Powered by Deep Web Technologies
Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

State Restrictions on Methyl Tertiary Butyl Ether (released in AEO2006)  

Reports and Publications (EIA)

By the end of 2005, 25 States had barred, or passed laws banning, any more than trace levels of MTBE in their gasoline supplies, and legislation to ban MTBE was pending in 4 others. Some State laws address only MTBE; others also address ethers such as ethyl tertiary butyl ether (ETBE) and tertiary amyl methyl ether (TAME). AEO2006 assumes that all State MTBE bans prohibit the use of all ethers for gasoline blending.

Information Center

2006-02-01T23:59:59.000Z

2

Refinery & Blenders Net Input of Methyl Tertiary Butyl Ether ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether, RBOB ...

3

Enhanced diisobutene production in the presence of methyl tertiary butyl ether  

DOE Patents (OSTI)

In the liquid phase reaction of isobutene in the presence of resin cation exchange resins with itself in a C[sub 4] hydrocarbon stream to form dimers, the formation of higher polymers, oligomers, and co-dimer by-products is suppressed by the presence of 0.0001 to 1 mole per mole of isobutene of methyl tertiary butyl ether. 1 fig.

Smith, L.A. Jr.

1983-03-01T23:59:59.000Z

4

Ethyl-tertiary-butyl-ether (ETBE) as an aviation fuel: Eleventh international symposium on alcohol fuels  

DOE Green Energy (OSTI)

This paper discusses the preliminary flight testing of an aircraft using neat burning ethyl-tertiary-butyl-ether (ETBE) as a fuel. No additional changes were made to the fuel delivery systems which had previously been modified to provide the higher fuel flow rates required to operate the engine on neat ethanol. Air-fuel ratios were manually adjusted with the mixture control. This system allows the pilot to adjust the mixture to compensate for changes in air density caused by altitude, pressure and temperature. The engine was instrumented to measure exhaust gas temperatures (EGT), cylinder head temperatures (CHT), and fuel flows, while the standard aircraft instruments were used to collect aircraft performance data. Baseline engine data for ETBE and Avgas are compared. Preliminary data indicates the technical and economic feasibility of using ETBE as an aviation fuel for the piston engine fleet. Furthermore, the energy density of ETBE qualifies it as a candidate for a turbine engine fuel of which 16.2 billion gallons are used in the US each year.

Maben, G.D.; Shauck, M.E.; Zanin, M.G.

1996-12-31T23:59:59.000Z

5

Whole-Genome Analysis of Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1  

E-Print Network (OSTI)

by pure cultures of butane-degrading bacteria. Appl.of K s values for MTBE by butane- degrading bacteria (52).

2007-01-01T23:59:59.000Z

6

Methyl tert-butyl ether (MTBE) is a volatile organic com-pound (VOC) derived from natural gas that is added to gas-  

E-Print Network (OSTI)

Methyl tert-butyl ether (MTBE) is a volatile organic com- pound (VOC) derived from natural gas Water in Urban and Agricultural Areas made from methanol, which is derived primarily from natural gas that is added to gas- oline either seasonally or year round in many parts of the United States to increase

7

Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. [801Methyl tert-butyl ether  

DOE Green Energy (OSTI)

The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. (2) Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. (3) Addition of methanol to slurry phase FT synthesis making iso-olefins. During the sixth quarter we completed the construction of the slurry bubble column reactor (SBCR), conducted initial shake-down experiments in a cold-flow mode, and finalized the selection process of the acid catalysts for conversion of syngas-produced alcohols and isobutylene to MTBE (scheme 2). Tasks 3, 4, and 5 are awaiting complete implementation of the SBCR system.

Marcelin, G.

1992-06-24T23:59:59.000Z

8

Determination of Methyl tert-Butyl Ether and tert-Butyl Alcohol in Water by Solid-Phase Microextraction/Head Space Analysis in Comparison to EPA Method 5030/8260B  

DOE Green Energy (OSTI)

Methyl tert-butyl ether (MTBE) is now one of the most common groundwater contaminants in the United States. Groundwater contaminated with MTBE is also likely to be contaminated with tert-butyl alcohol (TBA), because TBA is a component of commercial grade MTBE, TBA can also be used as a fuel oxygenate, and TBA is a biodegradation product of MTBE. In California, MTBE is subject to reporting at concentrations greater than 3 {micro}g/L. TBA is classified as a ''contaminant of current interest'' and has a drinking water action level of 12 {micro}g/L. In this paper, we describe the development and optimization of a simple, automated solid phase microextraction (SPME) method for the analysis of MTBE and TBA in water and demonstrate the applicability of this method for monitoring MTBE and TBA contamination in groundwater, drinking water, and surface water. In this method, the headspace (HS) of a water sample is extracted with a carboxen/polydimethylsiloxane SPME fiber, the MTBE and TBA are desorbed into a gas chromatograph (GC), and detected using mass spectrometry (MS). The method is optimized for the routine analysis of MTBE and TBA with a level of quantitation of 0.3 {micro}g/L and 4 {micro}g/L, respectively, in water. MTBE quantitation was linear for over two orders of concentration (0.3 {micro}g/L -80 {micro}g/L). TBA was found to be linear within the range of 4 {micro}g/L-7,900 {micro}g/L. The lower level of detection for MTBE is 0.03 {micro}g/L using this method. This SPME method using headspace extraction was found to be advantageous over SPME methods requiring immersion of the fiber into the water samples, because it prolonged the life of the fiber by up to 400 sample analyses. This is the first time headspace extraction SPME has been shown to be applicable to the measurement of both MTBE and TBA at concentrations below regulatory action levels. This method was compared with the certified EPA Method 5030/8260B (purge-and-trap/GC/MS) using split samples from laboratory bioreactors treating MTBE contaminated water and applied to environmental samples collected throughout the East Bay area of California. Results from the SPME-HS/GC/MS method were directly comparable to the EPA Method 5030/8260B. This method provides an simple, inexpensive, accurate, and sensitive alternative to EPA Method 5030/8260B for the analysis of MTBE and TBA in water samples.

Oh, Keun-Chan; Stringfellow, William T.

2003-10-02T23:59:59.000Z

9

Emissions with butane/propane blends  

Science Conference Proceedings (OSTI)

This article reports on various aspects of exhaust emissions from a light-duty car converted to operate on liquefied petroleum gas and equipped with an electrically heated catalyst. Butane and butane/propane blends have recently received attention as potentially useful alternative fuels. Butane has a road octane number of 92, a high blending vapor pressure, and has been used to upgrade octane levels of gasoline blends and improve winter cold starts. Due to reformulated gasoline requirements for fuel vapor pressure, however, industry has had to remove increasing amounts of butane form the gasoline pool. Paradoxically, butane is one of the cleanest burning components of gasoline.

NONE

1996-11-01T23:59:59.000Z

10

Ignition properties of n-butane and iso-butane in a rapid compression machine  

Science Conference Proceedings (OSTI)

Autoignition delay times of n-butane and iso-butane have been measured in a Rapid Compression Machine in the temperature range 660-1010 K, at pressures varying from 14 to 36 bar and at equivalence ratios {phi} = 1.0 and {phi} = 0.5. Both butane isomers exhibit a negative-temperature-coefficient (NTC) region and, at low temperatures, two-stage ignition. At temperatures below {proportional_to}900 K, the delay times for iso-butane are longer than those for the normal isomer, while above this temperature both butanes give essentially the same results. At temperatures above {proportional_to}720 K the delay times of the lean mixtures are twice those for stoichiometric compositions; at T butane using a comprehensive model for butane ignition, including both delay times in the two-stage region, with substantial differences being observed for iso-butane, particularly in the NTC region. (author)

Gersen, S.; Darmeveil, J.H. [Gasunie Engineering and Technology, P.O. Box 19, 9700 MA Groningen (Netherlands); Mokhov, A.V. [Laboratory for Fuel and Combustion Science, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Levinsky, H.B. [Gasunie Engineering and Technology, P.O. Box 19, 9700 MA Groningen (Netherlands); Laboratory for Fuel and Combustion Science, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

2010-02-15T23:59:59.000Z

11

West Coast (PADD 5) Exports of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

Normal Butane/Butylene Exports; Normal Butane/Butylene Supply and Disposition; West Coast (PADD 5) Exports of Crude Oil and Petroleum Products ...

12

Rocky Mountain (PADD 4) Product Supplied of Normal Butane ...  

U.S. Energy Information Administration (EIA)

Normal Butane/Butylene Supply and Disposition; Product Supplied for Normal Butane/Butylene ; Rocky Mountain (PADD 4) Product Supplied for Crude Oil ...

13

A study of the kinetics and mechanism of the adsorption and anaerobic partial oxidation of n-butane over a vanadyl pyrophosphate catalyst  

SciTech Connect

The interaction of n-butane with a ((VO){sub 2}P{sub 2}O{sub 7}) catalyst has been investigated by temperature-programmed desorption and anaerobic temperature-programmed reaction. n-Butane has been shown to adsorb on the (VO){sub 2}P{sub 2}O{sub 7} to as a butyl-hydroxyl pair. When adsorption is carried out at 223 K, upon temperature programming some of the butyl-hydroxyl species recombine resulting in butane desorption at 260 K. However, when adsorption is carried out at 423 K, the hydroxyl species of the butyl-hydroxyl pair migrate away from the butyl species during the adsorption, forming water which is detected in the gas phase. Butane therefore is not observed to desorb at 260 K after the authors lowered the temperature to 223 K under the butane/helium from the adsorption temperature of 423 K prior to temperature programming from that temperature to 1100 K under a helium stream. Anaerobic temperature-programmed oxidation of n-butane produces butene and butadiene at a peak maximum temperature of 1000 K; this is exactly the temperature at which, upon temperature programming, oxygen evolves from the lattice and desorbs as O{sub 2}. This, and the fact that the amount of oxygen desorbing from the (VO){sub 2}P{sub 2}O{sub 7} at {approximately}1000 K is the same as that required for the oxidation of the n-butane to butene and butadiene, strongly suggests (1) that lattice oxygen as it emerges at the surface is the selective oxidant and (2) that its appearance at the surface is the rate-determining step in the selective oxidation of n-butane. The surface of the (VO){sub 2}P{sub 2}O{sub 7} catalyst on which this selective oxidation takes place has had approximately two monolayers of oxygen removed from it by unselective oxidation of the n-butane to CO, CO{sub 2}, and H{sub 2}O between 550 and 950 K and has had approximately one monolayer of carbon deposited on it at {approximately}1000 K. It is apparent, therefore, that the original crystallography of the (VO){sub 2}P{sub 2}O{sub 7} catalyst will not exist during this selective oxidation and that theories that relate selectivity in partial oxidation to the (100) face of the (VO){sub 2}P{sub 2}O{sub 7} catalyst cannot apply in this case.

Sakakini, B.H.; Taufiq-Yap, Y.H.; Waugh, K.C.

2000-01-25T23:59:59.000Z

14

Rocky Mountain (PADD 4) Exports of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

Normal Butane/Butylene Supply and Disposition; Rocky Mountain (PADD 4) Exports of Crude Oil and Petroleum Products ...

15

Efficient Energy Usage in Butane Splitters  

E-Print Network (OSTI)

A World surplus of mixed butanes coupled with an increased need for gasoline extenders has raised the demand for isobutane. Isobutane is readily separated from an admixture with normal butane by conventional distillation techniques. However, application of the heat pump principle to this separation can reduce energy consumption by over 50%, though capital costs increase. The conventional fractionation scheme is compared to two different methods of applying the heat pump principle; overhead compression and bottoms flash compression. For both heat pump designs, payout time is less than one year for a Middle East location, based upon a detailed study of an actual case.

Barnwell, J.; Morris, C. P.

1982-01-01T23:59:59.000Z

16

Refinery & Blenders Net Input of Normal Butane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether, RBOB ...

17

Refinery Net Input of Normal Butane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and ...

18

Gulf Coast (PADD 3) Refinery Grade Butane Stocks at Bulk ...  

U.S. Energy Information Administration (EIA)

Gulf Coast (PADD 3) Refinery Grade Butane Stocks at Bulk Terminals (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 935: ...

19

Firing Excess Refinery Butane in Peaking Gas Turbines  

E-Print Network (OSTI)

New environmentally-driven regulations for motor gasoline volatility will significantly alter refinery light ends supply/demand balancing. This, in turn, will impact refinery economics. This paper presumes that one outcome will be excess refinery normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper identifies the fundamental driving forces which are changing refinery butane economics, examines how these forces influence refinery production, and evaluates the potential for using normal butanes as peaking utility gas turbine fuel, especially on the US East Coast.

Pavone, A.; Schreiber, H.; Zwillenberg, M.

1989-09-01T23:59:59.000Z

20

Experimental Pathology Laboratories, Inc. Ethyl-Tertiary-Butyl Ether  

E-Print Network (OSTI)

a plantation about 15-year-old in the Les Cedres area, near Montreal (45820H N, 73854H W). Trees in open

Bandettini, Peter A.

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

East Coast (PADD 1) Normal Butane-Butylene Stock Change ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Normal Butane-Butylene Stock Change (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 4-3: 1: ...

22

East Coast (PADD 1) Gas Plant Production of Normal Butane ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Gas Plant Production of Normal Butane-Butylene (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; ...

23

Midwest (PADD 2) Exports of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

Midwest (PADD 2) Exports of Normal Butane-Butylene (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 0: 0: 0: 0: ...

24

Midwest (PADD 2) Normal Butane-Butylene Stock Change (Thousand ...  

U.S. Energy Information Administration (EIA)

Midwest (PADD 2) Normal Butane-Butylene Stock Change (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981-4-34-7: 14: ...

25

West Coast (PADD 5) Imports of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

West Coast (PADD 5) Imports of Normal Butane-Butylene (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 9: 18: ...

26

Coupling of oxidative dehydrogenation and aromatization reactions of butane  

Science Conference Proceedings (OSTI)

Coupling of oxidative dehydrogenation and aromatization of butane by using a dual function catalyst has led to a significant enhancement of the yields (from 25 to 40%) and selectivities to aromatics (from 39 to 64%). Butane is converted to aromatics by using either zinc-promoted [Ga]-ZSM-5 or zinc and gallium copromoted [Fe]-ZSM-5 zeolite as a catalyst. However, the formation of aromatics is severely limited by hydrocracking of butane to methane, ethane, and propane due to the hydrogen formed during aromatization reactions. On the other hand, the oxidative dehydrogenation of butane to butene over molybdate catalysts is found to be accompanied by a concurrent undesirable reaction, i.e., total oxidation. When two of these reactions (oxidative dehydrogenation and aromatization of butane) are coupled by using a dual function catalyst they have shown to complement each other. It is believed that the rate-limiting step for aromatization (butane to butene) is increased by adding an oxidative dehydrogenation catalyst (Ga-Zn-Mg-Mo-O). The formation of methane, ethane, and propane was suppressed due to the removal of hydrogen initially formed as water. Studies of ammonia TPD show that the acidities of [Fe]-ZSM-5 are greatly affected by the existence of metal oxides such as Ga[sub 2]O[sub 3], MgO, ZnO, and MoO[sub 3]. 40 refs., 9 figs., 1 tab.

Xu, Wen-Qing; Suib, S.L. (Univ. of Connecticut, Storrs, CT (United States))

1994-01-01T23:59:59.000Z

27

ADSORPTION AND BONDING OF BUTANE AND PENTANE ON THE Pt(111) CRYSTAL SURFACES. EFFECTS OF OXYGEN TREATMENTS AND DEUTERIUM PREADSORPTION  

E-Print Network (OSTI)

ADSORPTION AND BONDING OF BUTANE AND PENTANE ON THE .Pt(111)ADSORPTION AND BONDING OF BUTANE AND PENTANE ON THE Pt(lll)adsorption characteristics of butane and pentane on the (

Salmeron, M.

2012-01-01T23:59:59.000Z

28

Kinetics and deactivation of sulfated zirconia catalysts for butane isomerization  

Science Conference Proceedings (OSTI)

Reaction kinetics studies were conducted of n-butane and isobutane isomerization over sulfated zirconia at 423 K. The kinetic data can be described well by a rate expression based on a reversible, bimolecular surface reaction between two adsorbed n-C{sub 4} species, probably through a C{sub 8} intermediate, to produce one i-C{sub 4} species, as well as surface reaction between two adsorbed i-C{sub 4} species to produce one n-C{sub 4} species. This reaction sequence also describes well the rates of C{sub 4}-disproportionation reactions to produce C{sub 3} and C{sub 5} species. The initial rate of catalyst deactivation is faster during n-butane isomerization than during isobutane isomerization, and the longer-term rate of deactivation during n-butane isomerization increases with the pressures of n-butane. The more rapid catalyst deactivation during n-butane isomerization may be related to the formation of n-C{sub 4}-diene species. 25 refs., 10 figs., 4 tabs.

Fogash, K.B.; Larson, R.B.; Gonzalez, M.R. [Univ. of Wisconsin, Madison, WI (United States)] [and others] [Univ. of Wisconsin, Madison, WI (United States); and others

1996-09-15T23:59:59.000Z

29

Thermochemistry of radicals formed by hydrogen abstraction from 1-butanol, 2-methyl-1-propanol, and butanal  

E-Print Network (OSTI)

, and butanal Ewa Papajak, Prasenjit Seal, Xuefei Xu, and Donald G. Truhlar Citation: J. Chem. Phys. 137, 104314 abstraction from 1-butanol, 2-methyl-1-propanol, and butanal Ewa Papajak, Prasenjit Seal, Xuefei Xu- propanol, and butanal. Electronic structure calculations for all conformers of the radicals were car- ried

Truhlar, Donald G

30

Transition events in butane simulations: Similarities across models Daniel M. Zuckermana)  

E-Print Network (OSTI)

Transition events in butane simulations: Similarities across models Daniel M. Zuckermana of long simulations of all-atom butane using both stochastic and fully solved molecular dynamics, we have behavior in molecular simulations has long been a topic of interest, and butane has been an important test

Zuckerman, Daniel M.

31

934 / JOURNAL OF ENVIRONMENTAL ENGINEERING / OCTOBER 2000 CHLORINATED SOLVENT COMETABOLISM BY BUTANE-GROWN  

E-Print Network (OSTI)

BY BUTANE-GROWN MIXED CULTURE By Young Kim,1 Daniel J. Arp,2 and Lewis Semprini3 ABSTRACT: A survey of aerobic cometabolism of chlorinated aliphatic hydrocarbons by a butane-grown mixed culture was performed and was inhibited by butane and inactivated by acetylene, indicating that a monooxygenase enzyme was likely involved

Semprini, Lewis

32

Surface Adsorption Isotherms and Surface Excess Densities of n-Butane in Silicalite-1  

E-Print Network (OSTI)

Surface Adsorption Isotherms and Surface Excess Densities of n-Butane in Silicalite-1 Isabella 27, 2008. ReVised Manuscript ReceiVed NoVember 13, 2008 We present isotherms for the adsorption of n-butane have thus studied, as a representative example, the adsorption properties of one hy- drocarbon, n-butane

Kjelstrup, Signe

33

==================== !"#$%&'()*+,-+./,0)12 Development of Micro Ejector for Butane Catalytic Combustor  

E-Print Network (OSTI)

==================== !"#$%&'()*+,-+./,0)12 Development of Micro Ejector for Butane Catalytic Combustor ===== ==== !" = !" = = !" A micro ejector for butane catalytic combustor is investigated. Quasi-1 ejector that the volume flow rate of entrained air can reach 43 times the value of butane when the back

Kasagi, Nobuhide

34

Raman and IR spectra of butane: Anharmonic calculations and interpretation of room temperature spectra  

E-Print Network (OSTI)

Raman and IR spectra of butane: Anharmonic calculations and interpretation of room temperature-principles anharmonic calculations are carried out for the IR and Raman spectra of the CAH stretch- ing bands in butane.V. All rights reserved. 1. Introduction n-Butane is of great importance in several disciplines

Potma, Eric Olaf

35

Radiation chemistry of alternative fuel oxygenates -- Substituted ethers  

DOE Green Energy (OSTI)

The electron beam process, an advanced oxidation and reduction technology, is based in the field of radiation chemistry. Fundamental to the development of treatment processes is an understanding of the underlying chemistry. The authors have previously evaluated the bimolecular rate constants for the reactions of methyl tert-butyl ether (MTBE) and with this study have extended their studies to include ethyl tert-butyl ether (ETBE), di-isopropyl ether (DIPE) and tert-amyl methyl ether (TAME) with the hydroxyl radical, hydrogen atom and solvated electron using pulse radiolysis. For all of the oxygenates the reaction with the hydroxyl radical appears to be of primary interest in the destruction of the compounds in water. The rates with the solvated electron are limiting values as the rates appear to be relatively low. The hydrogen atom rate constants are relatively low, coupled with the low yield in radiolysis, they concluded that these are of little significance in the destruction of the alternative fuel oxygenates (and MTBE).

Mezyk, S. P.; Cooper, W. J.; Bartels, D. M.; Tobien, T.; O'Shea, K. E.

1999-11-15T23:59:59.000Z

36

Cometabolic transformation of cis-1,2-dichloroethylene and cis-1,2-dichloroethylene epoxide by a butane-  

E-Print Network (OSTI)

by a butane- grown mixed culture Y. Kim* and L. Semprini** *Department of Environmental Engineering, Korea cometabolism of cis-1,2-dichloroethylene (c-DCE) by a butane-grown mixed culture was evaluated in batch kinetic by butane and was inactivated by acetylene (a known monooxygenase inactivator), indicating that a butane

Semprini, Lewis

37

PURIFICATION OF ETHER  

DOE Patents (OSTI)

BS>A process for removing peroxides from ethers by sorption on a strong- base anion exchange resin in its hydroxyl form is described. Incorporation of the resin for storage is also covered. (AEC)

Feinstein, R.N.

1961-10-01T23:59:59.000Z

38

Transient FTIR studies of the reaction pathway for n-butane selective oxidation over vanadyl pyrophosphate  

SciTech Connect

New information has been provided about the reaction pathway for n-butane partial oxidation to maleic anhydride over vanadyl pyrophosphate (VPO) catalysts using FTIR spectroscopy under transient conditions. Adsorption studies of n-butane, 1,3-butadiene, and related oxygenates were performed to gain information about reaction intermediates. n-Butane was found to adsorb on the VPO catalyst to form olefinic species at low temperatures. Unsaturated, noncyclic carbonyl species were determined to be precursors to maleic anhydride.

Xue, Z.Y.; Schrader, G.L. [Ames Lab., IA (United States)] [Ames Lab., IA (United States); [Iowa State Univ., Ames, IA (United States). Dept. of Chemical Engineering

1999-05-15T23:59:59.000Z

39

Investigating the basis of substrate specificity in butane monooxygenase and chlorinated ethene toxicity in Pseudomonas butanovora.  

E-Print Network (OSTI)

??Pseudomonas butanovora, Mycobacterium vaccae, and Nocardioides sp. CF8 utilize distinctly different butane monooxygenases (BMOs) to initiate degradation of recalcitrant chlorinated ethenes (CEs) that pollute aquifers… (more)

[No author

2007-01-01T23:59:59.000Z

40

Dc slice imaging, crossed beam reaction of chlorine radical with butane.  

E-Print Network (OSTI)

?? We present an investigation of the reaction dynamics of Cl radicals with Butane using crossed molecular beams, at two collision energies: ~ 6.5 and… (more)

Abdul ghani, Tarek Oussama

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

West Coast (PADD 5) Product Supplied of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

West Coast (PADD 5) Product Supplied of Normal Butane-Butylene (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; ...

42

(Butan-2-ol-jO)[2-({(ethylsulfanyl)- [2-(2-oxidobenzylidene-jO)hydrazinylidene-jN 2]methyl}iminomethyl)phenolato-jO]dioxidouranium(VI)  

E-Print Network (OSTI)

disorder in main residue; R factor = 0.038; wR factor = 0.078; data-to-parameter ratio = 17.4. The U atom in the title complex, [U(C17H15N3O2S)O2-(C4H10O)], exists within a distorted pentagonal–bipyramidal geometry where the oxide O atoms occupy axial positions [O—U—O = 179.61 (18) ] and the pentagonal plane is defined by the N2O2 atoms of the tetradentate Schiff base ligand and the O atom of the butan-2-ol molecule. In the crystal, centrosymmetric aggregates are formed via pairs of hydroxy–phenoxide O—H O hydrogen bonds. The azomethine C N atoms, the ethylthiolyl group and the butyl group of the butan-2-ol molecule are disordered over two positions in a 0.668 (3):0.332 (3) ratio. Related literature For background to uranyl Schiff base complexes, see: S ¸ ahin et al. (2010); Özdemir et al. (2011). For a related structure, see: Takjoo et al. (2012).

Reza Takjoo; A Atefeh Najafi; A Seik Weng Ng B; Edward R. T. Tiekink B

2012-01-01T23:59:59.000Z

43

198 J. Am. Chem. SOC.1994,116, 198-203 Hydrodesulfurization of Thiophene to Butadiene and Butane  

E-Print Network (OSTI)

198 J. Am. Chem. SOC.1994,116, 198-203 Hydrodesulfurization of Thiophene to Butadiene and Butane. Reaction of the butadiene complex with H2 produces butane. Introduction

Jones, William D.

44

Transition Events in Butane Simulations: Similarities Across Models  

E-Print Network (OSTI)

From a variety of long simulations of all-atom butane using both stochastic and fully-solved molecular dynamics, we have uncovered striking generic behavior which also occurs in one-dimensional systems. We find an apparently universal distribution of transition event durations, as well as a characteristic speed profile along the reaction coordinate. An approximate analytic distribution of event durations, derived from a one-dimensional model, correctly predicts the asymptotic behavior of the universal distribution for both short and long durations. 1 1

Daniel M. Zuckerman; Thomas B. Woolf

2008-01-01T23:59:59.000Z

45

Transition Events in Butane Simulations Similarities Across Models  

E-Print Network (OSTI)

From a variety of long simulations of all-atom butane using both stochastic and fully-solved molecular dynamics, we have uncovered striking generic behavior which also occurs in one-dimensional systems. We find an apparently universal distribution of transition event durations, as well as a characteristic speed profile along the reaction coordinate. An approximate analytic distribution of event durations, derived from a one-dimensional model, correctly predicts the asymptotic behavior of the universal distribution for both short and long durations.

Zuckerman, D M; Zuckerman, Daniel M.; Woolf, Thomas B.

2001-01-01T23:59:59.000Z

46

Momentum Profile and Final Correlation Effects of Iso-butane Inner Valence by Binary (e, 2e) Spectroscopy  

E-Print Network (OSTI)

Momentum Profile and Final Correlation Effects of Iso-butane Inner Valence by Binary (e, 2e Momentum Profile and Final Correlation Effects of Iso-butane Inner Valence by Binary (e, 2e) Spectroscopy) The binding energy spectra and the momentum distributions of the valence orbitals of iso-butane, also known

Wang, Yayu

47

J. Am. Chem. SOC.1988, 110, 8305-8319 8305 Hydrogenolysis of Ethane, Propane, n-Butane, and Neopentane  

E-Print Network (OSTI)

J. Am. Chem. SOC.1988, 110, 8305-8319 8305 Hydrogenolysis of Ethane, Propane, n-Butane, Pasadena, California 91125. Received February I, 1988 Abstract: The hydrogenolysisof ethane, propane, n-butane in "demethylization"of the parent hydrocarbon. For n-butane, the major reaction channels on the two surfaces are n-C4

Goodman, Wayne

48

Bioaugmentation of butane-utilizing microorganisms to promote cometabolism of 1,1,1-trichloroethane in groundwater microcosms  

E-Print Network (OSTI)

Bioaugmentation of butane-utilizing microorganisms to promote cometabolism of 1,1,1-trichloroethane. The initial inoculum for bioaugmentation was a butane-utilizing enrichment from the subsurface of the Hanford DOE site. The non-augmented microcosm required 80 days of incubation before butane

Semprini, Lewis

49

Faraday Discuss. Chem. SOC.,1989, 87, 337-344 Butane Hydrogenolysis over Single-crystal Rhodium Catalysts  

E-Print Network (OSTI)

Faraday Discuss. Chem. SOC.,1989, 87, 337-344 Butane Hydrogenolysis over Single-crystal Rhodium&M University, College Station, Texas 77843, U.S.A. Hydrogenolysis of n-butane has been studied over the (110 of surface composition and geometry.' For example, in our laboratories, the activity for ethane' and butane

Goodman, Wayne

50

Experimental and DFT studies of initiation processes for butane isomerization over sulfated-zirconia catalysts  

SciTech Connect

Reaction kinetics studies were conducted of isobutane and n-butane isomerization at 423 K over sulfated-zirconia, with the butane feeds purified of olefins. Dihydrogen evolution was observed during butane isomerization over fresh catalysts, as well as over catalysts selectively poisoned by preadsorbed ammonia. Butane isomerization over sulfated-zirconia can be viewed as a surface chain reaction comprised of initiation, propagation, and termination steps. The primary initiation step in the absence of feed olefins is considered to be the dehydrogenation of butane over sulfated-zirconia, generating butenes which adsorb onto acid sites to form protonated olefinic species associated with the conjugate base form of the acid sites. Quantum-chemical calculations, employing density-functional theory, suggest that the dissociative adsorption of dihydrogen, isobutylene hydrogenation, and dissociative adsorption of isobutane are feasible over the sulfated-zirconia cluster, and these reactions take place over Zr-O sites.

Hong, Z.; Watwe, R.M.; Natal-Santiago, M.A.; Hill, J.M.; Dumesic, J.A. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Chemical Engineering] [Univ. of Wisconsin, Madison, WI (United States). Dept. of Chemical Engineering; Fogash, K.B. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [Air Products and Chemicals, Inc., Allentown, PA (United States); Kim, B. [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemical Engineering] [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemical Engineering; Masqueda-Jimenez, B.I. [Univ. Autonoma de San Luis Potosi (Mexico). Centro de Investigacion y Estudios de Posgrado] [Univ. Autonoma de San Luis Potosi (Mexico). Centro de Investigacion y Estudios de Posgrado

1998-09-10T23:59:59.000Z

51

METHANE AND n-BUTANE OXIDATION WITH CO2 UNDER RADIOFREQUENCY PLASMAS OF MODERATE PRESSURES (*)  

E-Print Network (OSTI)

1205 METHANE AND n-BUTANE OXIDATION WITH CO2 UNDER RADIOFREQUENCY PLASMAS OF MODERATE PRESSURES) Résumé. 2014 L'oxydation du méthane et du n-butane avec CO2 a été étudiée dans des décharges électriques intermédiaires en C2 (C2H2, C2H4, C2H6) qui est la voie principale pour convertir mé- thane et n-butane en CO

Paris-Sud XI, Université de

52

Ionization of ethane, butane, and octane in strong laser fields  

Science Conference Proceedings (OSTI)

Strong-field photoionization of ethane, butane, and octane are reported at intensities from 10{sup 14} to 10{sup 17} W/cm{sup 2}. The molecular fragment ions, C{sup +} and C{sup 2+}, are created in an intensity window from 10{sup 14} to 10{sup 15} W/cm{sup 2} and have intensity-dependent yields similar to the molecular fragments C{sub m}H{sub n}{sup +} and C{sub m}H{sub n}{sup 2+}. In the case of C{sup +}, the yield is independent of the molecular parent chain length. The ionization of more tightly bound valence electrons in carbon (C{sup 3+} and C{sup 4+}) has at least two contributing mechanisms, one influenced by the parent molecule size and one resulting from the tunneling ionization of the carbon ion.

Palaniyappan, Sasi; Mitchell, Rob; Ekanayake, N.; Watts, A. M.; White, S. L.; Sauer, Rob; Howard, L. E.; Videtto, M.; Mancuso, C.; Wells, S. J.; Stanev, T.; Wen, B. L.; Decamp, M. F.; Walker, B. C. [Physics and Astronomy Department, University of Delaware, Newark, Delaware 19716 (United States)

2010-10-15T23:59:59.000Z

53

East Coast (PADD 1) Gas Plant Production of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Gas Plant Production of Normal Butane-Butylene (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

54

U.S. Refinery and Blender Net Production of Normal Butane ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery and Blender Net Production of Normal Butane (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993-884: 268: 4,851: 6,387: 6,489 ...

55

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 7,016: 5,987: ...

56

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; ...

57

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; ...

58

U.S. Normal Butane-Butylene Stocks at Natural Gas Processing ...  

U.S. Energy Information Administration (EIA)

U.S. Normal Butane-Butylene Stocks at Natural Gas Processing Plants (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: ...

59

Unimolecular dissociations of ionized azo-tert-butane and acetone azine .  

E-Print Network (OSTI)

??This M.Sc. thesis presents an experimental and a theoretical study of azo-tert-butane and acetone azine ions which belong to the azo and azine class of… (more)

Rabaev, Madlena

2008-01-01T23:59:59.000Z

60

U.S. Refinery Normal Butane/Butylene Shell Storage Capacity as ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Normal Butane/Butylene Shell Storage Capacity as of January 1 (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 1,077: 999: 1,362: ...

62

U.S. Ending Stocks of Normal Butane-Butylene (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Ending Stocks of Normal Butane-Butylene (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 26,098: 24,979: 24,689: ...

63

Improving the stability of H-mordenite for n-butane isomerization  

SciTech Connect

The conversion of n-butane over mordenite-based catalysts in the presence of hydrogen and water was investigated for reaction temperatures between 523 and 623 K. Special attention was given to the influence of Pt upon catalytic activity, selectivity, and stability. With parent mordenite the catalytic activity for n-butane conversion decreased markedly after a short time on stream. Deactivation can be minimized by hydrogen (in the presence of Pt) and water addition. Both measures are thought to reduce the concentration of intermediate olefins in the zeolite pores. The best results with respect to selective conversion of n-butane to isobutane were obtained for 0.25 wt% Pt on mordenite in the presence of hydrogen. Higher concentrations of Pt in the catalyst are shown to be detrimental for n-butane isomerization, because of increasing selectivity to hydrogenolysis. A detailed mechanistic scheme for n-butane conversion over Pt-containing mordenites is presented. n-Butane conversion is concluded to occur via a bimolecular mechanism involving a complex network of hydrogen transfer, oligomerization/cracking, isomerization, hydrogenation/dehydrogenation, and hydrogenolysis. 23 refs., 14 figs., 5 tabs.

Asuquo, R.A.; Eder-Mirth, G.; Lercher, J.A. [Catalysis Univ. of Twente, Enschede (Netherlands)] [and others] [Catalysis Univ. of Twente, Enschede (Netherlands); and others

1997-06-01T23:59:59.000Z

64

Stat 511 MS Exam, Spring 2003 Page 1 of 3 This question concerns several analyses of a small set of data on the operation of a Butane  

E-Print Network (OSTI)

of data on the operation of a Butane Hydrogenolysis Reactor. The response variable percent conversion (cc/sec at STP) feed ratio (Hydrogen/Butane) the reactor wall temperature ( F) flow ratio temp

Vardeman, Stephen B.

65

Low temperature n-butane oxidation skeletal mechanism, based on multilevel approach  

Science Conference Proceedings (OSTI)

In order to reconcile an increasingly large deviation (order of magnitude) of the ignition delay time at decreasing initial temperature, computed using the prior art kinetic schemes, with the available experimental values, a new skeletal mechanism (54 species, 94 reactions) for low-temperature (500-800 K) ignition of n- butane in air based on ab initio calculations is developed. The skeletal mechanism obtained accurately reproduces n-butane combustion kinetics for the practically important ranges of pressure, temperature and fuel-air equivalence ratio, especially in the low-temperature range. The elaborated first principal skeletal chemical kinetic mechanism of n-butane oxidation was validated against available experimental results for normal and elevated initial pressure (1-15 atm) using the Chemical Work Bench code. A good agreement with experiments was shown. (author)

Strelkova, M.I.; Sukhanov, L.P.; Kirillov, I.A. [RRC Kurchatov Institute, Kurchatov Sq.1, 123182 Moscow (Russian Federation); Safonov, A.A. [Kintech Lab., Kurchatov Sq.1, 123182 Moscow (Russian Federation); Photochemistry Center, Novatorov Str. 7a, 119421 Moscow (Russian Federation); Umanskiy, S.Ya. [Kintech Lab., Kurchatov Sq.1, 123182 Moscow (Russian Federation); N.N.Semenov Institute of Chemical Physics, Kosygin Str. 4, 119991 Moscow (Russian Federation); Potapkin, B.V. [RRC Kurchatov Institute, Kurchatov Sq.1, 123182 Moscow (Russian Federation); Kintech Lab., Kurchatov Sq.1, 123182 Moscow (Russian Federation); Pasman, H.J. [Delft University of Technology, Postbus 5, 2600 AA Delft (Netherlands); Tentner, A.M. [Argonne National Laboratories, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

2010-04-15T23:59:59.000Z

66

Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium  

E-Print Network (OSTI)

Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 AND ENVIRONMENTAL MICROBIOLOGY 63 (9): 3607-3613 SEP 1997 Abstract: Chloroform (CF) degradation by a butane-grown enrichment culture, CF8, was compared to that by butane-grown Pseudomonas butanovora and Mycobacterium vaccae

Semprini, Lewis

67

Statistical thermodynamics of 1-butanol, 2-methyl-1-propanol, and butanal Prasenjit Seal, Ewa Papajak, Tao Yu, and Donald G. Truhlar  

E-Print Network (OSTI)

Statistical thermodynamics of 1-butanol, 2-methyl-1-propanol, and butanal Prasenjit Seal, Ewa-body decomposition of ethanedial, propanal, propenal, n-butane, 1-butene, and 1,3-butadiene J. Chem. Phys. 136, and butanal Prasenjit Seal, Ewa Papajak, Tao Yu, and Donald G. Truhlara) Department of Chemistry

Truhlar, Donald G

68

Bioaugmentation with butane-utilizing microorganisms to promote in situ cometabolic treatment of 1,1,1-trichloroethane and 1,1-dichloroethene  

E-Print Network (OSTI)

Bioaugmentation with butane-utilizing microorganisms to promote in situ cometabolic treatment of 1) through bioaugmentation with a butane enrichment culture containing predominantly two Rhodococcus sp of butane and dissolved oxygen and or hydrogen peroxide as sources of dissolved oxygen, about 70% removal

Semprini, Lewis

69

Transport coefficients of n-butane into and through the surface of silicalite-1 from non-equilibrium molecular dynamics study  

E-Print Network (OSTI)

Transport coefficients of n-butane into and through the surface of silicalite-1 from non dynamics Non-equilibrium thermodynamics Silicalite-1 n-Butane adsorption a b s t r a c t We have studied coupled heat and mass transfer of n-butane through a membrane of silicalite-1. A description

Kjelstrup, Signe

70

Treatment of Methyl tert-Butyl Ether Vapors in Biotrickling Filters. 2.  

E-Print Network (OSTI)

will controlled by diffusion in the biofilm near the outlet of the reactor. A fundamental parameter and control in bioreactors equipped with some degree of instrumentation, fundamental knowledge for the proper handbook of physical-chemical properties and environmental fate for organic chemicals, Volume III. Volatile

71

Treatment of Methyl tert-Butyl Ether Vapors in Biotrickling Filters. 1.  

E-Print Network (OSTI)

, weed-eater, shovel, and a rake. A chipper, compost bin, or a large rented trash dumpster may be useful

72

U.S. Normal Butane-Butylene Stocks in Pipelines (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Normal Butane-Butylene Stocks in Pipelines (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 1,901: 1,455: 1,356: 1,810: 2,062 ...

73

U.S. Refinery Net Production of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Net Production of Normal Butane-Butylene (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005-4,241-2,244: 2,431: 7,319: 7,538 ...

74

Selective oxidation of n-butane and butenes over vanadium-containing catalysts  

Science Conference Proceedings (OSTI)

The oxidative dehydrogenation (OXDH) of n-butane, 1-butene, and trans-2-butene on different vanadia catalysts has been compared. MgO, alumina, and Mg-Al mixed oxides with Mg/(Al + Mg) ratios of 0.25 and 0.75 were used as supports. The catalytic data indicate that the higher the acid character of catalysts the lower is both the selectivity to C{sub 4}-olefins from n-butane and the selectivity to butadiene from both 1-butene or trans-2-butene. Thus, OXDH reactions are mainly observed from n-butane and butenes on basic catalysts. The different catalytic performance of both types of catalysts is a consequence of the isomerization of olefins on acid sites, which appears to be a competitive reaction with the selective way, i.e., the oxydehydrogenation process by a redox mechanism. Infrared spectroscopy data of 1-butene adsorbed on supported vanadium oxide catalysts suggest the presence of different adsorbed species. O-containing species (carbonyl and alkoxide species) are observed on catalysts with acid sites while adsorbed butadiene species are observed on catalysts with basic sites. According to these results a reaction network for the oxydehydrogenation of n-butane is proposed with parallel and consecutive reactions.

Nieto, J.M.L.; Concepcion, P.; Dejoz, A.; Knoezinger, H.; Melo, F.; Vazquez, M.I.

2000-01-01T23:59:59.000Z

75

Formative time of breakdown modeled for the ignition of air and n-butane mixtures using effective ionization coefficients  

Science Conference Proceedings (OSTI)

It is shown that simulations of ignition by electric arc discharge in n-butane and air mixtures have interesting features, which deviate from results obtained by simple extension of calculations based on methanelike fuels. In particular, it is demonstrated that lowering the temperature of the n-butane-air mixture before ignition under certain conditions will actually decrease the ignition stage time as well as the required electric field.

Kudryavtsev, A. A.; Popugaev, S. D. [St. Petersburg State University, St. Petersburg 198904 (Russian Federation); Demidov, V. I. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Adams, S. F. [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Jiao, C. Q. [ISSI Inc., Dayton, Ohio 45440-3638 (United States)

2008-12-15T23:59:59.000Z

76

Dynamics of Exchange at Gas-Zeolite Interfaces 1: Pure Component n-Butane and Isobutane  

SciTech Connect

The authors present the results of molecular dynamics simulations of n-butane and isobutane in silicalite. They begin with a comparison of the bulk adsorption and diffusion properties for two different parameterizations of the interaction potential between the hydrocarbon species, both of which have been shown to reproduce experimental gas-liquid coexistence curves. They examine diffusion as a function of the loading of the zeolite, as well as the temperature dependence of the diffusion constant at loading and for infinite dilution. They continue with simulations in which interfaces are formed between single component gases and the zeolite. After reaching equilibrium, they examine the dynamics of exchange between the bulk gas and the zeolite. Finally, they calculate the permeability of the zeolite for n-butane and isobutane as a function of pressure. Their simulations are performed for a number of different gas temperatures and pressures, covering a wide range of state points.

CHANDROSS,MICHAEL E.; WEBB III,EDMUND B.; GREST,GARY S.; MARTIN,MARCUS G.; THOMPSON,AIDAN P.; ROTH,M.W.

2000-07-13T23:59:59.000Z

77

Aza crown ether compounds as anion receptors  

DOE Patents (OSTI)

A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI{sup +} ion in alkali metal batteries. 3 figs.

Lee, H.S.; Yang, X.O.; McBreen, J.

1998-08-04T23:59:59.000Z

78

Aza crown ether compounds as anion receptors  

SciTech Connect

A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.

Lee, Hung Sui (East Setauket, NY); Yang, Xiao-Oing (Port Jefferson Station, NY); McBreen, James (Bellport, NY)

1998-08-04T23:59:59.000Z

79

Saving Energy and Reducing Emissions from the Regeneration Air System of a Butane Dehydrogenation Plant  

E-Print Network (OSTI)

Texas Petrochemicals operates a butane dehydrogenation unit producing MTBE for reformulated gasoline that was originally constructed when energy was cheap and prior to environmental regulation. The process exhausts 900,000 pounds per hour of air at 900 to 1100°F containing CO and VOC. By installing a furnace/heat recovery steam generator, Texas Petrochemicals achieved significant reductions of VOC, CO, and NOx, along with energy savings.

John, T. P.

1998-04-01T23:59:59.000Z

80

Thermodynamics of Liquid Mixtures of Xenon with Alkanes: (Xenon + n-Butane) and (Xenon + Isobutane)  

E-Print Network (OSTI)

The total vapor pressure of liquid mixtures of (xenon + n-butane) has been measured at 182.34 and 195.49 K, and of (xenon + isobutane) at 195.49 K. The liquid molar volumes have also been measured at 182.34 K for both systems. The mixtures follow the behavior already found for other (xenon + alkane) mixtures, i.e., E negative deviations from Raoult’s law, negative excess molar Gibbs energies (Gm) and negative excess molar

Eduardo J. M. Filipe; Luís F. G. Martins; Jorge C. G. Calado; Clare Mccabe; George Jackson

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Catalytic distillation for the synthesis of tertiary butyl alcohol.  

E-Print Network (OSTI)

??Catalytic Distillation for the synthesis of tertiary butyl alcohol (TBA) is investigated in this thesis. The solvent, ethylene glycol, is proposed as a means of… (more)

Safinski, Tomasz

2005-01-01T23:59:59.000Z

82

Effect of Pt and H{sub 2} on n-butane isomerization over Fe and Mn promoted sulfated zirconia  

Science Conference Proceedings (OSTI)

The activity of a 0.4 wt% Pt-containing Fe and Mn promoted sulfated zirconia (PtSFMZ) catalyst in n-butane isomerization at 35{degrees}C was compared to that of a Pt-free catalyst (SFMZ). The maximum rate of n-butane conversion observed in helium over PtSFMZ was found to be 2.5 times higher than that over the SFMZ catalyst under the same conditions. It is believed that n-butane isomerization proceeds via a bimolecular mechanism in which the formation of hydrogen-deficient intermediates (carbenium ions and butenes), is necessary and the presence of transition metals such as Pt, Fe, and Mn on sulfated zirconia facilitates the formation/accumulation of these intermediates and increases their stability on the catalyst surface. The presence of H{sub 2} had a strong negative effect on n-butane conversion over PtSFMZ, but had no effect over SFMZ. The negative effect of H{sub 2} on PtSFMZ catalyst in n-butane isomerization reaction was attributed to the decreased concentration of butenes in the presence of hydrogen atoms which are formed by the dissociation of H{sub 2} on Pt. The ability of calcined Pt-containing catalysts to activate hydrogen at 35{degrees}C was demonstrated. Reduced SFMZ with or without Pt was not active at 35{degrees}C regardless of the nature of the carrier gas. 42 refs., 5 figs.

Song, Xuemin; Reddy, K.R.; Sayari, A. [Universite Laval, Quebec (Canada)] [Universite Laval, Quebec (Canada)

1996-06-01T23:59:59.000Z

83

Structure of an n-butane monolayer adsorbed on magnesium oxide (100)  

Science Conference Proceedings (OSTI)

Neutron diffraction has been used to characterize the structure of the solid phase of the completed monolayer of n butane on the MgO(100) surface at low temperature. The monolayer is found to adopt a commensurate (7{radical}(2)x{radical}(2)R45 deg. ) structure with lattice constants a=29.47 A ring and b=4.21 A ring , P{sub 2gg} symmetry and four molecules in the unit cell. Excellent agreement with the experimental diffraction pattern is realized, using a Lorenztian profile to describe the line shape.

Arnold, T. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Chanaa, S.; Cook, R. E. [Department of Chemistry, Buehler Hall, University of Tennessee, Knoxville, Tennessee 37996 (United States); Clarke, S. M. [BP Institute and Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Larese, J. Z. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Department of Chemistry, Buehler Hall, University of Tennessee, Knoxville, Tennessee 37996 (United States)

2006-08-15T23:59:59.000Z

84

Gas processing/The boiling behavior of LPG and liquid ethane, ethylene, propane, and n-butane spilled on water  

SciTech Connect

Boiling-rate calorimeter studies showed that unlike liquid nitrogen, methane, and LNG, LPG (84.7% propane, 6.0% ethane, and 9.3% n-butane; 442/sup 0/C bp), or pure propane, when rapidly spilled on water, reacted violently, ejecting water and ice into the vapor space; but in 1-2 sec, a coherent ice layer was formed and further boiloff was quiet and well predicted by a simple one-dimensional, moving-boundary-value, heat transfer model with a growing ice shield. Increasing the content of ethane and butane in LPG to 20% and 10%, respectively, had almost no effect on the LPG boiling, indicating that boiling may be modeled by using pure propane. Ethane, ethylene, and n-butane behaved quite differently from LPG. In spills of pure liquid propane on solid ice, the boiloff rate was almost identical to that predicted by the moving-boundary model.

Reid, R.C.; Smith, K.A.

1978-04-01T23:59:59.000Z

85

Hydrogen production from the steam reforming of Dinethyl Ether and Methanol  

SciTech Connect

This study investigates dimethyl ether (DME) steam reforming for the generation of hydrogen rich fuel cell feeds for fuel cell applications. Methanol has long been considered as a fuel for the generation of hydrogen rich fuel cell feeds due to its high energy density, low reforming temperature, and zero impurity content. However, it has not been accepted as the fuel of choice due its current limited availability, toxicity and corrosiveness. While methanol steam reforming for the generation of hydrogen rich fuel cell feeds has been extensively studied, the steam reforming of DME, CH{sub 3}OCH{sub 3} + 3H{sub 2}O = 2CO{sub 2} + 6H{sub 2}, has had limited research effort. DME is the simplest ether (CH{sub 3}OCH{sub 3}) and is a gas at ambient conditions. DME has physical properties similar to those of LPG fuels (i.e. propane and butane), resulting in similar storage and handling considerations. DME is currently used as an aerosol propellant and has been considercd as a diesel substitute due to the reduced NOx, SOx and particulate emissions. DME is also being considered as a substitute for LPG fuels, which is used extensively in Asia as a fuel for heating and cooking, and naptha, which is used for power generation. The potential advantages of both methanol and DME include low reforming temperature, decreased fuel proccssor startup energy, environmentally benign, visible flame, high heating value, and ease of storage and transportation. In addition, DME has the added advantages of low toxicity and being non-corrosive. Consequently, DME may be an ideal candidate for the generation of hydrogen rich fuel cell feeds for both automotive and portable power applications. The steam reforming of DME has been demonstrated to occur through a pair of reactions in series, where the first reaction is DME hydration followed by MeOH steam reforming to produce a hydrogen rich stream.

Semelsberger, T. A. (Troy A.); Borup, R. L. (Rodney L.)

2004-01-01T23:59:59.000Z

86

Thermodynamics of the liquid mixture carbon dioxide + butane below 285 K topical report  

SciTech Connect

Carbon dioxide and butane are frequently encountered as minor components of natural gas. These will liquefy first as it is cooled, so a knowledge of their vapor-liquid equilibrium behavior, especially at low temperatures, is desirable. However, only one isotherm of vapor-liquid equilibrium data below 250 K is available in the literature. Models of phase equilibrium can be expressed in terms of the excess Gibbs free energy, and the temperature dependence of the excess Gibbs free energy is related to the excess enthalpy. Thus measurements of excess enthalpy may be combined with phase equilibrium measurements to produce a model that gives reliable vapor-liquid equilibrium predictions. Under the contract, measurements of the heat of mixing of liquid n-butane with liquid carbon dioxide were performed at two temperatures below 250 K in a flow calorimeter. A maximum likelihood method was used to combine these calorimetric results with available vapor-liquid equilibrium data to produce a model of the nonideality in this system that gives much more reliable estimates of the phase equilibrium pressures, compositions, and enthalpies than had been available before.

Hall, E.J.; Guedes, H.J.R.; Zollweg, J.A.

1991-03-01T23:59:59.000Z

87

n-Butane: Ignition delay measurements at high pressure and detailed chemical kinetic simulations  

Science Conference Proceedings (OSTI)

Ignition delay time measurements were recorded at equivalence ratios of 0.3, 0.5, 1, and 2 for n-butane at pressures of approximately 1, 10, 20, 30 and 45 atm at temperatures from 690 to 1430 K in both a rapid compression machine and in a shock tube. A detailed chemical kinetic model consisting of 1328 reactions involving 230 species was constructed and used to validate the delay times. Moreover, this mechanism has been used to simulate previously published ignition delay times at atmospheric and higher pressure. Arrhenius-type ignition delay correlations were developed for temperatures greater than 1025 K which relate ignition delay time to temperature and concentration of the mixture. Furthermore, a detailed sensitivity analysis and a reaction pathway analysis were performed to give further insight to the chemistry at various conditions. When compared to existing data from the literature, the model performs quite well, and in several instances the conditions of earlier experiments were duplicated in the laboratory with overall good agreement. To the authors' knowledge, the present paper presents the most comprehensive set of ignition delay time experiments and kinetic model validation for n-butane oxidation in air. (author)

Healy, D.; Curran, H.J. [Combustion Chemistry Centre, School of Chemistry, NUI Galway (Ireland); Donato, N.S.; Aul, C.J.; Petersen, E.L. [Department of Mechanical Engineering, Texas A and M University, College Station, TX (United States); Zinner, C.M. [Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL (United States); Bourque, G. [Rolls-Royce Canada Limited, 9500 Cote de Liesse, Lachine, Quebec, H8T 1A2 (Canada)

2010-08-15T23:59:59.000Z

88

Support shape effect in metal oxide catalysis: ceria nanoshapes supported vanadia catalysts for oxidative dehydrogenation of iso-butane  

SciTech Connect

The activation energy of VOx/CeO2 catalysts in oxidative dehydrogenation of iso-butane was found dependent on the shape of ceria support: rods < octahedra, closely related to the surface oxygen vacancy formation energy and defects amount of the two ceria supports with different crystallographic surface planes.

Wu, Zili [ORNL; Schwartz, Viviane [ORNL; Li, Meijun [ORNL; Rondinone, Adam Justin [ORNL; Overbury, Steven {Steve} H [ORNL

2012-01-01T23:59:59.000Z

89

Adsorption of iso-/n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study  

SciTech Connect

Binding energies and adsorption probabilities have been determined for n/iso-butane adsorption on an anatase thin film grown on SrTiO3(001) by means of thermal desorption spectroscopy (TDS) and molecular beam scattering. The sample has been characterized by x-ray diffraction (XRD) and Auger electrons spectroscopy (AES).

Goering, J.; Kadossov, E.; Burghaus, Uwe; Yu, Zhongqing; Thevuthasan, Suntharampillai; Saraf, Laxmikant V.

2007-07-01T23:59:59.000Z

90

Whole-Genome Analysis of Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1  

E-Print Network (OSTI)

of benzene to phenol, catechol, and 1,2,3-trihydroxybenzeneof benzene to phenol (and catechol), and toluene toa multi-component PH, catechol 2,3-dioxygenase and the meta-

2007-01-01T23:59:59.000Z

91

IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE  

E-Print Network (OSTI)

and Energy Research (NIPER), 2) the Motor Vehicle Manufacturers Association (MVMA), and 3) the U interested in fuel comparisons Thousands each year Motor Vehicle Manufacturers Association (MVMA) National gasoline survey Motor Vehicle Manufacturers Association 23 cities throughout the U.S. Summer of 1988

92

n-Alkanes on MgO(100). I: Coverage-Dependent Desorption Kinetics of n-Butane  

SciTech Connect

High quality temperature programmed desorption (TPD) measurements of n-butane from MgO(100) have been made for a large number of initial butane coverages (0-3.70 ML) and a wide range of heating ramp rates (0.3-10 K/s). We present a TPD analysis technique which allows the coverage-dependent desorption energy to be accurately determined by mathematical inversion of a TPD spectrum, assuming only that the prefactor is coverage-independent. A variational method is used to determine the prefactor that minimizes the difference between a set of simulated TPD spectra and corresponding experimental data. The best fit for butane desorption from MgO is obtained with a prefactor of 1015.7?1.6 s-1. The desorption energy is 34.9?3.4 kJ/mol at 0.5 ML coverage, and varies with coverage. Simulations based on these results can accurately reproduce TPD experiments for submonolayer initial coverages over a wide range of heating ramp rates (0.3-10 K/s). Advantages and limitations of this method are discussed.

Tait, Steven L.; Dohnalek, Zdenek; Campbell, C T.; Kay, Bruce D.

2005-04-22T23:59:59.000Z

93

Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture  

E-Print Network (OSTI)

,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture Kim Y, Arp DJ, Semprini L BIOTECHNOLOGY,1- dichloroethane (1,1-DCA) by a butane-grown mixed culture. These chlorinated aliphatic hydrocarbons (CAHs for butane (2.6 mumol/mg TSS/ h) followed by 1,1-DCE (1.3 mumol/mg TSS/h), 1,1-DCA (0.49 mumol/mg TSS

Semprini, Lewis

94

Comparative Environmental Performance of Two-Diesel-Fuel Oxygenates: Dibutyl Maleate (DBM) and Triproplyene Glycol Monomethyl Ether (TGME)  

DOE Green Energy (OSTI)

Many studies have shown that the addition of oxygen bearing compounds to diesel fuel can significantly reduce particulate emissions. To assist in the evaluation of the environmental performance of diesel-fuel oxygenates, we have implemented a suite of diagnostic models for simulating the transport of compounds released to air, water, and soils/groundwater as well as regional landscapes. As a means of studying the comparative performance of DBM and TGME, we conducted a series of simulations for selected environmental media. Benzene and methyl tertiary butyl ether (MTBE) were also addressed because they represent benchmark fuel-related compounds that have been the subject of extensive environmental measurements and modeling. The simulations showed that DBM and TGME are less mobile in soil because of reduced vapor-phase transport and increased retention on soil particles. The key distinction between these two oxygenates is that DBM is predicted to have a greater potential than TGME for aerobic biodegradation, based on chemical structure.

Layton, D.W.; Marchetti, A.A.

2001-10-01T23:59:59.000Z

95

Divinyl ether synthase gene and protein, and uses thereof  

DOE Patents (OSTI)

The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

Howe, Gregg A. (East Lansing, MI); Itoh, Aya (Tsuruoka, JP)

2011-09-13T23:59:59.000Z

96

Room Temperature Aging Study of Butyl O-rings  

Science Conference Proceedings (OSTI)

During testing under the Enhanced Surveillance Campaign in 2001, preliminary data detected a previously unknown and potentially serious concern with recently procured butyl o-rings. All butyl o-rings molded from a proprietary formulation throughout the period circa 1999 through 2001 had less than a full cure. Tests showed that sealing force values for these suspect o-rings were much lower than expected and their physical properties were very sensitive to further post curing at elevated temperatures. Further testing confirmed that these o-rings were approximately 50% cured versus the typical industry standard of > 90% cured. Despite this condition, all suspect o-rings fully conformed to their QC acceptance requirements, including their individual product drawing requirements.

Mark Wilson

2009-08-07T23:59:59.000Z

97

Process for producing dimethyl ether form synthesis gas  

DOE Green Energy (OSTI)

This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

Pierantozzi, Ronald (Macungie, PA)

1985-01-01T23:59:59.000Z

98

Process for producing dimethyl ether from synthesis gas  

DOE Patents (OSTI)

This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

Pierantozzi, R.

1985-06-04T23:59:59.000Z

99

Toward Understanding the Nature of Internal Rotation Barriers with a New Energy Partition Scheme: Ethane and n-Butane  

Science Conference Proceedings (OSTI)

Based on an alternative energy partition scheme where density-based quantification of the steric effect was proposed [S.B. Liu, J. Chem. Phys. 126, 244103 (2007)], the origin of the internal rotation barrier between the eclipsed and staggered conformers of ethane and n-butane is systematically investigated in this work. The new definition is repulsive, exclusive, and extensive, and is intrinsically related to Bader’s atoms in molecules approach. Two kinds of differences, adiabatic (with optimal structure) and vertical (with fixed geometry), are considered in this work. We find that in the adiabatic case the eclipsed conformer possesses a larger steric repulsion than the staggered conformer for both molecules, but in the vertical cases the staggered conformer retains a larger steric repulsion. For ethane, a strong correlation between the total energy difference and the fermionic quantum energy difference is discovered. This linear relationship, however, does not hold for n-butane, whose behaviors in energy component differences are found to be more complicated. The impact of basis set and density functional choices on energy components from the new energy partition scheme has been investigated, as has its comparison with another definition of the steric effect in the literature in terms of the natural bond orbital analysis through the Pauli Exclusion Principle. Profiles of conceptual DFT reactivity indices as a function of dihedral angle changes have also been examined. Put together, these results suggest that the new energy partition scheme provides insights from a different perspective of internal rotation barriers.

Liu, Shubin; Govind, Niri

2008-07-24T23:59:59.000Z

100

Solvent Effects on Metal Complexation with Crown Ethers from Liquid to Supercritical Fluids (DE-FG07-98ER 149 13)  

DOE Green Energy (OSTI)

The purpose of this project is to study the salvation effects of metal-crown ether complexation in different solvents. It has been suggested in the literature that supercritical fluid carbon dioxide (SF-CO2) is a tunable solvent because its salvation environment can be varied with the fluid density. In this project, spectroscopic techniques including nuclear magnetic resonance (NMR) and Fourier Transform Infrared (FTIR) were used to evaluate salvation effects of metal crown complexation in organic solvents and in SF-CO2. In most solvent extraction systems, water is often involved in the extraction processes. We have carried out extensive studies of water-crown ether interactions in different solvents and in SF-CO2 using NMR and FTIR techniques. Water molecules can be attached to crown ethers through hydrogen bonding of H-0-H to the oxygen atoms of crown ether cavities. This type of interaction is like a Lewis acid-Lewis base complexation. During the course of this project, we noticed that some CO2 soluble Lewis base such as tri-n-butyl-phosphate (TBP) can also form such Lewis acid-Lewis base complexes with water and other inorganic acids including nitric acid and hydrochloric acid. Inorganic acids (e.g. nitric acid) are normally not soluble in SF-CO2. However, because TBP is highly soluble in SF-CO2, an inorganic acid bound to TBP via hydrogen bonding becomes CO2 soluble. This Lewis acid-Lewis base complex approach provides a method of introducing inorganic acids into supercritical fluid CO2 for chemical reactions.

Wai, C.M.

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries  

SciTech Connect

The effects of three crown ethers, 12-crown-4, 15-crown-5, and 18-crown-6, as additives and co-solvents in non-aqueous electrolytes on the cell performance of primary Li/air batteries operated in a dry air environment were investigated. Crown ethers have large effects on the discharge performance of non-aqueous electrolytes in Li/air batteries. A small amount (normally less than 10% by weight or volume in electrolytes) of 12-Crown-4 and 15-crown-5 reduces the battery performance and a minimum discharge capacity appears at the crown ether content of ca. 5% in the electrolytes. However, when the content increases to about 15%, both crown ethers improve the capacity of Li/air cells by about 28% and 16%, respectively. 15-Crown-5 based electrolytes even show a maximum discharge capacity in the crown ether content range from 10% to 15%. On the other hand, the increase of 18-crown-6 amount in the electrolytes continuously lowers of the cell performance. The different battery performances of these three crown ethers in electrolytes are explained by the combined effects from the electrolytes’ contact angle, oxygen solubility, viscosity, ionic conductivity, and the stability of complexes formed between crown ether molecules and lithium ions.

Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

2010-02-04T23:59:59.000Z

102

Preparation of 1-C14-Propene-1 and the Mechanism of Permanganate Oxidation of Propene  

E-Print Network (OSTI)

propene, 9% butenes, 9% butanes and pentanes and 1% pentenes0.5/0 propane and 0.5% n-butane. The yield of propene waspropene, 16% butenes f 3% i-butane, 3% ethyl propy:i. ether

Fries, B.A.

2010-01-01T23:59:59.000Z

103

Superacid catalysis of light hydrocarbon conversion. Final report, August 26, 1993--August 26, 1996  

DOE Green Energy (OSTI)

Motivated by the goal of finding improved catalysts for low- temperature conversion of light alkanes into fuel components or precursors of fuel components, the researchers have investigated sulfated zirconia and promoted sulfated zirconia for conversion of butane, propane, and ethane. Catalyst performance data for sulfated zirconia promoted with iron and manganese show that it is the most active noncorrosive, nonhalide catalyst known for n-butane isomerization, and it is an excellent candidate catalyst for new low- temperature n-butane isomerization processes to make isobutane, which can be converted by established technology into methyl t-butyl ether (MTBE). Various transition metals have been found to work as promoters of sulfated zirconia for n-butane isomerization. The combination of iron and manganese is the best known combination of promoters yet discovered. The iron- and manganese-promoted sulfated zirconia is also a catalyst for conversion of propane and of ethane. Ethane is converted into ethylene and butanes in the presence of the iron- and manganese-promoted sulfated zirconia; propane is also converted into butane, among other products. However, the activities of the catalyst for these reactions are orders of magnitude less than the activity for n-butane conversion, and there is no evidence that the catalyst would be of practical value for conversion of alkanes lighter than butane. The product distribution data for ethane and propane conversion provide new insights into the nature of the catalyst and its acidity. These data suggest the involvement of Olah superacid chemistry, whereby the catalyst protonates the alkane itself, giving carbonium ions (as transition states). The mechanism of protonation of the alkane may also pertain to the conversion of butane, but there is good evidence that the butane conversion also proceeds via alkene intermediates by conventional mechanisms of carbenium ion formation and rearrangement.

Gates, B.C.

1996-12-31T23:59:59.000Z

104

Total electron scattering cross sections of ethane, propane, n-butane, 1,3-butadiene and butylene in the energy range 0.3 to 4.0 keV.  

E-Print Network (OSTI)

??The total electron scattering cross sections of Ethane, Propane, n-Butane, 1,3-Butadiene and Butylene were measured in the energy range 0.3 to 4.0 keV using linear… (more)

Wickramarachchi, Priyangika.

2006-01-01T23:59:59.000Z

105

Removal of technetium from alkaline nuclear-waste media by a solvent-extraction process using crown ethers  

SciTech Connect

Crown ethers dissolved in suitably modified aliphatic kerosene diluents can be employed to extract technetium as pertechnetate anion (TcO{sub 4}{sup {minus}}) with good extraction ratios from realistic simulants of radioactive alkaline nitrate waste. The modifiers utilized are non-halogenated and non-volatile, and the technetium can be removed from the solvent by stripping using water. The crown ethers bis-4,4{prime}(5{prime})[(tert-butyl)cyclohexano]-18-crown-6 (di-t-BuCH18C6) and dicyclohexano-18-crown-6 (DCH18C6) provide stronger TcO{sub 4}{sup {minus}} extraction than dicyclohexano-21-crown-7 and 4-tert-butylcyclohexano 15-crown-5. Whereas DCH18C6 provides somewhat higher TcO{sub 4}{sup {minus}} extraction ratios than the more lipophilic di-t-BuCH18C6 derivative, the latter was selected for further study owing to its lower distribution to the aqueous phase. Particularly good extraction and stripping results were obtained with di-t-BuCH 18C6 at 0.02 M in a 2:1 vol/vol blend of tributyl phosphate and Isopar{reg_sign} M. Using this solvent, 98.9% of the technetium contained (at 6 {times} 10{sup {minus}5} M) in a Double-Shell Slurry Feed (DSSF) Hanford tank waste simulant was removed following two cross-current extraction contacts. Two cross-current stripping contacts with deionized water afforded removal of 99.1% of the technetium from the organic solvent.

Bonnesen, P.V.; Presley, D.J.; Haverlock, T.J.; Moyer, B.A. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.

1995-07-01T23:59:59.000Z

106

Alkaline-side extraction of technetium from tank waste using crown ethers and other extractants  

SciTech Connect

The chemical development of a new crown-ether-based solvent-extraction process for the separation of (Tc) from alkaline tank-waste supernate is ready for counter-current testing. The process addresses a priority need in the proposed cleanup of Hanford and other tank wastes. This need has arisen from concerns due to the volatility of Tc during vitrification, as well as {sup 99}Tc`s long half-life and environmental mobility. The new process offers several key advantages that direct treatability--no adjustment of the waste composition is needed; economical stripping with water; high efficiency--few stages needed; non-RCRA chemicals--no generation of hazardous or mixed wastes; co-extraction of {sup 90}Sr; and optional concentration on a resin. A key concept advanced in this work entails the use of tandem techniques: solvent extraction offers high selectivity, while a subsequent column sorption process on the aqueous stripping solution serves to greatly concentrate the Tc. Optionally, the stripping solution can be evaporated to a small volume. Batch tests of the solvent-extraction and stripping components of the process have been conducted on actual melton Valley Storage Tank (MVST) waste as well as simulants of MVST and Hanford waste. The tandem process was demonstrated on MVST waste simulants using the three solvents that were selected the final candidates for the process. The solvents are 0.04 M bis-4,4{prime}(5{prime})[(tert-butyl)cyclohexano]-18-crown-6 (abbreviated di-t-BuCH18C6) in a 1:1 vol/vol blend of tributyl phosphate and Isopar{reg_sign} M (an isoparaffinic kerosene); 0.02 M di-t-BuCH18C6 in 2:1 vol/vol TBP/Isopar M and pure TBP. The process is now ready for counter-current testing on actual Hanford tank supernates.

Bonnesen, P.V.; Moyer, B.A.; Presley, D.J.; Armstrong, V.S.; Haverlock, T.J.; Counce, R.M.; Sachleben, R.A.

1996-06-01T23:59:59.000Z

107

Ethane and n-butane oxidation over supported vanadium oxide catalysts: An in situ UV-visible diffuse reflectance spectroscopic investigation  

SciTech Connect

The coordination/oxidation states of surface vanadium oxide species on several oxide supports (Al{sub 2}O{sub 3}, ZrO{sub 2}, SiO{sub 2}) during ethane and n-butane oxidation were examined by in situ UV-vis diffuse reflectance spectroscopy (DRS). Only a small amount of the surface V(V)cations are reduced to V(IV)/V(III) cations under present steady-state reaction conditions. The extents of reduction of the surface V(V) species are a strong function of the specific oxide support, V{sub 2}O{sub 5}/ZrO{sub 2} {gt} V{sub 2}O{sub 5}/Al{sub 2}O{sub 5}/Al{sub 2}O{sub 3} {gt} V{sub 2}O{sub 5}/SiO{sub 2}, and also correlate with their reactivities (turnover frequencies) for ethane and n-butane oxidation reactions. For ZrO{sub 2}-supported samples, the polymerized surface vanadia species were found to be more easily reduced than the isolated surface vanadia species in reducing environments (i.e., ethane or n-butane in He), but no significant differences in the extents of reduction were observed under present steady-state reaction conditions (i.e., ethane/O{sub 2}/He or n-butane/O{sub 2}/He). This observation is also consistent with the ethane oxidation catalytic study, which revealed that the polymerization degree, the domain size, of the surface vanadia species does not appear to significantly affect the reactivity of the supported vanadia catalysts for ethane oxidation.

Gao, X.; Banares, M.A.; Wachs, I.E.

1999-12-10T23:59:59.000Z

108

Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature  

Science Conference Proceedings (OSTI)

The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800 K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. (author)

Choi, B.C.; Chung, S.H. [Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

2010-12-15T23:59:59.000Z

109

Role of metal-support interactions on the activity of Pt and Rh catalysts for reforming methane and butane.  

DOE Green Energy (OSTI)

For residential fuel cell systems, reforming of natural gas is one option being considered for providing the H{sub 2} necessary for the fuel cell to operate. Industrially, natural gas is reformed using Ni-based catalysts supported on an alumina substrate, which has been modified to inhibit coke formation. At Argonne National Laboratory, we have developed a new family of catalysts derived from solid oxide fuel cell technology for reforming hydrocarbon fuels to generate H{sub 2}. These catalysts consist of a transition metal supported on an oxide-ion-conducting substrate, such as ceria, that has been doped with a small amount of a non-reducible element, such as gadolinium, samarium, or zirconium. Unlike alumina, the oxide-ion-conducting substrate has been shown to induce strong metal-support interactions. Metal-support interactions are known to play an important role in influencing the catalytic activity of many metals supported on oxide supports. Based on results from temperature-programmed reduction/oxidation and kinetic reaction studies, this paper discusses the role of the metal and the substrate in the metal-support interactions, and how these interactions influence the activity and the selectivity of the catalyst in reforming methane and butane to hydrogen for use in fuel cell power systems.

Rossignol, C.; Krause, T.; Krumpelt, M.

2002-01-11T23:59:59.000Z

110

Multipodal coordination of a tetracarboxylic crown ether with NH 4 + : A vibrational spectroscopy and computational study  

Science Conference Proceedings (OSTI)

The elucidation of the structural requirements for molecular recognition by the crown ether (18–crown–6)-2

Paola Hurtado; Francisco Gámez; Said Hamad; Bruno Martínez–Haya; Jeffrey D. Steill; Jos Oomens

2012-01-01T23:59:59.000Z

111

Direct synthesis of dimethyl ether (DME) from syngas  

Science Conference Proceedings (OSTI)

We have developed appropriate and excellent catalysts for direct DME synthesis. The catalysts, Cu-Zn/Al2O3 catalysts prepared by the sol-gel method, produce DME with high DME activity and high DME selectivity under milder reaction ... Keywords: DME, alumina, catalyst, clean fuel, copper, dimethyl ether, direct synthesis, hydrogen, sol-gel method, syngas

Kaoru Takeishi; Yoshimi Akaike

2010-02-01T23:59:59.000Z

112

Solvent extraction of technetium from alkaline waste media using bis-4,4{prime}(5{prime})[(tert-butyl)cyclohexano]-18-crown-6  

SciTech Connect

The crown ether bis-4,4`(5`)[(tert-butyl)cyclohexano]-18-crown-6 can be utilized in a solvent-extraction process for the removal of technetium as pertechnetate ion, TcO{sub 4}{sup {minus}} from solutions simulating highly radioactive alkaline defense wastes (``tank wastes``) stored at several sites in the United States. The process employs non-halogenated and non-volatile diluents and modifiers and includes an efficient stripping procedure using only water. More than 95% of the pertechnetate present at 6 {times} 10{sup {minus}5} M in Melton Valley (Oak Ridge, TN) and Hanford (Washington) tank-waste simulants was removed following two cross-current extraction contacts using 0.02 M bis-4,4`(5`)[(tertbutyl)cyclohexano]- 18-crown-6 in 2:1 vol/vol TBP/Isopar{reg_sign} M diluent at 25 C. Similarly, for both simulants, more than 98% of the pertechnetate contained in the solvent was back-extracted following two cross-current stripping contacts using deionized water.

Bonnesen, P.V.; Presley, D.J.; Moyer, B.A.

1995-07-01T23:59:59.000Z

113

Effects of simulant mixed waste on EPDM and butyl rubber  

Science Conference Proceedings (OSTI)

The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.

Nigrey, P.J.; Dickens, T.G.

1997-11-01T23:59:59.000Z

114

Carbon nanotube-induced preparation of vanadium oxide nanorods: Application as a catalyst for the partial oxidation of n-butane  

SciTech Connect

A vanadium oxide-carbon nanotube composite was prepared by solution-based hydrolysis of NH{sub 4}VO{sub 3} in the presence of carbon nanotubes. The carbon nanotubes induce the nucleation of the 1D vanadium oxide nanostructures, with the nuclei growing into long freestanding nanorods. The vanadium oxide nanorods with the lengths up to 20 {mu}m and the widths of 5-15 nm exhibit a well-ordered crystalline structure. Catalytic tests show that the composite with nanostructured vanadium oxide is active for the partial oxidation of n-butane to maleic anhydride at 300 deg. C.

Chen Xiaowei [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany); Zhu Zhenping [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany); Haevecker, Michael [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany); Su Dangsheng [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany)]. E-mail: dangsheng@fhi-berlin.mpg.de; Schloegl, Robert [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany)

2007-02-15T23:59:59.000Z

115

The interactions of water and perfluorodiethyl ether on Ru(100)  

DOE Green Energy (OSTI)

We have studied the interactions of water and perfluorodiethyl ether on Ru(100) in order to model the effects of surface structure and humidity on the bonding and decomposition of perfluoroalkyl ether lubricants with metal surfaces. In order to understand the interactions on Ru(100), we have first investigated the interactions of each of these adsorbates alone on the clean surface. The interactions of water with Ru(100) have been studied using both thermal desorption spectroscopy (TDS) and electron energy loss spectroscopy (EELS). From these studies we conclude that a small amount of water dissociates on this surface (5--10% of a monolayer), but water is adsorbed in a predominantly molecular form on this surface with an increasing degree of hydrogen-bonding with increasing coverage. The effects of hydrogen and oxygen coadsorption on the interactions of water with this surface have also been studied using TDS. Finally, the interactions of coadsorbed water and perfluorodiethyl ether on Ru(100) have been investigated using TDS.

Leavitt, P.

1990-09-21T23:59:59.000Z

116

Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis  

SciTech Connect

The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

T.A. Semelsberger

2004-10-01T23:59:59.000Z

117

CATALYSTS FOR HIGH CETANE ETHERS AS DIESEL FUELS  

DOE Green Energy (OSTI)

A tungstena-zirconia (WZ) catalyst has been investigated for coupling methanol and isobutanol to unsymmetrical ethers, i.e. methyl isobutyl ether (MIBE) and compared with earlier studied sulfated-zirconia (SZ) and Nafion-H catalysts. In all cases, the ether synthesis mechanism is a dual site S{sub N}2 process involving competitive adsorption of reactants on proximal acid sites. At low reaction temperatures, methylisobutylether (MIBE) is the predominant product. However, at temperatures >135 C the WZ catalyst is very good for dehydration of isobutanol to isobutene. The surface acid sites of the WZ catalyst and a Nafion-H catalyst were diagnosed by high resolution X-ray photoelectron spectroscopy (XPS) of N 1s shifts after adsorption of amines. Using pyridine, ethylenediamine, and triethylamine, it is shown that WZ has heterogeneous strong Broensted acid sites. Theoretical study located the transition state of the alcohol coupling reaction on proximal Broensted acid sites and accounted well for XPS core-level shifts upon surface acid-base interactions. While computations have not been carried out with WZ, it is shown that the SZ catalyst is a slightly stronger acid than CF{sub 3}SO{sub 3}H (a model for Nafion-H) by 1.3-1.4 kcal/mol. A novel sulfated zirconia catalyst having proximal strong Broensted acid sites was synthesized and shown to have significantly enhanced activity and high selectivity in producing MIBE or isobutene from methanol/isobutanol mixtures. The catalyst was prepared by anchoring 1,2-ethanediol bis(hydrogen sulfate) salt precursor onto zirconium hydroxide, followed by calcination to remove the -(CH{sub 2}CH{sub 2})- bridging residues.

Kamil Klier; Richard G. Herman; Heock-Hoi Kwon; James G. C. Shen; Qisheng Ma; Robert A. Hunsicker; Andrew P. Butler; Scott J. Bollinger

2003-03-01T23:59:59.000Z

118

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. Within the Combustion Laboratory of the Penn State Energy Institute, they have installed and equipped a Navistar V-8 direct-injection turbodiesel engine for measurement of gaseous and particulate emissions and examination of the impact of fuel composition on diesel combustion. They have also reconfigured a high-pressure viscometer for studies of the viscosity, bulk modulus (compressibility) and miscibility of blends of diesel fuel, dimethyl ether and lubricity additives. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have examined blends of an oxygenated fuel additive (a liquid fuel called CETANER{trademark}) produced by Air Products, for comparison with dimethyl ether blended at the same weight of oxygen addition, 2 wt.%. While they have not operated the engine on DME yet, they are now preparing to do so. A fuel system for delivery of DME/Diesel blends has been configured and initial investigations at low DME blend ratios (around 5-10 vol%) will begin shortly. They have also performed viscosity measurements on diesel fuel, DME and 50-50 blends of DME in diesel. These tests have verified that DME has a much lower viscosity than the diesel fuel and that the viscosity of the blended fuel is also much lower than the diesel base fuel. This has implications for the injection and atomization of the DME/diesel blends.

Elana M. Chapman; Shirish Bhide; Andre L. Boehman; David Klinikowski

2003-04-01T23:59:59.000Z

119

The Accurate Computer Simulation of Phase Equilibrium for Complex Fluid Mixtures. Application to Binaries Involving isobutene, methanol, MTBE, and n-butane  

E-Print Network (OSTI)

We have developed a new method, called the Reaction Gibbs Ensemble Monte Carlo (RGEMC) method for the computer simulation of the phase equilibria for multicomponent mixtures, given an intermolecular potential model for the constituent molecular species. The approach treats the phase equilibrium conditions as a special type of chemical reaction, and incorporates knowledge of the pure-substance vapor pressure data into the simulations. Unlike macroscopic thermodynamic-based approaches like the Wilson and the UNIFAC approximations, no experimental information concerning the mixtures is required. In addition to the PTxy phase equilibrium data, the volumetric properties of the mixture are calculated. We developed intermolecular potential models based on the OPLS potential models of Jorgensen, and used the RGEMC method to predict phase equilibrium data for the binary systems isobutene+MTBE and the binaries formed by methanol with isobutene, MTBE, and n-butane. The predictions are excellent, ...

Martin Lísal; William R. Smith; Ivo Nezbeda

1999-01-01T23:59:59.000Z

120

Interactions between Ether Phospholipids and Cholesterol as Determined by Scattering and Molecular Dynamics Simulations  

SciTech Connect

Cholesterol and ether lipids are ubiquitous in mammalian cell membranes, and their interactions are crucial in ether lipid mediated cholesterol trafficking. We report on cholesterol s molecular interactions with ether lipids as determined using a combination of small-angle neutron and Xray scattering, and all-atom molecular dynamics (MD) simulations. A scattering density profile model for an ether lipid bilayer was developed using MD simulations, which was then used to simultaneously fit the different experimental scattering data. From analysis of the data the various bilayer structural parameters were obtained. Surface area constrained MD simulations were also performed to reproduce the experimental data. This iterative analysis approach resulted in good agreement between the experimental and simulated form factors. The molecular interactions taking place between cholesterol and ether lipids were then determined from the validated MD simulations. We found that in ether membranes cholesterol primarily hydrogen bonds with the lipid headgroup phosphate oxygen, while in their ester membrane counterparts cholesterol hydrogen bonds with the backbone ester carbonyls. This different mode of interaction between ether lipids and cholesterol induces cholesterol to reside closer to the bilayer surface, dehydrating the headgroup s phosphate moiety. Moreover, the three-dimensional lipid chain spatial density distribution around cholesterol indicates anisotropic chain packing, causing cholesterol to tilt. These insights lend a better understanding of ether lipid-mediated cholesterol trafficking and the roles that the different lipid species have in determining the structural and dynamical properties of membrane associated biomolecules.

Pan, Jianjun [ORNL; Cheng, Xiaolin [ORNL; Heberle, Frederick A [ORNL; Mostofian, Barmak [ORNL; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Drazba, Paul [ORNL; Katsaras, John [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Dimethyl ether (DME): a clean fuel of the 21st century and catalysts for it  

Science Conference Proceedings (OSTI)

Dimethyl ether (DME) is a substitute of LNG and light oil. DME burns without particulate matters and SOx, so DME is a clean fuel. DME is a storage and carrier of hydrogen. For these usages, useful catalysts such as DME steam reforming catalysts and DME ... Keywords: DME, alumina, catalyst, clean fuel, copper, dimethyl ether, direct synthesis, hydrogen, sol-gel method, steam reforming

Kaoru Takeishi

2009-02-01T23:59:59.000Z

122

Catalysts for hydrogen production by steam reforming of dimethyl ether (DME)  

Science Conference Proceedings (OSTI)

Dimethyl ether (DME) is expected as one of clean fuels. We have been studying on DME steam reforming for hydrogen production. Copper alumina catalysts prepared by a sol-gel method produced large quantities of H2 with DME steam reforming. The reason was ... Keywords: DME, alumina, catalyst, clean fuel, copper, dimethyl ether, hydrogen, sol-gel method, steam reforming

Kaoru Takeishi

2010-02-01T23:59:59.000Z

123

Development of single type copper alumina catalysts for hydrogen production from dimethyl ether (DME)  

Science Conference Proceedings (OSTI)

Dimethyl ether (DME) is expected as one of clean fuels. We have been studying on DME steam reforming for hydrogen production. Copper alumina catalysts prepared by the sol-gel method produced large quantities of H2 with DME steam reforming. Aiming at ... Keywords: DME, alumina, catalyst, clean fuel, copper, dimethyl ether, hydrogen, sol-gel method, steam reforming

Kaoru Takeishi; Atsushi Ban

2010-02-01T23:59:59.000Z

124

High octane ethers from synthesis gas-derived alcohols  

SciTech Connect

The temperature dependence of ether synthesis, particularly unsymmetric methylisobutylether (MIBE), was carried out over the Nafion-H microsaddles (MS) catalyst. The principal product formed under the rather severe reaction conditions of 1100 psig pressure and temperatures in the range of 123--157{degree}C was the expected MIBE formed directly by coupling the methanol/isobutanol reactants. In addition, significantly larger quantities of the dimethylether (DME) and hydrocarbon products were observed than were obtained under milder reaction conditions. Deactivation of the Nafion-H MS catalyst was determined by periodically testing the catalyst under a given set of reaction conditions for the synthesis of MIBE and MTBE from methanol/isobutanol = 2/1, i.e. 123{degree}C, 1100 psig, and total GHSV = 248 mol/kg cat/hr. After carrying out various tests over a period of 2420 hr, with intermittant periods of standing under nitrogen at ambient conditions, the yields of MIBE and MTBE had decreased by 25% and 41%, respectively. In order to gain insight into the role of the surface acidity in promoting the selective coupling of the alcohols to form the unsymmetric ether, the strengths of the acid sites on the catalysts are still being probed by calorimetric titrations in non-aqueous solutions. 11 refs., 13 figs., 9 tabs.

Klier, K.; Herman, R.G.; DeTavernier, S.; Johannson, M.; Kieke, M.; Bastian, R.D.

1991-07-01T23:59:59.000Z

125

Comb-shaped single ion conductors based on polyacrylate ethers and lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

Comb-shaped single ion conductors based on polyacrylate ethers and lithium Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate Title Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate Publication Type Journal Article Year of Publication 2005 Authors Sun, Xiao-Guang, Jun Hou, and John B. Kerr Journal Electrochimica Acta Volume 50 Pagination 1139-1147 Keywords ionic conductivity, plasticizer, polyacrylate ethers, single ion conductor Abstract Comb-shaped single ion conductors have been synthesized by sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li+ salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE8-co-E3SO3Li);

126

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Inputs & Utilization Inputs & Utilization Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline.

127

Use of a Balloon and N-Butyl-2-Cyanoacrylate for Treatment of Arteriovenous Fistula  

Science Conference Proceedings (OSTI)

We report a patient who developed a large arteriovenous fistula in right lower extremity after gunshot injury. Because other endovascular methods failed, the patient was successfully treated with concomitant use of detachable latex balloon and N-butyl-2-cyanoacrylate (NBCA). The combination of detachable balloon and NBCA can be effectively used for endovascular treatment of peripheral arteriovenous fistulas in selected cases when effective embolization could not be achieved with other embolizing agents or their various combinations.

Doenmez, Halil, E-mail: hdonmez68@yahoo.com; Mavili, Ertugrul [Erciyes University Medical Faculty, Department of Radiology (Turkey); Toker, Birguel; Oztuerk, M. Halil; Soylu, Serra O.; Hekimoglu, Baki [SB Diskapi Yildirim Beyazit Egitim ve Arastirma Hastanesi, Department of Radiology (Turkey)

2008-07-15T23:59:59.000Z

128

Comprehensive testing to measure the response of butyl rubber to Hanford tank waste simulant  

Science Conference Proceedings (OSTI)

This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the authors performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposures to the waste simulant at 18, 50, and 60 C. Butyl rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. From the analyses, they determined that butyl rubber has relatively good resistance to radiation, this simulant, and a combination of these factors. These results suggest that butyl rubber is a relatively good seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.

NIGREY,PAUL J.

2000-05-01T23:59:59.000Z

129

Quantum ether: photons and electrons from a rotor model  

E-Print Network (OSTI)

We give an example of a purely bosonic model -- a rotor model on the 3D cubic lattice -- whose low energy excitations behave like massless U(1) gauge bosons and massless Dirac fermions. This model can be viewed as a ``quantum ether'': a medium that gives rise to both photons and electrons. It illustrates a general mechanism for the emergence of gauge bosons and fermions known as ``string-net condensation.'' Other, more complex, string-net condensed models can have excitations that behave like gluons, quarks and other particles in the standard model. This suggests that photons, electrons and other elementary particles may have a unified origin: string-net condensation in our vacuum.

Michael Levin; Xiao-Gang Wen

2005-07-13T23:59:59.000Z

130

The efficient use of natural gas in transportation  

DOE Green Energy (OSTI)

Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

Stodolsky, F.; Santini, D.J.

1992-01-01T23:59:59.000Z

131

The efficient use of natural gas in transportation  

DOE Green Energy (OSTI)

Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

Stodolsky, F.; Santini, D.J.

1992-04-01T23:59:59.000Z

132

Stephanie L. Outcalt  

Science Conference Proceedings (OSTI)

... The instrument has also been used to measure the solubility of carbon dioxide, propane, propene, butane, and 1-butene in the ionic liquid 1-butyl-3 ...

2012-12-20T23:59:59.000Z

133

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

2003-04-01T23:59:59.000Z

134

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

135

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

136

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

137

Hydrogen Oxidation Catalysis by a Nickel Diphosphine Complex with Pendant tert-Butyl Amines  

DOE Green Energy (OSTI)

A bis-diphosphine nickel complex with t-butyl functionalized pendant amines [Ni(PCy2Nt-Bu2)2]2+ has been synthesized. It is a highly active electrocatalyst for the oxidation of hydrogen in the presence of base. The turn-over rate of 50 s 1 under 1.0 atm H2 at a potential of –0.77 V vs the ferrocene couple is 5 times faster than the rate reported heretofore for any other molecular H2 oxidation catalyst. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. Computational resources were provided by the Environmental Molecular Science Laboratory (EMSL) and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.

Yang, Jenny Y.; Chen, Shentan; Dougherty, William G.; Kassel, W. S.; Bullock, R. Morris; DuBois, Daniel L.; Raugei, Simone; Rousseau, Roger J.; Dupuis, Michel; Rakowski DuBois, Mary

2010-11-09T23:59:59.000Z

138

Lithium Hexamethyldisilazide-Mediated Ketone Enolization: The Influence of Hindered Dialkyl Ethers and Isostructural  

E-Print Network (OSTI)

Lithium Hexamethyldisilazide-Mediated Ketone Enolization: The Influence of Hindered Dialkyl Ethers of the enolization of 2-methylcyclohexanone mediated by lithium hexameth- yldisilazide (LiHMDS; TMS2NLi) solvated- bine to make lithium hexamethyldisilazide (LiHMDS) one of the most important Bro¨nsted bases in organic

Collum, David B.

139

Direct synthesis of dimethyl ether (DME) from syngas containing oxygen gas considering of biomass gasfication gas  

Science Conference Proceedings (OSTI)

We have developed appropriate and excellent catalysts for direct DME synthesis from syngas. The catalysts, Cu-Zn/Al2O3 catalysts prepared by the sol-gel method, produce DME with high DME activity and high DME selectivity with long ... Keywords: DME, biomass, catalyst, clean fuel, dimethyl ether, direct synthesis, gasification gas, hydrogen, sol-gel method, syngas

Kaoru Takeishi; Akane Arase

2010-02-01T23:59:59.000Z

140

Exam 1, Chemistry 210, Dr. Rainer Glaser, W97, MU --1 --Chemistry 210Chemistry 210  

E-Print Network (OSTI)

,4-dimethyl-octane (4 points) 7-tert.-butyl-4-iso.-propyl-3,5-decadiene (3 pts) H O butanal (3 pts) O ethylmethylketone Condensed structural formula of n-butane. (2 pts) H3C-CH2-CH2-CH3 Bond line structure of butane. (2 pts) Newman projection of gauche butane along the central C2-C3 bond. (4 pts) H H Me Me H H

Glaser, Rainer

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Assessment of ether and alcohol fuels from coal. Volume 2. Technical report  

DOE Green Energy (OSTI)

A unique route for the indirect liquefaction of coal to produce transportation fuel has been evaluated. The resultant fuel includes alkyl tertiary alkyl ethers and higher alcohols, all in the gasoline boiling range. When blended into gasoline, the ether fuel provides several advantages over the lower alcohols: (1) lower chemical oxygen content, (2) less-severe water-separation problems, and (3) reduced front-end volatility effects. The ether fuel also has high-octane quality. Further, it can be utilized as a gasoline substitute in all proportions. Production of ether fuel combines several steps, all of which are or have been practiced on an industrial scale: (1) coal gasification, (2) gas cleanup and shift to desired H/sub 2/:CO ratio, (3) conversion of synthesis gas to isobutanol, methanol, and higher alcohols, (4) separation of alcohols, (5) chemical dehydration of isobutanol to isobutylene, and (6) etherification of isobutylene with methanol. A pilot-plant investigation of the isobutanol synthesis step was performed. Estimates of ether-fuel manufacturing costs indicate this process route is significantly more costly than synthesis of methanol. However, the fuel performance features provide incentive for developing the necessary process and catalyst improvements. Co-production of higher-molecular-weight co-solvent alcohols represents a less-drastic form of methanol modification to achieve improvement in the performance of methanol-gasoline blends. Costs were estimated for producing several proportions of methanol plus higher alcohols from coal. Estimated fuel selling price increases regularly but modestly with higher alcohol content.

Not Available

1983-03-01T23:59:59.000Z

142

Method for photochemical reduction of uranyl nitrate by tri-N-butyl phosphate and application of this method to nuclear fuel reprocessing  

DOE Patents (OSTI)

Uranyl ion in solution in tri-n-butyl phosphate is readily photochemically reduced to U(IV). The product U(IV) may effectively be used in the Purex process for treating spent nuclear fuels to reduce Pu(IV) to Pu(III). The Pu(III) is readily separated from uranium in solution in the tri-n-butyl phosphate by an aqueous strip.

De Poorter, Gerald L. (Los Alamos, NM); Rofer-De Poorter, Cheryl K. (Los Alamos, NM)

1978-01-01T23:59:59.000Z

143

Normal Butane/Butylene Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

144

Molecular Dynamics Simulation of Tri-n-Butyl-Phophate Liquid: A Force Field Comparative Study  

SciTech Connect

Molecular dynamics (MD) simulations were conducted to compare the performance of four force fields in predicting thermophysical properties of tri-n-butyl-phosphate (TBP) in the liquid phase. The intramolecular force parameters used were from the Assisted Model Building with Energy Refinement (AMBER) force field model. The van der Waals parameters were based on either the AMBER or the Optimized Potential for Liquid Simulation (OPLS) force fields. The atomic partial charges were either assigned by performing quantum chemistry calculations or utilized previously published data, and were scaled to approximate the average experimental value of the electric dipole moment. Canonical ensemble computations based on the aforementioned parameters were performed near the atmospheric pressure and temperature to obtain the electric dipole moment, mass density, and self-diffusion coefficient. In addition, the microscopic structure of the liquid was characterized via pair correlation functions between selected atoms. It has been demonstrated that the electric dipole moment can be approximated within 1% of the average experimental value by virtue of scaled atomic partial charges. The liquid mass density can be predicted within 0.5-1% of its experimentally determined value when using the corresponding charge scaling. However, in all cases the predicted self- diffusion coefficient is significantly smaller than a commonly quoted experimental measurement; this result is qualified by the fact that the uncertainty of the experimental value was not available.

Cui, Shengting [ORNL; de Almeida, Valmor F [ORNL; Hay, Benjamin [ORNL; Ye, Xianggui [ORNL; Khomami, Bamin [ORNL

2012-01-01T23:59:59.000Z

145

Initiation Temperature for Runaway Tri-n-Butyl Phosphate/Nitric Acid Reaction  

Science Conference Proceedings (OSTI)

During a review of the H-Canyon authorization basis, Defense Nuclear Facility Safety Board (DNFSB) staff members questioned the margin of safety associated with a postulated tri-n-butyl phosphate (TBP)/nitric acid runaway reaction due to the inadvertent heating of a canyon tank containing greater than 3000 lbs (1362 kg) of TBP. The margin of safety was partially based on experiments and calculations performed by the Actinide Technology Section (ATS) to support deletion of indication of tank agitation as a Safety Class System. In the technical basis for deletion of this system, ATS personnel conservatively calculated the equilibrium temperature distribution of a canyon tank containing TBP and nitric acid layers which were inadvertently heated by a steam jet left on following a transfer. The maximum calculated temperature (128 degrees C) was compared to the minimum initiation temperature for a runaway reaction (greater than 130 degrees C) documented by experimental work in the mid 195 0s. In this work, the initiation temperature as a function of nitric acid concentration was measured for 0 and 20 wt percent dissolved solids. The DNFSB staff members were concerned that data for 0 wt percent dissolved solids were not conservative given the facts that data for 20 wt percent dissolved solids show initiation temperatures at or below 130 degrees C and H-Canyon solutions normally contained a small amount of dissolved solids.

Rudisill, T.S.

2000-11-28T23:59:59.000Z

146

Process to convert biomass and refuse derived fuel to ethers and/or alcohols  

DOE Patents (OSTI)

A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO); Chum, Helena L. (Arvada, CO); Evans, Robert J. (Lakewood, CO); Rejai, Bahman (Lakewood, CO); Bain, Richard L. (Golden, CO); Overend, Ralph P. (Lakewood, CO)

1996-01-01T23:59:59.000Z

147

Process to convert biomass and refuse derived fuel to ethers and/or alcohols  

DOE Patents (OSTI)

A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.

Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.

1996-04-02T23:59:59.000Z

148

Pt3Ru6 Clusters Supported on gamma-Al2O3: Synthesis from Pt3Ru6(Cu)21(u3-H)(u-H)3, Structural Characterization, and Catalysis of Ethylene Hydrogenation and n-Butane Hydrogenolysis  

SciTech Connect

The supported clusters Pt-Ru/{gamma}-Al{sub 2}O{sub 3} were prepared by adsorption of the bimetallic precursor Pt{sub 3}Ru{sub 6}(Cu){sub 21}({mu}{sub 3}-H)({mu}-H){sub 3} from CH{sub 2}Cl{sub 2} solution onto {gamma}-Al{sub 2}O{sub 3} followed by decarbonylation in He at 300 C. The resultant supported clusters were characterized by infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies and as catalysts for ethylene hydrogenation and n-butane hydrogenolysis. After adsorption, the {nu}{sub CO} peaks characterizing the precursor shifted to lower wavenumbers, and some of the hydroxyl bands of the support disappeared or changed, indicating that the CO ligands of the precursor interacted with support hydroxyl groups. The EXAFS results show that the metal core of the precursor remained essentially unchanged upon adsorption, but there were distortions of the metal core indicated by changes in the metal-metal distances. After decarbonylation of the supported clusters, the EXAFS data indicated that Pt and Ru atoms interacted with support oxygen atoms and that about half of the Pt-Ru bonds were maintained, with the composition of the metal frame remaining almost unchanged. The decarbonylated supported bimetallic clusters reported here are the first having essentially the same metal core composition as that of a precursor metal carbonyl, and they appear to be the best-defined supported bimetallic clusters. The material was found to be an active catalyst for ethylene hydrogenation and n-butane hydrogenolysis under conditions mild enough to prevent substantial cluster disruption.

Chotisuwan,S.; Wittayakun, J.; Gates, B.

2006-01-01T23:59:59.000Z

149

Modeling the Nanophase Structural Dynamics of Phenylated Sulfonated Poly Ether Ether Ketone Ketone (Ph-SPEEKK) Membranes as a Function of Hydration  

DOE Green Energy (OSTI)

Solvated phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) membranes in the presence of hydronium ions were modeled by classical molecular dynamics simulations. The characterization of the nanophase structure and dynamics of such membranes was carried out as a function of the water content lambda, where lambda is the number of water molecules per sulfonate group, for lambda values of 3.5, 6, 11, 25, and 40. Analysis of pair correlation functions supports the experimental observation of membrane swelling upon hydration as well the increase in water and hydronium ion diffusion with increasing lambda. While the average number of hydrogen bonds between hydronium ions and sulfonate groups is dramatically affected by the hydration level, the average lifetime of the hydrogen bonds remains essentially constant. The membrane is found to be relatively rigid and its overall flexibility shows little dependence on water content. Compared to Nafion, water and ion diffusion coefficients are considerably smaller at lower hydration levels and room temperature. However, at higher lambda values of 25 and 40 these coefficients are comparable to those in Nafion at a lambda value of 16. This study also shows that water diffusion in Ph-SPEEKK membranes at low hydration levels can be significantly improved by raising the temperature with important implications for proton conductivity.

Lins, Roberto D.; Devanathan, Ramaswami; Dupuis, Michel

2011-03-03T23:59:59.000Z

150

2' and 3' Carboranyl uridines and their diethyl ether adducts  

DOE Patents (OSTI)

There is disclosed a process for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. Said carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of said compounds in methods for boron neutron capture therapy in mammalian tumor cells.

Soloway, Albert H. (Worthington, OH); Barth, Rolf F. (Columbus, OH); Anisuzzaman, Abul K. (Columbus, OH); Alam, Fazlul (Anaheim, CA); Tjarks, Werner (Columbus, OH)

1992-01-01T23:59:59.000Z

151

2[prime] and 3[prime] Carboranyl uridines and their diethyl ether adducts  

DOE Patents (OSTI)

A process is described for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. The carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of the compounds in methods for boron neutron capture therapy in mammalian tumor cells. No Drawings

Soloway, A.H.; Barth, R.F.; Anisuzzaman, A.K.; Alam, F.; Tjarks, W.

1992-12-15T23:59:59.000Z

152

Butyl benzyl phthalate suppresses the ATP-induced cell proliferation in human osteosarcoma HOS cells  

Science Conference Proceedings (OSTI)

Butyl benzyl phthalate (BBP), an endocrine disruptor present in the environment, exerts its genomic effects via intracellular steroid receptors and elicits non-genomic effects by interfering with membrane ion-channel receptors. We previously found that BBP blocks the calcium signaling coupled with P2X receptors in PC12 cells (Liu and Chen, 2006). Osteoblast P2X receptors were recently reported to play a role in cell proliferation and bone remodeling. In this present study, the effects of BBP on ATP-induced responses were investigated in human osteosarcoma HOS cells. These receptors mRNA had been detected, named P2X4, P2X7, P2Y2, P2Y4, P2Y5, P2Y9, and P2Y11, in human osteosarcoma HOS cells by RT-PCR. The enhancement of cell proliferation and the decrease of cytoviability had both been shown to be coupled to stimulation via different concentrations of ATP. BBP suppressed the ATP-induced calcium influx (mainly coupled with P2X) and cell proliferation but not the ATP-induced intracellular calcium release (mainly coupled with P2Y) and cytotoxicity in human osteosarcoma HOS cells. Suramin, a common P2 receptor's antagonist, blocked the ATP-induced calcium signaling, cell proliferation, and cytotoxicity. We suggest that P2X is mainly responsible for cell proliferation, and P2Y might be partially responsible for the observed cytotoxicity. BBP suppressed the calcium signaling coupled with P2X, suppressing cell proliferation. Since the importance of P2X receptors during bone metastasis has recently become apparent, the possible toxic risk of environmental BBP during bone remodeling is a public problem of concern.

Liu, P.-S., E-mail: pslediting@mail.scu.edu.t [Department of Microbiology, Soochow University, Shihlin, Taipei, Taiwan (China); Chen, C.-Y. [Department of Microbiology, Soochow University, Shihlin, Taipei, Taiwan (China)

2010-05-01T23:59:59.000Z

153

Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process. Peroxide formation of dimethyl ether in methanol mixtures  

DOE Green Energy (OSTI)

Organic peroxides could form when dimethyl ether in methanol is stored for three to six months at a time. The objective of this work was to determine the level of peroxide formation from dimethyl ether in reagent grade methanol and raw methanol at room temperature under 3 atmospheres (45 psig) of air. Raw methanol is methanol made from syngas by the LPMEOH Process without distillation. Aliphatic ethers tend to react slowly with oxygen from the air to form unstable peroxides. However, there are no reports on peroxide formation from dimethyl ether. After 172 days of testing, dimethyl ether in either reagent methanol or raw methanol at room temperature and under 60--70 psig pressure of air does not form detectable peroxides. Lack of detectable peroxides suggests that dimethyl ether or dimethyl ether and methanol may be stored at ambient conditions. Since the compositions of {approximately} 1.3 mol% or {approximately} 4.5 mol% dimethyl ether in methanol do not form peroxides, these compositions can be considered for diesel fuel or an atmospheric turbine fuel, respectively.

Waller, F.J.

1997-11-01T23:59:59.000Z

154

Research Article Rapeseed Oil Monoester of Ethylene Glycol Monomethyl Ether as a New Biodiesel  

E-Print Network (OSTI)

Copyright © 2011 Jiang Dayong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A novel biodiesel named rapeseed oil monoester of ethylene glycol monomethyl ether is developed. This fuel has one more ester group than the traditional biodiesel. The fuel was synthesized and structurally identified through FT-IR and P 1P H NMR analyses. Engine test results show that when a tested diesel engine is fueled with this biodiesel in place of 0 # diesel fuel, engine-out smoke emissions can be decreased by 25.0%–75.0%, CO emissions can be reduced by 50.0%, and unburned HC emissions are lessened significantly. However, NOx emissions generally do not change noticeably. In the area of combustion performance, both engine in-cylinder pressure and its changing rate with crankshaft angle are increased to some extent. Rapeseed oil monoester of ethylene glycol monomethyl ether has a much higher cetane number and shorter ignition delay, leading to autoignition 1.1 ? CA earlier than diesel fuel during engine operation. Because of certain amount of oxygen contained in the new biodiesel, the engine thermal efficiency is improved 13.5%–20.4 % when fueled with the biodiesel compared with diesel fuel. 1.

Jiang Dayong; Wang Xuanjun; Liu Shuguang; Guo Hejun

2011-01-01T23:59:59.000Z

155

Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions  

DOE Patents (OSTI)

A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

Moyer, Bruce A. (Oak Ridge, TN); Sachleben, Richard A. (Knoxville, TN); Bonnesen, Peter V. (Knoxville, TN); Presley, Derek J. (Ooltewah, TN)

2001-01-01T23:59:59.000Z

156

Rhenium Complexes and Clusters Supported on c-Al2O3: Effects of Rhenium Oxidation State and Rhenium Cluster Size on Catalytic Activity for n-butane Hydrogenolysis  

SciTech Connect

Supported metals prepared from H{sub 3}Re{sub 3}(CO){sub 12} on {gamma}-Al{sub 2}O{sub 3} were treated under conditions that led to various rhenium structures on the support and were tested as catalysts for n-butane conversion in the presence of H{sub 2} in a flow reactor at 533 K and 1 atm. After use, two samples were characterized by X-ray absorption edge positions of approximately 5.6 eV (relative to rhenium metal), indicating that the rhenium was cationic and essentially in the same average oxidation state in each. But the Re-Re coordination numbers found by extended X-ray absorption fine structure spectroscopy (2.2 and 5.1) show that the clusters in the two samples were significantly different in average nuclearity despite their indistinguishable rhenium oxidation states. Spectra of a third sample after catalysis indicate approximately Re{sub 3} clusters, on average, and an edge position of 4.5 eV. Thus, two samples contained clusters approximated as Re{sub 3} (on the basis of the Re-Re coordination number), on average, with different average rhenium oxidation states. The data allow resolution of the effects of rhenium oxidation state and cluster size, both of which affect the catalytic activity; larger clusters and a greater degree of reduction lead to increased activity.

Lobo Lapidus, R.; Gates, B

2009-01-01T23:59:59.000Z

157

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Total Stocks Total Stocks Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton.

158

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Weekly Supply Estimates Weekly Supply Estimates Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton.

159

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Imports & Exports Imports & Exports Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock.

160

Exhaust Emissions and Combustion Performances of Rapeseed Oil Monoester of Ethylene Glycol Monomethyl Ether as a Novel Biodiesel  

Science Conference Proceedings (OSTI)

In this paper, a novel biodiesel named rapeseed oil monoester of ethylene glycol monomethyl ether has been developed, which has one more ester group than traditional biodiesel. It was synthesized and structurally identified through FT-IR, 1H NMR analyses. ... Keywords: component, rapeseed oil monoester, synthesis, exhaust emissions, combustion performances

Jiang Dayong; Wang Xuanjun; Wang Wenguo; Han Qilong

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Process for the production of ethylidene diacetate from dimethyl ether using a heterogeneous catalyst  

DOE Patents (OSTI)

This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.

Ramprasad, D.; Waller, F.J.

1998-04-28T23:59:59.000Z

162

Process for the production of ethylidene diacetate from dimethyl ether using a heterogeneous catalyst  

DOE Patents (OSTI)

This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.

Ramprasad, Dorai (Allentown, PA); Waller, Francis Joseph (Allentown, PA)

1998-01-01T23:59:59.000Z

163

Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process  

DOE Green Energy (OSTI)

The present invention pertains to a process for the coproduction of methanol and dimethyl ether (DME) directly from a synthesis gas in a single step (hereafter, the "single step DME process"). In this process, the synthesis gas comprising hydrogen and carbon oxides is contacted with a dual catalyst system comprising a physical mixture of a methanol synthesis catalyst and a methanol dehydration catalyst. The present invention is an improvement to this process for providing an active and stable catalyst system. The improvement comprises the use of an aluminum phosphate based catalyst as the methanol dehydration catalyst. Due to its moderate acidity, such a catalyst avoids the coke formation and catalyst interaction problems associated with the conventional dual catalyst systems taught for the single step DME process.

Peng, Xiang-Dong (Allentown, PA); Parris, Gene E. (Coopersburg, PA); Toseland, Bernard A. (Allentown, PA); Battavio, Paula J. (Allentown, PA)

1998-01-01T23:59:59.000Z

164

Understanding the redox shuttle stability of 3,5-di-tert-butyl-1,2-dimethoxybenzene for overcharge protection of lithium-ion batteries.  

DOE Green Energy (OSTI)

3,5-di-tert-butyl-1,2-dimethoxybenzene (DBDB) has been synthesized as a new redox shuttle additive for overcharge protection of lithium-ion batteries. DBDB can easily dissolve in carbonate-based electrolytes, which facilitates its practical use in lithium-ion batteries; however, it has poor electrochemical stability compared to 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB). The structures of DBDB and DDB were investigated using X-ray crystallography and density functional calculations. The structures differ in the conformations of the alkoxy bonds probably due to the formation of an intramolecular hydrogen bond in the case of DBDB. We investigated reaction energies for decomposition pathways of neutral DBDB and DDB and their radical cations and found little difference in the reaction energies, although it is clear that kinetically, decomposition of DBDB is more favorable.

Zhang, Z.; Zhang, L.; Schlueter, J. A.; Redfern, P. C.; Curtiss, L.; Amine, K.

2010-01-01T23:59:59.000Z

165

Identification of volatile butyl rubber thermal-oxidative degradation products by cryofocusing gas chromatography/mass spectrometry (cryo-GC/MS).  

Science Conference Proceedings (OSTI)

Chemical structure and physical properties of materials, such as polymers, can be altered as aging progresses, which may result in a material that is ineffective for its envisioned intent. Butyl rubber formulations, starting material, and additives were aged under thermal-oxidative conditions for up to 413 total days at up to 124 %C2%B0C. Samples included: two formulations developed at Kansas City Plant (KCP) (%236 and %2310), one commercially available formulation (%2321), Laxness bromobutyl 2030 starting material, and two additives (polyethylene AC-617 and Vanax MBM). The low-molecular weight volatile thermal-oxidative degradation products that collected in the headspace over the samples were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). The majority of identified degradation species were alkanes, alkenes, alcohols, ketones, and aldehydes. Observations for Butyl %2310 aged in an oxygen-18 enriched atmosphere (18O2) were used to verify when the source of oxygen in the applicable degradation products was from the gaseous environment rather than the polymeric mixture. For comparison purposes, Butyl %2310 was also aged under non-oxidative thermal conditions using an argon atmosphere.

Smith, Jonell Nicole; White, Michael Irvin; Bernstein, Robert; Hochrein, James Michael

2013-02-01T23:59:59.000Z

166

Polybrominated diphenyl ethers (PBDEs) in leachates from selected landfill sites in South Africa  

Science Conference Proceedings (OSTI)

The last few decades have seen dramatic growth in the scale of production and the use of polybrominated diphenyl ethers (PBDEs) as flame retardants. Consequently, PBDEs such as BDE -28, -47, -66, -71, -75, -77, -85, -99, -100, -119, -138, -153, -154, and -183 have been detected in various environmental matrices. Generally, in South Africa, once the products containing these chemicals have outlived their usefulness, they are discarded into landfill sites. Consequently, the levels of PBDEs in leachates from landfill sites may give an indication of the general exposure and use of these compounds. The present study was aimed at determining the occurrence and concentrations of most common PBDEs in leachates from selected landfill sites. The extraction capacities of the solvents were also tested. Spiked landfill leachate samples were used for the recovery tests. Separation and determination of the PBDE congeners were carried out with a gas chromatograph equipped with Ni{sup 63} electron capture detector. The mean percentage recoveries ranged from 63% to 108% (n = 3) for landfill leachate samples with petroleum ether giving the highest percentage extraction. The mean concentrations of PBDEs obtained ranged from ND to 2670 pg l{sup -1}, ND to 6638 pg l{sup -1}, ND to 7230 pg l{sup -1}, 41 to 4009 pg l{sup -1}, 90 to 9793 pg l{sup -1} for the Garankuwa, Hatherly, Kwaggarsrand, Soshanguve and Temba landfill sites, respectively. Also BDE -28, -47, -71 and BDE-77 were detected in the leachate samples from all the landfill sites; and all the congeners were detected in two of the oldest landfill sites. The peak concentrations were recorded for BDE-47 at three sites and BDE-71 and BDE-75 at two sites. The highest concentration, 9793 {+-} 1.5 pg l{sup -1}, was obtained for the Temba landfill site with the highest BOD value. This may suggest some influence of organics on the level of PBDEs. Considering the leaching characteristics of brominated flame retardants, there is a high possibility that with time these compounds may infiltrate into the groundwater around the sites since most of the sites are not adequately lined.

Odusanya, David O. [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa); Okonkwo, Jonathan O. [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa)], E-mail: OkonkwoOJ@tut.ac.za; Botha, Ben [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa)

2009-01-15T23:59:59.000Z

167

Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites  

SciTech Connect

Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH{sub i}) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH{sub i}in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH{sub i} of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na{sup +}/H{sup +}-antiporter, corroborating an important role of the pH{sub i} in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH{sub i} may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

Louisse, Jochem, E-mail: jochem.louisse@wur.n [Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen (Netherlands); TNO Quality of Life, PO Box 360, 3700 AJ Zeist (Netherlands); WUR/TNO Centre for Innovative Toxicology, PO Box 8000, 6700 EA Wageningen (Netherlands); Bai Yanqing [Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen (Netherlands); Verwei, Miriam; Sandt, Johannes J.M. van de [TNO Quality of Life, PO Box 360, 3700 AJ Zeist (Netherlands); WUR/TNO Centre for Innovative Toxicology, PO Box 8000, 6700 EA Wageningen (Netherlands); Blaauboer, Bas J. [Institute for Risk Assessment Sciences (IRAS), Utrecht University, PO Box 80176, 3508 TD Utrecht (Netherlands); Rietjens, Ivonne M.C.M. [Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen (Netherlands); WUR/TNO Centre for Innovative Toxicology, PO Box 8000, 6700 EA Wageningen (Netherlands)

2010-06-01T23:59:59.000Z

168

Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization  

SciTech Connect

Carbon-oxygen bonds are the primary inter-monomer linkages lignin polymers in plant cell walls, and as such, catalyst development to cleave these linkages is of paramount importance to deconstruct biomass to its constituent monomers for the production of renewable fuels and chemicals. For many decades, acid catalysis has been used to depolymerize lignin. Lignin is a primary component of plant cell walls, which is connected primarily by aryl-ether linkages, and the mechanism of its deconstruction by acid is not well understood, likely due to its heterogeneous and complex nature compared to cellulose. For effective biomass conversion strategies, utilization of lignin is of significant relevance and as such understanding the mechanisms of catalytic lignin deconstruction to constituent monomers and oligomers is of keen interest. Here, we present a comprehensive experimental and theoretical study of the acid catalysis of a range of dimeric species exhibiting the b-O-4 linkage, the most common inter-monomer linkage in lignin. We demonstrate that the presence of a phenolic species dramatically increases the rate of cleavage in acid at 150 degrees C. Quantum mechanical calculations on dimers with the para-hydroxyl group demonstrate that this acid-catalyzed pathway differs from the nonphenolic dimmers. Importantly, this result implies that depolymerization of native lignin in the plant cell wall will proceed via an unzipping mechanism wherein b-O-4 linkages will be cleaved from the ends of the branched, polymer chains inwards toward the center of the polymer. To test this hypothesis further, we synthesized a homopolymer of b-O-4 with a phenolic hydroxyl group, and demonstrate that it is cleaved in acid from the end containing the phenolic hydroxyl group. This result suggests that genetic modifications to lignin biosynthesis pathways in plants that will enable lower severity processes to fractionate lignin for upgrading and for easier access to the carbohydrate fraction of the plant cell wall.

Sturgeon, M. R.; Kim, S.; Chmely, S. C.; Foust, T. D.; Beckham, G. T.

2013-01-01T23:59:59.000Z

169

The lightness of being: mass, ether, and unification of the forces  

SciTech Connect

How can an electron be both a wave and a particle? At the same time? Because it is a quantum field. That key insight seems to be underappreciated, given the awe and mysticism that permeate most nontechnical discussions of modern physics. Perhaps the root of the problem is that most popularizations of quantum mechanics and of particle physics shy away from quantized fields, the natural language for microscopic phenomena. In 'The Lightness of Being: Mass, Ether, and the Unification of Forces', Frank Wilczek confronts quantum field theory head on, demystifying not only wave-particle duality but also the origin of mass for hadrons (that is, everyday matter). Wilczek is the Herman Feshbach Professor of Physics at MIT and a co-recipient of the 2004 Nobel Prize in Physics. His research has spanned almost all aspects of theoretical particle physics, with significant forays into condensed-matter physics and dense nuclear matter (condensed quark matter, one might say). Recurring themes are the richness of quantum chromodynamics (QCD) and the alluring ideas of unification. His breadth and depth make him a sought after speaker for colloquia and public lectures. Wilczek also contributes an occasional Reference Frame column to 'Physics Today'. The material in 'The Lightness of Being' reflects the scope of the author's research. The book consists of three parts: the quantum fields of QCD (the ether that makes mass), gravitation (the ether that feels mass), and unification. Part 1, which traces notions of mass from Isaac Newton's time through theoretical and computational results of the past 40 years, is the most substantial and original; it is rich, modern, and rooted in observed phenomena. Part 2 continues in the same vein as it connects gravity, also an observed phenomenon, to QCD. Part 3 is more conventional, for a popularization of particle physics, in its focus on speculative ideas that (still) await direct experimental tests. Readers of 'Physics Today' will know that Wilczek can write with wit, grace, and an uncanny facility for using lightweight language to express heavy-duty ideas. They will find much of that kind of writing in 'The Lightness of Being'. Wilczek addresses subtle ideas with vim and vigor. He avoids some of the jargon of quantum field theory; for example, he calls the vertex in a Feynman diagram a hub. In more ambitious terminology, he refers to space-filling, everfluctuating quantum fields--be they electrons, quarks, gluons, or gravity--as 'the Grid'. The term is supposed to be short and familiar, evoking the ubiquitous electric grid (and soon-to-beubiquitous computing grid). It also, for the expert, cleverly alludes to lattice gauge theory. Indeed, after vividly explaining how the dynamics of QCD and the constraints of Heisenberg uncertainty conspire to create mass from the Grid, Wilczek emphasizes that the picture is backed by lattice QCD computations of 'heroic' proportions. Unfortunately, too much of 'The Lightness' is laden with clunky affectation: silly names (a pulsed electron accelerator is called the 'ultrastroboscopic nanomicroscope'), sophomoric jokes ('hadron' is 'not a typo'), references to pop culture (Wilczek might have called quantum fields 'the Matrix, but the sequels tarnished that candidate'), and many pointless footnotes. In a public lecture the audience may guffaw at such jokes, but on the printed page they fall flat. Wilczek explains physics so well that the inappropriate humor is the biggest unexplained puzzle of the book. It is fine to be silly, even crude, as long as the reader's path to understanding is made easier. A joke can inform with an unexpected perspective or simply give the mind a pause to refresh. Some of the humor achieves such aims, but too many gags impede the pace of the otherwise fine exposition. Three appendices, a glossary, and a set of endnotes are crisp and sober. They are excellent. 'The Lightness of Being' is not unbearable, but it is weighed down with too much clutter to rank as a masterpiece. It's a pity: Wilczek's best writing--some of it in this book--is l

Kronfeld, Andreas S.

2009-03-01T23:59:59.000Z

170

Refinery Net Production of Normal Butane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

171

Natural Gas Plant Stocks of Normal Butane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

172

Refinery & Blender Net Production of Normal Butane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

173

Refinery Stocks of Normal Butane/Butylene  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: "Other Oxygenates ...

174

Natural Gas Plant Field Production: Normal Butane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

175

Normal Butane/Butylene - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Working storage ...

176

Separation of Dimethyl Ether from Syn-Gas Components by Poly(dimethylsiloxane) and Poly(4-methyl-1-pentene) Membranes  

Science Conference Proceedings (OSTI)

Permeability and selectivity in gas transport through poly(4-methyl-1-pentene) (TPX) and poly(dimethylsiloxane) (PDMS) using variable temperature mixed gas experiments is reported. Selected gases include H2, CO, CH4, CO2, and dimethyl ether (DME). The DME data is the first to be reported through these membranes. In this paper, the chosen polymers reflect both rubbery and crystalline materials. Rubbery polymers tend to be weakly size sieving, which, in this work, has resulted in larger permeabilities, lower separation factors, and lower activation energies of permeation (Ep). Conversely, the crystalline TPX membranes showed much greater sensitivity to penetrant size; although the gas condensability also played a role in transport.

Christopher J. Orme; Frederick F. Stewart

2011-05-01T23:59:59.000Z

177

Synthesis of Cyclic Aza-Ether Compounds and Studies of Their Use as Anion Receptors in Non-Aqueous Lithium Halide Salt Solutions  

DOE Green Energy (OSTI)

A series of new anion receptors, based on cyclic aza-ether compounds, have been synthesized. In all of these cyclic aza-ether compounds, the electron-withdrawing group CF{sub 3}SO{sub 2} was attached to each of the nitrogen atoms. When used as additives, all of them can significantly increase the ionic conductivity of lithium halide salts in THF solutions. This is due to the complexation between these compounds and halide anions. Ionic conductivity studies show that the complexation behavior is related to both the ring structure of the cyclic compounds and the characteristics of the halide anions. X-ray diffraction data show that the diffraction patterns of the complex crystals are different from the pure cyclic aza-ether compounds. New Bragg peaks representing a large d-spacing ({approx}15 {angstrom}) are observed for the complex crystals which provides a clear evidence for complexation.

Lee, H. S.; Sun, X.; Yang, X. Q.; McBreen, J.; Callahan, J. H.; Choi, L. S.

1999-11-01T23:59:59.000Z

178

xml version="1.0" encoding="UTF-8"?>

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a
real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

chemical feedstock for production of a range of important industrial chemicals, primarily acetic acid, formaldehyde, methyl methacrylate and methyl tertiary-butyl ether (MTBE)....

182

Impact of Renewable Fuels Standard/MTBE Provisions of S. 517 Requested by Sens. Daschle & Murkowski  

Reports and Publications (EIA)

Additional analysis of the impact of the Renewable Fuels Standard (RFS) and methyl tertiary butyl ether (MTBE) ban provisions of S. 517.

Information Center

2002-04-01T23:59:59.000Z

183

Impact of Renewable Fuels Standard/MTBE Provisions of S.1766  

U.S. Energy Information Administration (EIA)

SR/OIAF/2002-06 Release date: March 2002 This report analyzes the Renewable Fuels Standard (RFS)/methyl tertiary butyl ether (MTBE) provisions of S. 1766.

184

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

185

The Effect of Time dealumination and Solvent Concentration in Synthesis of Zeolite Catalyst and Catalytic Test for DiEthyl Ether Production Process  

Science Conference Proceedings (OSTI)

Ethanol is an alternative energy, but its has three distinct disadvantages as a transportation fuel. Its availability is currently limited, and it has a lower volumetric heating value and a lower Reid vapour pressure (RVP) than gasoline. This paper focuses for this disadvantages and to solve this problem can do with converts ethanol to DiEthyl Ether product. This research produced DiEthyl Ether by ethanol dehydration process with zeolite as catalyst. The catalyst synthesis from natural material from District Gunung Kidul, Indonesia. The catalyst produced with dealumination, neutralization, drying and calcination processes. The zeolite catalyst was analysed of Si/Al, X-ray Diffraction and specific surface area. The catalyst product then used for ethanol dehydration to produce DiEthyl Ether. The results shown the biggest surface area is 184,52 m{sup 2}/gram at catalyst production at 10 hours for time dealumination. The crystallite of catalyst product is similar like shown at diffractogram of XRD analysis. The ratio Si/Al biggest is 313.7 that obtaining at catalyst production with 7 hours for time dealumination. The catalytic test use fixed bed reactor with 1 inci diameter and ethanol fermentation both as feed. The operation condition is 150 deg. C at temperature and atmosphere pressure. The compounds product in liquid phase are diethyl ether, methanol and water.

Widayat [Department of Chemical Engineering, Faculty of Engineering Diponegoro University, Department of Chemical Engineering, Faculty of Industry Technology Institute of Technology Sepuluh Nopember Surabaya Indonesia, Kampus Sukolilo Surabaya Indonesia (Indonesia); Roesyadi, A.; Rachimoellah, M. [Department of Chemical Engineering, Faculty of Industry Technology Institute of Technology Sepuluh Nopember Surabaya Indonesia, Kampus Sukolilo Surabaya Indonesia (Indonesia)

2009-09-14T23:59:59.000Z

186

Mathematical simulation and X-ray diffraction investigation of the crystal structure of 1-phenyl-1-tert-butyl-3-methyl-1,3-dihydroisobenzofuran  

SciTech Connect

An algorithm for using a priori generation of crystal structures by the discrete modeling method for the interpretation of data obtained from single-crystal X-ray diffraction experiments is considered. The crystal structure of 1-phenyl-1-tert-butyl-3-methyl-1,3-dihydroisobenzofuran is mathematically simulated using the discrete modeling of molecular packings and studied by X-ray diffraction. The simulation is performed for two isomers of the initial chemical compound that are possible from the viewpoint of the mechanism of the chemical reaction used in the synthesis of this compound. Appropriate models that can serve as starting models for solving and refining the crystal structure with the use of X-ray diffraction data are chosen from a complete set of calculated structural models in accordance with specific criteria. The structure is solved using a starting model calculated using the discrete modeling method and refined by the full-matrix least-squares procedure.

Maleev, A. V., E-mail: andr_mal@mail.ru; Zhitkov, I. K.; Potekhin, K. A. [Vladimir State Pedagogical University (Russian Federation)

2008-07-15T23:59:59.000Z

187

Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report  

Science Conference Proceedings (OSTI)

The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what would be allowed for methanol synthesis alone. Aromatic-rich hydrocarbon liquid (C5+), containing a significant amount of methylated benzenes, was produced under these conditions. However, selectivity control to liquid hydrocarbons was difficult to achieve. Carbon dioxide and methane formation was problematic. Furthermore, saturation of the olefinic intermediates formed in the zeolite, and necessary for gasoline production, occurred over PdZnAl. Thus, yield to desirable hydrocarbon liquid product was limited. Evaluation of other oxygenate-producing catalysts could possibly lead to future advances. Potential exists with discovery of other types of catalysts that suppress carbon dioxide and light hydrocarbon formation. Comparative techno-economics for a single-step syngas-to-distillates process and a more conventional MTG-type process were investigated. Results suggest operating and capital cost savings could only modestly be achieved, given future improvements to catalyst performance. Sensitivity analysis indicated that increased single-pass yield to hydrocarbon liquid is a primary need for this process to achieve cost competiveness.

Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

2013-11-26T23:59:59.000Z

188

Electrochemical Investigation of Li–Al Anodes in Oligo(ethylene glycol) Dimethyl Ether/LiPF6  

DOE Green Energy (OSTI)

1 M LiPF{sub 6} dissolved in oligo(ethylene glycol) dimethyl ether with a molecular weight 500 g mol{sup -1} was investigated as a new electrolyte (OEGDME500, 1 M LiPF{sub 6}) for metal deposition and battery applications. At 25 C a conductivity of 0.48 x 10{sup -3} S cm{sup -1} was obtained and at 85 C, 3.78 x 10{sup -3} S cm{sup -1}. The apparent activation barrier for ionic transport was evaluated to be 30.7 kJ mol{sup -1}. OEGDME500, 1 M LiPF{sub 6} allows operating temperature above 100 C with very attractive conductivity. The electrolyte shows excellent performance at negative and positive potentials. With this investigation, we report experimental results obtained with aluminum electrodes using this electrolyte. At low current densities lithium ion reduction and re-oxidation can be achieved on aluminum electrodes at potentials about 280 mV more positive than on lithium electrodes. In situ X-ray diffraction measurements collected during electrochemical lithium deposition on aluminum electrodes show that the shift to positive potentials is due to the negative Gibbs free energy change of the Li-Al alloy formation reaction.

Zhou, Y.N.; Yang, X.; Wang, X.J.; Lee, H.S.; Nam, K.W.; Haas, O.

2010-11-01T23:59:59.000Z

189

Electrochemical Investigation of Li-Al Anodes in Oligo (ethylene glycol) Dimethyl ether/LiPF6  

DOE Green Energy (OSTI)

LiPF{sub 6} dissolved in oligo(ethylene glycol) dimethyl ether with a molecular weight 5 g mol{sup -1} was investigated as a new electrolyte (OEGDME5, 1 M LiPF{sub 6}) for metal deposition and battery applications. At 25 C a conductivity of .48 x 1{sup -3} S cm{sup -1} was obtained and at 85 C, 3.78 x 1{sup -3} S cm{sup -1}. The apparent activation barrier for ionic transport was evaluated to be 3.7 kJ mol{sup -1}. OEGDME5, 1 M LiPF{sub 6} allows operating temperature above 1 C with very attractive conductivity. The electrolyte shows excellent performance at negative and positive potentials. With this investigation, we report experimental results obtained with aluminum electrodes using this electrolyte. At low current densities lithium ion reduction and re-oxidation can be achieved on aluminum electrodes at potentials about 28 mV more positive than on lithium electrodes. In situ X-ray diffraction measurements collected during electrochemical lithium deposition on aluminum electrodes show that the shift to positive potentials is due to the negative Gibbs free energy change of the Li-Al alloy formation reaction.

Y Zhou; X Wang; H Lee; K Nam; X Yang; O Haas

2011-12-31T23:59:59.000Z

190

Heat Capacity Uncertainty Calculation for the Eutectic Mixture of Biphenyl/Diphenyl Ether Used as Heat Transfer Fluid: Preprint  

DOE Green Energy (OSTI)

The main objective of this study was to calculate the uncertainty at 95% confidence for the experimental values of heat capacity of the eutectic mixture of biphenyl/diphenyl ether (Therminol VP-1) determined from 300 to 370 degrees C. Twenty-five samples were evaluated using differential scanning calorimetry (DSC) to obtain the sample heat flow as a function of temperature. The ASTM E-1269-05 standard was used to determine the heat capacity using DSC evaluations. High-pressure crucibles were employed to contain the sample in the liquid state without vaporizing. Sample handling has a significant impact on the random uncertainty. It was determined that the fluid is difficult to handle, and a high variability of the data was produced. The heat capacity of Therminol VP-1 between 300 and 370 degrees C was measured to be equal to 0.0025T+0.8672 with an uncertainty of +/- 0.074 J/g.K (3.09%) at 95% confidence with T (temperature) in Kelvin.

Gomez, J. C.; Glatzmaier, G. C.; Mehos, M.

2012-09-01T23:59:59.000Z

191

Effect of Gradient Sequencing on Copolymer Order?Disorder Transitions: Phase Behavior of Styrene/n-Butyl Acrylate Block and Gradient Copolymers  

SciTech Connect

We investigate the effect of gradient sequence distribution in copolymers on order-disorder transitions, using rheometry and small-angle X-ray scattering to compare the phase behavior of styrene/n-butyl acrylate (S/nBA) block and gradient copolymers. Relative to block sequencing, gradient sequencing increases the molecular weight necessary to induce phase segregation by over 3-fold, directly consistent with previous predictions from theory. Results also suggest the existence of both upper and lower order-disorder transitions in a higher molecular weight S/nBA gradient copolymer, made accessible by the shift in order-disorder temperatures from gradient sequencing. The combination of transitions is speculated to be inaccessible in S/nBA block copolymer systems due to their overlap at even modest molecular weights and also their location on the phase diagram relative to the polystyrene glass transition temperature. Finally, we discuss the potential impacts of polydispersity and chain-to-chain monomer sequence variation on gradient copolymer phase segregation.

Mok, Michelle M.; Ellison, Christopher J.; Torkelson, John M. (NWU); (UMM)

2012-11-14T23:59:59.000Z

192

Liver Hypertrophy After Percutaneous Portal Vein Embolization: Comparison of N-Butyl-2-Cyanocrylate Versus Sodium Acrylate-Vinyl Alcohol Copolymer Particles in a Swine Model  

Science Conference Proceedings (OSTI)

Purpose: Percutaneous portal vein embolization (PPVE) induces hypertrophy of the future liver remnant before hepatic resection. The ideal embolic material has not yet been determined. We compared N-butyl-2-cyanocrylate (NBCA) with sodium acrylate-vinyl alcohol copolymer particles using a swine model. Materials and Methods: Twelve pigs underwent PPVE. Six pigs (group A) were embolized with NBCA, and 6 pigs (group B) were embolized with sodium acrylate-vinyl alcohol copolymer particles. Computed tomographic volumetry of the embolized lobe (EL) and the nonembolized lobe (NEL), along with liver function tests, was performed before and at 14 and 28 days after embolization. Tissue samples from both lobes were taken 14 and 28 days after PPVE. Results: NEL-volume and NEL-ratio increases were significantly higher in group A at 14 and 28 days after PPVE (78 and 52% and 91 and 66%, respectively) than in group B (32 and 12% and 28 and 10%, respectively) (p < 0.05). Percent change of the EL-volume was significantly higher for group A at 28 days after PPVE. No statistically significant difference was found between the groups regarding hepatocyte proliferation on the NEL and apoptosis on the EL at both time intervals. Conclusion: PPVE using NBCA is more efficient and causes more NEL hypertrophy than microspheres.

Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com [National and Kapodistrian University of Athens, 2nd Department of Radiology, Medical School, General University Hospital Attikon (Greece); Theocharis, Stamatis, E-mail: theocharis@ath.forthnet.gr [National and Kapodistrian University of Athens, Department of Forensic Medicine and Toxicology, Medical School (Greece); Ptohis, Nikolaos, E-mail: nikptohis@yahoo.gr; Alexopoulou, Efthimia, E-mail: ealex64@hotmail.com [National and Kapodistrian University of Athens, 2nd Department of Radiology, Medical School, General University Hospital Attikon (Greece); Mantziaras, George, E-mail: gmantziaras@yahoo.com [Academy of Athens, Biomedical Research Foundation (Greece); Kelekis, Nikolaos L., E-mail: kelnik@med.uoa.gr; Brountzos, Elias N., E-mail: ebrountz@med.uoa.gr [National and Kapodistrian University of Athens, 2nd Department of Radiology, Medical School, General University Hospital Attikon (Greece)

2011-10-15T23:59:59.000Z

193

Auto-ignition during instationary jet evolution of dimethyl ether (DME) in a high-pressure atmosphere  

Science Conference Proceedings (OSTI)

The auto-ignition process during transient injection of gaseous dimethyl ether (DME) in a constant high-pressure atmosphere is studied experimentally by laser-optical methods and compared with numerical calculations. With different non-intrusive measurement techniques jet properties and auto-ignition are investigated at high temporal and spatial resolution. The open jet penetrates a constant pressure oxidative atmosphere of up to 4 MPa. During the transient evolution, the fuel jet entrains air at up to 720 K. The subsequent auto-ignition of the ignitable part of the jet occurs simultaneously over a wide spatial extension. The ignition delay times are not affected by variation of the nozzle exit velocity. Thus, the low-temperature oxidation is slow compared with the shorter time scales of mixing, so that chemical kinetics is dominating the process. The typical two-stage ignition is resolved optically with high-speed shadowgraphy at a sampling rate of 10 kHz. The 2D fields of jet velocity and transient mixture fraction are measured phase-coupled with Particle Image Velocimetry (PIV) and Tracer Laser Induced Fluorescence (LIF) during the time-frame of ignition. The instationary Probability Density Functions (PDF) of mixture fraction are described very well by Beta functions within the complete area of the open jet. Additional 1D flamelet simulations of the auto-ignition process are computed with a detailed reaction mechanism for DME [S. Fischer, F. Dryer, H. Curran, Int. J. Chem. Kinet. 32 (12) (2000) 713-740; H. Curran, S. Fischer, F. Dryer, Int. J. Chem. Kinet. 32 (12) (2000) 741-759]. Calculated ignition delay times are in very good agreement with the measured mean ignition delay times of 3 ms. Supplemental flamelet simulations address the influence of DME and air temperature, pressure and strain. Underneath a critical strain rate the air temperature is identified to be the most sensitive factor on ignition delay time. (author)

Fast, G.; Kuhn, D.; Class, A.G. [Institut fuer Kern- und Energietechnik, Forschungszentrum Karlsruhe GmbH, Weberstrasse 5, D-76133 Karlsruhe (Germany); Maas, U. [Institut fuer Technische Thermodynamik, Universitat Karlsruhe (TH), Kaiserstrasse 12, D-76128 Karlsruhe (Germany)

2009-01-15T23:59:59.000Z

194

Is Embolization of the Pancreas Safe? Pancreatic Histological Changes after Selective Transcatheter Arterial Embolization with N-Butyl Cyanoacrylate in a Swine Model  

SciTech Connect

Purpose: This study was designed to evaluate the safety of selective transcatheter arterial embolization (TAE) with N-butyl cyanoacrylate (NBCA) in a swine model in terms of histological changes in the pancreas. Methods: Three groups of two female swine (58-64 kg) per group underwent TAE of the dorsal pancreatic artery, under anesthesia, with 1:1, 1:4, and 1:9 mixtures of NBCA and iodized oil. Blood parameters were evaluated at days 1, 4, and 10 after TAE, after which the animals were sacrificed and pancreatic tissues were examined under light microscopy. Results: All of the animals were asymptomatic and survived for 10 days. Cone beam computed tomographic angiography revealed occlusion of the dorsal pancreatic artery and no enhancement in the embolized area. The white blood cell count and C-reactive protein level were elevated slightly on day 1 after TAE (mean {+-} SD: 252.7 {+-} 27.8 Multiplication-Sign 10{sup 2}/{mu}l and 0.15 {+-} 0.07 mg/l, respectively), but they normalized or remained near the upper normal limit thereafter. The serum amylase and lipase levels also were elevated on day 1 (8831.7 {+-} 2169.2 U/l and 130 {+-} 53.4 U/l, respectively) but normalized thereafter. Histologically, necrosis and fibrosis were noted only in the embolized segment, and necrosis and acute inflammatory reactions were absent in the nonembolized segment. The border between both segments was well defined. Lymphocytic infiltration and foreign body reaction were noted around the embolized vessels. Conclusions: Selective TAE with NBCA in the pancreas caused localized ischemic necrosis without clinically significant pancreatitis; therefore, this procedure is tolerable in swine.

Okada, Takuya, E-mail: okabone@gmail.com; Yamaguchi, Masato [Kobe University Graduate School of Medicine, Department of Radiology (Japan); Takahashi, Takuya [Kobe Red Cross Hospital, Department of Pathology (Japan); Izaki, Kenta; Uotani, Kensuke; Sakamoto, Noriaki; Sugimura, Kazuro; Sugimoto, Koji [Kobe University Graduate School of Medicine, Department of Radiology (Japan)

2012-02-15T23:59:59.000Z

195

Altered cardiovascular reactivity and osmoregulation during hyperosmotic stress in adult rats developmentally exposed to polybrominated diphenyl ethers (PBDEs)  

Science Conference Proceedings (OSTI)

Polybrominated diphenyl ethers (PBDEs) and the structurally similar chemicals polychlorinated biphenyls (PCBs) disrupt the function of multiple endocrine systems. PCBs and PBDEs disrupt the secretion of vasopressin (VP) from the hypothalamus during osmotic activation. Since the peripheral and central vasopressinergic axes are critical for osmotic and cardiovascular regulation, we examined whether perinatal PBDE exposure could impact these functions during physiological activation. Rats were perinatally dosed with a commercial PBDE mixture, DE-71. Dams were given 0 (corn oil control), 1.7 (low dose) or 30.6 mg/kg/day (high dose) in corn oil from gestational day (GD) 6 through postnatal day (PND) 21 by oral gavage. In the male offspring exposed to high dose PBDE plasma thyroxine and triiodothyronine levels were reduced at PND 21 and recovered to control levels by PND 60 when thyroid stimulating hormone levels were elevated. At 14-18 months of age, cardiovascular responses were measured in four groups of rats: Normal (Oil, normosmotic condition), Hyper (Oil, hyperosmotic stress), Hyper PBDE low (1.7 mg/kg/day DE-71 perinatally, hyperosmotic stress), and Hyper PBDE high (30.6 mg/kg/day DE-71 perinatally, hyperosmotic stress). Systolic blood pressure (BP), diastolic BP, and heart rate (HR) were determined using tail cuff sphygmomanometry and normalized to pretreatment values (baseline) measured under basal conditions. Hyperosmotic treatment yielded significant changes in systolic BP in PBDE exposed rats only. Hyper PBDE low and high dose rats showed 36.1 and 64.7% greater systolic BP responses at 3 h post hyperosmotic injection relative to pretreatment baseline, respectively. No treatment effects were measured for diastolic BP and HR. Hyper and Hyper PBDE rats showed increased mean plasma osmolality values by 45 min after injection relative to normosmotic controls. In contrast to Hyper rats, Hyper PBDE (high) rats showed a further increase in mean plasma osmolality at 3 h (358.3 {+-} 12.4 mOsm/L) relative to 45 min post hyperosmotic injection (325.1 {+-} 11.4 mOsm/L). Impaired osmoregulation in PBDE-treated animals could not be attributed to decreased levels of plasma vasopressin. Our findings suggest that developmental exposure to PBDEs may disrupt cardiovascular reactivity and osmoregulatory responses to physiological activation in late adulthood. - Highlights: > We examined whether PBDE exposure could impact osmotic and cardiovascular regulation. > Hyperosmotic treatment yielded significant changes in systolic BP in PBDE exposed rats only. > PBDEs may disrupt cardiovascular and osmoregulatory responses to physiological activation.

Shah, Ashini [Department of Cell Biology and Neuroscience, University of California, Riverside, 92521 (United States); Coburn, Cary G. [Environmental Toxicology Graduate Program, University of California, Riverside, 92521 (United States); Watson-Siriboe, Abena; Whitley, Rebecca; Shahidzadeh, Anoush; Gillard, Elizabeth R.; Nichol, Robert [Department of Cell Biology and Neuroscience, University of California, Riverside, 92521 (United States); Leon-Olea, Martha [Neuromorfologia Funcional, Direccion de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatria Ramon de la Fuente Muniz, Mexico City (Mexico); Gaertner, Mark [Department of Cell Biology and Neuroscience, University of California, Riverside, 92521 (United States); Kodavanti, Prasada Rao S. [Neurotoxicology Branch, NHEERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Curras-Collazo, Margarita C., E-mail: margarita.curras@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, 92521 (United States); Department of Cell Biology and Neuroscience, University of California, Riverside, 92521 (United States)

2011-10-15T23:59:59.000Z

196

Synthesis of Methanol and Dimethyl Ether from Syngas over Pd/ZnO/Al2O3 Catalysts  

SciTech Connect

A Pd/ZnO/Al2O3 catalyst was developed for the synthesis of methanol and dimethyl ether (DME) from syngas. Studied were temperatures of operation ranging from 250°C to 380°C. High temperatures (e.g. 380°C) are necessary when combining methanol and DME synthesis with a methanol to gasoline (MTG) process in a single reactor bed. A commercial Cu/ZnO/Al2O3 catalyst, utilized industrially for the synthesis of methanol at 220-280°C, suffers from a rapid deactivation when the reaction is conducted at high temperature (>320°C). On the contrary, a Pd/ZnO/Al2O3 catalyst was found to be highly stable for methanol and DME synthesis at 380°C. The Pd/ZnO/Al2O3 catalyst was thus further investigated for methanol and DME synthesis at P=34-69 bars, T= 250-380°C, GHSV= 5 000-18 000 h-1, and molar feeds H2/CO= 1, 2, and 3. Selectivity to DME increased with decreasing operating temperature, and increasing operating pressure. Increased GHSV’s and H2/CO syngas feed ratios also enhanced DME selectivity. Undesirable CH4 formation was observed, however, can be minimized through choice of process conditions and by catalyst design. By studying the effect of the Pd loading and the Pd:Zn molar ratio the formulation of the Pd/ZnO/Al2O3 catalyst was optimized. A catalyst with 5% Pd and a Pd:Zn molar ratio of 0.25:1 has been identified as the preferred catalyst. Results indicate that PdZn particles are more active than Pdº particles for the synthesis of methanol and less active for CH4 formation. A correlation between DME selectivity and the concentration of acid sites of the catalysts has been established. Hence, two types of sites are required for the direct conversion of syngas to DME: 1) PdZn particles are active for the synthesis of methanol from syngas, and 2) acid sites which are active for the conversion of methanol to DME. Additionally, CO2 formation was problematic as PdZn was found to be active for the water-gas-shift (WGS) reaction, under all the conditions evaluated.

Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Lizarazo Adarme, Jair A.; King, David L.; Palo, Daniel R.

2012-10-01T23:59:59.000Z

197

U.S. Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total Input 1,184,435 1,522,193 1,850,204 2,166,784 2,331,109 2,399,318 2005-2012 Natural Gas Plant Liquids and Liquefied Refinery Gases 3,445 5,686 6,538 7,810 10,663 2008-2012 Pentanes Plus 2,012 474 1,808 1,989 2,326 4,164 2005-2012 Liquid Petroleum Gases 2,971 3,878 4,549 5,484 6,499 2008-2012 Normal Butane 2,943 2,971 3,878 4,549 5,484 6,499 2005-2012 Isobutane 2005-2006 Other Liquids 1,518,748 1,844,518 2,160,246 2,323,299 2,388,655 2008-2012 Oxygenates/Renewables 234,047 274,974 286,837 295,004 2009-2012 Methyl Tertiary Butyl Ether (MTBE) 2005-2006 Renewable Fuels (incl. Fuel Ethanol) 234,047 274,974 286,837 295,004 2009-2012 Fuel Ethanol 131,810 182,772 232,677 273,107 281,507 287,433 2005-2012

198

U.S. Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total Input 206,541 217,867 212,114 216,075 219,783 208,203 2005-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 891 352 376 196 383 1,397 2008-2013 Pentanes Plus 261 301 313 67 287 393 2005-2013 Liquid Petroleum Gases 630 51 63 129 96 1,004 2008-2013 Normal Butane 630 51 63 129 96 1,004 2005-2013 Isobutane 2005-2006 Other Liquids 205,650 217,515 211,738 215,879 219,400 206,806 2008-2013 Oxygenates/Renewables 25,156 26,576 26,253 26,905 27,788 25,795 2009-2013 Methyl Tertiary Butyl Ether (MTBE) 2005-2006 Renewable Fuels (incl. Fuel Ethanol) 25,156 26,576 26,253 26,905 27,788 25,795 2009-2013 Fuel Ethanol 24,163 25,526 24,804 25,491 25,970 24,116 2005-2013

199

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

200

Normal Butane/Butylene Refinery Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Liquid butane filled load for a liner driven Pegasus experiment.  

SciTech Connect

A hydrogen rich, low density liquid, contained within the internal volume of a cylindrical liner, was requested of the Polymers and Coatings Group (MST-7) of the Los Alamos Materials Science Division for one of the last liner driven experiments conducted on the Los Alamos Pegasus facility. The experiment (Fig.1) was a continuation of the Raleigh-Taylor hydrodynamics series of experiments and associated liners that have been described previously.

Salazar, M. A. (Mike A.); Armijo, E. V. (Elfino V.); Anderson, W. E. (Wallace E.); Atchison, W. L. (Walter L.); Bartos, J. J. (Jacob J.); Garcia, F. (Fermin); Randolph, B. (Blaine); Sheppard, M. G. (Maurice G.); Stokes, J. L. (John L.)

2001-01-01T23:59:59.000Z

202

LIQUID BUTANE FILLED LOAD FOR A LINER DRIVEN PEGASUS EXPERIMENT  

DOE Green Energy (OSTI)

A hydrogen rich, low density liquid, contained within the internal volume of a cylindrical liner, was requested of the Polymers and Coatings Group (MST-7) of the Los Alamos Materials Science Division for one of the last liner driven experiments conducted on the Los Alamos Pegasus facility. The experiment was a continuation of the Raleigh-Taylor hydrodynamics series of experiments and associated liners that have been described previously [1,2].

M.A. SALAZAR; W. ANDERSON; ET AL

2001-06-01T23:59:59.000Z

203

Refinery & Blender Net Production of Normal Butane/Butylene  

U.S. Energy Information Administration (EIA)

East Coast: 382: 612: 603: 584: 549-349: 1993-2013: Appalachian No. 1: 67: 42: 68: 37: 39: 16: 1995 ... La. Gulf Coast: 919: 1,323: 917: 984: 882: ...

204

Fueling Requirements for Steady State high butane current fraction discharges  

SciTech Connect

The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection in NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs.

R.Raman

2003-10-08T23:59:59.000Z

205

Refinery Grade Butane Bulk Terminal Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

206

Normal Butane/Butylene Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

207

U.S. Refinery Grade Butane Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

208

Gulf Coast (PADD 3) Normal Butane-Butylene Stock Change ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981-58-3-1: 78: 50: 25: 31: 35: 70-11-92-132: 1982-70-64-93-26: 36: 46: 37: 39: 20-43-76-102: ...

209

Gulf Coast (PADD 3) Gas Plant Production of Normal Butane ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 150: 143: 147: 153: 152: 154: 161: 157: 170: 184: 166: 139: 1982: 150: 148: 150: 150: 167: ...

210

Midwest (PADD 2) Refinery Grade Butane Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

211

Refinery Net Production of Normal Butane/Butylene  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

212

Gulf Coast (PADD 3) Exports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Area: Period-Unit: Download Series History ... 51: 64: 59: 70: 70: 62: 2009-2013: Methyl Tertiary Butyl Ether (MTBE) 41: 44: 49: 61: 49: 50: 2004-2013: Other ...

213

U.S. Oxygenate Production - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Area: Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History; Fuel Ethanol: 855: 877: 891: 868: 849: 852: 1981-2013: Methyl Tertiary Butyl Ether (MTBE) 48: 55: 54: 51 ...

214

Radiation Chemistry of MTBE in Aqueous Solution  

NLE Websites -- All DOE Office Websites (Extended Search)

Methyl-tert-Butyl Ether (MTBE) in Aqueous Solution Stephen P. Mezyk, Jace Jones, William J. Cooper, Thomas Tobien, Michael G. Nickelsen, J. Wesley Adams, Kevin E. O'Shea, David M....

215

Preparations for Meeting New York and Connecticut MTBE Bans  

Reports and Publications (EIA)

In response to a Congressional request, EIA examined the progress being made to meet the bans on the use of methyl tertiary butyl ether (MTBE) being implemented in New York and Connecticut at the end of 2003.

Joanne Shore

2003-10-01T23:59:59.000Z

216

35461,"AECTRA REFG & MKTG",1,152,"MOTOR GAS, OTHER FINISHED"...  

U.S. Energy Information Administration (EIA) Indexed Site

TERTIARY BUTYL ETHER (MTBE)",2809,"SANFRANCISCO, CA","CALIFORNIA",5,515,"KOREA, REPUBLIC OF",32,0,0,"WICKLAND OIL CO","SELBY TERM","CA","CALIFORNIA",5...

217

Electrochemical Investigation of Al–Li/LixFePO4 Cells in Oligo(ethylene glycol) Dimethyl Ether/LiPF6  

DOE Green Energy (OSTI)

1 M LiPF{sub 6} dissolved in oligo(ethylene glycol) dimethyl ether with a molecular weight, 500 g mol{sup -1} (OEGDME500, 1 M LiPF{sub 6}), was investigated as an electrolyte in experimental Al-Li/LiFePO{sub 4} cells. More than 60 cycles were achieved using this electrolyte in a Li-ion cell with an Al-Li alloy as an anode sandwiched between two Li x FePO{sub 4} electrodes (cathodes). Charging efficiencies of 96-100% and energy efficiencies of 86-89% were maintained during 60 cycles at low current densities. A theoretical investigation revealed that the specific energy can be increased up to 15% if conventional LiC{sub 6} anodes are replaced by Al-Li alloy electrodes. The specific energy and the energy density were calculated as a function of the active mass per electrode surface (charge density). The results reveal that for a charge density of 4 mAh cm{sup -2} about 160 mWh g{sup -1} can be reached with Al-Li/LiFePO{sub 4} batteries. Power limiting diffusion processes are discussed, and the power capability of Al-Li/LiFePO{sub 4} cells was experimentally evaluated using conventional electrolytes.

Wang, X.J.; Zhou, Y.N.; Lee, H.S.; Nam, K.W.; Yang, X.Q.; Haas, O.

2011-02-01T23:59:59.000Z

218

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

working fluids including butane, pentane, isopentane,xylene p-xylene pentane butane Alkanes cyclopentane BACKONEalkanes (pentane, butane, cyclopentane, cyclohexane,

Ho, Tony

2012-01-01T23:59:59.000Z

219

Densities and viscosities for binary mixtures of N-methyldiethanolamine + triethylene glycol monomethyl ether from 25 C to 70 C and N-methyldiethanolamine + ethanol mixtures at 40 C  

Science Conference Proceedings (OSTI)

Recent studies done on the absorption and desorption of acid gases (CO{sub 2}, H{sub 2}S) from natural gas, petroleum, and ammonia synthesis streams have shown that aqueous solutions of N-methyldiethanolamine (MDEA) can be used effectively for the selective removal of H{sub 2}S. This paper reports the measured values of the density and viscosity of binary mixtures of N-methyldiethanolamine (MDEA) and triethylene glycol monomethyl ether (TEGMME) at five temperatures in the range 25 C to 70 C over the whole concentration range. The authors also report the density and viscosity of the binary mixture MDEA + ethanol at 40 C. The results are compared with data for aqueous mixtures and other alkanolamines when these are available. The derived excess molar volumes and viscosity deviations were correlated as a function of composition. The Grunberg-Nissan interaction energy constants are also reported.

Henni, A.; Maham, Y.; Tontiwachwuthikul, P.; Chakma, A.; Mather, A.E.

2000-04-01T23:59:59.000Z

220

Gas flux and carbonate occurrence at a shallow seep of thermogenic natural gas  

E-Print Network (OSTI)

dioxide, ethane, propane, and butane. Hydrocarbon seeps havemethane, ethane, propane and butane. Geochim Cosmochim Acta

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FCC LPG olefinicity and branching enhanced by octane catalysts  

SciTech Connect

Refiners are increasingly recognizing the downstream opportunities for fluid catalytic cracking LPG olefins for the production of methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE, if the ethanol subsidy is extended to the production of ETBE), and as petrochemical feedstocks. Some of new gasoline FCC octane-enhancing catalysts can support those opportunities because their low non-framework alumina (low NFA) preserve both LPG olefinicity and promote branching of the LPG streams from the FCCU. The combined effect results in more isobutane for alkylate feed, more propylene in the propane/propylene stream, and more isobutene - which makes the addition of an MTBE unit very enticing.

Keyworth, D.A.; Reid, T.A.; Kreider, K.R.; Yatsu, C.A.

1989-05-29T23:59:59.000Z

222

High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers  

DOE Green Energy (OSTI)

Our research group has been engaged in the past few years in the synthesis of biphenol based partially disulfonated poly(arylene ether sulfone) random copolymers as potential PEMs. This series of polymers are named as BPSH-xx, where BP stands for biphenol, S stands for sulfonated, H stands for acidified and xx represents the degree of disulfonation. All of these sulfonated copolymers phase separate to form nano scale hydrophilic and hydrophobic morphological domains. The hydrophilic phase containing the sulfonic acid moieties causes the copolymer to absorb water. Water confined in hydrophilic pores in concert with the sulfonic acid groups serve the critical function of proton (ion) conduction and water transport in these systems. Both Nafion and BPSH show high proton conductivity at fully hydrated conditions. However proton transport is especially limited at low hydration level for the BPSH random copolymer. It has been observed that the diffusion coefficients of both water and protons change with the water content of the pore. This change in proton and water transport mechanisms with hydration level has been attributed to the solvation of the acid groups and the amount of bound and bulk-like water within a pore. At low hydration levels most of the water is tightly associated with sulfonic groups and has a low diffusion coefficient. This tends to encourage isolated domain morphology. Thus, although there may be significant concentrations of protons, the transport is limited by the discontinuous morphological structure. Hence the challenge lies in how to modify the chemistry of the polymers to obtain significant protonic conductivity at low hydration levels. This may be possible if one can alter the chemical structure to synthesize nanophase separated ion containing block copolymers. Unlike the BPSH copolymers, where the sulfonic acid groups are randomly distributed along the chain, the multiblock copolymers will feature an ordered sequence of hydrophilic and hydrophobic segments. If, like in Nafion, connectivity is established between the hydrophilic domains in these multiblock copolymers, they will not need as much water, and hence will show much better protonic conductivity than the random copolymers (with similar degree of sulfonation, or IEC) at partially hydrated conditions. The goal of this research is to develop a material suitable for use as a polymer electrolyte membrane which by the year 2010 will meet all the performance requirements associated with fuel cell operation at high temperatures and low relative humidity, and will out-perform the present standard Nafion{reg_sign}. In particular, it is our objective to extend our previous research based on the use of thermally, oxidatively, and hydrolytically, ductile, high Tg ion containing polymers based on poly(arylene ethers) to the production of polymer electrolyte membranes which will meet all the performance requirements in addition to having an areal resistance of < 0.05 ohm-cm{sup 2} at a temperature of up to 120 C, relative humidity of 25 to 50%, and up to 2.5 atm total pressure. In many instances, our materials already out performs Nafion{reg_sign}, and it is expected that with some modification by either combining with conductive inorganic fillers and/or synthesizing as a block copolymer it will meet the performance criteria at high temperatures and low relative humidity. A key component in improving the performance of the membranes (and in particular proton conductivity) and meeting the cost requirements of $40/m{sup 2} is our development of a film casting process, which shows promise for generation of void free thin films of uniform thickness with controlled polymer alignment and configuration.

McGrath, James E.; Baird, Donald G.

2010-06-03T23:59:59.000Z

223

U.S. Product Supplied of Normal Butane-Butylene (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 134: 101: 124: 143: 117: 146: 151: 163: 188: 1990's: 110: 102: 113: 86: 128: 113 ...

224

Hydrodesulfurization of Thiophene and Benzothiophene to Butane and Ethylbenzene by a Homogeneous Iridium  

E-Print Network (OSTI)

)(SC4H6) (3), which was also structurally character- ized. Introduction The hydroprocessing of crude oil impurities such as thio- phenes, mercaptans, and quinolines are removed, mak- ing the oil amenable to further such as benzothiophene. This led us to explore the reactivity of the bis(µ-hydrido)- bis

Jones, William D.

225

Field pilot tests for tertiary recovery using butane and propane injection  

SciTech Connect

This work describes a pilot project for tertiary recovery of liquid hydrocarbons through LPG injection in water-out sections of the Bolivar reservoir in La Pena Field, Santa Cruz, Boliva. The promising results obtained in the initial field miscibility tests, as well as the results from a mathematical model built to stimulate and evaluate the tertiary recovery project, directed subsequent work into a cyclic scheme for enhanced recovery. This scheme is explained and injection production data is presented. Field facilities built to handle both the injected LPG and the produced oil-LPG mixture are described. The oil/LPG ratio and the LPG recovered/injected fraction are the main factors measured in this to make further considerations for a full scale project.

Pacheco, E.F.; Garcia, A.I.

1981-01-01T23:59:59.000Z

226

Resonance Raman Spectroscopy of 0-A12O3- Supported Vanadium Oxide Catalysts for Butane Dehydrogenation  

SciTech Connect

This chapter contains sections titled: Introduction; Structure of Al{sub 2}O{sub 3}-Supported Vanadia Catalysts; Quantification of Surface VOx Species on Supported Vanadia Catalysts; Conclusion; Acknowledgements; and References.

Wu, Zili [ORNL; Kim, Hack-Sung [Northwestern University, Evanston; Stair, Peter [Northwestern University, Evanston

2008-01-01T23:59:59.000Z

227

Planar laser-induced fluorescence of nitric oxide in isomeric butanol and butane stagnation flames.  

E-Print Network (OSTI)

??The significant efforts to reduce global fossil fuel dependence have led to the development of biofuels as an alternative. Despite their growing significance, alcohol biofuels… (more)

Chung, Gregory

2012-01-01T23:59:59.000Z

228

PCR Primers for The Detection of Propane and Butane-Oxidizing Microorganisms.  

E-Print Network (OSTI)

?? In an increasingly energy-hungry world, our capacity to meet the heightened energy demands of the future has become a pressing matter. The most urgent… (more)

Chan, Brian Jeremy

2011-01-01T23:59:59.000Z

229

U.S. Exports of Normal Butane-Butylene (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 316: 278: 293: 421: 330: 382: 312: 2,765: 310: 1,334: 991: 917: 1982: 1,314: 864: 1,174: ...

230

U.S. Refinery and Blender Net Input of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 237: 165: 117: 104: 77: 89: 80: 91: 144: 185: 242: 301: 1982: 243: 213: 144: 123: 120: ...

231

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 226: 214: 215: 222: 219: 218: 221: 219: 231: 247: 226: 203: 1982: 222: 219: 215: 219: 232: ...

232

U.S. Exports of Normal Butane-Butylene (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 31: 10: 9: 7: 8: 11: 11: 1990's: 12: 14: 16: 16: 14: 20: 23: 17: ...

233

U.S. Refinery and Blender Net Production of Normal Butane ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 799: 890: 736: 1,087: 1,210: 1,603: 1,460: 823: 815: 293: 337-299: 1982-399: 146: 58: 430: ...

234

N-butane activation over ruthenium and iron promoted VPO catalysts.  

E-Print Network (OSTI)

??The Fe- and Ru-promoted vanadium phosphorus oxide (VPO) catalysts were synthesized via the organic route in iso-butanol to form the VPO precursor, VOHPO4·0.5H2O. The resulting… (more)

Masilo, Neoentle.

2009-01-01T23:59:59.000Z

235

Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China  

SciTech Connect

In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, and 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.

Jing Ma; Rudolf Addink; Sehun Yun; Jinping Cheng; Wenhua Wang; Kurunthachalam Kannan [Shanghai Jiao Tong University, Shanghai (China). School of Environmental Science and Engineering

2009-10-01T23:59:59.000Z

236

Development of Supported Polymeric Liquid Membrane Technology for Aqueous MTBE Mitigation  

Science Conference Proceedings (OSTI)

The use of MTBE (methyl tert-butyl ether) as a gasoline additive has generated a serious, widespread groundwater contamination problem in California. This study evaluated the use of supported polymeric liquid membrane technology in the remediation of MTBE contaminated groundwater.

2002-07-02T23:59:59.000Z

237

Motor Gasoline Outlook and State MTBE Bans  

Reports and Publications (EIA)

The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending State bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

Information Center

2003-04-01T23:59:59.000Z

238

Development of alternative fuels from coal derived syngas. Topical report: Task 2.2, Demonstration of a one-step slurry-phase process for the production of dimethyl ether/methanol mixtures at the LaPorte Alternative Fuels Development Unit  

SciTech Connect

This report documents engineering, modification, and operations efforts of demonstration of dimethyl-ether/methanol coproduction in a slurry-phase reactor, carried out in a 2-ft diameter bubble column reactor. Equipment modifications made it possible to remove the product DME and by-product CO{sub 2} from the reactor effluent. Coproduction of dimethyl-ether (DME) and methanol (MeOH) was accomplished in the slurry reactor by physically mixing two different catalysts. The catalyst used to produce MeOH from syngas was manufactured by BASF (type S3-86); the catalyst used to convert MeOH to DME was Catapal {gamma}-alumina. Ratio of MeOH to DME catalysts determined the selectivity towards DME. The demonstration sought to study effect of cocatalyst ratio on product selectivity. Three different proportions of DME catalyst were examined: 0, 6.6, and 19.3 wt % alumina. At each catalyst proportion, the plant was operated at two different gas space velocities. Some process variables were maintained at fixed conditions; most important variables included: reactor temperature (482F), reactor pressure (750 psig), and reactor feed gas composition (35% H{sub 2}, 51% CO,13% CO{sub 2} 1% other, nominal-molar basis).

1993-06-01T23:59:59.000Z

239

Sealed Gravitational Capillary Viscometry of Dimethyl Ether ...  

Science Conference Proceedings (OSTI)

... Huber, and MO McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version ...

2012-11-26T23:59:59.000Z

240

Sealed Gravitational Capillary Viscometry of Dimethyl Ether ...  

Science Conference Proceedings (OSTI)

... RF Hafer, Viscosity of Fluorinated Propane Isomers. ... EW Lemmon, An Equation of State for the ... Dense Fluids, Plenum Press, New York and London ...

2013-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

242

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Ethanol Plant Production Ethanol Plant Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Fuel Ethanol An anhydrous alcohol (ethanol with less than 1% water) intended for gasoline blending as described in the Oxygenates definition. Oxygenates Substances which, when added to gasoline, increase the amount of oxygen in that gasoline blend. Ethanol, Methyl Tertiary Butyl Ether (MTBE), Ethyl Tertiary Butyl Ether (ETBE), and methanol are common oxygenates. Fuel Ethanol: Blends of up to 10 percent by volume anhydrous ethanol (200 proof) (commonly referred to as the "gasohol waiver"). Methanol: Blends of methanol and gasoline-grade tertiary butyl alcohol (GTBA) such that the total oxygen content does not exceed 3.5 percent by weight and the ratio of methanol to GTBA is less than or equal to 1. It is also specified that this blended fuel must meet ASTM volatility specifications (commonly referred to as the "ARCO" waiver).

243

Variability of Gas Composition and Flux Intensity in Natural Marine Hydrocarbon Seeps  

E-Print Network (OSTI)

2 Methane Ethane Propane Butane nd nd nd nd October 4, 2004methane, ethane, propane, and butane. Methods The flux buoyfor methane, ethane, propane, butane, oxygen, nitrogen, and

Clark, J F; Schwager, Katherine; Washburn, Libe

2005-01-01T23:59:59.000Z

244

The role of Entamoeba histolytica Cysteine Proteinase 1 (EhCP1) in the pathogenesis of amebiasis  

E-Print Network (OSTI)

leucylamido (4-guanidino) butane (E- 64) and its analoguesleucylamido-(4- guanidino) butane ECM Extracellular Matrixleucylamido-(4-guanidino) butane (E-64) and not by the

Melendez-Lopez, Samuel G.

2007-01-01T23:59:59.000Z

245

Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality  

E-Print Network (OSTI)

components—particularly butane—in the gasoline they sell (times more reactive than butane, the compound that refinersprimarily by removing the VOC butane from their gasoline, as

Auffhammer, Maximilian; Kellogg, Ryan

2009-01-01T23:59:59.000Z

246

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

such as ethane, propane, butane, naphtha or gasoline. AnOthers Losses Ethane Propane Butane Naphtha Gas oil Source:by dehydrogenation of propane and butane respectively. The

Neelis, Maarten

2008-01-01T23:59:59.000Z

247

HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A SUMMARY OF THE LITERATURE WITH CONCLUSIONS AND RECOMMENDATIONS, FY 78 FINAL REPORT  

E-Print Network (OSTI)

Agents used by painters include butane, calcium carbonate,Benzene* Laboratory - Reagent Butane* Painters - PropellentBenzene* Laboratory - Reagent Butane* Painters - Propellent

DeRoos, R.L.

2011-01-01T23:59:59.000Z

248

Final Report for completed IPP-0110 and 0110A Projects: "High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications"  

E-Print Network (OSTI)

methane-hydrogen mixtures, butane, and benzol vapors wereglow discharge instability in butane and benzol vapors makessccm. Methane and a propane-butane mixture were also used as

Brown, Ian

2010-01-01T23:59:59.000Z

249

Fuel property effects on engine combustion processes. Final report  

DOE Green Energy (OSTI)

A major obstacle to improving spark ignition engine efficiency is the limitations on compression ratio imposed by tendency of hydrocarbon fuels to knock (autoignite). A research program investigated the knock problem in spark ignition engines. Objective was to understand low and intermediate temperature chemistry of combustion processes relevant to autoignition and knock and to determine fuel property effects. Experiments were conducted in an optically and physically accessible research engine, static reactor, and an atmospheric pressure flow reactor (APFR). Chemical kinetic models were developed for prediction of species evolution and autoignition behavior. The work provided insight into low and intermediate temperature chemistry prior to autoignition of n-butane, iso-butane, n-pentane, 1-pentene, n-heptane, iso-octane and some binary blends. Study of effects of ethers (MTBE, ETBE, TAME and DIPE ) and alcohols (methanol and ethanol) on the oxidation and autoignition of primary reference fuel (PRF) blends.

Cernansky, N.P.; Miller, D.L.

1995-04-27T23:59:59.000Z

250

EFFECT OF FUEL TYPE ON FLAME IGNITION BY TRANSIENT PLASMA Jianbang Liu1,2  

E-Print Network (OSTI)

ABSTRACT Rise and delay times of mixtures of methane, propane, n-butane, iso-butane and iso- octane mixed performance of various fuels including methane, propane, iso-butane, n-butane and iso-octane mixed with air

251

Population based exposure assessment methodology for carbon monoxide: Development of a Carbon Monoxide Passive Sampler and Occupational Dosimeter  

E-Print Network (OSTI)

hydrocarbons (toluene), alkanes (butane, methane, heptane),tube/GC (NIOSH 1 5 0 0 ) a Butane 300ppm Charcoal tube/GC (O toluene toluene + C O butane butane + C O methane methane

Apte, Michael G.

2010-01-01T23:59:59.000Z

252

Pyrolysis of Organic Molecules Relevant to Combustion as Monitored by Photoionization Time-of-Flight Mass Spectrometry  

E-Print Network (OSTI)

OF 2-METHOXY TRIMETHYL BUTANE-d 6 (MTMB-d 6 ) VI. PYROLYSISexception of propane and butane. 7 This approach is powerfulthe exceptions of propane and butane. The performance of VUV

Weber, Kevin Howard

2010-01-01T23:59:59.000Z

253

On the ignition of fuel beds by firebrands  

Science Conference Proceedings (OSTI)

... The firebrand ignition apparatus consists of four butane burners and a firebrand mounting probe. The butane flowrate is ...

2006-12-12T23:59:59.000Z

254

Development of Energy Balances for the State of California  

E-Print Network (OSTI)

composed of ethane, propane, butane, and pentane plus—whichconsist mainly of propane and butane or a combination of the

Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

2005-01-01T23:59:59.000Z

255

Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards & Labeling Programs for Copy Machines, External Power Supplies, LED Displays, Residential Gas Cooktops and Televisions  

E-Print Network (OSTI)

grills, ovens or portable butane stoves. The EU Ecodesign isgrills, ovens and portable butane stoves Proposed Mandatory

Zheng, Nina

2013-01-01T23:59:59.000Z

256

Interaction of Dimethylmethylphosphonate with Zeolite Y: Impedance-Based Sensor for Detecting Nerve Agent Simulants  

E-Print Network (OSTI)

increased impedance upon exposure to butane, and was proposed to arise from blocking effects of the butane

Dutta, Prabir K.

257

Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices  

E-Print Network (OSTI)

the volume of normal butane blended into gasoline, or bythe volume of normal butane rejected from motor gasoline.

Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

2007-01-01T23:59:59.000Z

258

Pergamon Atmospheric Environment Vol. 31, No. 23, pp. 4017 4038, 1997 X-1997 Elsevier Science Ltd  

E-Print Network (OSTI)

, propane, n-butane, iso-butane, ethene and acetylene) display a seasonal variation of a winter maximum

Aneja, Viney P.

259

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 101, NO. D22, PAGES 29,061-29,074, DECEMBER 20, 1996 Measurement of O3 and related compounds  

E-Print Network (OSTI)

determinedusingphotochemicalageestimatesderived from the ratios,In (n-butane/propane)andIn (/-butane/propane).Age estimatesare used

260

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Inputs kbbl Crude Oil Butane Isobutane Other Hydrocarbons,674,276 kbbl. Data on butane, isobutene, other hydrocarbons

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Dendrimer Templated Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole Hydrogenation.  

E-Print Network (OSTI)

temperatures, data not shown). Butane was also observed as ainteractions. 47 Secondly, butane formation was reported to

Huang, Wenyu

2009-01-01T23:59:59.000Z

262

7, 1164711683, 2007 VOC ratios as probes  

E-Print Network (OSTI)

chemistry, and [isobutane]/[n-butane] and [methyl ethyl ketone]/[n-5 butane] are used to study the extent

Paris-Sud XI, Université de

263

Thermo-fluid Dynamics of Flash Atomizing Sprays and Single Droplet Impacts  

E-Print Network (OSTI)

or intermittent injection of butane or propane in a confinedor intermittent injection of butane or propane in a confined

Vu, Henry

2010-01-01T23:59:59.000Z

264

Regional Analysis of Nonmethane Volatile Organic Compounds in the Lower Troposphere of the Southeast  

E-Print Network (OSTI)

, acetylene, propane, i-butane, and n-butane with a winter maximum and a summer minimum. An analysis

Aneja, Viney P.

265

"Nanocrystal bilayer for tandem catalysis"  

E-Print Network (OSTI)

Part VI. Hydrogenolysis of Ethane, Propane, n-Butane andiso-Butane over Supported Platinum Catalysts. J. Catal. 176,

Yamada, Yusuke

2012-01-01T23:59:59.000Z

266

Hydrogen-assisted catalytic ignition characteristics of different fuels  

SciTech Connect

Hydrogen-assisted catalytic ignition characteristics of methane (CH{sub 4}), n-butane (n-C{sub 4}H{sub 10}) and dimethyl ether (DME) were studied experimentally in a Pt-coated monolith catalytic reactor. It is concluded that DME has the lowest catalytic ignition temperature and the least required H{sub 2} flow, while CH{sub 4} has the highest catalytic ignition temperature and the highest required H{sub 2} flow among the three fuels. (author)

Zhong, Bei-Jing; Yang, Fan [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Yang, Qing-Tao [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); China Aerodynamics Research and Development Center, Mianyang 621000 (China)

2010-10-15T23:59:59.000Z

267

Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 5, October 1, 1991--December 31, 1991  

DOE Green Energy (OSTI)

The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. Addition of methanol to slurry phase FT synthesis making iso-olefins.

Marcelin, G.

1992-06-10T23:59:59.000Z

268

Synthesis of octane enhancers during slurry-phase Fischer-Tropsch  

DOE Green Energy (OSTI)

The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. Addition of methanol to slurry phase FT synthesis making iso-olefins.

Marcelin, G.

1992-06-10T23:59:59.000Z

269

Adipose tissue stearoyl-CoA desaturase 1 index is increased and linoleic acid is decreased in obesity-prone rats fed a high-fat diet  

E-Print Network (OSTI)

in the adipose tissue and whether these changes occur simul- taneously across lipid fractions. It has previously been found that a HFD, especially a diet rich in SFA, decreases SCD expression in both rat liver and adipose tissue [33,34]. A HFD has also been shown... of petroleum ether containing 0.005% butylated hydroxytolvene after addition of 1.5 ml distilled water. The phases were separated after thorough mixing and centrifugation at 1500 × g for 10 min. The petroleum ether phase was pipetted off and the solvent...

Cedernaes, Jonathan; Alsiö, Johan; Västermark, Åke; Risérus, Ulf; Schiöth, Helgi B

2013-01-08T23:59:59.000Z

270

A PrototypeFi er-Opti DiOpti Level-Sensor forLi Propane-Butane  

E-Print Network (OSTI)

This paper descr= es a fiber7---L=. levelsensor designed tomeasur the level of liquidprid.7---L7L.M= in ar8D= tivelyshor rrD (60 cm) in the top par ofstorfl7 tanks at oil ril.8---j= with the pur ose of monitorMj the level of thispr duct in the filledor slightly under88.M or over7---'fl tanks durs. var79= measurMj oper9Dfl'.Mj discrfl' multi-element device employing novel r7'7'.Mj=9---'. tr'7'.Mj=9 was selected because it yields both alar' measurMjj tr7---fl and high rh.8=8flD.M Sever. innovationso#er a competitive advantage toindustrMj useru 1) Special micr77L'7.Mj rr77L'7.Mj8 tr77L'7. 2) Efficient and economicalsensor multiplexing scheme; 3) Fast leveltr - king oper---LL.Mj algorMjfl'flL. verflj---9 rflj---9.Mjfl of the sensor

Vladimir Spw Victor; A Prototypefi; Vladimir A. Spww +a; Victor De Leon

2000-01-01T23:59:59.000Z

271

Sol-gel synthesis of vanadium phosphorous oxides for the partial oxidation of n-butane to maleic anhydride.  

E-Print Network (OSTI)

??Vanadium phosphorous oxide (VPO) is traditionally manufactured from solid vanadium oxides by synthesizing VOHPO[4subscript][dot in middle of line]0.5H[2subscript]O (the precursor) followed by in-situ activation to… (more)

Salazar, Juan Manuel

2007-01-01T23:59:59.000Z

272

New concept for coal wettability evaluation and modulation. Technical progress report, October 1, 1993--December 31, 1993  

SciTech Connect

This project is concerned concept for coal surface wettability evaluation and modulation. The objective of the work are to study the fundamental surface chemistry feature about the evaluation of the surface of coal, pyrite and coal pyrite, and also establish a new separation strategy which could contribute to the advanced coal cleaning for premium fuel application. In this quarter, the capillary rise of three coals, colorado mineral pyrite, and coal pyrite in butanol, pentanol, and butyl ether have been tested. The test results shown that the kinetic wettability of the five samples in the alcohol homolog are dependent on the carbon chain length, as the length of the carbon chain is shorter, the surface wettability is the better. Another test results shown that the kinetic wettability of coals are better than mineral pyrite and coal pyrite in the butyl ether.

Hu, Weibai

1993-12-31T23:59:59.000Z

273

Two US markets, or one? How the MTBE-gasoline relationship is evolving  

SciTech Connect

This issue of Energy Detente features the price sensitivity of Methyl Tertiary Butyl Ether. Data is presented for US wholesale gasoline prices vs. MTBE for the 20-month period beginning in June 1994 and ending in January 1996, and the data is discussed. Also contained in this issue is the refining netback data and the fuel price/tax data for the period ending January 5, 1996.

1996-01-26T23:59:59.000Z

274

An approach to catalytic asymmetric electrocyclization  

E-Print Network (OSTI)

petroleum ether 40-60 Ph phenyl ppm parts per million Pr propyl q quartet Rf retention factor rt room temperature s singlet sept septet t triplet t tertiary TBAF tetrabutylammonium fluoride TBS tert... demonstrated by Nelson.73 In this case, we observed the formation of lactone 75 by vinyl nucleophile addition to the corresponding aldehydes 71 and 72. We require a less basic source of vinyl anion, or a bulkier ester such as tert-butyl, to prevent any...

Kothari, Abhishek

2010-02-09T23:59:59.000Z

275

Update of Summer Reformulated Gasoline Supply Assessment for New York and Connecticut  

Reports and Publications (EIA)

In October 2003, EIA published a review of the status of the methyl tertiary butyl ether (MTBE) ban transition in New York (NY) and Connecticut (CT) that noted significant uncertainties in gasoline supply for those States for the summer of 2004. To obtain updated information, EIA spoke to major suppliers to the two States over the past several months as the petroleum industry began the switch from winter- to summer-grade gasoline.

Information Center

2004-05-01T23:59:59.000Z

276

6, 36873707, 2006 Vehicular fuel  

E-Print Network (OSTI)

) samples were collected only in Hong Kong and were comprised mainly of n-butane, propane and i-butane found that the relative amount of propane, i-butane, and n-butane increased between 2001 to 2003, consistent with the 40% increase in LPG fueled vehicles. Propane to butanes ratios were calculated for LPG

Paris-Sud XI, Université de

277

Atmos. Chem. Phys., 6, 32813288, 2006 www.atmos-chem-phys.net/6/3281/2006/  

E-Print Network (OSTI)

comprised mainly of n-butane, propane and i-butane. Traffic samples indicated that evaporative loss of propane, i-butane, and n- butane increased between 2001 to 2003, consistent with the Correspondence to: L. Y. Chan (celychan@polyu.edu.hk) 40% increase in LPG fueled vehicles. Propane to butanes ra- tios

Meskhidze, Nicholas

278

Extractant composition including crown ether and calixarene extractants  

SciTech Connect

An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.

Meikrantz, David H. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Riddle, Catherine L. (Idaho Falls, ID); Law, Jack D. (Pocalello, ID); Peterman, Dean R. (Idaho Falls, ID); Mincher, Bruce J. (Idaho Falls, ID); McGrath, Christopher A. (Blackfoot, ID); Baker, John D. (Blackfoot, ID)

2009-04-28T23:59:59.000Z

279

CHEMICAL COMPOSITION OF THE ESSENTIAL OIL AND ETHER ...  

Science Conference Proceedings (OSTI)

essential oil from R. rugosum was investigated for further development and application. The chemical and class composition of the oils are presented in Table 1.

280

Direct Dimethyl Ether Polymer Electrolyte Fuel Cells for Portable Applications  

E-Print Network (OSTI)

. Kosek, C. Cropley, and A. LaConti, in Proceedings of the 32nd Intersociety Energy Conversion Engineering

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

REFPROP AddIns  

Science Conference Proceedings (OSTI)

... Optional Units, Optional Prop1, Optional Prop2), butane, butane.fld, 106-97-8, n-butane, 134.895-575 K, 69 MPa, R402A, R125/Propane/R22, ...

2013-02-25T23:59:59.000Z

282

HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT  

E-Print Network (OSTI)

·omatography, mass , propane, butane , wa:ter, and CO co dueethane ( 1. 7 flillOl) , n~butane (0.17 flmol), isobutane (not possess Isobutane/n~butane activity, this activity The

Benner, Linda S.

2013-01-01T23:59:59.000Z

283

COMPUTATIONAL METHODS FOR MOLEUCLAR STRUCTURE DETERMINATION: THEORY AND TECHNIQUE  

E-Print Network (OSTI)

study on the topology of n-butane. While the anti-conforma­were too low for gauche- butane type interactions, so a hardhydrogen and a good gauche-butane energy. Overall, however,

Lester, W.A.

2010-01-01T23:59:59.000Z

284

Selective Nanocatalysis of Organic Transformation by Metals: Concepts, Model Systems, and Instruments  

E-Print Network (OSTI)

on the open (100) surface. The iso- butane isomerizationto n-butane occurs more readily on the Pt(100) and theof the N–C bond to form butane and ammonia. Figure 9 shows

Somorjai, Gabor A.; Li, Yimin

2010-01-01T23:59:59.000Z

285

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network (OSTI)

such as ethane, propane, butanes, pentanes and hexanes plus,such as ethane, propane, butanes, pentanes and hexanes plus,LM6 is a high propane, high butane gas with a WN of 1385 and

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

286

Fire Interactions and Pulsation - Theoretical and Physical Modeling  

E-Print Network (OSTI)

flame to be captured. A butane lighter was used for ignitionFuels were ignited using a butane torch and were allowed toFuels were ignited using a butane torch and were allowed to

Maynard, Trevor

2013-01-01T23:59:59.000Z

287

Development and Applications of Advanced Electronic Structure Methods  

E-Print Network (OSTI)

diphosphoniobicyclo[1.1.0]butane) rearrangements of the PBPB2,4-diphosphoniocyclo- butane-1,3-diyl doubly substituteddiphosphoniobicyclo[1.1.0]butane) rearrangements of the PBPB

Bell, Franziska

2012-01-01T23:59:59.000Z

288

Design, Control, and Measurement of Molecular and Supramolecular Assemblies  

E-Print Network (OSTI)

4-phenylazo- phenyl)-ethoxy]-butane-1-thiol), Azo. Scanning4-phenylazo-phenyl)- ethoxy]-butane-1-thiol (Azo2), and thephenylazo-phenyl)-ethoxy]-butane-1-thiol (Azo, shown in Fig.

Pathem, Bala Krishna

2012-01-01T23:59:59.000Z

289

Quantifying the Reactive Uptake of OH by Organic Aerosols in a Continuous Flow Stirred Tank Reactor  

E-Print Network (OSTI)

determination of the n-butane + OH reaction rate coefficientof the hexane (?) and butane (?) GC peak areas during therate constant ( k but ) for the n-butane + OH reaction. The

Che, Dung L.

2010-01-01T23:59:59.000Z

290

Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry  

E-Print Network (OSTI)

induced formation of n-butane. Although absorption bandsthe fundamental modes of the n-butane species in the presentspectra indicates that n-butane was not formed under the

Kaiser, Ralf I.

2010-01-01T23:59:59.000Z

291

Coupling nonpolar and polar solvation free energies in implicit solvent models  

E-Print Network (OSTI)

?Me?, ethane, propane, and butane from the study of AshbaughMe Ethane CH 3 Propane Butane CH 2 CH 3 In this section weabove calculation for propane and butane ?three and four LJ

Dzubiella, J; Swanson, JMJ; McCammon, J A

2006-01-01T23:59:59.000Z

292

Surface Reactivity of Copper Precursors for Atomic Layer Deposition (ALD) on Metal Surfaces  

E-Print Network (OSTI)

110) surfaces is described; butane and a small amidine were110) surface. No butene is produced at lower butane, 3 L;only some butane is desorption observed (58 amu). However,

MA, QIANG

2010-01-01T23:59:59.000Z

293

ISHHC XIII International Symposium on the Relations between Homogeneous and Heterogeneous Catalysis  

E-Print Network (OSTI)

for Partial Oxidation of n-butane to Maleic Anhydride Y.H.catalytic activity of n-butane oxidation to maleic anhydrideconversion of methane with n-butane to give other alkanes.

Somorjai Ed., G.A.

2007-01-01T23:59:59.000Z

294

Development of a Next-Generation Environmental Chamber Facility for Chemical Mechanism and VOC Reactivity Research  

E-Print Network (OSTI)

ethylene, propylene, n-butane and trans-2-butene wereas ethylene, propylene, n-butane and trans-2-butene and 30 mpropane, propylene, n-butane, n-hexane, toluene, n-octane

2005-01-01T23:59:59.000Z

295

Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts  

E-Print Network (OSTI)

of benzene, butene, or butane with oxygen over V 203all U.S. production is butane-based (17). Studies of theby the catalytic initial of butane the vapor phase; either

Poole, L.J.

2008-01-01T23:59:59.000Z

296

THE CHEMISTRY OF HO2NO2 AND THE PHOTOCHEMISTRY OF THE HOX-NOX-COX SYSTEM  

E-Print Network (OSTI)

smog chamber experiments n-butane photo-oxidation, Jesson etthe unimolecular decornposition without added n-butane.The NO n~butane th and is an effective scavenger of OH by

Littlejohn, David

2013-01-01T23:59:59.000Z

297

Superfluid 4He interferometers: construction and experiments  

E-Print Network (OSTI)

using a small, commercial butane torch and blasting the sealtubes from the stycast using a butane torch as described inonto the D-ring and the butane torch removal method is just

Joshi, Aditya Ajit

2013-01-01T23:59:59.000Z

298

EARTH SCIENCES DIVISION ANNUAL REPORT 1978  

E-Print Network (OSTI)

Ethane Propane Normal-butane, is0bu t ane X Normal-pentane,the mole fraction of normal-butane. Because a binary mixtureof the mole fraction of normal-butane. The discrep- ancy is

Authors, Various

2012-01-01T23:59:59.000Z

299

Characterizing biomolecular recognition and solvation with end-point free energy calculations and implicit solvent models  

E-Print Network (OSTI)

Me), ethane, propane, and butane from the study of Ashbaughas ethane, propane, or butane in a one-dimensional chainabove calculation for propane and butane (three and four LJ-

Swanson, Jessica M.J.

2006-01-01T23:59:59.000Z

300

Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) for Indoor Air Applications: Conversion of Volatile Organic Compounds at Low Part-per-Billion Concentrations  

E-Print Network (OSTI)

alkene hydrocarbon; and n-butane, an alkane hydrocarbon. UV> 2-butanone > 1-butene > n-butane. The order followed thedipole interaction for 1-butane, and weak dispersive forces

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

396 J. Phys. Chem. 1990, 94, 396-409 Reaction of Cyclopropane, Methylcyclopropane, and Propylene with Hydrogen on the  

E-Print Network (OSTI)

by the production of n-butane. This result was interpreted qualitatively by invokingparallel reaction mechanisms for the production of n-butane and isobutane, with the n-butane channel exhibiting a higher apparent activation

Goodman, Wayne

302

Homogeneous Non-Equilibrium Molecular Dynamics Methods for Calculating the Heat Transport Coefficient of Solids and Mixtures  

E-Print Network (OSTI)

of flexible molecules - Butane. Molecular Physics, 81(6):in polyatomic fluids: n-Butane as an illustration. Chemicalfor two models of liquid Butane. Chemical Physics, 198(1-2):

Mandadapu, Kranthi Kiran

2011-01-01T23:59:59.000Z

303

STUDIES OF THE SURFACES STRUCTURES OF MOLECULAR CRYSTALS AND OF ADSORBED MOLECULAR MONOLAYERS ON THE (111) CRYSTAL FACES OF PLATINUM AND SILVER BY LOW-ENERGY ELECTRON DIFFRACTION  

E-Print Network (OSTI)

transitions. The adsorption n-butane on Pt(lll) producesat 34 eV of monolayer of n-butane adsorbed on Agelll). The90-l05K, adsorption of n-butane on clean Pt(111) produces

Firment, L.E.

2010-01-01T23:59:59.000Z

304

Critical temperatures and pressures for hydrocarbon mixtures from an equation of state with renormalization-group-theory corrections  

E-Print Network (OSTI)

Relationship of Binary Systems n-Butane-n- Pentaneand n-Butane- n-Hexane, J. Chern. Eng. Data 20 (1975) 333-in the Ethane-Propane-n-Butane System, Fluid Phase Equil.

Jiang, J.

2011-01-01T23:59:59.000Z

305

Investigation of the Atmospheric Ozone Impacts of Methyl Iodide  

E-Print Network (OSTI)

ethylene, propylene, n-butane and trans-2-butene werepropane, propylene, n-butane, n-hexane, toluene, n-octaneas ethylene, propylene, n-butane and trans-2-butene and 30 m

Carter, W P L

2007-01-01T23:59:59.000Z

306

Energy-resolved annihilation studies : vibrational Feshbach resonances and positron- molecule bound states  

E-Print Network (OSTI)

Z e? for butane . . . . . . . . . . . . . . . . . . Figure2,2-di?uoropropane . . . Figure 5.9: Z e? for butane and 1-?resolved Z e? spectrum for butane (C 4 H 10 ). This spectrum

Young, Jason Asher

2007-01-01T23:59:59.000Z

307

Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity  

E-Print Network (OSTI)

methane, ethane, propane, n-butane) and alkenes (ethene,respectively). With propane and n-butane, all the Ln 2+ ionsof La 2+ with propane and n-butane, and the absence of their

Gibson, John K.

2010-01-01T23:59:59.000Z

308

CATALYSIS BY PLATINUM SINGLE CRYSTAL SURFACES: LOW PRESSURE HYDROCARBON REACTIONS AND THE EFFECTS OF INTRODUCING STRONGLY BOUND OXYGEN AT THE SURFACE  

E-Print Network (OSTI)

of neo-pentane and iso-butane in the presence of excessof neo-pentane to iso-butane was found to be a demandingof neo-pentane and iso-butane in the presence of excess

Smith, Carol Ellen

2011-01-01T23:59:59.000Z

309

Formation mechanisms and quantification of organic nitrates in atmospheric aerosol  

E-Print Network (OSTI)

limonene-1-nitrate, 1-hydroxy-butane- 2-nitrate, 3-hydroxy-our measured spectra of the butane hydroxynitrate we foundstandards except for the butane hydroxynitrate the O/C based

Rollins, Andrew Waite

2010-01-01T23:59:59.000Z

310

A Simulation Study of Diffusion in Microporous Materials  

E-Print Network (OSTI)

dynamics simulation of the diffusion of n- butane andi-butane in silicalite. J. Chem. Phys. 108, 2170–2172 (Stefan diffusivity of iso-butane in MFI zeolite. Chem. Phys.

Abouelnasr, Mahmoud Kamal Forrest

2013-01-01T23:59:59.000Z

311

Splitting a C-O bond in dialkylethers with bis(1,2,4-tri-t-butylcyclopentadienyl) cerium-hydride does not occur by a sigma-bond metathesis pathway: a combined experimental and DFT computational study  

E-Print Network (OSTI)

and propane or Cp’ 2 Ce(O-n-Bu) and butane, respectively.CeD, the propane and butane contain deuterium predominantlysites of (n-Bu) 2 O, but the butane produced by the reaction

Werkema, Evan

2011-01-01T23:59:59.000Z

312

A BRIEF HISTORY OF INDUSTRIAL CATALYSIS  

E-Print Network (OSTI)

there were supplies of n-butane which could be isomerized.as a catalytic liquid n~butane gas was passed; in the other,and ts: butadiene, 2) 1) butane lbenzene dehydro~~ genation

Heinemann, Heinz

2013-01-01T23:59:59.000Z

313

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network (OSTI)

to approximate propane, butane, and LPG purchases, and U.S.Groundwater (MJ/L) Electricity NG Propane/ Butane/LPG DieselElectricity NG Propane/ Butane/ LPG Diesel AL 2.1E-05 N/A N/

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

314

Coupling nonpolar and polar solvation free energies in implicit solvent models  

E-Print Network (OSTI)

methane ?Me?, ethane, propane, and butane from the study ofJones sphere Me Ethane CH 3 Propane Butane CH 2 CH 3 In thisthe above calculation for propane and butane ?three and four

Dzubiella, J; Swanson, JMJ; McCammon, J A

2006-01-01T23:59:59.000Z

315

xml version="1.0" encoding="UTF-8"?>

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a
real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE  

E-Print Network (OSTI)

upward for nixtures of n-butane and n-pentane, whereasand iie Table 11 I so butane Propane Isopentane @-factor (Fe

Pope, William L.

2012-01-01T23:59:59.000Z

322

Mechanical and charge transport properties of alkanethiol self-assembled monolayers on Au (111) surface: The Role of Molecular Tilt  

E-Print Network (OSTI)

consisting of a single butane-dithiol molecule in a largefind that for the single butane-dithiol molecule bonded to

Qi, Yabing

2007-01-01T23:59:59.000Z

323

Local Models for Strongly Correlated Molecules  

E-Print Network (OSTI)

08). Largest system: t-butane (24,24) pictured. Parameters08). Largest system: t-butane (24,24) pictured. Parameters

Parkhill, John Anthony

2010-01-01T23:59:59.000Z

324

Synthesis, characterization and X-ray crystal structures of chiral ferrocene-containing -diketones  

E-Print Network (OSTI)

-(1-ferrocenylethyl)-butane-1,3-dione (2), and 1- ferrocenyl-2-(1-ferrocenylethyl)-butane-1,3-dione (3), have been

325

Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities  

E-Print Network (OSTI)

ethane, propane or butane. Concentrations of metabolitesacid COO - CH 3 O H 3 C Butane (C 4 H 10 ) H 3 C CH 3 O - O

Duncan, Kathleen E.

2010-01-01T23:59:59.000Z

326

GAMMA-RAY DETECTION WITH PbO GLASS CONVERTERS IN MWPC: ELECTRON CONVERSION EFFICIENCY AND TIME RESOLUTION  

E-Print Network (OSTI)

10X CF and 30% iso- butane, respectively. The effects of gas+ 67% Ar 3% methylal+30% Iso­ butane + 67% Ar Comparing the

Lum, G.K.

2010-01-01T23:59:59.000Z

327

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network (OSTI)

dry fuels were ignited using a butane pilot lighter applied4 H 8 (butene), and C 4 H 10 (n-butane) gases with a Hewlett

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

328

Splitting a C-O bond in dialkylethers with bis(1,2,4-tri-t-butylcyclopentadienyl) cerium-hydride does not occur by a sigma-bond metathesis pathway: a combined experimental and DFT computational study  

Science Conference Proceedings (OSTI)

Addition of diethylether to [1,2,4(Me3C)3C5H2]2CeH, abbreviated Cp'2CeH, gives Cp'2CeOEt and ethane. Similarly, di-n-propyl- or di-n-butylether gives Cp'2Ce(O-n-Pr) and propane or Cp'2Ce(O-n-Bu) and butane, respectively. Using Cp'2CeD, the propane and butane contain deuterium predominantly in their methyl groups. Mechanisms, formulated on the basis of DFT computational studies, show that the reactions begin by an alpha or beta-CH activation with comparable activation barriers but only the beta-CH activation intermediate evolves into the alkoxide product and an olefin. The olefin then inserts into the Ce-H bond forming the alkyl derivative, Cp'2CeR, that eliminates alkane. The alpha-CH activation intermediate is in equilibrium with the starting reagents, Cp'2CeH and the ether, which accounts for the deuterium label in the methyl groups of the alkane. The one-step sigma-bond metathesis mechanism has a much higher activation barrier than either of the two-step mechanisms.

Werkema, Evan; Yahia, Ahmed; Maron, Laurent; Eisenstein, Odile; Andersen, Richard

2010-04-06T23:59:59.000Z

329

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

330

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Note: Note: The conversion factor for asphalt is 5.5 barrels per short ton. ASTM: American Society for Testing and Materials Aviation Gasoline (Finished): A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifi- cations are provided in ASTM Specification D 910 and Military Specifica- tion MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Aviation Gasoline Blending Components: Naphthas that will be used for blending or compounding into finished aviation gasoline (e.g., straight run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes ox- ygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are re- ported as other hydrocarbons, hydrogen, and oxygenates. Barrel

331

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Exports by Destination Exports by Destination Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

332

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Area of Entry Area of Entry Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

333

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Stocks by Type Stocks by Type Definitions Key Terms Definition Alaskan in Transit Alaskan crude oil stocks in transit by water between Alaska and the other States, the District of Columbia, Puerto Rico, and the Virgin Islands. Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

334

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

U.S. Imports by Country of Origin U.S. Imports by Country of Origin Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

335

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Refinery Stocks Refinery Stocks Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

336

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

and Blender Net Inputs and Blender Net Inputs Definitions Key Terms Definition Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates. Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline.

337

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Supply and Disposition Balance Supply and Disposition Balance Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

338

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Products Supplied Products Supplied Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

339

PriceTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

ASTM: The American Society for Testing and Materials. Aviation Gasoline (Finished): A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifi- cations are provided in ASTM Specification D 910 and Military Specifica- tion MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Aviation Gasoline Blending Components: Naphthas that will be used for blending or compounding into finished aviation gasoline (e.g., straight run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates. Barrel (petroleum): A unit of volume equal to 42 U.S. gallons. Biomass Waste:

340

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

PAD District Imports by Country of Origin PAD District Imports by Country of Origin Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Imports by Destination Imports by Destination Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

342

Pentan isomers compound flame front structure  

DOE Green Energy (OSTI)

The fuels (hexane, pentane, diethyl ether) and conditions investigated in this study are relevant to engine knock in spark- ignition engines. A review is provided of the field of low temperature hydrocarbon oxidation. Studies were made of radical and stable intermediate distribution in the front of cool flames: Maximum concentrations of H atoms and peroxy radicals were observed in the luminous zone of the cool flame front. Peroxy radicals appear before the luminous zone at 430 K due to diffusion. H atoms were found in cool flames of butane and hexane. H atoms diffuses from the luminous zone to the side of the fresh mixture, and they penetrate into the fresh mixture to a small depth. Extension of action sphear of peroxy radicals in the fresh mixture is much greater than that of H atoms due to their small activity and high concentrations.

Mansurov, Z.A.; Mironenko, A.W.; Bodikov, D.U.; Rachmetkaliev, K.N. [Kazakh Al-Farabi State National Univ., Almaty (Kazakhstan)

1995-08-13T23:59:59.000Z

343

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Input Input Definitions Key Terms Definition Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Crude Oil A mixture of hydrocarbons that exists in liquid phase in natural underground reservoirs and remains liquid at atmospheric pressure after passing through surface separating facilities. Depending upon the characteristics of the crude stream, it may also include:

344

Total Synthesis of a Bicyclo[1.1.0]butane Fatty Acid and Biosynthetically Empowered Investigation of the Biological Activity of Apoptolidin.  

E-Print Network (OSTI)

??Complex secondary metabolites from diverse life forms play key roles in mediating many biological processes but the exact nature of their function is often unknown.… (more)

DeGuire, Sean Michael

2013-01-01T23:59:59.000Z

345

Partial oxidation of Raffinate II and other mixtures of n-Butane and n-Butenes to maleic anhydride in a fixed-bed reactor.  

E-Print Network (OSTI)

??The utilisation of the C4 streams of steamcrackers by converting raffinate II to maleic anhydride was studied. The oxidation reactions were investigated in a laboratory-scale… (more)

Brandstädter, Willi Michael

2008-01-01T23:59:59.000Z

346

Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

7 results: 7 results: BibTex RIS RTF XML Sort by: Author Title Type [ Year (Desc) ] Filters: Author is Elton J. Cairns [Clear All Filters] 2008 Shin, Joon Ho, Pratyay Basak, John B. Kerr, and Elton J. Cairns. "Rechargeable Li/LiFePO4 Cells Using N-Methyl-N-butyl pyrrolidinium Bis(trifluoromethane sulfonyl)imide-LiTFSI Electrolyte Incorporating Polymer Additives." Electrochimica Acta 54, no. 2 (2008): 410-414. Shin, Joon Ho, and Elton J. Cairns. "N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte." Journal of Power Sources 177 (2008): 537-545. 2007 Nakahara, Kentaro, Jiro Iriyama, Shigeyuki Iwasa, Masahiro Suguro, Masaharu Satoh, and Elton J. Cairns. "Al-laminated film packaged organic radical

347

Thermal Conductivity of Liquids and Gases  

Science Conference Proceedings (OSTI)

... JCED Supporting Information: Propane.(ASCII)(pdf)(Postscript). JCED Supporting Information: Butane.(ASCII)(pdf)(Postscript). ...

2006-10-31T23:59:59.000Z

348

3.System Design Basis 2) MODELING  

E-Print Network (OSTI)

-0012) Vendor Prints 2) All equipments are modelled using the standard HYSYS unit operation models. 3) Butane BOG compressors with butane storage system is modelled for this report. 4) Modelling have been streams and out streams specifications for the butane storage tanks(T-1/2/3/4) with Butane BOG compressor

Hong, Deog Ki

349

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 0099-2240/99/$04.00 0  

E-Print Network (OSTI)

. 10 Copyright © 1999, American Society for Microbiology. All Rights Reserved. Diversity in Butane Monooxygenases among Butane-Grown Bacteria NATSUKO HAMAMURA,1 RYAN T. STORFA,2 LEWIS SEMPRINI,3 AND DANIEL J. ARP April 1999/Accepted 19 July 1999 Butane monooxygenases of butane-grown Pseudomonas butanovora

Semprini, Lewis

350

A Tentative Modeling Study of the Effect of Wall Reactions on Oxidation Phenomena  

E-Print Network (OSTI)

temperature diagram of oxidation phenomena in the case of n-butane. Reactions which depend on the type-Ta ignition diagrams for equimolar n-butane/oxygen in an untreated silica vessel, a vessel internally coated Figure 1. Experimental p-Ta ignition diagrams for equimolar n-butane + oxygen mixtures (50 % n- butane

Paris-Sud XI, Université de

351

Power MEMS 2005, Nov. 28-30, 2005, Tokyo, Japan We have developed a large-entrainment-ratio micro ejector to supply fuel-air mixture for a catalytic combustor. As the key  

E-Print Network (OSTI)

ejector has achieved a maximum air-to-butane volume flow rate ratio of 43 when the back pressure employs butane as the fuel because it has both high energy density (13300 Wh/kg) and favorable storage. The requirement of designing an ejector for a butane combustor is to achieve an air-to-butane volume flow rate

Kasagi, Nobuhide

352

I Reprinted from the Journal of the American Chemical Society. 92. 1426 ( 1970).1 Copyright 1970 by the American ChemicalSociety and reprinted by permissionof rhi.opf.ight owner.  

E-Print Network (OSTI)

dominantparhwayfor thermaldecom- positionof this alkylcopper(l)compound to ,?-butane and l-butenedoesrto, in-butene (51%) n-butane(4971),and hydrogen (10%); lessthan 0.t I n-octaneis formed. Hydrolysis oi the solution' rr-butvl-2.2-tl:(tri-rr-butylphosphine)cop- per(l)(2)yieldsno butane-r/,,butane-dc,ot butene

Prentiss, Mara

353

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 0099-2240/97/$04.00 0  

E-Print Network (OSTI)

. 9 Copyright © 1997, American Society for Microbiology Chloroform Cometabolism by Butane-Grown CF8) degradation by a butane-grown enrichment culture, CF8, was compared to that by butane-grown Pseudomonas. All three butane-grown bacteria were able to degrade CF at rates comparable to that of M

Semprini, Lewis

354

Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application  

E-Print Network (OSTI)

surface reaction of butane. In combustion experiments with a prototype combustor, the wall temperature is proportional to the butane concentration, is employed to characterize the activity of the catalyst layer for n-butane profile of butane-air mixture is assumed at the inlet. The volumetric flow rate QB is kept at 10 sccm

Kasagi, Nobuhide

355

Journal of Molecular Catalysis A: Chemical 166 (2001) 5972 Electronic structure of vanadyl pyrophosphate  

E-Print Network (OSTI)

in oxidation of n-butane to maleic anhydride (MA) [12­26]. The other phase of a great importance is vanadyl of butane oxidation [14]. One has to stress that the oxidation on n-butane to MA is one of the most collapse. One has also to add that oxidation of butane to MA is the only process of the selective oxidation

356

Catalytic conversion of light alkanes - phase V. Topical report, February 1993--October 1994  

SciTech Connect

We have made excellent progress toward a practical route from field butanes to MTBE, the oxygenate of choice for high-octane, clean-burning, environmentally acceptable reformulated gasoline. We have evaluated two proprietary process possibilities with a potential commercial partner and have conducted a joint catalyst evaluation program. The first of the two potential processes considered during the past quarter utilizes a two-step route from isobutane to tert-butyl alcohol, TBA. Not only is TBA an intermediate for MTBE production but is equally applicable for ETBE-an oxygenate which utilizes renewable ethanol in its` manufacture. In the two-step process, isobutane is oxidized in a non-catalytic reaction to a roughly equal mixture of TBA and tert-butyl hydroperoxide. TBHP, eq. 1. We have developed an inexpensive new catalyst system based on an electron-deficient macrocyclic metal complex that selectively converts TBHP to TBA, eq. 2, and meets or exceeds all of the process criteria that we have set.

1998-12-31T23:59:59.000Z

357

Spinning Carbon Fiber Precursors from 1-Butyl-3-Methylimidazolium Chloride Cellulose Solutions.  

E-Print Network (OSTI)

??Cellulose is an abundant natural renewable polymer that is used in the production of many materials. However, limited processibility and reduced solubility have restricted its… (more)

Gelderloos-Sammons, Rhea J

2007-01-01T23:59:59.000Z

358

Molecular motions in a viscous organic liquid: ferrocene in cold butyl phthalate  

SciTech Connect

The two main purposes of this work were to learn (a) if rotational diffusion can be seen along with translational, and (b) is (x(T)/sup 2/) unusual as the sample is heated from a glass to a liquid. Our observations show that (a) rotational molecular diffusion is not likely ever to be observed by quadrupole relaxation and (b) that there is indeed a fast increase in (x/sup 2/) above T/sub g/. This increase is correlated with a rapid and linear increase of the number of ''soft modes'' for the liquid above the glass transition temperature.

Ruby, S.L.; Zabransky, B.J.; Flinn, P.A.

1976-01-01T23:59:59.000Z

359

MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)  

Reports and Publications (EIA)

The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

Information Center

1999-10-01T23:59:59.000Z

360

Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)  

Reports and Publications (EIA)

The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

Information Center

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

California's Move Toward E10 (released in AEO2009)  

Reports and Publications (EIA)

In AEO2009, E10a gasoline blend containing 10 percent ethanolis assumed to be the maximum ethanol blend allowed in California RFG, as opposed to the 5.7-percent blend assumed in earlier AEOs. The 5.7-percent blend had reflected decisions made when California decided to phase out use of the additive methyl tertiary butyl ether in its RFG program in 2003, opting instead to use ethanol in the minimum amount that would meet the requirement for 2.0 percent oxygen content under the CAA provisions in effect at that time

Information Center

2009-03-31T23:59:59.000Z

362

Why Sequence Pseudonocardia dioxanivorans?  

NLE Websites -- All DOE Office Websites (Extended Search)

Pseudonocardia dioxanivorans? Pseudonocardia dioxanivorans? Ethers such as 1,4-dioxane, tetrahydrofuran, and methyl tert-butyl ether are widespread contaminants of groundwater resources. 1,4-Dioxane is widely used as a stabilizer for chlorinated solvents such as 1,1,1-trichloroethane (TCA). 1,4-Dioxane is a carcinogen, and causes acute toxic effects on the nervous system, liver, and kidneys. One promising approach for remediating 1,4-dioxane-impacted water supplies is in-situ bioremediation using aerobic bacteria. Pseudonocardia dioxanivorans CB1190 is a unique bacterial strain that can grow using 1,4-dioxane as a sole source of carbon and energy. It can degrade several other water contaminants and also fix dinitrogen, making it an attractive bioaugmentation culture even for nitrogen-limited

363

Catalytic distillation process  

DOE Patents (OSTI)

A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

Smith, Jr., Lawrence A. (Bellaire, TX)

1982-01-01T23:59:59.000Z

364

Catalytic distillation process  

DOE Patents (OSTI)

A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

Smith, L.A. Jr.

1982-06-22T23:59:59.000Z

365

Fuel Ethanol Oxygenate Production  

Gasoline and Diesel Fuel Update (EIA)

Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 27,197 26,722 26,923 26,320 25,564 27,995 1981-2013 East Coast (PADD 1) 628 784 836 842 527 636 2004-2013 Midwest (PADD 2) 25,209 24,689 24,786 24,186 23,810 26,040 2004-2013 Gulf Coast (PADD 3) 523 404 487 460 431 473 2004-2013 Rocky Mountain (PADD 4) 450 432 430 432 415 429 2004-2013 West Coast (PADD 5)

366

Arco chimie focuses on PA at FOS  

Science Conference Proceedings (OSTI)

Arco Chimie France (Fos-sur-Mer), at a recent meeting at its southern France manufacturing site, emphasized that future strategy is strongly focused on its propylene oxide (PO) and derivatives activities. The F2.5 billion ($466 million)-Fe billion/year operation manufactures 200,000 m.t./year of PO, about 70% for captive use and the balance for the merchant market; 550,000 m.t./year of methyl tert butyl ether (MTBE); 97,000 m.t./year of polyols; and 70,000 m.t./year of propylene glycols. There has been talk of Arco modifying its Fos MTBE plant to make it flexible for ethyl tert-butyl ether (ETBE) output; the parent company already operates an MTBE/ETBE pilot unit at Corpus Christi, TX. But Arco Chimie notes there is insufficient bioethanol feedstock availability to convert all production to ETBE. The company would also require investment in new storage capacity for ethanol and ETBE. However, France's biofuels program is not yet clearly defined, and it is politically sensitive because it depends heavily on government subsidies offered to farmers. That, says Arco, makes it impossible to have an accurate idea of how much ethanol will be available.

Jackson, D.

1992-12-02T23:59:59.000Z

367

www.eia.gov  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Per Unit of Volume or Mass Per Million Btu For homes and businesses Propane gallon Butane Butane/Propane Mix Home Heating and Diesel Fuel

368

Mark L. Robin Great Lakes Chemical Corporation Fluorine ...  

Science Conference Proceedings (OSTI)

... Results for the FM-100/air/propane and FM-lOO/air/i-butane systems are shown in Figures 3 and 4 , respectively. ... n-heptane n-butane methanol ...

2011-09-27T23:59:59.000Z

369

DIFFUSIVE DYNAMICS OF ALKANE CHAINS Ronald M. Levy  

E-Print Network (OSTI)

alkanes studied were butane, heptane,and eicosane (4 atoms, 7 atoms, and 20 atoms). We regard this work, the results of the dynamics simulations are presented and the equilibrium and kinetic pro- perties of butane

370

Safe Operating Procedure (Revised 7/09)  

E-Print Network (OSTI)

://ehs.unl.edu/) LPG includes propane, butane, and butylenes used for heating, cooking, and fuel. The purpose Food Service No more than two 10 ounce non-refillable butane cylinders in use per appliance

Farritor, Shane

371

Atmos. Chem. Phys., 9, 31973207, 2009 www.atmos-chem-phys.net/9/3197/2009/  

E-Print Network (OSTI)

hydrocarbons i-butane (7.87 µg.m-2 s-1), i- pentane (3.61 µg.m-2 s-1) and n-butane (3.23 µg.m-2 s-1

Meskhidze, Nicholas

372

C-H functionalisation through singlet chlorocarbenes insertions – MP2 and DFT investigations  

Science Conference Proceedings (OSTI)

The insertion reactions of singlet mono and dichlorocarbenes (1CHCl and 1CCl2) into primary, secondary and tertiary C-H bonds of methane, ethane, propane, n-butane and iso-butane have been investigated at ...

M. Ramalingam; K. Ramasami; P. Venuvanalingam; V. Sethuraman

2006-05-01T23:59:59.000Z

373

Hydrogen Storage -Overview George Thomas, Hydrogen Consultant to SNL*  

E-Print Network (OSTI)

75 100 125 hydrogen m ethane ethane propane butane pentane hexane heptane octane (gasoline) cetane (diesel) octane (gasoline) heptane hexane pentane butane ethane propane ethanol m ethane m ethanol am m

374

Firebrand Production From Burning Vegetation  

Science Conference Proceedings (OSTI)

... Reduced Scale Firebrand Ignition Experiments The firebrand ignition apparatus consists of four butane burners and a firebrand mounting probe. ...

2006-07-03T23:59:59.000Z

375

EIA’s Proposed NGL Realignment: Overview of Proposed Changes  

U.S. Energy Information Administration (EIA)

Water . Dry Gas . Olefins (Ethylene, Propylene, Butylene, Isobutylene) Hydrocarbon Gas Liquids . Natural Gas Liquids (Ethane, Propane, Butanes, & Pentanes Plus) 2 .

376

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

Safety Plan m Chemical$torase Guidelines Chemical Is Incompatible llll i With ii Hydrocarbons (such as butane, propane,

Ricks Editor, R.

2009-01-01T23:59:59.000Z

377

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network (OSTI)

blending components), natural-gas liquids (such as pentanes and butanes), alcohols, and other hydrocarbons (such as coal-

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

378

NIST, Theory and Modeling of Fluids Group  

Science Conference Proceedings (OSTI)

... of predicting thermodynamic properties of mixtures containing nitrogen, argon, oxygen, carbon dioxide, methane, ethane, propane, n-butane, and i ...

379

Ultrafast Carbon-Carbon Single-Bond Rotational Isomerization in  

E-Print Network (OSTI)

of the barrier heights of 1, n-butane, and ethane, the time constants for n-butane and ethane internal rotation is not completely free. (2) The trans-gauche isomerization of 1,2- disubstituted ethane derivatives, such as n-butane energy barrier of the n-butane (Ã?3.4 kcal/mol) and of other simple 1,2-disubstituted ethane derivatives

Fayer, Michael D.

380

Anthropogenic emissions of nonmethane hydrocarbons in the northeastern United States: Measured seasonal variations from  

E-Print Network (OSTI)

in relative emissions for this series of trace gases. Seasonal changes in n-butane and i-butane emissions may [Seinfeld and Pandis, 1998]. [3] In this study, we present the seasonality of C2-C6 (ethane, propane, n-butane, i-butane, n-pentane, i-pentane and n-hexane) hydrocarbons, NOy and CO as measured at Harvard Forest

Goldstein, Allen

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Direct Detection of Products from the Pyrolysis of 2-Phenethyl Phenyl Ether Mark W. Jarvis,*,  

E-Print Network (OSTI)

"Pyrolysis." In Biomass Handbook; C. W. Hall, ed. Gordon and Breach: New York, 1989; pp. 379-385. (with Pyrolysis of Biomass Derived Volatile Matter." In Fundamentals of Thermochemical Biomass Conversion; R. P. "Biomass Pyrolysis. A Review of the Literature - Part 1: Carbohydrate Pyrolysis." In Advances in Solar

Dean, Anthony M.

382

The potential for alcohols and related ethers to displace conventional gasoline components  

DOE Green Energy (OSTI)

The United States Department of Energy is required by law to determine the feasibility of producing sufficient replacement fuels to replace 30 percent of the projected United States consumption of motor fuels by light duty vehicles in the year 2010. A replacement fuel is a non-petroleum portion of gasoline, including alcohols, natural gas and certain other components. A linear program has been used to study refinery impacts for production of ``low petroleum`` gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and major contributors to cost increase can include investment in processes to produce olefins for etherification with alcohols. High oxygenation can increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum might be produced with cost increases of 23 to 37 cents per gallon, with substantial decreases in greenhouse gas emissions in some cases. Cost estimates are sensitive to assumptions about extrapolation of a national model for pollutant emissions, availability of raw materials and other issues. Reduction in crude oil use, a major objective of the low petroleum gasoline program, is 10 to 17 percent in the analysis.

Hadder, G.R. [Oak Ridge National Lab., TN (United States); McNutt, B.D. [USDOE, Washington, DC (United States)

1996-02-01T23:59:59.000Z

383

Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers  

Science Conference Proceedings (OSTI)

The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.

McGrath, James E. (Blacksburg, VA); Park, Ho Bum (Austin, TX); Freeman, Benny D. (Austin, TX)

2011-10-04T23:59:59.000Z

384

Cleaning Products and Air Fresheners: Emissions and Resulting Concentrations of Glycol Ethers and Terpenoids  

E-Print Network (OSTI)

include wood framing with plywood underlying the floor, twowith low-VOC paint. The plywood subfloor was covered with

Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.; Nazaroff, William W.

2005-01-01T23:59:59.000Z

385

Measurements of flatflame velocities of diethyl ether in air Fiona Gillespiea,b  

E-Print Network (OSTI)

is being drawn towards bioderived fuels, the most common of which is bioethanol. Bioethanol. %; however, bioethanol is produced primarily from food sources (corn, sugarcane, etc.) and its energy output to allow a sufficient flow of oxygen through the burner plate. Bronkhorst conversion coefficient factors

386

A New Biarylphosphine Ligand for the Pd-Catalyzed Synthesis of Diaryl Ethers under Mild Conditions  

E-Print Network (OSTI)

A new bulky biarylphosphine ligand (L8) has been developed that allows the Pd-catalyzed C–O cross-coupling of a wide range of aryl halides and phenols under milder conditions than previously possible. A direct correlation ...

Salvi, Luca

387

Water-Soluble 2-Hydroxyisophthalamides for Sensitization of Lanthanide Luminescence  

E-Print Network (OSTI)

tetrakis-(2- aminoethyl)-butane-1,4-diamine [H(4,2)-]. These1 '',N 1 '''-(2,2',2'',2'''-(Butane-1,4-diylbis(azanetriyl))N'-tetrakis-(2- aminoethyl)-butane-1,4-diamine (6c) 12 (0.26

Samuel, Amanda P. S.

2009-01-01T23:59:59.000Z

388

Experimental investigations of photochemically-generated organic aerosols and applications to early Earth and Mars  

E-Print Network (OSTI)

1,3-butadiyne C 4 H 10 n-butane † For C 3 H 4 and C 4 H 2 ,n-propane) and C 4 H 10 (n-butane), respectively. Table 2.1:~12‰, while propane and butane are depleted by ~15‰ relative

Chu, Emily Faye

2013-01-01T23:59:59.000Z

389

Molecular Components of Catalytic Selectivity  

E-Print Network (OSTI)

Hexagonal Square isobutane n-butane isobutane C 1 – C 3H 2 O H 3 C OH 1-Butanol H 3 C H 2 Butane H H 3 C + H 2 CH 3Pyrrolidine + H 2 +NH 3 Butane and ammonia Scheme 1. (a) (b)

Somorjai, Gabor A.

2009-01-01T23:59:59.000Z

390

Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes  

E-Print Network (OSTI)

in a laminar premixed n-butane flame", Combustion and Flame,1.5 atm; T=1431-1680 K; (b) n-butane [22], ?=1.0; 2.5% C 4 Hof the parameters for n- butane were obtained from Marinov

Saxena, Priyank

2007-01-01T23:59:59.000Z

391

Zwittermicin A : determination of its complete configuration and total synthesis of its enantiomer  

E-Print Network (OSTI)

dimethyl-1,3-dioxan-4-yl)butane- 1,3-diol (233). Under andimethyl-1,3-dioxan-4-yl)butane- 1,3-diol (234). Under andimethyl-1,3-dioxan-4-yl)butane-1,3-diol (265-268). Under an

Rogers, Evan W.

2008-01-01T23:59:59.000Z

392

Physical and Chemical Characterization of Particulate and Gas phase Emissions from Biomass Burning  

E-Print Network (OSTI)

literature. For example, EF of butane in this study was 5.0-Alkanes Propane 2M-Propane 2M-Propene Butane 2,2-DM-PropanePentane 2,2-DM-Butane 107-167 a , 169 b a b 8.69-13.12 a ,

Hosseini, Seyedehsan

2012-01-01T23:59:59.000Z

393

2007 Botany and Plant Pathology Publications Arp, Daniel  

E-Print Network (OSTI)

-subunit of butane monooxygenase. J. Bacteriol. 189: 5068-5074 (2007). Gvakharia, B.O., E.A. Permina, M.A. Sayavedra-Soto, D.J. Arp. Butane monooxygenase of Pseudomonas butanovora: purification and biochemical of butane monooxygenase activity in Pseudomonas butanovora; Biochemical and physiological implications

Grünwald, Niklaus J.

394

Requirements Hydrocarbon  

E-Print Network (OSTI)

. Butane is also an option. If material is driving factor these become attractive. Advantages Radiation. He considered two coolants: Butane and R134a (freon replacement used in auto air conditioners). About.021 Butane 72.6 0.014 0.012 10 #12; Advantages Radiation Length Even R134a (Radiation length 80% of wa- ter

Cinabro, David

395

DIRECT CONTACT HEAT EXCHANGER 10 kW POWER LOOP. SECTION 1: EXECUTIVE SUMMARY. SECTION 2: TEST SERIES NO. 1. SECTION 3; TEST SERIES NO. 2  

E-Print Network (OSTI)

i t h e r l i q u i d iso- butane or brine. The c o n s t rand thermometers located in d butane temperatures and , and-e t o t h e DCHX 330 + 5OF Butane o u t l e t t e m p e r a

Engineering, Barber-Nicholas

2011-01-01T23:59:59.000Z

396

Exam 1, Chemistry 210, Dr. Rainer Glaser, W97, MU --1 --Chemistry 210Chemistry 210  

E-Print Network (OSTI)

) (3 points) (4 points) (3 pts) H O (3 pts) O Condensed structural formula of n-butane. (2 pts) Bond line structure of butane. (2 pts) Newman projection of gauche butane along the central C2-C3 bond. (4

Glaser, Rainer

397

MOUSE ORGAN HARVEST PROTOCOL 10/01 TO FREEZE TISSUES FOR FROZEN SECTIONS  

E-Print Network (OSTI)

bits of dry ice and 2 methyl butane. This will be the freezing mixture which will freeze the organs OCT turns white 9. Remove plastic molds with frozen organs from dry ice/ 2 methyl butane and let them No 15160-215 3. Frozen sample write-on bags: VWR Cat. No: 01-002-37 4. 2 methyl butane: Fisher Cat. No

Abagyan, Ruben

398

Influence of temperature on the extraction of Pu(IV) by tri-n-butyl phosphate from acidic nitrate solutions.  

E-Print Network (OSTI)

??The goal of Advanced Fuel Cycle Initiative program is to efficiently separate and recover actinides in attempts to reprocess irradiated nuclear fuel and reduce the… (more)

[No author

2010-01-01T23:59:59.000Z

399

The Friction and Wear Behaviors of (quinazolin-4-ones)-3-methyl-butyl Borate as Additive in Liquid Paraffin  

Science Conference Proceedings (OSTI)

There has been growing concern for the use of mineral oils because of the worldwide interest in environmental issues. This has promoted the use of ash less additives as environmental friendly lubricants. A potential ash less additive containing N, B, ... Keywords: Synthesis, Quinazolin-4-ones, Borate, Additive, Friction and wear behaviors

Ouyang Ping; Zhang Xianming

2011-01-01T23:59:59.000Z

400

Why sequence ethene and vinyl chloride-oxidizing Mycobacterium strains?  

NLE Websites -- All DOE Office Websites (Extended Search)

sequence ethene and vinyl sequence ethene and vinyl chloride-oxidizing Mycobacterium strains? Mycobacteria are known for causing human and animal diseases but they are also important degraders of hard-to-break-down water contaminants such as polyaromatic hydrocarbons (PAHs) and methyl tert-butyl ether (MTBE). So far the handful of bacterial species representing the Mycobacterium genus that have been sequenced all break down PAHs. In this project, researchers focus on the genomes of mycobacterial species isolated from soil, freshwater and marine environments that use the alkene compounds ethene and vinyl chloride as carbon sources. Chlorinated ethene compounds are difficult to remove from contaminated groundwater but necessary because of their toxicity. Additionally these compounds reduce the ozone levels in the atmosphere.

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Assessment of Summer RBOB Supply for NY & CT  

Gasoline and Diesel Fuel Update (EIA)

Update of Summer Reformulated Gasoline Supply Update of Summer Reformulated Gasoline Supply Assessment for New York and Connecticut May 5, 2004 In October 2003, EIA published a review of the status of the methyl tertiary butyl ether (MTBE) ban transition in New York (NY) and Connecticut (CT) 1 that noted significant uncertainties in gasoline supply for those States for the summer of 2004. To obtain updated information, EIA spoke to major suppliers to the two States over the past several months as the petroleum industry began the switch from winter- to summer-grade gasoline. As discussed on our earlier report, the NY and CT bans on MTBE mainly affect reformulated gasoline (RFG), which in recent years has been provided by domestic refineries on the East Coast (PADD 1) and imports. Our recent findings indicate that

402

MTBE Production Economics  

Gasoline and Diesel Fuel Update (EIA)

MTBE Production MTBE Production Economics Tancred C. M. Lidderdale Contents 1. Summary 2. MTBE Production Costs 3. Relationship between price of MTBE and Reformulated Gasoline 4. Influence of Natural Gas Prices on the Gasoline Market 5. Regression Results 6. Data Sources 7. End Notes 1. Summary Last year the price of MTBE (methyl tertiary butyl ether) increased dramatically on two occasions (Figure 1) (see Data Sources at end of article.): 1. Between April and June 2000, the price (U.S. Gulf Coast waterborne market) of MTBE rose from $1.00 per gallon to over $1.60 per gallon. This represented an increase in the price premium for MTBE over the wholesale price of conventional gasoline from its normal (1995 though 2000 average) $0.26 per gallon to $0.60 per gallon. The MTBE

403

Annual Energy Outlook 2005-Acronyms  

Gasoline and Diesel Fuel Update (EIA)

AD AD Associated-dissolved (natural gas) AEO2004 Annual Energy Outlook 2004 AEO2005 Annual Energy Outlook 2005 Altos Altos Partners AMT Alternative Minimum Tax ANWR Arctic National Wildlife Refuge Btu British thermal unit CAFE Corporate average fuel economy CAMR Clean Air Mercury Rule CARB California Air Resources Board CBECS Commercial Buildings Energy Consumption Survey (EIA) CBO Congressional Budget Office CCCC Climate Change Credit Corporation CH 4 Methane CHP Combined heat and power CO 2 Carbon dioxide CTL Coal-to-liquids DB Deutsche Bank, A.G. E85 Fuel containing a blend of 70 to 85 percent ethanol and 30 to 15 percent gasoline by volume EEA Energy and Environmental Analysis, Inc. EIA Energy Information Administration EPA U.S. Environmental Protection Agency EPACT Energy Policy Act of 1992 ETBE Ethyl tertiary butyl ether EVA Energy Ventures Analysis, Incorporated FERC

404

Status and Impact of State MTBE Bans  

Gasoline and Diesel Fuel Update (EIA)

Status and Impact of State MTBE Bans Status and Impact of State MTBE Bans Background As a result of the Clean Air Act Amendments of 1990 (CAAA90), the year-round use of reformulated gasoline (RFG) has been required in cities with the worst smog problems since 1995 (Figure 1). One of the requirements of RFG specified by CAAA90 is a 2- percent oxygen requirement, which is met by blending "oxygenates," 1 including methyl tertiary butyl ether (MTBE) and ethanol, into the gasoline. MTBE is the oxygenate used in almost all RFG outside of the Midwest. Ethanol is currently used in the Midwest as an oxygenate in RFG and as an octane booster and volume extender in conventional gasoline. Several years ago, MTBE was detected in water supplies scattered throughout the country, but predominantly in areas using RFG. MTBE from RFG was apparently

405

MTBE, Oxygenates, and Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

MTBE, Oxygenates, and MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an

406

Annual Energy Outlook 2000 - Acronyms  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage ACEEE American Council for an Energy-Efficient Economy AD Associated-dissolved (natural gas) AEO Annual Energy Outlook AGA American Gas Association ANWR Arctic National Wildlife Refuge API American Petroleum Institute BRP Blue Ribbon Panel Btu British thermal unit CAAA90 Clean Air Act Amendments of 1990 CARB California Air Resources Board CCAP Climate Change Action Plan CDM Clean Development Mechanism CECA Comprehensive Electricity Competition Act CIDI Compression ignition direct injection CO Carbon monoxide DBAB Deutsche Banc Alex. Brown DOE U.S. Department of Energy DRI Standard & PoorÂ’s DRI EIA Energy Information Administration EOR Enhanced oil recovery EPA U.S. Environmental Protection Agency EPACT Energy Policy Act of 1992 ETBE Ethyl tertiary butyl ether

407

Appendix A - Acronyms  

NLE Websites -- All DOE Office Websites (Extended Search)

A - ACRONYMS A - ACRONYMS AASHTO American Association of State Highway and Transportation Officials CNG Compressed Natural Gases CVO Commercial Vehicle Operation DOE Department of Energy DOT Department of Transportation E85 85% Ethanol, 15% Gasoline EPA Environmental Protection Agency ExFIRS Excise Files Information Retrieval System ExSTARS Excise Summary Terminal Activity Reporting System FHWA Federal Highway Administration FTA Federation of Tax Administrators GAO General Accounting Office HTF Highway Trust Fund IFTA International Fuel Tax Agreement IM Interstate Maintenance IRS Internal Revenue Service LNG Liquid Natural Gases LPG Liquefied Petroleum Gases M85 85% Methanol, 15% Gasoline MTBE Methyl Tertiary Butyl Ether NHS National Highway System ORNL Oak Ridge National Laboratory STP Surface Transportation Program

408

Motor Gasoline Outlook and State MTBE Bans  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Outlook Motor Gasoline Outlook and State MTBE Bans Tancred Lidderdale Contents 1. Summary 2. MTBE Supply and Demand 3. Ethanol Supply 4. Gasoline Supply 5. Gasoline Prices A. Long-Term Equilibrium Price Analysis B. Short-Term Price Volatility 6. Conclusion 7. Appendix A. Estimating MTBE Consumption by State 8. Appendix B. MTBE Imports and Exports 9. Appendix C. Glossary of Terms 10. End Notes 11. References 1. Summary The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending State bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year. Three impending State bans on MTBE blending could significantly affect gasoline

409

Eliminating MTBE in Gasoline in 2006  

Gasoline and Diesel Fuel Update (EIA)

02/22/2006 02/22/2006 Eliminating MTBE in Gasoline in 2006 Summary In 2005, a number of petroleum companies announced their intent to remove methyl tertiary-butyl ether (MTBE) from their gasoline in 2006. Companies' decisions to eliminate MTBE have been driven by State bans due to water contamination concerns, continuing liability exposure from adding MTBE to gasoline, and perceived potential for increased liability exposure due to the elimination of the oxygen content requirement for reformulated gasoline (RFG) included in the Energy Policy Act of 2005. EIA's informal discussions with a number of suppliers indicate that most of the industry is trying to move away from MTBE before the 2006 summer driving season. Currently, the largest use of MTBE is in RFG consumed on the East Coast outside of

410

Annual Energy Outlook 1999 - Acronyms  

Gasoline and Diesel Fuel Update (EIA)

acronyms.gif (3491 bytes) acronyms.gif (3491 bytes) AD - Associated/dissolved natural gas AEO98 - Annual Energy Outlook 1998 AEO99 - Annual Energy Outlook 1999 AFVs - Alternative-fuel vehicles AGA - American Gas Association API - American Petroleum Institute BTAB - BT Alex Brown CAAA90 - Clean Air Act Amendments of 1990 CCAP - Climate Change Action Plan CDM - Clean Development Mechanism CFCs - Chlorofluorocarbons CNG - Compressed natural gas CO - Carbon monoxide CO2 - Carbon dioxide DOE - U.S. Department of Energy DRI - DRI/McGraw-Hill EIA - Energy Information Administration EOR - Enhanced oil recovery EPA - U.S. Environmental Protection Agency EPACT - Energy Policy Act of 1992 ETBE - Ethyl tertiary butyl ether EU - European Union FERC - Federal Energy Regulatory Commission GDP - Gross domestic product

411

MTBE movements between Texas Gulf Coast plants to be enhanced  

SciTech Connect

This paper reports that Texas Eastern Products Pipeline Co. (Teppco), Houston, has begun construction of its shuttle pipeline, a 10-mile, 6 and 8-in. line to move methyl tertiary butyl ether (MTBE) between producers and refiners along the Houston Ship Channel. Funding for the project has been approved, rights-of-way are secured, and procurement of materials is under way, according to Teppco. The line will flow from the western edge of Shell's refinery eastward to storage facilities of Teppco's Baytown terminal. The shuttle pipeline anticipates the US requirement for oxygenated gasolines that takes effect Nov. 1. Approximately 70% of the available US merchant capacity for MTBE is located along the shuttle's path, Teppco says.

Not Available

1992-07-27T23:59:59.000Z

412

Ecological hazards of MTBE exposure: A research agenda  

DOE Green Energy (OSTI)

Fuel oxygenates are used in metropolitan areas across the United States in order to reduce the amount of carbon monoxide released into the atmosphere during the winter. The most commonly used fuel oxygenate is Methyl tert-butyl ether (MTBE). Its widespread use has resulted in releases into the environment. To date there has been only minimal effort to investigate ecological impacts caused by exposure to concentrations of MTBE typically found in environmental media. Research into the potential for MTBE to adversely affect ecological receptors is essential. Acquisition of such baselines data is especially critical in light of continuing inputs and potential accumulation of MTBE in environmental media. A research Agenda is included in this report and addresses: Assessing Ecological Impacts, Potential Ecological Impacts of MTBE (aquatic organisms, terrestrial organisms), Potential Ecological Endpoints, and A Summary of Research Needs.

Carlsen, T.; Hall, L.; Rice, D.

1997-03-01T23:59:59.000Z

413

APPLICATIONS OF LAYERED DOUBLE HYDROXIDES IN REMOVING OXYANIONS FROM OIL REFINING AND COAL MINING WASTEWATER  

SciTech Connect

Western Research Institute (WRI), in conjunction with the U.S. Department of Energy (DOE), conducted a study of using the layered double hydroxides (LDH) as filter material to remove microorganisms, large biological molecules, certain anions and toxic oxyanions from various waste streams, including wastewater from refineries. Results demonstrate that LDH has a high adsorbing capability to those compounds with negative surface charge. Constituents studied include model bacteria, viruses, arsenic, selenium, vanadium, diesel range hydrocarbons, methyl tert-butyl ether (MTBE), mixed petroleum constituents, humic materials and anions. This project also attempted to modify the physical structure of LDH for the application as a filtration material. Flow characterizations of the modified LDH materials were also investigated. Results to date indicate that LDH is a cost-effective new material to be used for wastewater treatment, especially for the treatment of anions and oxyanions.

Song Jin; Paul Fallgren

2006-03-01T23:59:59.000Z

414

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

415

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

416

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

417

Children's residential exposures to flame retardants, pesticides and pesticide degradation products, and the relationship of pesticides with autonomic nervous system functioning  

E-Print Network (OSTI)

diphenyl ethers: a flame-retardant additive in severaldiphenyl ether (PBDE) flame retardants. Neurotoxicology. 28,diphenyl ethers: a flame-retardant additive in several

Quiros Alcala, Lesliam

2010-01-01T23:59:59.000Z

418

Characterization and permeation properties of ZSM-5 tubular membranes  

SciTech Connect

ZSM-5 zeolite membranes with reproducible properties were prepared by in-situ synthesis on porous {alpha}- and {gamma}-alumina tubular supports and characterized by XRD, SEM and electron microprobe analysis. Single-gas permeances for H{sub 2}, CH{sub 4}, N{sub 2}, CO{sup 2}, n-butane, and i-butane increase over some temperature range, but some gases exhibit maxima or minima. The highest ideal selectivities at room temperature are 299 for N{sub 2}/SF{sub 6}, 392 for H{sup 2}/n-butane, and 2,820 for H{sub 2}/i-butane. These membranes can separate n-butane/i-butane, H{sub 2}/n-butane and H{sub 2}/i-butane mixtures. All n-butane/i-butane separation selectivities have maxima as a function of temperature and are higher than ideal selectivities because n-butane inhibits i-butane permeation. Thus, separation is not by size selectivity, but is due to pore blocking. Temperature dependencies of single-gas permeances and separation selectivities depend strongly on the location of zeolite crystals and the location is determined by preparation procedure. Ideal selectivities also depend strongly on the preparation procedure. When the zeolite forms a continuous layer on the inside surface of the support tubes, pure i-butane permeates faster than pure n-butane so that the single-gas permeances are not determined just by molecular size. The i-butane permeance also increases much more with temperature than the n-butane permeance. The permeation behavior may be the result of permeation through nonzeolitic pores in parallel with zeolite pores. When zeolite crystals are dispersed throughout the pores of {alpha}-alumina supports, permeances are lower and gas permeation and separation properties are quite different. Ideal selectivities are lower, pure n-butane permeates faster than i-butane, and the permeances increase much less with temperature. Separation selectivities are lower but can be maintained to higher temperatures.

Coronas, J.; Falconer, J.L.; Noble, R.D. [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemical Engineering] [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemical Engineering

1997-07-01T23:59:59.000Z

419

Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 6, January 1, 1992--March 31, 1992  

DOE Green Energy (OSTI)

The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. (2) Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. (3) Addition of methanol to slurry phase FT synthesis making iso-olefins. During the sixth quarter we completed the construction of the slurry bubble column reactor (SBCR), conducted initial shake-down experiments in a cold-flow mode, and finalized the selection process of the acid catalysts for conversion of syngas-produced alcohols and isobutylene to MTBE (scheme 2). Tasks 3, 4, and 5 are awaiting complete implementation of the SBCR system.

Marcelin, G.

1992-06-24T23:59:59.000Z

420

Aggregation behavior of hexaoxyethyleneglycol myristate and hexaoxyethyleneglycol mono (1-methyltridecane) ether and dynamics of their micelles in aqueous solution  

Science Conference Proceedings (OSTI)

The title surfactants have similar critical micelle concentrations and cloud temperatures. Their micellar solutions have been investigated by time resolved fluorescence quenching in the range 2--25 c. The micelle aggregation numbers of both surfactants do not differ much, and increase with temperature. Aggregation numbers are large, suggesting anisotropic micelles, and the results show that the micelles are polydisperse. Fast intermicellar exchange of material becomes detectable on the fluorescence timescale ([approximately]1 [mu]s) above T [approx] 10 C, i.e., some 35--40 C below the cloud temperature of the solution. This exchange probably occurs via micelle collisions with temporary merging. Overall the behavior of these two surfactants is very similar to that of the other ethoxylated nonionic surfactants previously examined.

Alami, E.; Zana, R. (Inst. Charles Sadron, Strasbourg (France)); Van Os, N.M.; Jong, B. de; Kerkhof, F.J.M. (Koninklijke/Shell Lab., Amsterdam, (Netherlands)); Rupert, L.A.M. (Thornton Research Centre, Chester, (United Kingdom))

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Experimental Determinations of Henry's Law Constants of Polybrominated Diphenyl Ethers (PBDEs) to Evaluate Exposure to Aquatic Biota  

E-Print Network (OSTI)

correlated to the degree of chlorine substitution, PCB K Hincreased with ortho- chlorine substitution. In contrast,their high abundance. Both chlorine isotopes (amu 35 and 37)

Charles, M. Judith; Destaillats, Hugo

2005-01-01T23:59:59.000Z

422

Enantiomeric recognition of organic ammonium salts by chiral crown ethers based on the pyridino-18-crown-6 structure  

SciTech Connect

Enantiomeric recognition by several chiral dimethyl-substituted macrocycles of the pyridino-18-crown-6 type for chiral organic ammonium salts has been studied by titration calorimetry in CH/sub 3/OH, temperature-dependent /sup 1/H NMR spectroscopy in CD/sub 2/CL/sub 2/, and selective crystallization. Results from the three procedures are consistent in demonstrating either host-guest recognition or nonrecognition in the systems investigated. Futhermore, enaniomeric recognition by one chiral host for a pair of chiral guests is correlated with X-ray crystallographic data for the same system. The chiral dimethyl-substituted ligands used in the study include three dimethyl diester pyridino-18-crown-6 ligands, dimethyl thiono diester pyridino-18-crown-6, and dimethyl-pyridino-18-crown-6 ligands. All of these ligands exhibited chiral recognition. Dimethylpyridino-18-crown-6 in complexation with (R)- and (S)-(..cap alpha..-(1-naphthyl)ethyl)ammonium perchlorate exhibited the largest ratio of ..delta..G/sub c/+ yet observed by the /sup 1/H NMR technique. A diphenyl-substituted diester pyridino-18-crown-6 where the phenyl substituents are in less rigid portion of the macrocycle failed to show chiral recognition.

Davidson, R.B.; Bradshaw, J.S.; Jones, B.A.; Dalley, N.K.; Christensen, J.J.; Izatt, R.M.

1984-01-27T23:59:59.000Z

423

Alkaline-Side Extraction of Cesium from Savannah River Tank Waste Using a Calixarene-Crown Ether Extractant  

SciTech Connect

Results are presented supporting the viability of the alkaline-side CSEX process as a potential replacement for the In-Tank Precipitation process for removal of cesium from aqueous high-level waste (HLW) at the Savannah River Site (SRS). Under funding from the USDOE Efficient Separations and Crosscutting program, a flowsheet was suggested in early June of 1998, and in the following four months, this flowsheet underwent extensive testing, both in batch tests at ORNL and ANL and in two centrifugal-contactor tests at ANL. To carry out these tests, the initial ESP funding was augmented by direct funds from Westinghouse Savannah River Corporation. The flowsheet employed a solvent containing a calixarene-crown hybrid compound called BoBCalixC6 that was invented at ORNL and can now be obtained commercially for government use from IBC Advanced Technologies. This special extractant is so powerful and selective that it can be used at only 0.01 M, compensating for its expense, but a modifier is required for use in an aliphatic diluent, primarily to increase the cesium distribution ratio D{sub Cs} in extraction. The modifier selected is a relatively economical fluorinated alcohol called Cs3, invented at ORNL and so far available. only from ORNL. For the flowsheet, the modifier is used at 0.2 M in the branched aliphatic kerosene Isopar{reg_sign} L. Testing at ORNL and ANL involved simulants of the SRS HLW. After extraction of the Cs from the waste simulant, the solvent is scrubbed with 0.05 M HNO{sub 3} and stripped with a solution comprised of 0.0005 M HNO{sub 3} and 0.0001 M CsNO{sub 3}. The selection of these conditions is justified in this report, both on the basis of experimental data and underlying theory.

Bonnesen, P.V.; Delmau, L.H.; Haverlock, T.J.; Moyer, B.A.

1998-12-01T23:59:59.000Z

424

Synthesis and Characterization of Phenylethynyl Terminated Poly(arylene ether sulfone)s as Thermosetting Structural Adhesives and Composite Matrices.  

E-Print Network (OSTI)

??Abstract High temperature, solvent resistant materials which also display good mechanical properties are desired for use as aerospace structural adhesives and polymer matrix/carbon fiber composites.… (more)

Mecham, Sue Jewel

1998-01-01T23:59:59.000Z

425

Kinetic and Inhibition Studies for the Aerobic Cometabolism of  

E-Print Network (OSTI)

,1-Dichloroethylene, and 1,1-Dichloroethane by a Butane-Grown Mixed Culture Young Kim,1 Daniel J. Arp,2 Lewis Semprini), and 1,1-dichloroethane (1,1-DCA) by a butane- grown mixed culture. These chlorinated aliphatic hydro. The highest kmax was obtained for butane (2.6 µmol/mg TSS/ h) followed by 1,1-DCE (1.3 µmol/mg TSS/h), 1,1-DCA

Semprini, Lewis

426

Importance of Gas-Phase Kinetics within the Anode Channel of a Solid-Oxide Fuel Cell Chad Y. Sheng and Anthony M. Dean*  

E-Print Network (OSTI)

ReceiVed: December 12, 2003; In Final Form: February 27, 2004 Experiments using n-butane channel of a solid-oxide fuel cell (SOFC). Butane conversion and product formation were monitored used: neat n-butane, 50% n-C4H10/50% H2O, and 50% n-C4H10/50% N2. These experiments demonstrate

Dean, Anthony M.

427

It's The Fluids SEG Honorary Lecture  

E-Print Network (OSTI)

T.P. Water Butane CO2 #12;Fluid ­ Density 800 1000 1200FluidDensity[kg/m3] Brine CO2 0 2 4 6 8 10 0 200 400 600 Fluid Pressure [MPa] FluidDensity[kg/m Butane CO2 #12;Fluid ­ Modulus 2000 2500 3000 FluidModulus[MPa] Brine 0 2 4 6 8 10 0 500 1000 1500 Fluid Pressure [MPa] FluidModulus[MPa] Butane CO2 #12;GENERAL PHASE

428

A B  

Gasoline and Diesel Fuel Update (EIA)

oils and diesel) Crude oil and lease condensate Motor gasoline LPG (Ethane, ethylene, propane, propylene, butane, butylene) Natural gas Anthracite Bituminous and subbituminous...

429

U.S. Exports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Propane/Propylene: 308: 269: 271: 294: 335: 408: 1973-2013: Normal Butane/Butylene: 30: 33: 48: 44: 30: 20: 1981-2013: Isobutane/Isobutylene : ...

430

Conntents  

Science Conference Proceedings (OSTI)

... With Isobutane and n-Butane: Modified Ingham, and John J. Lynch Leung-Griffiths Correlation and Data Evaluation Conference Reports ...

2003-10-06T23:59:59.000Z

431

Measurements of Vapor Pressures and PVT Properties for n ...  

Science Conference Proceedings (OSTI)

Page 1. Measurements of Vapor Pressures and PVT Properties for n-Butane from 280 to 440 K at Pressures to 200 MPa ...

2006-07-20T23:59:59.000Z

432

Publications Portal  

Science Conference Proceedings (OSTI)

... A correlation for estimating the vapor pressure of normal alkanes from methane through n-hexatriacontane and isomers of butane to nonane is ...

2012-09-17T23:59:59.000Z

433

NIST - Physical and Chemical Properties Division - Technical ...  

Science Conference Proceedings (OSTI)

... We are now working to develop formulations for propane, butane, and isobutane (so-called "natural refrigerants") that are of increasing interest. ...

434

Richard A. Perkins: Publications  

Science Conference Proceedings (OSTI)

... MLV, Nieto de Castro, CA, Cusco, L., and Perkins, RA, "Improved correlations for the thermal conductivity of propane and n-butane," in Thermal ...

2006-10-30T23:59:59.000Z

435

BlackBerry Torch 9800 Smartphone - Consignes de sécurité ...  

Science Conference Proceedings (OSTI)

... le stockage de carburants ou de produits chimiques, de véhicules utilisant du gaz de pétrole liquéfié (tel que du propane ou du butane), des zones ...

2012-11-15T23:59:59.000Z

436

BlackBerry Torch 9800 Smartphone - Safety and Product ...  

Science Conference Proceedings (OSTI)

... deck on boats; fuel or chemical transfer or storage facilities; vehicles using liquefied petroleum gas (such as propane or butane); areas where the ...

2012-11-15T23:59:59.000Z

437

Publications Portal  

Science Conference Proceedings (OSTI)

... particle sizes have been determined in the soot oxidation regions of axisymmetric diffusion flames burning methane, methane/butane, and methane ...

2012-09-17T23:59:59.000Z

438

A New Functional Form and New Fitting Techniques for ...  

Science Conference Proceedings (OSTI)

... Of the 34 equa- tions of state compared in this work (see Table 1), only the equations for ammonia, argon, butane, ethane, ethylene, isobutane ...

2008-06-09T23:59:59.000Z

439

Fuel Gases  

Science Conference Proceedings (OSTI)

...often used in torch brazing of steel. Hydrogen, butane, and producer (city) gas are seldom employed. In manual torch brazing, pure oxygen is

440

Using JCP format  

Science Conference Proceedings (OSTI)

... critical temperature, is gas–liquid solubility, where as the equilibrium set up at the same temperature between the same polymer and n-butane is an ...

2008-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Publications N  

Science Conference Proceedings (OSTI)

... J. Chem. Phys., 1983. 79(3): p. 1480-6. Nelson, EE and WS Bonnell, Solubility of hydrogen in n-butane. Ind. Eng. Chem., 1943. ...

442

Geometrical structures of phosphorus-containing heterocyclic ...  

Science Conference Proceedings (OSTI)

phites based on meso- and d/-butane-2, 3-diol. The synthesis and properties of the thiophosphates (VI)-. (IX) have been described in [19, 20]. The thiophosphate  ...

443

MTBE Prices Responded to Natural Gas Prices  

U.S. Energy Information Administration (EIA)

On top of the usual factors impacting gasoline prices, natural gas has had some influence recently. ... Both methane and butane come from natural gas streams.

444

EIA-182 DOMESTIC CRUDE OIL FIRST PURCHASE REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

average wellhead price for selected domestic crude oil streams aggregated by State. First purchase volumes are also used in ... such as butane and

445

Publications Portal  

Science Conference Proceedings (OSTI)

... from methane through n-hexatriacontane and isomers of butane to nonane is ... semiconductors are critical to the realization of low cost, large area ...

2012-09-17T23:59:59.000Z

446

NITROGEN GAS AS A HALON REPLACEMENT ...  

Science Conference Proceedings (OSTI)

... TABLE 4. INERTION CONCENTRATIONS. - m Fuel Inertion Conc., vol.% Butane 40.0 44.0 Propane 42.0 46.2 ... COST AND AVAILABILITY ...

2011-10-20T23:59:59.000Z

447

TEMPERATURE DEPENDENCE OF THE RELATIVE ... - Springer  

Science Conference Proceedings (OSTI)

aqueous solutions [5, 6], while relative constants for the methane–butane series [ 7-9] and for cyclopentane [10] were measured by photolysis and radiolysis ...

448

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Oregon homeowners and renters who heat with oil, wood, propane, kerosene, or butane are eligible for home weatherization rebates of up to 500. A variety of measures,...

449

EIA-816 MONTHLY NATURAL GAS PLANT LIQUIDS REPORT INSTRUCTIONS ...  

U.S. Energy Information Administration (EIA)

EIA-816, Monthly Natural Gas Plant Liquids Report Page 3 Inputs During Month Report only inputs of normal butane being converted by an isomerization process into ...

450

Table 3.9 Value of Fossil Fuel Net Imports, 1949-2011 (Billion ...  

U.S. Energy Information Administration (EIA)

1 Includes petroleum preparations, liquefied propane and butane, and, beginning in 1997, other mineral fuels. R=Revised. P=Preliminary. E=Estimate.

451

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

for this sample, but Raman bands from both samples were essentially identical: methane and ethane along with trace amounts of isobutene and trans-butane. Small angle...

452

Table E2.1. Nonfuel (Feedstock) Use of Combustible Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

ethane-propane mixtures, propane-butane mixtures, and isobutane" "produced at refineries or natural gas processing plants, including plants that fractionate raw" "Natural...

453

Dr. William V. (Vance) Payne, II  

Science Conference Proceedings (OSTI)

... His refrigerant work included examining natural refrigerants such as propane and iso-butane (hydrocarbons) as well as carbon dioxide (CO2). ...

2012-08-23T23:59:59.000Z

454

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

455

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

456

Solid phase isotope exchange with spillover hydrogen in amino ...  

Science Conference Proceedings (OSTI)

isomerization reaction of n-butane on BACs was shown to proceed by monomolecular mechanism and not to be connected with the intermediate formation of ...

457

Overview of sSupply of Chicago/Milwaukee Gasoline This Spring:  

U.S. Energy Information Administration (EIA)

... the refiner may have added fractionation capability to remove butane from the inputs, or may be splitting the alkylate into light and heavy ...

458

Table Definitions, Sources, and Explanatory Notes  

Annual Energy Outlook 2012 (EIA)

lease separation facilities. This category excludes natural gas plant liquids, such as butane and propane, which are recovered at downstream natural gas processing plants or...

459

LE JOURNAL DE PHYSIQUE CALCUL APPROCH DE QUELQUES FRQUENCES PROPRES  

E-Print Network (OSTI)

'isopentane, du méthyl-3-pentane, du méthyl-~, . 3-butane et du tétraméthyl-22 . 33-butane. Tous les radicaux résultats du calcul à ceux des expériences. 3. D$méthyl-2.3-butane. - Le système en �, est Posons L résul- tats du calcul aux résultats expérimentaux. 4. Tétraméthyl- 2 2. 3 3-butane. - Avec le modèle

Paris-Sud XI, Université de

460

ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION...  

Open Energy Info (EERE)

> 0.001 mol % typically have ethane > ethylene, propane > propylene, and butane > butylene. There are three end member fluid compositions: type 1 fluids in which...

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Gulf Coast (PADD 3) Net Receipts by Pipeline, Tanker, and ...  

U.S. Energy Information Administration (EIA)

Gulf Coast (PADD 3) Net Receipts by Pipeline, Tanker, and Barge from Other PADDs of Normal Butane-Butylene (Thousand Barrels per Day)

462

OMB No. 1905-0165 Expiration Date: 1/31/2013 Version No.:2011 ...  

U.S. Energy Information Administration (EIA)

Propane/Propylene: 246 Normal Butane/Butylene 244 ... Report storage capacity of trans-shipment and other tanks and underground storage operated as ...

463

OMB No. 1905-0165 Version No.:xxxx.xx FORM EIA-812 MONTHLY ...  

U.S. Energy Information Administration (EIA)

Propane/Propylene. 246: Normal Butane/Butylene. 244: ... Report storage capacity of trans-shipment and other tanks and underground storage operated as ...

464

Natural gas treatment process using PTMSP membrane  

DOE Patents (OSTI)

A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

Toy, L.G.; Pinnau, I.

1996-03-26T23:59:59.000Z

465

A Parameterized Interatomic Potential for Saturated Hydrocarbons ...  

Science Conference Proceedings (OSTI)

The experimental PVT data for methane, ethane, propane, and butane systems with different densities were predicted reasonably well by MEAM. Proceedings ...

466

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2010...  

NLE Websites -- All DOE Office Websites (Extended Search)

petroleum gas (LPG), which is predominately butane in South Korea (as opposed to Propane in the United States). Another notable feature of this vehicle is its lithium polymer...

467

Natural gas treatment process using PTMSP membrane  

DOE Patents (OSTI)

A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

1996-01-01T23:59:59.000Z

468

fernihough  

Science Conference Proceedings (OSTI)

... cb1. cashback. carbody. calvary. calvaert. butane/propane. bursts. burnie. bulog. budde. ... near. need. neighbour. network. new. news. ngo. nicholas. night ...

469

Extraction of Am(III) from nitric acid by octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide-tri-n-butyl phosphate mixtures  

SciTech Connect

The extraction behavior of Am(III) from nitric acid by octyl(phenyl)-N,N-diisobutylcarbamoylmethyphosphine oxides, O0D(IB)CMPO, in the presence of tributylphosphate, TBP, has been studied using diethylbenzene, decalin, and normal aliphatic hydrocarbon diluents. Relative to O0D(IB)CMPO alone, mixtures of TBP and O0D(IB)CMPO show a slight enhancement in the extraction of Am(III) from nitric acid solution above 2 M and a moderate decrease in extraction for lower acid concentrations. The net effect of TBP addition to O0D(IB)CMPO (as well as other selected carbamoylmethylphosphoryl extractants) is a relative insensitivity of the distribution ratio of Am(III) to HNO/sub 3/ concentration in the range of 0.5 M to 6 M and facilitated stripping of Am(III) with dilute acid. Since a continuous variation study of Am(III) extraction using mixtures of O0D(IB)CMPO and TBP at a fixed total concentration revealed no evidence of a mixed complex, the TBP appears to be behaving primarily as a phase modifier. The most significant benefit gained from addition of TBP to O0D(IB)CMPO is the increased metal ion loading capacity and extractant compatibility with alicyclic and aliphatic diluents. The use of TBP to overcome phase compatibility with other bifunctional extractants of the carbamoylmethylphosphoryl type and the use of other phase modifiers with O0D(IB)CMPO have also been investigated. 15 references, 7 figures, 2 tables.

Horwitz, E.P.; Kalina, D.G.

1984-01-01T23:59:59.000Z

470

Gas fuel in a four-stroke engine  

Science Conference Proceedings (OSTI)

This paper refers to the behavior of a four-stroke gasoline engine that is used for the function of a small generator. The generator functioned at different electrical loads 500W, 1000W, 1500W and 2000W. During the use of gas fuel 80%butane -20%propane ... Keywords: biofuels, gas emissions, gas propane-butane mixture

Charalampos Arapatsakos

2009-02-01T23:59:59.000Z

471

Natural Gas Flow Calibration Service (NGFCS)  

Science Conference Proceedings (OSTI)

... Methane 94.8 to 96.2 Ethane 1.5 to 2.3 Propane 0.055 to 0.3 iButane 0.0008 to 0.03 nButane 0.0003 to 0.04 iPentane 0 to 0.01 nPentane 0 to ...

2013-01-22T23:59:59.000Z

472

5 DYNAMIC SIMULATION 5.1 DYNAMIC SIMULATION CASE  

E-Print Network (OSTI)

.64 12.27 12.00 Propane (mol%) 86.86 87.28 87.65 87.92 i-Butane (mol%) 0.07 0.07 0.07 0.07 n-Butane (mol

Hong, Deog Ki

473

Task 4.9 -- Value-added products from syngas. Semi-annual report, July 1--December 31, 1996  

DOE Green Energy (OSTI)

The work on advanced fuel forms in 1996 focused on the synthesis of higher alcohols from mixtures of hydrogen and carbon dioxide (syngas) from coal gasification. Initial work in this project utilized a novel molybdenum sulfide catalyst previously shown to be active for hydrodesulfurization reactions of coal liquids. A pressurized fixed-bed flow-through reactor was constructed, and the MoS{sub 2} catalysts were tested with syngas under a variety of conditions. Unfortunately, the catalysts, even with higher molybdenum loading and addition of promoters, failed to give alcohol products. A batch reactor test of the catalyst was also conducted, but did not produce alcohol products. Group VIII metals have been used previously in catalysts for syngas reactions. Ruthenium and rhodium catalysts were prepared by impregnation of a hydrotalcite support. Tests with these catalysts in flow-through reactors also did not produce the desired alcohol products. The formation of higher alcohols from smaller ones, such as methanol and ethanol, could be commercially important if high selectivity could be achieved. The methanol and ethanol would be derived from syngas and fermentation, respectively. Based on previous work in other laboratories, it was hypothesized that the hydrotalcite-supported MoS{sub 2} or Ru or Rh catalysts could catalyze the formation of butyl alcohols. Although the desired 1-butanol was obtained in batch reactions with the promoted ruthenium catalyst, the reaction was not as selective as desired. Product suitable for a lower-vapor-pressure gasoline oxygenate additive was obtained, but it may not be economical to market such products in competition with methyl tertiary-butyl ether (MTBE). Flow-through catalytic bed reactions were not successful.

Olson, E.S.; Sharma, R.K.

1997-08-01T23:59:59.000Z

474

Interaction of alkanes with an amorphous methanol film at 15-180 K  

SciTech Connect

The hydrogen-bond imperfections and glass-liquid transition of the amorphous methanol film have been investigated on the basis of the film dewetting and the incorporation/desorption of alkane molecules adsorbed on the surface. The butane is incorporated completely in the bulk of the porous methanol film up to 70 K. At least two distinct states exist for the incorporated butane; one is assignable to solvated molecules in the bulk and the other is weakly bound species at the surface or in the subsurface site. For the nonporous methanol film, the uptake of butane in the bulk is quenched but butane forms a surface complex with methanol above 80 K. The butane incorporated in the bulk of the glassy methanol film is released at 120 K, where dewetting of the methanol film occurs simultaneously due to evolution of the supercooled liquid phase.

Souda, Ryutaro [Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

2005-09-15T23:59:59.000Z

475

Effect of operating conditions and membrane quality on the separation performance of composite silicalite-1 membranes  

Science Conference Proceedings (OSTI)

The separation capacity of silicalite-1 membranes for various hydrocarbon mixtures is determined as a function of membrane quality, operating conditions, and orientation of the composite membrane with respect to the feed side. The quality of the membranes is judged on the basis of the n-butane/i-butane permselectivity. Membranes with a different n-butane/i-butane permselectivity showed an identical separation capacity for ethane/methane mixtures, but the quality difference was affecting separation of hydrogen from the butane isomers. The selectivity of the membrane is significantly affected by the operating conditions, such as mixture composition, temperature, and absolute pressure. These effects are shown for ethane/methane, propene/ethene, and n-butane/i-butane mixtures. The selectivity for ethane in ethane/methane mixtures, found when the zeolite layer is facing the feed side, is completely lost when the orientation of the composite membrane is reversed, due to concentration polarization. Depending on the membrane orientation, the major resistance of the composite is in the support layer or in the zeolite layer.

Graaf, J.M. van de; Bijl, E. van der; Stol, A.; Kapteijn, F.; Moulign, J.A. [Delft Univ. of Technology (Netherlands)

1998-10-01T23:59:59.000Z

476

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

(poly (ether ether ketone)) Products ranging from membrane separation filters to heat transfer devices Not-for-profit research company, providing energy and natural gas...

477

What's New in the Computational Biology Section  

NLE Websites -- All DOE Office Websites (Extended Search)

What's New? What's New? Kane, SR, Chakicherla, AY, Chain, PSG, Schmidt, R, Shin, MW, Legler, TC, Scow, KM, Larimer, FW, Lucas, SM, Richardson, PM, and Hristova, KR. (2007). Whole-Genome Analysis of the Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1. J. Bacteriol. 189(5): 1931-1945. PubMed Scott KM, Sievert SM, Abril FN, Ball LA, Barrett CJ, Blake RA, Boller AJ, Chain PS, Clark JA, Davis CR, Detter C, Do KF, Dobrinski KP, Faza BI, Fitzpatrick KA, Freyermuth SK, Harmer TL, Hauser LJ, Hugler M, Kerfeld CA, Klotz MG, Kong WW, Land M, Lapidus A, Larimer FW, Longo DL, Lucas S, Malfatti SA, Massey SE, Martin DD, McCuddin Z, Meyer F, Moore JL, Ocampo LH, Paul JH, Paulsen IT, Reep DK, Ren Q, Ross RL, Sato PY, Thomas P, Tinkham LE, Zeruth GT. (2006). The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2. PLoS Biol. 4(12): e383. PubMed

478

Annual Energy Outlook 2000 - Legislation & Regulations  

Gasoline and Diesel Fuel Update (EIA)

leg_reg.gif (4810 bytes) Climate Change Action Plan Comprehensive Electricity Competition Act Tier 2 Vehicle Emissions and Gasoline Sulfur Standards California Ban of Methyl Tertiary Butyl Ether Low-Emission Vehicle Program Introduction Because analyses by the Energy Information Administration (EIA) are required to be policy-neutral, the projections in this Annual Energy Outlook 2000 (AEO2000) are based on Federal, State, and local laws and regulations in effect on July 1, 1999. The potential impacts of pending or proposed legislation, regulations, and standards and sections of existing legislation for which funds have not been appropriated are not reflected in the projections. Federal legislation incorporated in the projections includes the Omnibus Budget Reconciliation Act of 1993, which adds 4.3 cents per gallon to the Federal tax on highway fuels [1]; the National Appliance Energy Conservation Act of 1987; the Clean Air Act Amendments of 1990 (CAAA90); the Energy Policy Act of 1992 (EPACT); the Outer Continental Shelf Deep Water Royalty Relief Act of 1995; the Tax Payer Relief Act of 1997; and the Federal Highway Bill of 1998, which includes an extension of the ethanol tax credit. AEO2000 assumes the continuation of the ethanol tax credit through 2020.

479

The National Energy Modeling System: An Overview 2000 - International  

Gasoline and Diesel Fuel Update (EIA)

international energy module (IEM) consists of four submodules (Figure 4) that perform the following functions: international energy module (IEM) consists of four submodules (Figure 4) that perform the following functions: world oil market submodule—calculates the average annual world oil price (imported refiner acquisition cost) that is consistent with worldwide petroleum demand and supply availability crude oil supply submodule—provides im- ported crude oil supply curves for five crude oil quality classes petroleum products supply submodule—pro- vides imported refined product supply curves for eleven types of refined products oxygenates supply submodule—provides imported oxygenates supply curves for methyl tertiary butyl ether (MTBE) and methanol. Figure 4. International Energy Module Structure The world oil price that is generated by the world oil market submodule is used by all the modules of NEMS as well as the other submodules of IEM. The import supply curves for crude oils, refined products, and oxygenates are used by the petroleum market module.

480

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 10.5 Estimated Number of Alternative-Fueled Vehicles in Use and Fuel Consumption, 1992-2010 Year Alternative and Replacement Fuels 1 Liquefied Petroleum Gases Compressed Natural Gas Liquefied Natural Gas Methanol, 85 Percent (M85) 3 Methanol, Neat (M100) 4 Ethanol, 85 Percent (E85) 3,5 Ethanol, 95 Percent (E95) 3 Elec- tricity 6 Hydro- gen Other Fuels 7 Subtotal Oxygenates 2 Bio- diesel 10 Total Methyl Tertiary Butyl Ether 8 Ethanol in Gasohol 9 Total Alternative-Fueled Vehicles in Use 11 (number) 1992 NA 23,191 90 4,850 404 172 38 1,607 NA NA NA NA NA NA NA NA 1993 NA 32,714 299 10,263 414 441 27 1,690 NA NA NA NA NA NA NA NA 1994 NA 41,227 484 15,484 415 605 33 2,224 NA NA NA NA NA NA NA NA 1995 172,806 50,218 603 18,319 386 1,527

Note: This page contains sample records for the topic "butyl ether butane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Catalyst and process development for synthesis gas conversion to isobutylene. Quarterly report, October 1, 1993--December 31, 1993  

SciTech Connect

The objectives of this project are to develop a new catalyst; the kinetics for this catalyst; reactor models for trickle bed, slurry and fixed bed reactors; and to simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene. A hydrogen-lean synthesis gas with a ratio of H{sub 2}/CO of 0.5 to 1.0 is produced from the gasification of coal, lignite, or biomass. Isobutylene is a key reactant in the synthesis of methyl tertiary butyl ether (MTBE) and of isooctanes. MTBE and isooctanes are high octane fuels used to blend with low octane gasolines to raise the octane number required for modern automobiles. The production of these two key octane boosters is limited by the supply of isobutylene. MTBE, when used as an octane enhancer, also decreases the amount of pollutants emitted from the exhaust of an automobile engine.

Anthony, R.G.; Akgerman, A.

1994-05-01T23:59:59.000Z

482

Factors influencing biological treatment of MTBE contaminated ground water  

DOE Green Energy (OSTI)

Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

2001-09-14T23:59:59.000Z

483

Heterogeneous catalytic process for alcohol fuels from syngas. Final technical report  

DOE Green Energy (OSTI)

The primary objective of this project has been the pursuit of a catalyst system which would allow the selective production from syngas of methanol and isobutanol. It is desirable to develop a process in which the methanol to isobutanol weight ratio could be varied from 70/30 to 30/70. The 70/30 mixture could be used directly as a fuel additive, while, with the appropriate downstream processing, the 30/70 mixture could be utilized for methyl tertiary-butyl ether (MTBE) synthesis. The indirect manufacture of MTBE from a coal derived syngas to methanol and isobutanol process would appear to be a viable solution to MTBE feedstock limitations. To become economically attractive, a process fro producing oxygenates from coal-derived syngas must form these products with high selectivity and good rates, and must be capable of operating with a low-hydrogen-content syngas. This was to be accomplished through extensions of known catalyst systems and by the rational design of novel catalyst systems.

Dombek, B.D.

1996-03-01T23:59:59.000Z

484

Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994  

DOE Green Energy (OSTI)

This project was initiated because the supply of isobutylene had been identified as a limitation on the production of methyl-t-butyl ether, a gasoline additive. Prior research on isobutylene synthesis had been at low conversion (less than 5%) or extremely high pressures (greater than 300 bars). The purpose of this research was to optimize the synthesis of a zirconia based catalyst, determine process conditions for producing isobutylene at pressures less than 100 bars, develop kinetic and reactor models, and simulate the performance of fixed bed, trickle bed and slurry flow reactors. A catalyst, reactor models and optimum operating conditions have been developed for producing isobutylene from coal derived synthesis gas. The operating conditions are much less severe than the reaction conditions developed by the Germans during and prior to WWII. The low conversion, i.e. CO conversion less than 15%, have been perceived to be undesirable for a commercial process. However, the exothermic nature of the reaction and the ability to remove heat from the reactor could limit the extent of conversion for a fixed bed reactor. Long residence times for trickle or slurry (bubble column) reactors could result in high CO conversion at the expense of reduced selectivities to iso C{sub 4} compounds. Economic studies based on a preliminary design, and a specific location will be required to determine the commercial feasibility of the process.

Anthony, R.G.; Akgerman, A.; Philip, C.V.; Erkey, C.; Feng, Z.; Postula, W.S.; Wang, J.

1995-03-01T23:59:59.000Z

485

Polybrominated diphenyl ether (PBDE)-induced alterations in vitamin A and thyroid hormone concentrations in the rat during lactation and early postnatal development  

Science Conference Proceedings (OSTI)

In experimental animals fed standard laboratory diets, penta-BDE mixtures can decrease circulating thyroid hormone and liver vitamin A concentrations. A substantial number of pregnant women and their children have marginal vitamin A status, potentially increasing their risk of adverse effects to penta-BDE exposure. The current study investigated the effects of maternal gestational and lactational penta-BDE exposure on thyroid hormone and vitamin A homeostasis in rats of sufficient vitamin A (VAS) or marginal vitamin A (VAM) status and their offspring. Dams were administered daily oral doses of 18 mg/kg DE-71 (a penta-BDE mixture) or a corn oil vehicle from gestation day 6 through lactation day (LD) 18. Thyroid hormone and vitamin A homeostasis were assessed in plasma and tissues of LD 19 dams and postnatal day (PND) 12, 18, and 31 pups. DE-71 exposure induced hepatomegaly in VAS and VAM pups at all timepoints and increased testes weights at PND 31. While liver vitamin A concentrations were low in DE-71 treated dams and pups, plasma retinol concentrations and plasma retinol binding protein levels were only low in VAM animals exposed to DE-71. DE-71 exposure lowered plasma thyroxine concentrations in VAS and VAM dams and pups. Plasma thyroid stimulating hormone concentrations were high in VAM dams exposed to DE-71, suggesting that marginal vitamin A status enhances the susceptibility to thyroid hormone axis disruption by DE-71. These results support the concept that marginal vitamin A status in pregnant women may increase the risk for PBDE-induced disruptions in vitamin A and thyroid hormone homeostasis.

Ellis-Hutchings, Robert G. [Department of Nutrition, University of California-Davis, Davis, CA 95616 (United States); Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616 (United States); Cherr, Gary N. [Department of Nutrition, University of California-Davis, Davis, CA 95616 (United States); Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616 (United States); Bodega Marine Laboratory, University of California-Davis, Bodega Bay, CA 94923 (United States); Hanna, Lynn A. [Department of Nutrition, University of California-Davis, Davis, CA 95616 (United States); Keen, Carl L. [Department of Nutrition, University of California-Davis, Davis, CA 95616 (United States) and Department of Internal Medicine, University of California-Davis, Davis, CA 95616 (United States)]. E-mail: clkeen@ucdavis.edu

2006-09-01T23:59:59.000Z

486

Fuel Switching Strategies for the 1990s  

E-Print Network (OSTI)

Prices of petroleum fuels and natural gas are predicted to rise in the 1990's, due to a number of global factor including supplies, demands and environmental pressure. Environmental regulatory initiatives will force the use of cleaner fuels. Excess butane in summer resulting from lowered gasoline volatility and various increasing supply factors will create fuel purchasing opportunities. It was found that in-place propane switching capability among manufacturers could be adapted to absorb all the excess butane. Economics and risks of acquiring and storing spot-market butane as a strategic switching fuel are explored. Other fuel switching concepts are also considered.

Cascone, R.

1990-06-01T23:59:59.000Z

487

Make aromatics from LPG  

SciTech Connect

Liquefied petroleum gas (LPG) consists mainly of the propane and butane fraction recovered from gas fields, associated petroleum gas and refinery operations. Apart from its use in steam cracking and stream reforming, LPG has few petrochemical applications. The relative abundance of LPG and the strong demand for aromatics - benzene, toluene and xylenes (BTX) - make it economically attractive to produce aromatics via the aromatization of propane and butanes. This paper describes the Cyclar process, which is based on a catalyst formulation developed by BP and which uses UOP's CCR catalyst regeneration technology, converts propane, butanes or mixtures thereof to petrochemical-quality aromatics in a single step.

Doolan, P.C. (BP Exploration Co. Ltd., London (GB)); Pujado, P.R. (UOP, Des Plaines, IL (US))

1989-09-01T23:59:59.000Z

488

Send Orders of Reprints at reprints@benthamscience.net 226 Current Computer-Aided Drug Design, 2013, 9, 226-232  

E-Print Network (OSTI)

. Consider the molecular graph of 2-methyl butane, with the vertex labelling as shown in Fig. (1). Fig. (1). The molecular graph of 2-methyl butane (CAS 78-78-4). The adjacency matrix A(G) and the distance matrix D(G) of 2-methyl butane are: A(G) D(G) 1 2 3 4 5 1 0 1 0 0 0 2 1 0 1 0 1 3 0 1 0 1 0 4 0 0 1 0 0 5 0 1 0 0 0

Gini, Giuseppina

489

May 13, 1998 Gas Frac. Mol.Wt. Density Speci c Ht. Boil. Pt.  

E-Print Network (OSTI)

Argon 30 39.95 1.784 0.125 Butane 8 58.12 2.6 0.389 -0.5 HFC-134a 62 102.0 4.5 0.20 -26.3 Table 1-pressure for every 1 m height. Gas is non- ammable. Butane and HFC-134a must be heated during winter 1 #12;RPC drop across one layer less than 5 mmH2O at 10 cc=min ow rate. 2 #12;(Outside) Ar Butane Scale Thermal

Llope, William J.

490

Figure S1. Relative contribution to total OH reactivity (a), of observed VOCs to calculated OH reactivity (b) and alkyl nitrate production (c,d) in the afternoon (12pm  

E-Print Network (OSTI)

.0050 0.65 i-butane 0.77 0.02 2.31E-12(4) 0.00088 0.086 n-Butane 2.2 0.077 2.51E-12(2) 0.011 0.26 n 0.05* 0.1 5.08E-12(2) 0.00048 0.0086 #12;4 2,3-dimethyl butane 0.17* 0.14 2.32E-12(10) 0.00048 0

Meskhidze, Nicholas

491

Table Definitions, Sources, and Explanatory Notes  

Annual Energy Outlook 2012 (EIA)

not include the propane portion of any natural gas liquid mixes, i.e., butane-propane mix. Refiner A firm or the part of a firm that refines products or blends and substantially...

492

untitled  

Gasoline and Diesel Fuel Update (EIA)

include the propane portion of any natural gas liquids (NGL) mixes; i.e., butane-propane mix. Rack Sales: Wholesale truckload sales or smaller of pe- troleum products where title...

493

West Coast (PADD 5) Product Supplied for Crude Oil and ...  

U.S. Energy Information Administration (EIA)

Area: 2007 2008 2009 2010 2011 2012 View History; Total Crude Oil and Petroleum Products: 3,235: 3,057: 2,845: 2,903: ... 51: 1989-2012: Normal Butane/Butylene-3: 2-3 ...

494

U.S. Product Supplied for Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Propane/Propylene: 1,235: 1,154: 1,160: 1,160: 1,153: 1,175: 1973-2012: Normal Butane/Butylene: 101: 111: 72: 108: 68: 77: 1981-2012: ... 1985-2012: ...

495

A comprehensive environment for property prediction and ...  

Science Conference Proceedings (OSTI)

... Density LAMMPS/OPLSAA Error (K) (g/cm3) (g/cm3) Butane 273 0.6013 0.6010 ± .0026 -0.05% Isobutane 273.2 0.58052 0.6046 ± .0039 4.15% ...

2010-08-25T23:59:59.000Z

496

Study on the Interaction Coefficients in PR Equation with VdW ...  

Science Conference Proceedings (OSTI)

... The values of ki for HFCs and HCs, including Propane, Isobutane, n-butane, HFC32, HFC125, HFC134a, HFC143a, HFC152a and HFC227ea ...

2006-07-20T23:59:59.000Z

497

Carbon Sources  

Science Conference Proceedings (OSTI)

...as natural gas (primarily methane), propane, or butane with air. Endogas is usually produced in a separately fired retort furnace (Endogas generator) using an air-to-hydrocarbon feed ratio that will

498

U.S. Refinery Net Input - Energy Information Administration  

U.S. Energy Information Administration (EIA)

413: 420: 2005-2013: Pentanes Plus: 166: 168: 156: 130: 148: 151: 2005-2013: Liquefied Petroleum Gases: 300: 281: 241: 238: 265: 270: 2005-2013: Normal Butane: 132 ...

499

Monitoring moisture content in the production of check gas mixtures  

Science Conference Proceedings (OSTI)

xenon mixture. Xenon. Methane n-Butane. Neon. Propane. Carbon dioxide. Ethane. " 0.016. Not subject to norm. Not more than 0.02. Not subject to norm.

500

Rocky Mountain (PADD 4) Refinery and Blender Net Production of ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery and Blender Net Production of Normal Butane (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8