaved in acid from the end containing the phenolic hydroxyl group. This result suggests that genetic modifications to lignin biosynthesis pathways in plants that will enable lower severity processes to fractionate lignin for upgrading and for easier access to the carbohydrate fraction of the plant cell wall.

Sturgeon, M. R.; Kim, S.; Chmely, S. C.; Foust, T. D.; Beckham, G. T.

2013-01-01T23:59:59.000Z

63

Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis  

SciTech Connect (OSTI)

The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

T.A. Semelsberger

2004-10-01T23:59:59.000Z

64

E-Print Network 3.0 - allyl glycidyl ether Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science 15 () Trichloromethane ()1,1,2,2-1,1,2,2-Tetrachloroethane Summary: ;() Acrolein () Acrylic acid () Allyl zlcohol () Allyl chloride () Allyl glycidyl ether(AGE) ()2-...

65

POLYCHLORINATED BIPHENYLS AND POLYBROMINATED DIPHENYL ETHERS IN GALAPAGOS SEA LIONS (ZALOPHUS WOLLEBAEKI)  

E-Print Network [OSTI]

), polybrominated diphenyl ethers (PBDEs), polychlorinated dibenzo-p- dioxins (PCDDs), and polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) repre- sent persistent

Gobas, Frank

66

Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Alternative Fuels lDimethyl Ether Rheology and Materials Studies Liquid Fuels from Biomass BiodieselFuelManagementBestPracticesReport.pdf...

67

Polybrominated diphenyl ether flame retardants in the antarctic environment  

E-Print Network [OSTI]

, the historical record of dioxins, PCBs and DDTs in the same cores showed a decreasing trend. At present, PBDEs are recognized as a worldwide pollution problem since they have reached remote areas such as the deep ocean, the Arctic and Antarctica (de Boer et al... that cheerful and warm Brazilian spirit. You are my Aggie family! viii NOMENCLATURE #1; critical value of a statistical test used to reject the null hypothesis ANOVA Analysis of Variance BDE Brominated Diphenyl Ether BFR Brominated Flame Retardant DC...

Yogui, Gilvan Takeshi

2009-05-15T23:59:59.000Z

68

Extraction of Plutonium into 30 Percent Tri-Butyl Phosphate from Nitric Acid Solution Containing Fluoride, Aluminum, and Boron  

SciTech Connect (OSTI)

This work consists of experimental batch extraction data for plutonium into 30 volume-percent tri-butyl phosphate at ambient temperature from such a solution matrix and a model of this data using complexation constants from the literature.

Kyser, E.A.

2000-01-06T23:59:59.000Z

69

Structure and Reactivity of Alkyl Ethers Adsorbed on CeO2(111) Model Catalysts  

SciTech Connect (OSTI)

The effect of surface hydroxyls on the adsorption of ether on ceria was explored. Adsorption of dimethyl ether (DME) and diethyl ether (DEE) on oxidized and reduced CeO{sub 2}(111) films was studied and compared with Ru(0001) using RAIRS and sXPS within a UHV environment. On Ru(0001) the ethers adsorb weakly with the molecular plane close to parallel to the surface plane. On the ceria films, the adsorption of the ethers was stronger than on the metal surface, presumably due to stronger interaction of the ether oxygen lone pair electrons with a cerium cation. This interaction causes the ethers to tilt away from the surface plane compared to the Ru(0001) surface. No pronounced differences were found between oxidized (CeO{sub 2}) and reduced (CeOx) films. The adsorption of the ethers was found to be perturbed by the presence of OH groups on hydroxylated CeOx. In the case of DEE, the geometry of adsorption resembles that found on Ru, and in the case of dimethyl ether DME is in between that one found on clean CeOx and the metal surface. Decomposition of the DEE was observed on the OH/CeOx surface following high DEE exposure at 300 K and higher temperatures. Ethoxides and acetates were identified as adsorbed species on the surface by means of RAIRS and ethoxides and formates by s-XPS. No decomposition of dimethyl ether was observed on the OH/CeOx at these higher temperatures, implying that the dissociation of the C-O bond from ethers requires the presence of {beta}-hydrogen.

F Calaza; T Chen; D Mullins; S Overbury

2011-12-31T23:59:59.000Z

70

Structure and Reactivity of Alkyl Ethers Adsorbed on CeO(2)(111) Model Catalysts  

SciTech Connect (OSTI)

The effect of surface hydroxyls on the adsorption of ether on ceria was explored. Adsorption of dimethyl ether (DME) and diethyl ether (DEE) on oxidized and reduced CeO{sub 2}(111) films was studied and compared with Ru(0001) using RAIRS and sXPS within a UHV environment. On Ru(0001) the ethers adsorb weakly with the molecular plane close to parallel to the surface plane. On the ceria films, the adsorption of the ethers was stronger than on the metal surface, presumably due to stronger interaction of the ether oxygen lone pair electrons with a cerium cation. This interaction causes the ethers to tilt away from the surface plane compared to the Ru(0001) surface. No pronounced differences were found between oxidized (CeO{sub 2}) and reduced (CeOx) films. The adsorption of the ethers was found to be perturbed by the presence of OH groups on hydroxylated CeOx. In the case of DEE, the geometry of adsorption resembles that found on Ru, and in the case of dimethyl ether DME is in between that one found on clean CeOx and the metal surface. Decomposition of the DEE was observed on the OH/CeOx surface following high DEE exposure at 300 K and higher temperatures. Ethoxides and acetates were identified as adsorbed species on the surface by means of RAIRS and ethoxides and formates by s-XPS. No decomposition of dimethyl ether was observed on the OH/CeOx at these higher temperatures, implying that the dissociation of the C-O bond from ethers requires the presence of {beta}-hydrogen.

Calaza, Florencia C [ORNL; Chen, Tsung-Liang [ORNL; Mullins, David R [ORNL; Overbury, Steven {Steve} H [ORNL

2011-01-01T23:59:59.000Z

71

Aging of Weapon Seals – An Update on Butyl O-ring Issues  

SciTech Connect (OSTI)

During testing under the Enhanced Surveillance Campaign in 2001, preliminary data detected a previously unknown and potentially serious concern with recently procured butyl o-rings on several programs. All butyl o-rings molded from a proprietary formulation throughout the period circa 1999 through 2001 had less than a full cure. Engineering judgment was that under curing is detrimental and could possibly lead to sub-optimum performance or, in the worst case, premature seal failure. An aging study was undertaken to ensure that suspect o-rings installed in the stockpile will retain sufficient sealing force for a minimum ten-year service life. A new prediction model developed for this study indicates suspect o-rings do not need to be replaced before the ten-year service life. Long-term testing results are reported on a yearly basis to validate the prediction model. This report documents the aging results for the period September 2002 to January 2011.

Wilson, Mark H.

2011-07-13T23:59:59.000Z

72

Reverse osmosis performance with solutions containing tri-n-butyl phosphate  

SciTech Connect (OSTI)

Tests were conducted to determine whether the reverse osmosis (RO) units at the F/H Effluent Treatment Facility (ETF) at the Savannah River could be made to process solutions containing tri-n-butyl phosphate (TBP). It was desired to test whether operation at a feed pH other than neutral would improve performance. Test results are discussed in this report and indicate that little improvement in the water flux can be expected at other pH values.

Siler, J.L.

1991-10-22T23:59:59.000Z

73

Batch polymerization of styrene initiated by n-butyl lithium in a cyclohexane solvent  

E-Print Network [OSTI]

anionic mechanism. A mathematical model is de- veloped and the predicted values are compared with their corresponding experimental values. Initiator and monomer concentrations are varied and their conversion time profiles are studied. A G&el... and Storage Vessels Purification of Monomer Purification of Solvent Polymerization Reaction Scavenger Level Analysis o f Butyl Lithium Analysis of Molecular Weight Distributions by the Use of Gel Permeation Technique 10 19 19 ZO Zl ZZ 24 25 25...

Landon, Thomas Rodman

1971-01-01T23:59:59.000Z

74

Decomposition of Ethanol and Dimethyl Ether During Chemical Vapour deposition Synthesis  

E-Print Network [OSTI]

1 Decomposition of Ethanol and Dimethyl Ether During Chemical Vapour deposition Synthesis of Single-phase thermal decomposition of ethanol and dimethyl ether (DME) at typical SWNT growth conditions using to the predicted decomposition mechanism. Signature peak intensities indicated concentrations of both ethanol

Maruyama, Shigeo

75

Composition and Digestibility of the Ether Extract of Hays and Fodders.  

E-Print Network [OSTI]

556-712-5m TEXAS AGRICULTURAL EXPERIMENT STATIONS. BULLETIN NO . 150 AUGUST , 1912. Division o f Chemistry TECHNICAL BULLETIN Composition and Digestibility of the Ether Extract of Hays and Fodders By G S. FRAPS and J. B. RATHER POSTOFFICE... Digestibility of the Constituents............................................................. 23 Summary and Conclusions.......................................................................29 BLANK PAGE IN ORIGINAL Composition and Digestibility of the Ether...

Fraps, G. S.; Rather, J. B.

1912-01-01T23:59:59.000Z

76

Proton-conducting polymer electrolyte membranes based on fluoropolymers incorporating perfluorovinyl ether sulfonic acids and fluoroalkenes  

E-Print Network [OSTI]

acids. A novel synthetic route describing the preparation of perfluorovinyl ether monomer containing. The radical (co) and terpolymerization of 4-[(,,-trifluorovinyl)oxy]benzene sulfonyl chloride (TFVOBSC) with 1,1-difluoroethylene (or vinylidene fluoride, VDF), hexafluoropropene (HFP), and perfluoromethyl vinyl ether (PMVE

Paris-Sud XI, Université de

77

Comb-shaped single ion conductors based on polyacrylate ethers and lithium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comb-shaped single ion conductors based on polyacrylate ethers and lithium Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate Title Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate Publication Type Journal Article Year of Publication 2005 Authors Sun, Xiao-Guang, Jun Hou, and John B. Kerr Journal Electrochimica Acta Volume 50 Pagination 1139-1147 Keywords ionic conductivity, plasticizer, polyacrylate ethers, single ion conductor Abstract Comb-shaped single ion conductors have been synthesized by sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li+ salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE8-co-E3SO3Li);

78

Kinetic measurements of the gas-phase reactions of OH radicals with hydroxy ethers, hydroxy ketones, and keto ethers  

SciTech Connect (OSTI)

Absolute rate constants were determined for the gas-phase reactions of hydroxyl radicals with a series of hydroxy ethers as well as the simplest hydroxy ketone and keto ether with use of the flash photolysis resonance fluorescence technique. At 298 K, the measured rate constants were as follows (in units of 10{sup {minus}12} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}): 2-methoxyethanol, 12.5 {plus minus} 0.7; 2-ethoxyethanol, 18.7 {plus minus} 2.0; 2-butoxyethanol, 23.1 {plus minus} 0.9; 3-ethoxy-1-propanol, 22.0 {plus minus} 1.3; 3-methoxy-l-butanol, 23.6 {plus minus} 1.6; acetol, 3.0 {plus minus} 0.3; and methoxyacetone, 6.8 {plus minus} 0.6. The kinetic data for 2-methoxyethanol obtained between 240 and 440 K were used to derive the following Arrhenius expression: k{sub 1} = (4.5 {plus minus} 1.4) {times} 10{sup {minus}12} exp((325 {plus minus} 100)/T) (cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}). The results for all seven reactants are discussed in terms of the prediction of OH rate constants for oxygenated organic compounds.

Dagaut, P.; Liu, R.; Wallington, T.J.; Kurylo, M.J. (National Institute of Standards and Technology, Gaithersburg, MD (USA))

1989-11-16T23:59:59.000Z

79

Design and synthesis of the next generation of crown ethers for waste separations: An inter-laboratory comprehensive proposal. 1998 annual progress report  

SciTech Connect (OSTI)

'The purpose of this task is to undertake the design, synthesis, and characterization of the next generation of crown ethers for metal-ion separations applicable to USDOE''s environmental needs. Target problems include: Li{sup +} ions leaching from burial sites at the Oak Ridge Y-12 Plant; fission products 90 Sr and {sup 137}Cs contaminating high-level tank wastes at Hanford, INEEL, and Savannah River; and radium in wastes at the Niagara Falls Storage Site. Unfortunately, the technologies needed to address these problems either do not exist or exhibit substantial deficiencies. Separation techniques such as solvent extraction and ion exchange promise to play a strong role, especially as enhanced with highly selective crown ethers and calixarenes. This project is midway through year 2 of a 3-year effort. Below is given a summary of progress in the approximate period September, 1997, to May, 1998, for each of the four co-investigators at Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL), and the University of Tennessee (UTK). The overall approach entails utilization of theory and molecular modeling (PNNL), organic synthesis of novel crown compounds (ORNL), solvent extraction studies (ORNL and ANL), and studies of polymer-immobilized crown ethers (UTK).'

Moyer, B.A.; Hay, B.P.; Dietz, M.L.; Alexandratos, S.D.; Sachleben, R.A.; Chiarizia, R.

1998-06-01T23:59:59.000Z

80

Test of Orientation/Stretch-Induced Reduction of Friction via Primitive Chain Network Simulations for Polystyrene, Polyisoprene, and Poly(n-butyl acrylate)  

Science Journals Connector (OSTI)

Test of Orientation/Stretch-Induced Reduction of Friction via Primitive Chain Network Simulations for Polystyrene, Polyisoprene, and Poly(n-butyl acrylate) ...

Yuichi Masubuchi; Yumi Matsumiya; Hiroshi Watanabe

2014-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Synthesis and Evaluation of 3',5'-Di-tert-butyl-4'-hydroxyflavones as Potential Inhibitors of Low Density Lipoprotein (LDL) Oxidation  

Science Journals Connector (OSTI)

Synthesis and Evaluation of 3',5'-Di-tert-butyl-4'-hydroxyflavones as Potential Inhibitors of Low Density Lipoprotein (LDL) Oxidation ...

Guy Lewin; Yves Rolland; Sylvie Privat; Christine Breugnot; Albert Lenaers; Jean Paul Vilaine; Jean-Pierre Baltaze; Jacques Poisson

1995-12-01T23:59:59.000Z

82

Batch polymerization of styrene and isoprene by n-butyl lithium initiator  

E-Print Network [OSTI]

-20). Analysis of products consists of determining the point at which no free lithium alkyl remains. Thus if a butyl lithium initiated polymerization were terminated with water, butane would be evolved as long as the initiator were present. The butane...? agent were evaporated under a hood. Finally the polymer. was dried in a vacuum oven at about 50'C and under a vacuum of 30 inches of gg for about 30 hours. The weight of polymer formed was determined by final weighing. 25 The monomer conversion...

Hasan, Sayeed

1970-01-01T23:59:59.000Z

83

Isobaric vapor-liquid equilibria in the system methyl propanoate + n-butyl alcohol  

SciTech Connect (OSTI)

Isobaric vapor-liquid equilibria were determined at 74.66, 101.32, and 127.99 kPa for binary mixtures containing methyl propanoate + n-butyl alcohol by using a dynamic still with vapor and liquid circulation. No azeotrope was detected. The data were found to be thermodynamically consistent according to the point to point test. Application of the group-contribution models ASOG, UNIFAC, and modified UNIFAC to the activity coefficients at the three pressures studied gives average errors of less than 10%, 11%, and 3%, respectively.

Susial, P.; Ortega, J. (Univ. de Las Palmas de Gran Canaria, Canary Islands (Spain). Lab. de Termodinamica y Fisicoquimica)

1993-10-01T23:59:59.000Z

84

E-Print Network 3.0 - acid-labile cholesterol-vinyl ether-peg...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crystallization of Recombinant Crithidia fasciculata Tryparedoxin Summary: of 30% polyethylene glycol monomethyl ether (PEG MME) 2000, 0.1 M TrisHCl, pH 8.2, 1% dimethyl Source:...

85

Polybrominated diphenyl ethers in combusted residues and soils from an open burning site of electronic wastes  

Science Journals Connector (OSTI)

Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental contaminants due to their extensive use. Combusted residue from electronic waste (e-waste) combustion is one of the contamination sources ... tr...

Qian Luo; Ming Hong Wong; Zijian Wang; Zongwei Cai

2013-08-01T23:59:59.000Z

86

Solvent Effects on Cesium Complexation with Crown Ethers from Liquid to Supercritical Fluids  

SciTech Connect (OSTI)

Nuclear magnetic resonance (NMR) techniques were used to study crown ether-water interactions in solvents of low dielectric constants such as chloroform and carbon tetrachloride. Water forms a 1:1 complex with a number of crown ethers including 12-crown-4, 15-crown-5, 18-crown-6, dicyclohexano-18=crown-6, dicyclohexano-24-crown 8, and dibenzl-24-crown-8 in chloroform. Among these crown ethers, the 18-crown-6-H2 complex has the largest equilibrium constant (K=545) and 97% of the crown is complexed to water in chloroform. Addition of carbon tetrachloride to chloroform lowers the equilibrium constants of the crown-water complexes. The partition coefficients of crown ethers (D=crown in water/crown in solvent) between water and organic solvent also vary with solvent composition.

Chien M. Wai; Anne Rustenholtz; Shaofen Wang; Su-Chen Lee; Jamie Herman; Richard A. Porter

2004-03-15T23:59:59.000Z

87

Atmospheric chemistry of automotive fuel additives: Diisopropyl ether  

SciTech Connect (OSTI)

To quantify the atmospheric reactivity of diisopropyl ether (DIPE), we have conducted a study of the kinetics and mechanism of reaction 1: OH + DIPE {r_arrow} products. Kinetic measurements of reaction 1 were made using both relative (at 295 K) and absolute techniques (over the temperature range 240-440 K). Rate data from both techniques can be represented by the following: k{sub 1} = (2.2{sub -0.8}{sup +14}) x 10{sup -12} exp[(445 {plus_minus} 145)/T] cm{sup 3} molecule{sup -1}s{sup -1}. At 298 K, k{sub 1} = 9.8 x 10{sup -12} cm{sup 3} molecule{sup -1}s{sup -1}. The products of the simulated atmospheric oxidation of DIPE were identified using FT-IR spectroscopy; isopropyl acetate and HCHO were the main products. The atmospheric oxidation of DIPE can be represented by i-C{sub 3}H{sub 7}O-i-C{sub 3}H{sub 7} + OH + 2NO {r_arrow} HCHO + i-C{sub 3}H{sub 7}OC(O)CH{sub 3} + HO{sub 2} + 2NO{sub 2}. Our kinetic and mechanistic data were incorporated into a 1-day simulation of atmospheric chemistry to quantify the relative incremental reactivity of DIPE. Results are compared with other oxygenated fuel additives. 30 refs., 9 figs.

Wallington, T.J.; Andino, J.M.; Potts, A.R. [Ford Motor Company, Dearborn, MI (United States)] [and others

1993-01-01T23:59:59.000Z

88

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

89

Nonlinear viscoelastic response of carbon black-filled butyl rubber and implications for o-ring aging  

SciTech Connect (OSTI)

Butyl rubber, unfortunately, has pronounced nonlinear viscoelastic behavior, which may be modelled by a separable KBKZ formalism. While these effects seem to have minimal impact on accelerated sealing force measurements, they do severely impact compression set tests. Therefore, a new test is suggested for evaluating field-return o-rings which is free from such confounding effects.

Adolf, D.

1997-11-01T23:59:59.000Z

90

Rate dependent finite deformation stressstrain behavior of an ethylene methacrylic acid copolymer and an ethylene methacrylic acid butyl  

E-Print Network [OSTI]

Rate dependent finite deformation stress­strain behavior of an ethylene methacrylic acid copolymer and an ethylene methacrylic acid butyl acrylate copolymer S. Deschanel a,*, B.P. Greviskes a , K. Bertoldi a , S dependence a b s t r a c t The large strain deformation behaviors of an ethylene methacrylic acid (EMAA

91

Liquid phase oxidation of thiophene compounds by tert-butyl hydroperoxide  

SciTech Connect (OSTI)

Oxidative instability problems in both shale and petroleum-derived middle distillate fuels are related to the presence of hydroperoxides. Although a good body of knowledge exists concerning the formation of peroxides in the liquid phase, relatively little is known about the reaction/decomposition pathways when other functional groups are present. One of the significant and undesirable problems is the formation of solid deposits which can plug nozzles and filters and coal heat exchanger surfaces. Deposit formation in fuels is triggered by autoxidation reactions and is closely associated with elemental oxygen and/or hydroperoxide concentration. This paper reports on the reaction between a primary autoxidation product, a hydroperoxide, and sulfur compounds of the type present in petroleum-derived middle distillate fuels. Specifically, we examine the t-butyl hydroperoxide oxidation of thiophene, 2, 5-dimethylthiophene, tetrahydrothiophene and benzothiophene in a deaerated model fuel, tetradecane, at 120{degree}C.

Mushrush, G.W.; Watkins, J.M. Jr.; Hazlett, R.N.; Hardy, D.R.; Eaton, H.G. (Naval Research Laboratory, Washington, DC (USA))

1987-08-01T23:59:59.000Z

92

Fuel instability studies; Liquid phase oxidation of tetrahydrothiophene by tert-butyl hydroperoxide  

SciTech Connect (OSTI)

The reactions that lead to fuel instability are the subject of conflicting reports in the literature. Confusion results from the difficulty in relating differences in fuel composition, temperature, surface effects and dissolved oxygen content that comprise the multitude of reported studies. Model studies offer a means by chic the mechanism of an individual reaction can be related to a simple system and then extended to the more complex fuel media. This paper reports a model oxidation study of a species, t-butyl hydroperoxide under mild reaction conditions, 120{degrees}C, in a tetradecane model fuel. The major oxidation product was tetrahydrothiophene sulfoxide from the sulfide and t-butanol from the hydroperoxide. The complete suite of products is reported.

Mushrush, G.W.; Pellenbarg, R.E.; Hazlett, R.N.; Morris, R.E.; Hardy, D.R. (Fuels Section, Code 6180, Naval Research Lab., Washington, DC (US))

1991-01-01T23:59:59.000Z

93

Tests for mutagenic effects of ammoniated glycyrrhizin, butylated hydroxytoluene, and gum arabic in roden germ cells  

SciTech Connect (OSTI)

Ammoniated glycyrrhizin, butylated hydroxytoluene, and gum Arabic are generally recognized as safe (GRAS) substances that are used primarily as additives in foods. These substances were incorporated into rodent diets and fed to male rats and mice for 10 and 8 wk, respectively. The treated male mice and rats were then tested for dominant lethal effects. The mice were also tested for induced heritable translocation. Results of the rat studies indicated a statistically significant dominant lethal effect of each of the compounds tested; however, the biological significance of this response is not known. Results of the mouse dominant lethal and heritable translocation studies, on the other hand, indicated no adverse effects of the compounds tested.

Sheu, C.W.; Cain, K.T.; Rushbrook, C.J.; Jorgenson, T.A.; Generoso, W.M.

1986-01-01T23:59:59.000Z

94

Butyl rubber O-ring seals: Revision of test procedures for stockpile materials  

SciTech Connect (OSTI)

Extensive testing showed little correlation between test slab and O-ring performance. New procedures, comparable to those used with the traditional test slabs, were defined for hardness, compression set, and tensile property testing on sacrificial O-ring specimens. Changes in target performance values were made as needed and were, in one case, tightened to reflect the O-ring performance data. An additional study was carried out on O-ring and slab performance vs cure cycle and showed little sensitivity of material performance to large changes in curing time. Aging and spectra of certain materials indicated that two sets of test slabs from current vendor were accidently made from EPDM rather than butyl rubber. Random testing found no O-rings made from EPDM. As a result, and additional spectroscope test will be added to the product acceptance procedures to verify the type of rubber compound used.

Domeier, L.A.; Wagter, K.R.

1996-12-01T23:59:59.000Z

95

Initiation Temperature for Runaway Tri-n-Butyl Phosphate/Nitric Acid Reaction  

SciTech Connect (OSTI)

In a review of the safety basis for solvent extraction processes at the Department of Energy's Savannah River Site, a question was raised concerning the safety margin associated with a postulated accident involving a runaway tri-n-butyl phosphate (TBP)/nitric acid reaction due to the inadvertent heating of a tank. The safety margin was based on studies which showed the maximum temperature would not exceed 128 degrees Celsius compared to 130 degrees Celsius, the minimum initiation temperature for runaway reaction established in the 1950's following damaging incidents at the Savannah River and Hanford Sites. The reviewers were concerned the minimum temperature was not conservative since data for solutions containing 20 wt percent dissolved solids showed initiation temperatures at or below 130 degrees Celsius and process solutions normally contain some dissolved solids.

Rudisill, T.S.

2001-09-14T23:59:59.000Z

96

A thermodynamic model of nitric acid extraction by tri-n-butyl phosphate  

SciTech Connect (OSTI)

A thermodynamic model is presented for nitric acid extraction by tri-n-butyl phosphate (TBP). This model is based on the formation of the organic phase species: TBP.HNO/sub 3/ and (TBP)/sub 2/.HNO/sub 3/. The model works successfully at TBP concentrations of 5 to 100 vol% and was found to be effective at predicting the extraction of HNO/sub 3/ from HNO/sub 3//NaNO/sub 3/ and HNO/sub 3//LiNO/sub 3/ solutions. Within the TBP concentration range of 5 to 30%, a single set of extraction constants was sufficient to fit extraction data. Stoichiometric activity coefficients of nitric acid in HNO/sub 3//NaNO/sub 3/ and HNO/sub 3//LiNO/sub 3/ mixtures were calculated using a model developed by Bromley.

Chaiko, D.J.; Vandegrift, G.F.

1988-07-01T23:59:59.000Z

97

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

SciTech Connect (OSTI)

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

2003-04-01T23:59:59.000Z

98

Ab initio calculations of various protonation sites in perfluorodiethyl ether: Models for high temperature lubricant decomposition?  

SciTech Connect (OSTI)

Although perfluoropolyether (PFPE) lubricants have found successful application in spacecraft mechanisms and computer hard drives, there eventual breakdown is irksome, and the mechanism of decomposition is the subject of much scrutiny. However, very little notice is taken of the monomer ethers on which the polymer lubricants are based. Recently, concerted studies of the Lewis base properties of various fluorinated ethers have been performed, both from an experimental and a theoretical viewpoint. As an extension of the theoretical work, this study presents ab initio theoretical consideration of the multiple potential basic sites within perfluorodiethyl ether, (CF{sub 3}CF{sub 2}){sub 2}O, by way of the proton affinity of the molecule at various possible protonation sites (i.e., oxygen and fluorine atoms). The results indicate that although protonation at the oxygen is more energetically favored, protonation at the fluorine is not much higher in energy and provides for formation of an excellent leaving group, HF.

Ball, D.W. [Cleveland State Univ., OH (United States). Dept. of Chemistry

1995-04-01T23:59:59.000Z

99

Catalyst system and process for benzyl ether fragmentation and coal liquefaction  

DOE Patents [OSTI]

Dibenzyl ether can be readily cleaved to form primarily benzaldehyde and toluene as products, along with minor amounts of bibenzyl and benzyl benzoate, in the presence of a catalyst system comprising a Group 6 metal, preferably molybdenum, a salt, and an organic halide. Although useful synthetically for the cleavage of benzyl ethers, this cleavage also represents a key model reaction for the liquefaction of coal; thus this catalyst system and process should be useful in coal liquefaction with the advantage of operating at significantly lower temperatures and pressures.

Zoeller, Joseph Robert (Kingsport, TN)

1998-04-28T23:59:59.000Z

100

The Total Fatty Acids and Other Ether-Soluable Constituents of Feedstuffs.  

E-Print Network [OSTI]

586-914-10m TEXAS AGRICULTURAL EXPERIMENT STATION BULLETIN NO. 169 SEPTEMBER, 19I4 DIVISION OF CHEMISTRY The Total Fatty Acids and Other Ether-Soluble Constituents of Feedstuffs BY J. B. RATHER Assistant Chemist POSTOFFICE COLLEGE STATION... IS T .* In previous publications of this Experiment Station (Fraps and Bather, Bulletins Nos. 150 and 162) it has been shown that the un? saponifiable matter in the ether extract of hays and fodders averages about 58 per cent. Of the total extract, and is of much...

Rather, J. B. (James Burness)

1914-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Toxicity of polychlorinated diphenyl ethers in Hydra attenuata and in rat whole embryo culture  

E-Print Network [OSTI]

TOXICITY OF POLYCHLORINATED DIPHENYL ETHERS IN HYDRA A?TENUATA AND IN RAT WHOLE EMBRYO CULTURE A Thesis by MARION CAROL BECKER Submitted to the Office of Graduate Studies of Texas A8cM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1991 Major Subject: Toxicology TOXICITY OF POLYCHLORINATED DIPHENYL ETHERS IN HYDRA A1TENUATA AND IN RAT WHOLE EMBRYO CULTURE by MARION CAROL BECKER Approved as to style and content by: Stephen H. S (Ca...

Becker, Marion Carol

2012-06-07T23:59:59.000Z

102

Hydrolysis of cellulose to produce glucose with solid acid catalysts in 1-butyl-3-methyl-imidazolium chloride ([bmIm][Cl]) with sequential water addition  

Science Journals Connector (OSTI)

Selective glucose production by cellulose hydrolysis with initial or sequential water addition in the presence of solid acid catalysts in 1-butyl-3-methyl-imidazolium chloride ([bmIm][Cl]) under microwave irra...

Kaori Ishida; Shiho Matsuda; Masaru Watanabe…

2014-12-01T23:59:59.000Z

103

Anhydrous aluminum chloride as an alkylation catalyst: identification of mono- and dialkyl-benzenes from the condensation of tertiary butyl alcohol with benzene.  

E-Print Network [OSTI]

LIBRARY a a w c"I. I. SI - O~ TI:YAf ANHYDROUS ALUMINUM CHLORIDE AS AN ALKYLATION CATALYST: IDENTIFICATION OF MONO- AND DIALKYIZENZENES FROM THE CONDENSATION QF TERTIARY BUTYL ALCOHOL WITH BENKENE IACEY EUGENE SCOGGINS 4 A Thesis Submitted...: IDENTIFICATION OF MONO- AND DI~NZZNES FROM THE CONDENSATION OF TERTIARY BUTYL ALCOHOL WITH BENZENE A Thesis By LACEY EUGENE SCOGGINS Approved as to style and content hy: Chairman of Committee Head of Chemistry Department 1959 ACKNOWLEDGME1VTS The author...

Scoggins, Lacey E

1959-01-01T23:59:59.000Z

104

Initiation Temperature for Runaway Tri-n-Butyl Phosphate/Nitric Acid Reaction  

SciTech Connect (OSTI)

During a review of the H-Canyon authorization basis, Defense Nuclear Facility Safety Board (DNFSB) staff members questioned the margin of safety associated with a postulated tri-n-butyl phosphate (TBP)/nitric acid runaway reaction due to the inadvertent heating of a canyon tank containing greater than 3000 lbs (1362 kg) of TBP. The margin of safety was partially based on experiments and calculations performed by the Actinide Technology Section (ATS) to support deletion of indication of tank agitation as a Safety Class System. In the technical basis for deletion of this system, ATS personnel conservatively calculated the equilibrium temperature distribution of a canyon tank containing TBP and nitric acid layers which were inadvertently heated by a steam jet left on following a transfer. The maximum calculated temperature (128 degrees C) was compared to the minimum initiation temperature for a runaway reaction (greater than 130 degrees C) documented by experimental work in the mid 195 0s. In this work, the initiation temperature as a function of nitric acid concentration was measured for 0 and 20 wt percent dissolved solids. The DNFSB staff members were concerned that data for 0 wt percent dissolved solids were not conservative given the facts that data for 20 wt percent dissolved solids show initiation temperatures at or below 130 degrees C and H-Canyon solutions normally contained a small amount of dissolved solids.

Rudisill, T.S.

2000-11-28T23:59:59.000Z

105

Thorium ions transport across Tri-n-butyl phosphate-benzene based supported liquid membranes  

SciTech Connect (OSTI)

Transport of Th(IV) ions across tri-n-butyl phosphate (TBP) benzene based liquid membranes supported in microporous hydrophobic polypropylene film (MHPF) has been studied. Various parameters such as variation of nitric acid concentration in the feed, TBP concentration in the membrane, and temperature on the given metal ions transport have been investigated. The effects of nitric acid and TBP concentrations on the distribution coefficient were also studied, and the data obtained were used to determine the Th ions-TBP complex diffusion coefficient in the membrane. Permeability coefficients of Th(IV) ions were also determined as a function of the TBP and nitric acid concentrations. The optimal conditions for the transport of Th(IV) ions across the membrane are 6 mol{sm_bullet}dm{sup -3} HNO{sub 3} concentration, 2.188 mol {center_dot} dm{sup -3} TBP concentration, and 25{degrees}C. The stoichiometry of the chemical species involved in chemical reaction during the transport of Th(IV) ions has also been studied.

Rasul, G.; Chaudry, M.A. [Pakistan Institute of Nuclear Chemistry, Islamabad (Pakistan); Afzal, M. [Quaid-I-Azam Univ., Islamabad (Pakistan)

1995-12-01T23:59:59.000Z

106

Dimethyl ether (DME) from coal as a household cooking fuel in China  

E-Print Network [OSTI]

technologies. Given China's rich coal resources, the production and use of coal-derived DME as a cooking fuelDimethyl ether (DME) from coal as a household cooking fuel in China Eric D. Larson Princeton gas (LPG) as a household cooking fuel. As such, DME is an attractive fuel for clean cooking. DME can

107

Nuclear magnetic relaxation dispersion investigations1 of water retention mechanism by cellulose ethers in mortars2  

E-Print Network [OSTI]

Nuclear magnetic relaxation dispersion investigations1 of water retention mechanism by cellulose : 10.1016/j.cemconres.2012.06.002 #12;2 ABSTRACT22 23 We show how nuclear magnetic spin-lattice relaxation dispersion of protons-water24 (NMRD) can be used to elucidate the effect of cellulose ethers

Boyer, Edmond

108

The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine  

Science Journals Connector (OSTI)

Abstract The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (?4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. \\{NOx\\} emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load, the effect of the additives is much less significant, due to the fact that the ratio oxygen from additive/oxygen from air is much lower.

F. Gómez-Cuenca; M. Gómez-Marín; M.B. Folgueras-Díaz

2013-01-01T23:59:59.000Z

109

Linking Low-Level Stable Isotope Fractionation to Expression of the Cytochrome P450 Monooxygenase-Encoding ethB Gene for Elucidation of Methyl tert-Butyl Ether Biodegradation in Aerated Treatment Pond Systems  

Science Journals Connector (OSTI)

...application of CSIA in field investigations to detect biodegradation...52). An alternative remedial strategy could be the use...application of CSIA in field investigations to detect biodegradation may lead to...application of CSIA in field investigations to detect biodegradation...

Sven Jechalke; Mònica Rosell; Paula M. Martínez-Lavanchy; Paola Pérez-Leiva; Thore Rohwerder; Carsten Vogt; Hans H. Richnow

2010-12-10T23:59:59.000Z

110

MTBE Production Economics (Released in the STEO April 2001)  

Reports and Publications (EIA)

The purpose of this analysis is to evaluate the causes of methyl tertiary butyl ether (MTBE) price increases in 2000.

2001-01-01T23:59:59.000Z

111

Kinetics of liquid phase catalytic dehydration of methanol to dimethyl ether  

SciTech Connect (OSTI)

This paper reports the kinetics of the liquid phase catalytic dehydration of methanol to dimethyl ether investigated. The experiments were carried out under low concentrations of feed in a 1-L stirred autoclave, according to a statistical experimental design. The inert liquid phase used for this investigation was a 78:22 blend of paraffinic and naphthenic mineral oils. A complete thermodynamic analysis was carried out in order to determine the liquid phase concentrations of the dissolved species. A global kinetic model was developed for the rate of dimethyl ether synthesis in terms of the liquid phase concentration of methanol. The activation energy of the reaction was found to be 18,830 cal/gmol. Based on a step-wise linear regression analysis of the kinetic data, the order of the reaction which gave the best fit was 0.28 with respect to methanol.

Gogate, M.R.; Lee, B.G.; Lee, S. (Akron Univ., OH (USA). Dept. of Chemical Engineering); Kulik, C.J. (Electric Power Research Inst., Palo Alto, CA (USA))

1990-01-01T23:59:59.000Z

112

Process to convert biomass and refuse derived fuel to ethers and/or alcohols  

DOE Patents [OSTI]

A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.

Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.

1996-04-02T23:59:59.000Z

113

Process to convert biomass and refuse derived fuel to ethers and/or alcohols  

DOE Patents [OSTI]

A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO); Chum, Helena L. (Arvada, CO); Evans, Robert J. (Lakewood, CO); Rejai, Bahman (Lakewood, CO); Bain, Richard L. (Golden, CO); Overend, Ralph P. (Lakewood, CO)

1996-01-01T23:59:59.000Z

114

Soluble, Infrared-Absorbing Croconate Dyes from 2,6-Di-tert-butyl-4-methylchalcogenopyrylium Salts  

Science Journals Connector (OSTI)

1 Although many squarylium dyes have limited solubility in organic solvents or in coated organic films, squarylium dyes 1 (Chart 1) derived from 2,6-di-tert-butyl-4-methylchalcogenopyrylium salts (2)3 are soluble and have been coated in organic thin films for a variety of applications. ... The croconates are readily prepared, are soluble in organic solvents, and have absorption maxima that cover a broad range of laser emission lines from gallium?arsenide diode lasers (?820 nm) to the neodinium-YAG laser (1064 nm). ... The reaction mixture was poured into water (50 mL), and the product was extracted with hexanes (3 × 25 mL). ...

Todd P. Simard; Jian H. Yu; Jennifer M. Zebrowski-Young; Neil F. Haley; Michael R. Detty

2000-03-03T23:59:59.000Z

115

Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: phenylated sulfonated poly(ether ether ketone ketone) versus Nafion  

SciTech Connect (OSTI)

We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol and hydronium in phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. At comparable hydration levels, the pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower in Ph-SPEEKK relative to the corresponding properties in Nafion. The aromatic carbon backbone of Ph-SPEEKK is less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation occurs at a hydration level ({lambda}) of {approx}8 H{sub 2}O/SO{sub 3}{sup -}. At {lambda} = 20, water, methanol and hydronium diffusion coefficients were 1.4 x 10{sup -5}, 0.6 x 10{sup -5} and 0.2 x 10{sup -5} cm{sup 2}/s, respectively. The pore network in Ph-SPEEKK evolves dynamically and develops wide pores for {lambda} > 20, which leads to a jump in methanol crossover and ion transport. This study demonstrates the potential of aromatic membranes as low-cost challengers to Nafion for direct methanol fuel cell applications and the need to develop innovative strategies to combat methanol crossover at high hydration levels.

Devanathan, Ramaswami; Idupulapati, Nagesh B.; Dupuis, Michel

2012-08-14T23:59:59.000Z

116

2[prime] and 3[prime] Carboranyl uridines and their diethyl ether adducts  

DOE Patents [OSTI]

A process is described for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. The carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of the compounds in methods for boron neutron capture therapy in mammalian tumor cells. No Drawings

Soloway, A.H.; Barth, R.F.; Anisuzzaman, A.K.; Alam, F.; Tjarks, W.

1992-12-15T23:59:59.000Z

117

Effect of solvents on the radiation-induced polymerization of ethyl and isopropyl vinyl ethers  

SciTech Connect (OSTI)

The effect of solvents on the radiation-induced cationic polymerization of ethyl and isopropyl vinyl ethers (EVE and IPVE, respectively) was investigated. EVE and IPVE polymerizations were carried out in bulk and in solution under superdry conditions in which polar impurities, especially water, have been reduced to negligible levels. This was accomplished by means of a sodium mirror technique using joint free baked out glass equipment and high vacuum. Plots of the monomer conversions and irradiation times were obtained for EVE and IPVE polymerizations in bulk and in benzene solution at constant monomer concentrations. The monomer concentration dependence of the polymerization rate was studied for EVE polymerization in bulk and in benzene, diethlyl ether, diglyme and methylene chloride, and for IPVE polymerization in bulk and in benzene. Solvent effect on the estimated propagating rate constants was examined for EVE and IPVE polymerization in bulk and in solution. The effect of temperature on the polymerization rate was also investigated for EVE polymerization in bulk ad in benzene, diethyl and diisopropyl ethers, methylene chloride and nitromethane, and for IPVE ploymerization in bulk and in benzene.

Hsieh, W.C.

1981-01-01T23:59:59.000Z

118

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Ethanol Plant Production Ethanol Plant Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Fuel Ethanol An anhydrous alcohol (ethanol with less than 1% water) intended for gasoline blending as described in the Oxygenates definition. Oxygenates Substances which, when added to gasoline, increase the amount of oxygen in that gasoline blend. Ethanol, Methyl Tertiary Butyl Ether (MTBE), Ethyl Tertiary Butyl Ether (ETBE), and methanol are common oxygenates. Fuel Ethanol: Blends of up to 10 percent by volume anhydrous ethanol (200 proof) (commonly referred to as the "gasohol waiver"). Methanol: Blends of methanol and gasoline-grade tertiary butyl alcohol (GTBA) such that the total oxygen content does not exceed 3.5 percent by weight and the ratio of methanol to GTBA is less than or equal to 1. It is also specified that this blended fuel must meet ASTM volatility specifications (commonly referred to as the "ARCO" waiver).

119

A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames  

SciTech Connect (OSTI)

The oxidation of dimethyl ether (DME) is studied in low-pressure flames using new molecular beam mass spectrometer and laser diagnostics. Two 30.0-Torr, premixed DME/oxygen/argon flames are investigated with stoichiometries of 0.98 and 1.20. The height above burner profiles of nine stable species and two radicals are measured. These results are compared to the detailed chemical reaction mechanism of Curran and coworkers. Generally good agreement is found between the model and data. The largest discrepancies are found for the methyl radical profiles where the model predicts qualitatively different trends in the methyl concentration with stoichiometry than observed in the experiment.

Andrew McIlroy; Toby D. Hain; Hope A. Michelsen; Terrill A. Cool

2000-12-15T23:59:59.000Z

120

High octane ethers from synthesis gas-derived alcohols. Quarterly technical progress report, April--June 1993  

SciTech Connect (OSTI)

The results shown in Figures 10 and 11 demonstrate that the formation of butenes was very sensitive to the alcohol partial pressure. A small elevation of the alcohol pressure suppressed the formation of butenes rather drastically at both 90 and 117{degree}C. The synthesis rates of DME, MIBE, and MTBE ethers were not significantly affected at 90{degree}C, although there was a trend to increase the space time yield of DME as the alcohol pressure was increased. At the reaction temperature of 117{degree}C, all of the ethers showed increasing productivities as the pressure of the reactants was increased (Figure 11). An isotope labelling experiment was carried out to provide mechanistic insight into the manner in which methanol and isobutanol react together to form DME, MIBE, and MTBE ethers and to determine if MTBE were derived from MIBE.

Klier, K.; Herman, R.G.; Menszak, J.; Johansson, M.A.; Feeley, O.C.; Kim, D.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Developer Installed Treatment Plants  

E-Print Network [OSTI]

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

122

Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process. Peroxide formation of dimethyl ether in methanol mixtures  

SciTech Connect (OSTI)

Organic peroxides could form when dimethyl ether in methanol is stored for three to six months at a time. The objective of this work was to determine the level of peroxide formation from dimethyl ether in reagent grade methanol and raw methanol at room temperature under 3 atmospheres (45 psig) of air. Raw methanol is methanol made from syngas by the LPMEOH Process without distillation. Aliphatic ethers tend to react slowly with oxygen from the air to form unstable peroxides. However, there are no reports on peroxide formation from dimethyl ether. After 172 days of testing, dimethyl ether in either reagent methanol or raw methanol at room temperature and under 60--70 psig pressure of air does not form detectable peroxides. Lack of detectable peroxides suggests that dimethyl ether or dimethyl ether and methanol may be stored at ambient conditions. Since the compositions of {approximately} 1.3 mol% or {approximately} 4.5 mol% dimethyl ether in methanol do not form peroxides, these compositions can be considered for diesel fuel or an atmospheric turbine fuel, respectively.

Waller, F.J.

1997-11-01T23:59:59.000Z

123

Flash photolysis resonance fluorescence investigation of the gas-phase reactions of hydroxyl radicals with cyclic ethers  

SciTech Connect (OSTI)

Absolute rate constants were measured for the gas-phase reactions of hydroxyl radicals with a series of dioxanes and other cyclic ethers by using the flash photolysis resonance fluorescence technique. Kinetic data for 1,3-dioxane and 1,4-dioxane, reactions 1 and 2, over the temperature range 240-440 K were used to derive the Arrhenius expressions. These results are compared to our earlier measurements for aliphatic ethers and are discussed in terms of reaction mechanisms and the prediction of reaction rates for such compounds from group reactivity values.

Dagaut, P.; Liu, R.; Wallington, T.J.; Kurylo, M.J. (National Institute of Standards and Technology, Gaithersburg, MD (USA))

1990-03-08T23:59:59.000Z

124

Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions  

DOE Patents [OSTI]

A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

Moyer, Bruce A. (Oak Ridge, TN); Sachleben, Richard A. (Knoxville, TN); Bonnesen, Peter V. (Knoxville, TN); Presley, Derek J. (Ooltewah, TN)

2001-01-01T23:59:59.000Z

125

Frozen plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Frozen plants Frozen plants Name: janicehu Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Why do some plants freeze and others do not? Replies: The main reason some plants freeze and others do not is that some plants do not have much water in them. Pine tree leaves have little water and are therefore difficult to freeze. Another reason is that some plants make chemicals to put into their fluids that reduce the freezing temperature. Salts and oils are some. The polyunsaturated fats found in many plants freeze at a lower temperature than the saturated fats found in many animals. Therefore plant fats are liquid (oils) at room temperature, and animal fats are solid. Plants could not use so many saturated fats as warm blooded animals do or they would freeze up solid at higher temperatures. I know little of plants but many animals can make ethylene glycol to keep themselves from freezing. Ethylene glycol is the active ingredient in car anti-freeze

126

Title: Decomposition of ethanol and dimethyl-ether during CVD synthesis of single-walled carbon nanotubes  

E-Print Network [OSTI]

of ethanol and dimethyl-ether during CVD synthesis of single-walled carbon nanotubes Author list: Bo Hou (single-walled carbon nanotubes) was investigated. Gas-phase thermal decomposition of ethanol and DME ethanol and DME decomposition, confirming expected reaction trends and primary byproducts. Peak

Maruyama, Shigeo

127

Environmental actions of agrochemicals 2. Histological effects of the herbicide/insecticide dinoseb-acetate (2-sec-butyl-4,6-dinitrophenyl acetate) on the spider miteTetranychus urticae (Acari: Tetranychidae) reared on herbicidetreatedPhaseolus vulgaris  

Science Journals Connector (OSTI)

The pure herbicidal compound dinoseb-acetate (2-sec-butyl-4,6-dinitrophenyl acetate) and its commercial formulation Aretit® were tested for their effects on the spider miteTetranychus urticae L. (Acari, Tetranych...

Ursula Mothes-Wagner; Harald K. Reitze…

1990-10-01T23:59:59.000Z

128

Carnivorous Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carnivorous Plants Carnivorous Plants Nature Bulletin No. 597-A March 27, 1976 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation CARNIVOROUS PLANTS Plants, generally, are eaten by insects or furnish other food for them. But there are a few families of strange plants that, instead, "eat" insects and other small animals. About 500 species are distributed over the world, from the arctic to the tropics. Most of them have peculiar leaves that not only attract insects but are equipped to trap and kill their victims. Even more remarkable is the fact that some have glands which secrete a digestive juice that softens and decomposes the animal until it is absorbed by the plant in much the same way as your stomach digests food.

129

Densities and isobaric vapor-liquid equilibria of butyl esters (methanoate to butanoate) with ethanol at 101.32 kPa  

SciTech Connect (OSTI)

Vapor-liquid equilibrium and densities at 101.32 kPa have been determined for the binary systems formed by four butyl esters (from methanoate to butanoate) with ethanol. The four systems exhibit positive deviations from ideal behavior, and all data (p-T-x-y) were found to be thermodynamically consistent. The activity coefficients and the dimensionless function G{sup E}/RT of the solution were correlated with its concentration by different equations. Am azeotrope was found in the mixture butyl methanoate (1) + ethanol (2) at T = 350.9 K and x{sub 1} = y{sub 1} = 0.088. The group contribution models ASOG and modified UNIFAC gave fair predictions.

Gonzalez, E.; Ortega, J. [Univ. of Las Palmas de Gran Canaria (Spain)

1995-11-01T23:59:59.000Z

130

Direct hydro-liquefaction of sawdust in petroleum ether and comprehensive bio-oil products analysis  

Science Journals Connector (OSTI)

Abstract The effect of temperature, time, hydrogen pressure and amount of catalyst on production distribution and the bio-oil yield obtained from the direct liquefaction of sawdust in the petroleum ether (60–90 °C) are investigated. The highest sawdust conversion obtained was 72.32% with a bio-oil yield of 47.69% were obtained at 370 °C, 40 min and 5wt.% catalyst content with the initial H2 pressure of 3.0 MPa. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) approach was utilized to analyze the non-volatile fraction. In this study, the composition of bio-oil could be analyzed in an unprecedented detail through a combination of GC–MS and FT-ICR MS techniques.

Dong Liu; Linhua Song; Pingping Wu; Yan Liu; Qingyin Li; Zifeng Yan

2014-01-01T23:59:59.000Z

131

Process for the production of ethylidene diacetate from dimethyl ether using a heterogeneous catalyst  

DOE Patents [OSTI]

This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.

Ramprasad, D.; Waller, F.J.

1998-04-28T23:59:59.000Z

132

Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process  

DOE Patents [OSTI]

The present invention pertains to a process for the coproduction of methanol and dimethyl ether (DME) directly from a synthesis gas in a single step (hereafter, the "single step DME process"). In this process, the synthesis gas comprising hydrogen and carbon oxides is contacted with a dual catalyst system comprising a physical mixture of a methanol synthesis catalyst and a methanol dehydration catalyst. The present invention is an improvement to this process for providing an active and stable catalyst system. The improvement comprises the use of an aluminum phosphate based catalyst as the methanol dehydration catalyst. Due to its moderate acidity, such a catalyst avoids the coke formation and catalyst interaction problems associated with the conventional dual catalyst systems taught for the single step DME process.

Peng, Xiang-Dong (Allentown, PA); Parris, Gene E. (Coopersburg, PA); Toseland, Bernard A. (Allentown, PA); Battavio, Paula J. (Allentown, PA)

1998-01-01T23:59:59.000Z

133

Process for the production of ethylidene diacetate from dimethyl ether using a heterogeneous catalyst  

DOE Patents [OSTI]

This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.

Ramprasad, Dorai (Allentown, PA); Waller, Francis Joseph (Allentown, PA)

1998-01-01T23:59:59.000Z

134

Using Heteropolyacids in the Anode Catalyst Layer of Dimethyl Ether PEM Fuel Cells  

SciTech Connect (OSTI)

In this study, polarization experiments were performed on a direct dimethyl ether fuel cell (DMEFC). The experimental setup allowed for independent control of water and DME flow rates. Thus the DME flow rate, backpressure, and water flow rate were optimized. Three heteropoly acids, phosphomolybdic acid (PMA), phosphotungstic acid (PTA), and silicotungstic acid (STA) were incorporated into the anode catalyst layer in combination with Pt/C. Both PTA-Pt and STA-Pt showed higher performance than the Pt control at 30 psig of backpressure. Anodic polarizations were also performed, and Tafel slopes were extracted from the data. The trends in the Tafel slope values are in agreement with the polarization data. The addition of phosphotungstic acid more than doubled the power density of the fuel cell, compared to the Pt control.

Ferrell III, J. R.; Turner, J. A.; Herring, A. M.

2008-01-01T23:59:59.000Z

135

Use of ferric sulfate: acid media for the desulfurization of model compounds of coal. [Dibenzothiophene, diphenyl sulfide, di-n-butyl sulfide  

SciTech Connect (OSTI)

The objective of this work has been to investigate the ability of ferric sulfate-acid leach systems to oxidize the sulfur in model compounds of coal. Ferric iron-acid leach systems have been shown to be quite effective at removal of inorganic sulfur in coal. In this study, the oxidative effect of ferric iron in acid-leach systems was studied using dibenzothiophene, diphenyl sulfide, and di-n-butyl sulfide as models of organic sulfur groups in coal. Nitrogen and oxygen, as well as various transition metal catalysts and oxidants, were utilized in this investigation. Dibenzothiophene was found to be quite refractory to oxidation, except in the case where metavanadate was added, where it appears that 40% oxidation to sulfone could have occurred per hour at 150/sup 0/C and mild oxygen pressure. Diphenyl sulfide was selectively oxidized to sulfoxide and sulfone in an iron and oxygen system. Approximately 15% conversion to sulfone occurred per hour under these conditions. Some of the di-n-butyl sulfide was cracked to 1-butene and 1-butanethiol under similar conditions. Zinc chloride and ferric iron were used at 200/sup 0/C in an attempt to desulfonate dibenzothiophene sulfone, diphenyl sulfone, and di-n-butyl sulfone. Di-n-butyl sulfone was completely desulfurized on one hour and fragmented to oxidized parafins, while dibenzothiophene sulfone and diphenyl sulfone were unaffected. These results suggest that an iron-acid leach process could only selectively oxidize aryl sulfides under mild conditions, representing only 20% of the organic sulfur in coal (8% of the total sulfur). Removal through desulfonation once selective sulfur oxidation had occurred was only demonstrated for alkyl sulfones, with severe oxidation of the fragmented paraffins also occurring in one hour.

Clary, L.R.; Vermeulen, T.; Lynn, S.

1980-12-01T23:59:59.000Z

136

Sulfobutyl Ether b-Cyclodextrin (SBE-b-CD) in Eyedrops Improves the Tolerability of a Topically Applied Pilocarpine Prodrug in Rabbits  

E-Print Network [OSTI]

The effects of a novel, modified ?-cyclodextrin (SBE4-?-CD; a variably substituted sulfobutyl ether with an average degree of substitution of four) on eye irritation and miotic response of an ophthalmically applied pilocarpine ...

Stella, Valentino J.; Jä rvinen, Tomi; Jä rvinen, Kristina; Thompson, Diame; Urtti, Arto

1995-01-01T23:59:59.000Z

137

Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants  

SciTech Connect (OSTI)

Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

Somerville, Chris R.; Scieble, Wolf

2000-10-11T23:59:59.000Z

138

Medicinal Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Medicinal Plants Medicinal Plants Nature Bulletin No. 187 April 11, 1981 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation MEDICINAL PLANTS In springtime, many years ago, grandma made her family drink gallons of tea made by boiling roots of the sassafras. That was supposed to thin and purify the blood. Children were sent out to gather dandelion, curly dock, wild mustard, pokeberry and other greens as soon as they appeared -- not only because they added welcome variety to the diet of bread, meat, potatoes and gravy, but because some of them were also laxatives. For a bad "cold on the lungs," she slapped a mustard plaster on the patient's back, and on his chest she put a square of red flannel soaked in goose grease. For whooping cough she used a syrup of red clover blossoms. She made cough medicine from the bloodroot plant, and a tea from the compass plant of the prairies was also used for fevers and coughs. She made a pleasant tea from the blossoms of the linden or basswood tree. For stomach aches she used tea from any of several aromatic herbs such as catnip, fennel, yarrow, peppermint, spearmint, sweetflag, wild ginger, bergamot and splice bush.

139

Bog Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bog Plants Bog Plants Nature Bulletin No. 385-A June 6, 1970 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation BOG PLANTS Fifty years ago there were probably more different kinds of plants within a 50 mile radius from the Loop than anywhere else in the Temperate Zone. Industrial, commercial and residential developments, plus drainage and fires have erased the habitats where many of the more uncommon kinds flourished, including almost all of the tamarack swamps and quaking bogs. These bogs were a heritage from the last glacier. Its front had advanced in a great curve, from 10 to 20 miles beyond what is now the shoreline of Lake Michigan, before the climate changed and it began to melt back. Apparently the retreat was so rapid that huge blocks of ice were left behind, surrounded by the outwash of boulders, gravel and ground-up rock called "drift". These undrained depressions; became lakes. Sphagnum moss invaded many of them and eventually the thick floating mats of it supported a variety of bog-loving plants including certain shrubs, tamarack, and a small species of birch. Such lakes became bogs.

140

Solvent Extraction Behavior of Neptunium (IV) Ions between Nitric Acid and Diluted 30% Tri-butyl Phosphate in the Presence of Simple Hydroxamic Acids  

SciTech Connect (OSTI)

Formo- and aceto-hydroxamic acids are very effective reagents for stripping tetravalent actinide ions such as Np(IV) and Pu(IV) ions from a tri-butyl phosphate phase into nitric acid. Distribution data for Np(IV) in the presence of these hydroxamate ions have now been accumulated and trends established. Stability constants for aceto-hydroxamate complexes of Np(IV) and Np(V) ions have also been determined in a perchlorate medium, and these reaffirm the affinity of hydroxamate ligands for actinide (IV) ions over actinyl (V,VI) ions.

Taylor, Robin J.; Sinkov, Sergey I.; Choppin, Gregory R.; May, Iain

2008-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

An evaluation of the 3M Organic Vapor Monitor #3500 as a short term exposure limit sampling device for acetone, methyl ethyl ketone, and methyl iso butyl ketone  

E-Print Network [OSTI]

. An exploded view of the monitor is illustrated in Figure 1. The theory of diffusive sampling considers a concentration gra- dient between the ambient air and the adsorbent to be the driving force for sampling. For the adsorption to be controlled by diffu...AN EVALUATION OF THE 3M ORGANIC VAPOR MONITOR 43500 AS A SHOR'I TERM EXPOSURE LIMIT SAMPLING DEVICE FOR ACETONE, METHYL ETHYL KETONE, AND METHYL ISO BUTYL KETONE A Thesis by LLOYD B. ANDREW III Submitted to the Graduate College of Texas ASM...

Andrew, Lloyd B.

2012-06-07T23:59:59.000Z

142

A New Flow Control Technique Using Diluted Epinephrine in the N-butyl-2-cyanoacrylate Embolization of Visceral Artery Pseudoaneurysms Secondary to Chronic Pancreatitis  

SciTech Connect (OSTI)

Although n-butyl-2-cyanoacrylate (NBCA) has been used as an effective liquid embolization material, its indication for pseudoaneurysms has seemingly been limited because of the technical difficulties of using NBCA, such as reflux to the parent artery and causing significant infarction. Thus, considerable skill in using NBCA or a device to control blood flow during its polymerization is required to achieve embolization without severe complications. We report our new technique for controlling blood flow using diluted epinephrine in transcatheter arterial NBCA embolization of five pseudoaneurysms in four cases secondary to hemosuccus pancreaticus.

Morishita, Hiroyuki, E-mail: hmorif@koto.kpu-m.ac.jp [Japan Red Cross Kyoto Daiichi Hospital, Department of Diagnostic Radiology (Japan); Yamagami, Takuji [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science (Japan); Takeuchi, Yoshito [National Cancer Center, Division of Diagnostic Radiology (Japan); Matsumoto, Tomohiro; Asai, Shunsuke; Masui, Koji [Japan Red Cross Kyoto Daiichi Hospital, Department of Diagnostic Radiology (Japan); Sato, Hideki [Japan Red Cross Kyoto Daiichi Hospital, Department of Gastroenterology (Japan); Taniguchi, Fumihiro [Japan Red Cross Kyoto Daiichi Hospital, Department of Surgery (Japan); Sato, Osamu [Japan Red Cross Kyoto Daiichi Hospital, Department of Diagnostic Radiology (Japan); Nishimura, Tsunehiko [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science (Japan)

2012-08-15T23:59:59.000Z

143

Poisonous Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plants Plants Nature Bulletin No. 276 October 1, 1983 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation POISONOUS PLANTS In the autumn of 1818, Nancy Hanks Lincoln died of milk sickness and left her son, Abe, motherless before he was ten years old. Since colonial times, in most of the eastern half of the United States, that dreaded disease has been a hazard in summer and fall, wherever cattle graze in woodlands or along wooded stream banks. In the 1920s it was finally traced to white snakeroot -- an erect branched plant, usually about 3 feet tall, with a slender round stem, sharply-toothed nettle-like leaves and, in late summer, several small heads of tiny white flowers. Cows eating small amounts over a long period develop a disease called "trembles", and their milk may bring death to nursing calves or milk sickness to humans. When larger amounts are eaten the cow, herself, may die.

144

Ethoxyresorufin O-deethylase induction of polychlorinated diphenyl ethers in H4IIE cells  

SciTech Connect (OSTI)

The ethoxyresorufin O-deethylase (EROD) induction potencies of 29 polychlorinated diphenyl ethers were determined in the rat hepatoma H4IIE cell bioassay and compared with that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Two polychlorinated biphenyls (PCBs) were included as additional reference substances. PCDE congeners tested were PCDEs 47, 66, 77, 85, 99, 105, 118, 126, 128, 137, 138, 140, 147, 153, 154, 156, 157, 167, 170, 180, 181, 182, 190, 194, 195, 196, 197, 203 and 206. The purity of these congeners was > 99%. Because several of these congeners induced EROD activity when tested at high concentrations, the amount of PCDD and PCDF impurities of these active PCDEs was determined by gas chromatography/mass spectrometry. The activity of the active PCDEs was concluded to be mainly due to contamination with 2,3,7,8-chloro substituted PCDFS, because after an additional clean-up on a Florisil column, which removes PCDDs and PCDFs, only three PCDEs (156, 180, 194) remained active. The potencies of PCDEs 156, 180 and 194 (TEF {approximately} 10{sup {minus}6}), however, were about 100-fold less than that of PCB 77 (TEF {approximately} 10{sup {minus}4}). The poor induction potencies of the non- and mono-ortho-PCDEs indicates that PCDEs do not have structure-activity relationships analogous to those of PCBs. If the authors use EROD inducing potency in H4IIE cells as a relative measure of potential Ah receptor-mediated toxic potency, the PCDEs in the study would be expected to be less toxic than analogous PCBs and considerably less-toxic than certain PCDDs and PCDFs.

Koistinen, J.; Sanderson, J.T.; Giesy, J.P. [Michigan State Univ., East Lansing, MI (United States); Nevalainen, T.; Paasivirta, J. [Univ. of Jyvaskyla (Finland)

1995-12-31T23:59:59.000Z

145

The lightness of being: mass, ether, and unification of the forces  

SciTech Connect (OSTI)

How can an electron be both a wave and a particle? At the same time? Because it is a quantum field. That key insight seems to be underappreciated, given the awe and mysticism that permeate most nontechnical discussions of modern physics. Perhaps the root of the problem is that most popularizations of quantum mechanics and of particle physics shy away from quantized fields, the natural language for microscopic phenomena. In 'The Lightness of Being: Mass, Ether, and the Unification of Forces', Frank Wilczek confronts quantum field theory head on, demystifying not only wave-particle duality but also the origin of mass for hadrons (that is, everyday matter). Wilczek is the Herman Feshbach Professor of Physics at MIT and a co-recipient of the 2004 Nobel Prize in Physics. His research has spanned almost all aspects of theoretical particle physics, with significant forays into condensed-matter physics and dense nuclear matter (condensed quark matter, one might say). Recurring themes are the richness of quantum chromodynamics (QCD) and the alluring ideas of unification. His breadth and depth make him a sought after speaker for colloquia and public lectures. Wilczek also contributes an occasional Reference Frame column to 'Physics Today'. The material in 'The Lightness of Being' reflects the scope of the author's research. The book consists of three parts: the quantum fields of QCD (the ether that makes mass), gravitation (the ether that feels mass), and unification. Part 1, which traces notions of mass from Isaac Newton's time through theoretical and computational results of the past 40 years, is the most substantial and original; it is rich, modern, and rooted in observed phenomena. Part 2 continues in the same vein as it connects gravity, also an observed phenomenon, to QCD. Part 3 is more conventional, for a popularization of particle physics, in its focus on speculative ideas that (still) await direct experimental tests. Readers of 'Physics Today' will know that Wilczek can write with wit, grace, and an uncanny facility for using lightweight language to express heavy-duty ideas. They will find much of that kind of writing in 'The Lightness of Being'. Wilczek addresses subtle ideas with vim and vigor. He avoids some of the jargon of quantum field theory; for example, he calls the vertex in a Feynman diagram a hub. In more ambitious terminology, he refers to space-filling, everfluctuating quantum fields--be they electrons, quarks, gluons, or gravity--as 'the Grid'. The term is supposed to be short and familiar, evoking the ubiquitous electric grid (and soon-to-beubiquitous computing grid). It also, for the expert, cleverly alludes to lattice gauge theory. Indeed, after vividly explaining how the dynamics of QCD and the constraints of Heisenberg uncertainty conspire to create mass from the Grid, Wilczek emphasizes that the picture is backed by lattice QCD computations of 'heroic' proportions. Unfortunately, too much of 'The Lightness' is laden with clunky affectation: silly names (a pulsed electron accelerator is called the 'ultrastroboscopic nanomicroscope'), sophomoric jokes ('hadron' is 'not a typo'), references to pop culture (Wilczek might have called quantum fields 'the Matrix, but the sequels tarnished that candidate'), and many pointless footnotes. In a public lecture the audience may guffaw at such jokes, but on the printed page they fall flat. Wilczek explains physics so well that the inappropriate humor is the biggest unexplained puzzle of the book. It is fine to be silly, even crude, as long as the reader's path to understanding is made easier. A joke can inform with an unexpected perspective or simply give the mind a pause to refresh. Some of the humor achieves such aims, but too many gags impede the pace of the otherwise fine exposition. Three appendices, a glossary, and a set of endnotes are crisp and sober. They are excellent. 'The Lightness of Being' is not unbearable, but it is weighed down with too much clutter to rank as a masterpiece. It's a pity: Wilczek's best writing--some of it in this book--is l

Kronfeld, Andreas S.

2009-03-01T23:59:59.000Z

146

Bagdad Plant  

Broader source: Energy.gov (indexed) [DOE]

Bagdad Plant Bagdad Plant 585 Silicon Drive Leechburg, P A 15656 * ATI Allegheny "'I Ludlum e-mail: Raymond.Polinski@ATImetals.com Mr. James Raba U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program 1000 Independence Avenue SW Washington, DC 205585-0121 Raymond J. Polinski General Manager Grain-Oriented Electrical Steel RE: Distribution Transformers Rulemaking Docket Number EE-2010-STD-0048 RIN 1904-AC04 Submitted 4-10-12 via email Mr. Raba, I was planning to make the following closing comments at the DOE Public Meeting on February 23, 2012, but since the extended building evacuation caused the meeting to run well past the scheduled completion time I decided to submit my comments directly to you for the record.

147

Distribution of glycerol ether lipids in the oxygen minimum zone of the Eastern Tropical North Pacific Ocean  

Science Journals Connector (OSTI)

Abstract The distributions of microbial glycerol ether lipids in suspended particulate matter in the oxygen minimum zone (OMZ) of the Eastern Tropical North Pacific Ocean (ETNP) were investigated. Nine groups of glycerol ether core lipids were detected and quantified: isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) (iso-GDGTs), isoprenoid glycerol dialkanol diethers (iso-GDDs) and hydroxylated isoprenoid \\{GDGTs\\} and \\{GDDs\\} (OH-GDGTs and OH-GDDs) of archaeal origin; branched glycerol dialkyl glycerol tetraethers (br-GDGTs) of bacterial origin and overly branched \\{GDGTs\\} (OB-GDGTs), sparsely branched \\{GDGTs\\} (SB-GDGTs), hybrid isoprenoid/branched \\{GDGTs\\} (IB-GDGTs) and a tentatively assigned H-shaped GDGT (H-1020) of unknown biological origin. The archaeal iso-GDGTs were the most abundant core lipids (89% of total), followed by iso-GDDs (4%), br-GDGTs (2%) and OH-GDGTs (1%). Archaeal intact polar \\{GDGTs\\} (IP GDGTs), including both mono- and diglycosidic iso-GDGTs, had depth profiles similar to OH-GDGTs and OH-GDDs, with a maximum concentration in the upper OMZ and secondary peaks in the mid and lower OMZ, suggesting similar but multiple planktonic sources. Core lipids of iso-GDGTs and other glycerol ethers showed deviating concentration profiles compared with IP \\{GDGTs\\} and OH-GDGTs and were most abundant in the mid OMZ. This is the first report of OH-GDDs, OB-GDGTs, SB-GDGTs, IB-GDGTs and H-1020 in the marine water column and the distribution patterns of these “orphan lipids” suggest that anaerobic planktonic microbes are their main source.

Sitan Xie; Xiao-Lei Liu; Florence Schubotz; Stuart G. Wakeham; Kai-Uwe Hinrichs

2014-01-01T23:59:59.000Z

148

E-Print Network 3.0 - allyl methacrylate styrene Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tetrachloroethylene () Cyclohexanol () Cyclohexanone ()1- 1-Butyl alcohol ()2... ;() Acrolein () Acrylic acid () Allyl zlcohol () Allyl chloride () Allyl glycidyl ether(AGE) ()2-...

149

TABLE33.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

products are reported by the PAD District of entry. b Includes crude oil imported for storage in the Strategic Petroleum Reserve. c Includes ethyl tertiary butyl ether (ETBE),...

150

TABLE34.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

products are reported by the PAD District of entry. b Includes crude oil imported for storage in the Strategic Petroleum Reserve. c Includes ethyl tertiary butyl ether (ETBE),...

151

Gasification Plant Databases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Plant Databases News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

152

Use of Nonionic Poly(Ethylene glycol) p-Isooctyl-Phenyl Ether (Triton X-100) Surfactant Mobile Phases in the Thin-Layer Chromatography of Heavy-Metal Cations  

Science Journals Connector (OSTI)

......Article The analytical potential of poly(ethylene glycol) p-isooctyl-phenyl ether...40, March 2002 Use of Nonionic Poly(Ethylene glycol) p-Isooctyl-Phenyl Ether...Bidlingmeyer, S.N. Deming, W.P. Price, B. Sachok, and M. Petrusek. Retention......

Ali Mohammad; Eram Iraqi; Iftkhar Alam Khan

2002-03-01T23:59:59.000Z

153

Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons  

Science Journals Connector (OSTI)

Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons ... (1, 3-6) Methanol and derived dimethyl ether (DME) are also excellent fuels in internal combustion engines (ICE) and in a new generation of direct oxidation methanol fuel cells (DMFC), as well as convenient starting materials for producing light olefins (ethylene and propylene) and subsequently practically any derived hydrocarbon product. ... Methanol produced this way was used in the 19th century for lighting, cooking, and heating purposes but was later replaced by cheaper fuels, especially kerosene. ...

George A. Olah; Alain Goeppert; G. K. Surya Prakash

2008-12-08T23:59:59.000Z

154

Experimental investigation on thermal barrier coated diesel engine fueled with diesel-biodiesel-ethanol-diethyl ether blends  

Science Journals Connector (OSTI)

In the present work diesel-biodiesel-ethanol (DBE) and diesel-biodiesel-diethyl ether (DBD) fuels are tested with normal diesel engine and the diesel engine coated with the layers of aluminum oxide (Al 2O3) of 0.3?mm and yttria-stabilized zirconia of 0.2?mm. The various performance and emission parameters are analyzed and determined. The experimental work was carried out in a single cylinder water cooled engine coupled with eddy current dynamometer. The AVL make five gas analyzer and smoke meter were used to measure the different exhaust pollutants. The result shows that the brake thermal efficiency of coated engine is more than that of base diesel at high loads. The thermal barrier coated engine using fuel as diesel biodiesel and ethanol (TDBE) produces the lowest carbon monoxide (CO) emissions among all the fuels that are selected. In addition it produces the lowest carbon dioxide (CO2) at higher loads. Both the thermal barrier coated engine using fuel as diesel biodiesel and diethyl ether (TDBD) and TDBE have higher NOx emissions among almost all the fuels used. The TDBE and TDBD have higher smoke emissions at initial loads but eventually show lower smoke emissions at higher loads. The thermal barrier coated diesel engine fueled with DBE and DBD shows an increase in engine power and specific fuel consumption as well as significant improvements in exhaust gas emissions except NOx.

2013-01-01T23:59:59.000Z

155

Plant Rosettes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rosettes Rosettes Nature Bulletin No. 662 January 13, 1962 Forest Preserve District of Cook County John J. Duffy, President David H. Thompson, Senior Naturalist PLANT ROSETTES In winter our landscape is mostly leafless trees silhouetted against the sky, and the dead stalks of wildflowers, weeds and tall grasses -- with or without a blanket of snow. Some snows lie on the ground for only a few days. Others follow one after another and cover the ground with white for weeks at a time. Soon the eye begins to hunger for a glimpse of something green and growing. Then, in sunny spots where the snow has melted or where youngsters have cleared it away, there appear clusters of fresh green leaves pressed tight to the soil. Whether it is a dandelion in the lawn, a pansy in a flower border, or a thistle in a vacant lot, such a typical leaf cluster -- called a winter rosette -- is a ring of leaves around a short central stem. The leaves are narrow at the base, wider toward the tip, and spread flat on the ground with little or no overlap. This arrangement gives full exposure to sunlight and close contact with the warmer soil beneath. Such plants continue to grow, sometimes faster, sometimes slower, even under snow, throughout winter.

156

Modeling of the simultaneous extraction of nitric acid and uranyl nitrate with tri-n-butyl phosphate. Application to extraction operation  

SciTech Connect (OSTI)

A mathematical model developed for the equilibrium HNO{sub 3}-UO{sub 2}(NO{sub 3}){sub 2}-tri-n-butyl phosphate (TBP)-diluent is the basis of the computation of distribution isotherms. The isotherms are used to study the influence of TBP concentration on two chosen operation parameters, distribution coefficients and number of theoretical stages, for the selected flow sheets. It is established that an increase in TBP concentration leads to a decrease in the number of theoretical stages for the extraction flow sheets but to their increase for the striping flow sheets. Given diagrams can be used to determine the efficiency of extraction processes. Agreement with available literature calculations on the number of theoretical stages supports the use of the model in the computation of distribution isotherms, of the system quoted above, in a wide range of nitric acid, uranyl nitrate, and TBP concentrations.

Comor, J.J.; Tolic, A.S.; Kopecni, M.M.; Petkovic, D.M. [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia). Chemical Dynamics Lab.] [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia). Chemical Dynamics Lab.

1999-01-01T23:59:59.000Z

157

(2/94)(2-4,9/95)(7/97)(11,12/98)(1,9,11/99) Neuman Chapter 3 Haloalkanes, Alcohols, Ethers, and Amines  

E-Print Network [OSTI]

, Ethers, and Amines from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus://web.chem.ucsb.edu/~neuman/orgchembyneuman/> Chapter Outline of the Book ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes

Reed, Christopher A.

158

Role of Endocytosis in the Action of Ether Lipids on WEHI-3B, HL60, and FDCP-Mix A4 Cells  

Science Journals Connector (OSTI)

...Lipid by WEHI-3B Cells Has an Energy- dependent and an Energy-independent Component. Uptake...protective agents, suggested that the energy-dependent component of ether...of ET-18-OCH., by FDCP-mix A4 cells was measured, it was...

G. W. Bazill and T. M. Dexter

1990-12-01T23:59:59.000Z

159

Reactions of 15-crown-5 and bis-15-crown-5 ethers with metal acetylacetonate ions in the gas phase  

SciTech Connect (OSTI)

A study was carried out on the ion-molecule reactions of ions arising in the dissociation of ferric, cobaltic, chromic, manganous, neodymium(II), gallium(III), and indium(III) acetylacetonates upon electron impact with 15-crown-5 and bis-15-crown-5. The ratio of the yields of (acac)x-1 /SUP M+L/ ions is determined by the case of reduction of M /SUP x+1+/ to M /SUP x+/ and for (acac)/sub 3/M complexes, this ratio decreases in the series Nd, In, GA > Cr > Fe, Co. The rate constant for the formation of acacCoL/sup +/ ions is greater than for acacFeL/sup +/ ions. The possibility of fixing transition metals in unstable oxidation states by crown ethers is demonstrated in the case of nickel.

Timofeev, O.S.; Bogatskii, A.V.; Gren, A.I.; Lobach, A.V.; Nekarsov, Y.S.; Zagorevskii, D.V.

1985-05-20T23:59:59.000Z

160

Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report  

SciTech Connect (OSTI)

The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what would be allowed for methanol synthesis alone. Aromatic-rich hydrocarbon liquid (C5+), containing a significant amount of methylated benzenes, was produced under these conditions. However, selectivity control to liquid hydrocarbons was difficult to achieve. Carbon dioxide and methane formation was problematic. Furthermore, saturation of the olefinic intermediates formed in the zeolite, and necessary for gasoline production, occurred over PdZnAl. Thus, yield to desirable hydrocarbon liquid product was limited. Evaluation of other oxygenate-producing catalysts could possibly lead to future advances. Potential exists with discovery of other types of catalysts that suppress carbon dioxide and light hydrocarbon formation. Comparative techno-economics for a single-step syngas-to-distillates process and a more conventional MTG-type process were investigated. Results suggest operating and capital cost savings could only modestly be achieved, given future improvements to catalyst performance. Sensitivity analysis indicated that increased single-pass yield to hydrocarbon liquid is a primary need for this process to achieve cost competiveness.

Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

2013-11-26T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Single-Step Syngas-to-Dimethyl Ether Processes for Optimal Productivity, Minimal Emissions, and Natural Gas-Derived Syngas  

Science Journals Connector (OSTI)

Single-step conversion of synthesis gas (syngas, H2/CO mixture) to dimethyl ether (DME, CH3OCH3) is very attractive as a route for indirect coal liquefaction, natural gas utilization, and production of synthetic liquid fuels, fuel additives, and chemicals. ... The main driving force for developing a single-step syngas-to-DME process is to produce DME at a cost lower than that from the commercially available two-step process, namely, syngas-to-methanol followed by methanol dehydration in sequential reactors. ... Furthermore, the composition of most commercially available syngas (except that produced by a CO2?methane reformer) is not the optimal composition (1:1 H2:CO) for the syngas-to-DME reactor. ...

X. D. Peng; A. W. Wang; B. A. Toseland; P. J. A. Tijm

1999-09-28T23:59:59.000Z

162

Seafood Plant Sanitation  

Science Journals Connector (OSTI)

A hygienically designed plant can improve the wholesomeness of seafood and the sanitation program. The location of the seafood plant can contribute to the sanitation of...

2006-01-01T23:59:59.000Z

163

Polyhydroxyalkanoate synthesis in plants  

DOE Patents [OSTI]

Novel transgenic plants and plant cells are capable of biosynthesis of polyhydroxyalkanoate (PHA). Heterologous enzymes involved in PHA biosynthesis, particularly PHA polymerase, are targeted to the peroxisome of a transgenic plant. Transgenic plant materials that biosynthesize short chain length monomer PHAs in the absence of heterologous .beta.-ketothiolase and acetoacetyl-CoA reductase are also disclosed.

Srienc, Friedrich (Lake Elmo, MN); Somers, David A. (Roseville, MN); Hahn, J. J. (New Brighton, MN); Eschenlauer, Arthur C. (Circle Pines, MN)

2000-01-01T23:59:59.000Z

164

Ethylene insensitive plants  

SciTech Connect (OSTI)

Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

Ecker, Joseph R. (Carlsbad, CA); Nehring, Ramlah (La Jolla, CA); McGrath, Robert B. (Philadelphia, PA)

2007-05-22T23:59:59.000Z

165

Ethynyl terminated ethers. Synthesis and thermal characterization of 2,2 bis (ethynyl-4-phenylcarbonyl-4-phenoxy-4-phenyl) propane and 2,2 bis (ethynyl-4-phenylsulfonyl-4-phenoxy-4-phenyl) propane  

Science Journals Connector (OSTI)

Two ethynyl end-capped ethers 2,2 Bis [ethynyl-4-phenylsulfonyl-4-phenoxy-4-phenyl] propane and 2,2 Bis [ethynyl-4-phenylcarbonyl-4-phenoxy-4-phenyl] propane have been prepared by a three steps...

Georges Lucotte; Laurent Cormier; Bruno Delfort

1990-12-01T23:59:59.000Z

166

Efficient production of 5-hydroxymethylfurfural through the dehydration of sugars with caprolactam hydrogen sulfate ([CPL]HSO4) ionic liquid catalyst in a water/proprylene glycol monomethyl ether mixed solvent  

Science Journals Connector (OSTI)

Efficient production of 5-hydroxymethylfurfural (HMF) through the dehydration of sugars...4) ionic liquid or using metal halide as the co-catalyst in a new water/proprylene glycol monomethyl ether solvent system....

Pingzhen Huang; Aijuan Gu; Jinxing Wang

2014-04-01T23:59:59.000Z

167

Fluctuating micro-heterogeneity in water–tert-butyl alcohol mixtures and lambda-type divergence of the mean cluster size with phase transition-like multiple anomalies  

SciTech Connect (OSTI)

Water–tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with x{sub TBA} ? 0.03–0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at x{sub TBA} ? 0.05. We note that “islands” of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, x{sub TBA} ? 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level.

Banerjee, Saikat; Furtado, Jonathan; Bagchi, Biman, E-mail: bbagchi@sscu.iisc.ernet.in [SSCU, Indian Institute of Science, Bangalore 560012 (India)] [SSCU, Indian Institute of Science, Bangalore 560012 (India)

2014-05-21T23:59:59.000Z

168

Transport study of hafnium(IV) and zirconium(IV) ions mutual separation by using Tri-n-butyl phosphate-xylene-based supported liquid membranes  

SciTech Connect (OSTI)

A Hf transport study through supported liquid membranes has been carried out to determine flux and permeability data for this metal ion. Tri-n-butyl phosphate (TBP)-xylene-based liquid membranes supported in polypropylene hydrophobic microporous film have been used. These data for hafnium and the previous data for zirconium have furnished the Zr to Hf flux ratio (S) as a function of nitric acid and TBP concentrations of the order of 12 in a single stage at room temperature. Optimum conditions for the separation of these two metal ions appear to 5-6 TBP mol/dm{sup 3} HNO{sub 3}, concentrations {le} 2.93 mol/dm{sup 3}, and 10C. The value of S from an aqueous solution containing 2.4% Hf with respect to Zr has been found to be >125 at 10C and 1.78 mol/dm{sup 3} TBP concentration in the membrane. The technique appears to be feasible for purification of Zr respect to Hf or vice versa.

Chaudry, M.A.; Ahmed, B. (Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan))

1992-02-01T23:59:59.000Z

169

Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia  

SciTech Connect (OSTI)

Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300?°C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M?=?Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200?°C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18?nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

Cloud, Andrew N.; Abelson, John R., E-mail: abelson@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 201 Materials Science and Engineering Building, 1304 W. Green St., Urbana, Illinois 61801 (United States); Davis, Luke M.; Girolami, Gregory S., E-mail: girolami@scs.illinois.edu [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States)

2014-03-15T23:59:59.000Z

170

Fluctuating micro-heterogeneity in water - tert-butyl alcohol mixtures and lambda-type divergence of the mean cluster size with phase transition-like multiple anomalies  

E-Print Network [OSTI]

Water - tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with $x_{\\text{TBA}} \\approx 0.03 - 0.07$. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at $x_{\\text{TBA}} \\approx 0.05$. We note that "islands" of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak non-linearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, $x_{\\text{TBA}} \\approx 0.45$, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level.

Saikat Banerjee; Jonathan Furtado; Biman Bagchi

2014-02-20T23:59:59.000Z

171

Advances in the design of co-poly(ether-imide) membranes for CO2 separations. Influence of aromatic rigidity on crystallinity, phase segregation and gas transport  

Science Journals Connector (OSTI)

Abstract In our previous works, it was observed a clear relationship between the structure and the properties for different copoly(ether-imide)s, besides a good relation was found between SAXS characterization and permeability results. Here, a series of aliphatic aromatic copoly(ether-imide)s, based on an aromatic diamine (ODA), a diamine terminated poly(ethylene oxide) (PEO2000) of a molecular weight of 2000 g/mol and different aromatic dianhydrides (BPDA, BKDA (or BTDA) and PMDA) has been synthesized and characterized. The permeability for O2, N2, CO2 and CH4, increased with the rigidity of the monomers (BKDA CO2/N2 separation. This work gives indications on how to design advanced materials for this separation with the increasing possibilities of controlled structure and properties.

Alberto Tena; Ángel Marcos-Fernández; Mónica de la Viuda; Laura Palacio; Pedro Prádanos; Ángel E. Lozano; Javier de Abajo; Antonio Hernández

2015-01-01T23:59:59.000Z

172

Polybrominated Diphenyl Ethers in U.S. Sewage Sludges and Biosolids: Temporal and Geographical Trends and Uptake by Corn Following Land Application  

Science Journals Connector (OSTI)

Robert C. Hale *, Mark J. La Guardia , Ellen Harvey , Da Chen , Thomas M. Mainor , and Drew R. Luellen , ... An internal standard (decachlorodiphenyl ether) was added and the final extracts were analyzed by gas chromatography/mass spectrometry (GC/MS) with electron-capture negative chemical ionization (EC-NCI). ... This work surveyed PBDE in spruce needles and air (gaseous and particle-bound) over an annual cycle to model PBDE accumulation in vegetation. ...

Robert C. Hale; Mark J. La Guardia; Ellen Harvey; Da Chen; Thomas M. Mainor; Drew R. Luellen; Lakhwinder S. Hundal

2012-01-26T23:59:59.000Z

173

Plant immune systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant immune systems Plant immune systems Name: stephanie Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Do plants have an immune system? How does it work? Are plants able to "fight off" infections such as Dutch Elm disease? Replies: In the broadest sense, an immune system is any method an organism has protect itself from succeeding to another organism's efforts to undermine its health and integrity. In this sense, yes, plants have immune systems. Plants do NOT have "active" immune systems, like humans, including macrophages, lymls, antibodies, complements, interferon, etc., which help us ward off infection. Rather, plants have "passive" mechanisms of protection. For instance, the waxy secretion of some plants (cuticle) functions to help hold in moisture and keep out microorganisms. Plants can also secrete irritating juices that prevent insects and animals from eating it. The thick bark of woody plants is another example of a defensive adaptation, that protects the more delicate tissues inside. The chemical secretions of some plants are downright poisonous to many organisms, which greatly enhance the chances of survival for the plant. Fruits of plants contain large amounts of vitamin C and bioflavonoids, compounds which have been shown in the lab to be anti-bacterial and antiviral. So in these ways, plants can improve their chances of survival. Hundreds of viruses and bacteria attack plants each year, and the cost to agriculture is enormous. I would venture to guess that once an organism establishes an infection in a plant, the plant will not be able to "fight" it. However, exposure to the sun's UV light may help control an infection, possibly even defeat it, but the plant does not have any inherent "active" way to fight the infection

174

Promoting effect of polyoxyethylene octylphenol ether on Cu/ZnO catalysts for low-temperature methanol synthesis  

Science Journals Connector (OSTI)

Cu/ZnO catalysts were prepared by the co-precipitation method with the addition of OP-10 (polyoxyethylene octylphenol ether) and were chemically and structurally characterized by means of XRD, BET, H2-TPR, CO-TPD and N2O-titration. The effect of OP-10 addition on the activity of Cu/ZnO for the slurry phase methanol synthesis at 150 °C was evaluated. The results showed that Cu/ZnO prepared with addition of 8% OP-10 (denoted as C8) exhibited the promoted activity for the methanol synthesis. The conversion of CO and the STY (space time yield) of methanol were 42.5% and 74.6% higher than those of Cu/ZnO prepared without addition of OP-10 (denoted as C0), respectively. The precursor of C8 contained more aurichalcite and rosasite, and the concerted effect of Cu-Zn in C8 was found to be stronger than that in C0. Compared with C0, C8 showed smaller particle size, lower reduction temperature and larger BET and Cu surface areas.

Ling Liu; Tiansheng Zhao; Qingxiang Ma; Yufang Shen

2009-01-01T23:59:59.000Z

175

Ethoxyresorufin-O-deethylase induction potency of polychlorinated diphenyl ethers in H4IIE rat hepatoma cells  

SciTech Connect (OSTI)

Polychlorinated diphenyl ethers (PCDEs) are structurally similar to polychlorinated biphenyls (PCBs), and some PCDE congeners have been reported to cause toxic responses similar to those caused by some of the non-ortho-substituted PCBs, which are mediated by the aryl hydrocarbon receptor (AhR). Twenty-nine PCDEs were tested for their potency as AhR agonists relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) by measuring their ability to induce the cytochrome P-450 1A1-associated enzyme activity, ethoxyresorufin-O-deethylase (EROD), in the H4IIE rat hepatoma cell bioassay. All PCDE congeners tested were found to be inactive as EROD inducers except for PCDE 156, which was a weak EROD inducer with a 2,3,7,8-TCDD equivalency factor of about 1.2 {times} 10{sup {minus}5}. During this study the authors determined that small amounts of polychlorinated dibenzofurans (PCDFs) that occurred as impurities in the PCDE preparations were the cause of the apparent EROD induction initially measured in their experiments. Once the PCDF impurities were removed by purification on florisil, little or no activity could be attributed to the PCDEs.

Koistinen, J.; Sanderson, J.T.; Giesy, J.P. [Michigan State Univ., East Lansing, MI (United States); Nevalainen, T.; Paasivirta, J. [Univ. of Jyvaeskylae (Finland). Dept. of Chemistry

1996-11-01T23:59:59.000Z

176

Investigation of HCCI Combustion of Diethyl Ether and Ethanol Mixtures Using Carbon 14 Tracing and Numerical Simulations  

SciTech Connect (OSTI)

Despite the rapid combustion typically experienced in Homogeneous Charge Compression Ignition (HCCI), components in fuel mixtures do not ignite in unison or burn equally. In our experiments and modeling of blends of diethyl ether (DEE) and ethanol (EtOH), the DEE led combustion and proceeded further toward completion, as indicated by {sup 14}C isotope tracing. A numerical model of HCCI combustion of DEE and EtOH mixtures supports the isotopic findings. Although both approaches lacked information on incompletely combusted intermediates plentiful in HCCI emissions, the numerical model and {sup 14}C tracing data agreed within the limitations of the single zone model. Despite the fact that DEE is more reactive than EtOH in HCCI engines, they are sufficiently similar that we did not observe a large elongation of energy release or significant reduction in inlet temperature required for light-off, both desired effects for the combustion event. This finding suggests that, in general, HCCI combustion of fuel blends may have preferential combustion of some of the blend components.

Mack, J H; Dibble, R W; Buchholz, B A; Flowers, D L

2004-01-16T23:59:59.000Z

177

Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells  

SciTech Connect (OSTI)

Antiproliferative actions of calcitriol have been shown to occur in many cell types; however, little is known regarding the molecular basis of this process in breast carcinoma. Ether-a-go-go (Eag1) potassium channels promote oncogenesis and are implicated in breast cancer cell proliferation. Since calcitriol displays antineoplastic effects while Eag1 promotes tumorigenesis, and both factors antagonically regulate cell cycle progression, we investigated a possible regulatory effect of calcitriol upon Eag1 as a mean to uncover new molecular events involved in the antiproliferative activity of this hormone in human breast tumor-derived cells. RT real-time PCR and immunocytochemistry showed that calcitriol suppressed Eag1 expression by a vitamin D receptor (VDR)-dependent mechanism. This effect was accompanied by inhibition of cell proliferation, which was potentiated by astemizole, a nonspecific Eag1 inhibitor. Immunohistochemistry and Western blot demonstrated that Eag1 and VDR abundance was higher in invasive-ductal carcinoma than in fibroadenoma, and immunoreactivity of both proteins was located in ductal epithelial cells. Our results provide evidence of a novel mechanism involved in the antiproliferative effects of calcitriol and highlight VDR as a cancer therapeutic target for breast cancer treatment and prevention.

Garcia-Becerra, Rocio [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)] [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Diaz, Lorenza, E-mail: lorenzadiaz@gmail.com [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)] [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Camacho, Javier [Department of Pharmacology, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco 07360, Mexico, D.F. (Mexico)] [Department of Pharmacology, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco 07360, Mexico, D.F. (Mexico); Barrera, David; Ordaz-Rosado, David; Morales, Angelica [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)] [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Ortiz, Cindy Sharon [Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)] [Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Avila, Euclides [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)] [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Bargallo, Enrique [Department of Breast Tumors, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico)] [Department of Breast Tumors, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Arrecillas, Myrna [Department of Pathology, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico)] [Department of Pathology, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Halhali, Ali; Larrea, Fernando [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)] [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)

2010-02-01T23:59:59.000Z

178

Monodisperse porous polymer particles containing macrocyclic ether as a new class of sorbent for SR(II) separation  

SciTech Connect (OSTI)

Strontium{sup 90} is one of the typical fission products that may be found in high level liquid waste (HLLW). Separation of Sr{sup 90} prior to the vitrification is beneficial to the final treatment of solid radioactive waste. In this study, a new class of sorbent for Sr(II) was developed by loading the macrocyclic ether DtBuCH18C6 into the monodisperse porous polymer particles (MPPPs). The MPPPs are well-known as a promising chromatographic material due to the uniform particle size, porous morphology, good compatibility with organic extractants, and rigid matrix. The structure and micro-morphology of the sorbent particles were characterized. The adsorption behavior towards Sr(II) in HNO{sub 3} media was investigated by both batch and column experiments. High adsorption efficiency and selective separation of Sr(II) was obtained. The sorbent particles can be recycled for at least several times before obvious lose of the adsorption ability. This kind of sorbent possesses the potential to be used for strontium separation in radioactive liquid waste.

Leng, Yuxiao; Bai, Feifei [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Faculty of Chemical Science and Engineering, China University of Petroleum, Beijing 100084 (China); Ye, Gang; Wei, Jichao; Wang, Jianchen; Chen, Jing [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

2013-07-01T23:59:59.000Z

179

Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation  

SciTech Connect (OSTI)

Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

Yoon, S.S. [Corporate Research and Development Division, Hyundai-Kia Motors, Gyeonggi-do 445-706 (Korea); Anh, D.H. [Korea Electric Power Research Institute, Daejeon 305-380 (Korea); Chung, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea)

2008-08-15T23:59:59.000Z

180

Life cycle study of coal-based dimethyl ether as vehicle fuel for urban bus in China  

Science Journals Connector (OSTI)

With life cycle assessment (LCA) methodology, a life cycle model of coal-based dimethyl ether (CBDME) as a vehicle fuel is established for China. Its life cycle from well to wheel are divided into three phases. They are feedstock extraction, fuel production and fuel consumption in vehicle. The primary energy consumption (PEC) and global warming potential (GWP) of CBDME pathway are analyzed and compared with coal-based diesel (CBD) as a latent rival to replace conventional petroleum-based diesel (CPBD). This study demonstrates that the LCA methodology is very suitable and effective for the choice of vehicle fuels. One result is that the greenhouse gases (GHGs) emission of coal-based vehicle fuel pathways is usually concentrated on fuel production stage. The percentages of CBDME and CBD pathways both exceed 60%. The application of carbon capture and storage (CCS) is helpful for coal-based vehicle fuel pathways to improve their global warming effect dramatically. Compared with CBD pathway, CBDME pathway consumes less PEC and emits less \\{GHGs\\} emission as well. Even though the CCS and CH4-fired generation are used, the advantages of CBDME are still kept. For saving petroleum energy and reducing global warming effect, CBDME has greater potential than CBD to substitute CPBD under current fuel synthesis technologies. If the hurdles such as the maturity of engine and vehicle technologies, corresponding regulations and standards and infrastructures are reliably solved, CBDME will have better prospect in China.

Liang Zhang; Zhen Huang

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Plant Phenotype Characterization System  

SciTech Connect (OSTI)

This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

Daniel W McDonald; Ronald B Michaels

2005-09-09T23:59:59.000Z

182

Technology Data for Energy Plants June 2010  

E-Print Network [OSTI]

............................................................................................... 79 13 Centralised Biogas Plants

183

Plant Biology 2001  

Science Journals Connector (OSTI)

...Park, PA b Graduate Research Assistant Michigan...University-Department of Energy Plant Research Laboratory East Lansing...complete listing of abstracts can be found at http...University-Department of Energy Plant Research Laboratory, East...

Nancy A. Eckardt; Hyung-Taeg Cho; Robyn M. Perrin; Matthew R. Willmann

184

Types of Hydropower Plants  

Broader source: Energy.gov [DOE]

There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not. The images below show both types of hydropower plants.

185

kansas city plant  

National Nuclear Security Administration (NNSA)

0%2A en Kansas City Plant http:nnsa.energy.govaboutusourlocationskansas-city-plant

Page...

186

Plants & Animals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plants & Animals Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. April 12, 2012 A rabbit on LANL land. A rabbit on LANL land. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from animals, as well as other plants and animals not considered food sources. What plants and animals do we monitor? LANL monitors both edible and non-edible plants and animals to determine whether Laboratory operations are impacting human health via the food chain, or to find contaminants that indicate they are being moved in the

187

Plant design: Integrating Plant and Equipment Models  

SciTech Connect (OSTI)

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process Engineering–Open), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

188

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

189

NUCLEAR PLANT AND CONTROL  

E-Print Network [OSTI]

for the digital protection systems of a nuclear power plant. When spec- ifying requirements for software and CRSA processes are described using shutdown system 2 of the Wolsong nuclear power plants as the digital, the missiles, and the digital protection systems embed- ded in nuclear power plants. Obviously, safety

190

Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (eFAP) ionic liquids  

Science Journals Connector (OSTI)

The density and viscosity of the ionic liquids 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate [C1C4Pyrro][eFAP] and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate [P66614][eFAP] were measured as a function of temperature and pressure and as a function of temperature, respectively. These two ionic liquids are more viscous than those based in the same anion associated to imidazolium cations. The effect of the addition of water on the density and viscosity of [P66614][eFAP] was studied at pressures close to atmospheric and as a function of the temperature. This ionic liquid is only partially miscible with water, its solubility being of around X H 2 O = 0.2 in the range of (303 to 315) K. Experimental values of the solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen were obtained as a function of temperature and at pressures close to atmospheric. Carbon dioxide and nitrous oxide are the more soluble gases with mole fraction solubilities up to 7 · 10?2. Ethane is four times and 1.3 times less soluble than carbon dioxide in [C1C4Pyrro][eFAP] and [P66614][eFAP], respectively. Nitrogen is one order of magnitude less soluble than the others gases in the two ionic liquids studied. In order to understand behavior of the different gases with these ionic liquids, the thermodynamic functions of solvation such as enthalpy and entropy were calculated from the variation of the Henry’s law constant with temperature. It is shown that the more favorable interactions of the gases with the ionic liquid explain the larger solubility of carbon dioxide and nitrous oxide in [C1C4Pyrro][eFAP]. In the case of [P66614][eFAP], it is the less favorable entropic contribution that explains the lower solubility of ethane in this ionic liquid.

S. Stevanovic; M.F. Costa Gomes

2013-01-01T23:59:59.000Z

191

prairie plant list  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

List of Native Prairie Plant Illustrations List of Native Prairie Plant Illustrations Select the common name of the plant you want to view. Common Name Scientific Name Grasses BIG BLUESTEM Andropogon gerardii INDIAN GRASS Sorghastrum nutans LITTLE BLUESTEM Andropogon scoparius SWITCH GRASS Panicum virgatum CORD GRASS Spartina pectinata NEEDLEGRASS Stipa spartea PRAIRIE DROPSEED Sporobolus pectinata SIDE-OATS GRAMA Bouteloua curtipendula FORBS ROSINWEED Silphium integrifolium SAW-TOOTHED SUNFLOWER Helianthus grossesserratus WILD BERGAMOT Monarda fistulosa YELLOW CONEFLOWER Ratibida pinnata BLACK-EYED SUSAN Rudbeckia hirta COMPASS PLANT Silphium lactiniatum CUP PLANT Silphium perfoliatum NEW ENGLAND ASTER Aster novae-angilae PRAIRIE DOCK Silphium terebinthinaceum RATTLESNAKE MASTER Eryngium yuccifolium STIFF GOLDENROD Solidaga rigida

192

Prep plant population rebounds  

SciTech Connect (OSTI)

Demand and higher prices allows more operators to build and upgrade plants. The 2005 US Prep Plant Census found that the number of coal preparation plants has grown from 212 to 265 in five years - a 53 plant gain or a 20% increase over that reported by Coal Age in 2000. The number of bituminous coal washing facilities grew by 43 to 250. The article discusses the survey and the companies involved and presents a table giving key details of plants arranged by state. 6 tabs.

Fiscor, S.

2005-10-01T23:59:59.000Z

193

Host Plants and Their Diseases  

Science Journals Connector (OSTI)

The information telescoped into this section is taken in large part from the records of the Plant Disease Survey as given in the Plant Disease Reporter, Plant Diseases and from the Index of Plant Diseases in the ...

R. Kenneth Horst Ph.D.

2001-01-01T23:59:59.000Z

194

Host Plants and Their Diseases  

Science Journals Connector (OSTI)

The information telescoped in this section is taken in large part from the records of the Plant Disease Survey as given in the Plant Disease Reporter, Plant Diseases, and the Index of Plant Diseases in the United...

R. Kenneth Horst Ph.D.

1990-01-01T23:59:59.000Z

195

prairie restoration plant ident  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Identification Plant Identification Once your restoration is started and plants begin to germinate, the next issue you are faced with is the identification of what is growing. From my experience, the seeds you planted should start germinating after about a week to ten days. Of course, this is dependent on the weather conditions and the amount of moisture in the soil. If you are watering regularly, you will get growth much more quickly than if you are just waiting for nature to take its course. Identifying prairie plants as they germinate is very difficult. If you are an experienced botanist or an expert on prairie plants, your identification will still be a little more than an educated guess. In other words identifying prairie species from non-native species will take some time.

196

Crystals and Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crystals and Plants Crystals and Plants Name: Diab Location: N/A Country: N/A Date: N/A Question: What will the likely effects of crystallized filaments in plant cells be? I had noticed that moth balls (para dichlorbenzene) tends within a very short temperature range to transform from a solid to gas and back to solid in the form of crystal filaments. I been wondering about the likely effects of an experiment in which a plant is placed in a chamber saturated with the fumes of a substance that had the same transformation properties of its state but none of the toxic effects be on the plants and will such filaments form inside the cell and rearrange its DNA strands or kill it outright? Replies: The following might be helpful: http://biowww.clemson.edu/biolab/mitosis.html http://koning.ecsu.ctstateu.edu/Plant_Physiology/osmosis.html

197

Poisonous Plant Management.  

E-Print Network [OSTI]

are relatively unpalatable and must be consumed in substantial quantities to be lethal. Generally, animals do not graze poisonous plants by choice and are rarely poisoned if other forage is readily available. Plants do not always fall into easily defined... quickly. Control may be accomplished using mechanical, biological, chemical or prescribed burning methods. Most poisonous plants are herbaceous in growth form; thus, mechanical control methods are rarely used. There are a few exceptions. Whitebrush, a...

McGinty, Allan

1985-01-01T23:59:59.000Z

198

Plant Growth and Photosynthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Growth and Photosynthesis Plant Growth and Photosynthesis Name: Jack Location: N/A Country: N/A Date: N/A Question: Do plants have any other way of growing besides photosythesis? Plants do not use photosynthesis to grow!!! They use cellular respiration just like every other organism to process energy into work. Plants use oxygen just like we do. Photosynthesis is principally only a process to change sunlight into a chemical form for storage. Replies: Check out our archives for more information. www.newton.dep.anl.gov/archive.htm Steve Sample Jack, Several kinds of flowering plants survive without the use of chlorophyll which is what makes plants green and able to produce sugar through photosynthesis. Dodder is a parasitic nongreen (without chlorophyll) plant that is commonly found growing on jewelweed and other plants in damp areas. Dodder twines around its host, (A host is an organism that has fallen victim to a parasite.), like a morning glory and attaches itself at certain points along the stem where it absorbs sugar and nutrients from the hosts sap.

199

Repurposing a Hydroelectric Plant.  

E-Print Network [OSTI]

??This thesis project explores repurposing a hydroelectric plant along Richmond Virginia's Canal Walk. The building has been redesigned to create a community-oriented space programmed as… (more)

Pritcher, Melissa

2008-01-01T23:59:59.000Z

200

Synthesis of Methanol and Dimethyl Ether from Syngas over Pd/ZnO/Al2O3 Catalysts  

SciTech Connect (OSTI)

A Pd/ZnO/Al2O3 catalyst was developed for the synthesis of methanol and dimethyl ether (DME) from syngas. Studied were temperatures of operation ranging from 250°C to 380°C. High temperatures (e.g. 380°C) are necessary when combining methanol and DME synthesis with a methanol to gasoline (MTG) process in a single reactor bed. A commercial Cu/ZnO/Al2O3 catalyst, utilized industrially for the synthesis of methanol at 220-280°C, suffers from a rapid deactivation when the reaction is conducted at high temperature (>320°C). On the contrary, a Pd/ZnO/Al2O3 catalyst was found to be highly stable for methanol and DME synthesis at 380°C. The Pd/ZnO/Al2O3 catalyst was thus further investigated for methanol and DME synthesis at P=34-69 bars, T= 250-380°C, GHSV= 5 000-18 000 h-1, and molar feeds H2/CO= 1, 2, and 3. Selectivity to DME increased with decreasing operating temperature, and increasing operating pressure. Increased GHSV’s and H2/CO syngas feed ratios also enhanced DME selectivity. Undesirable CH4 formation was observed, however, can be minimized through choice of process conditions and by catalyst design. By studying the effect of the Pd loading and the Pd:Zn molar ratio the formulation of the Pd/ZnO/Al2O3 catalyst was optimized. A catalyst with 5% Pd and a Pd:Zn molar ratio of 0.25:1 has been identified as the preferred catalyst. Results indicate that PdZn particles are more active than Pdº particles for the synthesis of methanol and less active for CH4 formation. A correlation between DME selectivity and the concentration of acid sites of the catalysts has been established. Hence, two types of sites are required for the direct conversion of syngas to DME: 1) PdZn particles are active for the synthesis of methanol from syngas, and 2) acid sites which are active for the conversion of methanol to DME. Additionally, CO2 formation was problematic as PdZn was found to be active for the water-gas-shift (WGS) reaction, under all the conditions evaluated.

Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Lizarazo Adarme, Jair A.; King, David L.; Palo, Daniel R.

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Plant pathogen resistance  

DOE Patents [OSTI]

Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

2012-11-27T23:59:59.000Z

202

RESEARCH ARTICLE PLANT GENETICS  

E-Print Network [OSTI]

relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility-locus phenotype in a self-incompatible Arabidopsis species. Selection has created a dynamic repertoire of s of regulation among alleles. S porophytic self-incompatibility (SI) is a genetic system that evolved in hermaph

Napp, Nils

203

Modulating lignin in plants  

SciTech Connect (OSTI)

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

204

Ethylene in Plants  

Science Journals Connector (OSTI)

... as the master controller of all plant growth and developmental processes. It now seems that ethylene, whose dramatic effects on plants have been known for more than 70 years, is ... 10 years there has been a veritable explosion of research into the physiological actions of ethylene directed towards assessing its significance as a 'natural' hormone.

L. J. AUDUS

1973-11-23T23:59:59.000Z

205

Plant Ecology An Introduction  

E-Print Network [OSTI]

1 Plant Ecology An Introduction Ecology as a Science Study of the relationships between living and causes of the abundance and distribution of organisms Ecology as a Science We'll use the perspective of terrestrial plants Basic ecology - ecological principles Applied ecology - application of principles

Cochran-Stafira, D. Liane

206

Purdue extension Toxic Plants  

E-Print Network [OSTI]

Service PLANTS Database/N.L.Britton,and A.Brown's An Illustrated Flora of the Northern United States Poisonous to Live- stock and Pets.See References (page 23) and Online Resources (page 24) for details is as safe as possible is to keep these plants out of your fields and pastures. To do this,proper weed

Holland, Jeffrey

207

Granby Pumping Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Granby Pumping Plant Granby Pumping Plant Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Granby Pumping Plant-Windy Gap Transmission Line Rebuild Project Western owns and operates a 12-mile, 69-kV electric transmission line in Grand County, Colo., that originates at Windy Gap Substation and terminates at Granby Pumping Plant Switchyard. The proposed project would rebuild the single circuit line as a double circuit transmission line and add a second power transformer. One circuit would replace the existing 69-kV line; the other circuit would be a new 138-kV line. Granby Pumping Plant Switchyard would be expanded to accommodate the second line and power transformer. Windy Gap Substation would be modified to accommodate the second line.

208

BNL | Plant Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Sciences Plant Sciences The Plant Sciences group's goal is to understand the principles underlying carbon capture, conversion, and storage in living systems; and develop the capability to model, predict and optimize these processes in plants and microorganisms. Staff Members John Shanklin Jason Candreva Jilian Fan Hui Liu Qin Liu Edward Whittle Xiaohong Yu Dax Fu Jin Chai Chang-Jun Liu Yuanheng Cai Mingyue Gou Guoyin Kai Zhaoyang Wei Huijun Yang Kewei Zhang Xuebin Zhang Jörg Schwender Jordan Hay Inga Hebbelmann Hai Shi Zhijie Sun Changcheng Xu Chengshi Yan Zhiyang Zhai Plant Sciences Contact John Shanklin, (631)344-3414 In the News No stories available Funding Agencies DOE Basic Energy Sciences Bayer CropScience The Biosciences Department is part of the Environment and Life Sciences Directorate at Brookhaven National Laboratory

209

Top 10 plant pathogenic bacteria in molecular plant pathology.  

E-Print Network [OSTI]

plants are being closely grouped together, for example pv.oryzae pv. oryzae AvrXa21 and implications for plant innatePseudomonas syringae pv. tomato in Tanzania. Plant Dis. 91,

2012-01-01T23:59:59.000Z

210

Waste Isolation Pilot Plant Transportation Security | Department...  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security More Documents &...

211

AVESTAR® - Smart Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Plant In the area of smart plant operations, AVESTAR's dynamic simulators enable researchers to analyze plant-wide performance over a wide range of operating scenarios, including plant startup (cold, warm, hot), shutdown, fuel switchovers, on-load cycling, high-load operations of 90-120% of rated capacity, and high frequency megawatt changes for automatic generation control. The dynamic simulators also let researchers analyze the plant's response to disturbances and malfunctions. The AVESTAR team is also using dynamic simulators to develop effective strategies for the operation and control of pre-combustion capture technology capable of removing at least 90% of the CO2 emissions. Achieving operational excellence can have significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come. If deployment of new CO2 capture technologies is to be accelerated, power generators must be confident in ensuring efficient, flexible, reliable, environmentally-friendly, and profitable plant operations.

212

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Inputs & Utilization Inputs & Utilization Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline.

213

Fuel Ethanol Oxygenate Production  

Gasoline and Diesel Fuel Update (EIA)

Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 27,197 26,722 26,923 26,320 25,564 27,995 1981-2013 East Coast (PADD 1) 628 784 836 842 527 636 2004-2013 Midwest (PADD 2) 25,209 24,689 24,786 24,186 23,810 26,040 2004-2013 Gulf Coast (PADD 3) 523 404 487 460 431 473 2004-2013 Rocky Mountain (PADD 4) 450 432 430 432 415 429 2004-2013 West Coast (PADD 5)

214

Long-term trends of PBDEs, triclosan, and triclocarban in biosolids from a wastewater treatment plant in the Mid-Atlantic region of the US  

Science Journals Connector (OSTI)

Abstract In the US, land application of biosolids has been utilized in government-regulated programs to recycle valuable nutrients and organic carbon that would otherwise be incinerated or buried in landfills. While many benefits have been reported, there are concerns that these practices represent a source of organic micropollutants to the environment. In this study, biosolids samples from a wastewater treatment plant in the Mid-Atlantic region of the US were collected approximately every 2 months over a 7-year period and analyzed for brominated diphenyl ethers (BDE-47, BDE-99, and BDE-209), triclosan, and triclocarban. During the collection period of 2005–2011, concentrations of the brominated diphenyl ethers BDE-47 + BDE-99 decreased by 42%, triclocarban decreased by 47%, but BDE-209 and triclosan remained fairly constant. Observed reductions in contaminant concentrations could not be explained by different seasons or by volumetric changes of wastewaters arriving at the treatment plant and instead may be the result of the recent phaseout of BDE-47 and BDE-99 as well as potential reductions in the use of triclocarban.

Natasha A. Andrade; Nuria Lozano; Laura L. McConnell; Alba Torrents; Clifford P. Rice; Mark Ramirez

2015-01-01T23:59:59.000Z

215

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

216

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

217

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

218

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

219

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

220

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

222

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

223

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

224

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

225

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

226

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

227

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

228

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

229

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

230

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

231

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

232

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

233

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

234

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

235

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

236

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

237

Fermilab Prairie Plant Survey  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crack the Quadrat* Code! Crack the Quadrat* Code! compass plasnt * What is a Quadrat? It's a one-meter square plot. Plants in the quadrat are identified and counted. Fermilab quadrat specialists can! Attention Citizen Scientists Are you a prairie enthusiast? Learn scientific plant monitoring techniques while enjoying our beautiful prairie. Join a unique science program open to the public, adult groups, families, scouts and more Â…. Become a prairie quadrat specialist and do real science at Fermilab! In the Fermilab Prairie Plant Survey you will learn how to identify prairie plants, map a prairie plot and track restoration progress along with our experts. Use our Website to contribute data you collect. Come once or come back two or three times to see how the prairie changes. Keep an eye on this prairie for years to come!

238

prairie restoration planting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planting Planting The most common method of planting is to broadcast spread your seeds. This is usually done by hand, but you can also use a lawn-type spreader. After you have spread your seeds, rake the area over lightly. For seeds to germinate correctly they need to have good seed to soil contact, but you also don't want to bury the seeds too deeply. The general rule is to cover seeds to a depth no deeper than twice the seed's size. For example, if a seed is 4 mm in size, you would not want to bury it any deeper than 8 mm. The seeds commonly found in a prairie matrix are usually small enough, that raking over the spread seed to mix and cover them with a thin layer of soil, is adequate. If you are involving large numbers of people in the planting, a plastic cup

239

Pollution adn Plant Growth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pollution adn Plant Growth Pollution adn Plant Growth Name: Virdina Location: N/A Country: N/A Date: N/A Question: What are the effcts off water polltuion on plant growth? Are there any good websites where I can find current or on going research being done by other scientist? Replies: Dear Virdina, Possibly helpful: http://www.ec.gc.ca/water/en/manage/poll/e_poll.htm http://www.epa.vic.gov.au/wq/info/wq987.htm Sincerely, Anthony R. Brach This is a very complicated question, there are so many different types of water pollution and different species of plants react very differently. Good places to start are the U.S. environmental protection agency, the office of water is at: http://www.epa.gov/ow/ and there is a link to a kid's page from there: http://www.epa.gov/OST/KidsStuff/ You might also try state EPA's, Illinois is at:

240

The First Coal Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Economics of Hydropower Plants  

Science Journals Connector (OSTI)

The feed-in tariff scheme, as its name suggests is based ... plant. The most important aspect of a feed-in tariff system is that the grid operator cannot ... stations must reduce their power generation. The feed-in

Prof. Dr.-Ing Hermann-Josef Wagner…

2011-01-01T23:59:59.000Z

242

Plant Vascular Biology 2010  

SciTech Connect (OSTI)

This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

Ding, Biao

2014-11-17T23:59:59.000Z

243

Plant Operations Executive Director  

E-Print Network [OSTI]

Campus North Campus Recycling Operations Materials Human Resources Payroll Misc Svs Special Projects Planning Spray Shop Glass Shop Upholstery Shop Plant IT Painting Services G. Weincouff Human Resources Business Services Estimating Shutdown Coordination Scheduling L. Rastique Human Resources 67398 M

Awtar, Shorya

244

Plant indicators in Iraq  

Science Journals Connector (OSTI)

Native plants of Iraq have shown considerable variation in their ability...Seidlitzia rosmarinus andHalocnemum strobilaceum indicate very high soil sodium contents, and others high magnesium and sulphate contents...

T. A. Al-Ani; I. M. Habib; A. I. Abdulaziz; N. A. Ouda

1971-08-01T23:59:59.000Z

245

Better Buildings, Better Plants:  

Broader source: Energy.gov (indexed) [DOE]

to 1,800 plants and about 8% of the U.S. manufacturing energy footprint 2012 average energy intensity improvement 2.7% Cumulative Energy Savings 190 TBtus ...

246

B Plant facility description  

SciTech Connect (OSTI)

Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

Chalk, S.E.

1996-10-04T23:59:59.000Z

247

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant  

Science Journals Connector (OSTI)

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant ... A natural gas combined cycle (NGCC) power plant with capacity of about 430 MW integrated to a chemical solvent absorber/stripping capture plant is investigated. ... The natural gas combined cycle (NGCC) is an advanced power generation technology that improves the fuel efficiency of natural gas. ...

Mehdi Karimi; Magne Hillestad; Hallvard F. Svendsen

2012-01-19T23:59:59.000Z

248

Maintaining plant safety margins  

SciTech Connect (OSTI)

The Final Safety Analysis Report Forms the basis of demonstrating that the plant can operate safely and meet all applicable acceptance criteria. In order to assure that this continues through each operating cycle, the safety analysis is reexamined for each reload core. Operating limits are set for each reload core to assure that safety limits and applicable acceptance criteria are not exceeded for postulated events within the design basis. These operating limits form the basis for plant operation, providing barriers on various measurable parameters. The barriers are refereed to as limiting conditions for operation (LCO). The operating limits, being influenced by many factors, can change significantly from cycle to cycle. In order to be successful in demonstrating safe operation for each reload core (with adequate operating margin), it is necessary to continue to focus on ways to maintain/improve existing safety margins. Existing safety margins are a function of the plant type (boiling water reactor/pressurized water reactor (BWR/PWR)), nuclear system supply (NSSS) vendor, operating license date, core design features, plant design features, licensing history, and analytical methods used in the safety analysis. This paper summarizes the experience at Yankee Atomic Electric Company (YAEC) in its efforts to provide adequate operating margin for the plants that it supports.

Bergeron, P.A.

1989-01-01T23:59:59.000Z

249

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

250

How do plants grow?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How do plants grow? How do plants grow? Name: Sally McCombs Location: N/A Country: N/A Date: N/A Question: A 4th grade class at our school is doing plant research and would like to know if plants grow from the top up or from the bottom up? Thanks for your help! Replies: Plants grow from the top up (or from the bottom down, in the case of root growth). Right at the tip, more cells form by division, and just behind that is an area where cells get bigger). More amazing than all of this is where your question comes from. I went to 4th grade there!!! Amazing, Just after the school was built, I think, maybe around 1959 to about early 1960's. Then I moved on to St. Pete High School, then my parents got jobs in Alabama, where I did the last year of High School. Then onto college in New England, graduate school in California, a research job in England, and now finally as a professor at the University of Washington in Seattle. Brings back memories...

251

Texas Plants Poisonous to Livestock.  

E-Print Network [OSTI]

TEXAS PLANTS POISONOUS TO LIVESTOCK TEXAS A&M UNIVERSITY TEXAS AGRICULTURAL EXPERIMENT STATION TEXAS AGRICULTURAL EXTENSION SERVICE College Station, Texas THE PROBLEM POISONOUS PLANT RESEARCH IN TEXAS TOXIC PLANT CONSTITUENTS TEXAS PLANTS... list includes plants growing in Texas and reported to be poisonous in other areas. Some species described seldom cause trouble but are included since they have been proved toxic and may, under conditions, bring about livestock losses. Poisoning...

Sperry, Omer Edison

1964-01-01T23:59:59.000Z

252

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

253

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

254

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

255

Cyanogenesis in Plants and the Constitution of Phaseolunatin  

Science Journals Connector (OSTI)

... is the lotoflavin ether of maltose cyanohydrin, lotoflavin being a yellow colouring matter isomeric with fisetin and luteolin, and belonging, like these, to the quercetin group of dyes. Dhurrin ...

1907-03-07T23:59:59.000Z

256

Plant Tumor Growth Rates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Tumor Growth Rates Plant Tumor Growth Rates Name: Gina and Maria Location: N/A Country: N/A Date: N/A Question: We are doing a science fair project on if B. Carotene, Green tea, and Grape Seed Extract helps plants against the crown gall disease. We injected sunflowers with agrobacterium tum. one week ago (Sun. Feb. 27, 2000). Our questions is how long will it take for the tumors to grow? We scratched the surface of the stems and injected the agrobacterium in the wound. Also which do you think, in your opinion, will do the best, if any? Our science fair is April 13, do you think we'll have growth before then, atleast enough time to do our conclusion and results? Thank you, any information you forward will be very helpful. Replies: Sunflowers form galls relatively quickly. I usually get them in two weeks at least. Good luck.

257

Plant and Animal Immigrants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Animal Immigrants and Animal Immigrants Nature Bulletin No. 43 December 1, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Roberts Mann, Superintendent of Conservation PLANT AND ANIMAL IMMIGRANTS When foreign plants and animals are brought to a new country they either become naturalized and thrive, or they cling to their old ways and die out. after they, too, find new freedoms because they leave their enemies, competitors, parasites, and some of their diseases behind them -- much as immigrant people do. The United States now supports about 300 times as many people as it did when Columbus discovered America. This is possible because the domesticated plants and animals that the early settlers brought with them give much higher yields of food and clothing than the Indians got from wild ones.

258

Waste Treatment Plant Overview  

Broader source: Energy.gov (indexed) [DOE]

Hanford Site, located in southeastern Washington state, Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the "Vit Plant," will use vitrification to immobilize most of Hanford's dangerous tank waste.

259

Power Plant Cycling Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

260

Plants making oxygen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plants making oxygen Plants making oxygen Name: Doug Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: How many plants are needed to make enough oxygen for one person for one hour? We are experimenting with Anacharis plants. Replies: The problem can be solved when broken down into smaller questions: 1. How much oxygen does a person need in an hour? 2. How much oxygen does a plant produce in an hour? 3. Based on the above, how many plants will provide the oxygen needs of the person for the hour? Here is the solution to the first question: A resting, healthy adult on an average, cool day breathes in about 53 liters of oxygen per hour. An average, resting, health adult breathes in about 500 mL of air per breath. This is called the normal tidal volume. Now, 150 mL of this air will go to non- functioning areas of the lung, called the "dead space." The average breath rate for this average person is 12 breaths per minute. So, the amount of air breathed in by the person which is available for use is 12 x (500 mL -150 mL) = 4,200 mL/minute. Multiply by 60 to get 252,000 mL/hour. That is, every hour, the person will breathe in 252 L of air. Now, on an average, cool, clear day, only 21% of that air is oxygen. So, 21% of 252 L is 53 L. So, in an hour, the person breathes in about 53 L of oxygen.

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Waste Isolation Pilot Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE _______________ ) ) ss: __________________ COUNTY OF _____________ ) That I, ________________________, am the _________________________ (Indicate relationship) of ___________________________, who is deceased and make the attached request pursuant to 10 CFR, Section 1008. That the information contained on the attached request is true and correct to the best of my knowledge and belief, and I am signing this authorization subject to the penalties provided in 18 U.S.C. 1001. ____________________________ SIGNATURE NOTARIZATION: SUBSCRIBED and SWORN to before me this ______day of __________, 20_____

262

Snakes and Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Snakes and Plants Snakes and Plants Name: kathy Location: N/A Country: N/A Date: N/A Question: We live in the southern most tip of Illinois,on horseshoe lake. I would like to know what time of the year do snakes come out and when do they go back in? Also is there any plants to plant to keep them away? Replies: What kind of snakes, in what kind of habitat? All snakes in Illinois hibernate in winter, but their habits differ by species. I'm not sure of the range of dates for southern Illinois, but they start to come out of hibernation in northern Illinois around the end of March or in April, depending on the weather. Advance of spring is usually about 3 weeks earlier in southern Illinois than northern, so i guess snake emergence would be about that much advanced as well. They will come out when there are warm sunny days to get them warmed up, and nights are not so cold that they will be harmed. Fall entry into hibernation is roughly parallel, snakes will often bask in the sun on sunny fall days before going into hibernation, again in no. Ill usually in October but widely varying.

263

Alex Benson Cement Plants  

E-Print Network [OSTI]

with steel balls which grind mix into a fine powder -> Final Cement Product Associated Air Pollution: o From health effects Relative News; o "EPA Clamps down on Cement Plant Pollution" http.4 million dollars for violating the Clean Air Act and 2 million dollars for pollution controls #12

Toohey, Darin W.

264

Plants: novel developmental processes  

Science Journals Connector (OSTI)

...J.K., SOYBEAN SEED LECTIN GENE AND FLANKING...EVIDENCE ON THEIR METABOLISM + TOTIPOTENCY, SCIENCE...GENETIC MANIPULATION OF CEREAL CROPS, BIO-TECHNOLOGY...MESSENGER-RNAS FOR SEED LECTIN AND KUNITZ...vascular seedless and seed-producing plants...store glucose as starch in their chloroplasts...

RB Goldberg

1988-06-10T23:59:59.000Z

265

Chemical Plant Expansion  

Science Journals Connector (OSTI)

Despite $4 billion of capital expenditure for plant expansion over the past seven years, a high level of construction activity is expected to continue ... A marked increase in capital expenditures of t h e six largest chemical companies tooïç place in 1951 over 1950. ...

JOHN M. WEISS

1952-06-09T23:59:59.000Z

266

Solar Tracking by Plants  

Science Journals Connector (OSTI)

...University of Utah, Salt Lake City 84112...Solar Tracking in Desert Plants In the arid...were coastal sage scrub, which grows during...Mohave and Colorado desert scrub, which grow in...Mohave and Colorado desert scrub communities at sites...

James Ehleringer; Irwin Forseth

1980-12-05T23:59:59.000Z

267

BIOLOGY AND AQUATIC PLANTS  

E-Print Network [OSTI]

Handbook First published in the United States of America in 2009 by Aquatic Ecosystem Restoration plant management. The Aquatic Ecosystem Restoration Foundation (AERF) is pleased to bring you Biology for the environmentally and scientifically sound management, conservation and restoration of aquatic ecosystems. One

Jawitz, James W.

268

APPENDXD.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Report The Form EIA-819, "Monthly Oxygenate Report" provides production data for fuel ethanol and methyl tertiary butyl ether (MTBE). End-of-month stock data held at ethanol...

269

The feasibility of ethanol production in Texas  

E-Print Network [OSTI]

Agricultural interests across Texas are looking at the possibility of an ethanol industry in Texas. Continued conflict in the Middle East, the ban of methyl tertiary butyl ether (MTBE) in California, and low commodity prices have all lead...

Herbst, Brian Keith

2012-06-07T23:59:59.000Z

270

Technology Data for Electricity and Heat Generating Plants  

E-Print Network [OSTI]

.................................................................................63 13 Centralised Biogas Plants

271

The Colorado Rare Plant Technical Committee Rare Plant Symposium  

E-Print Network [OSTI]

The Colorado Rare Plant Technical Committee presents: 4th Annual Rare Plant Symposium Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado: G2G3/S2S3 Global distribution: Colorado (Larimer and Boulder counties). Possibly extending

272

Annual Report 2001 -Plant Research Departme Plant Research Department  

E-Print Network [OSTI]

Organisation DLF-Risø Biotechnology Programme Plant Environment Interactions Programme Plant Nutrition agronomic traits and to engineer high-value plants, which are able to meet the growth conditions of the future environment. The department is divided into six research programmes that are linked through

273

Ecology of Plants and Light CAM plants have thick,  

E-Print Network [OSTI]

orientation to maximize light exposure. Species Adaptations-Sun Solar tracking by leaves increases light1 Ecology of Plants and Light CAM plants have thick, succulent tissues to allow for organic acid and Light Some CAM plants not obligated to just CAM Can use C3 photosynthesis during day if conditions

Cochran-Stafira, D. Liane

274

Pantex Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pantex Plant Pantex Plant Pantex Plant Pantex Plant | September 2010 Aerial View Pantex Plant | September 2010 Aerial View The primary mission of the Pantex Plant is the assembly, disassembly, testing, and evaluation of nuclear weapons in support of the NNSA stockpile stewardship program. Pantex also performs research and development in conventional high explosives and serves as an interim storage site for plutonium pits removed from dismantled weapons. Enforcement January 7, 2013 Enforcement Letter, NEL-2013-01 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant November 21, 2006 Preliminary Notice of Violation, BWXT Pantex, LLC - EA-2006-04 Issued to BWXT Pantex, LLC, related to Quality Assurance and Safety Basis Requirements Violations at the Pantex Plant

275

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

276

Belgrade Lot Steam Plant Lot  

E-Print Network [OSTI]

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N S Estabrooke Memorial Gym Stevens

Thomas, Andrew

277

Production of virus resistant plants  

DOE Patents [OSTI]

A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection. 9 figs.

Dougherty, W.G.; Lindbo, J.A.

1996-12-10T23:59:59.000Z

278

Gene encoding plant asparagine synthetase  

DOE Patents [OSTI]

The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

Coruzzi, Gloria M. (New York, NY); Tsai, Fong-Ying (New York, NY)

1993-10-26T23:59:59.000Z

279

US prep plant census 2008  

SciTech Connect (OSTI)

Each year Coal Age conducts a fairly comprehensive survey of the industry to produce the US coal preparation plant survey. This year's survey shows how many mergers and acquisitions have given coal operators more coal washing capacity. The plants are tabulated by state, giving basic details including company owner, plant name, raw feed, product ash %, quality, type of plant builder and year built. 1 tab., 1 photo.

Fiscor, S.

2008-10-15T23:59:59.000Z

280

Independent Activity Report, Hanford Waste Treatment Plant -...  

Broader source: Energy.gov (indexed) [DOE]

Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality...

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Okeanskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

282

Mendeleevskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

283

Mecca Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

284

Jennings Demonstration PLant  

SciTech Connect (OSTI)

Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

Russ Heissner

2010-08-31T23:59:59.000Z

285

TERRORISM AT THE PLANT LEVEL  

Science Journals Connector (OSTI)

TERRORISM AT THE PLANT LEVEL ... IN THE DAYS FOLLOWING THE Sept. 11 terrorist attacks, chemical plant officials say they have increased security through greater plant surveillance, more guards, intense vehicle inspections, and plans to better coordinate security with similar facilities, fire departments, and police. ...

JEFF JOHNSON

2001-09-24T23:59:59.000Z

286

Special Better Plants Training Opportunities  

Broader source: Energy.gov [DOE]

In-Plant Trainings (INPLTs) are system-specific workshops led by Better Plants experts that train participants on how to identify, implement, and replicate energy-saving projects. Better Plant partners host an on-site, three-day training at one of their facilities, and invite others to attend.

287

ENDING PLANTS’ WASTING WAYS  

Science Journals Connector (OSTI)

Small DOE industrial energy auditing program shows BIG ENERGY EFFICIENCY, financial gains ... FREDERICK FENDT DIDN’T EXPECT too much from a Department of Energy-led, three-day energy audit of Rohm and Haas’s Deer Park, Texas, chemical plant. ... So when Paul Scheihing, who manages the DOE Industrial Technologies Program and coordinates the audits, urged Fendt to take part in a free energy assessment, he agreed. ...

JEFF JOHNSON

2008-01-14T23:59:59.000Z

288

Plants of the Bible  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bible Bible Nature Bulletin No. 188-A April 16, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation PLANTS OF THE BIBLE When Jesus suffered on the cross, we are told in the Gospel according to St. Matthew (27:48) that at the ninth hour he thirsted and a sponge, filled with vinegar and put upon a reed, was raised to His lips. It is so related in St. Mark (15:36) but according to St. John (19:29), "they filled a sponge with vinegar, and put it upon hyssop, and put it into his mouth. " What was hyssop. The plant is mentioned frequently in the Bible. The hyssop of our herb gardens is not native to Palestine, Syria or Egypt, but there is evidence that when Solomon "spoke of trees, from the cedar tree that is in Lebanon even unto the hyssop that springeth out of the wall" (I Kings 4:23), he spoke of the herb we call marjoram. The hyssop dipped in the blood of a sacrificial lamb and used by the Israelites in Egypt to mark their doorways (Exodus 12:22), and the hyssop referred to by St. John but called a reed by St. Matthew and St. Mark, was probably sorghum, a tall cereal plant grown by the Jews for food and also used for brushes and brooms.

289

Poinsettia -- The Christmas Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Poinsettia -- The Christmas Plant Poinsettia -- The Christmas Plant Nature Bulletin No. 699 December 22, 1962 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor POINSETTIA -- THE CHRISTMAS PLANT Christmas is a day of family gatherings. In each home they have their own traditional customs. Some of us cherish those that are peculiar to the region where we were children, or the land from whence our forefathers came. Most of us have also adopted customs -- such as decorating with holly and mistletoe -- that stem from ancient pagan ceremonies or festivals but have lost their original significance. There are many myths and legends about the origin of our Yuletide customs. (See Bulletins No. 135, 173, 211, 326 and 475). In this country most families have a Christmas tree, a custom that was introduced from Germany by Hessian troops in the British army during the Revolutionary War. It prevails in Britain and most of northern Europe but is unusual in Italy, Spain and Latin America. There, the symbol of Christmas and heart of the celebration in a home is not an Evergreen tree but a miniature reproduction of the stable and manger where Christ was born.

290

Deming Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Deming Solar Plant Solar Power Plant Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic Developer New Solar Ventures/ Solar Torx 50/50 Location New Mexico Coordinates 34.9727305°, -105.0323635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9727305,"lon":-105.0323635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Prescott Airport Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Prescott Airport Solar Plant Solar Power Plant Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar Facility Type Photovoltaic Developer APS Location Prescott, Arizona Coordinates 34.5400242°, -112.4685025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5400242,"lon":-112.4685025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Saguargo Solar Power Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Saguargo Solar Power Plant Solar Power Plant Saguargo Solar Power Plant Solar Power Plant Jump to: navigation, search Name Saguargo Solar Power Plant Solar Power Plant Facility Saguargo Solar Power Plant Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795°, -111.292887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.54795,"lon":-111.292887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Synthesis, structures, and properties of novel aminodisilanes bearing bulky substituents: 1,2-bis(1,1,2-trimethylpropyl)-1,1,2,2-tetrakis(diethylamino) disilane and 1,2-di-tert-butyl-1,1,2,2-tetrakis(diethylamino) disilane  

Science Journals Connector (OSTI)

Two novel tetraaminodisilanes, 1,2-bis(1,1,2-trimethylpropyl)-1,1,2,2-tetrakis(diethylamino)disilane (1) and 1,2-di-tert-butyl-1,1,2,2-tetrakis(diethylamino)disilane (2) were synthesized and X-ray crystallography analyses of these compounds were carried out. Reflecting the steric congestion, the Si?Si bonds are very long: 2.539(2) Å for bis(1,1,2-trimethylpropyl)disilane, and 2.4764(9) Å for di-tert-butyl-disilane. UV spectra and oxidation potentials of several tetraaminodialkyldisilanes are compared and discussed. In addition, in the chlorination of 1 with HCl, 1,1,2,2-tetrachloro-1,2-bis(1,1,2-trimethylpropyl)disilane (6) was obtained with a 72% yield.

Masafumi Unno; Mina Saito; Hideyuki Matsumoto

1995-01-01T23:59:59.000Z

295

Waste Isolation Pilot Plant - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Waste Isolation Pilot Plant Review Report 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities, April 2013 Review Report 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot Plant, November 2012 Activity Reports 2011 Orientation Visit to the Waste Isolation Pilot Plant, September 2011 Review Reports 2007 Independent Oversight Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant, December 2007 Review Reports 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant - Summary Report, August 2002 Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002

296

Intimate Alliances: Plants and their Microsymbionts  

Science Journals Connector (OSTI)

...November 2011 other Teaching Tools in Plant Biology Intimate Alliances: Plants and their Microsymbionts www.plantcell.org...the plant and microsymbiont. Collectively these intimate alliances play a major role in nutrient assimilation by plants, and...

297

SPME in Environmental Analysis: Biotransformation Pathways  

Science Journals Connector (OSTI)

......SPMEGCMS to study the degradation of ethyl benzene using...methyl-t-butyl ether and its degradation products, t-butyl...food by determining degradation products and other released...Bitumen is a fossil fuel rich in sulfur, which...Aliquots of the cell suspension (2 mL......

Annamaria Halasz; Jalal Hawari

2006-08-01T23:59:59.000Z

298

Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation  

Science Journals Connector (OSTI)

Abstract The present research investigates deeply effect of 1-ethyl-3 methylimidazolium tetrafluoroborate ([Emim][BF4]) ionic liquid on separation performance and transport properties of poly(ether-b-amide6)(Pebax1657) at different operating pressures from 2 to 20 bar and temperatures from 25 to 65 °C. [Emim][BF4] showed interesting separation factor for CO2/light gases as a solvent and it was expected that its addition to Pebax1657 leads more amorphous structure, thereby diffusion and permeability of gases increase. [Emim][BF4] was added to the polymer solution up to 100 wt.% of Pebax1657 weight and permeation coefficients of CO2, H2, CH4 and N2 through the prepared membranes were measured. The results showed remarkable increment in permeation of all the tested gases, particularly CO2 and ideal selectivity of CO2/H2 enhanced significantly due to high solubility selectivity of the added compound. Effect of operating conditions on solubility coefficients were also investigated, thus sorption isotherms and activation energies of permeability, solubility and diffusion were calculated. In addition, the membranes were characterized by SEM, DSC, FT-IR spectroscopy and Tensile analysis to inspect changes in their physical and thermal properties, precisely.

Hesamoddin Rabiee; Ali Ghadimi; Toraj Mohammadi

2014-01-01T23:59:59.000Z

299

Kemaliye Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Kemaliye Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kemaliye Geothermal Power Plant Project Location Information...

300

Propagation of Ornamental Plants.  

E-Print Network [OSTI]

is well filled with roots. In the other types of layering, select shooi 1 of young growth that bend easily. It usuall: is advisable to wound the stem where it is covered with soil. This cut limits free movemen: ! of food materials and induces root... cuttings. lecent research findings have taken much of uesswork out of this type of propagation t now can be done for many plants with rlrative ease by the home gardener. Some alants remain difficult to propagate by any ' method, but most...

DeWerth, A. F.

1955-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

SciTech Connect (OSTI)

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

302

Another Nuclear Plant To Close  

Science Journals Connector (OSTI)

The Vermont Yankee Nuclear Power Station in Vernon, Vt., will permanently shut down in 2014, according to plant owner Entergy. ... In the Vermont Yankee case, Entergy’s announcement ends a long-simmering dispute between the utility and state officials and residents over the continued operation of the 620-MW plant. ... The Vermont Yankee plant design nearly mirrors that of the Fukushima reactor facility. ...

JEFF JOHNSON

2013-09-02T23:59:59.000Z

303

How plants grow toward light  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How plants grow toward light How plants grow toward light Name: schwobtj Location: N/A Country: N/A Date: N/A Question: When a seed is planted below the surface of the ground, how does it "know" to grow toward the light? Replies: Plants don't know where the light is, they do respond to gravity. Since light is usually up, a plant seed grows up and finds light enough to keep things going. Psych One way that plants below ground can tell which way is up is with the use of STATOLITHS. Statoliths are dense pieces of material that settle to the bottom of a STATOCYST. In plants, pieces of starch or another material denser than water will settle to the bottom of the cell. Somehow the plant cell determines on what side the statolith has fallen, and then somehow relays a message (probably a chemical) that tells the bottom cells to grow faster than the top cells, therefore causing upward growth. There is still quite a lot of mystery in there to be discovered. I got this explanation from BIOLOGY by Neil Campbell. This is similar to the way in which plants use chemical signals to help them grow towards light.

304

Owners of nuclear power plants  

SciTech Connect (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

305

Development of the merchant plant  

SciTech Connect (OSTI)

The co-authors of this paper are currently involved in over 1500 megawatts of merchant plant developments in the US. This paper will discuss the latest in combined cycle steam reheat ``H and G'' technology. Big improvements in heat rates along with substantial drop in installed cost will make this power cycle the leading merchant plant of the future. This paper will compare the actual present day performance and clearing price of a state-of-the-art merchant plant versus utility dispatch cost duration curves, known as ``system lambda''. Deregulation of the power market will ultimately provide an open market for these efficient plants to compete effectively against aging utility plants. Comparison of utility system heat rates versus merchant plant heat rates along with an increase need for generation capacity and forecasts of stable gas prices supports to the potential for a large scale building program of these high efficiency generators. This paper will also review the capacity crunch in the Northeast and Wisconsin and how problems with nuclear plants may accelerate the need for merchant plants. This paper will compare the required capacity for the population growth in the SERC Region and in Florida and how this will produce a potential ``hot bed'' for merchant plant development.

Wolfinger, R.; Gilliss, M.B.

1998-07-01T23:59:59.000Z

306

Better Plants Partnership Agreement Form  

Broader source: Energy.gov [DOE]

The Better Buildings, Better Plants Partnership Agreement Form commits organizations to work with DOE to reduce energy intensity by 25% over ten years.

307

Pantex Plant Emergency Response Exercise  

Broader source: Energy.gov (indexed) [DOE]

Joint Information Center Emergency Manager Offsite Interface Coordinator DOE Technical Advisor Emergency Press Center Radiation Safety Figure 1. Pantex Plant Emergency Response...

308

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 ORNLTM-2007147, Vol. 5 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs Office of Nuclear Regulatory Research...

309

Quality In-Plant Environment  

E-Print Network [OSTI]

, the Quality of In-plant Envi~onment. How can employees be expected to p~oduce Wo~ld-class quality pa~ts with a "di~ty" plant? Obviously, the wo~k environment has an effect on the attitude of the wo~k force. Quality of In-plant Environment con sists... reduced to .87 years. CONCLUSION The changing business climate can present opportunities for dramatic energy savings. Concepts such as Quality of Work LiEe and Quality In-Plant Environment may initially appear to have a very negative efE~ct on total...

Petzold, M. A.

310

,"California Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Processing",3,"Annual",2013,"6301967" ,"Release Date:","1031...

311

The northeast Georgia hydroelectric plants.  

E-Print Network [OSTI]

??The Northeast Georgia hydroelectric plants are important cultural resources to the state of Georgia and the communities immediately adjacent. If the early technology of these… (more)

Kelly, Nancy Elizabeth

2005-01-01T23:59:59.000Z

312

Better Plants Progress Update 2014  

Broader source: Energy.gov [DOE]

The 2014 Progress Update details Better Buildings, Better Plants Program accomplishments, including new partners, new initiatives, and energy and cost savings experienced by partners.

313

THE SCIOTO ORDNANCE PLANT  

Office of Legacy Management (LM)

' ' 1 . \." _ j. .I > * .A; .i ,' / / ,/ ' , ( , ( 1: 1 i I l-1 5 ' / ,,' :A' ' , THE SCIOTO ORDNANCE PLANT . and THE MARION ENGINEER DEPOT of Marion, Ohio A Profile AFTER FORTY YEARS BY Charles D. Mosher and Delpha Ruth Mosher . . . 111 THE AUTHORS Charles D. Mosher was born on a farm located in Morrow County on Mosher Road near Mt. Gilead. He received his TH.B. from Malone College, B.A. from Baldwin-Wallace College and his B.Div. and M.Div. at the Nazarene Theological Seminary in Kansas City, MO. He did additional graduate work at Western Reserve University, Kent State University and Florida State University. He has taught in Cleveland and in Morrow County and has been an Occupational Work Adjustment teacher at Harding High School in Marion

314

Fuel cell generating plant  

SciTech Connect (OSTI)

This paper discusses a fuel cell generating plant. It comprises a compressed fuel supply; a fuel cell system including fuel conditioning apparatus and fuel cells; a main fuel conduit for conveying fuel from the fuel supply to the fuel cell system; a turbo compressor having a turbine receiving exhaust products from the fuel cell system and a compressor for compressing air; a main air conduit for conveying air from the compressor to the fuel cell system; an auxiliary burner having a primary burner and a pilot; an auxiliary air conduit for conveying air from the compressed fuel supply to the auxiliary burner; an auxiliary exhaust conduit for conveying exhaust products from the auxiliary burner to the turbine; a check valve located between the fuel supply and the pilot; and a gas accumulator in the auxiliary fuel conduit located between the check valve and the pilot.

Sanderson, R.A.

1990-11-27T23:59:59.000Z

315

(Photosynthesis in intact plants)  

SciTech Connect (OSTI)

Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allow us to explore new options in the attempt to understand function at the level of molecular structure.

Not Available

1990-01-01T23:59:59.000Z

316

Geothermal electric power plant status  

SciTech Connect (OSTI)

A status summary of the activity for the 44 proposed geothermal electric power plants in the United States as of March 31, 1981 is presented, as well as the power on-line electric plants to date. The information comes from the Department of Energy Geothermal Progress Monitor System (DOE, 1981).

Murphy, M.; Entingh, D.J.

1981-10-01T23:59:59.000Z

317

NETL Water and Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water and Power Plants Review Water and Power Plants Review A review meeting was held on June 20, 2006 of the NETL Water and Power Plants research program at the Pittsburgh NETL site. Thomas Feeley, Technology Manager for the Innovations for Existing Plants Program, gave background information and an overview of the Innovations for Existing Plants Water Program. Ongoing/Ending Projects Alternative Water Sources Michael DiFilippo, a consultant for EPRI, presented results from the project "Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities". John Rodgers, from Clemson University, presented results from the project "An Innovative System for the Efficient and Effective Treatment of Non-traditional Waters for Reuse in Thermoelectric Power Generation".

318

Plants and Night Oxygen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plants and Night Oxygen Production Plants and Night Oxygen Production Name: Ashar Status: other Grade: other Location: Outside U.S. Country: India Date: Winter 2011-2012 Question: I would like to know if there are any plants which produces oxygen at night (without photosynthesis). I was told by a friend that Holy Basil (Ocimum tenuiflorum) produces oxygen even at night and I'm not convinced. I would like to get confirmation from experts. Replies: Some plants (particularly those of dry regions, e.g., deserts) only open their stomates at night to avoid drying out to intake CO2 (and output O2) (CAM photosynthesis) http://en.wikipedia.org/wiki/Crassulacean_acid_metabolism Sincerely, Anthony R. Brach, PhD Missouri Botanical Garden Bringing oxygen producing plants into your home is a way to mimic the healthy lifestyle factors of longevity in humans from the longest lived cultures.

319

Overview of enrichment plant safeguards  

SciTech Connect (OSTI)

The relationship of enrichment plant safeguards to US nonproliferation objectives and to the operation and management of enrichment facilities is reviewed. During the review, the major components of both domestic and international safeguards systems for enrichment plants are discussed. In discussing domestic safeguards systems, examples of the technology currently in use to support nuclear materials accountability are described including the measurement methods, procedures and equipment used for weighing, sampling, chemical and isotopic analyses and nondestructive assay techniques. Also discussed is how the information obtained as part of the nuclear material accountancy task is useful to enrichment plant operations. International material accountancy verification and containment/surveillance concepts for enrichment plants are discussed, and the technologies presently being developed for international safeguards in enrichment plants are identified and the current development status is reported.

Swindle, D.W. Jr.; Wheeler, L.E.

1982-01-01T23:59:59.000Z

320

Plant maintenance and plant life extension issue, 2007  

SciTech Connect (OSTI)

The focus of the March-April issue is on plant maintenance and plant life extension. Major articles/reports in this issue include: Three proposed COLs expected in 2007, by Dale E. Klein, U.S. Nuclear Regulatory Commission; Delivering behaviors that our customers value, by Jack Allen, Westinghouse Electric Company; Facilitating high-level and fuel waste disposal technologies, by Malcolm Gray, IAEA, Austria; Plant life management and long-term operation, by Pal Kovacs, OECD-NEA, France; Measuring control rod position, by R. Taymanov, K. Sapozhnikova, I. Druzhinin, D.I. Mendeleyev, Institue for Metrology, Russia; and, 'Modernization' means higher safety, by Svetlana Genova, Kozluduy NPP plc, Bulgaria.

Agnihotri, Newal (ed.)

2007-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Early Entrance Coproduction Plant  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

2004-01-26T23:59:59.000Z

322

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

2001-02-15T23:59:59.000Z

323

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

2000-10-26T23:59:59.000Z

324

Aquatic plant control research  

SciTech Connect (OSTI)

The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

Pryfogle, P.A.; Rinehart, B.N. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Ghio, E.G. [Pacific Gas & Electric Company, San Francisco, CA (United States). Hydro Generation Engineering

1997-05-01T23:59:59.000Z

325

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three-phase development of an Early Entrance Coproduction Plant (EECP) that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The accomplishments of Phase I are discussed in detail in this Phase I Concept Report. A RD and T Plan and a preliminary project financing plan have been developed and are submitted separately from this report.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; David Mintner; Wendy Moore; Jimmy O. Ong; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Kalapi D. Sheth; Phil J. Shires; Rae Song

2001-05-17T23:59:59.000Z

326

Oversight Reports - Pantex Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oversight Reports - Pantex Plant Oversight Reports - Pantex Plant Oversight Reports - Pantex Plant December 31, 2013 Independent Oversight Review, Pantex Plant, December 2013 Targeted Review of the Safety Significant Blast Door and Personnel Door Interlock Systems and Review of Federal Assurance Capability at the Pantex Plant June 6, 2013 Independent Activity Report, Pantex Plant - May 2013 Operational Awareness Oversight of the Pantex Plant [HIAR PTX-2013-05-20] December 11, 2012 Independent Activity Report, Pantex Plant - November 2012 Pantex Plant Operational Awareness Site Visit [HIAR PTX-2012-11-08] November 28, 2012 Independent Oversight Assessment, Pantex Plant - November 2012 Assessment of Nuclear Safety Culture at the Pantex Plant August 8, 2012 Independent Activity Report, Pantex Plant - July 2012

327

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

328

Valuable Plants Native to Texas.  

E-Print Network [OSTI]

"in the wild" indicates that the. plant may be found growing as a native and should be procured'from such a location. Whenever possible plants should be secured from floriculturists and nurserymen. In Texas there is a large number of small... it on another tree. It is not only a curiosity but a thing of beauty. For demonstrating the recovery power of desert plants this is one of the best organisms. nunda cinnamomea L. Cinnamon Fern. Too well known to need -iption; native to the eastern part...

Parks, Harris Braley

1937-01-01T23:59:59.000Z

329

Geothermal Heat Flow and Existing Geothermal Plants | Department...  

Energy Savers [EERE]

Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

330

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

As part of the Department of Energy's (DOE) Gasification Technologies and Transportation Fuels and Chemicals programs, DOE and Texaco are partners through Cooperative Agreement DE-FC26-99FT40658 to determine the feasibility of developing, constructing and operating an Early Entrance Coproduction Plant (EECP). The overall objective of the project is the three-phase development of an EECP that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The specific work requirements of Phase I included: Prepare an EECP Preliminary Concept Report covering Tasks 2-8 specified in the Cooperative Agreement; Develop a Research, Development, and Testing (RD and T) Plan as specified in Task 9 of the Cooperative Agreement for implementation in Phase II; and Develop a Preliminary Project Financing Plan for the EECP Project as specified in Task 10 of the Cooperative Agreement. This document is the Preliminary Project Financing Plan for the design, construction, and operation of the EECP at the Motiva Port Arthur Refinery.

John H. Anderson; William K. Davis; Thomas W. Sloop

2001-03-21T23:59:59.000Z

331

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects ..-.. --__- _".-.-l--_--l -_._ _- --- ~~~. . ..~ CONTENTS Page - - I NTRODUCTI ON 1 Purpose 1 Docket Contents 1 Exhibit I: Summary of Activities at Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania I-l Exhibit II: Documents Supporting the Certification of Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania iii II-1 . . .- .__.^ I ^_... _.-__^-____-. - CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

332

Independent Oversight Assessment, Pantex Plant - November 2012...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oversight Assessment, Pantex Plant - November 2012 November 2012 Assessment of Nuclear Safety Culture at the Pantex Plant This report provides the results of an independent...

333

Oversight Reports - Pantex Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2012 Independent Oversight Assessment, Pantex Plant - November 2012 Assessment of Nuclear Safety Culture at the Pantex Plant August 8, 2012 Independent Activity Report, Pantex...

334

Independent Activity Report, Hanford Plutonium Finishing Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plutonium Finishing Plant - May 2012 Independent Activity Report, Hanford Plutonium Finishing Plant - May 2012 May 2012 Criticality Safety Information Meeting for the Hanford...

335

Oversight Reports - Waste Isolation Pilot Plant | Department...  

Broader source: Energy.gov (indexed) [DOE]

2011 Orientation Visit to the Waste Isolation Pilot Plant HIAR-WIPP-2011-09-07 November 26, 2007 Independent Oversight Inspection, Waste Isolation Pilot Plant - December 2007...

336

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

337

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

338

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

339

Matsukawa Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Information Name Matsukawa Geothermal Power Plant Facility ower Plant Sector Geothermal energy Location Information Location Iwate, Japan Coordinates 39.980897288029,...

340

Tuzla Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Tuzla Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Ayvacik, Canakkale Coordinates 39.553940696342, 26.161228192504 Loading...

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Independent Oversight Inspection, Waste Isolation Pilot Plant...  

Office of Environmental Management (EM)

Plant, Summary Report - August 2002 Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report - August 2002 August 2002 Inspection of Environment, Safety, and...

342

Independent Oversight Inspection, Pantex Plant - June 2009 |...  

Energy Savers [EERE]

Inspection, Pantex Plant - June 2009 June 2009 Inspection of Environment, Safety, and Health Programs at the Pantex Plant This report documents the results of an inspection of the...

343

Camptothecine, a selective plant growth regulator  

Science Journals Connector (OSTI)

Camptothecine, a selective plant growth regulator ... The literature documents several hundred plant products that appear to exhibit growth-regulating activity. ...

J. George Buta; Joseph F. Worley

1976-05-01T23:59:59.000Z

344

Advanced Plant Pharmaceuticals Inc | Open Energy Information  

Open Energy Info (EERE)

Pharmaceuticals Inc Jump to: navigation, search Name: Advanced Plant Pharmaceuticals, Inc. Place: New York, New York Product: String representation "Advanced Plant ... f its...

345

Independent Oversight Inspection, Pantex Plant, Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

Inspection, Pantex Plant, Summary Report - November 2002 November 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Pantex Plant This report...

346

Independent Oversight Inspection, Pantex Plant, February 2005...  

Broader source: Energy.gov (indexed) [DOE]

Oversight Inspection, Pantex Plant, February 2005 February 2005 Inspection of Environment, Safety, and Health Programs at the Pantex Plant This report provides the results...

347

Waste Treatment and Immobilation Plant Pretreatment Facility...  

Office of Environmental Management (EM)

Treatment and Immobilation Plant Pretreatment Facility Waste Treatment and Immobilation Plant Pretreatment Facility Full Document and Summary Versions are available for download...

348

Waste Isolation Pilot Plant | Department of Energy  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant Operators prepare drums of contact-handled transuranic waste for loading into transportation containers Operators prepare...

349

Better Tools for Better Plants  

Broader source: Energy.gov (indexed) [DOE]

Better Tools for Better Plants Better Tools for Better Plants Andre de Fontaine Bill Orthwein, CEM Advanced Manufacturing Office, Office of Energy Efficiency and Renewable Energy U.S. Department of Energy November 15, 2011 2 | Advanced Manufacturing Office eere.energy.gov Today * New opportunities - AMO Overview - Better Buildings, Better Plants Program - Better Buildings, Better Plants Challenge * New and revised tool suite - Energy Management Toolkit - Updated system assessment tools - Tool-related training 3 | Advanced Manufacturing Office eere.energy.gov Manufacturing Matters * 11% of U.S. GDP * 12 million U.S. jobs * 60% of U.S. engineering and science jobs % Manufacturing Job Growth or Loss 31.8% of all manufacturing jobs lost from 2000-2011 Jobs 31% of all 2010 U.S. total energy consumption

350

Gasification of selected woody plants  

Science Journals Connector (OSTI)

The article contains laboratory data comparing the rate of gasification of five types of woody plants—beech, ... oak, willow, poplar and rose. The gasification rate was determined thermogravimetrically. Carbon di...

Buryan Petr

2014-07-01T23:59:59.000Z

351

Energy Efficiency in Chilling Plants  

E-Print Network [OSTI]

1 Energy Efficiency in Chilling Plants Xin Wang????PhD. CandidateBuilding Energy Research Centre, Tsinghua University2006.10.11 2 Index ? Improve COP of chillers ? Increase load ratio? Decrease cooling water temperature? Increase chilled water...

Wang, X.

2006-01-01T23:59:59.000Z

352

"NATURAL GAS PROCESSING PLANT SURVEY"  

U.S. Energy Information Administration (EIA) Indexed Site

0.5 hours" "NATURAL GAS PROCESSING PLANT SURVEY" "FORM EIA-757" "Schedule A: Baseline Report " "This report is mandatory under the Federal Energy Administration Act of 1974 (Public...

353

Freeport Begins Offshore Sulfur Plant  

Science Journals Connector (OSTI)

Freeport Begins Offshore Sulfur Plant ... Discovered by Humble Oil & Refining, the sulfur deposit off Grand Isle is believed by industry observers to be one of the largest discovered in recent years. ...

1958-07-07T23:59:59.000Z

354

Pantex Plant | Department of Energy  

Energy Savers [EERE]

including explosives, at DOE's Pantex Plant. January 7, 2013 Enforcement Letter, NEL-2013-01 - January 7, 2013 Issued to B&W Pantex, LLC related to the Conduct of Nuclear...

355

Description Plants ESIS ESD FSGD  

E-Print Network [OSTI]

Ecological Site Description Plants ESIS ESD FSGD ESI Forestland ESI Rangeland Data Access > Return CHARACTERISTICS Site Type: Rangeland Site Name: Red Sandy Loam 25-32" PZ Site ID: R082AY369TX Major Land Resource

356

Computer Control of Unattended Plants  

E-Print Network [OSTI]

Providing a cost-effective and reliable computer monitoring, control, and optimization package is a greater challenge for small, unattended plants than for large energy intensive facilities. This paper describes the successful application of a...

Vinson, D. R.; Chatterjee, N.

1984-01-01T23:59:59.000Z

357

Intercellular Communication during Plant Development  

Science Journals Connector (OSTI)

...metabolic processes; however, levels are tightly regulated as excess ROS can be cytotoxic. Plants also actively produce ROS through...circadian and ultradian clocks, such as their disruption by lithium, suggest that these clocks may share some regulatory mechanisms...

Jaimie M. Van Norman; Natalie W. Breakfield; Philip N. Benfey

2011-03-08T23:59:59.000Z

358

Issues for New Nuclear Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Explore * Idaho's energy picture * Nuclear power in the U.S. * Potential for a nuclear power plant in Idaho 0 5 10 15 20 25 1960 1970 1980 1990 2000 Million Megawatt-Hours Total...

359

Balancing people, plants, and practices  

SciTech Connect (OSTI)

Two of the biggest challenges facing the US power industry today are retaining an experienced, capable workforce and operating and maintaining a reliable, diversified fleet of generating plants. Success in the marketplace requires a proper balancing of staff and new technology, something few gencos do well. Following this introductory paper in this issue are several technical articles representing a small sample of the steps that gencos nationwide are taking to prolong plant life. Unlike the false promise of Ponce de Leon's fountain of youth in Florida, the promise of longer life for aging plants is real wherever experienced engineers and technicians are on the job. The article looks at problems across America, from the East Coast to the West Coast. It is supported by diagrams projecting US new capacity and plant type additions up to 2014. 5 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

360

Thermal Solar Power Plants Experience  

Science Journals Connector (OSTI)

In parallel with rising interest in solar power generation, several solar thermal facilities of different configuration and size were ... were designed as modest-size experimental or prototype solar power plants ...

W. Grasse; H. P. Hertlein; C.-J. Winter; G. W. Braun

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Plant salt-tolerance mechanisms  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

2014-06-01T23:59:59.000Z

362

Overview BETTER BUILDINGS, BETTER PLANTS  

Energy Savers [EERE]

1,700 Cumulative Avoided CO 2 Emissions (Million Metric Ton) 18.5 Average Annual Energy Intensity Improvement Rate through 2013 2.4% Better Plants Snapshot, February 2015...

363

A neighborhood alternative energy plant  

E-Print Network [OSTI]

A design that proposes the redefinition of the role of a power plant facility within a community by creating a humane environment for recreation, education, community gathering, living, and energy production; rather than ...

Brooks, Douglas James

1982-01-01T23:59:59.000Z

364

Mixtec plant nomenclature and classification  

E-Print Network [OSTI]

Capsicum pubescens L. , SOLANACEAE yutu tuya’a kuán: la matade chile amarillo (PIN) tuya’a: chili plants (JAM) chá’a:nika’ndi ya’a: chilar (CAB) tuya’a (COI) Clethra mexicana

de Avila, Alejandro

2010-01-01T23:59:59.000Z

365

Water Filtration Using Plant Xylem  

E-Print Network [OSTI]

Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees – a readily available, ...

Boutilier, Michael Stephen Ha

366

DSM Power Plant in India  

Science Journals Connector (OSTI)

India is facing acute energy shortage that is likely to affect its economic development. There are severe supply side constraints in term of coal and gas shortages that are likely to continue in the near future. Hence, in its current focus to solving the energy shortage problem and sustaining the development trajectory, the country should aim at a balance between supply side and demand side measures. Energy Efficiency in end use is increasingly gaining importance as one of the most cost effective options for achieving short to medium term energy savings. India has initiated the National Mission for Enhanced Energy Efficiency under National Action Plan for Climate Change which addresses various aspects of energy efficiency such as technology, financing, fiscal incentive and also creation of energy efficiency as a market instrument. However, even though energy efficiency has substantial scope in the Indian subcontinent, the market for energy efficiency has been limited. This paper discusses the concept of mega Demand Side Management projects as a DSM Power Plant. A DSM Power Plant acts as an umbrella with multiple energy efficiency schemes under its ambit aimed at transforming energy efficiency into a business by providing a push to the scale of operation as well as financial sustenance to energy efficiency projects. This paper expounds on the various aspects of DSM Power Plant in terms of its policy and institutional mechanism for the large scale implementation of energy efficiency in India. This paper provides an illustration of the concept of DSM Power Plant model through a case study in one of the states (Rajasthan) of India. Further, a comparative analysis of the cost of generation from DSM Power Plant and a representative conventional power plant (CPP) in Rajasthan has been undertaken and the DSM Power Plant comes out to be a more cost effective option. The concept of DSM Power Plant will not only address the issue of energy shortages but will also help the financially thwarted utilities to reduce their revenue deficit in the near future.

Saurabh Gupta; Tanushree Bhattacharya

2013-01-01T23:59:59.000Z

367

Researching power plant water recovery  

SciTech Connect (OSTI)

A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

NONE

2008-04-01T23:59:59.000Z

368

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture of ethylene and propylene chemicals from F-T naphtha, for the generation of hydrogen from F-T naphtha to power fuel cells, for direct blending of F-T diesels into transportation fuels, for the conversion of F-T heavy product wax to transportation fuels, and the conversion of F-T Heavy product wax to a valuable high melting point food-grade specialty wax product. Product evaluations conducted under Task 2.5 of Phase II successfully mitigated the above technical and economic risks to the EECP with the development of product yields and product qualities for the production of chemicals, transportation fuels, and specialty food-grade waxes from the F-T synthesis products.

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

2004-01-27T23:59:59.000Z

369

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important issues were addressed in this phase of the project. They included Rejuvenation/Regeneration of the Fischer-Tropsch Catalyst, online Catalyst Withdrawal and Addition from the synthesis reactor, and the Fischer-Tropsch Design Basis Confirmation. In Phase III the results from these RD&T work will be incorporated in developing the engineering design package. This Topical Report documents the Phase II RD&T work that was completed for this task.

David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

2004-01-12T23:59:59.000Z

370

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

In 1999, the U. S. Department of Energy (DOE) awarded a Cooperative Agreement to Texaco Energy Systems Inc. to provide a preliminary engineering design of an Early Entrance Coproduction Plant (EECP). Since the award, continuous and diligent work has been undertaken to achieve the design of an economical facility that makes strides toward attaining the goal of DOE's Vision 21 Program. The objective of the EECP is to convert coal and/or petroleum coke to power while coproducing transportation fuels, chemicals, and useful utilities such as steam. This objective is being pursued in a three-phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems, LLC. (TES), the successor to Texaco Energy Systems, Inc. The key subcontractors to TES include General Electric (GE), Praxair, and Kellogg Brown and Root. ChevronTexaco provided gasification technology and Rentech Inc.'s Fischer-Tropsch (F-T) technology that has been developed for non-natural gas sources. GE provided gas turbine technology for the combustion of low energy content gas. Praxair provided air separation technology and KBR provided engineering to integrate the facility. A conceptual design was completed in Phase I and the report was accepted by the DOE in May 2001. The Phase I work identified risks and critical research, development, and testing that would improve the probability of technical success of the EECP. The objective of Phase II was to mitigate the risks by executing research, development, and testing. Results from the Phase II work are the subject of this report. As the work of Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Preliminary Engineering Design. Work in Phase II requires additional technical development work to correctly apply technology at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The decision to proceed with Phase III centers on locating a new site and favorable commercial and economic factors.

John Anderson; Charles Schrader

2004-01-26T23:59:59.000Z

371

Phenolic plant compounds functioning as reproductive inhibitors in Microtus montanus  

Science Journals Connector (OSTI)

...D. Kitts, Can. J. Anim. Sci. 41, 1 (1961); C. A. Alison and W. D. Kitts, J. Anim. Sci. 23, 1155 (1964). 6...tumors have reached 1 to 2 cm in average diameter, or as other-wise stated, the rats were anesthetized with ether and the tissues...

PJ Berger; EH Sanders; PD Gardner; NC Negus

1977-02-11T23:59:59.000Z

372

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels and alleviates corrosion and fuel stability concerns. Future coproduction plants can maximize valuable transportation diesel by hydrocracking the F-T Synthesis wax product to diesel and naphtha. The upgraded neat F-T diesel, hydrotreater F-T diesel, and hydrocracker F-T diesel products would be final blending components in transportation diesel fuel. Phase II RD&T Task 2.6 successfully carried out fuel lubricity property testing, fuel response to lubricity additives, and hot-start transient emission tests on a neat F-T diesel product, a hydrocracker F-T diesel product, a blend of hydrotreater and hydrocracker F-T diesel products, and a Tier II California Air Resources Board (CARB)-like diesel reference fuel. Only the neat F-T diesel passed lubricity inspection without additive while the remaining three fuel candidates passed with conventional additive treatment. Hot-start transient emission tests were conducted on the four fuels in accordance with the U.S. Environmental Protection Agency (EPA) Federal Test Procedure (FTP) specified in Code of Federal Regulations, Title 40, Part 86, and Subpart N on a rebuilt 1991 Detroit Diesel Corporation Series 60 heavy-duty diesel engine. Neat F-T diesel fuel reduced oxides of nitrogen (NO{sub x}), total particulate (PM), hydrocarbons (HC), carbon monoxide (CO), and the Soluble Organic Fraction (SOF) by 4.5%, 31%, 50%, 29%, and 35%, respectively, compared to the Tier II CARB-like diesel. The hydrocracker F-T diesel product and a blend of hydrocracker and hydrotreater F-T diesel products also reduced NO{sub x}, PM, HC, CO and SOF by 13%, 16% to 17%, 38% to 63%, 17% to 21% and 21% to 39% compared to the Tier II CARB-like diesel. The fuel/engine performance and emissions of the three F-T diesel fuels exceed the performance of a Tier II CARB-like diesel. Phase II RD&T Task 2.6 successfully met the lubricity property testing and F-T diesel fuel hot-start transient emissions test objectives. The results of the testing help mitigate potential economic risks on obtaining a premium price for the F-T diesel fuel

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

2004-01-12T23:59:59.000Z

373

Montana State University -College of Agriculture Plant Science & Plant Pathology Department Program of Study for: Biotechnology -Plant Systems Options  

E-Print Network [OSTI]

Program of Study for: Biotechnology - Plant Systems Options 2010-2012 Catalog Student ID #: Required Cr- Intro to Biotechnology 3 F W BIOB 160 - Prin Living Systems (or BIOB 260 F) 4 F,S Q BIOB 375 - Genetics,S,Su BIOB 430 - Plant Biotechnology 3 S even BIOO 433 - Plant Physiology 3 S HORT 447 - Advanced Plant

Lawrence, Rick L.

374

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified several potential methods to reduce or minimize the environmental impact of the proposed EECP. The EECP Project Team identified F-T catalyst disposal, beneficial gasifier slag usage (other than landfill), and carbon dioxide recovery for the gas turbine exhaust for study under this task. Successfully completing the Task 2.10 RD&T provides additional opportunities for the EECP to meet the goals of DOE's Vision 21 Program. The gasification section offers several opportunities to maximize the environmental benefits of an EECP. The spent F-T catalyst can be sent to landfills or to the gasification section. Testing in Phase II shows that the spent F-T catalyst with a small wax coating can safely meet federal landfill requirements. As an alternative to landfilling, it has been proposed to mix the spent F-T catalyst with the petroleum coke and feed this mixture to the gasification unit. Based on ChevronTexaco's experience with gasification and the characteristics of the spent F-T catalyst this appears to be an excellent opportunity to reduce one potential waste stream. The slag from the gasification unit can be commercially marketed for construction or fuel (such as cement kiln fuel) uses. The technical and economic benefits of these options must be reviewed for the final EECP before incorporating a specific alternative into the design basis. Reducing greenhouse gas emissions, particularly carbon dioxide, is an important goal of the EECP. The Texaco gasification process provides opportunities to capture high purity streams of carbon dioxide. For Phase II, a carbon fiber composite molecular sieve (CFCMS) was tested to determine its potential to remove high purity carbon dioxide from the exhaust of a gas turbine. Testing on with a simulated gas turbine exhaust shows that the CFCMS is able to remove high purity carbon dioxide from the exhaust. However, more development is required to optimize the system.

John H. Anderson; Charles Benham; Earl R. Berry; Ming He; Charles H. Schrader; Lalit S. Shah; O.O. Omatete; T.D. Burchell

2004-01-12T23:59:59.000Z

375

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES), a subsidiary of ChevronTexaco, General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc. GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP, Phase II RD&T included tests of an alternative (to Rentech's Dynamic Settler) primary catalyst/wax separation device and secondary catalyst/wax separation systems. The team evaluated multiple technologies for both primary and secondary catalyst/wax separation. Based on successful testing at Rentech (outside of DOE funding) and difficulties in finalizing a contract to demonstrate alternative primary catalyst/wax separation technology (using magnetic separation technology), ChevronTexaco has selected the Rentech Dynamic Settler for primary catalyst/wax separation. Testing has shown the Dynamic Settler is capable of producing filtrate exceeding the proposed EECP primary catalyst/wax separation goal of less than 0.1 wt%. The LCI Scepter{reg_sign} Microfiltration system appeared to be best suited for producing a filtrate that met the EECP secondary catalyst/wax separation standards of 10 parts per million (weight) [ppmw]. The other technologies, magnetic separation and electrostatic separation, were promising and able to reduce the solids concentrations in the filtrate. Additional RD&T will be needed for magnetic separation and electrostatic separation technologies to obtain 10 ppmw filtrate required for the proposed EECP. The Phase II testing reduces the technical and economic risks and provides the information necessary to proceed with the development of an engineering design for the EECP Fischer-Tropsch catalyst/wax separation system.

John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Roko Bujas; Ming He; Ken Kwik; Charles H. Schrader; Lalit Shah; Dennis Slater; Donald Todd; Don Wall

2003-08-21T23:59:59.000Z

376

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to its detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES) (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR). The work was under cooperative agreements with the U.S. Department of Energy (DOE). TES is providing the gasification technology and the Fischer-Tropsch (F-T) technology developed by Rentech Inc., GE is providing the combustion turbine technology, Praxair is providing the air separation technology, and KBR is providing overall engineering. Each of the EECP's subsystems was assessed for technical risks and barriers in Phase I. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP concept, Phase II RD&T included tests for secondary catalyst/wax separation systems as part of Task 2.3--Catalyst/Wax Separation. The LCI Scepter{reg_sign} Microfiltration system was determined to be best suited for producing a filtrate that met the EECP secondary catalyst/wax separation standards of producing F-T wax containing less than10 ppmw solids. As part of task 2.3, micro-filtration removal efficiencies and production rates for two FT feeds, Rentech Inc. bubble column reactor (BCR) product and LaPorte Alternative Fuels Development Unit (AFDU) product, were evaluated. Based on comparisons between the performances of these two materials, the more readily available LaPorte AFDU material was judged an acceptable analog to the BCR material that would be produced in a larger-scale F-T synthesis. The present test was initiated to obtain data in an extended range of concentration for use in the scale-up design of the secondary catalyst/wax separation system that would be operating at the EECP capacity.

John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Ming He; Charles H. Schrader; Lalit Shah; Donald Todd; Robert Schavey

2004-01-12T23:59:59.000Z

377

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using petroleum coke and ChevronTexaco's proprietary gasification technology. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC. (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). ChevronTexaco is providing gasification technology and Fischer-Tropsch technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified F-T reactor scale-up as a potential technical risk. The objective of Task 2.3 was to confirm engineering models that allow scale-up to commercial slurry phase bubble column (SPBC) reactors operating in the churn-turbulent flow regime. In developmental work outside the scope of this project, historical data, literature references, and a scale-up from a 1 1/2-in. (3.8 cm) to 6-ft (1.8 m) SPBC reactor have been reviewed. This review formed the background for developing scale-up models for a SPBC reactor operating in the churn-turbulent flow regime. The necessary fundamental physical parameters have been measured and incorporated into the mathematical catalyst/kinetic model developed from the SPBC and CSTR work outside the scope of this EECP project. The mathematical catalyst/kinetic model was used to compare to experimental data obtained at Rentech during the EECP Fischer-Tropsch Confirmation Run (Task 2.1; reported separately). The prediction of carbon monoxide (CO) conversion as a function of days on stream compares quite closely to the experimental data.

Randy Roberts

2003-04-25T23:59:59.000Z

378

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified the integration of the water produced in the F-T synthesis section with the gasification section as an area of potential synergy. By utilizing the F-T water in the petroleum coke slurry for the gasifier, the EECP can eliminate a potential waste stream and reduce capital costs. There is a low technical risk for this synergy, however, the economic risk, particularly in regards to the water, can be high. The economic costs include the costs of treating the water to meet the locally applicable environmental standards. This option may require expensive chemicals and treatment facilities. EECP Phase II included tests conducted to confirm the viability of integrating F-T water in the slurry feed for the gasifier. Testing conducted at ChevronTexaco's Montebello Technology Center (MTC) included preparing slurries made using petroleum coke with F-T water collected at the LaPorte Alternative Fuels Development Unit (AFDU). The work included bench scale tests to determine the slurry ability of the petroleum coke and F-T water. The results of the tests show that F-T water does not adversely affect slurries for the gasifier. There are a few cases where in fact the addition of F-T water caused favorable changes in viscosity of the slurries. This RD&T task was executed in Phase II and results are reported herein.

Abdalla H. Ali; Raj Kamarthi; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

2003-04-16T23:59:59.000Z

379

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The 1999 U. S. Department of Energy (DOE) award to Texaco Energy Systems Inc. (presently Texaco Energy Systems LLC, a subsidiary of ChevronTexaco) was made to provide a Preliminary Engineering Design of an Early Entrance Coproduction Plant (EECP). Since the award presentation, work has been undertaken to achieve an economical concept design that makes strides toward the DOE Vision 21 goal. The objective of the EECP is to convert coal and/or petroleum coke to electric power plus transportation fuels, chemicals and useful utilities such as steam. The use of petroleum coke was added as a fuel to reduce the cost of feedstock and also to increase the probability of commercial implementation of the EECP concept. This objective has been pursued in a three phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems LLC and subcontractors General Electric (GE), Praxair, and Kellogg Brown and Root (KBR). ChevronTexaco is providing gasification technology and Rentech's Fischer-Tropsch technology that has been developed for non-natural gas feed sources. GE is providing gas turbine technology for the combustion of low energy content gas. Praxair is providing air separation technology, and KBR is providing engineering to integrate the facility. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. Phase I Preliminary Concept Report was completed in 2000. The Phase I Preliminary Concept Report was prepared based on making assumptions for the basis of design for various technologies that are part of the EECP concept. The Phase I Preliminary Concept Report was approved by the DOE in May 2001. The Phase I work identified technical and economic risks and critical research, development, and testing that would improve the probability of the technical and economic success of the EECP. The Project Management Plan (Task 1) for Phase II was approved by the DOE in 2001. The results of RD&T efforts for Phase II are expected to improve the quality of assumptions made in Phase I for basis of design for the EECP concept. The RD&T work plan (Task 2 and 3) for Phase II has been completed. As the RD&T work conducted during Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Basic Engineering Design. Also due to the merger of Chevron and Texaco, the proposed refinery site for the EECP was not available. It became apparent that some additional technical development work would be needed to correctly apply the technology at a specific site. The objective of Task 4 of Phase II is to update the concept basis of design produced during Phase I. As part of this task, items that will require design basis changes and are not site dependent have been identified. The team has qualitatively identified the efforts to incorporate the impacts of changes on EECP concept. The design basis has been modified to incorporate those changes. The design basis changes for those components of EECP that are site and feedstock dependent will be done as part of Phase III, once the site has been selected.

Charles Benham; Mark Bohn; John Anderson; Earl Berry; Fred Brent; Ming He; Randy Roberts; Lalit Shah; Marjan Roos

2003-09-15T23:59:59.000Z

380

Waste Treatment Plant - 12508  

SciTech Connect (OSTI)

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Career Map: Site/Plant Manager  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Site/Plant Manager positions.

382

Method of identifying plant pathogen tolerance  

DOE Patents [OSTI]

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

1997-10-07T23:59:59.000Z

383

Method of identifying plant pathogen tolerance  

DOE Patents [OSTI]

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described.

Ecker, Joseph R. (Erial, NJ); Staskawicz, Brian J. (Castro Valley, CA); Bent, Andrew F. (Piedmont, CA); Innes, Roger W. (Bloomington, IN)

1997-10-07T23:59:59.000Z

384

LANXESS Global Butyl Rubber Research Facility  

E-Print Network [OSTI]

Park, in partnership with Surface Science Western $10million City of London Investment in Fraunhofer- fraunhofer Agreement chosen to highlight celebrations for 40th Anniversary of Canada-Germany cooperation fuel cluster in Sarnia-Lambton, said Sarnia Mayor Mike Bradley, noting the Bioindustrial Innovation

Denham, Graham

385

Plants having modified response to ethylene  

DOE Patents [OSTI]

The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

1997-11-18T23:59:59.000Z

386

Plants having modified response to ethylene  

DOE Patents [OSTI]

The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

Meyerowitz, Elliot M. (Pasadena, CA); Chang, Caren (Pasadena, CA); Bleecker, Anthony B. (Madison, WI)

1998-01-01T23:59:59.000Z

387

Plants having modified response to ethylene  

DOE Patents [OSTI]

The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

Meyerowitz, Elliott M. (Pasadena, CA); Chang, Caren (Pasadena, CA); Bleecker, Anthony B. (Madison, WI)

1997-01-01T23:59:59.000Z

388

Cement Plant EPI | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cement Plant EPI Cement Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

389

ENERGY STAR plant certification | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

» ENERGY STAR plant certification » ENERGY STAR plant certification Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition ENERGY STAR Partner of the Year Award

390

Flat Glass Manufacturing Plant EPI | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flat Glass Manufacturing Plant EPI Flat Glass Manufacturing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

391

Juice Processing Plant EPI | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Juice Processing Plant EPI Juice Processing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

392

Automobile Assembly Plant EPI | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Automobile Assembly Plant EPI Automobile Assembly Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

393

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified petroleum coke characteristics as a potential technical risk. The composition of petroleum coke varies from one refinery to another. Petroleum coke characteristics are a function of the crude oil slate available at the refinery and the coker operating parameters. The specific petroleum coke characteristics at a refinery affect the design of the Gasification and Acid Gas Removal (AGR) subsystems. Knowing the petroleum coke composition provides the necessary data to proceed to the EECP Phase III engineering design of the gasification process. Based on ChevronTexaco's experience, the EECP team ranked the technical, economic, and overall risks of the petroleum coke composition related to the gasification subsystem as low. In Phase I of the EECP Project, the Motiva Port Arthur Refinery had been identified as the potential EECP site. As a result of the merger between Texaco and Chevron in October 2001, Texaco was required to sell its interest in the Motiva Enterprises LLC joint venture to Shell Oil Company and Saudi Refining Inc. To assess the possible impact of moving the proposed EECP host site to a ChevronTexaco refinery, samples of petroleum coke from two ChevronTexaco refineries were sent to MTC for bench-scale testing. The results of the analysis of these samples were compared to the Phase I EECP Gasification Design Basis developed for Motiva's Port Arthur Refinery. The analysis confirms that if the proposed EECP is moved to a new refinery site, the Phase I EECP Gasification Design Basis would have to be updated. The lower sulfur content of the two samples from the ChevronTexaco refineries indicates that if one of these sites were selected, the Sulfur Recovery Unit (SRU) might be sized smaller than the current EECP design. This would reduce the capital expense of the SRU. Additionally, both ChevronTexaco samples have a higher hydrogen to carbon monoxide ratio than the Motiva Port Arthur petroleum coke. The higher hydrogen to carbon monoxide ratio could give a slightly higher F-T products yield from the F-T Synthesis Reactor. However, the EECP Gasification Design Basis can not be updated until the site for the proposed EECP site is finalized. Until the site is finalized, the feedstock (petroleum coke) characteristics are a low risk to the EECP project.

Abdalla H. Ali; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

2003-04-16T23:59:59.000Z

394

The Colorado Rare Plant Technical Committee presents: Colorado Rare Plant Symposium  

E-Print Network [OSTI]

The Colorado Rare Plant Technical Committee presents: 5th Annual Colorado Rare Plant Symposium September 5, 2008 Montrose, Colorado Sponsored by: Colorado Rare Plant Technical CommitteeColorado Rare Plant Technical Committee Colorado Native Plant Society University of Colorado Herbarium US Fish

395

The Colorado Rare Plant Technical Committee presents: 2nd Annual Rare Plant  

E-Print Network [OSTI]

The Colorado Rare Plant Technical Committee presents: 2nd Annual Rare Plant Symposium Friday, September 16th, 2005 8am-noon: 2nd Annual Colorado Rare Plant Symposium (Discuss G1 species) 6:30-7:30pm with the Colorado Native Plant Society's Annual Meeting Sponsored by: #12;The Second Annual Colorado Rare Plant

396

Plant Science Graduates Spring 2011 Bachelor of Science in Plant Sciences  

E-Print Network [OSTI]

Plant Science Graduates Spring 2011 Bachelor of Science in Plant Sciences Joshua Paul Baker, Old Dale Wallace, Centerville Master of Science Reginald Jason Millwood, Plant Sciences Kara Lee Warwick, Plant Sciences Undergraduate Degrees, Summer Term 2011 Henry Joseph Cope, III, Plant Sciences David

Tennessee, University of

397

The Iowa Stored Energy Plant  

Broader source: Energy.gov (indexed) [DOE]

Systems Systems Annual Peer Review November 2-3, 2006 Progress Report Presented by Robert Haug Executive Director Iowa Association of Municipal Utilities for Iowa Stored Energy Plant Agency THE IOWA STORED ENERGY PLANT What is ISEP? ISEP is a DOE-supported effort of municipal utilities in Iowa, Minnesota, and the Dakotas for development of 200 (now 268) MW of compressed air energy storage (CAES) and 75 MW of wind capacity. THE IOWA STORED ENERGY PLANT What is the ISEP Agency? The ISEP Agency is an intergovernmental entity formed under Iowa law in 2005 and governed by a board of directors composed of representatives of participating local governments. Board of Directors: * Dennis Fannin, Osage * John Bilsten, Algona * Sheila Boeckman, Waverly * Scott Tonderum, Graettinger * Niel Ruddy, Carlisle

398

Why sequence Dothideomycetes plant pathogens?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dothideomycetes plant pathogens? Dothideomycetes plant pathogens? The largest and most diverse group of fungi, Dothideomycetes are found on every continent and play key roles in maintaining the local ecosystems by degrading biomass and contributing to regulating the carbon cycle. Many of these fungi are also tolerant of environmental extremes such as heat, humidity and cold. Among the members of this group are pathogens that infect nearly every major crop used for food, fiber or fuel. As crop rotations are being reduced, fewer crops are being grown on larger acreages, making them more susceptible to severe crop losses due to disease. Understanding the plant pathogens of these crops could reduce fertilizer use, which could in turn help reduce greenhouse gas emissions. To better understand the members of this group, the project calls for

399

NETL: Innovations for Existing Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovations for Existing Plants Innovations for Existing Plants Coal and Power Systems Innovations for Existing Plants (IEP) Previous Next Chemical Looping Summary Chemical Looping Summary (July 2013) This summary provides a technical description of this advanced technology, describes its advantages, examines the R&D areas of need, and summarizes DOE's R&D efforts. DOE/NETL Advanced CO2 Capture R&D Program: Technology Update DOE/NETL Advanced CO2 Capture R&D Program: Technology Update (June 2013) This comprehensive handbook provides an update on DOE/NETL R&D efforts on advanced CO2 capture technologies for coal-based power systems. CO2 Capture Technology Meeting Presentations NETL CO2 Capture Technology Meeting Presentations (July 2013) This meeting highlighted DOE/NETL RD&D efforts to develop advanced pre-, post-, and oxy-combustion CO2 capture technologies.

400

Power plant | OpenEI  

Open Energy Info (EERE)

Power plant Power plant Dataset Summary Description No description given. Source Environmental Protection Agency (EPA) Date Released January 26th, 2009 (5 years ago) Date Updated June 07th, 2010 (4 years ago) Keywords eGrid eGRID2007 EIA Electricity emissions epa Power plant Data application/zip icon eGRID2007_Version1-1.zip (zip, 18.7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon Nuclear" "PPL Susquehanna Unit 1, Unit 2","2,450","18,516",23.8,"PPL Susquehanna LLC" "Peach Bottom Unit 2, Unit 3","2,244","18,759",24.1,"Exelon Nuclear" "Three Mile Island Unit 1",805,"6,634",8.5,"Exelon Nuclear"

402

Common Aquatic Plants -- Identification, Control.  

E-Print Network [OSTI]

of leaves: (1) floating and firm textured and (2) submersed, thin linear and membranous. Numerous pencil-like spikes are visible beneath the pond surface in early summer. Stems are jointed and have fibrous roots at the lower nodes. Identification within.... FLOATING PLANTS WATER STAR GRASS Heteranthera sp. (Mud plantain) Water star grass, a submersed or floating rooted plant, usually is found along muddy shores and in water up to 5 ft. deep. The leaves are approximately 2 inches long and 3/16 inch wide...

Klussmann, Wallace G. (Wallace Glenn); Lowman, Fred G.

1964-01-01T23:59:59.000Z

403

Plant and Soil An International Journal on Plant-Soil  

E-Print Network [OSTI]

on growth responses, membrane transport, stomatal function, and paradigms of ion accumulation toxicity. Ion transport . Potassium Introduction Sodium is the sixth most abundant element in earth's crust+ ) is one of the most intensely researched ions in plant biology and has attained a repu- tation for its

Kronzucker, Herbert J.

404

Methodology for Scaling Fusion Power Plant Availability  

SciTech Connect (OSTI)

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

Lester M. Waganer

2011-01-04T23:59:59.000Z

405

Design and simulation of a plant control system for a GCFR demonstration plant  

SciTech Connect (OSTI)

A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations.

Estrine, E.A.; Greiner, H.G.

1980-02-01T23:59:59.000Z

406

Pantex Plant Emergency Response Exercise  

Broader source: Energy.gov (indexed) [DOE]

Independent Oversight and Performance Assurance November 2000 Independent Oversight Evaluation of the Pantex Plant Emergency Response Exercise OVERSIGHT Table of Contents 1.0 INTRODUCTION ..................................................................................... 1 2.0 RESULTS ................................................................................................... 4 2.1 Positive Program Attributes ............................................................... 4 2.2 Weaknesses and Items Requiring Attention ..................................... 5 3.0 CONCLUSIONS ........................................................................................ 9 4.0 RATING .................................................................................................... 10

407

Plant Peroxisomes: Biogenesis and Function  

Science Journals Connector (OSTI)

...Plant Peroxisomes: Biogenesis and Function Jianping Hu a b 1 Alison Baker c Bonnie Bartel d Nicole Linka e Robert T. Mullen f Sigrun...peroxisomes and/or fuse together in a controlled, step-wise fashion to form a new peroxisome (Trelease and Lingard, 2006...

Jianping Hu; Alison Baker; Bonnie Bartel; Nicole Linka; Robert T. Mullen; Sigrun Reumann; Bethany K. Zolman

2012-06-05T23:59:59.000Z

408

Plants in a cold climate  

Science Journals Connector (OSTI)

...temperature also imposes a dehydrative stress, by lowering water absorption by the root and water transport in the shoot. A direct and...conditions? M. Smallwood. There is some evidence that even chill- ing intolerant plants may use some of the same signalling...

2002-01-01T23:59:59.000Z

409

AQUATIC PLANT CONTROL RESEARCH PROGRAM  

E-Print Network [OSTI]

MEETING, AQUATIC PLANT CONTROL RESEARCH PROGRAM 26-29 NOVEMBER 1984 GALVESTON, TEXAS June 1985 Final report 26-29 NOVEMBER 1984, 6. PERFORMING ORG. REPORT NC:'IBER GALVESTON, TEXAS 7. AU THOR(.) 8 Control Research Program was held in Galveston, Texas, on 26-29 November 1984, to review current research

US Army Corps of Engineers

410

How a Plant Builds Leaves  

Science Journals Connector (OSTI)

...affect many different processes. The theory and technology are now poised to define...M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems...regulate plant meristematic cell fate decisions. Sci. Signal. 1 : pe53. Green, P...

Siobhan A. Braybrook; Cris Kuhlemeier

2010-04-27T23:59:59.000Z

411

Photobiology: Plants Respond to Light  

Science Journals Connector (OSTI)

... EFFECTS of light on the behaviour of plants, and some of the associated techniques were the basis ... were the basis of a meeting of the Photobiology Group held at the Department of Horticulture, University of Reading, on March 27 and 28.

A Correspondent

1969-04-12T23:59:59.000Z

412

Plant Peroxisomes: Biogenesis and Function  

Science Journals Connector (OSTI)

...State University-Department of Energy Plant Research Laboratory...Stavanger, N-4036 Stavanger, Norway h Department of Biology, University...fatty acid degradation lack the energy or metabolites necessary for...insufficient supply of carbon and energy from fatty acid metabolism...

Jianping Hu; Alison Baker; Bonnie Bartel; Nicole Linka; Robert T. Mullen; Sigrun Reumann; Bethany K. Zolman

2012-06-05T23:59:59.000Z

413

Landscape epidemiology of plant diseases  

Science Journals Connector (OSTI)

...1094/PHYTO-96-1027 Gilbert, G.S 2002Evolutionary ecology...phyto.40.021202.110417 Gilbert, G.S , S.P Hubbell...345 Webb, C.O , G.S Gilbert, and M.J Donoghue2006Phylodiversity-dependent...Pesticides Plant Diseases microbiology statistics & numerical data...

2007-01-01T23:59:59.000Z

414

THE ORIGIN OF LAND PLANTS  

Science Journals Connector (OSTI)

...alone remain to remind us of their past glories. The more humble ferns and club-mosses still play an important role in the...seed plants still existing, the conifers-pines, firs, redwood, etc.-are the most nu-merous and familiar. The flowers...

Douglas H. Campbell

1930-08-22T23:59:59.000Z

415

Power Transmission, Distribution and Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Transmission, Distribution and Plants A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abdel-Aal, Radwan E. - Computer Engineering Department, King Fahd University of...

416

Selecting Landscape Plants: Shade Trees  

E-Print Network [OSTI]

Selecting Landscape Plants: Shade Trees Diane Relf, Extension Specialist, Horticulture, Virginia for any landscape plan. They set the stage for the entire home grounds design. The type used. Many will live and enhance the landscape for 100 or more years if they are given a chance. Because

Liskiewicz, Maciej

417

Advanced nuclear plant control complex  

DOE Patents [OSTI]

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

418

The 5th Annual Colorado Rare Plant Symposium: G2 Plants of Colorado  

E-Print Network [OSTI]

1 The 5th Annual Colorado Rare Plant Symposium: G2 Plants of Colorado September 5, 2008 8 am - 4 pm they shouldn't collect because th

419

Modeling the Impact of Plant Toxicity on Plant–Herbivore Dynamics  

E-Print Network [OSTI]

will not be possible for the selected parameter values if the herbivore pop- ulation is .... plant material can alter equilibrial relationships of 2-species plant com-.

2006-10-04T23:59:59.000Z

420

Plant maintenance and plant life extension issue, 2008  

SciTech Connect (OSTI)

The focus of the March-April issue is on plant maintenance and plant life extension. Major articles include the following: Exciting time to be at the U.S. NRC, by Dale Klein, Nuclear Regulatory Commission; Extraordinary steps to ensure a minimal environmental impact, by George Vanderheyden, UniStar Nuclear Energy, LLC.; Focused on consistent reduction of outages, by Kevin Walsh, GE Hitachi Nuclear Energy; On the path towards operational excellence, by Ricardo Perez, Westinghouse Electric Company; Ability to be refuelled on-line, by Ian Trotman, CANDU Services, Atomic Energy of Canada, Ltd.; ASCA Application for maintenance of SG secondary side, by Patrick Wagner, Wolf Creek Nuclear Operating Corporation, Phillip Battaglia and David Selfridge, Westinghouse Electric Company; and, An integral part of the landscape and lives, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Steam generator bowl drain repairs, by John Makar and Richard Gimple, Wolf Creek Nuclear Operating Corporation.

Agnihotri, Newal (ed.)

2008-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

422

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

423

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

424

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

425

Energeticals power plant engineering | Open Energy Information  

Open Energy Info (EERE)

Energeticals power plant engineering Energeticals power plant engineering Jump to: navigation, search Name energeticals power plant engineering Place München, Bavaria, Germany Zip 81371 Sector Biomass, Geothermal energy Product Planning, design, installation and operation of turnkey plants for heat and electricity generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References energeticals power plant engineering[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. energeticals power plant engineering is a company located in München, Bavaria, Germany . References ↑ "[ energeticals power plant engineering]" Retrieved from "http://en.openei.org/w/index.php?title=Energeticals_power_plant_engineering&oldid=344770

426

Tracking New Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Coal-Fired Power Plants New Coal-Fired Power Plants (data update 1/13/2012) January 13, 2012 National Energy Technology Laboratory Office of Strategic Energy Analysis & Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to provide an overview of proposed new coal-fired power plants that are under development. This report may not represent all possible plants under consideration but is intended to illustrate the potential that exists for installation of new coal-fired power plants. Additional perspective has been added for non-coal-fired generation additions in the U.S. and coal-fired power plant activity in China. Experience has shown that public announcements of power plant developments do not provide an accurate representation of eventually

427

Nuclear power plants: structure and function  

SciTech Connect (OSTI)

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

428

Integrated Coal Gasification Power Plant Credit (Kansas)  

Broader source: Energy.gov [DOE]

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

429

Sandia National Laboratories: Wind Plant Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy and ClimateRenewable SystemsRenewable EnergyWind EnergyWind Plant Optimization Wind Plant Optimization swift21 swift20 swift19 swift18 swift17 swift16 swift15 swift14...

430

US nuclear power plants: Emergency planning inadequate  

Science Journals Connector (OSTI)

... local ! area are considered inadequate. The I operators of the plants - both at IndianIndianPoint ...

Peter David

1983-05-12T23:59:59.000Z

431

Specialized Materials and Fluids and Power Plants  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Specialized Materials and Fluids and Power Plants.

432

Interdisciplinary Research and Training Program in the Plant Sciences  

SciTech Connect (OSTI)

Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

Wolk, C.P.

1992-01-01T23:59:59.000Z

433

Property:PlantParasiticConsump | Open Energy Information  

Open Energy Info (EERE)

Property Name PlantParasiticConsump Property Type Number Description Plant Parasitic Consumption (MWh). Pages using the property "PlantParasiticConsump" Showing 3 pages using this...

434

Guadalupe Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Plant Biomass Facility Jump to: navigation, search Name Guadalupe Power Plant Biomass Facility Facility Guadalupe Power Plant Sector Biomass Facility Type Landfill Gas...

435

NREL: TroughNet - Parabolic Trough Power Plant Market, Economic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

factors for current parabolic trough systems under development range from 25% for solar only plants to greater than 40% for plants with thermal storage. Such plants provide...

436

Waste Isolation Pilot Plant Needs Assessment | Department of...  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Needs Assessment Waste Isolation Pilot Plant Needs Assessment May 2012 This Needs Assessment for former Waste Isolation Pilot Plant production workers...

437

Waste Isolation Pilot Plant Activites | Department of Energy  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Activites Waste Isolation Pilot Plant Activites Waste Isolation Pilot Plant Activites More Documents & Publications EIS-0026: 2010 Annual Mitigation...

438

Waste Isolation Pilot Plant Update | Department of Energy  

Office of Environmental Management (EM)

Isolation Pilot Plant Update Waste Isolation Pilot Plant Update Waste Isolation Pilot Plant Update More Documents & Publications TRUPACT-III Quick Facts "TRU" Success: SRS Recovery...

439

Waste Isolation Pilot Plant Status and Plans - 2010 | Department...  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Status and Plans - 2010 Waste Isolation Pilot Plant Status and Plans - 2010 Overview of WIPP presented by Dr. Dave Moody. Waste Isolation Pilot Plant...

440

Drizo protects turbo expander plant  

SciTech Connect (OSTI)

A triethylene glycol (TEG) unit using Dow's Drizo technology in front of processes was installed in a turbo expander plant owned by Valero Hydrocarbons, San Antonio, Texas. The TEG unit was placed in the process because methanol consumption had run higher than design conditions had predicted; gas flow rates and water content varied widely; and the gas was found to be contaminated considerably with iron sulfide. The TEG unit optimized gas processing by reducing the water content of gas to the system, accepting variable gas flow and water content to smooth out feed gas quality, removing iron sulfide and other contaminants before processing, and being amenable to conversion from other equipment already in existence at other Valero plant locations. The TEG Drizo process provides an azeotropic agent injected into the hot glycol, and the glycol solution is used to reduce residual water content of gas. Details of the equipment and process conversion are given.

Frazier, C.W.; Force, J.E.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Colorado Rare Plant Technical Committee presents  

E-Print Network [OSTI]

The Colorado Rare Plant Technical Committee presents: 3rd Annual Rare Plant Symposium Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado and Eastern Colorado (Las Animas, Weld, Kit Carson, Huerfano, Pueblo, Otero, Prowers, Fremont, and El Paso

442

SPECIAL FEATURE FACILITATION IN PLANT COMMUNITIES  

E-Print Network [OSTI]

. Horton2 1 Ecological Farming Systems, Agroscope Reckenholz-Ta¨nikon, Research Station ART, Zurich on seedling species identity, mycorrhizal identity, plant species combinations and study system. We present plant­plant interactions and by supplying and recycling nutrients. Key-words: arbuscular mycorrhizal

Horton, Tom

443

Volvo Trucks Manufacturing Plant in Virginia  

Office of Energy Efficiency and Renewable Energy (EERE)

Volvo Group North America’s 1.6-million-square-foot New River Valley Plant in Dublin, Virginia, is the company’s largest truck manufacturing plant in the world. The company has implemented many energy savings solutions as part of the Better Buildings, Better Plants Challenge.

444

World electric power plants database  

SciTech Connect (OSTI)

This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

NONE

2006-06-15T23:59:59.000Z

445

Morris Plant Energy Efficiency Program  

E-Print Network [OSTI]

optimization, heat transfer improvement, flare gas loss reduction, and compressed air system optimization. Steam System Optimization The data historian has been instrumental in identifying malfunctioning steam letdown (i.e., pressure control) valves... and maintained excellent surface condenser vacuum and heat transfer rates. This has resulted in additional reductions in steam demand for turbine operation. Flare Gas Loss Reduction The Morris plant produces off-gases rich in hydrogen and methane as a by...

Betczynski, M. T.

2004-01-01T23:59:59.000Z

446

Solar thermionic power plant (II)  

SciTech Connect (OSTI)

It has been shown that the geometric configuration of a central receiver solar electric power plant (SEPP) can be optimized for the high power density and concentration required for the operation of a thermionic converter. The working period of a Thermionic Diode Converter constructed on the top of a SEPP in Riyadh area is found to be 5 to 6 hours per day in winter and 6 to 8 hours in summer. 17 refs.

Abou-Elfotouh, F.; Almassary, M.; Fatmi, H.

1981-01-01T23:59:59.000Z

447

B PLANT DOCUMENTED SAFETY ANALYSIS  

SciTech Connect (OSTI)

This document provides the documented safety analysis (DSA) and Central Plateau Remediation Project (CP) requirements that apply to surveillance and maintenance (S&M) activities at the 221-B Canyon Building and ancillary support structures (B Plant). The document replaces BHI-010582, Documented Safety Analysis for the B-Plant Facility. The B Plant is non-operational, deactivated and undergoing long term S&M prior to decontamination and decommissioning (D&D). This DSA is compliant with 10 CFR 830, Nuclear Safety Management, Subpart B, ''Safety Basis Requirements.'' The DSA was developed in accordance with U.S. Department of Energy (DOE) standard DOE-STD-1120-98, Integration of Environment, Safety, and Health into Facility Disposition Activities (DOE 1998) per Table 2 of 10 CFR 830 Appendix A, DOE Richland Operation Office (RL) direction (02-ABD-0053, Fluor Hanford Nuclear Safety Basis Strategy and Criteria) for facilities in long term S&M, and RL Direction (02-ABD-0091, ''FHI Nuclear Safety Expectations for Nuclear Facilities in Surveillance and Maintenance''). A crosswalk was prepared to identify potential inconsistencies between the previous B Plant safety analysis and DOE-STD-1120-98 guidance. In general, the safety analysis met the criteria of DOE-STD-1120-98. Some format and content changes have been made, including incorporating recent facility modifications and updating the evaluation guidelines and control selection criteria in accordance with RL direction (02-ABD-0053). The facility fire hazard analysis (FHA) and Technical Safety Requirements (TSR) are appended to this DSA as an aid to the users, to minimize editorial redundancy, and to provide an efficient basis for update.

DODD, E.N.; KERR, N.R.

2003-08-01T23:59:59.000Z

448

Engineered plant biomass feedstock particles  

DOE Patents [OSTI]

A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2012-04-17T23:59:59.000Z

449

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants  

E-Print Network [OSTI]

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

Sadoulet, Elisabeth

450

Evaluation of fossil plants versus hydro plants for load frequency control  

SciTech Connect (OSTI)

The economics of using hydroplants with Francis turbines or fossil plants for load frequency control are evaluated. Using data from the TVA Gallatin steam plant and the TVA Cherokee, Wilson, and Fontana hydroplants, a cost comparison of different modes of operation for load frequency control was performed considering two plants at a time. The results showed that when the fossil plant was used for load frequency control instead of a hydro plant a lower system generation cost was incurred. Dynamic responses of fossil and hydro units, improved controls for fossil plants, and maneuvering costs of the Gallatin plant are also considered.

Broadwater, R.P.; Johnson, R.L.; Duckett, F.E.; Boston, W.T.

1985-01-01T23:59:59.000Z

451

Power Plant Analyser -- A computer code for power plant operation studies  

SciTech Connect (OSTI)

This paper describes Power Plant Analyser (PPA), a computer code for power plant dynamic and steady-state performance analysis. Power Plant Analyser simulates fossil power plant systems, such as drum-type, once-through, gas turbine, and combined cycle plants in a user-friendly manner. It provides a convenient tool for power engineers to understand the complex and interrelated thermodynamic processes and operating characteristics of the plant. It can also be used for conceptual training of power plant operators, and as a test bed for control and operating strategies.

Lu, S.; Hogg, B.W. [Queen`s Univ. of Belfast, Northern Ireland (United Kingdom). Dept. of Electrical and Electronic Engineering] [Queen`s Univ. of Belfast, Northern Ireland (United Kingdom). Dept. of Electrical and Electronic Engineering

1996-12-01T23:59:59.000Z

452

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

SciTech Connect (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

453

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary Cycle Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators.

454

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing

455

Enforcement Documents - Pantex Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pantex Plant Pantex Plant Enforcement Documents - Pantex Plant January 7, 2013 Enforcement Letter, NEL-2013-01 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant November 21, 2006 Preliminary Notice of Violation, BWXT Pantex, LLC - EA-2006-04 Issued to BWXT Pantex, LLC, related to Quality Assurance and Safety Basis Requirements Violations at the Pantex Plant May 16, 2005 Preliminary Notice of Violation, BWXT Pantex LLC - EA-2005-02 Preliminary Notice of Violation issued to BWXT Pantex LLC, related to High Explosive Cracking during Weapon Disassembly at the Pantex Plant June 21, 2000 Consent Order, Mason & Hanger Corporation - EA-2000-07 Price-Anderson Enforcement Consent Order issued to Mason & Hanger Corporation related to Fire Suppression System Issues at the Pantex Plant,

456

Coal Power Plant Database | Open Energy Information  

Open Energy Info (EERE)

Power Plant Database Power Plant Database Jump to: navigation, search Name Coal Power Plant Database Data Format Excel Spreadsheet, Excel Pivot Table, Access Database Geographic Scope United States TODO: Import actual dataset contents into OpenEI The Coal Power Plant Database (CPPDB) is a dataset which "consolidates large quantities of information on coal-fired power plants in a single location."[1] It is produced by the National Energy Technology Laboratory (NETL). External links 2007 Edition Excel Spreadsheet Excel Pivot Table Access Database User's Manual (PDF) References ↑ "User's Manual: Coal Power Plant Database" Retrieved from "http://en.openei.org/w/index.php?title=Coal_Power_Plant_Database&oldid=273301" Categories: Datasets Articles with outstanding TODO tasks

457

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

458

Turkerler Alasehir Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Turkerler Alasehir Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Turkerler Alasehir Geothermal Power Plant Project...

459

Miravalles V Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Miravalles V Geothermal Power Plant Project Location Information Coordinates...

460

Geismar TDI Plant Steam Optimization  

E-Print Network [OSTI]

BASF North America 7 ESL-IE-13-05-19 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 BASF?s strategic principles A conscientious commitment to our investors, customers, employees...Geismar TDI Plant Steam Optimization May 23rd, 2013 IET Conference Meredith Bailey, PDP Engineer BASF Corporation (734) 324-5047 meredith.bailey@basf.com ESL-IE-13-05-19 Proceedings of the Thrity-Fifth Industrial Energy Technology...

Baily, M.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The Propagation of Ornamental Plants.  

E-Print Network [OSTI]

of the 8-inch pot and pack the rooting medium in between the two pots. Note: If vermiculite is used, fill this space, but do not pack it. Water the medium in well with water containing a few drops of a wetting agent. Then stick cuttings in concentric... ready for planting in permanent location. Materials required for self-watering propagator. Make the cutting. Preparation of self-watering propagator. Insert cutting into rooting medium. :?-de+d self-watering -.:sqgotor filled with cuttings...

DeWerth, A. F.

1970-01-01T23:59:59.000Z

462

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine Mile Point Nuclear Station Unit 1, Unit 2","1,773","14,239",34.0,"Nine Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants

463

Pantex Plant | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant | National Nuclear Security Administration Plant | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Locations > Pantex Plant Pantex Plant http://www.pantex.com/ Field Office: The NNSA Production Office is responsible for contract management and oversight of the Pantex Plant in Amarillo, Texas and the Y-12 National Security Complex in Oak Ridge, Tenn. The Pantex Plant is

464

Waste Isolation Pilot Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is contaminated with small amounts of plutonium and other TRU radioactive elements. Over the next 35 years, WIPP is expected to receive approximately 175,000 cubic meters of waste from various DOE sites. Enforcement September 8, 2006 Enforcement Letter, Washington TRU Solutions - September 8, 2006

465

Performance testing of natural gas plants  

SciTech Connect (OSTI)

Performance testing of natural-gas-extraction plants has become a valuable tool for improving recovery of plants operating below their optimum capabilities or maintaining the optimum recovery once it has been achieved. Many plants, whether turbo-expander, lean oil absorption, or straight refrigeration type, can drift from optimum recovery for one or several of many reasons. Sometimes this drift occurs without the plant operators being aware, or the reduction in recovery may be caused by operating problems of which the operator is aware but feels cannot be solved with the equipment available. A plant performance test may find the unknown problem or the test will show the problem can be solved and recoveries improved with existing equipment. Sometimes a computer simulation of the plant, using the test data, may be required to find or solve the problem.

Herrin, J.P.

1983-01-01T23:59:59.000Z

466

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

467

Paleophysiology of Permian and Triassic Seed Plants  

E-Print Network [OSTI]

characteristics of extinct plants, although many of these studies did not involve the direct study of fossil plants. Raven (1977) used published descriptions of early vascular land plants (e.g., rhyniophytes) and knowledge of water and gas exchange in extant..., it was concluded through the use of fossil leaf modeling that the earliest angiosperms had lower gas exchange capacities than their modern counterparts (Feild et al., 2011b). It has also been demonstrated that the increased hydraulic conductance...

Schwendemann, Andrew Benjamin

2012-08-31T23:59:59.000Z

468

Service experience in operating plants 1991  

SciTech Connect (OSTI)

This publication contains the papers presented at a symposium conducted at the 1991 Pressure Vessels and Piping Division Conference. The symposium had the same title as this publication, Service Experience in Operating Plants and was sponsored by the Materials and Fabrication Committee of the ASME Pressure Vessels and Piping Division. The primary objectives of the sessions were to disseminate information on issues and degradation which have resulted from the operation of Nuclear and Fossil Power Plants, as well as Petrochemical Plants.

Bamford, W.H. (Westinghouse Energy Systems (US))

1991-01-01T23:59:59.000Z

469

On Line Power Plant Performance Monitoring  

E-Print Network [OSTI]

in achieving the best operation of the plant 3. To evaluate component performance and deterioration for use in a maintenance program 4. To develop cost data and incremental cost characteristics for the economic operation or dispatch of the unit... ? Analyze current plant?eQuipment status and diagnostics for preventive maintenance and equipment damage ? Provide current energy management and system dispatch operation information ? Capability for plant and equipment acceptance and periodic...

Ahner, D. J.; Priestley, R. R.

470

Power Plant Optimization Demonstration Projects Cover Photos:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 SEPTEMBER 2007 5 SEPTEMBER 2007 Power Plant Optimization Demonstration Projects Cover Photos: * Top left: Coal Creek Station * Top right: Big Bend Power Station * Bottom left: Baldwin Energy Complex * Bottom right: Limestone Power Plant A report on four projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * Tampa Electric Company * Pegasus Technologies * NeuCo. , Inc.  Power Plant Optimization Demonstration Projects Executive Summary .......................................................................................4 Background: Power Plant Optimization ......................................................5 Lignite Fuel Enhancement Project ...............................................................8

471

Independent Oversight Inspection, Portsmouth Gaseous Diffusion Plant -  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth Gaseous Diffusion Portsmouth Gaseous Diffusion Plant - November 2006 Independent Oversight Inspection, Portsmouth Gaseous Diffusion Plant - November 2006 November 2006 Inspection of Emergency Management at the Portsmouth Gaseous Diffusion Plant The Secretary of Energy's Office of Independent Oversight, within the Office of Security and Safety Performance Assurance, conducted an inspection of the emergency management program at the Portsmouth Gaseous Diffusion Plant (PORTS) in August and September 2006. The coordination of emergency plans and procedures among USEC and DOE contractor organizations has successfully integrated the emergency management programs into a single cohesive program for the PORTS site. Other strengths include accurate hazards surveys that identify applicable

472

Marathon JV to build ethanol plants  

Science Journals Connector (OSTI)

Marathon Oil Corp and The Andersons Inc look set to form a joint venture that would construct and operate a number of ethanol plants.

2006-01-01T23:59:59.000Z

473

Using Soluble Calcium to Stimulate Plant Growth  

E-Print Network [OSTI]

and divided into seeds, bulbs, leaves, stems and roots so the parts could be tested for nutrient concentrations. In the field experiments, the commer- cial products were harvested and the yields recorded. Bene#31;ts of Calcium When urea (46-0-0... by cal- cium has interesting results. Photosynthesis increases (Fig. 1), and greater amounts of carbon dioxide are cap- tured by the plant from the air, which increases the plant?s organic building blocks (Fig. 2). When plants absorb more ammonium...

Feagley, Sam E.; Fenn, Lloyd B.

1998-09-09T23:59:59.000Z

474

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2012,"6301979" ,"Release...

475

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2013,"6301979" ,"Release...

476

Enforcement Documents - Waste Isolation Pilot Plant | Department...  

Broader source: Energy.gov (indexed) [DOE]

related to Quality Assurance Deficiencies associated with the Super High-Efficiency Neutron Counter Non-Destructive Assay System Refurbishment at the Waste Isolation Pilot Plant...

477

Independent Oversight Review, Pantex Plant, December 2013  

Broader source: Energy.gov [DOE]

Targeted Review of the Safety Significant Blast Door and Personnel Door Interlock Systems and Review of Federal Assurance Capability at the Pantex Plant

478

Mitsubishi FGD plants for lignite fired boilers  

SciTech Connect (OSTI)

In order to respond to the increasing electric energy demand for sustaining economic growth, construction of coal-fired thermal power plants worldwide is indispensable. As a countermeasure for environmental pollution which otherwise may reach a serious proportion from the operation of these plants, construction of flue gas desulfurization (FGD) plants is being promoted. Among these power stations where lignite fuel is burnt, the FGD plants concerned have to be designed to cope with high gas volume and SO{sub x} concentration as well as violent fluctuations in their values caused by such features of lignite as high sulfur content, low calorific volume, and unstable properties. Mitsubishi Heavy Industries (MHI) has received construction awards for a total of seven (7) FGD plants for lignite-fired boilers in succession starting from that for CEZ as, Czech Republic followed by those for EGAT, Thailand in 1993. All these plants are presently operating satisfactorily since successful completion of their performance tests in 1996. Further, a construction award of three (3) more FGD plants for lignite-fired boilers was received from ENDESA (Spain) in 1995 which are now being outfitted and scheduled to start commercial operation in 1998. In this paper, the authors discuss the outline design of FGD plants for lignite-fired boilers based on experience of FGD plants constructed since 1970 for heavy oil--as well as black coal-fired boilers, together with items confirmed from the operation and design guideline hereafter.

Kotake, Shinichiro; Okazoe, Kiyoshi; Iwashita, Koichiro; Yajima, Satoru

1998-07-01T23:59:59.000Z

479

Tennessee Nuclear Profile - Watts Bar Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

480

Wisconsin Nuclear Profile - Point Beach Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

Note: This page contains sample records for the topic "butyl ether plants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Waste Isolation Pilot Plant | Department of Energy  

Office of Environmental Management (EM)

Metal Products, Inc - October 28, 2004 More enforcement documents Oversight Reports April 22, 2013 Independent Oversight Review, Waste Isolation Pilot Plant - April 2013...

482

Video camera use at nuclear power plants  

SciTech Connect (OSTI)

A survey of US nuclear power plants was conducted to evaluate video camera use in plant operations, and determine equipment used and the benefits realized. Basic closed circuit television camera (CCTV) systems are described and video camera operation principles are reviewed. Plant approaches for implementing video camera use are discussed, as are equipment selection issues such as setting task objectives, radiation effects on cameras, and the use of disposal cameras. Specific plant applications are presented and the video equipment used is described. The benefits of video camera use --- mainly reduced radiation exposure and increased productivity --- are discussed and quantified. 15 refs., 6 figs.

Estabrook, M.L.; Langan, M.O.; Owen, D.E. (ENCORE Technical Resources, Inc., Middletown, PA (USA))

1990-08-01T23:59:59.000Z

483

Oversight Reports - Portsmouth Gaseous Diffusion Plant | Department...  

Broader source: Energy.gov (indexed) [DOE]

Paducah Project Office - May 2012 Assessment of the PortsmouthPaducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants...

484

Ethylene synthesis and sensitivity in crop plants.  

E-Print Network [OSTI]

?? The gaseous plant hormone ethylene is a small molecule that regulates developmental change. Research was conducted in three areas: sensitivity, synthesis, and alterations to… (more)

Romagnano, Joseph F.

2008-01-01T23:59:59.000Z

485

Ethylene Synthesis and Sensitivity in Crop Plants.  

E-Print Network [OSTI]

??The gaseous plant hormone ethylene is a small molecule that regulates developmental change. Research was conducted in three areas: sensitivity, synthesis, and alterations to synthesis.… (more)

Romagnano, Joseph F.

2008-01-01T23:59:59.000Z

486

Enterprise Assessments Review, Waste Isolation Pilot Plant -...  

Energy Savers [EERE]

December 2014 Review of the Waste Isolation Pilot Plant Recovery Plan for Operating Diesel Equipment with Available Underground Airflows. The Office of Nuclear Safety and...

487

Enterprise Assessments Review, Waste Isolation Pilot Plant -...  

Energy Savers [EERE]

December, 2014 Review of the Waste Isolation Pilot Plant Conduct of Maintenance Recovery Plan The Office of Nuclear Safety and Environmental Assessments, within the U.S. Department...

488

Healthcare Energy: Spotlight on Chiller Plants  

Broader source: Energy.gov [DOE]

The Building Technologies Office conducted a healthcare energy end-use monitoring project for two sites. Read details about the chiller plant energy results.

489

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial...

490

Better Plants 2015 Look Ahead Webinar  

Energy Savers [EERE]

* 6 new Better Plants Challenge Partners Partners Continue to Save Energy Average energy intensity improvement rate of 2.4% per year; cumulative savings roughly 320 Tbtus...

491

Signaling in plant-microbe interactions  

SciTech Connect (OSTI)

Analysis of viral and bacterial pathogenesis has revealed common themes in the ways in which plants and animals respond to pathogenic agents. Pathogenic bacteria use macromolecule delivery systems (types III and IV) to deliver microbial avirulence proteins and transfer DNA-protein complexes directly into plant cells. The molecular events that constitute critical steps of plant-pathogen interactions seem to involve ligand-receptor mechanisms for pathogen recognition and the induction of signal transduction pathways in the plant that lead to defense responses. Unraveling the molecular basis of disease resistance pathways has laid a foundation for the rational design of crop protection strategies. 133 refs., 3 figs., 3 tabs.

Baker, B.; Dinesh-Kumar, S.P. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States); [Dept. of Agriculture, Albany, CA (United States); Zambryski, P.; Staskawicz, B. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States)

1997-05-02T23:59:59.000Z

492

Pauzhetskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

group":"","inlineLabel":"","visitedicon":"" Display map Geothermal Resource Area Rye Patch Geothermal Area Geothermal Region Northwest Basin and Range Geothermal Region Plant...

493

Portsmouth Gaseous Diffusion Plant | Department of Energy  

Energy Savers [EERE]

Gaseous Diffusion Plant. March 26, 2010 Enforcement Letter, Geiger Brothers Mechanical Contractors, INC - March 26, 2010 Issued to Geiger Brothers Mechanical Contractors,...

494

Enforcement Documents - Portsmouth Gaseous Diffusion Plant |...  

Broader source: Energy.gov (indexed) [DOE]

Gaseous Diffusion Plant March 26, 2010 Enforcement Letter, Geiger Brothers Mechanical Contractors, INC - March 26, 2010 Issued to Geiger Brothers Mechanical Contractors,...

495

Tracking New Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 8, 2010 National Energy Technology Laboratory Office of Systems Analyses and Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to...

496

Independent Activity Report, Portsmouth Gaseous Diffusion Plant...  

Broader source: Energy.gov (indexed) [DOE]

2011 August 2011 Orientation Visit to the Portsmouth Gaseous Diffusion Plant HIAR-PORTS-2011-08-03 This Independent Activity Report documents an operational awareness...

497

Uenotai Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.001204660867, 140.60390925355 Loading map... "minzoom":false,"mapp...

498

Use of NAP gene to manipulate leaf senescence in plants  

DOE Patents [OSTI]

The present invention discloses transgenic plants having an altered level of NAP protein compared to that of a non-transgenic plant, where the transgenic plants display an altered leaf senescence phenotype relative to a non-transgenic plant, as well as mutant plants comprising an inactivated NAP gene, where mutant plants display a delayed leaf senescence phenotype compared to that of a non-mutant plant. The present invention also discloses methods for delaying leaf senescence in a plant, as well as methods of making a mutant plant having a decreased level of NAP protein compared to that of a non-mutant plant, where the mutant plant displays a delayed leaf senescence phenotype relative to a non-mutant plant. Methods for causing precocious leaf senescence or promoting leaf senescence in a plant are also disclosed. Also disclosed are methods of identifying a candidate plant suitable for breeding that displays a delayed leaf senescence and/or enhanced yield phenotype.

Gan, Susheng; Guo, Yongfeng

2013-04-16T23:59:59.000Z

499

GRR/Section 7-CA-b - State Plant Commissioning Process, Small Power Plant  

Open Energy Info (EERE)

7-CA-b - State Plant Commissioning Process, Small Power Plant 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Click to View Fullscreen Contact Agencies California Energy Commission Regulations & Policies California Code of Regulations, Title 20 - Public Utilities and Energy Triggers None specified Click "Edit With Form" above to add content 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

500

A stochastic model for the daily coordination of pumped storage hydro plants and wind power plants  

Science Journals Connector (OSTI)

We propose a stochastic model for the daily operation scheduling of a generation system including pumped storage hydro plants and wind power plants, where the uncertainty is represented by the hourly wind power p...

Maria Teresa Vespucci; Francesca Maggioni…

2012-03-01T23:59:59.000Z