National Library of Energy BETA

Sample records for butyl ether ch

  1. Vapor pressures of methyl tert-butyl ether, ethyl tert-butyl ether, isopropyl tert-butyl ether, tert-amyl methyl ether, and tert-amyl ethyl ether

    SciTech Connect (OSTI)

    Kraehenbuehl, M.A.; Gmehling, J. . Technische Chemie)

    1994-10-01

    The vapor pressures of methyl tert-butyl ether, ethyl tert-butyl ether, isopropyl tert-butyl ether, tert-amyl methyl ether, and tert-amyl ethyl ether were measured by ebulliometry or the static method in the pressure ranges 14--102 and 3--835 kPa (methyl tert-butyl ether), respectively. The data were correlated using the Antoine and Wagner equations. The experimental data of methyl tert-butyl ether and ethyl tert-butyl ether were compared with data available in the literature.

  2. State Restrictions on Methyl Tertiary Butyl Ether (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    By the end of 2005, 25 states had barred, or passed laws banning, any more than trace levels of methyl tertiary butyl ether (MTBE) in their gasoline supplies, and legislation to ban MTBE was pending in 4 others. Some state laws address only MTBE; others also address ethers such as ethyl tertiary butyl ether (ETBE) and tertiary amyl methyl ether (TAME). Annual Energy Outlook 2006 assumes that all state MTBE bans prohibit the use of all ethers for gasoline blending.

  3. Enhanced diisobutene production in the presence of methyl tertiary butyl ether

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1983-01-01

    In the liquid phase reaction of isobutene in the presence of resin cation exchange resins with itself in a C.sub.4 hydrocarbon stream to form dimers, the formation of higher polymers, oligomers, and co-dimer by-products is suppressed by the presence of 0.0001 to 1 mole per mole of isobutene of methyl tertiary butyl ether.

  4. Enhanced diisobutene production in the presence of methyl tertiary butyl ether

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1983-03-01

    In the liquid phase reaction of isobutene in the presence of resin cation exchange resins with itself in a C[sub 4] hydrocarbon stream to form dimers, the formation of higher polymers, oligomers, and co-dimer by-products is suppressed by the presence of 0.0001 to 1 mole per mole of isobutene of methyl tertiary butyl ether. 1 fig.

  5. Methyl tert-butyl ether and ethyl tert-butyl ether: A comparison of properties, synthesis techniques, and operating conditions

    SciTech Connect (OSTI)

    Sneesby, M.G.; Tade, M.O.; Datta, R.

    1996-12-31

    MTBE is currently the most industrially significant oxygenate but some of the properties of ETBE and the EPA ethanol mandate suggest that ETBE could become a viable competitor. Similar synthesis techniques are used for both ethers but the phase behaviour of the ETBE system requires slightly different operating conditions and creates some alternatives for product recovery. The process control strategy for both systems must address some unusual challenges. 9 refs., 1 tab.

  6. Thermodynamic properties and ideal-gas enthalpies of formation for butyl vinyl ether, 1,2-dimethoxyethane, methyl glycolate, bicyclo[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, di-tert-butyl ether, and hexane-1,6-diol

    SciTech Connect (OSTI)

    Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Smith, N.K.

    1996-11-01

    Ideal-gas enthalpies of formation of butyl vinyl ether, 1,2-dimethoxyethane, methyl glycolate, bicyclo-[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, di-tert-butyl ether, and hexane-1,6-diol are reported. Enthalpies of fusion were determined for bicyclo[2.2.1]hept-2-ene and trans-azobenzene. Two-phase (solid + vapor) or (liquid + vapor) heat capacities were determined from 300 K to the critical region or earlier decomposition temperature for each compound studied. Liquid-phase densities along the saturation line were measured for bicyclo[2.2.1]hept-2-ene. For butyl vinyl ether and 1,2-dimethoxyethane, critical temperatures and critical densities were determined from the dsc results and corresponding critical pressures derived from the fitting procedures. Fitting procedures were used to derive critical temperatures, critical pressures, and critical densities for bicyclo[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, and di-tert-butyl ether. Group-additivity parameters or ring-correction terms useful in the application of the Benson group-contribution correlations were derived.

  7. Manipulation of the HIF–Vegf pathway rescues methyl tert-butyl ether (MTBE)-induced vascular lesions

    SciTech Connect (OSTI)

    Bonventre, Josephine A.; Kung, Tiffany S.; White, Lori A.; Cooper, Keith R.

    2013-12-15

    Methyl tert-butyl ether (MTBE) has been shown to be specifically anti-angiogenic in piscine and mammalian model systems at concentrations that appear non-toxic in other organ systems. The mechanism by which MTBE targets developing vascular structures is unknown. A global transcriptome analysis of zebrafish embryos developmentally exposed to 0.00625–5 mM MTBE suggested that hypoxia inducible factor (HIF)-regulated pathways were affected. HIF-driven angiogenesis via vascular endothelial growth factor (vegf) is essential to the developing vasculature of an embryo. Three rescue studies were designed to rescue MTBE-induced vascular lesions: pooled blood in the common cardinal vein (CCV), cranial hemorrhages (CH), and abnormal intersegmental vessels (ISV), and test the hypothesis that MTBE toxicity was HIF–Vegf dependent. First, zebrafish vegf-a over-expression via plasmid injection, resulted in significantly fewer CH and ISV lesions, 46 and 35% respectively, in embryos exposed to 10 mM MTBE. Then HIF degradation was inhibited in two ways. Chemical rescue by N-oxaloylglycine significantly reduced CCV and CH lesions by 30 and 32% in 10 mM exposed embryos, and ISV lesions were reduced 24% in 5 mM exposed zebrafish. Finally, a morpholino designed to knock-down ubiquitin associated von Hippel–Lindau protein, significantly reduced CCV lesions by 35% in 10 mM exposed embryos. In addition, expression of some angiogenesis related genes altered by MTBE exposure were rescued. These studies demonstrated that MTBE vascular toxicity is mediated by a down regulation of HIF–Vegf driven angiogenesis. The selective toxicity of MTBE toward developing vasculature makes it a potentially useful chemical in the designing of new drugs or in elucidating roles for specific angiogenic proteins in future studies of vascular development. - Highlights: • Global gene expression of MTBE exposed zebrafish suggested altered HIF1 signaling. • Over expression of zebrafish vegf-a rescues MTBE

  8. Exposure to methyl tert-butyl ether, benzene, and total hydrocarbons at the Singapore-Malaysia causeway immigration checkpoint

    SciTech Connect (OSTI)

    Tan, C.; Ong, H.Y.; Kok, P.W.

    1996-12-31

    The primary aim of this study was to determine the extent and levels of exposure to volatile organic compounds (VOCs) from automobile emissions in a group of immigration officers at a busy cross-border checkpoint. A majority (80%) of the workers monitored were exposed to benzene at levels between 0.01 and 0.5 ppm, with only 1.2% exceeding the current Occupational Safety and Health Administration occupational exposure limit of 1 ppm. The geometric mean (GM) concentrations of 8-hr time-weighted average exposure were 0.03 ppm, 0.9 ppm, and 2.46 ppm for methyl-tert-butyl ether (MTBE), benzene, and total hydrocarbons (THC), respectively. The highest time-weighted average concentrations measured were 1.05 ppm for MTBE, 2.01 ppm for benzene, and 34 ppm for THC. It was found that motorbikes emitted a more significant amount of pollutants compared with motor cars. On average, officers at the motorcycle booths were exposed to four to five times higher levels of VOCs (GMs of 0.07 ppm, 0.23 ppm, and 4.7 ppm for MTBE, benzene, and THC) than their counterparts at the motor car booths (GMs of 0.01 ppm, 0.05 ppm, and 1.5 ppm). The airborne concentrations of all three pollutants correlated with the flow of vehicle traffic. Close correlations were also noted for the concentrations in ambient air for the three pollutants measured. Benzene and MTBE had a correlation coefficient of 0.97. The overall findings showed that the concentrations of various VOCs were closely related to the traffic density, suggesting that they were from a common source, such as exhaust emissions from the vehicles. The results also indicated that although benzene, MTBE, and THC are known to be volatile, a significant amount could still be detected in the ambient environment, thus contributing to our exposure to these compounds. 4 refs., 6 figs.

  9. Cytotoxic and DNA-damaging effects of methyl tert-butyl ether and its metabolites on HL-60 cells in vitro

    SciTech Connect (OSTI)

    Tang, G.H.; Shen, Y.; Shen, H.M.

    1996-12-31

    Methyl tert-butyl ether (MTBE) is a widely used oxygenate in unleaded gasoline; however, few studies have been conducted on the toxicity of this compound. This study evaluates the cytotoxic and DNA-damaging effects of MTBE and its metabolites in a human haemopoietic cell line, HL-60. The metabolites of MTBE studied include tertiary butyl alcohol (TBA), {alpha}-hydroxyisobutyric acid (HIBA), and formaldehyde. Comet assay is used to assess DNA damage, and the cytotoxicity is investigated by lactate dehydrogenease (LDH) release. The results show no significant cytotoxic effects of MTBE, TBA, and HIBA over a concentration ranging from 1 to 30 mM. Formaldehyde, in contrast, causes a substantial LDH release at a concentration of 5 {mu}M. Hydrogen peroxide, a known oxidative agent, at concentrations ranging from 10 to 100 {mu}M, produces a significant dose-related increase in DNA damage, whereas a much higher concentration of MTBE (1 to 30 mM) is required to produce a similar observation. The genotoxic effects of TBA and HIBA appear to be identical to that of MTBE. Conversely, DNA damage is observed for formaldehyde at a relatively low concentration range (5 to 100 {mu}M). These findings suggest that MTBE and its metabolites, except formaldehyde, have relatively low cytotoxic and genotoxic effects. 16 refs., 4 figs.

  10. {gamma}-aminobutyric acid{sub A} (GABA{sub A}) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    SciTech Connect (OSTI)

    Zheng Gang; Zhang Wenbin; Zhang Yun; Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang; Li Jingxia; Huang Chuanshu; Luo Wenjing Chen Jingyuan

    2009-04-15

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA{sub A} receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA{sub A} receptor {alpha}1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA{sub A} receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  11. HIGH-RESOLUTION EXPANDED VERY LARGE ARRAY IMAGE OF DIMETHYL ETHER (CH{sub 3}){sub 2}O IN ORION-KL

    SciTech Connect (OSTI)

    Favre, C.; Wootten, H. A.; Remijan, A. J.; Brouillet, N.; Despois, D.; Baudry, A.; Wilson, T. L. E-mail: brouillet@obs.u-bordeaux1.fr E-mail: baudry@obs.u-bordeaux1.fr E-mail: aremijan@nrao.edu

    2011-09-20

    We report the first subarcsecond (0.''65 x 0.''51) image of the dimethyl ether molecule, (CH{sub 3}){sub 2}O, toward the Orion Kleinmann-Low nebula. The observations were carried at 43.4 GHz with the Expanded Very Large Array (EVLA). The distribution of the lower energy transition 6{sub 1,5}-6{sub 0,6}, EE (E {sub u} = 21 K) mapped in this study is in excellent agreement with the published dimethyl ether emission maps imaged with a lower resolution. The main emission peaks are observed toward the Compact Ridge and Hot Core southwest components, at the northern parts of the Compact Ridge and in an intermediate position between the Compact Ridge and the Hot Core. A notable result is that the distribution of dimethyl ether is very similar to that of another important larger O-bearing species, the methyl formate (HCOOCH{sub 3}), imaged at a lower resolution. Our study shows that higher spectral resolution (WIDAR correlator) and increased spectral coverage provided by the EVLA offer new possibilities for imaging complex molecular species. The sensitivity improvement and the other EVLA improvements make this instrument well suited for high sensitivity, high angular resolution, and molecular line imaging.

  12. Determination of Methyl tert-Butyl Ether and tert-Butyl Alcohol...

    Office of Scientific and Technical Information (OSTI)

    ... Authors: Oh, Keun-Chan ; Stringfellow, William T. Publication Date: 2003-10-02 OSTI Identifier: 820662 Report Number(s): LBNL--53866 R&D Project: G41101; TRN: US200405%%70 DOE ...

  13. Radiation chemistry of alternative fuel oxygenates -- Substituted ethers

    SciTech Connect (OSTI)

    Mezyk, S. P.; Cooper, W. J.; Bartels, D. M.; Tobien, T.; O'Shea, K. E.

    1999-11-15

    The electron beam process, an advanced oxidation and reduction technology, is based in the field of radiation chemistry. Fundamental to the development of treatment processes is an understanding of the underlying chemistry. The authors have previously evaluated the bimolecular rate constants for the reactions of methyl tert-butyl ether (MTBE) and with this study have extended their studies to include ethyl tert-butyl ether (ETBE), di-isopropyl ether (DIPE) and tert-amyl methyl ether (TAME) with the hydroxyl radical, hydrogen atom and solvated electron using pulse radiolysis. For all of the oxygenates the reaction with the hydroxyl radical appears to be of primary interest in the destruction of the compounds in water. The rates with the solvated electron are limiting values as the rates appear to be relatively low. The hydrogen atom rate constants are relatively low, coupled with the low yield in radiolysis, they concluded that these are of little significance in the destruction of the alternative fuel oxygenates (and MTBE).

  14. Crown ethers in graphene

    SciTech Connect (OSTI)

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I; Gallego, Nidia C; Pantelides, Sokrates T.; Pennycook, Stephen J; Moyer, Bruce A; Chisholm, Matthew F

    2014-01-01

    Crown ethers, introduced by Pedersen1, are at their most basic level neutral rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted special attention for their ability to selectively incorporate various atoms2 or molecules within the cavity formed by the ring3-6. This property has led to the use of crown ethers and their compounds in a wide range of chemical and biological applications7,8. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity9,10. In this Letter, we report atomic-resolution images of the same basic structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar and thus uniquely suited for the many applications that crown ethers are known for. First-principles calculations show that the close similarity of the structures seen in graphene with those of crown ether molecules also extends to their selectivity towards specific metal cations depending on the ring size. Atoms (or molecules) incorporated within the crown ethers in graphene offer a simple environment that can be easily and systematically probed and modeled. Thus, we expect that this discovery will introduce a new wave of investigations and applications of chemically functionalized graphene.

  15. Tropospheric oxidation mechanism of dimethyl ether and methyl formate

    SciTech Connect (OSTI)

    Good, D.A.; Francisco, J.S.

    2000-02-17

    The oxidation mechanism of dimethyl ether is investigated using ab initio methods. The structure and energetics of reactants, products, and transition structures are determined for all pathways involved in the oxidation mechanism. The detailed pathways leading to the experimentally observed products of dimethyl ether oxidation are presented. The energetics of over 50 species and transition structures involved in the oxidation process are calculated with G2 and G2(MP2) energies. The principal pathway following the initial attack of dimethyl ether (CH{sub 3}OCH{sub 3}) by the OH radical is the formation of the methoxymethyl radical (CH{sub 2}OCH{sub 3}). Oxidation steps lead to the formation of methyl formate, which is consistent with the experimentally observed products. Oxidation pathways of methyl formate are also considered.

  16. Reaction Pathways and Energetics of Etheric C−O Bond Cleavage Catalyzed by Lanthanide Triflates

    SciTech Connect (OSTI)

    Assary, Rajeev S.; Atesin, Abdurrahman C.; Li, Zhi; Curtiss, Larry A.; Marks, Tobin J.

    2013-07-15

    Efficient and selective cleavage of etheric C−O bonds is crucial for converting biomass into platform chemicals and liquid transportation fuels. In this contribution, computational methods at the DFT B3LYP level of theory are employed to understand the efficacy of lanthanide triflate catalysts (Ln(OTf)3, Ln = La, Ce, Sm, Gd, Yb, and Lu) in cleaving etheric C−O bonds. In agreement with experiment, the calculations indicate that the reaction pathway for C−O cleavage occurs via a C−H → O−H proton transfer in concert with weakening of the C−O bond of the coordinated ether substrate to ultimately yield a coordinated alkenol. The activation energy for this process falls as the lanthanide ionic radius decreases, reflecting enhanced metal ion electrophilicity. Details of the reaction mechanism for Yb(OTf)3-catalyzed ring opening are explored in depth, and for 1-methyl-d3-butyl phenyl ether, the computed primary kinetic isotope effect of 2.4 is in excellent agreement with experiment (2.7), confirming that etheric ring-opening pathway involves proton transfer from the methyl group alpha to the etheric oxygen atom, which is activated by the electrophilic lanthanide ion. Calculations of the catalytic pathway using eight different ether substrates indicate that the more rapid cleavage of acyclic versus cyclic ethers is largely due to entropic effects, with the former C−O bond scission processes increasing the degrees of freedom/particles as the transition state is approached.

  17. Hydrogen Atom Reactivity toward Aqueous tert-Butyl Alcohol

    SciTech Connect (OSTI)

    Lymar S. V.; Schwarz, H.A.

    2012-02-09

    Through a combination of pulse radiolysis, purification, and analysis techniques, the rate constant for the H + (CH{sub 3}){sub 3}COH {yields} H{sub 2} + {sm_bullet}CH{sub 2}C(CH{sub 3}){sub 2}OH reaction in aqueous solution is definitively determined to be (1.0 {+-} 0.15) x 10{sup 5} M{sup -1} s{sup -1}, which is about half of the tabulated number and 10 times lower than the more recently suggested revision. Our value fits on the Polanyi-type, rate-enthalpy linear correlation ln(k/n) = (0.80 {+-} 0.05){Delta}H + (3.2 {+-} 0.8) that is found for the analogous reactions of other aqueous aliphatic alcohols with n equivalent abstractable H atoms. The existence of such a correlation and its large slope are interpreted as an indication of the mechanistic similarity of the H atom abstraction from {alpha}- and {beta}-carbon atoms in alcohols occurring through the late, product-like transition state. tert-Butyl alcohol is commonly contaminated by much more reactive secondary and primary alcohols (2-propanol, 2-butanol, ethanol, and methanol), whose content can be sufficient for nearly quantitative scavenging of the H atoms, skewing the H atom reactivity pattern, and explaining the disparity of the literature data on the H + (CH{sub 3}){sub 3}COH rate constant. The ubiquitous use of tert-butyl alcohol in pulse radiolysis for investigating H atom reactivity and the results of this work suggest that many other previously reported rate constants for the H atom, particularly the smaller ones, may be in jeopardy.

  18. Alternative Fuels Data Center: Dimethyl Ether

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dimethyl Ether to someone by E-mail Share Alternative Fuels Data Center: Dimethyl Ether on Facebook Tweet about Alternative Fuels Data Center: Dimethyl Ether on Twitter Bookmark Alternative Fuels Data Center: Dimethyl Ether on Google Bookmark Alternative Fuels Data Center: Dimethyl Ether on Delicious Rank Alternative Fuels Data Center: Dimethyl Ether on Digg Find More places to share Alternative Fuels Data Center: Dimethyl Ether on AddThis.com... More in this section... Biobutanol Dimethyl Ether

  19. Butyl Fuel LLC formerly Environmental Energy Inc | Open Energy...

    Open Energy Info (EERE)

    Butyl Fuel LLC formerly Environmental Energy Inc Jump to: navigation, search Name: Butyl Fuel LLC (formerly Environmental Energy Inc) Place: Ohio Zip: 43004 Product:...

  20. Propenyl ether monomers for photopolymerization

    DOE Patents [OSTI]

    Crivello, James V.

    1996-01-01

    Propenyl ether monomers of formula V A(OCH.dbd.CHCH.sub.3).sub.n wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  1. Propenyl ether monomers for photopolymerization

    DOE Patents [OSTI]

    Crivello, J.V.

    1996-10-22

    Propenyl ether monomers of formula A(OCH{double_bond}CHCH{sub 3}){sub n} wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of the above formula together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  2. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Jones, E.M. Jr.; Hearn, D.

    1984-05-08

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150 to 250 F at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C[sub 3] to C[sub 6] and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom. 2 figs.

  3. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.; Jones, Jr., Edward M.; Hearn, Dennis

    1984-01-01

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150.degree. to 250.degree. F. at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C.sub.3 to C.sub.6 and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom.

  4. Atmospheric and combustion chemistry of dimethyl ether

    SciTech Connect (OSTI)

    Nielsen, O.J.; Egsgaard, H.; Larsen, E.; Sehested, J.; Wallington, T.J.

    1997-12-31

    It has been demonstrated that dimethyl ether (DME) is an ideal diesel fuel alternative. DME, CH{sub 3}OCH{sub 3}, combines good fuel properties with low exhaust emissions and low combustion noise. Large scale production of this fuel can take place using a single step catalytic process converting CH{sub 4} to DME. The fate of DME in the atmosphere has previously been studied. The atmospheric degradation is initiated by the reaction with hydroxyl radicals, which is also a common feature of combustion processes. Spectrokinetic investigations and product analysis were used to demonstrate that the intermediate oxy radical, CH{sub 3}OCH{sub 2}O, exhibits a novel reaction pathway of hydrogen atom ejection. The application of tandem mass spectrometry to chemi-ions based on supersonic molecular beam sampling has recently been demonstrated. The highly reactive ionic intermediates are sampled directly from the flame and identified by collision activation mass spectrometry and ion-molecule reactions. The mass spectrum reflects the distribution of the intermediates in the flame. The atmospheric degradation of DME as well as the unique fuel properties of a oxygen containing compound will be discussed.

  5. Ether and ester derivatives of the perborate icosahedron

    DOE Patents [OSTI]

    Hawthorne, M. Frederick; Peymann, Toralf; Maderna, Andreas

    2003-12-16

    New boron icosahedral ethers and esters formed from Cs.sub.2 [closo-B.sub.12 (OH).sub.12 ],; Cs[closo-1-H-1-CB.sub.11 (OH).sub.11 ]; and closo-1,12-H.sub.2 -1,12-C.sub.2 B.sub.10 (OH).sub.10 are disclosed. Also set forth are their preparation by reacting the icosahedral boranes [closo-B.sub.12 H.sub.12 ].sup.2-, [closo-1-CB.sub.11 H.sub.12 ].sup.- and closo-1,12-(CH.sub.2 OH).sub.2 -1,12-C.sub.2 B.sub.10 H.sub.10 with an acid anhdride or acid chloride to form the ester or an alkylating agent to form the ether.

  6. Features of the spectral dependences of transmittance of organic semiconductors based on tert-butyl substituted lutetium phthalocyanine molecules

    SciTech Connect (OSTI)

    Belogorokhov, I. A.; Tikhonov, E. V.; Dronov, M. A.; Belogorokhova, L. I.; Ryabchikov, Yu. V.; Tomilova, L. G.; Khokhlov, D. R.

    2011-11-15

    Vibronic properties of organic semiconductors based on tert-butyl substituted phthalocyanine lutetium diphthalocyanine molecules are studied by IR and Raman spectroscopy. It is shown that substitution of several carbon atoms in initial phthalocyanine (Pc) ligands with {sup 13}C isotope atoms causes a spectral shift in the main absorption lines attributed to benzene, isoindol, and peripheral C-H groups. A comparison of spectral characteristics showed that the shift can vary from 3 to 1 cm{sup -1}.

  7. Sulfonimide-containing poly(arylene ether)s and poly(arylene ether sulfone)s, methods for producing the same, and uses thereof

    DOE Patents [OSTI]

    Hofmann, Michael A.

    2006-11-14

    The present invention is directed to sulfonimide-containing polymers, specifically sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, and processes for making the sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, for use conductive membranes and fuel cells.

  8. Mechanisms of Selective Cleavage of C-O Bonds in Di-aryl Ethers in Aqueous Phase

    SciTech Connect (OSTI)

    He, Jiayue; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-01-02

    A novel route for cleaving the C-O aryl ether bonds of p-substituted H-, CH3-, and OH- diphenyl ethers has been explored over Ni/SiO2 catalysts at very mild conditions. The C-O bond of diphenyl ether is cleaved by parallel hydrogenolysis and hydrolysis (hydrogenolysis combined with HO* addition) on Ni. The rates as a function of H2 pressure from 0 to 10 MPa indicate that the rate-determining step is the C-O bond cleavage on Ni. H* atoms compete with the organic reactant for adsorption leading to a maximum in the rate with increasing H2 pressure. In contrast to diphenyl ether, hydrogenolysis is the exclusive route for cleaving an ether C-O bond of di-p-tolyl ether to form p-cresol and toluene. 4,4'-dihydroxydiphenyl ether undergoes sequential surface hydrogenolysis, first to phenol and HOC6H4O* (adsorbed), which is then cleaved to phenol (C6H5O* with added H*) and H2O (O* with two added H*) in a second step. Density function theory supports the operation of this pathway. Notably, addition of H* to HOC6H4O* is less favorable than a further hydrogenolytic C-O bond cleavage. The TOFs of three aryl ethers with Ni/SiO2 in water followed the order 4,4'-dihydroxydiphenyl ether (69 h-1) > diphenyl ether (26 h-1) > di-p-tolyl ether (1.3 h-1), in line with the increasing apparent activation energies, ranging from 93 kJ∙mol-1 (4,4'-dihydroxydiphenyl ether) < diphenyl ether (98 kJ∙mol-1) to di-p-tolyl ether (105 kJ∙mol-1). D.M. thanks the support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R

  9. Aza crown ether compounds as anion receptors

    DOE Patents [OSTI]

    Lee, H.S.; Yang, X.O.; McBreen, J.

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI{sup +} ion in alkali metal batteries. 3 figs.

  10. Aza crown ether compounds as anion receptors

    DOE Patents [OSTI]

    Lee, Hung Sui; Yang, Xiao-Oing; McBreen, James

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.

  11. Crown ethers in graphene (Journal Article) | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Crown ethers in graphene Prev Next Title: Crown ethers in graphene Crown ethers, ... them for many uses that demand higher binding affinity and selectivity9,10. In this ...

  12. Alternative Fuels lDimethyl Ether Rheology and Materials Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels lDimethyl Ether Rheology and Materials Studies Alternative Fuels lDimethyl Ether Rheology and Materials Studies 2004 Diesel Engine Emissions Reduction (DEER) Conference ...

  13. Barrierless proton transfer across weak CH⋯O hydrogen bonds in dimethyl ether dimer

    SciTech Connect (OSTI)

    Yoder, Bruce L. West, Adam H. C.; Signorell, Ruth; Bravaya, Ksenia B.; Bodi, Andras; Sztáray, Bálint

    2015-03-21

    We present a combined computational and threshold photoelectron photoion coincidence study of two isotopologues of dimethyl ether, (DME − h{sub 6}){sub n} and (DME − d{sub 6}){sub n}n = 1 and 2, in the 9–14 eV photon energy range. Multiple isomers of neutral dimethyl ether dimer were considered, all of which may be present, and exhibited varying C–H⋯O interactions. Results from electronic structure calculations predict that all of them undergo barrierless proton transfer upon photoionization to the ground electronic state of the cation. In fact, all neutral isomers were found to relax to the same radical cation structure. The lowest energy dissociative photoionization channel of the dimer leads to CH{sub 3}OHCH{sub 3}{sup +} by the loss of CH{sub 2}OCH{sub 3} with a 0 K appearance energy of 9.71 ± 0.03 eV and 9.73 ± 0.03 eV for (DME − h{sub 6}){sub 2} and deuterated (DME − d{sub 6}){sub 2}, respectively. The ground state threshold photoelectron spectrum band of the dimethyl ether dimer is broad and exhibits no vibrational structure. Dimerization results in a 350 meV decrease of the valence band appearance energy, a 140 meV decrease of the band maximum, thus an almost twofold increase in the ground state band width, compared with DME − d{sub 6} monomer.

  14. Solvent Modification in Ion-Pair Extraction: Effect on Sodium Nitrate Transport in Nitrobenzene Using a Crown Ether

    SciTech Connect (OSTI)

    Levitskaia, Tatiana G.; Lumetta, Gregg J.

    2005-10-31

    A comparative quantitative analysis of the effect of solvent modifiers on an ion-pair extraction of an inorganic salt by a crown ether was conducted. Two classes of the solvent modifiers that possess electron-pair donor (EPD) or hydrogen-bond donor (HBD) groups were investigated. The equilibrium constants corresponding to the extraction of sodium nitrate into nitrobenzene (NB) employing model neutral host cis-syn-cis-dicyclohexano-18-crown-6 (1) with and without solvent modifier were determined using the SXLSQI computer model. For a series of EPD modifiers—including tri-n-butyl- and tri-phenylphosphate, tri-n-butyl- and tri-phenylphosphine oxide, N,N-di-n-butyl- and N,N-di-phenyl acetamide—the enhancement of the NaNO3 extraction by 1 was found to be dependent on the hydrogen-bond acceptance ability of the modifier quantified by the b solvatochromic parameter. Application of the solvent EPD modifier improved solvation of the sodium ion, lowering the large energy barrier of Na+ partitioning into the extraction phase. A HBD modifier 3,5-di-t-butylphenol 8 that forms strong hydrogen bonds with nitrate anion in NB, exhibited even greater enhancement of the NaNO3 extraction by 1. The determined extraction constants were correlated with the b or a solvatochromic parameters of the solvent modifiers and linear trends were observed. Hydrogen bond interaction between 3,5-di-t-butylphenol 8 and nitrate anion in the presence of the sodium-loaded crown ether in the extraction phases was studied by vibrational spectroscopy. Formation of the simple 1:1 adduct was demonstrated.

  15. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    SciTech Connect (OSTI)

    Binder, Thomas; Erpelding, Michael; Schmid, Josef; Chin, Andrew; Sammons, Rhea; Rockafellow, Erin

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  16. Crown ethers in graphene (Journal Article) | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Crown ethers in graphene Prev Next Title: Crown ethers in graphene You are ... them for many uses that demand higher binding affinity and selectivity9,10. In this ...

  17. Crown ethers in graphene (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Crown ethers in graphene Citation Details In-Document Search Title: Crown ethers in ... them for many uses that demand higher binding affinity and selectivity9,10. In this ...

  18. Process for making propenyl ethers and photopolymerizable compositions containing them

    DOE Patents [OSTI]

    Crivello, James V.

    1996-01-01

    Propenyl ether monomers of formula V A(OCH.dbd.CHCH.sub.3).sub.n wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  19. Process for making propenyl ethers and photopolymerizable compositions containing them

    DOE Patents [OSTI]

    Crivello, J.V.

    1996-01-23

    Propenyl ether monomers of formula A(OCH{double_bond}CHCH{sub 3}){sub n} (V) wherein n is an integer from one to six and A is selected from cyclic ethers, polyether, and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  20. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2003-06-26

    Introduction - This procedure provides instructions for assembling the following CH packaging payload: -Drum payload assembly -Standard Waste Box (SWB) assembly -Ten-Drum Overpack (TDOP).

  1. Conversion of Lignocellulosic Biomass to Ethanol Butyl Acrylate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate March 25, 2015 Principal Investigator Thomas P. Binder ARCHER DANIELS MIDLAND COMPANY 2 Where does ADM fit with the IBR? * Ensuring a supply of technology for future growth is a priority for ADM Research * Corn stover utilization may enable continued growth in starch supply while starting a new industry around a currently underutilized material James R Randall Research Center Decatur, IL ARCHER DANIELS MIDLAND COMPANY 3 Quad

  2. TABLE33.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), and other aliphatic alcohols and ethers intended for motor gasoline blending...

  3. TABLE34.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), and other aliphatic alcohols and ethers intended for motor gasoline blending...

  4. Alternative Fuels lDimethyl Ether Rheology and Materials Studies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Alternative Fuels lDimethyl Ether Rheology and Materials Studies Alternative Fuels lDimethyl Ether Rheology and Materials Studies 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: The Pennsylvania State University 2004_deer_perez.pdf (548.66 KB) More Documents & Publications Research on Fuels & Lubricants Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Ionic Liquids as Multifunctional Ashless Additives for Engine Lubrication

  5. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-06-13

    This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

  6. Divinyl ether synthase gene and protein, and uses thereof

    SciTech Connect (OSTI)

    Howe, Gregg A.; Itoh, Aya

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  7. Divinyl ether synthase gene, and protein and uses thereof

    DOE Patents [OSTI]

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  8. Computational and experimental study of the effects of adding dimethyl ether and ethanol to nonpremixed ethylene/air flames

    SciTech Connect (OSTI)

    Bennett, Beth Anne V.; McEnally, Charles S.; Pfefferle, Lisa D.; Smooke, Mitchell D.; Colket, Meredith B.

    2009-06-15

    Two sets of axisymmetric laminar coflow flames, each consisting of ethylene/air nonpremixed flames with various amounts (up to 10%) of either dimethyl ether (CH{sub 3}-O-CH{sub 3}) or ethanol (CH{sub 3}-CH{sub 2}-OH) added to the fuel stream, have been examined both computationally and experimentally. Computationally, the local rectangular refinement method, which incorporates Newton's method, is used to solve the fully coupled nonlinear conservation equations on solution-adaptive grids for each flame in two spatial dimensions. The numerical model includes C6 chemical kinetic mechanisms with up to 59 species, detailed transport, and an optically thin radiation submodel. Experimentally, thermocouples are used to measure gas temperatures, and mass spectrometry is used to determine concentrations of over 35 species along the flame centerline. Computational results are examined throughout each flame, and validation of the model occurs through comparison with centerline measurements. Very good agreement is observed for temperature, major species, and several minor species. As the level of additive is increased, temperatures, some major species (CO{sub 2}, C{sub 2}H{sub 2}), flame lengths, and residence times are essentially unchanged. However, peak centerline concentrations of benzene (C{sub 6}H{sub 6}) increase, and this increase is largest when dimethyl ether is the additive. Computational and experimental results support the hypothesis that the dominant pathway to C{sub 6}H{sub 6} formation begins with the oxygenates decomposing into methyl radical (CH{sub 3}), which combines with C2 species to form propargyl (C{sub 3}H{sub 3}), which reacts with itself to form C{sub 6}H{sub 6}. (author)

  9. Arylations of coal model systems. [Benzyl phenyl ether and l-naphthylmethyl phenyl ether

    SciTech Connect (OSTI)

    Smith, B.F.; Venier, C.G.; Squires, T.G.

    1984-01-01

    Currently, coal is converted to clean liquids or low melting solids by processes which utilize high temperature, high pressure, or both. These processes occur by thermal bond cleavages and involve the intermediacy of free radicals. In a search for chemistry which could liquefy coal under milder conditions, the authors have focussed on thermally less demanding ionic reactions. Of the functional groups which commonly occur in coals, ethers are the easiest to cleave under acid conditions. Depending on the density of these linkages and their importance as crosslinks in the macromolecular structure of coals, solubilization might be greatly enhanced solely by cleaving and capping either bonds. Benzylic ethers are particularly reactive and have been implicated in the initiation of coal pyrolysis and hydropyrolysis. Arylation, the use of acids to cleave bonds in coals in the presence of aromatic rings to trap the consequent incipient carbonium ions, has a long history. This paper discusses the use of benzyl phenyl ether and l-naphthylmethyl phenyl ether and polymers related to them as models to develop and evaluate the chemistry involved in the arylations. 9 references, 1 figure, 4 tables.

  10. Separation of Dimethyl Ether from Syn-Gas Components by Poly(dimethylsiloxane) and Poly(4-methyl-1-pentene) Membranes

    SciTech Connect (OSTI)

    Christopher J. Orme; Frederick F. Stewart

    2011-05-01

    Permeability and selectivity in gas transport through poly(4-methyl-1-pentene) (TPX) and poly(dimethylsiloxane) (PDMS) using variable temperature mixed gas experiments is reported. Selected gases include H2, CO, CH4, CO2, and dimethyl ether (DME). The DME data is the first to be reported through these membranes. In this paper, the chosen polymers reflect both rubbery and crystalline materials. Rubbery polymers tend to be weakly size sieving, which, in this work, has resulted in larger permeabilities, lower separation factors, and lower activation energies of permeation (Ep). Conversely, the crystalline TPX membranes showed much greater sensitivity to penetrant size; although the gas condensability also played a role in transport.

  11. N-butyl Cyanoacrylate Glue Embolization of Arterial Networks to Facilitate

    Office of Scientific and Technical Information (OSTI)

    Hepatic Arterial Skeletonization before Radioembolization (Journal Article) | SciTech Connect N-butyl Cyanoacrylate Glue Embolization of Arterial Networks to Facilitate Hepatic Arterial Skeletonization before Radioembolization Citation Details In-Document Search Title: N-butyl Cyanoacrylate Glue Embolization of Arterial Networks to Facilitate Hepatic Arterial Skeletonization before Radioembolization Purpose. Avoidance of nontarget microsphere deposition via hepatoenteric anastomoses is

  12. Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Alternative Fuels lDimethyl Ether Rheology and ...

  13. Process for producing dimethyl ether from synthesis gas

    DOE Patents [OSTI]

    Pierantozzi, R.

    1985-06-04

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  14. Process for producing dimethyl ether form synthesis gas

    DOE Patents [OSTI]

    Pierantozzi, Ronald

    1985-01-01

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  15. Hydrogen production from the steam reforming of Dinethyl Ether and Methanol

    SciTech Connect (OSTI)

    Semelsberger, T. A.; Borup, R. L.

    2004-01-01

    This study investigates dimethyl ether (DME) steam reforming for the generation of hydrogen rich fuel cell feeds for fuel cell applications. Methanol has long been considered as a fuel for the generation of hydrogen rich fuel cell feeds due to its high energy density, low reforming temperature, and zero impurity content. However, it has not been accepted as the fuel of choice due its current limited availability, toxicity and corrosiveness. While methanol steam reforming for the generation of hydrogen rich fuel cell feeds has been extensively studied, the steam reforming of DME, CH{sub 3}OCH{sub 3} + 3H{sub 2}O = 2CO{sub 2} + 6H{sub 2}, has had limited research effort. DME is the simplest ether (CH{sub 3}OCH{sub 3}) and is a gas at ambient conditions. DME has physical properties similar to those of LPG fuels (i.e. propane and butane), resulting in similar storage and handling considerations. DME is currently used as an aerosol propellant and has been considercd as a diesel substitute due to the reduced NOx, SOx and particulate emissions. DME is also being considered as a substitute for LPG fuels, which is used extensively in Asia as a fuel for heating and cooking, and naptha, which is used for power generation. The potential advantages of both methanol and DME include low reforming temperature, decreased fuel proccssor startup energy, environmentally benign, visible flame, high heating value, and ease of storage and transportation. In addition, DME has the added advantages of low toxicity and being non-corrosive. Consequently, DME may be an ideal candidate for the generation of hydrogen rich fuel cell feeds for both automotive and portable power applications. The steam reforming of DME has been demonstrated to occur through a pair of reactions in series, where the first reaction is DME hydration followed by MeOH steam reforming to produce a hydrogen rich stream.

  16. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    SciTech Connect (OSTI)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang; Boyer, François; Olivier, Philippe; Sapelkin, Andrei; King, Stephen; Heenan, Richard; Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri

    2014-06-21

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  17. Development of specialty chemicals from dimethyl ether

    SciTech Connect (OSTI)

    Tartamella, T.L.; Lee, S.

    1996-12-31

    Dimethyl ether (DME) may be efficiently produced from coal-bases syngas in a high pressure, mechanically agitated slurry reactor. DME synthesis occurs in the liquid phase using a dual catalyst. By operating in a dual catalyst mode, DME may be converted from in-situ produced methanol resulting in higher methyl productivities and syngas conversions over methanol conversion alone. The feasibility of utilizing DME as a building block for more valuable specialty chemicals has been examined. A wide variety of petrochemicals may be produced from DME including light olefins, gasoline range hydrocarbons, oxygenates, and glycol precursors. These chemicals represent an important part of petroleum industries inventory of fine chemicals. Carbonylation, hydrocarbonylation, and oxidative dimerization are but a few of the reactions in which DME may undergo conversion. DME provides an additional route for the production of industrially important petrochemicals.

  18. High pressure injection of dimethyl ether

    SciTech Connect (OSTI)

    Glensvig, M.; Sorenson, S.C.; Abata, D.

    1996-12-31

    Partially oxygenated hydrocarbons produced from natural gas have been shown to be viable alternate fuels for the diesel engine, showing favorable combustion characteristics similar to that of diesel fuel but without exhaust particulates and with significantly reduced NO{sub x} emissions and lower engine noise. Further, engine studies have demonstrated that such compounds, like dimethyl ether (DME), can be injected at much lower pressures than conventional diesel fuel with better overall performance. This experimental study compares the injection of DME to that of conventional diesel fuel. Both fuels were injected into a quiescent high pressure chamber containing Nitrogen at pressures up to 25 atmospheres at room temperature with a pintle nozzle and jerk pump. Comparisons were obtained with high speed photography using a Hycam camera. Results indicate that there are significant differences in spray geometry and penetration which are not predictable with analytical models currently used for diesel fuels.

  19. CH-TRUCON Rev. 21, January 2008

    Office of Environmental Management (EM)

    DOEWIPP 01-3194 Rev. 21 CH-TRU WASTE CONTENT CODES (CH-TRUCON) Revision 21 January 2008 ... 01-3194 2 DOEWIPP 01-3194 Rev. 21 CH-TRU WASTE CONTENT CODES (CH-TRUCON) Revision 21 ...

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  1. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  2. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  3. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  4. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-05-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  7. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  10. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-11-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  14. CH-TRU Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-10-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2004-10-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  16. CH-TRU Waste Content Codes (CH TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2004-12-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-03-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  18. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-01-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-01-30

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  20. NOPR CH2M | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CH2M NOPR CH2M NOPR CH2M (62.16 KB) More Documents & Publications NOPR NEI NEI Statement DOE Workshop 02 20 FINAL NOPR CIGNL

  1. Mechanisms of Selective Cleavage of C-O Bonds in Di-aryl Ethers...

    Office of Scientific and Technical Information (OSTI)

    Selective Cleavage of C-O Bonds in Di-aryl Ethers in Aqueous Phase Citation Details In-Document Search Title: Mechanisms of Selective Cleavage of C-O Bonds in Di-aryl Ethers in ...

  2. Li-air batteries having ether-based electrolytes

    DOE Patents [OSTI]

    Amine, Khalil; Curtiss, Larry A; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2015-03-03

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  3. Study on systems based on coal and natural gas for producing dimethyl ether

    SciTech Connect (OSTI)

    Zhou, L.; Hu, S.Y.; Chen, D.J.; Li, Y.R.; Zhu, B.; Jin, Y.

    2009-04-15

    China is a coal-dependent country and will remain so for a long time. Dimethyl ether (DME), a potential substitute for liquid fuel, is a kind of clean diesel motor fuel. The production of DME from coal is meaningful and is studied in this article. Considering the C/H ratios of coal and natural gas (NG), the cofeed (coal and NG) system (CFS), which does not contain the water gas shift process, is studied. It can reduce CO{sub 2} emission and increase the conversion rate of carbon, producing more DME. The CFS is simulated and compared with the coal-based and NG-based systems with different recycling ratios. The part of the exhaust gas that is not recycled is burned, producing electricity. On the basis of the simulation results, the thermal efficiency, economic index, and CO{sub 2} emission ratio are calculated separately. The CFS with a 100% recycling ratio has the best comprehensive evaluation index, while the energy, economy, and environment were considered at the same time.

  4. DISCOVERY OF THE METHOXY RADICAL, CH{sub 3}O, TOWARD B1: DUST GRAIN AND GAS-PHASE CHEMISTRY IN COLD DARK CLOUDS

    SciTech Connect (OSTI)

    Cernicharo, J.; Jimenez-Escobar, A.; Munoz Caro, G. M.; Marcelino, N.; Roueff, E.; Gerin, M.

    2012-11-10

    We report on the discovery of the methoxy radical (CH{sub 3}O) toward the cold and dense core B1-b based on the observation, with the IRAM 30 m radio telescope, of several lines at 3 and 2 mm wavelengths. Besides this new molecular species we also report on the detection of many lines arising from methyl mercaptan (CH{sub 3}SH), formic acid (HCOOH), propynal (HCCCHO), acetaldehyde (CH{sub 3}CHO), dimethyl ether (CH{sub 3}OCH{sub 3}), methyl formate (CH{sub 3}OCOH), and the formyl radical (HCO). The column density of all these species is {approx_equal}10{sup 12} cm{sup -2}, corresponding to abundances of {approx_equal}10{sup -11}. The similarity in abundances for all these species strongly suggest that they are formed on the surface of dust grains and ejected to the gas phase through non-thermal desorption processes, most likely cosmic rays or secondary photons. Nevertheless, laboratory experiments indicate that the CH{sub 3}O isomer released to the gas phase is CH{sub 2}OH rather than the methoxy one. Possible gas-phase formation routes to CH{sub 3}O from OH and methanol are discussed.

  5. On the competition between hydrogen abstraction versus C-O bond fission in initiating dimethyl ether combustion

    SciTech Connect (OSTI)

    Francisco, J.

    1999-07-01

    There has been a growing interest in the potential use of dimethyl ether (DME) as a diesel fuel in compression ignition engines. There are two initiation steps involved in the combustion of DME, one involving C-O bond fission and the other involving hydrogen abstraction by molecular oxygen. The kinetics and thermodynamics of C-O bond fission were explored computationally in a previous paper. The present paper addresses the competing process--hydrogen abstraction by molecular oxygen. Ab initio molecular orbital calculations are used to study the structures and energetics of the reactants, products, and the transition state for the CH{sub 3}OCH{sub 3} + O{sub 2} reaction. The calculations predict a barrier for hydrogen abstraction from CH{sub 3}OCH{sub 3} by O{sub 2} of 47.4 kcal/mol. This is lower than the barrier height for C-O bond fission previously calculated to be 81.1 kcal/mol. The results support values used in current models for the combustion of DME. Moreover, an examination of rates for C-O bond fission versus hydrogen abstraction by O{sub 2} suggests that the bimolecular process is the dominant pathway.

  6. CATALYSTS FOR HIGH CETANE ETHERS AS DIESEL FUELS

    SciTech Connect (OSTI)

    Kamil Klier; Richard G. Herman; James G.C. Shen; Qisheng Ma

    2000-08-31

    A novel 1,2-ethanediol, bis(hydrogen sulfate), disodium salt precursor-based solid acid catalyst with a zirconia substrate was synthesized and demonstrated to have significantly enhanced activity and high selectivity in producing methyl isobutyl ether (MIBE) or isobutene from methanol-isobutanol mixtures. The precursor salt was synthesized and provided by Dr. T. H. Kalantar of the M.E. Pruitt Research Center, Dow Chemical Co., Midland, MI 48674. Molecular modeling of the catalyst synthesis steps and of the alcohol coupling reaction is being carried out. A representation of the methyl transfer from the surface activated methanol molecule (left) to the activated oxygen of the isobutanol molecule (right) to form an ether linkage to yield MIBE is shown.

  7. 2' and 3' Carboranyl uridines and their diethyl ether adducts

    DOE Patents [OSTI]

    Soloway, Albert H.; Barth, Rolf F.; Anisuzzaman, Abul K.; Alam, Fazlul; Tjarks, Werner

    1992-01-01

    There is disclosed a process for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. Said carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of said compounds in methods for boron neutron capture therapy in mammalian tumor cells.

  8. High octane ethers from synthesis gas-derived alcohol

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Bastian, R.D.; DeTavernier, S. . Dept. of Chemistry Lehigh Univ., Bethlehem, PA . Zettlemoyer Center for Surface Studies)

    1991-01-01

    The objective of the proposed research is to synthesize high octane ethers directly from coal-derived synthesis gas via alcohol mixtures that are rich in methanol and isobutanol. The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. Commercial acid and superacid resin catalysts were obtained and tested under one set of conditions to compare the activities and selectivities for forming the unsymmetric methylisobutylether (MIBE) by coupling methanol with isobutanol. It was found that both Nafion-H microsaddles and Amberlyst-15 resins are active for this synthesis reaction. While and the Nafion-H catalyst does form the MIBE product fairly selectively under the reaction conditions utilized, the Amberlyst-15 catalyst formed dimethylether (DME) as the major product. In addition, significantly larger quantities of the C{sub 4} hydrocarbon products were observed over the Amberlyst-15 catalyst at 123{degree}C and 13.6 atm. It has been demonstrated that methyltertiarybutylether (MTBE) MIBE, DME and diisobutylether (DIBE) are separated and quantitatively determined by using the proper analytical conditions. In order to gain insight into the role of superacidity in promoting the selective coupling of the alcohols to form the unsymmetric ether, the strengths of the acid sites on the catalysts are being probed by thermometric titrations in non-aqueous solutions. 18 refs., 20 figs., 4 tabs.

  9. CH-TRUCON Rev. 21, January 2008

    Office of Environmental Management (EM)

    DOE/WIPP 01-3194 Rev. 21 CH-TRU WASTE CONTENT CODES (CH-TRUCON) Revision 21 January 2008 This document supercedes DOE/WIPP 01-3194, Revision 20 CH-TRUCON, Rev. 21, January 2008 DOE/WIPP 01-3194 2 DOE/WIPP 01-3194 Rev. 21 CH-TRU WASTE CONTENT CODES (CH-TRUCON) Revision 21 January 2008 Approved by: [Signature on File] Date:____________ D. Casey Gadbury, National TRU Program Director CH-TRUCON, Rev. 21, January 2008 DOE/WIPP 01-3194 3 This document has been submitted as required to: Office of

  10. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    SciTech Connect (OSTI)

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  11. Methyl aryl ethers from coal liquids as gasoline extenders and octane improvers

    SciTech Connect (OSTI)

    Singerman, G.M.

    1980-11-01

    A mixture of methyl aryl ethers derived from the phenols present in direct liquefaction coal liquids shows considerable promise as a gasoline blending agent and octane improver. The mixture of methyl aryl ethers was blended at five volume percent with a commercial, unleaded gasoline. The properties and performance of the blend in a variety of laboratory and automotive tests is reported. The tests show that the mixture of methyl aryl ethers improves gasoline octane without degrading other gasoline properties.

  12. Supply Impacts of an MTBE Ban

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes the supply impacts of removing methyl tertiary butyl ether (MTBE) from gasoline.

  13. On the radiation stability of crown ethers in ionic liquids.

    SciTech Connect (OSTI)

    Shkrob, I.; Marin, T.; Dietz, M.

    2011-04-14

    Crown ethers (CEs) are macrocyclic ionophores used for the separation of strontium-90 from acidic nuclear waste streams. Room temperature ionic liquids (ILs) are presently being considered as replacements for traditional molecular solvents employed in such separations. It is desirable that the extraction efficacy obtained with such solvents should not deteriorate in the strong radiation fields generated by decaying radionuclides. This deterioration will depend on the extent of radiation damage to both the IL solvent and the CE solute. While radiation damage to ILs has been extensively studied, the issue of the radiation stability of crown ethers, particularly in an IL matrix, has not been adequately addressed. With this in mind, we have employed electron paramagnetic resonance (EPR) spectroscopy to study the formation of CE-related radicals in the radiolysis of selected CEs in ILs incorporating aromatic (imidazolium and pyridinium) cations. The crown ethers have been found to yield primarily hydrogen loss radicals, H atoms, and the formyl radical. In the low-dose regime, the relative yield of these radicals increases linearly with the mole fraction of the solute, suggesting negligible transfer of the excitation energy from the solvent to the solute; that is, the solvent has a 'radioprotective' effect. The damage to the CE in the loading region of practical interest is relatively low. Under such conditions, the main chemical pathway leading to decreased extraction performance is protonation of the macrocycle. At high radiation doses, sufficient to increase the acidity of the IL solvent significantly, such proton complexes compete with the solvent cations as electron traps. In this regime, the CEs will rapidly degrade as the result of H abstraction from the CE ring by the released H atoms. Thus, the radiation dose to which a CE/IL system is exposed must be maintained at a level sufficiently low to avoid this regime.

  14. An aging study of wire chambers with dimethyl ether

    SciTech Connect (OSTI)

    Jibaly, M.; Chrusch, P. Jr.; Hilgenberg, G.; Majewski, S.; Wojcik, R.; Sauli, F.; Gaudaen, J.

    1989-02-01

    The authors report results on the aging of different types of resistive and non-resistive wires in wire chambers filled with dimethyl ether (DME) of varying degrees of purity. Among the Freon impurities detected in our DME batches, only Freon-11 was found to contribute to the aging process. Of the resistive wires, Nicotin and Stablohm produced fast aging, whereas stainless steel withstood extended irradiation in purified DME (up to 1 C/cm) without any apparent damage. Gold-plated tungsten and molybdenum wires produced results comparable to those of the stainless steel.

  15. Dimethyl ether production from methanol and/or syngas

    DOE Patents [OSTI]

    Dagle, Robert A; Wang, Yong; Baker, Eddie G; Hu, Jianli

    2015-02-17

    Disclosed are methods for producing dimethyl ether (DME) from methanol and for producing DME directly from syngas, such as syngas from biomass. Also disclosed are apparatus for DME production. The disclosed processes generally function at higher temperatures with lower contact times and at lower pressures than conventional processes so as to produce higher DME yields than do conventional processes. Certain embodiments of the processes are carried out in reactors providing greater surface to volume ratios than the presently used DME reactors. Certain embodiments of the processes are carried out in systems comprising multiple microchannel reactors.

  16. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. Within the Combustion Laboratory of the Penn State Energy Institute, they have installed and equipped a Navistar V-8 direct-injection turbodiesel engine for measurement of gaseous and particulate emissions and examination of the impact of fuel composition on diesel combustion. They have also reconfigured a high-pressure viscometer for studies of the viscosity, bulk modulus (compressibility) and miscibility of blends of diesel fuel, dimethyl ether and lubricity additives. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have examined blends of an oxygenated fuel additive (a liquid fuel called CETANER{trademark}) produced by Air Products, for comparison with dimethyl ether blended at the same weight of oxygen addition, 2 wt.%. While they have not operated the engine on DME yet, they are now preparing to do so. A fuel system for delivery of DME/Diesel blends has been configured

  17. Structure and Reactivity of Alkyl Ethers Adsorbed on CeO2(111) Model Catalysts

    SciTech Connect (OSTI)

    F Calaza; T Chen; D Mullins; S Overbury

    2011-12-31

    The effect of surface hydroxyls on the adsorption of ether on ceria was explored. Adsorption of dimethyl ether (DME) and diethyl ether (DEE) on oxidized and reduced CeO{sub 2}(111) films was studied and compared with Ru(0001) using RAIRS and sXPS within a UHV environment. On Ru(0001) the ethers adsorb weakly with the molecular plane close to parallel to the surface plane. On the ceria films, the adsorption of the ethers was stronger than on the metal surface, presumably due to stronger interaction of the ether oxygen lone pair electrons with a cerium cation. This interaction causes the ethers to tilt away from the surface plane compared to the Ru(0001) surface. No pronounced differences were found between oxidized (CeO{sub 2}) and reduced (CeOx) films. The adsorption of the ethers was found to be perturbed by the presence of OH groups on hydroxylated CeOx. In the case of DEE, the geometry of adsorption resembles that found on Ru, and in the case of dimethyl ether DME is in between that one found on clean CeOx and the metal surface. Decomposition of the DEE was observed on the OH/CeOx surface following high DEE exposure at 300 K and higher temperatures. Ethoxides and acetates were identified as adsorbed species on the surface by means of RAIRS and ethoxides and formates by s-XPS. No decomposition of dimethyl ether was observed on the OH/CeOx at these higher temperatures, implying that the dissociation of the C-O bond from ethers requires the presence of {beta}-hydrogen.

  18. Structure and Reactivity of Alkyl Ethers Adsorbed on CeO(2)(111) Model Catalysts

    SciTech Connect (OSTI)

    Calaza, Florencia C; Chen, Tsung-Liang; Mullins, David R; Overbury, Steven {Steve} H

    2011-01-01

    The effect of surface hydroxyls on the adsorption of ether on ceria was explored. Adsorption of dimethyl ether (DME) and diethyl ether (DEE) on oxidized and reduced CeO{sub 2}(111) films was studied and compared with Ru(0001) using RAIRS and sXPS within a UHV environment. On Ru(0001) the ethers adsorb weakly with the molecular plane close to parallel to the surface plane. On the ceria films, the adsorption of the ethers was stronger than on the metal surface, presumably due to stronger interaction of the ether oxygen lone pair electrons with a cerium cation. This interaction causes the ethers to tilt away from the surface plane compared to the Ru(0001) surface. No pronounced differences were found between oxidized (CeO{sub 2}) and reduced (CeOx) films. The adsorption of the ethers was found to be perturbed by the presence of OH groups on hydroxylated CeOx. In the case of DEE, the geometry of adsorption resembles that found on Ru, and in the case of dimethyl ether DME is in between that one found on clean CeOx and the metal surface. Decomposition of the DEE was observed on the OH/CeOx surface following high DEE exposure at 300 K and higher temperatures. Ethoxides and acetates were identified as adsorbed species on the surface by means of RAIRS and ethoxides and formates by s-XPS. No decomposition of dimethyl ether was observed on the OH/CeOx at these higher temperatures, implying that the dissociation of the C-O bond from ethers requires the presence of {beta}-hydrogen.

  19. Dimethyl ether synthesis from syngas in slurry phase

    SciTech Connect (OSTI)

    Han, Y.Z.; Fujimoto, K.; Shikata, T.

    1997-12-31

    Dimethyl ether (DME) is one of the important chemicals derived from synthesis gas. It can be widely used in syngas conversion, production of olefins, or MTG gasoline. Recently, is has been noticed as a substitute of LPG used as home fuel. In the present study, dimethyl ether was effectively synthesized from CO rich syngas (H{sub 2}/CO=1/1) over hybrid catalyst containing a Cu-Zn-Al(O) based methanol synthesis catalyst and {gamma}-alumina in an agitated slurry reactor under relatively mild reaction conditions: temperature 230--300 C, pressure 2.0--5.0 MPa, contact time 2.0--10 gram-cat.-h/mol. The catalysts used as the methanol active components were commercially available Cu-Zn-Al(O) based catalysts, BASF S385 and ICI 51-2. Two kinds of {gamma}-alumina ALO4 (standard catalyst of the Catalysis Society of Japan) and N612N (NIKKI Co., Japan) were used as the methanol dehydration components. The slurry was prepared by mixing the fine powder (<100 mesh) of catalyst components with purified n-hexadecane. The catalysts were reduced by a mixing gas containing 20% syngas and 80% nitrogen with a three-hour programmed temperature raising from room temperature to the final temperature. All products were analyzed by gas chromatographs. Results are given and discussed.

  20. Rational Design of Cesium-Selective Ionophores and Chemosensors: Dihydrocalix[4]arene Crown-6 Ethers

    SciTech Connect (OSTI)

    Sachleben, Richard A.; Bryan, Jeffrey C.; Brown, Gilbert M.; Engle, Nancy L.; Haverlock, Tamara J.; Hay, Benjamin P.; Urvoas, Agathe; Moyer, Bruce A.

    2003-12-15

    Molecular mechanics calculations performed on calix[4]arene crown-6 ethers predict that the 1,3-dihydro derivatives will exhibit greater complementarity for potassium and cesium ions than the parent 1,3-dialkoxy calix crowns. The X-ray crystal structures of 1,3-alt bis-octyloxycalix[4]arene benzocrown-6 ether, dihydrocalix[4]arene benzocrown-6 ether, and the cesium nitrate complex of dihydrocalix[4]arene benzocrown-6 ether were determined. The cesium complex structure corresponds closely to the structure predicted by molecular mechanics. The dihydrocalix[4]arene crown-6 ethers exhibit enhanced cesium selectivity in the extraction of alkali metal salts and provide a platform for a highly sensitive and selective cesium chemosensor.

  1. CH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signal is readily suppressed using time-delay methods enabled by femtosecond laser pulses. ... in situ, without the need of labels and without damage to the carbon substrates. ...

  2. CH Packaging Operations for High Wattage Waste

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-01-06

    This document provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

  3. Role of acid catalysis in dimethyl ether conversion processes

    SciTech Connect (OSTI)

    Tartamella, T.L.; Lee, S.

    1996-12-31

    Acidity plays an important role in the conversion of methanol and dimethyl ether (DME) to hydrocarbons and oxygenates. In the conversion to hydrocarbons over zeolite catalyst, Broensted acidity is the main contributor to the first hydrocarbon formed. Here, acidity is also an important factor in determining olefin, paraffin, and aromatic content in the final product distribution. Catalyst life has also been found to be related to acidity content in zeolites. DME conversion to oxygenates is especially dependent on high acidity catalysts. Superacids like BF{sub 3}, HF-BF{sub 3}, and CF{sub 3}COOH have been used in the past for conversion of DME in carbonylation reactions to form methyl acetate and acetic acid at high pressures. Recently, heteropoly acids and their corresponding metal substituted salts have been used to convert DME to industrially important petrochemicals resulting in shorter reaction times and without the use of harsh operating conditions.

  4. Dimethyl ether fuel proposed as an alternative to LNG

    SciTech Connect (OSTI)

    Kikkawa, Yoshitsugi; Aoki, Ichizo

    1998-04-06

    To cope with the emerging energy demand in Asia, alternative fuels to LNG must be considered. Alternative measures, which convert the natural gas to liquid fuel, include the Fischer-Tropsch conversion, methanol synthesis, and dimethyl ether (DME) synthesis. Comparisons are evaluated based on both transportation cost and feed-gas cost. The analysis will show that DME, one alternative to LNG as transportation fuel, will be more economical for longer distances between the natural-gas source and the consumer. LNG requires a costly tanker and receiving terminal. The break-even distance will be around 5,000--7,000 km and vary depending on the transported volume. There will be risk, however, since there has never been a DME plant the size of an LNG-equivalent plant [6 million metric tons/year (mty)].

  5. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The laboratory studies have included work with a Navistar V-8 turbodiesel engine, demonstration of engine operation on DME-diesel blends and instrumentation for evaluating fuel properties. The field studies have involved performance, efficiency and emissions measurements with the Champion Motorcoach ''Defender'' shuttle bus which will be converted to DME-fueling. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have completed engine combustion studies on DME-diesel blends up to 30 wt% DME addition.

  6. Shape-selective catalysis in dimethyl ether conversion

    SciTech Connect (OSTI)

    Sardesai, A.; Lee, S.

    1999-07-01

    Coal-derived syngas can be effectively converted to dimethyl ether (DME) in a single-stage, liquid-phase process. This Liquid Phase Dimethyl Ether (LPDME) process utilizes a dual catalytic system, which comprises of a physical blend between the methanol synthesis and the methanol dehydration catalyst slurried in an inert mineral oil. Such produced DME has vast potential as a building block chemical in the petrochemical industry to produce value-added specialty chemicals. The current research efforts are made to exploit the utilization of shape-selective catalysis using zeolites to produce targeted petrochemicals, including lower olefinic hydrocarbons. The catalysts probed in this investigation include zeolites of different physical, morphological, and chemical configurations. The effect of acidity of ZSM-5 type zeolites as well as the effect of the different channel size and orientation of the zeolites on product selectivity and catalyst deactivation are examined. Results obtained from experimentation of this study show that ZSM-5 type zeolite with low acidity (high SiO{sub 2}/Al{sub 2}O{sub 3} ratio, in this case 150) exhibits the highest selectivity towards lower (C{sub 2}-C{sub 4}) olefins in general. Controlled selectivity toward targeted olefinic species can be accomplished via devising catalytic reaction systems in such a way that the structural property of the catalyst and reactive interaction between molecules in the pores are geared toward formation of targeted molecular species which also at the same time prevent the formation of less desirable products. The internal morphology of the catalyst also has a pronounced effect on the deactivation phenomenon, where it is observed that zeolites possessing high acidity and a unidimensional channel structure are prone towards catalyst deactivation by coking and pore blockage.

  7. Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation

    SciTech Connect (OSTI)

    Yoon, S.S.; Anh, D.H.; Chung, S.H.

    2008-08-15

    Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

  8. Conversion of dimethyl ether--boron trifluoride complex to potassium fluoborate

    DOE Patents [OSTI]

    Eberle, A.R.

    1957-06-18

    A method of preparing KBF/sub 4/ from the dimethyl ether complex of BF/sub 3/ is given. This may be accomplished by introducing the dimethyl ether complex of BF/sub 3/ into an aqueous solution of KF and alcohol, expelling the ether liberated from the complex by heating or stirring and recovering the KBF/sub 4/ so formed. The KBF/sub 4/ is then filtered from the alcohol-water solution, which may be recycled, to reduce the loss of KBF/sub 4/ which is not recovered by filtration.

  9. CONVERSION OF DIMETHYL ETHER-BORON TRIFLUORIDE COMPLEX TO POTASSIUM FLUOBORATE

    DOE Patents [OSTI]

    Eberle, A.R.

    1957-06-18

    A method of preparing KBF/sub 4/ from the dimethyl ether complex of BF/sub 3/ is given. This may be accomplished by introducing the dimethyl ether complex of BF/sub 3/ into an aqueous solution of KF and alcohol, expelling the ether liberated from the complex by heating or stirring and recovering the KBF/sub 4/ so formed. The KBF/sub 4/ is then filtered from the alcohol-water solution, which may be recycled, to reduce the loss of KBF/sub 4/ which is not recovered by filtration.

  10. Green polymer electrolytes based on chitosan and 1-butyl-3-methylimidazolium acetate

    SciTech Connect (OSTI)

    Shamsudin, Intan Juliana; Ahmad, Azizan; Hassan, Nur Hasyareeda

    2014-09-03

    Green polymer electrolytes based on chitosan as the polymer matrix and ionic liquid 1-butyl-3-methylimidazolium acetate [Bmim][OAc] as charge carriers were prepared by solution casting technique. Complexes with various amount of ionic liquid loading were investigated as possible ionic conducting polymers. The ionic conductivity was found to increase with increasing weight percent of ionic liquid. The highest ionic conductivity of the charged chitosan-[Bmim][OAc] was 2.44 × 10{sup −3} S cm{sup −1} at 90 wt.% of [Bmim][OAc] content at ambient temperature. Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy has proven the interaction between chitosan and [Bmim][OAc]. X-ray Diffraction (XRD) has shown that the amorphosity of the complexes increase as the amount of [Bmim][OAc] increase.

  11. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOE Patents [OSTI]

    Crabtree, Robert H. (Bethany, CT); Brown, Stephen H. (East Haven, CT)

    1988-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  12. Metal ion complexation by ionizable crown ethers. Final report, January 1, 1988--June 30, 1994

    SciTech Connect (OSTI)

    Bartsch, R.A.

    1994-12-31

    During the report period a variety of new lipophilic ionizable crown ethers with pendent proton-ionizable groups has been synthesized. The ligands possess one or more ionizable group (carboxylic acid, phosphonic acid monoethyl ester, para-nitrophenol, phosphonic acid) attached to crown ether, monoazacrown ether or diazacrown ether frameworks. These novel chelating agents have either pendent or inward-facing proton-ionizable groups. Such lipophilic proton-ionizable crown ethers are designed for use in multiphase metal ion separations (solvent extraction, liquid membrane transport). In addition a series of proton-ionizable crown ethers without lipophilic groups was prepared to study how structural variations within the ligand influence metal ion complexation in homogeneous media as assessed by NMR spectroscopy or titration calorimetry. A third class of new metal ion-complexing agents is a series of lipophilic acyclic polyether dicarboxylic acids. Competitive solvent extractions of alkali metal and alkaline earth cations and of the mixed species have been conducted to reveal the influence of ring size, nature and attachment site of the lipophilic group, sidearm length, and proton-ionizable group identity and location upon the selectivity and efficiency of metal ion complexation. In addition to such studies of structural variation within the lipophilic proton-ionizable crown ether, the effect of changing the organic solvent and variation of the stripping conditions have been assessed. The influence of structural variations within lipophilic acyclic polyether dicarboxylic acids upon competitive solvent extraction of alkaline earth cations has been probed. Also a new chromogenic, di-ionizable crown ether with extremely high selectivity for Hg{sup 2+} has been discovered.

  13. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOE Patents [OSTI]

    Crabtree, R.H.; Brown, S.H.

    1988-02-16

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  14. CH-TRU Waste Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  15. Newport News in Review, ch. 47, segment includes TEDF groundbreaking...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesnewport-news-review-ch-47-segment-includes-tedf-groundbreaking-event Newport News in Review, ch. 47, segment includes TEDF groundbreaking event...

  16. Independent Oversight Review, Hanford Site CH2M Hill Plateau...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CH2M Hill Plateau Remediation Company - November 2012 Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation Company - November 2012 November 2012 Review of the...

  17. Central Characterization Program (CCP) Contact-Handled (CH) TRU...

    Office of Environmental Management (EM)

    Contact-Handled (CH) TRU Waste Certification and Waste Information SystemWaste Data System (WWISWDS) Data Entry Central Characterization Program (CCP) Contact-Handled (CH) TRU...

  18. Wide range modeling study of dimethyl ether oxidation

    SciTech Connect (OSTI)

    Pitz, W.J.; Marinov, N.M.; Westbrook, C.K.; Dagaut, P.; Boettner, J-C; Cathonnet, M.

    1997-04-01

    A detailed chemical kinetic model has been used to study dimethyl ether (DME) oxidation over a wide range of conditions. Experimental results obtained in a jet-stirred reactor (JSR) at I and 10 atm, 0.2 < 0 < 2.5, and 800 < T < 1300 K were modeled, in addition to those generated in a shock tube at 13 and 40 bar, 0 = 1.0 and 650 :5 T :5 1300 K. The JSR results are particularly valuable as they include concentration profiles of reactants, intermediates and products pertinent to the oxidation of DME. These data test the Idnetic model severely, as it must be able to predict the correct distribution and concentrations of intermediate and final products formed in the oxidation process. Additionally, the shock tube results are very useful, as they were taken at low temperatures and at high pressures, and thus undergo negative temperature dependence (NTC) behavior. This behavior is characteristic of the oxidation of saturated hydrocarbon fuels, (e.g. the primary reference fuels, n-heptane and iso- octane) under similar conditions. The numerical model consists of 78 chemical species and 336 chemical reactions. The thermodynamic properties of unknown species pertaining to DME oxidation were calculated using THERM.

  19. ARM - Datastreams - avhrr11ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  20. ARM - Datastreams - fullavhrr16ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  1. ARM - Datastreams - avhrr16ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  2. ARM - Datastreams - fullavhrr12ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  3. ARM - Datastreams - fullavhrr15ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  4. ARM - Datastreams - avhrr17ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  5. ARM - Datastreams - fullavhrr16ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  6. ARM - Datastreams - avhrr10ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  7. ARM - Datastreams - avhrr17ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  8. ARM - Datastreams - avhrr14ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  9. ARM - Datastreams - fullavhrr12ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  10. ARM - Datastreams - fullavhrr10ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  11. ARM - Datastreams - avhrr16ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  12. ARM - Datastreams - avhrr14ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  13. ARM - Datastreams - fullavhrr10ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  14. ARM - Datastreams - avhrr15ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  15. ARM - Datastreams - fullavhrr11ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  16. ARM - Datastreams - fullavhrr11ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  17. ARM - Datastreams - fullavhrr15ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  18. ARM - Datastreams - avhrr15ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  19. ARM - Datastreams - avhrr12ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  20. ARM - Datastreams - avhrr12ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  1. ARM - Datastreams - fullavhrr14ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  2. ARM - Datastreams - fullavhrr17ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  3. ARM - Datastreams - fullavhrr14ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  4. ARM - Datastreams - avhrr10ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  5. ARM - Datastreams - fullavhrr17ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  6. ARM - Datastreams - avhrr11ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  7. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the

  8. Understanding chemical reactions of CO{sub 2} and its isoelectronic molecules with 1-butyl-3-methylimidazolium acetate by changing the nature of the cation: The case of CS{sub 2} in 1-butyl-1-methylpyrrolidinium acetate studied by NMR spectroscopy and density functional theory calculations

    SciTech Connect (OSTI)

    Cabao, M. Isabel, E-mail: isabelcabaco@ist.utl.pt [Departamento de Fsica, Instituto Superior Tcnico, UTL, Av. Rovisco Pais 1049-001 Lisboa (Portugal); Centro de Fsica Atmica da UL, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Besnard, Marcel; Danten, Yann [GSM Institut des Sciences Molculaires, CNRS (UMR 5255), Universit de Bordeaux, 351, Cours de la Libration 33405 Talence Cedex (France); Chvez, Fabin Vaca [Centro de Fsica da Matria Condensada da UL, Av. Prof. Gama Pinto 2, 1694-003 Lisboa (Portugal); Pinaud, Nol [CESAMO Institut des Sciences Molculaires, CNRS (UMR 5255), Universit de Bordeaux, 351, Cours de la Libration 33405 Talence Cedex (France); Sebastio, Pedro J. [Departamento de Fsica, Instituto Superior Tcnico, UTL, Av. Rovisco Pais 1049-001 Lisboa (Portugal); Centro de Fsica da Matria Condensada da UL, Av. Prof. Gama Pinto 2, 1694-003 Lisboa (Portugal); Coutinho, Joo A. P. [CICECO, Departamento de Qumica, Universidade de Aveiro 3810-193 Aveiro (Portugal)

    2014-06-28

    NMR spectroscopy ({sup 1}H, {sup 13}C, {sup 15}N) shows that carbon disulfide reacts spontaneously with 1-butyl-1-methylpyrrolidinium acetate ([BmPyrro][Ac]) in the liquid phase. It is found that the acetate anions play an important role in conditioning chemical reactions with CS{sub 2} leading, via coupled complex reactions, to the degradation of this molecule to form thioacetate anion (CH{sub 3}COS{sup ?}), CO{sub 2}, OCS, and trithiocarbonate (CS{sub 3}{sup 2?}). In marked contrast, the cation does not lead to the formation of any adducts allowing to conclude that, at most, its role consists in assisting indirectly these reactions. The choice of the [BmPyrro]{sup +} cation in the present study allows disentangling the role of the anion and the cation in the reactions. As a consequence, the ensemble of results already reported on CS{sub 2}-[Bmim][Ac] (1), OCS-[Bmim][Ac] (2), and CO{sub 2}-[Bmim][Ac] (3) systems can be consistently rationalized. It is argued that in system (1) both anion and cation play a role. The CS{sub 2} reacts with the acetate anion leading to the formation of CH{sub 3}COS{sup ?}, CO{sub 2}, and OCS. After these reactions have proceeded the nascent CO{sub 2} and OCS interact with the cation to form imidazolium-carboxylate ([Bmim] CO{sub 2}) and imidazolium-thiocarboxylate ([Bmim] COS). The same scenario also applies to system (2). In contrast, in the CO{sub 2}-[Bmim] [Ac] system a concerted cooperative process between the cation, the anion, and the CO{sub 2} molecule takes place. A carbene issued from the cation reacts to form the [Bmim] CO{sub 2}, whereas the proton released by the ring interacts with the anion to produce acetic acid. In all these systems, the formation of adduct resulting from the reaction between the solute molecule and the carbene species originating from the cation is expected. However, this species was only observed in systems (2) and (3). The absence of such an adduct in system (1) has been theoretically investigated

  9. Comparison of SPME headspace analysis to U.S. EPA method5030/8260B for MTBE monitoring

    SciTech Connect (OSTI)

    Stringfellow, William T.; Oh, Kuen-Chan

    2005-02-01

    A novel method for analysis of methyl tert-butyl ether andtert-butyl alcohol using solid phase microextraction is described andcompared to a standard method.

  10. CH2M HILL Plateau Remediation Company - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracting CH2M HILL Plateau Remediation Company Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Bechtel National, Inc. Washington River Protection Solutions CH2M HILL Plateau Remediation Company Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size CH2M CH2M HILL Plateau Remediation Company is the prime

  11. Method for photochemical reduction of uranyl nitrate by tri-N-butyl phosphate and application of this method to nuclear fuel reprocessing

    DOE Patents [OSTI]

    De Poorter, Gerald L.; Rofer-De Poorter, Cheryl K.

    1978-01-01

    Uranyl ion in solution in tri-n-butyl phosphate is readily photochemically reduced to U(IV). The product U(IV) may effectively be used in the Purex process for treating spent nuclear fuels to reduce Pu(IV) to Pu(III). The Pu(III) is readily separated from uranium in solution in the tri-n-butyl phosphate by an aqueous strip.

  12. Synthesis of methanol and dimethyl ether from syngas over Pd/ZnO/Al2O3 catalysts

    SciTech Connect (OSTI)

    Lebarbier, Vanessa M.; Dagle, Robert A.; Kovarik, Libor; Lizarazo-Adarme, Jair A.; King, David L.; Palo, Daniel R.

    2012-01-01

    A Pd/ZnO/Al2O3 catalyst was developed for the synthesis of methanol and dimethyl ether (DME) from syngas. Studied were temperatures of operation ranging from 250C to 380C. High temperatures (e.g. 380C) are necessary when combining methanol and DME synthesis with a methanol to gasoline (MTG) process in a single reactor bed. A commercial Cu/ZnO/Al2O3 catalyst, utilized industrially for the synthesis of methanol at 220-280C, suffers from a rapid deactivation when the reaction is conducted at high temperature (>320C). On the contrary, a Pd/ZnO/Al2O3 catalyst was found to be highly stable for methanol and DME synthesis at 380C. The Pd/ZnO/Al2O3 catalyst was thus further investigated for methanol and DME synthesis at P=34-69 bars, T= 250-380C, GHSV= 5 000-18 000 h-1, and molar feeds H2/CO= 1, 2, and 3. Selectivity to DME increased with decreasing operating temperature, and increasing operating pressure. Increased GHSVs and H2/CO syngas feed ratios also enhanced DME selectivity. Undesirable CH4 formation was observed, however, can be minimized through choice of process conditions and by catalyst design. By studying the effect of the Pd loading and the Pd:Zn molar ratio the formulation of the Pd/ZnO/Al2O3 catalyst was optimized. A catalyst with 5% Pd and a Pd:Zn molar ratio of 0.25:1 has been identified as the preferred catalyst. Results indicate that PdZn particles are more active than Pd particles for the synthesis of methanol and less active for CH4 formation. A correlation between DME selectivity and the concentration of acid sites of the catalysts has been established. Hence, two types of sites are required for the direct conversion of syngas to DME: 1) PdZn particles are active for the synthesis of methanol from syngas, and 2) acid sites which are active for the conversion of methanol to DME. Additionally, CO2 formation was problematic as PdZn was found to be active for the water-gas-shift (WGS) reaction, under all the conditions evaluated.

  13. N-butyl Cyanoacrylate Glue Embolization of Arterial Networks to Facilitate Hepatic Arterial Skeletonization before Radioembolization

    SciTech Connect (OSTI)

    Samuelson, Shaun D.; Louie, John D.; Sze, Daniel Y.

    2013-06-15

    Purpose. Avoidance of nontarget microsphere deposition via hepatoenteric anastomoses is essential to the safety of yttrium-90 radioembolization (RE). The hepatic hilar arterial network may remain partially patent after coil embolization of major arteries, resulting in persistent risk. We retrospectively reviewed cases where n-butyl cyanoacrylate (n-BCA) glue embolization was used to facilitate endovascular hepatic arterial skeletonization before RE. Methods. A total of 543 RE procedures performed between June 2004 and March 2012 were reviewed, and 10 were identified where n-BCA was used to embolize hepatoenteric anastomoses. Arterial anatomy, prior coil embolization, and technical details were recorded. Outcomes were reviewed to identify subsequent complications of n-BCA embolization or nontarget RE. Results. The rate of complete technical success was 80 % and partial success 20 %, with one nontarget embolization complication resulting in a minor change in treatment plan. No evidence of gastrointestinal or biliary ischemia or infarction was identified, and no microsphere-related gastroduodenal ulcerations or other evidence of nontarget RE were seen. Median volume of n-BCA used was <0.1 ml. Conclusion. n-BCA glue embolization is useful to eliminate hepatoenteric networks that may result in nontarget RE, especially in those that persist after coil embolization of major vessels such as the gastroduodenal and right gastric arteries.

  14. MOF-based catalysts for selective hydrogenolysis of carbon–oxygen ether bonds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stavila, Vitalie; Parthasarathi, Ramakrishnan; Davis, Ryan W.; El Gabaly, Farid; Sale, Kenneth L.; Simmons, Blake A.; Singh, Seema; Allendorf, Mark D.

    2015-11-23

    We demonstrate that metal–organic frameworks (MOFs) can catalyze hydrogenolysis of aryl ether bonds under mild conditions. Mg-IRMOF-74(I) and Mg-IRMOF-74(II) are stable under reducing conditions and can cleave phenyl ethers containing β-O-4, α-O-4, and 4-O-5 linkages to the corresponding hydrocarbons and phenols. Reaction occurs at 10 bar H2 and 120 °C without added base. DFT-optimized structures and charge transfer analysis suggest that the MOF orients the substrate near Mg2+ ions on the pore walls. Ti and Ni doping further increase conversions to as high as 82% with 96% selectivity for hydrogenolysis versus ring hydrogenation. Thus repeated cycling induces no loss ofmore » activity, making this a promising route for mild aryl-ether bond scission.« less

  15. MOF-based catalysts for selective hydrogenolysis of carbon–oxygen ether bonds

    SciTech Connect (OSTI)

    Stavila, Vitalie; Parthasarathi, Ramakrishnan; Davis, Ryan W.; El Gabaly, Farid; Sale, Kenneth L.; Simmons, Blake A.; Singh, Seema; Allendorf, Mark D.

    2015-11-23

    We demonstrate that metal–organic frameworks (MOFs) can catalyze hydrogenolysis of aryl ether bonds under mild conditions. Mg-IRMOF-74(I) and Mg-IRMOF-74(II) are stable under reducing conditions and can cleave phenyl ethers containing β-O-4, α-O-4, and 4-O-5 linkages to the corresponding hydrocarbons and phenols. Reaction occurs at 10 bar H2 and 120 °C without added base. DFT-optimized structures and charge transfer analysis suggest that the MOF orients the substrate near Mg2+ ions on the pore walls. Ti and Ni doping further increase conversions to as high as 82% with 96% selectivity for hydrogenolysis versus ring hydrogenation. Thus repeated cycling induces no loss of activity, making this a promising route for mild aryl-ether bond scission.

  16. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethylether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operation in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work

  17. Catalyst system and process for benzyl ether fragmentation and coal liquefaction

    DOE Patents [OSTI]

    Zoeller, Joseph Robert (Kingsport, TN)

    1998-04-28

    Dibenzyl ether can be readily cleaved to form primarily benzaldehyde and toluene as products, along with minor amounts of bibenzyl and benzyl benzoate, in the presence of a catalyst system comprising a Group 6 metal, preferably molybdenum, a salt, and an organic halide. Although useful synthetically for the cleavage of benzyl ethers, this cleavage also represents a key model reaction for the liquefaction of coal; thus this catalyst system and process should be useful in coal liquefaction with the advantage of operating at significantly lower temperatures and pressures.

  18. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOE Patents [OSTI]

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  19. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOE Patents [OSTI]

    Crabtree, Robert H. (Bethany, CT); Brown, Stephen H. (East Haven, CT)

    1989-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  20. Effect of antisymmetric CH stretching excitation on the dynamics of O({sup 1}D) + CH{sub 4} ? OH + CH{sub 3}

    SciTech Connect (OSTI)

    Pan, Huilin; Yang, Jiayue; Zhang, Dong; Shuai, Quan; Jiang, Bo [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China)] [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Dai, Dongxu; Wu, Guorong, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn; Yang, Xueming, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China) [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-04-21

    The effect of antisymmetric CH stretching excitation of CH{sub 4} on the dynamics and reactivity of the O({sup 1}D) + CH{sub 4} ? OH + CD{sub 3} reaction at the collision energy of 6.10 kcal/mol has been investigated using the crossed-beam and time-sliced velocity map imaging techniques. The antisymmetric CH stretching mode excited CH{sub 4} molecule was prepared by direct infrared excitation. From the measured images of the CH{sub 3} products with the infrared laser on and off, the product translational energy and angular distributions were derived for both the ground and vibrationally excited reactions. Experimental results show that the vibrational energy of the antisymmetric stretching excited CH{sub 4} reagent is channeled exclusively into the vibrational energy of the OH co-products and, hence, the OH products from the excited-state reaction are about one vibrational quantum hotter than those from the ground-state reaction, and the product angular distributions are barely affected by the vibrational excitation of the CH{sub 4} reagent. The reactivity was found to be suppressed by the antisymmetric stretching excitation of CH{sub 4} for all observed CH{sub 3} vibrational states. The degree of suppression is different for different CH{sub 3} vibrational states: the suppression is about 40%60% for the ground state and the umbrella mode excited CH{sub 3} products, while for the CH{sub 3} products with one quantum symmetric stretching mode excitation, the suppression is much less pronounced. In consequence, the vibrational state distribution of the CH{sub 3} product from the excited-state reaction is considerably different from that of the ground-state reaction.

  1. Enforcement Letter, CH2M Hill- October 4, 2004

    Broader source: Energy.gov [DOE]

    Issued to CH2M Hill related to at a Lapse in Dosimetry Accreditation at the Separations Process Research Unit

  2. Distribution of 1-Butyl-3-methylimidazolium Bistrifluoromethylsulfonimide in Mesoporous Silica as a Function of Pore Filling

    SciTech Connect (OSTI)

    Han, Kee Sung; Wang, Xiqing; Hagaman, Edward {Ed} W; Dai, Sheng

    2013-01-01

    Rotational dynamics of the ionic liquid (IL) 1-butyl-3-methlyimidazolium bistrifluoromethylsulfonimide, [C4mim][Tf2N], 1, as a neat liquid and confined in mesoporous silica were investigated by 1H spin-spin (T2) and spin-lattice (T1) relaxation measurements and 13C NMR spectroscopy. Translational dynamics (self-diffusion) were monitored via the diffusion coefficient, D, obtained with 1H pulsed field gradient NMR measurements. These data were used to determine the distribution of 1 in the pores of KIT-6, a mesoporous silica with a bicontinuous gyroid pore structure, as a function of filling fraction. Relaxation studies performed as a function of filling factor and temperature, reveal a dynamic heterogeneity in both translational and rotational motions for 1 at filling factors, f, = 0.2-1.0 (f = 1 corresponds to fully filled pores). Spin-lattice and spin-spin relaxation times reveal the motion of 1 in silica mesopores conform to that expected for a two-dimensional relaxation model. The relaxation dynamics are interpreted using a two-state, fast exchange model for all motions; a slow rotation (and translation) of molecules in contact with the surface and a faster motion approximated by the values for bulk relaxation and diffusion. 1 retains liquid like behavior at all filling factors and temperatures that extend to ca. 50 degrees below the bulk melting point. Translational motion in these systems, interpreted with MD-simulated diffusivity limits, confirms the high propensity of 1 to form a monolayer film on the silica surface at low filling factors.. The attractive interaction of 1 with the surface is greater than that for self-association of 1. The trends in diffusion data at short and long diffusion time suggest that the population of surface-bound 1 is in intimate contact with 1 in the pores. This condition is most easily met at higher filling fractions with successive additions of 1 increasing the layer thickness built up on the surface layer.

  3. 1

    Office of Environmental Management (EM)

    Tetrachloroethylene, Trichloroethylene, Trichloroflouromethane, Acetone, Ethyl ether, Methanol, Methyl isobutyl ketone, n-Butyl alcohol, Xylene, Cresols, Cresylic acid,...

  4. MTBE Production Economics (Released in the STEO April 2001)

    Reports and Publications (EIA)

    2001-01-01

    The purpose of this analysis is to evaluate the causes of methyl tertiary butyl ether (MTBE) price increases in 2000.

  5. Dosimetric measurements of an n-butyl cyanoacrylate embolization material for arteriovenous malformations

    SciTech Connect (OSTI)

    Labby, Zacariah E.; Chaudhary, Neeraj; Gemmete, Joseph J.; Pandey, Aditya S.; Roberts, Donald A.

    2015-04-15

    Purpose: The therapeutic regimen for cranial arteriovenous malformations often involves both stereotactic radiosurgery and endovascular embolization. Embolization agents may contain tantalum or other contrast agents to assist the neurointerventionalists, leading to concerns regarding the dosimetric effects of these agents. This study investigated dosimetric properties of n-butyl cyanoacrylate (n-BCA) plus lipiodol with and without tantalum powder. Methods: The embolization agents were provided cured from the manufacturer with and without added tantalum. Attenuation measurements were made for the samples and compared to the attenuation of a solid water substitute using a 6 MV photon beam. Effective linear attenuation coefficients (ELAC) were derived from attenuation measurements made using a portal imager and derived sample thickness maps projected in an identical geometry. Probable dosimetric errors for calculations in which the embolized regions are overridden with the properties of water were calculated using the ELAC values. Interface effects were investigated using a parallel plate ion chamber placed at set distances below fixed samples. Finally, Hounsfield units (HU) were measured using a stereotactic radiosurgery CT protocol, and more appropriate HU values were derived from the ELAC results and the CT scanners HU calibration curve. Results: The ELAC was 0.0516 0.0063 cm{sup ?1} and 0.0580 0.0091 cm{sup ?1} for n-BCA without and with tantalum, respectively, compared to 0.0487 0.0009 cm{sup ?1} for the water substitute. Dose calculations with the embolized region set to be water equivalent in the treatment planning system would result in errors of ?0.29% and ?0.93% per cm thickness of n-BCA without and with tantalum, respectively. Interface effects compared to water were small in magnitude and limited in distance for both embolization materials. CT values at 120 kVp were 2082 and 2358 HU for n-BCA without and with tantalum, respectively; dosimetrically

  6. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOE Patents [OSTI]

    Diebold, James P.; Scahill, John W.; Chum, Helena L.; Evans, Robert J.; Rejai, Bahman; Bain, Richard L.; Overend, Ralph P.

    1996-01-01

    A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.

  7. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.

    1996-04-02

    A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.

  8. The effect of catalyst ratio on catalytic performance in liquid phase dimethyl ether process

    SciTech Connect (OSTI)

    Guo Junwang; Niu Yuqin; Zhang Bijiang

    1997-12-31

    In the liquid phase dimethyl ether (LPDME) process, two functionally different catalysts are slurried together in an inert liquid medium. Syngas reacts on the surface of the methanol catalyst and methanol is dehydrated on the surface of the dehydration catalyst dispersed in the liquid. The process is adaptable to carbon monoxide-rich syngas derived from second generation coal gasifiers. The effect of catalyst ratio on catalytic performances of the dual catalyst was studied in liquid phase dimethyl ether synthesis from syngas at 280 C, 4.0 MPa. CO conversion, H{sub 2} conversion and DME productivity increased with an increase of catalyst ratio initially, reached their maximum at a catalyst ratio of 4.0--5.0, and then decreased. Methanol productivity and methanol equivalent productivity had a similar trend to that of DME productivity. DME selectivity and hydrocarbon selectivity increased with an increase in catalyst ratio whereas methanol selectivity decreased with catalyst ratio.

  9. Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: phenylated sulfonated poly(ether ether ketone ketone) versus Nafion

    SciTech Connect (OSTI)

    Devanathan, Ramaswami; Idupulapati, Nagesh B.; Dupuis, Michel

    2012-08-14

    We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol and hydronium in phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. At comparable hydration levels, the pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower in Ph-SPEEKK relative to the corresponding properties in Nafion. The aromatic carbon backbone of Ph-SPEEKK is less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation occurs at a hydration level ({lambda}) of {approx}8 H{sub 2}O/SO{sub 3}{sup -}. At {lambda} = 20, water, methanol and hydronium diffusion coefficients were 1.4 x 10{sup -5}, 0.6 x 10{sup -5} and 0.2 x 10{sup -5} cm{sup 2}/s, respectively. The pore network in Ph-SPEEKK evolves dynamically and develops wide pores for {lambda} > 20, which leads to a jump in methanol crossover and ion transport. This study demonstrates the potential of aromatic membranes as low-cost challengers to Nafion for direct methanol fuel cell applications and the need to develop innovative strategies to combat methanol crossover at high hydration levels.

  10. 2[prime] and 3[prime] Carboranyl uridines and their diethyl ether adducts

    DOE Patents [OSTI]

    Soloway, A.H.; Barth, R.F.; Anisuzzaman, A.K.; Alam, F.; Tjarks, W.

    1992-12-15

    A process is described for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. The carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of the compounds in methods for boron neutron capture therapy in mammalian tumor cells. No Drawings

  11. Ch. VII, Temperature, heat flow maps and temperature gradient...

    Open Energy Info (EERE)

    Report: Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  12. CH Packaging Operations for High Wattage Waste at LANL

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-04-04

    This procedure provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP).

  13. CH Packaging Operations for High Wattage Waste at LANL

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-04-13

    This procedure provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP).

  14. 2011 Annual Planning Summary for Chicago Operations Office (CH...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Annual Planning Summary for Chicago Operations Office (CH) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within ...

  15. Experimental Confirmation of CH Mandrel Removal from Be Shells...

    Office of Scientific and Technical Information (OSTI)

    Experimental Confirmation of CH Mandrel Removal from Be Shells Citation Details ... Although the plastic mandrel may not be a design issue, it is a fielding issue because at ...

  16. Ch. I, Report on Waunita Hot Springs Project, Gunnison County...

    Open Energy Info (EERE)

    Report: Ch. I, Report on Waunita Hot Springs Project, Gunnison County, Colorado Author K. W. Nickerson and Associates Editor T. G. Zacharakis Published Colorado Geological...

  17. Voluntary Protection Program Onsite Review, CH2M HILL Plateau...

    Broader source: Energy.gov (indexed) [DOE]

    Programs Participants' Association (VPPPA) Presentation: Conducting your Annual VPP Self Assessment Voluntary Protection Program Onsite Review, CH2M HILL Analytical Technical...

  18. Graphene Oxide Catalyzed C-H Bond Activation: The Importance...

    Office of Scientific and Technical Information (OSTI)

    Graphene Oxide Catalyzed C-H Bond Activation: The Importance Oxygen Functional Groups for Biaryl Construction Citation Details In-Document Search Title: Graphene Oxide Catalyzed C-...

  19. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    SciTech Connect (OSTI)

    Hashim, Nordiana; Ali, Ab Malik Marwan; Lepit, Ajis; Rasmidi, Rosfayanti; Subban, Ri Hanum Yahaya; Yahya, Muhd Zu Azhan

    2015-08-28

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d{sub 6}) solution of the purified polymer using {sup 1}H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10{sup −3} Scm{sup −1} at 30°C and 3.383 × 10{sup −3} Scm{sup −1} at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  20. A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames

    SciTech Connect (OSTI)

    Andrew McIlroy; Toby D. Hain; Hope A. Michelsen; Terrill A. Cool

    2000-12-15

    The oxidation of dimethyl ether (DME) is studied in low-pressure flames using new molecular beam mass spectrometer and laser diagnostics. Two 30.0-Torr, premixed DME/oxygen/argon flames are investigated with stoichiometries of 0.98 and 1.20. The height above burner profiles of nine stable species and two radicals are measured. These results are compared to the detailed chemical reaction mechanism of Curran and coworkers. Generally good agreement is found between the model and data. The largest discrepancies are found for the methyl radical profiles where the model predicts qualitatively different trends in the methyl concentration with stoichiometry than observed in the experiment.

  1. Improvement of performance and emissions of a compression ignition methanol engine with dimethyl ether

    SciTech Connect (OSTI)

    Guo, J.; Chikahisa, Takemi; Murayama, Tadashi; Miyano, Masaharu

    1994-10-01

    Dimethyl ether (DME) has very good compression ignition characteristics and can be converted from methanol using a {gamma}-alumina catalyst. In this study a torch ignition chamber (TIC) head with TIC close to the center of the main combustion chamber was designed for the TIC method. The possibility of improvements in reducing the quantities of DME and emission were investigated by optimizing the TIC position, methanol injection timing, DME injection timing, and intake and exhaust throttling. It was found that the necessary amount of DME was greatly reduced when optimizing methanol and DME injection timings. 2 refs., 16 figs., 1 tab.

  2. High octane ethers from synthesis gas-derived alcohols. Quarterly technical progress report, April--June 1993

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Menszak, J.; Johansson, M.A.; Feeley, O.C.; Kim, D.

    1993-07-01

    The results shown in Figures 10 and 11 demonstrate that the formation of butenes was very sensitive to the alcohol partial pressure. A small elevation of the alcohol pressure suppressed the formation of butenes rather drastically at both 90 and 117{degree}C. The synthesis rates of DME, MIBE, and MTBE ethers were not significantly affected at 90{degree}C, although there was a trend to increase the space time yield of DME as the alcohol pressure was increased. At the reaction temperature of 117{degree}C, all of the ethers showed increasing productivities as the pressure of the reactants was increased (Figure 11). An isotope labelling experiment was carried out to provide mechanistic insight into the manner in which methanol and isobutanol react together to form DME, MIBE, and MTBE ethers and to determine if MTBE were derived from MIBE.

  3. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process. Peroxide formation of dimethyl ether in methanol mixtures

    SciTech Connect (OSTI)

    Waller, F.J.

    1997-11-01

    Organic peroxides could form when dimethyl ether in methanol is stored for three to six months at a time. The objective of this work was to determine the level of peroxide formation from dimethyl ether in reagent grade methanol and raw methanol at room temperature under 3 atmospheres (45 psig) of air. Raw methanol is methanol made from syngas by the LPMEOH Process without distillation. Aliphatic ethers tend to react slowly with oxygen from the air to form unstable peroxides. However, there are no reports on peroxide formation from dimethyl ether. After 172 days of testing, dimethyl ether in either reagent methanol or raw methanol at room temperature and under 60--70 psig pressure of air does not form detectable peroxides. Lack of detectable peroxides suggests that dimethyl ether or dimethyl ether and methanol may be stored at ambient conditions. Since the compositions of {approximately} 1.3 mol% or {approximately} 4.5 mol% dimethyl ether in methanol do not form peroxides, these compositions can be considered for diesel fuel or an atmospheric turbine fuel, respectively.

  4. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOE Patents [OSTI]

    Moyer, Bruce A. (Oak Ridge, TN); Sachleben, Richard A. (Knoxville, TN); Bonnesen, Peter V. (Knoxville, TN); Presley, Derek J. (Ooltewah, TN)

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  5. Catalyst activity maintenance study for the liquid phase dimethyl ether process

    SciTech Connect (OSTI)

    Peng, X.D.; Toseland, B.A.; Underwood, R.P.

    1995-12-31

    The co-production of dimethyl ether (DME) and methanol from syngas is a process of considerable commercial attractiveness. DME coproduction can double the productivity of a LPMEOH process when using coal-derived syngas. This in itself may offer chemical producers and power companies increased flexibility and more profitable operation. DME is also known as a clean burning liquid fuel; Amoco and Haldor-Topsoe have recently announced the use of DME as an alternative diesel fuel. Moreover, DME can be an interesting intermediate in the production of chemicals such as olefins and vinyl acetate. The current APCl liquid phase dimethyl ether (LPDME) process utilizes a physical mixture of a commercial methanol synthesis catalyst and a dehydration catalyst (e.g., {gamma}-alumina). While this arrangement provides a synergy that results in much higher syngas conversion per pass compared to the methanol-only process, the stability of the catalyst system suffers. The present project is aimed at reducing catalyst deactivation both by understanding the cause(s) of catalyst deactivation and by developing modified catalyst systems. This paper describes the current understanding of the deactivation mechanism.

  6. Assessing the toxic effects of ethylene glycol ethers using Quantitative Structure Toxicity Relationship models

    SciTech Connect (OSTI)

    Ruiz, Patricia; Mumtaz, Moiz; Gombar, Vijay

    2011-07-15

    Experimental determination of toxicity profiles consumes a great deal of time, money, and other resources. Consequently, businesses, societies, and regulators strive for reliable alternatives such as Quantitative Structure Toxicity Relationship (QSTR) models to fill gaps in toxicity profiles of compounds of concern to human health. The use of glycol ethers and their health effects have recently attracted the attention of international organizations such as the World Health Organization (WHO). The board members of Concise International Chemical Assessment Documents (CICAD) recently identified inadequate testing as well as gaps in toxicity profiles of ethylene glycol mono-n-alkyl ethers (EGEs). The CICAD board requested the ATSDR Computational Toxicology and Methods Development Laboratory to conduct QSTR assessments of certain specific toxicity endpoints for these chemicals. In order to evaluate the potential health effects of EGEs, CICAD proposed a critical QSTR analysis of the mutagenicity, carcinogenicity, and developmental effects of EGEs and other selected chemicals. We report here results of the application of QSTRs to assess rodent carcinogenicity, mutagenicity, and developmental toxicity of four EGEs: 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol and their metabolites. Neither mutagenicity nor carcinogenicity is indicated for the parent compounds, but these compounds are predicted to be developmental toxicants. The predicted toxicity effects were subjected to reverse QSTR (rQSTR) analysis to identify structural attributes that may be the main drivers of the developmental toxicity potential of these compounds.

  7. dimethyl ether

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... Schematic representation of the experimental set-up. Shown in the figure is the jet-stirre...

  8. Identification of volatile butyl rubber thermal-oxidative degradation products by cryofocusing gas chromatography/mass spectrometry (cryo-GC/MS).

    SciTech Connect (OSTI)

    Smith, Jonell Nicole; White, Michael Irvin; Bernstein, Robert; Hochrein, James Michael

    2013-02-01

    Chemical structure and physical properties of materials, such as polymers, can be altered as aging progresses, which may result in a material that is ineffective for its envisioned intent. Butyl rubber formulations, starting material, and additives were aged under thermal-oxidative conditions for up to 413 total days at up to 124 %C2%B0C. Samples included: two formulations developed at Kansas City Plant (KCP) (%236 and %2310), one commercially available formulation (%2321), Laxness bromobutyl 2030 starting material, and two additives (polyethylene AC-617 and Vanax MBM). The low-molecular weight volatile thermal-oxidative degradation products that collected in the headspace over the samples were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). The majority of identified degradation species were alkanes, alkenes, alcohols, ketones, and aldehydes. Observations for Butyl %2310 aged in an oxygen-18 enriched atmosphere (18O2) were used to verify when the source of oxygen in the applicable degradation products was from the gaseous environment rather than the polymeric mixture. For comparison purposes, Butyl %2310 was also aged under non-oxidative thermal conditions using an argon atmosphere.

  9. Computational Study of Molecular Structure and Self-Association of Tri-n-butyl Phosphates in n-Dodecane

    SciTech Connect (OSTI)

    Vo, Quynh N.; Hawkins, Cory; Dang, Liem X.; Nilsson, Mikael; Nguyen, Hung D.

    2015-01-29

    Tri-n-butyl phosphate is an important extractant used in solvent extraction process for the recovery of uranium and plutonium from spent nuclear fuel. To understand the fundamental molecular level behavior of extracting agents in solution, an atomistic parameterization study was carried out using the AMBER force field to model TBP molecule and n-dodecane molecule, a commonly used organic solvent, for molecular dynamics simulations. For validation of the optimized force field, various thermophysical properties of pure TBP and pure n-dodecane in the bulk liquid phase such as mass density, dipole moment, self-diffusion coefficient and heat of vaporization were calculated and compared favorably with experimental values. The molecular structure of TBPs in n-dodecane at various TBP concentrations was examined based on radial distribution functions and 2D potential mean force, which was used as criteria for identifying TBP aggregates. The dimerization constant of TBP in n-dodecane was also obtained and matches the experimental value. The U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences funded the work performed by LXD.

  10. Molecular Dynamics Simulations of Tri-n-butyl-phosphate/n-Dodecane Mixture: Thermophysical Properties and Molecular Structure

    SciTech Connect (OSTI)

    de Almeida, Valmor F; Cui, Shengting; Khomami, Bamin

    2014-01-01

    Molecular dynamics simulations of tri-n-butyl-phosphate (TBP)/n-dodecane mixture in the liquid phase have been carried out using two recently developed TBP force field models (J. Phys. Chem. B 2012, 116, 305) in combination with the all-atom optimized potentials for liquid simulations (OPLS-AA) force field model for n-dodecane. Specifically, the electric dipole moment of TBP, mass density of the mixture, and the excess volume of mixing were computed with TBP mole fraction ranging from 0 to 1. It is found that the aforementioned force field models accurately predict the mass density of the mixture in the entire mole fraction range. Commensurate with experimental measurements, the electric dipole moment of the TBP was found to slightly increase with the mole fraction of TBP in the mixture. Also, in accord with experimental data, the excess volume of mixing is positive in the entire mole fraction range, peaking at TBP mole fraction range 0.3 0.5. Finally, a close examination of the spatial pair correlation functions between TBP molecules, and between TBP and n-dodecane molecules, revealed formation of TBP dimers through self-association at close distance, a phenomenon with ample experimental evidence.

  11. Molecular dynamics simulations of n-hexane at 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide interface

    SciTech Connect (OSTI)

    Lisal, Martin; Izak, Pavel

    2013-07-07

    Molecular dynamics simulations of n-hexane adsorbed onto the interface of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf{sub 2}N]) are performed at three n-hexane surface densities, ranged from 0.7 to 2.3 {mu}mol/m{sup 2} at 300 K. For [bmim][Tf{sub 2}N] room-temperature ionic liquid, we use a non-polarizable all-atom force field with the partial atomic charges based on ab initio calculations for the isolated ion pair. The net charges of the ions are {+-}0.89e, which mimics the anion to cation charge transfer and polarization effects. The OPLS-AA force field is employed for modeling of n-hexane. The surface tension is computed using the mechanical route and its value decreases with increase of the n-hexane surface density. The [bmim][Tf{sub 2}N]/n-hexane interface is analyzed using the intrinsic method, and the structural and dynamic properties of the interfacial, sub-interfacial, and central layers are computed. We determine the surface roughness, global and intrinsic density profiles, and orientation ordering of the molecules to describe the structure of the interface. We further compute the survival probability, normal and lateral self-diffusion coefficients, and re-orientation correlation functions to elucidate the effects of n-hexane on dynamics of the cations and anions in the layers.

  12. CH2M HILL Plateau Remediation Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company The Office of Hea1th, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances of a series of radiological work deficiencies at the Plutonium Finishing Plant (PFP) and the 105 K-East Reactor Facility (105KE Reactor) by CH2M HILL Plateau Remediation Company (CHPRC). The radiological work deficiencies at PFP are documented in the April 29, 2011, Department of Energy Richland

  13. Degradation of Imidazolium- and Quaternary Ammonium-Functionalized Poly(fluorenyl ether ketone sulfone) Anion Exchange Membranes

    SciTech Connect (OSTI)

    Chen, DY; Hickner, MA

    2012-11-01

    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by H-1 NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 degrees C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 degrees C but much lower stability at 80 degrees C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed.

  14. CH2M Hill Ltd | Open Energy Information

    Open Energy Info (EERE)

    in consulting, design, engineering, procurement, construction, and operations and maintenance. References: CH2M Hill Ltd1 This article is a stub. You can help OpenEI by...

  15. Voluntary Protection Program Onsite Review, CH2M HILL Analytical...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation to determine whether CH2M HILL Analytical Technical Services is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review during...

  16. Methanol with dimethyl ether ignition promotor as fuel for compression ignition engines

    SciTech Connect (OSTI)

    Brook, D.L.; Cipolat, D.; Rallis, C.J.

    1984-08-01

    Reduction of the world dependence upon crude oil necessitates the use of long term alternative fuels for internal combustion engines. Alcohols appear to offer a solution as in the short term they can be manufactured from natural gas and coal, while ultimately they may be produced from agricultural products. A fair measure of success has been achieved in using alcohols in spark ignition engines. However the more widely used compression ignition engines cannot utilize unmodified pure alcohols. The current techniques for using alcohol fuels in compression ignition engines all have a number of shortcomings. This paper describes a novel technique where an ignition promotor, dimethyl ether (DME), is used to increase the cetane rating of methanol. The systems particular advantage is that the DME can be catalyzed from the methanol base fuel, in situ. This fuel system matches the performance characteristics of diesel oil fuel.

  17. Process for the production of ethylidene diacetate from dimethyl ether using a heterogeneous catalyst

    DOE Patents [OSTI]

    Ramprasad, Dorai; Waller, Francis Joseph

    1998-01-01

    This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.

  18. Process for the production of ethylidene diacetate from dimethyl ether using a heterogeneous catalyst

    DOE Patents [OSTI]

    Ramprasad, D.; Waller, F.J.

    1998-04-28

    This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.

  19. Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process

    DOE Patents [OSTI]

    Peng, Xiang-Dong; Parris, Gene E.; Toseland, Bernard A.; Battavio, Paula J.

    1998-01-01

    The present invention pertains to a process for the coproduction of methanol and dimethyl ether (DME) directly from a synthesis gas in a single step (hereafter, the "single step DME process"). In this process, the synthesis gas comprising hydrogen and carbon oxides is contacted with a dual catalyst system comprising a physical mixture of a methanol synthesis catalyst and a methanol dehydration catalyst. The present invention is an improvement to this process for providing an active and stable catalyst system. The improvement comprises the use of an aluminum phosphate based catalyst as the methanol dehydration catalyst. Due to its moderate acidity, such a catalyst avoids the coke formation and catalyst interaction problems associated with the conventional dual catalyst systems taught for the single step DME process.

  20. Mixed ether electrolytes for secondary lithium batteries with improved low temperature performance

    SciTech Connect (OSTI)

    Abraham, K.M.; Pasquariello, D.M.; Martin, F.J.

    1986-04-01

    Tetrahydrofuran (THF): 2-methyl-tetrahydrofuran (2Me-THF)/LiAsF/sub 6/ mixed solutions, despite their lower conductivity, have allowed significantly better low temperature performance in Li/TiS/sub 2/ cells than have THF/LiAsF/sub 6/, /sup 13/C NMR data suggest that this may be related to the structurally disordered Li/sup +/-solvates that exist in the mixed ether solutions. High cycling efficiencies for the Li electrode in THF:2Me-THF/LiAsF/sub 6/ solutions have been achieved by the use of 2Me-F as an additive. A 5 Ah capacity Li/TiS/sub 2/ cell has been cycled more than 100 times at 100, depth-of-discharge, with the cell capacity remaining at over 3 Ah at the 100th cycle.

  1. Using Heteropolyacids in the Anode Catalyst Layer of Dimethyl Ether PEM Fuel Cells

    SciTech Connect (OSTI)

    Ferrell III, J. R.; Turner, J. A.; Herring, A. M.

    2008-01-01

    In this study, polarization experiments were performed on a direct dimethyl ether fuel cell (DMEFC). The experimental setup allowed for independent control of water and DME flow rates. Thus the DME flow rate, backpressure, and water flow rate were optimized. Three heteropoly acids, phosphomolybdic acid (PMA), phosphotungstic acid (PTA), and silicotungstic acid (STA) were incorporated into the anode catalyst layer in combination with Pt/C. Both PTA-Pt and STA-Pt showed higher performance than the Pt control at 30 psig of backpressure. Anodic polarizations were also performed, and Tafel slopes were extracted from the data. The trends in the Tafel slope values are in agreement with the polarization data. The addition of phosphotungstic acid more than doubled the power density of the fuel cell, compared to the Pt control.

  2. Portal Vein Embolization before Right Hepatectomy: Improved Results Using n-Butyl-Cyanoacrylate Compared to Microparticles Plus Coils

    SciTech Connect (OSTI)

    Guiu, Boris Bize, Pierre; Gunthern, Daniel; Demartines, Nicolas; Halkic, Nermin; Denys, Alban

    2013-10-15

    Background: There is currently no consensus in the literature on which embolic agent induces the greatest degree of liver hypertrophy after portal vein embolization (PVE). Only experimental results in a pig model have demonstrated an advantage of n-butyl-cyanoacrylate (NBCA) over 3 other embolic materials (hydrophilic gel, small and large polyvinyl alcohol particles) for PVE. Therefore, the aim of this human study was to retrospectively compare the results of PVE using NBCA with those using spherical microparticles plus coils. Methods: A total of 34 patients underwent PVE using either NBCA (n = 20), or spherical microparticles plus coils (n = 14). PVE was decided according to preoperative volumetry on the basis of contrast-enhanced CT. Groups were compared for age, sex, volume of the left lobe before PVE and future remnant liver ratio (FRL) (volume of the left lobe/total liver volume - tumor volume). The primary end point was the increase in left lobe volume 1 month after PVE. Secondary end points were procedure complications and biological tolerance. Results: Both groups were similar in terms of age, sex ratio, left lobe volume, and FRL before PVE. NBCA induced a greater increase in volume after PVE than did microparticles plus coils (respectively, +74 {+-} 69 % and +23 {+-} 14 %, p < 0.05). The amount of contrast medium used for the procedure was significantly larger when microparticles and coils rather than NBCA were used (respectively, 264 {+-} 43 ml and 162 {+-} 34 ml, p < 0.01). The rate of PVE complications as well as the biological tolerance was similar in both groups. Conclusion: NBCA seems more effective than spherical microparticles plus coils to induce left-lobe hypertrophy.

  3. Catalytic Consequences of Acid Strength in the Conversion of Methanol to Dimethyl Ether

    SciTech Connect (OSTI)

    Carr, Robert T.; Neurock, Matthew; Iglesia, Enrique

    2011-02-14

    The effects of acid identity on CH{sub 3}OH dehydration are examined here using density functional theory (DFT) estimates of acid strength (as deprotonation energies, DPE) and reaction energies, combined with rate data on Keggin polyoxometalate (POM) clusters and zeolite H-BEA. Measured first-order (k{sub mono}) and zero-order (k{sub dimer}) CH3OH dehydration rate constants depend exponentially on DPE for POM clusters; the value of k{sub mono} depends more strongly on DPE than k{sub dimer} does. The chemical significance of these rate parameters and the basis for their dependences on acid strength were established by using DFT to estimate the energies of intermediates and transition states involved in elementary steps that are consistent with measured rate equations. We conclude from this treatment that CH{sub 3}OH dehydration proceeds via direct reactions of co-adsorbed CH{sub 3}OH molecules for relevant solid acids and reaction conditions. Methyl cations formed at ion-pair transition states in these direct routes are solvated by H{sub 2}O and CH{sub 3}OH more effectively than those in alternate sequential routes involving methoxide formation and subsequent reaction with CH{sub 3}OH. The stability of ion-pairs, prevalent as intermediates and transition states on solid acids, depends sensitively on DPE because of concomitant correlations between the stability of the conjugate anionic cluster and DPE. The chemical interpretation of k{sub mono} and k{sub dimer} from mechanism-based rate equations, together with thermochemical cycles of their respective transition state formations, show that similar charge distributions in the intermediate and transition state involved in k{sub dimer} cause its weaker dependence on DPE. Values of k{sub mono} involve uncharged reactants and the same ion-pair transition state as k{sub dimer}; these species sense acid strength differently and cause the larger effects of DPE on k{sub mono}. Confinement effects in H-BEA affect the value of

  4. The use of dimethyl ether as a starting aid for methanol-fueled SI engines at low temperatures

    SciTech Connect (OSTI)

    Kozole, K.H.; Wallace, J.S

    1988-01-01

    Methanol-fueled SI engines have proven to be difficult to start at ambient temperatures below approximately 10/sup 0/C. The use of dimethyl ether (DME) is proposed to improve the cold starting performance of methanol-fueled SI engines. Tests to evaluate this idea were carried out with a modified single-cylinder CFR research engine having a compression ratio of 12:1. The engine was fueled with combinations of gaseous dimethyl ether and liquid methanol having DME mass fractions of 30%, 40%, 60% and 70%. For comparison, tests were also carried out with 100% methanol and with winter grade premium unleaded gasoline. Overall stoichiometric mixtures were used in all tests.

  5. Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes

    SciTech Connect (OSTI)

    Hanson, Susan K; Gordon, John C; Thorn, David L; Scott, Brian L; Baker, R Tom

    2009-01-01

    The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress has been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A

  6. Structural basis of stereospecificity in the bacterial enzymatic cleavage of β-aryl ether bonds in lignin

    SciTech Connect (OSTI)

    Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; Heins, Richard A.; McAndrew, Ryan P.; Bingman, Craig; Deng, Kai; Holland, Keefe C.; Noguera, Daniel R.; Simmons, Blake A.; Sale, Kenneth L.; Ralph, John; Donohue, Timothy J.; Adams, Paul D.; Phillips, George N.

    2015-12-04

    Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.

  7. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    Through the mid-1980s, Air Products has brought the liquid phase approach to a number of other synthesis gas reactions where effective heat management is a key issue. In 1989, in response to DOE`s PRDA No. DE-RA22-88PC88805, Air Products proposed a research and development program entitled ``Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal Derived Syngas.`` The proposal aimed at extending the LPMEOH experience to convert coal-derived synthesis gas to other useful fuels and chemicals. The work proposed included development of a novel one-step synthesis of dimethyl ether (DME) from syngas, and exploration of other liquid phase synthesis of alternative fuel directly from syngas. The one-step DME process, conceived in 1986 at Air Products as a means of increasing syngas conversion to liquid products, envisioned the concept of converting product methanol in situ to DME in a single reactor. The slurry reactor based liquid phase technology is ideally suited for such an application, since the second reaction (methanol to DME) can be accomplished by adding a second catalyst with dehydration activity to the methanol producing reactor. An area of exploration for other alternative fuels directly from syngas was single-step slurry phase synthesis of hydrocarbons via methanol and DME as intermediates. Other possibilities included the direct synthesis of mixed alcohols and mixed ethers in a slurry reactor.

  8. Structural basis of stereospecificity in the bacterial enzymatic cleavage of β-aryl ether bonds in lignin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; Heins, Richard A.; McAndrew, Ryan P.; Bingman, Craig; Deng, Kai; Holland, Keefe C.; Noguera, Daniel R.; Simmons, Blake A.; et al

    2015-12-04

    Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less

  9. CH Packaging Operations for High Wattage Waste at LANL

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2003-05-06

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  10. CH Packaging Operations for High Wattage Waste at LANL

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2003-08-28

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  11. CH Packaging Operations for High Wattage Waste at LANL

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2003-03-21

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  12. CH Packaging Operations for High Wattage Waste at LANL

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-10-17

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  13. CH Packaging Operations for High Wattage Waste at LANL

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-12-18

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  14. Contract No. DE-AC02-07CH11358

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract No. DE-AC02-07CH11358 Modification No. 0171 Section B i PART I SECTION B SUPPLIES OR SERVICES AND PRICES/COSTS TABLE OF CONTENTS PAGE NO. B.1 - SERVICE BEING ACQUIRED B-1 B.2 - OBLIGATION OF FUNDS AND FINANCIAL LIMITATIONS B-1 B.3 - PERFORMANCE AND OTHER INCENTIVE FEES B-1 B.4 - ALLOWABILITY OF SUBCONTRACTOR FEE B-3 B.5 - PROVISIONAL PAYMENT OF PERFORMANCE FEE B-3 Contract No. DE-AC02-07CH11358 Modification No. 0171 Section B B-1 PART I SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS

  15. THE SEARCH FOR A COMPLEX MOLECULE IN A SELECTED HOT CORE REGION: A RIGOROUS ATTEMPT TO CONFIRM TRANS-ETHYL METHYL ETHER TOWARD W51 e1/e2

    SciTech Connect (OSTI)

    Carroll, P. Brandon; McGuire, Brett A.; Blake, Geoffrey A.; Apponi, A. J.; Ziurys, L. M.; Remijan, Anthony

    2015-01-20

    An extensive search has been conducted to confirm transitions of trans-ethyl methyl ether (tEME, C{sub 2}H{sub 5}OCH{sub 3}), toward the high-mass star forming region W51 e1/e2 using the 12 m Telescope of the Arizona Radio Observatory at wavelengths from 2 mm and 3 mm. In short, we cannot confirm the detection of tEME toward W51 e1/e2 and our results call into question the initial identification of this species by Fuchs et al. Additionally, re-evaluation of the data from the original detection indicates that tEME is not present toward W51 e1/e2 in the abundance reported by Fuchs and colleagues. Typical peak-to-peak noise levels for the present observations of W51 e1/e2 were between 10 and 30 mK, yielding an upper limit of the tEME column density of ≤1.5 × 10{sup 15} cm{sup –2}. This would make tEME at least a factor of two times less abundant than dimethyl ether (CH{sub 3}OCH{sub 3}) toward W51 e1/e2. We also performed an extensive search for this species toward the high-mass star forming region Sgr B2(N-LMH) with the National Radio Astronomy Observatory 100 m Green Bank Telescope. No transitions of tEME were detected and we were able to set an upper limit to the tEME column density of ≤4 × 10{sup 14} cm{sup –2} toward this source. Thus, we are able to show that tEME is not a new molecular component of the interstellar medium and that an exacting assessment must be carried out when assigning transitions of new molecular species to astronomical spectra to support the identification of large organic interstellar molecules.

  16. Direct Numerical Simulations of Autoignition in Stratified Dimethyl-ether (DME)/Air Turbulent Mixtures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Gaurav; Mascarenhas, Ajith; Chen, Jacqueline H.

    2014-10-01

    In our paper, two- and three-dimensional direct numerical simulations (DNS) of autoignition phenomena in stratified dimethyl-ether (DME)/air turbulent mixtures are performed. A reduced DME oxidation mechanism, which was obtained using rigorous mathematical reduction and stiffness removal procedure from a detailed DME mechanism with 55 species, is used in the present DNS. The reduced DME mechanism consists of 30 chemical species. This study investigates the fundamental aspects of turbulence-mixing-autoignition interaction occurring in homogeneous charge compression ignition (HCCI) engine environments. A homogeneous isotropic turbulence spectrum is used to initialize the velocity field in the domain. Moreover, the computational configuration corresponds to amore » constant volume combustion vessel with inert mass source terms added to the governing equations to mimic the pressure rise due to piston motion, as present in practical engines. DME autoignition is found to be a complex three-staged process; each stage corresponds to a distinct chemical kinetic pathway. The distinct role of turbulence and reaction in generating scalar gradients and hence promoting molecular transport processes are investigated. Then, by applying numerical diagnostic techniques, the different heat release modes present in the igniting mixture are identified. In particular, the contribution of homogeneous autoignition, spontaneous ignition front propagation, and premixed deflagration towards the total heat release are quantified.« less

  17. New clean fuel from coal -- Direct dimethyl ether synthesis from hydrogen and carbon monoxide

    SciTech Connect (OSTI)

    Ogawa, T.; Ono, M.; Mizuguchi, M.; Tomura, K.; Shikada, T.; Ohono, Y.; Fujimoto, K.

    1997-12-31

    Dimethyl ether (DME), which has similar physical properties to propane and is easily liquefied at low pressure, has a significant possibility as a clean and non-toxic fuel from coal or coal bed methane. Equilibrium calculation also shows a big advantage of high carbon monoxide conversion of DME synthesis compared to methanol synthesis. By using a 50 kg/day DME bench scale test plant, direct synthesis of DME from hydrogen and carbon monoxide has been studied with newly developed catalysts which are very fine particles. This test plant features a high pressure three-phase slurry reactor and low temperature DME separator. DME is synthesized at temperatures around 533--553 K and at pressures around 3--5 MPa. According to the reaction stoichiometry, the same amount of hydrogen and carbon monoxide react to DME and carbon dioxide. Carbon conversion to DME is one third and the rest of carbon is converted to carbon dioxide. As a result of the experiments, make-up CO conversion is 35--50% on an once-through basis, which is extremely high compared to that of methanol synthesis from hydrogen and carbon monoxide. DME selectivity is around 60 c-mol %. Most of the by-product is CO{sub 2} with a small amount of methanol and water. No heavy by-products have been recognized. Effluent from the reactor is finally cooled to 233--253 K in a DME separator and liquid DME is recovered as a product.

  18. Experimental and Computational Study of Nonpremixed Ignition of Dimethyl Ether in Counterflow

    SciTech Connect (OSTI)

    Zheng, X L; Lu, T F; Law, C K; Westbrook, C K

    2003-12-19

    The ignition temperature of nitrogen-diluted dimethyl ether (DME) by heated air in counterflow was experimentally determined for DME concentration from 5.9 to 30%, system pressure from 1.5 to 3.0 atmospheres, and pressure-weighted strain rate from 110 to 170/s. These experimental data were compared with two mechanisms that were respectively available in 1998 and 2003, with the latter being a substantially updated version of the former. The comparison showed that while the 1998-mechanism uniformly over-predicted the ignition temperature, the 2003-mechanism yielded surprisingly close agreement for all experimental data. Sensitivity analysis for the near-ignition state based on both mechanisms identified the deficiencies of the 1998-mechanism, particularly the specifics of the low-temperature cool flame chemistry in effecting ignition at higher temperatures, as the fuel stream is being progressively heated from its cold boundary to the high-temperature ignition region around the hot-stream boundary. The 2003-mechanism, consisting of 79 species and 398 elementary reactions, was then systematically simplified by using the directed relation graph method to a skeletal mechanism of 49 species and 251 elementary reactions, which in turn was further simplified by using computational singular perturbation method and quasi-steady-state species assumption to a reduced mechanism consisting of 33 species and 28 lumped reactions. It was demonstrated that both the skeletal and reduced mechanisms mimicked the performance of the detailed mechanism with high accuracy.

  19. Slurry phase synthesis of dimethyl ether from syngas -- A reactor model simulation

    SciTech Connect (OSTI)

    Mizuguchi, Masatsugu; Ogawa, Takashi; Ono, Masami,; Tomura, Keiji; Shikada, Tsutomu; Ohno, Yotaro; Fujimoto, Kaoru

    1998-12-31

    Dimethyl ether (DME) would be an attractive alternative fuel for diesel, domestic use, and power generation, if it is economically synthesized directly from syngas (derived from coal gasification or natural gas reforming). DME, which is a colorless gas with a boiling point of {minus}25 C, is chemically stable and easily liquefied under pressure. Since the properties of DME are similar to LPG, it can be handled and stored with the same manner as LPG. The authors have performed the slurry phase DME synthesis by using the 50 kg/day bench-scale unit. DME was synthesized at high yield from syngas (H{sub 2}+CO) with the newly developed catalyst system. To establish the scale-up methodology, the reactor simulation technique is essential. The authors developed a mathematical model of the slurry phase bubble column reactor for DME synthesis, which is based on their experimental results. The performance of a commercial-scale DME reactor was simulated by this model, and the results were discussed.

  20. Direct Numerical Simulations of Autoignition in Stratified Dimethyl-ether (DME)/Air Turbulent Mixtures

    SciTech Connect (OSTI)

    Bansal, Gaurav; Mascarenhas, Ajith; Chen, Jacqueline H.

    2014-10-01

    In our paper, two- and three-dimensional direct numerical simulations (DNS) of autoignition phenomena in stratified dimethyl-ether (DME)/air turbulent mixtures are performed. A reduced DME oxidation mechanism, which was obtained using rigorous mathematical reduction and stiffness removal procedure from a detailed DME mechanism with 55 species, is used in the present DNS. The reduced DME mechanism consists of 30 chemical species. This study investigates the fundamental aspects of turbulence-mixing-autoignition interaction occurring in homogeneous charge compression ignition (HCCI) engine environments. A homogeneous isotropic turbulence spectrum is used to initialize the velocity field in the domain. Moreover, the computational configuration corresponds to a constant volume combustion vessel with inert mass source terms added to the governing equations to mimic the pressure rise due to piston motion, as present in practical engines. DME autoignition is found to be a complex three-staged process; each stage corresponds to a distinct chemical kinetic pathway. The distinct role of turbulence and reaction in generating scalar gradients and hence promoting molecular transport processes are investigated. Then, by applying numerical diagnostic techniques, the different heat release modes present in the igniting mixture are identified. In particular, the contribution of homogeneous autoignition, spontaneous ignition front propagation, and premixed deflagration towards the total heat release are quantified.

  1. A fluorescence-based method for rapid and direct determination of polybrominated diphenyl ethers in water

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shan, Huimei; Liu, Chongxuan; Wang, Zheming; Ma, Teng; Shang, Jianying; Pan, Duoqiang

    2015-01-01

    A new method was developed for rapid and direct measurement of polybrominated diphenyl ethers (PBDEs) in aqueous samples using fluorescence spectroscopy. The fluorescence spectra of tri- to deca-BDE (BDE 28, 47, 99, 153, 190, and 209) commonly found in environment were measured at variable emission and excitation wavelengths. The results revealed that the PBDEs have distinct fluorescence spectral profiles and peak positions that can be exploited to identify these species and determine their concentrations in aqueous solutions. The detection limits as determined in deionized water spiked with PBDEs are 1.71-5.82 ng/L for BDE 28, BDE 47, BDE 190, and BDEmore » 209 and 45.55–69.95 ng/L for BDE 99 and BDE 153. The effects of environmental variables including pH, humic substance, and groundwater chemical composition on PBDEs measurements were also investigated. These environmental variables affected fluorescence intensity, but their effect can be corrected through linear additivity and separation of spectral signal contribution. Compared with conventional GC-based analytical methods, the fluorescence spectroscopy method is more efficient as it only uses a small amount of samples (2-4 mL), avoids lengthy complicated concentration and extraction steps, and has a low detection limit of a few ng/L.« less

  2. A fluorescence-based method for rapid and direct determination of polybrominated diphenyl ethers in water

    SciTech Connect (OSTI)

    Shan, Huimei; Liu, Chongxuan; Wang, Zheming; Ma, Teng; Shang, Jianying; Pan, Duoqiang

    2015-01-01

    A new method was developed for rapid and direct measurement of polybrominated diphenyl ethers (PBDEs) in aqueous samples using fluorescence spectroscopy. The fluorescence spectra of tri- to deca-BDE (BDE 28, 47, 99, 153, 190, and 209) commonly found in environment were measured at variable emission and excitation wavelengths. The results revealed that the PBDEs have distinct fluorescence spectral profiles and peak positions that can be exploited to identify these species and determine their concentrations in aqueous solutions. The detection limits as determined in deionized water spiked with PBDEs are 1.71-5.82 ng/L for BDE 28, BDE 47, BDE 190, and BDE 209 and 45.5569.95 ng/L for BDE 99 and BDE 153. The effects of environmental variables including pH, humic substance, and groundwater chemical composition on PBDEs measurements were also investigated. These environmental variables affected fluorescence intensity, but their effect can be corrected through linear additivity and separation of spectral signal contribution. Compared with conventional GC-based analytical methods, the fluorescence spectroscopy method is more efficient as it only uses a small amount of samples (2-4 mL), avoids lengthy complicated concentration and extraction steps, and has a low detection limit of a few ng/L.

  3. Hydrogen-bonding interactions and protic equilibria in room-temperature ionic liquids containing crown ethers.

    SciTech Connect (OSTI)

    Marin, T.; Shkrob, I.; Dietz, M.

    2011-04-14

    Nuclear magnetic resonance (NMR) spectroscopy has been used to study hydrogen-bonding interactions between water, associated and dissociated acids (i.e., nitric and methanesulfonic acids), and the constituent ions of several water-immiscible room-temperature ionic liquids (ILs). In chloroform solutions also containing a crown ether (CE), water molecules strongly associate with the IL ions, and there is rapid proton exchange between these bound water molecules and hydronium associated with the CE. In neat ILs, the acids form clusters differing in their degree of association and ionization, and their interactions with the CEs are weak. The CE can either promote proton exchange between different clusters in IL solution when their association is weak or inhibit such exchange when the association is strong. Even strongly hydrophobic ILs are shown to readily extract nitric acid from aqueous solution, typically via the formation of a 1:1:1 {l_brace}H{sub 3}O{sup +} {center_dot} CE{r_brace}NO{sub 3}{sup -} complex. In contrast, the extraction of methanesulfonic acid is less extensive and proceeds mainly by IL cation-hydronium ion exchange. The relationship of these protic equilibria to the practical application of hydrophobic ILs (e.g., in spent nuclear fuel reprocessing) is discussed.

  4. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    SciTech Connect (OSTI)

    Morini, Filippo; Deleuze, Michael Simon; Watanabe, Noboru; Kojima, Masataka; Takahashi, Masahiko

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b{sub 1}, 6a{sub 1}, 4b{sub 2}, and 1a{sub 2} orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A{sub 1}, B{sub 1}, and B{sub 2} symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  5. Equilibria and dissociation kinetics of lanthanide complexes of diaza crown ether carboxylic acids

    SciTech Connect (OSTI)

    Chang, C.A.; Chang, P.H.L.; Manchanda, V.K.; Kasprzyk, S.P.

    1988-10-19

    The equilibria and dissociation kinetics of lanthanide and several transition-metal and Pb(II) complexes of some diaza crown ether carboxylic acids are studied. The ligands are K22MA (1,10-diaza-4,7,13,16-tetraoxacyclooctadecane-N-acetic acid), K22DP (1,10-diaza-4,7,13,16-tetraoxacyclooctadecane-N,N'-di-..beta..-propionic acid), and K22MP (1,10-diaza-4,7,13,16-tetraoxacyclooctadecane-N-..beta..-propionic acid). The protonation constants of these ligands are similar to those of the structural analogues and are in the range log K/sub 1/ = 8.80-9.01 and log K/sub 2/ = 7.26-8.16. The stability constants are all lower than that of their structural analogue K22DA (1,10-diaza-4,7,13,16-tetraoxacyclooctadecane-N,N'-diacetic acid) due to the reduction of the chelate effect or an unfavorable steric effect or both. The kinetic dissociation rates are all faster as compared to those of K22DA complexes. Acid-dependent (k/sub H/) and acid-independent (k/sub d/) rate constants are obtained by the measurement of rates at various pH values, and they correlate inversely with the values of stability constants. 15 references, 1 figure, 4 tables.

  6. Electronic structure, transport, and phonons of SrAgChF (Ch = S,Se,Te): Bulk superlattice thermoelectrics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gudelli, Vijay Kumar; Kanchana, V.; Vaitheeswaran, G.; Singh, David J.; Svane, Axel; Christensen, Niels Egede; Mahanti, Subhendra D.

    2015-07-15

    Here, we report calculations of the electronic structure, vibrational properties, and transport for the p-type semiconductors, SrAgChF (Ch = S, Se, and Te). We find soft phonons with low frequency optical branches intersecting the acoustic modes below 50 cm–1, indicative of a material with low thermal conductivity. The bands at and near the valence-band maxima are highly two-dimensional, which leads to high thermopowers even at high carrier concentrations, which is a combination that suggests good thermoelectric performance. These materials may be regarded as bulk realizations of superlattice thermoelectrics.

  7. Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2006-06 November 16, 2006 Issued to CH2M Hill Hanford Group, Inc., related to Radiological Contamination Events ...

  8. DOE Selects CH2M Hill Plateau Remediation Company for Plateau...

    Office of Environmental Management (EM)

    CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its ...

  9. Letter from DOE to URS | CH2M Oak Ridge LLC on Award Fee Determination...

    Office of Environmental Management (EM)

    DOE to URS | CH2M Oak Ridge LLC on Award Fee Determination for April to September 2015 Letter from DOE to URS | CH2M Oak Ridge LLC on Award Fee Determination for April to September ...

  10. Preliminary Notice of Violation, CH2M-Washington Group Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M-Washington Group Idaho, LLC - EA-2007-03 Preliminary Notice of Violation, CH2M-Washington Group Idaho, LLC - EA-2007-03 June 14, 2007 Issued to CH2M-Washington Group Idaho, LLC,...

  11. Selectivity of Chemisorbed Oxygen in C-H Bond Activation and...

    Office of Scientific and Technical Information (OSTI)

    Selectivity of Chemisorbed Oxygen in C-H Bond Activation and CO Oxidation and Kinetic ... Title: Selectivity of Chemisorbed Oxygen in C-H Bond Activation and CO Oxidation and ...

  12. Enforcement Letter, CH2M Hill Hanford Group, Inc - July 8, 2005...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc - July 8, 2005 Enforcement Letter, CH2M Hill Hanford Group, Inc - July 8, 2005 July 8, 2005 Issued to CH2M Hill Hanford Group, Inc., related to Neutron Exposure at the Hanford...

  13. Hydrogen for X-group exchange in CH3X, X = Cl, Br, I, OMe and...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen for X-group exchange in CH3X, X Cl, Br, I, OMe and NMe2 byMonomeric ... Citation Details In-Document Search Title: Hydrogen for X-group exchange in CH3X, X Cl, ...

  14. Independent Activity Report, CH2M Hill Plateau Remediation Company- January 2011

    Broader source: Energy.gov [DOE]

    Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003

  15. Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc- EA-2005-01

    Broader source: Energy.gov [DOE]

    Issued to CH2M Hill Hanford Group, Inc., related to Radiological and Operational Events at the Hanford Tank Farms

  16. Enforcement Letter, CH2M Hill Hanford Group, Inc.- April 24, 2001

    Broader source: Energy.gov [DOE]

    Issued to CH2M Hill Hanford Group, Inc., related to Nuclear Safety Management at the Hanford Site Tank Farms

  17. Enforcement Letter, CH2M Hill Hanford Group Inc,- September 6, 2007

    Broader source: Energy.gov [DOE]

    Issued to CH2M Hill Hanford Group, Inc., related to Quality Improvement Deficiencies at the Hanford Tank Farms

  18. ULEV potential of a DI/TCI diesel passenger car engine operated on dimethyl ether

    SciTech Connect (OSTI)

    Kapus, P.E.; Cartellieri, W.P.

    1995-12-31

    This paper describes a feasibility test program on a 2 liter, 4 cylinder DI/TCI passenger car engine operated on the new alternative fuel Dimethyl Ether (DME) with the aim of demonstrating its potential of meeting ULEV (ultra low emission vehicle) emissions (0.2 g/mi NOx in the FTP 75 test cycle) when installed in a full size passenger car. Special attention is drawn to the fuel injection equipment (FIE) as well as combustion system requirements towards the reduction of NOx and combustion noise while keeping energetic fuel consumption at the level of he baseline DI/TCI diesel engine. FIE and combustion system parameters were optimized on the steady state dynamometer by variation of a number of parameters, such as rate of injection, number of nozzle holes, compression ratio, piston bowl shape and exhaust gas recirculation. The paper presents engine test results achieved with DME under various operating conditions and compares these results to those achieved with the diesel version of the same engine.The FTP 75 cycle results were projected from steady state engine maps using a vehicle simulation program taking into account vehicle data and road resistance data of a given vehicle.The cycle results are also compared to actual chassis dynamometer results achieved with the diesel version of the same engine installed in the same vehicle.the passenger car DI/TCI engine adapted for and operated on DME shows very promising results with respect to meeting ULEV NOx emissions without any soot emissions and without the need for a DENOX catalyst. DME fuel consumption on energy basis can be kept very close to the DI diesel value. An oxidation catalyst will be necessary to meet the stringent CO and HC ULEV emission limits.

  19. Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization

    SciTech Connect (OSTI)

    Sturgeon, M. R.; Kim, S.; Chmely, S. C.; Foust, T. D.; Beckham, G. T.

    2013-01-01

    Carbon-oxygen bonds are the primary inter-monomer linkages lignin polymers in plant cell walls, and as such, catalyst development to cleave these linkages is of paramount importance to deconstruct biomass to its constituent monomers for the production of renewable fuels and chemicals. For many decades, acid catalysis has been used to depolymerize lignin. Lignin is a primary component of plant cell walls, which is connected primarily by aryl-ether linkages, and the mechanism of its deconstruction by acid is not well understood, likely due to its heterogeneous and complex nature compared to cellulose. For effective biomass conversion strategies, utilization of lignin is of significant relevance and as such understanding the mechanisms of catalytic lignin deconstruction to constituent monomers and oligomers is of keen interest. Here, we present a comprehensive experimental and theoretical study of the acid catalysis of a range of dimeric species exhibiting the b-O-4 linkage, the most common inter-monomer linkage in lignin. We demonstrate that the presence of a phenolic species dramatically increases the rate of cleavage in acid at 150 degrees C. Quantum mechanical calculations on dimers with the para-hydroxyl group demonstrate that this acid-catalyzed pathway differs from the nonphenolic dimmers. Importantly, this result implies that depolymerization of native lignin in the plant cell wall will proceed via an unzipping mechanism wherein b-O-4 linkages will be cleaved from the ends of the branched, polymer chains inwards toward the center of the polymer. To test this hypothesis further, we synthesized a homopolymer of b-O-4 with a phenolic hydroxyl group, and demonstrate that it is cleaved in acid from the end containing the phenolic hydroxyl group. This result suggests that genetic modifications to lignin biosynthesis pathways in plants that will enable lower severity processes to fractionate lignin for upgrading and for easier access to the carbohydrate fraction of

  20. 1

    Office of Environmental Management (EM)

    Xylene, Ethyl acetate, Ethyl benzene, Ethyl ether, n-Butyl alcohol, Cyclohexanone, Methanol, Cresols, Cresylic acid, Nitroobenzene, Carbon disulfide, Isobutanol, Pyridine, 2-...

  1. Impact of Renewable Fuels Standard/MTBE Provisions of S. 517 Requested by Sens. Daschle & Murkowski

    Reports and Publications (EIA)

    2002-01-01

    Additional analysis of the impact of the Renewable Fuels Standard (RFS) and methyl tertiary butyl ether (MTBE) ban provisions of S. 517.

  2. This Week In Petroleum Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    this transition from Methyl Tertiary Butyl Ether (MTBE) reformulated gasoline (RFG) to ethanol RFG, since ethanol is not blended into the gasoline mixture until just before the...

  3. untitled

    Gasoline and Diesel Fuel Update (EIA)

    of "other" hydrocarbons and oxygenates include hydrogen and oxygenates especially fuel ethanol and methyl tertiary butyl ether (MTBE). The adjustment is equal to the...

  4. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Normal Butane Isobutane Other Liquids OxygenatesRenewables Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol...

  5. Refinery Stocks of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other ...

  6. Motor Gasoline Market Spring 2007 and Implications for Spring...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    began to decline, and with the transition from methyl tertiary butyl ether (MTBE) to ethanol completed and the end of the summer driving season drawing near, gasoline prices...

  7. Ligand-Thickness Effect Leads to Enhanced Preference for Large Anions in Alkali Metal Extraction by Crown Ethers

    SciTech Connect (OSTI)

    Haverlock, T.J.; Moyer, B.A.; Sachleben, R.A.

    1999-07-11

    Jean-Marie Lehn (Nobel laureate, 1987) suggested ligand thickness to be an important consideration in the design of host molecules for cation recognition. We have recently expanded the role of this simple ligand property by demonstrating a case in which ligand thickness contributes significantly to anion discrimination. It was found that in the extraction of sodium nitrate and perchlorate by a simple crown ether, bis(t-octylbenzo)-14-crown-4 (BOB 14C4), the normal preference for perchlorate is almost completely lost when the complex cation has the open-face sandwich vs. the sandwich structure.

  8. SYNTHESIS OF NOVEL CROWN ETHERS BEARING THE exo-cis-2,3-NORBORNYL GROUP AS POTENTIAL Na+ AND K+ EXTRACTANTS

    SciTech Connect (OSTI)

    Robeson, R.M.; Bonnesen, P.

    2007-01-01

    The synthesis of a series of novel dinorbornyl-16-crown-5 and dinorbornyl-18-crown-6 ethers that incorporate the exo-cis-2,3-norbornyl moiety within the macrocycle framework is described. The key starting material for the crown ethers, exo-cis-2,3-norbornanediol, was successfully prepared on a large (>30g) scale in 88% yield from norbornylene by osmium tetroxide-catalyzed hydroxylation. The syn and anti isomers of the dinorbornyl-16-crown-5 ether family were prepared using diethylene glycol with ring closure achieved using a methallyl linkage. The isomers cis-syn-cis and cis-anti-cis di-norbornano-15-methyleno-16-crown-5 (6A and 6B) could be separated using column chromatography, and a single crystal of the syn isomer 6A suitable for X-ray crystal structure analysis was obtained, thereby confi rming the syn orientation. The syn and anti isomers of the dinorbornyl-18-crown-6 ether family were successfully prepared employing a different synthetic strategy, involving the potassium–templated cyclization of two bis-hydroxyethoxy-substituted exo-cis-2,3-norbornyl groups under high dilution conditions. Attempts to fully separate cis-syn-cis di-norbornano-18-crown-6 (10A) and cis-anti-cis di-norbornano-18-crown-6 (10B) from one another using column chromatography were unsuccessful. All intermediates and products were checked for purity using either thin layer chromatography or gas chromatography, and characterized by proton and carbon NMR. Crown ethers 6AB and 10AB are to our knowledge the fi rst crown ethers to incorporate the exo-cis-2,3-norbornyl moiety into the crown ring to be successfully synthesized and characterized.

  9. Decomposition and vibrational relaxation in CH{sub 3}I and self-reaction of CH{sub 3} radicals.

    SciTech Connect (OSTI)

    Yang, X.; Goldsmith, C. F.; Tranter, R. S.

    2009-07-01

    Vibrational relaxation and dissociation of CH{sub 3}I, 2-20% in krypton, have been investigated behind incident shock waves in a diaphragmless shock tube at 20, 66, 148, and 280 Torr and 630-2200 K by laser schlieren densitometry. The effective collision energy obtained from the vibrational relaxation experiments has a small, positive temperature dependence, {Delta}E{sub down} = 63 x (T/298){sup 0.56} cm{sup -1}. First-order rate coefficients for dissociation of CH{sub 3}I show a strong pressure dependence and are close to the low-pressure limit. Restricted-rotor Gorin model RRKM calculations fit the experimental results very well with {Delta}E{sub down} = 378 x (T/298){sup 0.457} cm{sup -1}. The secondary chemistry of this reaction system is dominated by reactions of methyl radicals and the reaction of the H atom with CH{sub 3}I. The results of the decomposition experiments are very well simulated with a model that incorporates methyl recombination and reactions of methylene. Second-order rate coefficients for ethane dissociation to two methyl radicals were derived from the experiments and yield k = (4.50 {+-} 0.50) x 10{sup 17} exp(-32709/T) cm{sup 3} mol{sup -1} s{sup -1}, in good agreement with previous measurements. Rate coefficients for H + CH{sub 3}I were also obtained and give k = (7.50 {+-} 1.0) x 10{sup 13} exp(-601/T) cm{sup 3} mol{sup -1} s{sup -1}, in reasonable agreement with a previous experimental value.

  10. Coupling of alcohols to ethers: The dominance of the surface S{sub N}2 reaction pathway

    SciTech Connect (OSTI)

    Klier, K.; Feeley, O.C.; Johansson, M.; Herman, R.G.

    1996-12-31

    Coupling of alcohols to ethers, important high value oxygenates, proceeds on acid catalysts via general pathways that uniquely control product composition, oxygen retention, chirality inversion, and kinetics. The dominant pathway is the S{sub N}2 reaction with competition of the alcohols for the surface acid sites. This is exemplified by formation of methyl(ethyl) isobutylether (M(E)IBE) from methanol(ethanol)/isobutanol mixtures, retention of oxygen ({sup 18}O) of the heavier alcohol, and optimum rate as a function of concentration of either reactant alcohol. The S{sub N}2 pathway in the confinement of zeolite pores exhibits additional features of a near-100% selectivity to dimethylether (DME) in H-mordenite and a near-100% selectivity to chiral inversion in 2-pentanol/ethanol coupling to 2-ethoxypentane in HZSM-5. A minor reaction pathway entails olefin or carbenium intermediates, as exemplified by the formation of methyl tertiarybutyl ether (MTBE) from methanol/isobutanol mixtures with oxygen retention of the lighter alcohol. Calculations of transition state and molecular modeling of the oxonium-involving pathways dramatically demonstrate how the reaction path selects the products.