Sample records for butte gorham butte

  1. Butt Joint Tool Commissioning

    SciTech Connect (OSTI)

    Martovetsky, N N

    2007-12-06T23:59:59.000Z

    ITER Central Solenoid uses butt joints for connecting the pancakes in the CS module. The principles of the butt joining of the CICC were developed by the JAPT during CSMC project. The difference between the CSMC butt joint and the CS butt joint is that the CS butt joint is an in-line joint, while the CSMC is a double joint through a hairpin jumper. The CS butt joint has to carry the hoop load. The straight length of the joint is only 320 mm, and the vacuum chamber around the joint has to have a split in the clamp shell. These requirements are challenging. Fig.1 presents a CSMC joint, and Fig.2 shows a CS butt joint. The butt joint procedure was verified and demonstrated. The tool is capable of achieving all specified parameters. The vacuum in the end was a little higher than the target, which is not critical and readily correctable. We consider, tentatively that the procedure is established. Unexpectedly, we discover significant temperature nonuniformity in the joint cross section, which is not formally a violation of the specs, but is a point of concern. All testing parameters are recorded for QA purposes. We plan to modify the butt joining tool to improve its convenience of operation and provide all features necessary for production of butt joints by qualified personnel.

  2. Steptoe Butte Offer Clues to State's Past

    SciTech Connect (OSTI)

    Reidel, Steve P.

    2004-11-21T23:59:59.000Z

    This is a column for a Tri-City Herald column that I write called Northwest Geology. This week's column is on Steptoe Butte near Colfax

  3. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    SciTech Connect (OSTI)

    R. Longwell; J. Keifer; S. Goodin

    2001-01-22T23:59:59.000Z

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

  4. Butte Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County,BuschButte County,Butte

  5. Kac polymers Paolo Butt`a

    E-Print Network [OSTI]

    Procacci, Aldo

    Kac polymers Paolo Butt`a Aldo Procacci Benedetto Scoppola Abstract We show how a polymer in two- sidered on the appropriate scale. Key words: Polymers, Kac potentials, phase transition. Running title: Kac polymers Dedicated to a Marzio Cassandro's birthday. 1 Introduction In the last two decades

  6. Historical narratives of Big Chico Creek Watershed Alliance and Butte Creek Watershed Conservancy

    E-Print Network [OSTI]

    King, Mary Ann; Matz, Mike

    2003-01-01T23:59:59.000Z

    Passage on Upper Butte Creek: An Assessment of the NaturalHistorical Narratives of Big Chico Creek Watershed Allianceand Butte Creek Watershed Conservancy Mary Ann King and Mike

  7. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County,BuschButte

  8. Horse Butte Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHoloceneHonestHoosacHorse Butte Wind

  9. Mitchell Butte Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman Wind LLCMissouri/WindMitchell Butte

  10. Twin Buttes Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas, Texas2022Wind Farm Jump JumpButtes

  11. Delcer Butte Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNewDeafDeerDelIowa:Delcer Butte Geothermal

  12. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  13. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    SciTech Connect (OSTI)

    Zemach, Ezra

    2010-01-01T23:59:59.000Z

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  14. CORRECTION OF BUTT-WELDING INDUCED DISTORTIONS BY LASER FORMING

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    CORRECTION OF BUTT-WELDING INDUCED DISTORTIONS BY LASER FORMING Peng Cheng, Andrew J. Birnbaum, Y Egland Technology and Solutions Division Caterpillar Inc. Peoria, IL KEYWORDS Welding, Distortion, Correction, Laser Forming ABSTRACT Welding-induced distortion is an intrinsic phenomenon arising due

  15. EIS-0077-S: Bonneville Power Administration Crow Butte Slough Crossing

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this SEIS to evaluate potential impacts resulting from construction of a 4,700 -foot segment of the Ashe-Slatt transmission line at Crow Butte Slough, overhead on towers on the existing right-of-way. This SEIS is a supplement to DOE/EIS-0077, Ashe-Slatt (Pebble Springs) 500-kilovolt Transmission Line.

  16. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  17. Box Butte County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBoston Heights, Ohio:BoulevardBow Mar,BowieBox Butte

  18. Butts County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy ResourcesSouthButts County,

  19. Butte County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County,BuschButte County,

  20. Red Butte, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay County,Open EnergyRecentButte, Wyoming:

  1. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  2. Microsoft Word - CX-Redmond-PilotButte-WoodPoleFY12_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    3, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Redmond-Pilot Butte No. 1 Wood Pole...

  3. Microsoft Word - CX-PilotButte-LaPineWoodPoleFY12_WEB.docx

    Broader source: Energy.gov (indexed) [DOE]

    0, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Pilot Butte-La Pine No. 1 Wood Pole...

  4. Difference-frequency generation in a butt-join diode laser

    SciTech Connect (OSTI)

    Zvonkov, B. N.; Biryukov, A. A.; Nekorkin, S. M. [Nizhni-Novgorod State University, Research Physicotechnical Institute (Russian Federation); Aleshkin, V. Ya., E-mail: aleshkin@ipm.sci-nnov.ru; Gavrilenko, V. I.; Dubinov, A. A.; Maremyanin, K. V.; Morozov, S. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2009-02-15T23:59:59.000Z

    The intracavity difference-frequency generation in the middle-infrared region in the GaAs/InGaAs/InGaP butt-join diode lasers with quantum wells is experimentally studied.

  5. Dormaier and Chester Butte 2007 Follow-up Habitat Evaluation Procedures Report.

    SciTech Connect (OSTI)

    Ashley, Paul R.

    2008-01-01T23:59:59.000Z

    Follow-up habitat evaluation procedures (HEP) analyses were conducted on the Dormaier and Chester Butte wildlife mitigation sites in April 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance, and maintain the project sites as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The Dormaier follow-up HEP survey generated 482.92 habitat units (HU) or 1.51 HUs per acre for an increase of 34.92 HUs over baseline credits. Likewise, 2,949.06 HUs (1.45 HUs/acre) were generated from the Chester Butte follow-up HEP analysis for an increase of 1,511.29 habitat units above baseline survey results. Combined, BPA will be credited with an additional 1,546.21 follow-up habitat units from the Dormaier and Chester Butte parcels.

  6. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

    E-Print Network [OSTI]

    Grujicic, Mica

    Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding M. Grujicic yet a fairly comprehensive overview of the friction stir welding (FSW) process is provided-element procedure developed in our prior study. Particular attention is given to proper modeling of the welding work

  7. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    E-Print Network [OSTI]

    Grujicic, Mica

    Welding M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C.-F. Yen, and B.A. Cheeseman-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt of the workpiece and the weld temperature- dependent and by allowing the potential work of plastic deformation

  8. Effect of welding on impact toughness of butt-joints in a titanium alloy

    E-Print Network [OSTI]

    Zhou, Wei

    , titanium alloys pick up oxygen and nitrogen from the atmosphere easily. Studies have shownEffect of welding on impact toughness of butt-joints in a titanium alloy Wei Zhou a, *, K.G. Chew b easy path for fracture propagation. # 2002 Published by Elsevier Science B.V. Keywords: Titanium alloy

  9. A Static Power Model for Architects J. Adam Butts and Gurindar S. Sohi

    E-Print Network [OSTI]

    Sohi, Guri S.

    A Static Power Model for Architects J. Adam Butts and Gurindar S. Sohi Computer Science Department systems such as servers in which multiple pro- cessors are in close proximity. Increasing the power decisions. Architectural efforts to control power dissipation have been directed primarily at the dynamic

  10. Retention of Butt-End Aluminum Leg Bands by Wild Turkeys

    E-Print Network [OSTI]

    Butler, Matthew J.

    Note Retention of Butt-End Aluminum Leg Bands by Wild Turkeys MATTHEW J. BUTLER,1,2 Department wild turkeys (Meleagris gallopavo intermedia) captured in Texas and Kansas, USA, 2000­2009. We examined 187 recaptured or harvested radiotagged wild turkeys to determine band retention and modeled band

  11. Geothermal assessment activities in Oregon, 1979-1980, and a case study example at Powell Buttes, Oregon

    SciTech Connect (OSTI)

    Priest, G.R.; Black, G.L.; Blackwell, D.D.; Brown, D.E.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01T23:59:59.000Z

    Geothermal assessment activities in Oregon are reviewed briefly. An isogradient map, a lithologic and temperature log, and a finite difference thermal conductivity model of Powell Buttes area are presented. (MHR)

  12. Field Mapping At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOE GTP) Exploration

  13. Static Temperature Survey At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes Area (DOE GTP)

  14. Cuttings Analysis At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing, Maine:1983) | Open EnergyGlass Buttes

  15. The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen and Hans Ziock

    E-Print Network [OSTI]

    1 The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen in this field. This memo explains why the development of a viable sequestration technology is a long term stra- tegic goal of utmost importance and why sequestration provides a goal worthy of the attention

  16. EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon

    Broader source: Energy.gov [DOE]

    This EA evaluates Ormat Nevada, Inc.s (Ormats) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on private land located adjacent to the federal geothermal leases west of Glass Butte (Private Lands). DOE funding would be associated with three of the sixteen proposed wells. BLM is the lead agency and DOE is participating as a cooperating agency.

  17. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  18. Eruption and emplacement of flood basalt. An example from the large-volume Teepee Butte Member, Columbia River Basalt Group

    SciTech Connect (OSTI)

    Reidel, S.P. (Washington State Univ., Pullman (United States)); Tolan, T.L. (Portland State Univ., OR (United States))

    1992-12-01T23:59:59.000Z

    Flows of the Teepee Butte Member, Grande Ronde Basalt, issued from a vent system in southeastern Washington, northeastern Oregon, and western Idaho. Three distinct basalt flows were erupted: the Limekiln Rapids flow, the Joseph Creek flow, and the Pruitt Draw flow. Together these mappable flows cover more than 52,000 km[sup 2] and have a volume exceeding 5,000 km[sup 3]. A portion of the vent system for the Joseph Creek flow is exposed in cross section in Joseph Canyon, Washington; it is one of the best preserved Columbia River Basalt Group vent complexes known. The vent complex is about 1 km in cross section, 30 m high, and composed of deposits characteristic of Hawaiian-type volcanism. The vent is asymmetrical; the eastern rampart consists of intercalated pyroclastic deposits and thin pahoehoe flows; the western rampart is composed wholly of pahoehoe flows. Flows of the Teepee Butte Member are compositionally homogeneous and were emplaced as sheet flows, each having several local flow units. Our study supports the importance of linear vent systems and the westward Palouse Slope, along with the large-volume lava flows, in controlling the distribution of Columbia River Basalt Group flows. Other factors, including the number of active fissure segments and topography, modified the shape of the flows and the number of flow units. 45 refs., 19 figs., 2 tabs.

  19. The Passivity and Breakdown of Beryllium in Aqueous Solutions M.A. Hill, D.P. Butt, and R.S. Lillard

    E-Print Network [OSTI]

    The Passivity and Breakdown of Beryllium in Aqueous Solutions M.A. Hill, D.P. Butt, and R beryllium (Be) has been studied as a function of pH. Below pH 2, Be exhibited active dissolution at all, the presence of the fluoride increased the passive current density of beryllium, but had no effect

  20. Corrosion of 304 Stainless Steel Exposed To Nitric Acid -Chloride Environments D.G. Kolman, D.K. Ford, D.P. Butt, and T.O. Nelson

    E-Print Network [OSTI]

    Corrosion of 304 Stainless Steel Exposed To Nitric Acid - Chloride Environments D.G. Kolman, D.K. Ford, D.P. Butt, and T.O. Nelson Materials Corrosion and Environmental Effects Laboratory Los AlamosCl, and temperature on the general corrosion behavior of 304 stainless steel (SS), electrochemical studies were

  1. Technical Letter Report - Preliminary Assessment of NDE Methods on Inspection of HDPE Butt Fusion Piping Joints for Lack of Fusion

    SciTech Connect (OSTI)

    Crawford, Susan L.; Cumblidge, Stephen E.; Doctor, Steven R.; Hall, Thomas E.; Anderson, Michael T.

    2008-05-29T23:59:59.000Z

    The U.S. Nuclear Regulatory Commission (NRC) has a multi-year program at the Pacific Northwest National Laboratory (PNNL) to provide engineering studies and assessments of issues related to the use of nondestructive evaluation (NDE) methods for the reliable inspection of nuclear power plant components. As part of this program, there is a subtask 2D that was set up to address an assessment of issues related to the NDE of high density polyethylene (HDPE) butt fusion joints. This work is being driven by the nuclear industry wanting to employ HDPE materials in nuclear power plant systems. This being a new material for use in nuclear applications, there are a number of issues related to its use and potential problems that may evolve. The industry is pursuing ASME Code Case N-755 entitled Use of Polyethylene (PE) Plastic Pipe for Section III, Division 1, Construction and Section XI Repair/Replacement Activities that contains the requirements for nuclear power plant applications of HDPE. This Code Case requires that inspections be performed after the fusion joint is made by visually examining the bead that is formed and conducting a pressure test of the joint. These tests are only effective in general if gross through-wall flaws exist in the fusion joint. The NRC wants to know whether a volumetric inspection can be conducted on the fusion joint that will reliably detect lack-of-fusion conditions that may be produced during joint fusing. The NRC has requested that the work that PNNL is conducting be provided to assist them in resolving this inspection issue of whether effective volumetric NDE can be conducted to detect lack of fusion (LOF) in the butt HDPE joints. PNNL had 24 HDPE pipe specimens manufactured of 3408 material to contain LOF conditions that could be used to assess the effectiveness of NDE in detecting the LOF. Basic ultrasonic material properties were measured and used to guide the use of phased arrays and time-of-flight diffraction (TOFD) work that was conducted. Millimeter (mm) waves were also used to inspect these assemblies. Fluor and NDE Innovations, Inc. conducted TOFD inspections using their commercially available equipment on all 24 specimens. These NDE inspection results were reviewed and several of the specimens were selected for destructive evaluation using a microtome to slice small blocks of blank and fusion joint material. This interim report provides a status/summary of the work that has been conducted to date. In the areas selected for destructive testing where there were strong acoustic responses, LOF was verified. In areas where there were no NDE responses, no LOF was found. It needs to be noted that only a small amount of material has been destructively characterized at this point and further work is planned to determine if these trends hold up. Some of the material from three of the assemblies was sent off for mechanical testing but the results were not available to be included in this status report. The initial work shows that at least some of the LOF is providing NDE responses that have been verified through destructive testing. Thus, there is promise that a volumetric examination can be conducted on HDPE butt fusion joints. The future work will lead to quantifying what various NDE methods can detect, what they miss, and what they incorrectly characterize as defective.

  2. Busted Butte Unsaturated Zone Transport Test: Fiscal Year 1998 Status Report Yucca Mountain Site Characterization Program Deliverable SPU85M4

    SciTech Connect (OSTI)

    Bussod, G.Y.; Turin, H.J.; Lowry, W.E.

    1999-11-01T23:59:59.000Z

    This report describes the status of the Busted Butte Unsaturated Zone Transport Test (UZTT) and documents the progress of construction activities and site and laboratory characterization activities undertaken in fiscal year 1998. Also presented are predictive flow-and-transport simulations for Test Phases 1 and 2 of testing and the preliminary results and status of these test phases. Future anticipated results obtained from unsaturated-zone (UZ) transport testing in the Calico Hills Formation at Busted Butte are also discussed in view of their importance to performance assessment (PA) needs to build confidence in and reduce the uncertainty of site-scale flow-and-transport models and their abstractions for performance for license application. The principal objectives of the test are to address uncertainties associated with flow and transport in the UZ site-process models for Yucca Mountain, as identified by the PA working group in February 1997. These include but are not restricted to: (1) The effect of heterogeneities on flow and transport in unsaturated and partially saturated conditions in the Calico Hills Formation. In particular, the test aims to address issues relevant to fracture-matrix interactions and permeability contrast boundaries; (2) The migration behavior of colloids in fractured and unfractured Calico Hills rocks; (3) The validation through field testing of laboratory sorption experiments in unsaturated Calico Hills rocks; (4) The evaluation of the 3-D site-scale flow-and-transport process model (i.e., equivalent-continuum/dual-permeability/discrete-fracture-fault representations of flow and transport) used in the PA abstractions for license application; and (5) The effect of scaling from lab scale to field scale and site scale.

  3. Effect of heat input on the microstructure and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates

    SciTech Connect (OSTI)

    Min Dong [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China); Shen Jun, E-mail: shenjun2626@163.com [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China); Lai Shiqiang; Chen Jie [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2009-12-15T23:59:59.000Z

    In this paper, the effects of heat input on the microstructures and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates were investigated by microstructural observations, microhardness tests and tensile tests. The results show that with an increase of the heat input, the grains both in the fusion zone and the heat-affected zone coarsen and the width of the heat-affected zone increased. Moreover, an increase of the heat input resulted in a decrease of the continuous {beta}-Mg{sub 17}Al{sub 12} phase and an increase of the granular {beta}-Mg{sub 17}Al{sub 12} phase in both the fusion zone and the heat-affected zone. The ultimate tensile strength of the welded joint increased with an increase of the heat input, while, too high a heat input resulted in a decrease of the ultimate tensile strength of the welded joint. In addition, the average microhardness of the heat-affected zone and fusion zone decreased sharply with an increase of the heat input and then decreased slowly at a relatively high heat input.

  4. Gordon Butte | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation, searchGoodyear, Arizona:

  5. Burley Butte | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County, North Dakota:

  6. The Hydrogeologic Character of the Lower Tuff Confining Unit and the Oak Springs Butte Confining Unit in the Tuff Pile Area of Central Yucca Flat

    SciTech Connect (OSTI)

    Drellack, Jr., Sigmund L.; Prothro, Lance B.; Gonzales, Jose L.; Mercadante, Jennifer M.

    2010-07-30T23:59:59.000Z

    The lower tuff confining unit (LTCU) in the Yucca Flat Corrective Action Unit (CAU) consists of a monotonous sequence of pervasively zeolitized volcanic tuff (i.e., mostly bedded with lesser nonwelded to poorly welded tuff; not fractured) (Bechtel Nevada, 2006). The LTCU is an important confining unit beneath Yucca Flat because it separates the alluvial and volcanic aquifers, where many underground nuclear tests were conducted, from the regional lower carbonate aquifer. Recent sub-CAU-scale modeling by Los Alamos National Laboratory in the Tuff Pile area of Yucca Flat (Boryta, et al., in review) includes postulated low-porosity, high-permeability zones (i.e., fractured welded-tuff aquifers) within the LTCU. This scenario indicates that such postulated low-porosity, high-permeability zones could provide fast-path lateral conduits to faults, and eventually to the lower carbonate aquifer. A fractured and faulted lower carbonate aquifer is postulated to provide a flow path(s) for underground test-derived contaminants to potential offsite receptors. The ramifications of such a scenario are obvious for groundwater flow and contaminant migration beneath Yucca Flat. This paper describes the reasoning for not including postulated low-porosity, high-permeability zones within the LTCU in the Tuff Pile area or within the LTCU in the Yucca Flat CAU-scale model. Both observational and analytical data clearly indicate that the LTCU in the Tuff Pile area consists of pervasively zeolitic, nonwelded to poorly welded tuffs that are classified as tuff confining units (i.e., high-porosity, low-permeability). The position regarding the LTCU in the Tuff Pile area is summarized as follows: The LTCU in the Tuff Pile area consists of a monotonous sequence of predominantly zeolitic nonwelded to poorly welded tuffs, and thus is accurately characterized hydrogeologically as a tuff confining unit (aquitard) in the Yucca Flat-Climax Mine hydrostratigraphic framework model (Bechtel Nevada, 2006). No welded-tuff (or lava-flow aquifers), referred to as low-porosity, high-permeability zones in Boryta et al. (in review), are present within the LTCU in the Tuff Pile area. Fractures within the LTCU are poorly developed, a characteristic of zeolitic tuffs; and fracture distributions are independent of stratigraphic and lithologic units (Prothro, 2008). Groundwater flow and radionuclide transport will not be affected by laterally extensive zones of significantly higher permeability within the LTCU in the Tuff Pile area. Although not the primary focus of this report, the hydrogeologic character of the Oak Spring Butte confining unit (OSBCU), located directly below the LTCU, is also discussed. The OSBCU is lithologically more diverse, and does include nonwelded to partially welded ash-flow tuffs. However, these older ash-flow tuffs are poorly welded and altered (zeolitic to quartzofeldspathic), and consequently, would tend to have properties similar to a tuff confining unit rather than a welded-tuff aquifer.

  7. Anthracite-Crested butte folio, Colorado

    E-Print Network [OSTI]

    Cross, Whitman, 1854-1949.; Eldridge, George Homans, 1854-1905.; Emmons, Samuel Franklin, 1841-1911.

    1894-01-01T23:59:59.000Z

    intake relationship to offspring age for black-tailed deer, elk, and white-tailed deer. 61 20 Scalar adjustment to milk energy concentration throughout lactation. 62 21 Scalar adjustment to milk production due to the milk requirement ratio. Milk... and likelihood of return at recreational areas (Swanson et al. 1989, Hastings 1986). Income from hunting operations is a major source of compensatory income for traditional farmers and ranchers (Haney 1983, Hill 1994). While deer are obviously an important...

  8. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy ResourcesSouth Dakota:Montana:

  9. Glass Buttes Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to: navigation,GilaGirasoleWest Virginia: EnergyGlass

  10. Square Butte Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, IncSouthwesternSparkSpring

  11. Coffin Butte Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: EnergyCoeur d Alene Fiber Fuels IncCoffey

  12. Glass Buttes Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <Glacial Energy HoldingsGlacial Lakes

  13. Butte Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy Information Burkina

  14. Gorham, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEFLakes,GoliadGordon, Alabama: EnergyGorham,

  15. aa6056 butt joints: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 55 Joint Degrees & Promotion towards European Students Computer...

  16. alloy butt joints: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 63 Joint Degrees & Promotion towards European Students Computer...

  17. SRM 2372: Past, Present, Erica Butts, Margaret Kline,

    E-Print Network [OSTI]

    Microfluidic (Fluidigm BioMark) Emulsion/droplet PCR (Bio-Rad QX100, RainDance) Each partition will contain

  18. EA-1996: Glass Buttes Radio Station, Lake County, Oregon

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management (BLM), with DOEs Bonneville Power Administration (BPA) as a cooperating agency, is preparing an EA that will evaluate the potential environmental impacts of a proposal to construct two telecommunications facilities, one of which would provide BPA telecommunications services, on BLM land. Additional information is available at http://www.blm.gov/or/districts/prineville/plans/glassbuttes/.

  19. Geology And A Working Conceptual Model Of The Obsidian Butte...

    Open Energy Info (EERE)

    concentrations of veinlets and dilational breccias mineralized with pos t-calc-silicate specular hematite & anhydrite. The foregoing observations and deductions are...

  20. Evolving Cooperation: The Butt Lovers Dillema David Kaczorwski & Andy Zuppan

    E-Print Network [OSTI]

    Meeden, Lisa A.

    resources is not a zero-sum game, that is, working together can yield more total gain than the sum of gains of evolution [5]. It is this notion of non-zero-sum games that we believe allows cooperation to emerge from evo- lution. If individuals can both prosper through coordinating actions, then there could certainly

  1. Microsoft Word - CX-Silver_Butte_28August2012.docx

    Broader source: Energy.gov (indexed) [DOE]

    which may cause serious physical harm or death. The existing fiber has fallen from the transmission towers and is currently laying on the ground, which makes the fiber...

  2. Microsoft Word - G0374 Horse Butte CX.doc

    Broader source: Energy.gov (indexed) [DOE]

    uncontrolled or unpermitted releases, or (iv) adversely affect environmentally sensitive resources. In addition to all soil disturbing activities being located on previously...

  3. Aeromagnetic Survey At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) | Open EnergyInformationInformation 411

  4. Butte County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy Resources

  5. Butte County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy ResourcesSouth Dakota: Energy

  6. Butte Falls, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy ResourcesSouth Dakota:

  7. Sigurd Red Butte No2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbH Jump to:SierraMountain, Tennessee:Sigurd

  8. SiZRiBUTtOM OF THIS DOCUMBT I S

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSettingUncertainties

  9. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy Information forInjuryof Energy

  10. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy Information forInjuryof

  11. Multispectral Imaging At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question) | Open EnergyEnergy Information

  12. Crested Butte, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007) |ofCreighton

  13. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIANManagement1,Innovative Exploration

  14. Designing Accelerator-Based Distributed Systems for High Performance M. Mustafa Rafique, Ali R. Butt

    E-Print Network [OSTI]

    Butt, Ali R.

    ), yielding highly power-efficient and cost-efficient designs, with per- formance exceeding 100 Gflops [1Designing Accelerator-Based Distributed Systems for High Performance M. Mustafa Rafique, Ali R general- purpose cores (e.g. x86, PowerPC) and computational accelerators (e.g. SIMD processors and GPUs

  15. The Corrosion of Materials in Spallation Neutron Sources R. Scott Lillard, Darryl P. Butt

    E-Print Network [OSTI]

    with Westinghouse Savannah River Company, Brookhaven National Laboratory, Lawrence Livermore National Laboratory Alamos National Laboratory Los Alamos New Mexico 87545 Summary This paper presents a summary of our neutron source is the Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory

  16. Microsoft Word - CX-PilotButte-LaPine-WoodPoles-FY13_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    3, 2013 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Wood pole replacements on Bonneville Power...

  17. Microsoft Word - CX-Redmond-PilotButte-Lapine_RelayCommunicationReplac...

    Broader source: Energy.gov (indexed) [DOE]

    7, 2010 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Cleareance Memorandum Jim Riehl Electrical Engineer - TECC-CSB-2 Proposed Action: Replace a relaytransfer trip rack at...

  18. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, NewG22 Jump

  19. EA-1996: Glass Buttes Radio Station, Lake County, Oregon | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011DDelphiFEA-2013.pdfBasedTheCounty,NFSCArizona|

  20. A Demonstration Project for Capturing Geothermal Energy from Mine Waters beneath Butte, MT

    Broader source: Energy.gov [DOE]

    Project objectives. Demonstrate performance of heat pumps in a large HVAC system in a heating-dominated climate.

  1. Pressure Temperature Log At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas-| OpenInformation Glass

  2. LiDAR At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow(Redirected from Lewisburg,

  3. Slim Holes At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation Slim Holes ActivityNotes 2 slimArea

  4. Ground Gravity Survey At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000) Exploration

  5. Development Wells At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: EnergyKansas:DetroitOpen Energy1987) | Open

  6. Compound and Elemental Analysis At Glass Buttes Area (DOE GTP) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) | Open EnergyEnergy2008) |Energy

  7. Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area (DOE GTP) Exploration ActivityFlow

  8. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County,| OpenAtGas

  9. Geology And A Working Conceptual Model Of The Obsidian Butte (Unit 6)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | Open Energy(Blackwell, EtRaft river valley, Idaho

  10. FMI Log At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FAS TechnologiesInformation

  11. Blind Geothermal System Exploration in Active Volcanic Environments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon...

  12. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect (OSTI)

    Liu Fei; Zhang Zhaodong; Liu Liming, E-mail: liulm@dlut.edu.cn

    2012-07-15T23:59:59.000Z

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  13. Lagoon Seepage Testing Procedures for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory Butte County, Idaho April 2014

    SciTech Connect (OSTI)

    Alan Giesbrecht

    2014-05-01T23:59:59.000Z

    The lagoon seepage testing procedures are documented herein as required by the Wastewater Rules (IDAPA 58.01.16.493). The Wastewater Rules and Wastewater Reuse Permit LA-000141-03 require that the procedure used for performing a seepage test be approved by IDEQ prior to conducting the seepage test. The procedures described herein are based on a seepage testing plan that was developed by J-U-B ENGINEERS, Inc. (J-U-B) and has been accepted by several IDEQ offices for lagoons in Idaho.

  14. Lagoon Seepage Testing Report for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory, Butte County, Idaho

    SciTech Connect (OSTI)

    Bridger Morrison

    2014-09-01T23:59:59.000Z

    J-U-B ENGINEERS, Inc. (J-U-B) performed seepage tests on the CFA Wastewater Lagoons 1, 2, and 3 between August 26th and September 22nd, 2014. The lagoons were tested to satisfy the Idaho Department of Environmental Quality (DEQ) Rules (IDAPA 58.01.16) that require all lagoons be tested at a frequency of every 10 years and the Compliance Activity CA-141-03 in the DEQ Wastewater Reuse Permit for the CFA Sewage Treatment Plant (LA-000141-03). The lagoons were tested to determine if the average seepage rates are less than 0.25 in/day, the maximum seepage rate allowed for lagoons built prior to April 15, 2007. The average seepage rates were estimated for each lagoon and are given in Table-ES1. The average seepage rates for Lagoons 1 and 2 are less than the allowable seepage rate of 0.25 in/day. Lagoon 1 and 2 passed the seepage test and will not have to be tested again until the year 20241. However, the average seepage rate for Lagoon 3 appears to exceed the allowable seepage rate of 0.25 in/day which means the potential source for the excessive leakage should be investigated further.

  15. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect (OSTI)

    Not Available

    1988-09-01T23:59:59.000Z

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  16. Abnormal distribution of microhardness in tungsten inert gas arc butt-welded AZ61 magnesium alloy plates

    SciTech Connect (OSTI)

    Xu Nan [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China); Shen Jun, E-mail: shenjun2626@163.com [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China); Xie Weidong; Wang Linzhi; Wang Dan; Min Dong [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2010-07-15T23:59:59.000Z

    In this study, the effects of heat input on the distribution of microhardness of tungsten inert gas (TIG) arc welded hot-extruded AZ61 magnesium alloy joints were investigated. The results show that with an increase of heat input, the distributions of microhardness at the top and bottom of the welded joints are different because they are determined by both the effect of grain coarsening and the effect of dispersion strengthening. With an increase of the heat input, the microhardness of the heat-affected zone (HAZ) at the top and bottom of welded joints and the fusion zone (FZ) at the bottom of welded joints decreased gradually, while the microhardness of the FZ at the top of welded joints decreased initially and then increased sharply. The reason for the abnormal distribution of microhardness of the FZ at the top of the welded joints is that this area is close to the heat source during welding and then large numbers of hard {beta}-Mg{sub 17}(Al,Zn){sub 12} particles are precipitated. Hence, in this case, the effect of dispersion strengthening dominated the microhardness.

  17. A Light-weight Approach to Reducing Energy Management Delays in Disks Guanying Wang, Ali R. Butt, Chris Gniady, Puranjoy Bhattacharjee

    E-Print Network [OSTI]

    Butt, Ali R.

    systems overnight [6] to reduce energy costs. Setups such as academic institutions and businesses, where- end applications. These computers consume a lot of energy whose monetary cost accounts techniques such as turning machines off overnight and dynamic energy management during the business hours

  18. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  19. Economic Implications of Farmer Storage of Surface Water in Federal Projects: Elephant Butte Irrigahon District, Dona Ana and Sierra Counties, New Mexico

    E-Print Network [OSTI]

    Ellis, J. R.; Teague, P. W.; Lacewell, R. D.

    allocation of surface water given the 1 and 3 foot groundwater limitations. These streams of net returns were valued in 1980 dollars allowing comparison among the alternative scenarios. Differences between the various returns streams for each groundwater...

  20. Assessment of the Mechanical Stress Improvement Process for Mitigating Primary Water Stress Corrosion Cracking in Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.

    2013-01-01T23:59:59.000Z

    This report provides an assessment of the use of Mechanical Stress Improvement Process to reduce, or decrease, stress-driven degradation, i.e., primary water stress corrosion cracking.

  1. Assessment of Weld Overlays for Mitigating Primary Water Stress Corrosion Cracking at Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    SciTech Connect (OSTI)

    Sullivan, Edward J.; Anderson, Michael T.

    2012-08-01T23:59:59.000Z

    This TLR provides an assessment of weld overlays as a mitigation strategy for PWSCC, and includes an assessment of the WOL-related inspection requirements of Code Case N-770-1, as conditioned in 50.55a.

  2. IMBS ANNUAL REPORT 2005-2006 Douglas R. White 5. Social and Economic Phenomena: as per the web site

    E-Print Network [OSTI]

    White, Douglas R.

    Social Dynamics and Evolution : Butts, Narens, Romney, Saari, Skyrms, Smyth, Stern, and White Text

  3. Chemistry Graduate Degree Program Page 1 of 3 Last Updated 09/19/13

    E-Print Network [OSTI]

    Reich, Norbert O.

    -Rad Laboratories, Inc. Booz Allen Hamilton Inc. Boston College Bruker Biospin Corp. Butte College Cabot Corporation

  4. Microsoft Word - LSN_FiberInstall_CX.docx

    Broader source: Energy.gov (indexed) [DOE]

    BPA's Ponderosa-Pilot Butte 230-kilovolt (kV) and Redmond-Pilot Butte 230-kV transmission lines in Deschutes County, Oregon. BPA has determined that the fiber would not...

  5. White Nose, (Post) Bawdy Bodies and the Un/dancing Sexy Jewess

    E-Print Network [OSTI]

    Schwadron, Hannah Sarah

    2013-01-01T23:59:59.000Z

    other bodily excesses like boobs, butts, legs, necks, andas well as in her bodies (boobs, nose, butt, voice, volume,Star of David pendant, I stood, boob-less, feeling out my

  6. LAKE COLUSA SAN JOAQUIN

    E-Print Network [OSTI]

    DEL NORTE SISKIYOU MODOC LASSEN BUTTE PLUMAS GLENN LAKE COLUSA SUTTER YUBA NEVADA SIERRA PLACER EL 1 0 1 "!9 6 Lake Tahoe HUMBOLDT TEHAMA MENDOCINO DEL NORTE SISKIYOU MODOC LASSEN BUTTE PLUMAS GLENN

  7. COMICS, CARTOONS, AND FUNNY PAPERS The Rube Goldberg, Phil Frank, and Gus Arriola Archives in The Bancroft Library

    E-Print Network [OSTI]

    California at Berkeley, University of

    such comic features as Boob McNutt, Foolish Questions, Mike and Ike, and Professor Butts. "I shall always

  8. Renewable Energy Action Team-Generation Tracking For Renewable Projects Revised 6/17/13

    E-Print Network [OSTI]

    /Silverado Power 52 Solar PV 17 Aurora Solar Kings Iberdrola 20 Solar PV 18 Avenal Photovoltaic Solar Farm Kings Name County Developer MW Type Solar PV 1 2009_Retzer Butte Pristine Sun Fund 6 Butte PGE LLC 0.75 Solar PV 2 2081 Terzian Fresno Pristine Sun Fund 10 FresnoPGE LLC 1.25 Solar PV 3 2094_Buzzelle Butte

  9. Berlin Gorham Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes Jump to:formelyTree

  10. Merging high resolution geophysical and geochemical surveys to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high resolution geophysical and geochemical surveys to reduce exploration risk at Glass Buttes, Oregon Merging high resolution geophysical and geochemical surveys to reduce...

  11. A Demonstration System for Capturing Geothermal Energy from Mine...

    Open Energy Info (EERE)

    Technology Demonstration Projects Project Description Butte, Montana, like many other mining towns that developed because of either hard-rock minerals or coal, is underlain by...

  12. CX-003037: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003037: Categorical Exclusion Determination Mercury Removal from Clean Coal Processing Air Stream CX(s) Applied: B3.6 Date: 07132010 Location(s): Butte,...

  13. NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    Krastman 5110 -10112 Butte, Silver Bow County, Montana Mercury Removal from Clean Coal Processing Air Stream Use metallic nano-particle filters to remove mercury from...

  14. NotesFromtheChair 2 CouncilBeginsAmendmentofFish 2

    E-Print Network [OSTI]

    Q&A: 12 SakuraUrbanConcepts From Landfill Gas to Renewable 14 Energy - Coffin Butte CouncilDecisions 14

  15. geo column legal.ai

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermopolis Shale Dakota Lakota Goose Egg Tensleep Amsden Madison Undifferentiated Granite Steele Shale Frontier Sundance Chugwater Group Teapot Ss "Pumpkin Buttes shale"...

  16. annual water storage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a program for farmer storage of surface irrigation water in Elephant Butte Reservoir, New Mexico. This program would allow individual farmers to store part of their annual surface...

  17. Merging High Resolution Geophysical and Geochemical Surveys to...

    Open Energy Info (EERE)

    Buttes, Oregon Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Merging High Resolution Geophysical and Geochemical Surveys to Reduce...

  18. CX-012790: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Haystack Butte Radio Site Land Acquisition CX(s) Applied: B1.24Date: 41939 Location(s): WashingtonOffices(s): Bonneville Power Administration

  19. ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guernsey Rural, Worland, Refinery, Box Butte, and Morrill Taps Located in Wyoming and Nebraska A. Brief Description of Proposal: Western Area Power Administration (Western)...

  20. CX-009210: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Silver Butte Fiber Burial Project CX(s) Applied: B.47 Date: 08/28/2012 Location(s): Montana, Montana Offices(s): Bonneville Power Administration

  1. Peak Oil Awareness Network | Open Energy Information

    Open Energy Info (EERE)

    Awareness Network Jump to: navigation, search Name: Peak Oil Awareness Network Place: Crested Butte, Colorado Zip: 81224 Website: http:www.PeakOilAwarenessNet Coordinates:...

  2. allergic airway disease: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanieh Sadat Musavian; Tariq Mahmood Butt; Susanne Brix 66 Interference of a short-term exposure to nitrogen dioxide with allergic airways responses to allergenic Physics...

  3. allergic airways disease: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanieh Sadat Musavian; Tariq Mahmood Butt; Susanne Brix 66 Interference of a short-term exposure to nitrogen dioxide with allergic airways responses to allergenic Physics...

  4. --No Title--

    Broader source: Energy.gov (indexed) [DOE]

    installing up to 57 energy efficient furnaces in tribal residences to replace existing propane furnaces * Activity 2 includes conducting the following retrofits at the Eagle Butte...

  5. Merging high resolution geophysical and geochemical surveys to...

    Broader source: Energy.gov (indexed) [DOE]

    Merging high resolution geophysical and geochemical surveys to reduce exploration risk at Glass Buttes, Oregon Patrick Walsh Ormat Nevada Inc. Innovative technologies May 19, 2010...

  6. EN -1001 EN -1052 Abbott, Justin H.

    E-Print Network [OSTI]

    Peters, Dennis

    . Batten, Ryan M. Bragg, Stephen E. Brown, Micah C. Bruneau, David A. Buckle, Mark Butnain, Sarintip Butt, Jonathan L. Butt, Sean A. Campbell, Peter J. Carey, Kyle A. Christensen, Lars R. Corcoran, Gary P. Day, Jillian R. Lannon, Steven L. Howse, Christopher D. Lawrence, Joshua D. Innes, Emily A. McKelvie, Jonathan

  7. Member of the KWH Group10/8/12 File ID / Author Geothermal Vaults for Commercial

    E-Print Network [OSTI]

    Commenced. 1955 The first polyethylene pipes were delivered to customers. 1964 Butt Fusion Welding Machines the vault Butt-fused manifolds OSHA approved access ladder Pressure Temperature Ports on all outlets circuit Inline temperature and pressure gauges OSHA Ladder Electrical Sump pump Inline Fan FRP

  8. FY 2008-2018 F&W Program Project Solicitation Section 10. Narrative

    E-Print Network [OSTI]

    .S. Fish and Wildlife Service and NOAA Fisheries matrix indicator methods for making Endangered Species Recovery Fund, the Oregon Watershed Enhancement Board, the Pelton Round Butte Fund, and other competitive

  9. March/April 1998 WAS 1998 Motor Carrier Permit Honey Board Busy

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    you drop at the Palouse shopping mall (you can walk to it). A little further away you can jet boat Creek garnet area; or hike to the top of Kamiak Butte for a spectacular view of the Palouse Hills

  10. Structure of a Bacterial Cell Surface Decaheme Electron Conduit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M Edwards, AJ Gates, A Hall, G White, J Bradley, CL Reardon, L Shi, AS Beliaev, MJ Marshall, Z Wang, N Watmough, JK Fredrickson, JM Zachara, JN Butt, and DJ...

  11. CX-003588: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Synthesis of Renewable Biofuels from BiomassCX(s) Applied: B3.6Date: 08/24/2010Location(s): Butte, MontanaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  12. MULTISPECIES FISH PASSAGE BEHAVIOUR IN A VERTICAL SLOT FISHWAY ON THE RICHELIEU RIVER, QUEBEC, CANADA

    E-Print Network [OSTI]

    Cooke, Steven J.

    dam failure. N.P.--Na- tional Park. Mine impacts derive primarily from Miller Creek drainage Soda Butte Creek, Yellowstone National Park. A tailings dam failure in 1950 emplaced metal

  13. Columbia River Basin Accords -Narrative Proposal Form 1 Table 1. Proposal

    E-Print Network [OSTI]

    Department of Fish and Wildlife (ODFW), the Pelton Round Butte Hydro Project Co-Licensees, Portland General Electric Company (PGE) and the Confederated Tribes of Warm Springs Reservation of Oregon Warm Springs Power

  14. Geodetic investigation into the deformation of the Salton Trough Brendan W. Crowell,1,2

    E-Print Network [OSTI]

    Fialko, Yuri

    -scale subsidence and anomalous heat flow exist in the Imperial Valley near Obsidian Buttes and Mexico's Cerro Prieto volcanic zone caused by both tectonic extension and water extraction for irrigation and geothermal

  15. CX-010585: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Teakean Butte Radio Station Upgrade CX(s) Applied: B1.19, B1.24 Date: 07/03/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

  16. Jason S. Alexander, Hydrologist October 7, 2010

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    necessary Approach and Methods Two Scales: 1. Basin scale · ~330 mile reach from Box Butte Reservoir ice jams ­ flood frequency unknown Terraces ­ abandoned floodplains except during very rare high

  17. CX-009090: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Line Switch Replacements at Guernsey Rural, Worland, Refinery, Box Butte, and Morrill Taps CX(s) Applied: B4.6, B4.11 Date: 07302012 Location(s):...

  18. CX-005418: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    generation produced from the Horse Butte Wind project would interconnect into BPA?s transmission system via a tap between towers 316 and 317 of BPA?s Palisades-Goshen...

  19. PROFESSIONAL SERVICE Chair Technical and Economic Committee, CVSALTS Central Valley Salinity Coalition, (2008

    E-Print Network [OSTI]

    Quinn, Nigel

    -2008 Berkeley Laboratory Delegate, White House Conference on Industrial Ecology Department of Energy, Water-Energy, Central Valley Salinity Coalition, CVSALTS SOCIAL/CIVIC Yolo Polo Club Sutter Buttes Polo Club Wine

  20. Peak Oil Food Network | Open Energy Information

    Open Energy Info (EERE)

    Butte, Colorado Zip: 81224 Website: http:www.PeakOilFoodNetwork. References: Peak Oil Food Network1 This article is a stub. You can help OpenEI by expanding it. The Peak...

  1. Lane County Certified Family Child-Care Homes Serving Children Under Three

    E-Print Network [OSTI]

    Oregon, University of

    Ave Eugene OR 97405 5416871944 1 Happy Hearts Eugene 801 Dorris St Eugene OR 97404 5416890844 1 Havin 5415152173 1 #12;Tere's Child Care 2060 Dewey St Eugene OR 97402 5412280209 1 The Toy Box 1132 Valley Butte

  2. SiGe electro-absorption modulators for applications at 1550nm

    E-Print Network [OSTI]

    Bernardis, Sarah

    2008-01-01T23:59:59.000Z

    A novel SixGe?-x, electro-absorption modulator design is experimentally demonstrated. The device is waveguide integrated, butt-coupled into high index contrast Si/SiO2 waveguides. 0.75% Silicon concentration in the alloy ...

  3. CX-010098: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Phoenix to Lone Butte 230 Kilovolt Transmission Line, Bird Diverter Installation CX(s) Applied: B1.3 Date: 04/08/2013 Location(s): CX: none Offices(s): Western Area Power Administration-Desert Southwest Region

  4. CX-010097: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Herbicide Application at Lone Butte Substation During Fiscal Year 2013 CX(s) Applied: B1.3 Date: 04/24/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  5. Scuttlebutt Volume 2, No. 3

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    - and then take another small moment to think of your other crewmates and silently offer your support to them as a fellow member of the crew, and of the family. COL Bruce O?Brien Commanding Officer Newsletter Publisher http://www.uss-southerncross.com/ May... RPG * A final farewell to Lauretta Gal The ScuttleButt The Official Newsletter of The USS Southern Cross ScuttleButt is the newsletter of the USS Southern Cross, a correspondence chapter of Starfleet International, covering Australia, New Zealand...

  6. Estimate of the allowable dimensions of diagnosed defects in category III and IV welded pipeline joints{sup 1}

    SciTech Connect (OSTI)

    Grin', E. A.; Bochkarev, V. I. [JSC 'All-Russia Thermal Engineering Institute' (JSC 'VTI') (Russian Federation)] [JSC 'All-Russia Thermal Engineering Institute' (JSC 'VTI') (Russian Federation)

    2013-01-15T23:59:59.000Z

    An approach for estimating the permissible dimensions of technological defects in butt welded joints in category III and IV pipelines is described. The allowable size of a welding defect is determined from the condition of compliance with the specifications on strength for a reference cross section (damaged joint) of the pipeline taking into account its weakening by a given defect.With regard to the fairly widespread discovery of technological defects in butt welded joints during diagnostics of auxiliary pipelines for thermal electric power plants, the proposed approach can be used in practice by repair and consulting organizations.

  7. The impact of sheared vs. sawn timber in the typical southern pine plywood mill

    E-Print Network [OSTI]

    Swinney, Russell Garrett

    1989-01-01T23:59:59.000Z

    . Areas of impact from sheared logs within the plywood manufacturing process. 20 5. BP grade veneer peeled from the butt end of a sawn log 25 6. BP grade veneer peeled from the butt end of a sheared log. 26 7. Visible defects in veneer resulting from... two block log is trimmed four to six inches to eliminate obvious shear damage, then the log will be too short to get two 103-inch blocks. The result is that one block will be chipped for sale to a pulp mill rather than peeled for veneer for use...

  8. Apparatus and method for harvesting woody plantations

    DOE Patents [OSTI]

    Eggen, D.L.

    1988-11-15T23:59:59.000Z

    A tree harvester for harvesting felled trees includes a wheel mounted wood chipper which moves toward the butt ends of the tree stems to be processed. The harvester includes a plurality of rotating alignment discs in front of the chipper. These discs align the tree stems to be processed with the mouth of the chipper. A chipper infeed cylinder is rotatably mounted between the discs and the front end of the chipper, and lifts the tree stem butts up from the ground into alignment with the chipper inlet port. The chips discharge from the chipper and go into a chip hopper which moves with the tree harvester. 8 figs.

  9. Apparatus and method for harvesting woody plantations

    DOE Patents [OSTI]

    Eggen, David L. (Rte. 1, Box 257, Moose Lake, MN 55767)

    1988-11-15T23:59:59.000Z

    A tree harvester for harvesting felled trees includes a wheel mounted wood chipper which moves toward the butt ends of the tree stems to be processed. The harvester includes a plurality of rotating alignment discs in front of the chipper. These discs align the tree stems to be processed with the mouth of the chipper. A chipper infeed cylinder is rotatably mounted between the discs and the front end of the chipper, and lifts the tree stem butts up from the ground into alignment with the chipper inlet port. The chips discharge from the chipper and go into a chip hopper which moves with the tree harvester.

  10. Opening criteria for accelerated paving techniques

    E-Print Network [OSTI]

    Johnson, Jason Leonard

    1993-01-01T23:59:59.000Z

    ?pih do?il t?r Dummy-groove contraction Dummy-groove, doweled contraction Dlrectioh of pour td I t d. th dotal ba Flee s?N th lob i pated Butt construction Expansion Filler tredeobe O/f I/Iced cf hooked ti b Q I/Z- $o/a Leyed longitudinal, tied...

  11. Segmentation of complex geophysical structures with well Running title: Image segmentation with well data.

    E-Print Network [OSTI]

    Boyer, Edmond

    with well data. Authors: Christian Gout§, and Carole Le Guyader. Complete affiliation: § Universit´e de 96822-2273 , USA. chris gout@cal.berkeley.edu : INSA de Rennes 20 Avenue des Buttes de Co¨esmes CS 14315 35043 Rennes, France. carole.le-guyader@insa-rennes.fr Corresponding author : Christian Gout

  12. /Scratch as a Cache: Rethinking HPC Center Scratch Storage

    E-Print Network [OSTI]

    Vazhkudai, Sudharshan

    -center destinations. Consequently, the scratch storage is designed to be a staging ground for transient datasets/Scratch as a Cache: Rethinking HPC Center Scratch Storage Henry M. Monti, Ali R. Butt Department- table fraction of their operating budget on a specialized fast storage system, scratch space, which

  13. "One of the most exciting aspects of sensor research is

    E-Print Network [OSTI]

    Barrash, Warren

    and bacteria oil SenSorS to detect contaminants and water in airplane and automotive engines magnetic." -- Dr. Darryl Butt (pictured at left) Chair, Department of Materials Science and Engineering-BaSed sensors that detect contaminants based on changes in magnetic properties of materials SenSor project

  14. Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083-H321

    E-Print Network [OSTI]

    Grujicic, Mica

    -hardened/stabilized Al-Mg-Mn alloy) are characterized by a relatively large statistical scatter. This scatter is closely process is particularly suited for butt and lap joining of aluminum alloys which are otherwise quite such as shipbuilding/marine, aerospace, railway, land transportation, etc. The basic concept behind the FSW process

  15. LA-23336-MS

    Office of Scientific and Technical Information (OSTI)

    Darryl P. Butt Carl A. Beard - N A T I O N A L L A B O R A T O R Y Los Alarnos. New Mexico 87545 DISCLAIMER This report was prepared as an account of work sponsored by an...

  16. Multiphysics Modeling and Simulations of Mil A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding

    E-Print Network [OSTI]

    Grujicic, Mica

    Welding Process M. Grujicic, S. Ramaswami, J.S. Snipes, C.-F. Yen, B.A. Cheeseman, and J.S. Montgomery developed for the conventional Gas Metal Arc Welding (GMAW) joining process and used to analyze butt-welding modules, each covering a specific aspect of the GMAW process, i.e., (a) dynamics of welding-gun behavior

  17. Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade

    E-Print Network [OSTI]

    Grujicic, Mica

    Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor metal arc welding (GMAW) butt-joining process has been modeled using a two-way fully coupled, transient in the form of heat, and the mechanical material model of the workpiece and the weld is made temperature

  18. Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D

    E-Print Network [OSTI]

    Zhou, Wei

    Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D W. Zhou*, T. Z. Long and C. K of the plates were produced using tungsten inert gas (TIG) welding method. The TIG arc was also used to deposit welding beads on some of the thin plates. No cracking was found in the butt joints. However, hot cracking

  19. Reliability of Laser Welding Process for ZE41A-T5 Magnesium Alloy Sand Castings

    E-Print Network [OSTI]

    Medraj, Mamoun

    Reliability of Laser Welding Process for ZE41A-T5 Magnesium Alloy Sand Castings Haider Al-Kazzaz1, National Research Council Canada, Montreal, Canada Laser welding is a promising joining method for magnesium alloys. The process reliability of 2-mm ZE41A-T5 butt joints welded by a 4 kW Nd:YAG laser

  20. Hydrogen embrittlement of a bimaterial C. Ayas, N.A. Fleck, V.S. Deshpande

    E-Print Network [OSTI]

    Fleck, Norman A.

    the temperature and residual stress fields in butt-welded joints between plain carbon steels and stainless steels the room temperature tensile properties and fracture behaviour of dissimilar welded joints concentration is measured for both notched and un-notched specimens made from the overlay welding of 690 nickel

  1. JOURNAL DE PHYSIQUE IV Colloque C7,suppl6ment au Journal de Physique 111, Volume 3, novembre 1993

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    's characteristics on the temperature A.I. RAICHENKO, E.S. CHERNIKOVAand E.A. OLEVSKY Institutefor Problems method of the calculation of the temperature in the model: electrode1 punch- specimen processes in electric butt welding of bars. In contrast to electric welding, in electric heating

  2. REVIEW ARTICLE Obesogens, stem cells and the developmental programming

    E-Print Network [OSTI]

    Blumberg, Bruce

    that is particularly apparent in the United States. Currently, 34% of American adults are obese (body mass index > 30 energy balance (Butte et al., 2007; Muhlhausler & Smith, 2009). Keywords: development, endocrine; however, the situation is not as simple as balancing one's caloric checkbook. The biochemical nature

  3. UNLESS OTHERWISE NOTED 203-HJT-0620A

    E-Print Network [OSTI]

    McDonald, Kirk

    .928 2.298 NOTES 1. WELDING AND INSPECTION SHALL BE PERFORMED IN ACCORDANCE WITH ASME SECTION IX. NO CODE ASME Y14.5M 3. MACHINED FINISH 125 MICRO- INCHES RMS 4. CONCENTRICITY .010 TIR 5. MACHINED ANGLES 1 INSPECTION REQUIRED. 2. NUMBER OF PIPE BUTT WELDS SHOULD BE MINIMIZED. NO CODE STAMP REQUIRED. IN ACCORDANCE

  4. EA-1912: Midway-Benton No. 1 Rebuild Project, near town of Desert Aire, Benton County, WA

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal by DOEs Bonneville Power Administration to rebuild its existing Midway-Benton No.1 transmission line in place, or to reroute a portion of the Midway-Benton No. 1 transmission line that currently crosses Gable Mountain and Gable Butte in order to avoid crossing these features.

  5. Mining into the new millennium

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-06-15T23:59:59.000Z

    After more than 3 years of production and a billion tons of coal shipped, Foundation Coal West, a subsidiary of Foundation Coal Holding Inc., continues to operate two of the original surface mines in Wyoming's Powder River Basin. The article describes equipment (conveyors, trucks, surface miners etc.) deployed at Belle Ayr and Eagle Butte PRB operations. 3 photos.

  6. Table 1. Proposal Project Number 2008-307-00

    E-Print Network [OSTI]

    including the Pelton Round Butte Hydroelectric Project (PRB Project) which was completed in 1964 (Nehlsen 1995), are among the factors contributing to sockeye extinction. The PRB Project is owned and operated, a Settlement Agreement concerning the relicensing of the PRB Project was made by and among the Licensees and 21

  7. CX-008225: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery Act: A Demonstration System for Capturing Geothermal Energy from Mine Waters Beneath Butte Montana CX(s) Applied: A9, B2.1, B5.19 Date: 04/18/2012 Location(s): Montana Offices(s): Golden Field Office

  8. CX-001900: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA) Renewable Energy Enterprise Zone (REEZ) Milner Butte Landfill Gas ProjectCX(s) Applied: B5.1Date: 03/02/2010Location(s): Burley, IdahoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  9. Tip-Top Tipperary Mary (1)

    E-Print Network [OSTI]

    2012-03-05T23:59:59.000Z

    USDA Choice and USDA Select beef top sirloin butts (n = 60) and Choice and Select beef bone-in strip loins (n = 60) were aged for 21 d, 28 d, and 35 d and then fabricated into steaks (n = 360). Steaks were placed on tables in a cooler under constant...

  10. Economic and ecological implications of alternative brush management and restoration scenarios designed to improve water yield in two Texas watersheds

    E-Print Network [OSTI]

    Olenick, Keith Layne

    2002-01-01T23:59:59.000Z

    . Costs of additional water are lower for sub-basins within the Edwards study area (ranging from $32 to $70 per acre-foot of water added) than in the Twin Buttes (ranging from $63 to $218 per acre-foot), meaning that brush management efforts are more...

  11. On-Farm Carbon Sequestration Can Farmers Employ it to Make Some Money?

    E-Print Network [OSTI]

    McCarl, Bruce A.

    On-Farm Carbon Sequestration Can Farmers Employ it to Make Some Money? Tanveer A. Butt and Bruce A to the reduction in GHG emissions through what is known as carbon sequestration, which has gained attention mitigation policy, the comparative potential of carbon sequestration as a GHG mitigation alternative

  12. VOLUMF -31, PART 1 BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES

    E-Print Network [OSTI]

    Seamons, Kent E.

    Y O U N G VOLUMF -31, PART 1 #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES VOLUME 31.PART 1 CONTENTS .................................................................. Ralph E.Lambert Geology of the Mount Ellen Quadrangle. Henry Mountains. Garfield County. Utah near White Horse Pass. Elko County. Nevada ............Stephen M Smith Geology of the Steele Butte

  13. CX-012214: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Copper Mountain-Pilot Butte 34.5 Kilovolt Transmission Line Structure Pole Replacement Project, Fremont County, Wyoming CX(s) Applied: B1.3 Date: 05/05/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  14. Science Arts & Mtiers (SAM) is an open access repository that collects the work of Arts et Mtiers ParisTech

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Titanium Aluminum a b s t r a c t Laser-induced reactive wetting and brazing of T40 titanium with A5754 with laser in weldingbrazing regime whereas Ma et al. (2013) have carried out tungsten arc butt - Generation and characterization of T40/A5754 interfaces with lasersPatrice - Journal of Materials Processing

  15. Intra-organizational Computation and Complexity Kathleen M. Carley

    E-Print Network [OSTI]

    Sadeh, Norman M.

    Intra-organizational Computation and Complexity Kathleen M. Carley Social and Decision Sciences and H. J. Heinz III School of Policy and Management Carnegie Mellon University Running Head: Intra-organizational on this and related works: Carter Butts, Ju-Sung Lee, Benoit Morel and Ranga Ramanujam. #12;Intra-organizational

  16. Materials Corrosion and Mitigation Strategies for APT: End of Year Report, FY '96

    E-Print Network [OSTI]

    Materials Corrosion and Mitigation Strategies for APT: End of Year Report, FY '96 R. Scott Lillard, Darryl P. Butt Materials Corrosion and Environmental Effects Laboratory MST-6, Metallurgy Los Alamos accomplishment in FY '96 was the design and fabrication of the corrosion probes to be used "In Beam" during

  17. Materials Corrosion and Mitigation Strategies for APT, End of FY '97 Report

    E-Print Network [OSTI]

    Materials Corrosion and Mitigation Strategies for APT, End of FY '97 Report: I. Inconel 718 In-Beam Corrosion Rates from the '97 A6 Irradiation R. Scott Lillard, Donald L. Pile, Darryl P. Butt Materials Corrosion & Environmental Effects Lab MST-6, Metallurgy Group Los Alamos National Laboratory, Los Alamos NM

  18. Materials Corrosion and Mitigation Strategies for APT: Corrosion of Tungsten in an 800 MeV Proton Beam at the

    E-Print Network [OSTI]

    Materials Corrosion and Mitigation Strategies for APT: Corrosion of Tungsten in an 800 MeV Proton Beam at the Weapons Neutron Research Facility R. Scott Lillard, Darryl P. Butt Materials Corrosion corrosion. Energy deposition and thermal hydraulic calculations predict that the surface temperature

  19. The Corrosion of Alloy 718 During 800 MeV Proton Irradiation R.S. Lillard, G.J. Willcutt

    E-Print Network [OSTI]

    The Corrosion of Alloy 718 During 800 MeV Proton Irradiation R.S. Lillard, G.J. Willcutt¶ , D.L. PileW , D.P. Butt* Materials Corrosion and Environmental Effects Lab Materials Science and Technology, proton flux decreased radially from the beam center), two methods for determing corrosion rate from

  20. Materials Corrosion and Mitigation Strategies for APT: Using Solution Resistivity as an Estimate of Tungsten Corrosion

    E-Print Network [OSTI]

    Materials Corrosion and Mitigation Strategies for APT: Using Solution Resistivity as an Estimate of Tungsten Corrosion in Spallation Neutron Target Cooling Loops R. Scott Lillard, Darryl P. Butt Materials Corrosion and Environmental Effects Laboratory MST-6, Metallurgy Los Alamos National Laboratory Los Alamos

  1. Materials Corrosion and Mitigation Strategies for APT, Weapons Neutron Research Facility Experiments

    E-Print Network [OSTI]

    Materials Corrosion and Mitigation Strategies for APT, Weapons Neutron Research Facility Experiments: The Effects of 800 MeV Proton Irradiation on the Corrosion of Tungsten, Tantalum, Stainless Steel, and Gold R. Scott Lillard, Darryl P. Butt Materials Corrosion & Environmental Effects Laboratory MST-6

  2. The Susceptibility of Materials in Spallation Neutron Source Target and Blanket Cooling Loops to Corrosion

    E-Print Network [OSTI]

    to Corrosion R. Scott Lillard, Darryl P. Butt Materials Corrosion and Environmental Effects Lab MST-6 cooling loops to corrosion. To simulate the environment that materials may be exposed to in a target of exposing corrosion samples to an 800 MeV proton beam at currents upwards of 1 mA was constructed. This loop

  3. Materials Corrosion and Mitigation Strategies for APT, End of FY '97 Report

    E-Print Network [OSTI]

    Materials Corrosion and Mitigation Strategies for APT, End of FY '97 Report: II. Out-of-Beam Corrosion Rates and Water Analysis from the '97 A6 Irradiation R. Scott Lillard, Donald L. Pile, Darryl P. Butt Materials Corrosion & Environmental Effects Lab MST-6, Metallurgy Group Los Alamos National

  4. The Corrosion / Electrochemistry of Beryllium and Beryllium Weldments in Aqueous Chloride Environments

    E-Print Network [OSTI]

    The Corrosion / Electrochemistry of Beryllium and Beryllium Weldments in Aqueous Chloride Environments submitted by: Mary Ann Hill, Darryl P. Butt, R. Scott Lillard Materials Corrosion year. Our goals for FY '96 were two-fold: 1) develop a sensor for monitoring the corrosion of beryllium

  5. The Corrosion of Materials in Water Irradiated by 800 MeV Protons

    E-Print Network [OSTI]

    1 The Corrosion of Materials in Water Irradiated by 800 MeV Protons R.S. Lillard, D.L. PileW , D.P. Butt* Materials Corrosion and Environmental Effects Lab Materials Science and Technology Division, MST the real-time corrosion rates for Alloy 718, stainless steels 304L and 316L nuclear grade, aluminum alloys

  6. Lifetime performance of Brahman-Hereford crossbred calves influenced by environment and preweaning stocking rates

    E-Print Network [OSTI]

    Harris, Billy Todd

    1992-01-01T23:59:59.000Z

    :333. Burfening, P. J. , D. D. Kress and K. Hanford. 1987. Effect of region of the United States and age of dam on birth weight of Simmental calves. J. Anim. Sci. 64:955. Butts, W. T. , M. Koger, O. F. Pahnish, W. C. Burns and E. J. Warwick. 1971. Performance...

  7. Still Flying Fusion Edition

    E-Print Network [OSTI]

    2013-11-27T23:59:59.000Z

    here is a handy reference guide: ? Je shr shuh muh lan dong shi: What kind of rotten thing is this? ? Ta ma duh: Motherhumper ? Gou zao de: This can't get any worse. ? Pigu: Butt. ? Go-se: Dog crap. ? Hwin dahn: Jerk. ? Wun guo pi: Smelled a...

  8. SOUTH CARIBOO 2011 Williams Lake

    E-Print Network [OSTI]

    Northern British Columbia, University of

    , Spectra Energy Transmission Bursaries for Aboriginal Students Jinny Donovan UNBC Scholars Award Cassandra First-year students (left to right) Emmaline Hanet of Williams Lake, and Allison Matfin of Lone Butte University Way Prince George, BC, Canada V2N 4Z9

  9. Home Fire Safety Inspection Checklist A fire can occur in any part of your home. Use this checklist to make a safety check of your house or

    E-Print Network [OSTI]

    Marsh, David

    to make a safety check of your house or apartment. Review it with everyone in the house or apartment. Ask ash trays throughout the house? o Do you check for smoldering cigarette butts in the furniture alarm(s) every month? o Do you replace the battery of your battery operated smoke alarm every year? #12

  10. Residential & Business Services Director's Office

    E-Print Network [OSTI]

    Brierley, Andrew

    Residential & Business Services Director's Office Butts Wynd, North Street, St Andrews, Fife, KY16 by students for students are an integral part of student life and intrinsic to the student residential the residential environment. However, experience tells us that events require careful planning and organisation

  11. An economic evaluation of the effects of seasonal freshening on milk costs and returns from Holstein and Jersey cows

    E-Print Network [OSTI]

    Denton, James Sterling

    1966-01-01T23:59:59.000Z

    agrees with Canaan's findings, howcntwr only 5 perosat of the total xsxiation in fat yxo- daotioa wss the xesalt of season of oslviag. Ibis does not agree with the f~ of ~, ~ xeyo~ tho diffe~ i but~t 51 Icco J. Woxsn snd W. R. Qxeeae, 4 nC ts drisons...

  12. Time Reversal UWB Communication: Experimental Study for High Data Rates in Dense Multipath

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    ), UMR CNRS 6164 National Institute of Applied Sciences (INSA), 20 Avenue des Buttes de Coesmes, 35043. Classically, TR has been applied in acoustics and under water communication applications [4],[5], but recentlyTime Reversal UWB Communication: Experimental Study for High Data Rates in Dense Multipath

  13. NATIVE MYCORRHIZAL FUNGI WITH ASPEN ON SMELTER-IMPACTED SITES IN THE NORTHERN ROCKY MOUNTAINS

    E-Print Network [OSTI]

    Cripps, Cathy

    NATIVE MYCORRHIZAL FUNGI WITH ASPEN ON SMELTER- IMPACTED SITES IN THE NORTHERN ROCKY MOUNTAINS smelter sites in the northern Rocky Mountains. This is evidenced by extensive aspen stands on the East Ridge of Butte (MT), behind the smelter stack at Anaconda (MT), near the (removed) smelter in Kellogg

  14. Collaborative Partnerships for Longterm Stewardship

    E-Print Network [OSTI]

    Tate, Kenneth

    Activities covered: Agricultural production, recreation, coal mining, and oil & gas development Current-profit in 2002 Land-owner (ranching & energy) led 27 members: 16 ranches, 8 coal mines, 1 O&G, 2 small acreages Photo: Gwyn McKee Coal Bank Draw Cheyenne River #12;1/31/2013 6 Cottontail Cow Creek Buttes Rochelle

  15. 2009 Progress Report Environmental Research Group

    E-Print Network [OSTI]

    they were replaced by plastic containers," says Jenna Jambeck, a research assistant professor through September 2006, nearly 52,000 cigarette butts were found on Hampton Beach alone. Plastic bottles and plastic bottles, cans and plastic bags, and other litter that could have come from the land or the sea

  16. Characterization of a Dipole Flow System Using Point Velocity Probes

    E-Print Network [OSTI]

    Bowen, Ian Reed

    2010-11-23T23:59:59.000Z

    body and secure detector wires. The detector wires were connected to a 12- conductor cable using heat-shrink butt connectors to transmit the signal to the surface. The diffusion stone was connected to an injection line that carried the tracer from...

  17. Mobility barrier for disabled people DEJOUX, Virginie; ARMOOGUM, Jimmy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Mobility barrier for disabled people DEJOUX, Virginie; ARMOOGUM, Jimmy 12 th WCTR, July 11-15, 2010 92 55 88 virginie.dejoux@inrets.fr ARMOOGUM Jimmy INRETS - DEST Site de Marne-la-Vallée. "Le Descartes 2" 2 rue de la Butte Verte 93166 Noisy le grand cedex Telephone: 33 1 45 92 55 79 jimmy

  18. Joel N. Meyer Nicholas School of the Environment

    E-Print Network [OSTI]

    Maguire, Lynn A.

    Joel N. Meyer Nicholas School of the Environment Duke University, Durham, NC 27708-0328 joel.meyer Meyer 45. Rand AA, Rooney JP, Butt CM, Meyer JN, Mabury SA*. In press. Cellular toxicity associated in Toxicology 44. Furda A, Santos JH, Meyer JN, Van Houten B*. In press. Quantitative PCR-based measurement

  19. Epicormic branching on Central Appalachian hardwoods 10 years after deferment cutting. Forest Service research paper

    SciTech Connect (OSTI)

    Miller, G.W.

    1996-03-01T23:59:59.000Z

    Epicormic branching as monitored over a 10-year period following deferment cutting in four central Appalachian hardwood stands in West Virginia. Data from 545 codominant residual trees indicated that the average number of epicormic branches on the butt and second 16-food log sections increased significantly for the first 2 years after treatment. For upper log sections of basswood, northern red oak, and black cherry, significant increases continued from the second to the tenth year. The net effect on quality was that 11 percent of residual trees exhibited a reduction in butt-log grade due to epicormic branching. Of the few grade reductions observed, white oak, northern red oak, and black cherry were the most susceptible. Less than 1 percent of yellow-poplar trees had lower grades due to epicormic branching.

  20. Narrow gap welding with the hot wire GTA process

    SciTech Connect (OSTI)

    Cook, G.E.; Levick, P.C.

    1985-08-01T23:59:59.000Z

    Narrow gap welding offers the promise of dramatically improved weld completion rates and reduced heat input for welding of butt joints in materials of 10 mm (0.4 in.) section thickness and larger. Techniques for successful welding of narrow gap joint preparations have been discussed in the literature for approximately twenty years, with the majority of these based on the consumable electrode processes. Gas tungsten arc welding with cold wire filler addition has been shown to be capable of narrow gap welding although limited deposition rate capability has not made this a competitive alternative. The GTAW process offers the advantages of superior penetration control for one-sided welding of butt joints, as well as the potential for reducing incomplete fusion defects. The addition of hot wire filler metal to the gas tungsten arc provides an attractive alternative that combines high deposition rate capability and independent control of heat input.

  1. Fatique Resistant, Energy Efficient Welding Program, Final Technical Report

    SciTech Connect (OSTI)

    Egland, Keith; Ludewig, Howard

    2006-05-25T23:59:59.000Z

    The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.

  2. Stormwater Management

    E-Print Network [OSTI]

    Jaber, Fouad

    2008-10-23T23:59:59.000Z

    . Stormwater also may wash bacteria and other pathogens into swimming areas, creating health hazards that often close beaches. Stormwater may carry debris, such as plastic bags, six-pack rings, and cigarette butts, into water bodies; such debris can choke... the development and implementation of best management practices (BMPs) and achievement of measurable goals at levels sufficient to satisfy each of six minimum control measures and an optional seventh control measure: 1. Public education and outreach...

  3. Green River Formation Water Flood Demonstration Project. Annual report, April 1, 1994--March 31, 1995

    SciTech Connect (OSTI)

    Lomax, J.

    1995-09-01T23:59:59.000Z

    The successful water flood of the Green River Formation in the Monument Butte unit was analyzed in detail in the last yearly report. It was shown that primary recovery and the water flood in the unit were typical of oil production from an undersaturated oil reservoir close its bubble point. The reservoir performance of the smaller Travis unit was also analyzed. The Monument Butte unit is currently producing at around 300 barrels per day of oil. Two of the new wells drilled in the unit had zones pressurized by the water flood. The third well produced from pressurized as well as from zones which were unaffected by the water flood. The water flood response of the Travis unit is slow possibly due to problems of reservoir continuity. Plans for water flooding the Boundary unit were drawn. Core description and Formation Micro Imaging log of well 14a-28 provided insight about the important Lower Douglas Creek sandstone. It was determined that this sandstone was extensively fractured and detailed fracture characteristics were obtained through comprehensive interpretation of the FMI log. Reservoir modeling and simulation studies of all the three units were also continued. A larger, more detailed model of the Monument Butte unit was built in order to study the performance of the new development wells being drilled. Three alternate models developed to explain the performance of the Travis flood revealed that intersecting hydraulic fractures may have also provided paths for water channeling observed in this unit. The reservoir characterization activities identified new reservoirs in the Travis unit. Reservoir simulations helped design an injection program in Travis, unit expansion plans on the west and north sides of the Monument Butte until and to evaluate the infill drilling. The reservoir simulations are being used to examine the role of the aquifer underlying the oil bearing D2 sandstone in Boundary on water flood strategies and injection patterns.

  4. Use of Energy Management and Control Systems for Performance Monitoring of Retrofit Projects: Final Summary Report for USDOE Office of Conservation and Energy, Final Revision, March 1993

    E-Print Network [OSTI]

    Claridge, D. E.; Haberl, J. S.; Sparks, R. J.; Bryant, J.; Poyner, B.; Belur, R.; Bryant, J.; Akbari, H.; Heinemeier, K. E.; Lippman, R.; McBride, J.

    1991-01-01T23:59:59.000Z

    for Appropriate Technology, Butte, Montana September 1991, First Revision March 1992, Final Revision March 1993 USDOE EMCS Report p. i 1.0 Executive Summary Traditionally, Energy Management and Control Systems (EMCSs) have been used to control HVAC, lighting, fire... of utilizing existing systems for energy monitoring at LoanSTAR sites. Energy Systems Laboratory, Texas A&M University March 1993 USDOE EMCS Report p. ii This EMCS Performance Monitoring project consists of three major tasks: (1) review the monitoring...

  5. Southern Enclave Issue 50

    E-Print Network [OSTI]

    1998-01-01T23:59:59.000Z

    Illustrator; Lost in Space Author Author Judith Ward P. N. Elrod Lynn Ward Author Aaron Allston Gaming Author Kat Butt Comics long-Time Fan Author, The Vampire Files Comic Creation Team No off-world convention offers a wider range of entertainment... .................. Beatkay@AOL.com Debbie Kittle ............. DeadBothan@WebTV.net Judith Klinger. . . . . . . . . .. Jklinger@rz.uni-potsdam.de Dani Lane . . . . . . . . . .. Hotshoe@Allinuxl.Alliance.net Nora Mayers .................... Khemo@Juno.com Gail Mihara...

  6. Projects at the Component Development and Integration Facility. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the first quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept project; mine waste technology pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

  7. 3.2Million KURT McINTIRE

    E-Print Network [OSTI]

    Minnesota, University of

    % 82% 13% Weir et al, 2010 - 90% - Kim et al, 2004 > 0.5 cm #12;0 5 10 15 20 25 Plastic-moldable Wood Paper Cigarette butts Cardboard Metal Plastic-film Cloth Styrofoam Other Glass TrashAs a percentage) Bags (lbs) Bottles (lbs) Leaves (lbs) Effluent Conc. (mg/L) 1 3205 18.5 5.9 - 1305 2 2415 1.7 1.4 18

  8. nature neuroscience volume 14 | number 8 | AuGuST 2011 947 n e w s an d v i e w s

    E-Print Network [OSTI]

    Gentner, Timothy

    nature neuroscience volume 14 | number 8 | AuGuST 2011 947 n e w s an d v i e w s 10. Seimiya, H Neurosci. 33, 193201 (2010). 6. Jho, E.H. et al. Mol. Cell. Biol. 22, 11721183 (2002). 7. Azim, K. & Butt, E.B. III & Grinspan, J.B. Mol. Cell. Neurosci. 42, 255265 (2009). 4. Tawk, M. et al. J. Neurosci

  9. Welding of cast A359/SiC/10p metal matrix composites

    E-Print Network [OSTI]

    Kothari, Mitul Arvind

    2005-11-01T23:59:59.000Z

    the weldability of the MMC in this study refers to analyzing the microstructure of the welded MMC and evaluating their properties as a function of the input variables. This necessarily did not mean to make a full penetration butt joint; it rather was intended... of experiments (DOE). Factorial experiments are to be conducted to screen the non-significant variables and to choose comparatively significant welding variables. 2. Welding, testing, and evaluation methods It is proposed to weld these MMCs by a...

  10. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  11. Nuclear qualified in-containment electrical connectors and method of connecting electrical conductors

    DOE Patents [OSTI]

    Powell, J. G. (Clifton Park, NY)

    1991-01-01T23:59:59.000Z

    A nuclear qualified in-containment electrical connection comprises an insulated, sheathed instrument lead having electrical conductors extending from one end thereof to provide two exposed lead wires, a watertight cable having electrical conducting wires therein and extending from one end of the cable to provide two lead wires therefrom, two butt splice connectors each connecting the ends of respective ones of the lead wires from the instrument lead and cable, a length of heat shrinkable plastic tubing positioned over each butt splice connector and an adjacent portion of a respective lead wire from the cable and heat shrunk into position, a length of heat shrinkable plastic tubing on the end portion of the instrument lead adjacent the lead wires therefrom and heat shrunk thereon and a length of outer heat shrinkable plastic tubing extending over the end portion of the instrument lead and the heat shrinkable tubing thereon and over the butt splice connectors and a portion of the cable adjacent the cable lead lines, the outer heat shrinkable tubing being heat shrunk into sealing position on the instrument lead and cable.

  12. Scuttlebutt Volume 2, No. 1

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    , of the USS Genesis. To CPT Kieran Bock and his crew, the officers and crew of the Southern Cross send their very best wishes and congratulations, and we wish them fair seas and LOTS of stars to follow. The ScuttleButt Volume 2, Issue 1 5 USS Atlantis... will be forwarded separately to each individual member. Please forward any enquiries to the Intel Officer - ENS Ashley Walker on alwalk78@optusnet.com.au. ENS Ashley Walker Operations Intelligence Officer Welcoming New Crewmembers Savannah Clark Daniel...

  13. TrekISM At Length Issue 3

    E-Print Network [OSTI]

    Multiple Contributors

    1983-01-01T23:59:59.000Z

    " Linda C. Brown Ve "An Enigma Vel Jaeger AN UNEXPECTED PLEASURE V.L. Thorn Vi THE LEGACY Vel Jaeger SMALL COMFORTS Beth Carlson DEUS EX MACHINA* Emily C. Ross La "Mischief" Debbie Gilbert Vi "Maturity" Debbie Gilbert Vi "A Mother's Response Rowena..." Patt Demetri Me "Limericks to a Ladies' Man" Vel Jaeger Me OVER THE RIVER AND THROUGH THE WOODS . Devery Helm Me "In One Ear..." Debbie Gilbert Me STAR TREK: THE HOME MOVIE Fran Panabaker Wanda Butts Richard Clabaugh La AND BE ALONE ON EARTH...

  14. Bandwidth Studies on a 1.4 m Long Multimode Polymer Spiral Waveguide

    E-Print Network [OSTI]

    Chen, Jian; Bamiedakis, Nikos; Penty, Richard V.; White, Ian H.

    2014-07-03T23:59:59.000Z

    . The experimental set-up is shown in Fig. 1a and comprises an 850 nm vertical-cavity surface-emitting laser (VCSEL) (bandwidth of ~ 25 GHz) [3], the waveguide sample, a photodiode (bandwidth of ~30 GHz) and a variable optical attenuator (VOA). The VCSEL is butt... for VCSEL fabrication and EPSRC for supporting the work. 5. References: [1] N. Bamiedakis et al, IEEE Journal of Quantum Electronics, vol. 45, no. 4, pp. 415424, 2009. [2] N. Bamiedakis et al, IEEE Transactions on Components, Packaging and Manufacturing...

  15. Getting Excited Again Over Energy

    E-Print Network [OSTI]

    Gilbert, J. S.

    will soon find themselves flat on their butt! But, there are so many strategies that are being offered by experts, that you probably are wondering if I'm going to give you another theory "z." Well, the good news is that I am probably not going to say... a bit, hearing experts in the energy field, and learning how to reduce our energy costs, market our products more effectively, and become better at competing, let's also spend a portion of our time together building a trusting and open...

  16. Parametric Studies Of Weld Quality Of Tungsten Inert Gas Arc Welding Of Stainless Steel

    SciTech Connect (OSTI)

    Kumar Pal, Pradip; Nandi, Goutam; Ghosh, Nabendu [Mechanical Engineering Department, Jadavpur University, Kolkata-700032 (India)

    2011-01-17T23:59:59.000Z

    Effect of current and gas flow rate on quality of weld in tungsten inter gas arc welding of austenitic stainless steel has been studied in the present work through experiments and analyses. Butt welded joints have been made by using several levels of current and gas flow rate. The quality of the weld has been evaluated in terms of ultimate and breaking strengths of the welded specimens. The observed data have been interpreted, discussed and analyzed by using Grey--Taguchi methodology. Optimum parametric setting has been predicted and validated as well.

  17. ThousandWorlds Collected Issue 3

    E-Print Network [OSTI]

    Nowakowska, Maggie

    1983-01-01T23:59:59.000Z

    of Captain EIDEV PIETT of Aguens, ISS Conqueror, star destroyer Captain SABIK KUTON of Xet, iss He'in Y'ln, star destroyer Captain ESTES R'AGUNE of Jessera, ISS Resolution Commander SE GRAVETIN of Hut, ISS Firestarter, system cruiser The Sith of Xet...-in-the- butt false alarms, and we drill ? I don't care how boring it gets." He pointed through the hangar entrance at the settlement lights twinkling through the jun gle trees. "Anyone noticed yet that this isn't Dantooine? Or Gath, or Yavin? That's a city...

  18. Evolution of extensional basins and basin and range topography west of Death Valley, California

    E-Print Network [OSTI]

    Hodges, K. V.; McKenna, L. W.; Stock, J.; Knapp, J.; Page, L.; Sternlof, K.; Silverberg, D.; Wust, G.; Walker, J. Douglas

    1989-06-01T23:59:59.000Z

    TECTONICS, VOL. 8, NO. 3, PAGES 453-467, JUNE 1989 EVOLUTION OF EXTENSIONAL BASINS AND BASIN AND RANGE TOPOGRAPHY WEST OF DEATH VALLEY, CALIFORNIA K.V. Hodges, L.W. McKenna, J. Stock , J. Knapp, L. Page, K. Sternlof, D. Silverberg, G. Wrist 2... of the extensional riders in this area indicates that the sole fault dips less than 15NW beneath the Nova Formation [Hodges et al., 1989]. Detailed mapping of the structurally lowest portions of the Nova Basin south of Panamint Butte (Figure 2; K.V. Hodges...

  19. Impact of different subcutaneous fat trim levels on the composition of beef retail cuts

    E-Print Network [OSTI]

    Jones, Darron Kirk

    1988-01-01T23:59:59.000Z

    from the top mund, bottom round, eye of mund, sirloin tip, top sirloin butt, strip loin, tenderloin, rib, arm and blade sections of the chuck, and brisket. The retail cuts were serially assigned to the following treatments: (A) trimmed to 0. 6 cm... external fat, raw; (B) ~ to 0. 6 cm external fat, cooked; (C) ~ to 0. 0 cm external fat, cooked. The samples that were treated as raw, trimmed to 0. 6 cm were dissected into separable lean, external fat, seam fat, and heavy connective tissue and bone...

  20. Error of law and flawed administrative acts

    E-Print Network [OSTI]

    Feldman, David

    2014-07-17T23:59:59.000Z

    , n. 1 above; R. v Panel on Takeovers and Mergers, ex parte Datafin plc [1987] Q.B. 815, CA; R. (Cart) v Upper Tribunal (Public Law Project and another intervening), n. 7 above. 28 R. (Shoesmith) v Ofsted [2011] EWCA Civ 642, [2011] P.T.S.R. 1459... 30 R. v Panel on Takeovers and Mergers, ex parte Guinness plc [1990] 1 Q.B. 146 at 177, [1989] 1 All E.R. 509 at 526, CA, per Lord Donaldson M.R. See also R. v Secretary of State for the Home Department, ex parte Swati and Butt [1986] 1 W.L.R. 477...

  1. Box Canyon Motel Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBoston Heights, Ohio:BoulevardBow Mar,BowieBox ButteEnergy

  2. Buzzards Bay, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy ResourcesSouthButts

  3. Bye Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy ResourcesSouthButtsBye Energy Inc

  4. Byers, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy ResourcesSouthButtsBye Energy

  5. Byers, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy ResourcesSouthButtsBye

  6. Bynum, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy ResourcesSouthButtsByeBynum,

  7. Field Mapping At Kilauea East Rift Geothermal Area (Thomas, 1986) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOE GTP)

  8. Field Mapping At Northern Basin & Range Region (Blewitt, Et Al., 2003) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOE GTP)Open Energy

  9. Field Mapping At Reese River Area (Henkle, Et Al., 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOE GTP)Open

  10. Field Mapping At Roosevelt Hot Springs Geothermal Area (Ward, Et Al., 1978)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOE GTP)Open| Open

  11. Field Mapping At Salt Wells Area (Coolbaugh, Et Al., 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOE GTP)Open|

  12. Field Mapping At San Emidio Desert Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOE GTP)Open|San

  13. Field Mapping At Snake River Plain Region (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOE

  14. Field Mapping At The Needles Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOEThe Needles Area

  15. Field Mapping At U.S. West Region (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOEThe Needles

  16. Field Mapping At Valles Caldera - Redondo Geothermal Area (Bailey, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOEThe Needles1969)

  17. Field Mapping At Valles Caldera - Redondo Geothermal Area (Goff, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOEThe

  18. Field Mapping At Valles Caldera - Sulphur Springs Geothermal Area (Bailey,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOETheEt Al., 1969)

  19. Field Mapping At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOETheEt Al.,

  20. Field Mapping At Walker-Lane Transitional Zone Region (Blewitt Et Al, 2005)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOETheEt Al.,| Open

  1. Field Mapping | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOETheEt Al.,| Open

  2. Field Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOETheEt Al.,|

  3. Field Studies of Geothermal Reservoirs: Rio Grande Rift, New Mexico | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOETheEt Al.,|Energy

  4. Field Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOETheEt

  5. Fife Lake, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOETheEtFife Lake,

  6. Fifth Street, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOETheEtFife

  7. Fiji-Climate Finance Readiness Programme | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area

  8. File:(131112) Presentacion LAC LEDs.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area(131112) Presentacion

  9. File:(2010)2 full paper with cover LEDS FINAL (2).pdf | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area(131112)

  10. File:(PECC) Special Program on Climate Change SUMMARY (english).pdf | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area(131112)Energy

  11. File:0 - Overall Flow (Solar).pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes

  12. File:0 - Overall Flow - Transmission.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes- Transmission.pdf Jump to:

  13. File:0 - OverallFlow-1.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes- Transmission.pdf Jump

  14. File:0 Overview - Hydro.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes- Transmission.pdf

  15. File:00 BRRTP FEIS-EIR cover sheet FINAL-R.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes- Transmission.pdf0 BRRTP

  16. File:01-FD-a - LandUsePlanning.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes- Transmission.pdf0

  17. File:01-FD-b - LandUsePlanAmendmentProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes- Transmission.pdf0FD-b -

  18. File:01AKALandUseConsiderations.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes- Transmission.pdf0FD-b

  19. File:01CAALandUsePlanning.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes-

  20. Bye Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County,BuschButteBye Energy Jump

  1. Byers Auto | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County,BuschButteBye Energy

  2. Byggmeister | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County,BuschButteBye

  3. C & R Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County,BuschButteByeR

  4. C Lock Technology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County,BuschButteByeRC Lock

  5. C-Voltaics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County,BuschButteByeRC

  6. EERE PowerPoint 97-2004 Template: Green Version

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western22, 2014 SunShotB. PeterCentralGlass Buttes Patrick

  7. EERE PowerPoint 97-2004 Template: Green Version

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western22, 2014 SunShotB. PeterCentralGlass Buttes

  8. Horse Hollow Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHoloceneHonestHoosacHorse Butte

  9. Horse Hollow II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHoloceneHonestHoosacHorse ButteII Wind

  10. Horse Hollow III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHoloceneHonestHoosacHorse ButteII

  11. Horse Hollow Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHoloceneHonestHoosacHorse ButteIIWind

  12. Mithun | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman Wind LLCMissouri/WindMitchell ButteMithun

  13. Static Temperature Survey At Newberry Caldera Area (Combs, Et Al., 1999) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes Area (DOE GTP)Open

  14. Static Temperature Survey At Steamboat Springs Area (Combs, Et Al., 1999) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes Area (DOE GTP)OpenOpen

  15. Static Temperature Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes Area (DOE GTP)OpenOpen

  16. Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes Area (DOE

  17. Statistical study of seismicity associated with geothermal reservoirs in

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes Area (DOECalifornia |

  18. Status of Direct Heat Application Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes Area (DOECalifornia

  19. Status of Nevada Geothermal Resource Development - Spring 2011 | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes Area

  20. Stea Divisione Energia Solare | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes AreaStea Divisione

  1. Steam Field | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes AreaStea DivisioneSteam

  2. Steamboat Hills Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes AreaStea

  3. Steamboat I Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes AreaSteaI Geothermal

  4. Steamboat IA Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes AreaSteaI GeothermalIA

  5. Steamboat II Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes AreaSteaI

  6. Steamboat III Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes AreaSteaIIII Geothermal

  7. Steel Winds II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes AreaSteaIIII

  8. Steel Winds | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes AreaSteaIIIIWinds Jump

  9. Steele County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes AreaSteaIIIIWinds

  10. Stennis Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes

  11. Step-out Well | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass ButtesStep-out Well Jump to:

  12. Stephan O. Nellis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass ButtesStep-out Well Jump

  13. Stephen Drummond | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass ButtesStep-out Well

  14. Stephens, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass ButtesStep-out WellStephens,

  15. Stepout-Deepening Wells At Blue Mountain Area (Niggemann Et Al, 2005) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass ButtesStep-out

  16. Stepout-Deepening Wells At Coso Geothermal Area (1986) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass ButtesStep-outInformation

  17. Dell Prairie, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNewDeafDeerDelIowa:Delcer Butte

  18. Dellroy, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNewDeafDeerDelIowa:Delcer ButteDellroy,

  19. Red Cliff, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay County,Open EnergyRecentButte,

  20. Red Feather Lakes, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay County,Open EnergyRecentButte,Feather Lakes,

  1. Red Hill, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay County,Open EnergyRecentButte,Feather

  2. Red Lake County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay County,Open EnergyRecentButte,FeatherLake

  3. Large signal nonlinear model of anisotropic transformers for nonsinusoidal operation

    SciTech Connect (OSTI)

    Fuchs, E.F.; Masoum, M.A.S.

    1989-09-01T23:59:59.000Z

    Single-phase, nonlinear, transformers with anisotropic iron cores are modeled for (non)sinusoidal excitations and (non)linear loads. The {lambda}-i characteristics are computed based on design data through a quasi three-dimensional magnetic field analysis. This analysis includes the effects of the interlamination and butt-to-butt air gaps, the exchange of flux between any two neighboring anisotropic laminations and the influences of the end windings. It is shown that the B-H characteristics of cross- and with-grain iron core samples, obtained from Epstein measurements, must be modified for their application to anisotropic iron-cores. Therefore, these characteristics are used to compute through a quasi three-dimensional magnetic field analysis appropriate B-H characteristics for anisotropic iron core samples. Based on such newly defined B-H characteristics the {lambda}-i functions representing the saturation-dependent leakage inductances are calculated from design data. 17 refs., 136 figs., 24 tabs.

  4. Laser-ultrasonic inspection of hybrid laser-arc welded HSLA-65 steel

    SciTech Connect (OSTI)

    Lvesque, D.; Rousseau, G.; Monchalin, J.-P. [National Research Council Canada, Boucherville, QC (Canada); Wanjara, P.; Cao, X. [National Research Council Canada, Montreal, QC (Canada)

    2014-02-18T23:59:59.000Z

    The hybrid laser-arc welding (HLAW) process is a relatively low heat input joining technology that combines the synergistic qualities of both the high energy density laser beam for deep penetration and the arc for wide fit-up gap tolerance. This process is especially suitable for the shipbuilding industry where thick-gauge section, long steel plates have been widely used in a butt joint configuration. In this study, preliminary exploration was carried out to detect and visualize the welding defects using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). Results obtained on 9.3 mm thick butt-welded HSLA-65 steel plates indicated that the laser-ultrasonic SAFT inspection technique can successfully detect and visualize the presence of porosity, lack of fusion and internal crack defects. This was further confirmed by X-ray digital radiography and metallography. The results obtained clearly show the potential of using the laser-ultrasonic technology for the automated inspection of hybrid laser-arc welds.

  5. Green River Formation water flood demonstration project. Final report

    SciTech Connect (OSTI)

    Pennington, B.I.; Dyer, J.E.; Lomax, J.D. [Inland Resources, Inc. (United States); [Lomax Exploration Co., Salt Lake City, UT (United States); Deo, M.D. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

    1996-11-01T23:59:59.000Z

    The objectives of the project were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter core, Formation Micro Imaging (FMI) logs from several wells and Magnetic Resonance Imaging (MRI) logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using high-temperature gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2,000 barrels per day.

  6. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV

    SciTech Connect (OSTI)

    R. P. Wells

    2006-11-14T23:59:59.000Z

    This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

  7. The Calculated and Measured Resistance for Splices between Conductors in a MICE Superconducting Coil

    SciTech Connect (OSTI)

    Green, Michael A.; Dietderich, Dan; Higley, Hugh; Pan, Heng; Tam, Darren; Trillaud, Federic; Wang, Li; Wu, Hong; Xu, Feng Yu

    2009-03-19T23:59:59.000Z

    The resistance of superconducting joints within MICE coils is an important issue particularly for the coupling coils. The MICE tracker solenoids have only two superconducting joints in the three spectrometer set (end coil 1, the center coil and end coil 2). The AFC magnets may have only a single joint within the coil. The coupling coils may have as many as fifteen joints within the coil, due to relatively short piece lengths of the superconductor. LBNL and ICST looked at three types of coil joints. They are: (1) cold fusion butt joints, (2) side-by-side lap joints, and (3) up-down lap joints. A theoretical calculation of the joint resistance was done at LBNL and checked by ICST. After looking at the theoretical resistance of the three types of joints, it was decided that the cold welded butt joint was not an attractive alternative for joints within a MICE superconducting magnet coil. Side-by-side and up-down lap joints were fabricated at ICST using two types of soft solder between the conductors. These conductor joints were tested at LBNL at liquid helium temperatures over a range of magnetic fields. The joint resistance was compared with the theoretical calculations. Measurements of splice strength were also made at 300 K and 77 K.

  8. aloe vera calendula: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wilson, Andrew-Alos, Victor Gonzlez, Abner Custodio Gorham, Lavona J. Gross, Candra Hernandez, Kristina Hill, Rafael Johnson Omiecinski, Curtis 252 Lucy Cuddy Hall -UAA Main...

  9. The qualification of advanced composite pipe for use in fire water deluge systems on open type offshore oil platforms

    SciTech Connect (OSTI)

    Lea, R.H. [Specialty Plastics, Inc., Baton Rouge, LA (United States); Stubblefield, M.A.; Pang, S.S. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Mechanical Engineering

    1996-12-01T23:59:59.000Z

    Different types of FIBERBOND{reg_sign} pipe in the dry condition and with a butt and strap joint were subjected to a controlled fire for fire endurance evaluation. Testing adheres to a modification of the ASTM 1173-95 guideline, which simulates the development of an actual hydrocarbon fire. For a fire water deluge system, the pipe is in the dry condition approximately one to three minutes during an actual hydrocarbon fire. Preliminary testing shows that composite pipe is able to withstand this exposure to fire for the five minute duration of the test. This is achieved with modifying the chemical composition of the composite pipe and in some cases, adding an additional structural component to the overall pipe. Therefore, composite pipe could be used for the deluge fire system of an offshore oil platform.

  10. Diode laser welding of aluminum to steel

    SciTech Connect (OSTI)

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica [University of Rome Tor Vergata, Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (Italy)

    2011-05-04T23:59:59.000Z

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  11. Electron beam melting of charge based on titanium sponge

    SciTech Connect (OSTI)

    Tikhonovsky, A.L.; Tikhonovsky, K.A. [JS Co FIKO, Kiev (Ukraine)

    1995-12-31T23:59:59.000Z

    An experience of 0.8 MW consumable box melting furnace operation and theoretical simulation have led to the further development of the FIKO plant under construction on the base of melting of two consumable box-like bullets which move opposite each other and form narrow heated space between melted butt ends. It allows to reduce vaporization, spatter and radiation losses by several times and to reach two times increase in melting rate and 99%(97%) yield for c.p. titanium (alloys) without furnace power add. Future furnace design will provide the optimum protection of vacuum pumps against chlorides, the safety when melting titanium sponge and will permit hot ingots to move to the special furnace for EB surface conditioning. The maximum productivity is to be 18,000 t/year. The furnace can be used for the manufacture of aluminum-, copper-, iron-, nickel-, tungsten-based alloys and others of any charge including salvage.

  12. 3D Model of the Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  13. 3D Model of the Neal Hot Springs Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  14. Joining SI3N4 for Advanced Turbomachinery Applications

    SciTech Connect (OSTI)

    GLASS, S. JILL; LOEHMAN, RONALD E.; HOSKING, F. MICHAEL; STEPHENS JR., JOHN J.; VIANCO, PAUL T.; NEILSEN, MICHAEL K.; WALKER, CHARLES A.; POLLINGER, J.P.; MAHONEY, F.M.; QUILLEN, B.G.

    2000-07-01T23:59:59.000Z

    The main objective of this project was to develop reliable, low-cost techniques for joining silicon nitride (Si{sub 3}N{sub 4}) to itself and to metals. For Si{sub 3}N{sub 4} to be widely used in advanced turbomachinery applications, joining techniques must be developed that are reliable, cost-effective, and manufacturable. This project addressed those needs by developing and testing two Si{sub 3}N{sub 4} joining systems; oxynitride glass joining materials and high temperature braze alloys. Extensive measurements were also made of the mechanical properties and oxidation resistance of the braze materials. Finite element models were used to predict the magnitudes and positions of the stresses in the ceramic regions of ceramic-to-metal joints sleeve and butt joints, similar to the geometries used for stator assemblies.

  15. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect (OSTI)

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13T23:59:59.000Z

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  16. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect (OSTI)

    Alex Savitski; Connie Reichert; John Coffey

    2004-07-13T23:59:59.000Z

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  17. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect (OSTI)

    Connie Reichert

    2005-09-01T23:59:59.000Z

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  18. Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-09-01T23:59:59.000Z

    Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

  19. Determination of Importance Evaluation for Exploratory Studies Facility (ESF) Subsurface Testing Activities

    SciTech Connect (OSTI)

    C.J. Byrne

    2001-02-20T23:59:59.000Z

    This Determination of Importance Evaluation (DIE) applies to the Subsurface Exploratory Studies Facility (ESF), encompassing the Topopah Spring (TS) Loop from Station 0+00 meters (m) at the North Portal to breakthrough at the South Portal (approximately 78+77 m), and ancillary test and operation support areas including the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. This evaluation applies specifically to site characterization testing activities ongoing and planned in the Subsurface ESF. ESF site characterization activities are being performed to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. A more detailed description of these testing activities is provided in Section 6 of this DIE. Generally, the construction and operation of excavations associated with these testing activities are evaluated in the DIE for the Subsurface ESF (CRWMS M&O 1999a) and the DIE for the ESF ECRB Cross Drift (CRWMS M&O 2000a). The scope of this DIE also entails the proposed Unsaturated Zone (UZ) Transport Test at Busted Butte. Although, not a part of the TS Loop or ECRB Cross Drift, the associated testing activities are Subsurface testing activities. Busted Butte is located to the south south-east of the TS Loop and is outside the Conceptual Controlled Area Boundary (CCAB). These activities provide access to the Calico Hills (CH) geologic structure. In the case of Busted Butte, construction and operation of excavations are evaluated herein (since this activity was not previously evaluated in CRWMS M&O 1999a). The objectives of this DIE are to determine whether Subsurface ESF testing, and associated activities, could potentially impact site characterization testing and/or the waste isolation capabilities of the site. Controls needed to limit any potential impacts are identified in Section 13. The validity and veracity of the individual tests, including data collection, are the responsibility of the assigned Principal Investigator(s) (PIS) and are not evaluated in this DIE. This DIE focuses on integrating and compiling the evaluations of previous DIES which were prepared for various ESF subsurface testing activities, including the use of temporary items currently located or being developed for these testing activities, and to provide a bounding evaluation for potential future ESF subsurface testing activities that are sufficiently similar to the generic testing activities addressed herein. Subsurface testing activities items/facilities evaluated herein include: ongoing and planned testing in the TS Loop, alcoves, and niches, planned testing in the ECRB Starter Tunnel, borehole drilling and workover, and tracers, fluids, and materials (TFM) usage. Detailed identification of individual testing items/facilities and generic descriptions for subsurface-testing-related activities are provided in Section 6. The conclusions and requirements of this DIE conservatively bound the conclusions and requirements of previously approved DIES for the ESF subsurface testing activities addressed herein, based on conservative engineering judgment and on concurrence with this DIE (via a formal review process) by the originating and reviewing organizations of the previously approved evaluations. Hence, this DIE supersedes the following DIES listed in Table 1.1.

  20. LONG-TERM STABILITY TESTING RESULTS USING SURROGATES AND SORBENTS FOR SAVANNAH RIVER SITE ORGANIC AND AQUEOUS WASTESTREAMS - 10016

    SciTech Connect (OSTI)

    Burns, H.

    2009-11-10T23:59:59.000Z

    The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating the long-term stability of various commercially available sorbent materials to solidify two organic surrogate wastestreams (both volatile and nonvolatile), a volatile organic surrogate with a residual aqueous phase, an aqueous surrogate, and an aqueous surrogate with a residual organic phase. The Savannah River Site (SRS) Legacy and F-Canyon plutonium/uranium extraction (PUREX) process waste surrogates constituted the volatile organic surrogates, and various oils constituted the nonvolatile organic surrogates. The aqueous surrogates included a rainwater surrogate and an aqueous organic surrogate. MSE also evaluated the PUREX surrogate with a residual aqueous component with and without aqueous type sorbent materials. Solidification of the various surrogate wastestreams listed above was performed from 2004 to 2006 at the MSE Test Facility located in Butte, Montana. This paper summarizes the comparison of the initial liquid release test (LRT) values with LRT results obtained during subsequent sampling events in an attempt to understand and define the long-term stability characteristics for the solidified wastestreams.

  1. Qualification of the Joints for the ITER Central Solenoid

    SciTech Connect (OSTI)

    Martovetsky, N; Berryhill, A; Kenney, S

    2011-09-01T23:59:59.000Z

    The ITER Central Solenoid has 36 interpancake joints, 12 bus joints, and 12 feeder joints in the magnet. The joints are required to have resistance below 4 nOhm at 45 kA at 4.5 K. The US ITER Project Office developed two different types of interpancake joints with some variations in details in order to find a better design, qualify the joints, and establish a fabrication process. We built and tested four samples of the sintered joints and two samples with butt-bonded joints (a total of eight joints). Both designs met the specifications. Results of the joint development, test results, and selection of the baseline design are presented and discussed in the paper. The ITER Central Solenoid (CS) consists of six modules. Each module is composed of six wound hexapancakes and one quadrapancake. The multipancakes are connected electrically and hydraulically by in-line interpancake joints. The joints are located at the outside diameter (OD) of the module. Cable in conduit conductor (CICC) high-current joints are critical elements in the CICC magnets. In addition to low resistivity, the CS joints must fit a space envelope equivalent to the regular conductor cross section and must have low hydraulic impedance and enough structural strength to withstand the hoop and compressive forces during operation, including cycling. This paper is the continuation of the work reported on the intermodule joints.

  2. Turbine vane structure

    DOE Patents [OSTI]

    Irwin, John A. (Greenwood, IN)

    1980-08-19T23:59:59.000Z

    A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

  3. Joining of 14YWT and F82H by Friction Stir Welding

    SciTech Connect (OSTI)

    Hoelzer, David T [ORNL] [ORNL; Unocic, Kinga A [ORNL] [ORNL; Sokolov, Mikhail A [ORNL] [ORNL; Feng, Zhili [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    The feasibility of using friction stir welding (FSW) to join specimens of the advanced oxide dispersion strengthened (ODS) 14YWT nanostructured ferritic alloy (NFA) and a plate of F82H tempered martensitic steel (TMS) was investigated. The sample used in the FSW experiment consisted of spot welding four specimens 14YWT prepared from prior tested dual notch fracture toughness bend bars in a corresponding slot that was machined in the F82H plate. The FSW run was successfully performed on the sample using a polycrystalline boron nitride tool (PCBN) that resulted in joints showing good bonding between butt joints of 14YWT specimens and 14YWT specimens and F82H plate. The joints were characterized by light microscopy and SEM analysis and were observed to be relatively narrow in width. The ultra-fine grain size associated with 14YWT increased by a factor of up to 3 while that of F82H was refined by a considerable amount in the thermomechanically affected zones (TMAZ) due to FSW. In addition, porosity was observed in the TMAZ of 14YWT on the advancing side of the FSW joint and at the interface between F82H and 14YWT. Vickers hardness (VH) measurements showed a decrease of ~120 VH from ~500 VH (~20% decrease) for 14YWT and an increase of ~220 VH from ~220 VH (~100% increase) for F82H in the FSW zones. Further refinements in the FSW process will be required to minimize defects including porosity.

  4. Hydrogeologic Model for the Gable Gap Area, Hanford Site

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Thorne, Paul D.; Williams, Bruce A.; Last, George V.; Thomas, Gregory S.; Thompson, Michael D.; Ludwig, Jami L.; Lanigan, David C.

    2010-09-30T23:59:59.000Z

    Gable Gap is a structural and topographic depression between Gable Mountain and Gable Butte within the central Hanford Site. It has a long and complex geologic history, which includes tectonic uplift synchronous with erosional downcutting associated with the ancestral Columbia River during both Ringold and Cold Creek periods, and by the later Ice Age (mostly glacial Lake Missoula) floods. The gap was subsequently buried and partially backfilled by mostly coarse-grained, Ice Age flood deposits (Hanford formation). Erosional remnants of both the Ringold Formation and Cold Creek unit locally underlie the high-energy flood deposits. A large window exists in the gap where confined basalt aquifers are in contact with the unconfined suprabasalt aquifer. Several paleochannels, of both Hanford and Ringold Formation age, were eroded into the basalt bedrock across Gable Gap. Groundwater from the Central Plateau presently moves through Gable Gap via one or more of these shallow paleochannels. As groundwater levels continue to decline in the region, groundwater flow may eventually be cut off through Gable Gap.

  5. Multiple pass and multiple layer friction stir welding and material enhancement processes

    DOE Patents [OSTI]

    Feng, Zhili (Knoxville, TN) [Knoxville, TN; David, Stan A. (Knoxville, TN) [Knoxville, TN; Frederick, David Alan (Harriman, TN) [Harriman, TN

    2010-07-27T23:59:59.000Z

    Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.

  6. Idaho National Laboratory Cultural Resource Monitoring Report for Fiscal Year 2007

    SciTech Connect (OSTI)

    Brenda R. Pace

    2007-10-01T23:59:59.000Z

    This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2007 (FY 2007). In FY 2007, 40 localities were revisited: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, three butte/craters, twelve prehistoric archaeological sites, two historic stage stations, nine historic homesteads, a portion of Goodales Cutoff of the Oregon Trail, a portion of historic trail T-16, one World War II dump, four buildings from the World War II period, and Experimental Breeder Reactor I, a modern scientific facility and National Historic Landmark. Several INL project areas were also monitored in FY 2007. This included direct observation of ground disturbing activities within the Power Burst Facility (PBF, now designated as the Critical Infrastructure Test Range Complex CITRC), backfilling operations associated with backhoe trenches along the Big Lost River, and geophysical surveys designed to pinpoint subsurface unexploded ordnance in the vicinity of the Naval Ordnance Disposal Area. Surprise checks were also made to three ongoing INL projects to ensure compliance with INL CRM Office recommendations to avoid impacts to cultural resources. Although some impacts were documented, no significant adverse effects that would threaten the National Register eligibility of any resource were observed at any location.

  7. Mechanical Properties of Aluminum Tailor Welded Blanks at Superplastic Temperatures

    SciTech Connect (OSTI)

    Davies, Richard W.; Vetrano, John S.; Smith, Mark T.; Pitman, Stan G.

    2002-10-06T23:59:59.000Z

    This paper describes an investigation of the mechanical properties of weld material in aluminum tailor welded blanks (TWB) at superplastic temperatures and discusses the potential application of TWBs in superplastic forming operations. Aluminum TWBs consist of multiple sheet materials of different thickness or alloy that are butt-welded together into a single, variable thickness blank. To evaluate the performance of the weld material in TWBs, a series of tensile tests were conducted at superplastic temperatures with specimens that contained weld material in the gage area. The sheet material used in the study was Sky 5083 aluminum alloy, which was joined to produce the TWBs by gas tungsten arc welding using an AA5356 filler wire. The experimental results show that, in the temperature range of 500?C to 550?C and at strain rates ranging from 10-4 sec-1 to 10-2 sec-1, the weld material has a higher flow stress and lower ductility than the monolithic sheet material. The weld material exhibited elongations of 40% to 60% under these conditions, whereas the monolithic sheet achieved 220% to 360% elongation. At the same temperatures and strain rates, the weld material exhibited flow stresses 1.3 to 4 times greater than the flow stress in the monolithic sheet. However, the weld material did show a substantial increase in the strain rate sensitivity and ductility when compared to the same material formed at room temperature.

  8. Study of the combustion of low rank coal in a fluidized bed

    SciTech Connect (OSTI)

    Glaser, R.; Grimes, R.W.

    1991-09-01T23:59:59.000Z

    This report describes the results of preliminary combustion tests performed with Eagle Butte Coal in a bubbling, fluidized-bed combustion system. The system was designed for the combustion of low-rank coals and industrial wastes. The work, as proposed, was aimed at not only the evaluation of co-firing of waste material with coal, but also at developing modifications to first generation bubbling bed designs to improve the combustion performance during co-firing. However, the funding for the work was redirected and the combustion tests were suspended soon after the shakedown testing was completed. Consequently, this report describes the results of the tests completed prior to the redirection of the effort and funding. A total of 33 combustion tests were performed in a 6-inch diameter fluidized-bed combustor. Oxygen concentrations were measured at two points in the system; the vent line and at the interface between the fluid bed and the freeboard. These measurements provided a measure of the amount of conversion of coal within the fluidized bed compared to the conversion in the freeboard region. Typically, 75 to 80% of the conversion occurred within the bed. Several experiments were performed in which special bed internals were placed in the bed. The internals were designed to reduce bubble size in the bed thus increasing the surface area of the bubbles and hence promoting oxygen diffusion into the emulsion phase.

  9. Geologic investigations

    SciTech Connect (OSTI)

    Orkild, P.P. [Geological Survey, Denver, CO (USA); Baldwin, M.J.; Townsend, D.R. [Fenix and Scisson, Inc., Mercury, NV (USA)

    1983-12-31T23:59:59.000Z

    The Climax stock is a composite granitic intrusive of Cretaceous age, composed of quartz monzonite and granodiorite, which intrudes rocks of Paleozoic and Precambrian age. Tertiary volcanic rocks, consisting of ash-flow and ash-fall tuffs, and tuffaceous sedimentary rocks overlie the sedimentary rocks and the stock. Erosion has removed much of the Tertiary volcanic rocks. Hydrothermal alteration of quartz monzonite and granodiorite is found mainly along joints and faults and varies from location to location. The Paleozoic carbonate rocks have been thermally and metasomatically altered to marble and tactite as much as 457 m (1500 ft) from the contact with the stock, although minor discontinuous metasomatic effects are noted in all rocks out to 914 m (3000 ft). Three major faults which define the Climax area structurally are the Tippinip, Boundary and Yucca faults. North of the junction of the Boundary and Yucca faults, the faults are collectively referred to as the Butte fault. The dominant joint sets and their average attitudes are N 32{degrees} W, 22{degrees} NE; N 60{degrees} W, vertical and N 35{degrees} E, vertical. Joints in outcrop are weathered and generally open, but in subsurface, the joints are commonly filled and healed with secondary minerals. 12 refs., 6 figs., 1 tab.

  10. Central Facilities Area Sewage Lagoon Evaluation

    SciTech Connect (OSTI)

    Mark R. Cole

    2013-12-01T23:59:59.000Z

    The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreased in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and cracking. The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.

  11. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008

    SciTech Connect (OSTI)

    Brenda R. Pace

    2009-01-01T23:59:59.000Z

    This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

  12. Stress corrosion cracking of duplex stainless steel weldments in sour conditions

    SciTech Connect (OSTI)

    Schofield, M.J. [Cortest Labs. Ltd., Sheffield (United Kingdom); Bradshaw, R.; Cottis, R.A. [UMIST, Manchester (United Kingdom). Corrosion and Protection Centre

    1996-04-01T23:59:59.000Z

    Duplex stainless steels are widely used in the oil and gas production industry for a variety of applications. The stress corrosion cracking (SCC) behavior of wrought material is reasonably well understood, and usage limitations are placed upon these alloys in NACE MR0175 for sour service. However, the SCC behavior of weldments is not as well understood, limiting use of welded material in H{sub 2}S-containing environments. The SCC resistance of duplex stainless steels is influenced by their microstructure and chemical composition. An investigation of the SCC behavior of welded 22% Cr and 25% Cr alloys in a simulated oilfield environment has been conducted. Mechanized orbital TIG was used to butt weld 168 mm OD tubes. The shielding gas contained nitrogen additions of up to 7% (UNS S32760) and 10% (UNS S31803). Slow strain rate testing (SSRT) was conducted on cross-weld specimens in sodium chloride solutions overpressured with varying partial pressures of H{sub 2}S and CO{sub 2}. Nitrogen uptake from the shielding gas has a detrimental effect on SCC resistance of duplex stainless steel weldments. While this effect is only modest, it is in direct contrast to the beneficial effect it has on pitting corrosion resistance.

  13. Studies of Degraded Smelt Spout Opening Tubes

    SciTech Connect (OSTI)

    Keiser, James R [ORNL; Kish, Joseph R. [Paprican; Willoughby, Adam W [ORNL; Longmire, Hu Foster [ORNL; Singbeil, Douglas [Paprican

    2007-01-01T23:59:59.000Z

    Co-extruded type 304L stainless steel/SA210 carbon steel tubes have been used on the floors and lower walls of many black liquor recovery boilers to address the wall thinning problem that had been an issue for boiler owners and operators. Use of these tubes greatly reduced the corrosion issue, but corrosion was still sometimes observed and cracking was discovered in some tubes, particularly those that are bent to form the openings for smelt spouts. Because cracks in the opening tubes were sometimes observed to extend a significant distance into the tube wall and because these cracks were found fairly frequently, tubes made from a number of alternate cladding materials were tried in place of the 304L clad opening tubes. This paper describes the results of examinations of spout opening tubes of the standard 304L/carbon steel and of several of the alternate materials that have been tried. In addition to the corrosion and cracking seen in the spout opening tubes, another issue associated with these tubes has been observed. Preferential corrosion of the cap welds is sometimes seen on butt welds attaching the spout opening tubes made with alternate cladding materials to the standard 304L/carbon steel co-extruded wall tubes. Some information on the observations of this corrosion is also included in this paper.

  14. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01T23:59:59.000Z

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  15. Supplement Analysis for the Transmission System Vegetation Management Program FEIS

    SciTech Connect (OSTI)

    N /A

    2001-03-27T23:59:59.000Z

    BPA proposes to clear unwanted vegetation from a section of BPA's Ponderosa--Pilot Butte Transmission Line Right-of-way to facilitate relocation of structure 18/3. Work would begin in mid-March and end in April, 2001. (1) Description of right-of-way and vegetation management needed--The project involves cutting all tall growing trees and brush within BPA's 100-foot wide transmission line right-of-way. An encroachment by the City of Bend Sewer Treatment facility, and future expansion plans, compelled the relocation of this portion of the right-of-way. Structures 18/2 and 18/4 will be modified in place to accommodate the new angle of the right-of-way. Structure 18/3 will be moved approximately 300 feet westerly to allow for the expansion of the sewer treatment facility. Only vegetation within the new portion of the right-of-way, totaling approximately 3.5 acres, will be controlled. No herbicides will be used on this project. Vegetation to be controlled: Juniper trees are the only tall growing tree species within this portion of the right-of-way requiring treatment. The density of vegetation within the new right-of-way is light to medium. The right-of-way boundaries will be examined for danger trees and if found, danger trees will be marked and cut according to danger tree policy.

  16. Subtask 1.1 - Characterization of Erionite

    SciTech Connect (OSTI)

    Kurt Eylands; Alexander Azenkeng; Blaise Mibeck; Laura Raymond

    2009-11-30T23:59:59.000Z

    Zeolites are an economical mineral used in several applications, primarily as molecular sieves because of their crystalline structure. Southwestern North Dakota has several localities of volcanic ash deposits (tuffs) that have undergone physical and chemical changes forming some zeolites in the process. Of particular interest is the zeolite mineral erionite, but not because of its economic potential. Erionite is highly carcinogenic and was found to be responsible for extremely high mortality rates in two Turkish villages in close proximity to erionite rock and dust. Erionite has traditionally been identified using x-ray diffraction (XRD) methods. The presence of swelling clays can interfere with the identification of erionite by XRD giving false positive results. Scanning electron microscopy (SEM) was used to identify the distinctive needlelike form of erionite. In some cases, erionite was identified using SEM techniques where erionite was present, but in quantities that are lower than the lower detection limits. Conversely, erionite was identified by XRD in some instances where the erionite was somewhat masked in a clay matrix. Both XRD and SEM methods should be used to properly identify erionite. Erionite was identified in sandstones and siltstones from buttes in Dunn, Stark, and Slope Counties of North Dakota, but no definitive correlation was noted between these occurrences and health effects that may be attributed to erionite.

  17. Microbiological and geochemical characterization of fluvially deposited sulfidic mine tailings

    SciTech Connect (OSTI)

    Wielinga, B.; Lucy, J.K.; Moore, J.N.; Seastone, O.F.; Gannon, J.E. [Univ. of Montana, Missoula, MT (United States)

    1999-04-01T23:59:59.000Z

    The fluvial deposition of mine tailings generated from historic mining operations near Butte, Montana, has resulted in substantial surface and shallow groundwater contamination along Silver Bow Creek. Biogeochemical processes in the sediment and underlying hyporheic zone were studied in an attempt to characterize interactions consequential to heavy-metal contamination of shallow groundwater. Sediment cores were extracted and fractionated based on sediment stratification. Subsamples of each fraction were assayed for culturable heterotrophic microbiota, specific microbial guilds involved in metal redox transformations, and both aqueous- and solid-phase geochemistry. Populations of cultivable Fe(III)-reducing bacteria were most prominent in the anoxic, circumneutral pH regions associated with a ferricrete layer or in an oxic zone high in organic carbon and soluble iron. Sulfur- and iron-oxidizing bacteria were distributed in discrete zones throughout the tailings and were often recovered from sections at and below the anoxic groundwater interface. Sulfate-reducing bacteria were also widely distributed in the cores and often occurred in zones overlapping iron and sulfur oxidizers. Sulfate-reducing bacteria were consistently recovered from oxic zones that contained high concentrations of metals in the oxidizable fraction. Altogether, these results suggest a highly varied and complex microbial ecology within a very heterogeneous geochemical environment. Such physical and biological heterogeneity has often been overlooked when remediation strategies for metal contaminated environments are formulated.

  18. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  19. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  20. MHD Integrated Topping Cycle Project. Sixteenth quarterly technical progress report, May 1991--July 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  1. MHD Integrated Topping Cycle Project. Thirteenth quarterly technical progress report, August 1, 1990--October 31, 1990

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number_sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  2. Mineralogical and physical considerations related to the separation and recovery of constituents from aluminum smelter by-products and wastes

    SciTech Connect (OSTI)

    Plumpton, A.J.; Wilhelmy, J.F.; Blackburn, D.; Caouette, J.L. [Centre de Recherches Minerales, Sainte-Foy, Quebec (Canada)

    1996-10-01T23:59:59.000Z

    Several by-products and waste products of aluminum smelting were characterized mineralogically and physically, in order to evaluate the potential for their decontamination or separation and recovery into valuable products using mineral processing techniques. The test samples were selected from among Bayer process red mud, bath-alumina mixture, cleaned anode butts, anode recycle residues, spent potlining, saltcake and fluorogypsum. Several of these materials were shown to be composed either of highly liberated, potentially separable mineral phases, or of locked minerals which could be partially liberated by grinding to smaller but practical particle sizes. An analysis of specific physical properties of the liberated constituent mineral phases was accompanied by preliminary experimental evaluation of their separability. An assessment was made of potential mineral processing techniques including size and form differentiation, gravitational and magnetic field separation, flotation, separation based on surface charging phenomena or work function, and pneumatic tabling. The results confirmed the suitability of low-cost physical separation techniques for the treatment of some by-products and wastes. This paper presents results of a preliminary evaluation of two smelter products. The conference paper will analyze and discuss in more detail the potential for the mineral processing of these and other smelter by-products and wastes.

  3. Geopressured-geothermal well report. Volume I. Drilling and completion

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Gladys McCall site activities are covered through the completion of the test well and salt water disposal well. The test well was drilled to a total depth of 16,510 feet, then plugged back to 15,831 feet. Three 4'' diameter diamond cores were taken for analysis. An existing well on site, the Getty-Butts Gladys McCall No. 1, was reentered and completed to a depth of 3514 feet as a salt water disposal well. The geologic interpretation of the Gladys McCall site indicated target sands for testing at 15,080 feet through 15, 831 feet. Reservoir fluid temperature at this depth is estimated to be approximately 313/sup 0/F and pressure is estimated to be +-12,800 psi. The preliminary reservoir volume estimate is 3.6 billion barrels of brine. The design wells program includes environmental monitoring of the Gladys McCall site by Louisiana State University. Field stations are set up to monitor surface and ground water quality, subsidence, land loss and shoreline erosion, and seismicity. As of December 31, 1981 the study shows no significant impact on the environment by site operations.

  4. The intermountain power project commissioning - Subsynchronous torsional interaction tests

    SciTech Connect (OSTI)

    Wu, C.T.; Peterson, K.J. (Dept. of Water and Power, Los Angeles, CA (US)); Pinko, R.J.; Kankam, M.D.; Baker, D.H. (General Electric Co., Schenectady, NY (US))

    1988-10-01T23:59:59.000Z

    Subsyncronous torsional vibration as a result of electrochemical interaction between the HVDC controls and a turbine-generator was first discovered during the commissioning of the Square Butte Project in 1977. The level of interaction between the HVDC controls and the turbine-generator depends on several interacting factors: the characteristic torsional frequencies of the turbine-generator, the bandwidth of the HVDC controls and the relative strength of the connecting ac system. For the Intermountain Power Project (IPP), early analysis of these interacting factors indicated that there exist definite potential for subsynchronous oscillation to occur. The calculated torsional frequencies of the IPP units showed that the first mode frequency is 14.0 Hz and is within the typical bandwidth of an HVDC control which is between 10-20 Hz. The HVDC controls, therefore, can influence the torsional stability of the IPP units. Further, the IPP turbine-generators are required to operate isolated on the HVDC rectifier terminal, with no other interconnecting ac network. This ''radial'' mode of operation will result in maximum interaction between the converter station and the IPP units. It became obvious that special measure must be implemented in the design of the IPP HVDC control system to modify its typical characteristics to avoid the occurrence of the subsynchronous oscillation. This paper presents the results of the subsynchronous torsional interaction (SSTI) tests that were performed during the commissioning of the IPP Unit 1 and the HVDC Transmission system.

  5. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    SciTech Connect (OSTI)

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

    1994-10-01T23:59:59.000Z

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  6. Electricity Diversity Profiles for Energy Simulation of Office Buildings

    E-Print Network [OSTI]

    Claridge, D.E.; Abushakra, B.; Haberl, J.S.; Sreshthaputra, A.

    Minneapolis, MN 87,664 WBE 0.52 ESL 2.69 15.76 15.83 3/1/96 L MTLOOI Butte, MT 100,000 WBE 1.13 ESL 4.19 12.65 12.54 7/1/98 M ORMOOla Portland, OR 79,700 LIGHT 1.15 LBNL 5.58 15.33 15.51 1/1/91 M ORMOOlb Portland, OR 79,700 RECEPT 0.6 LBNL 1.79 9.38 9....23 1/1/91 M ORMOOlb Portland, OR 79,700 LIGHT+ RECEPT 1.69 LBNL 7.36 13.67 13.84 1/1/91 M ORM002a Eugene, OR 24,800 LIGHT 1.16 LBNL 3.07 9.26 8.81 1/1/91 M ORM002b Eugene, OR 24,800 RECEPT 0.66 LBNL 2.68 12.00 11.91 1/1/91 M ORM002c Eugene, OR 24...

  7. Completion Report for Well ER-8-1

    SciTech Connect (OSTI)

    Bechtel Nevada

    2004-11-01T23:59:59.000Z

    Well ER-8-1 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in October and November of 2002 as part of a Hydrogeologic investigation program for the Yucca Flat/Climax Mine Corrective Action Unit in the northeastern portion of the Nevada Test Site. Well ER-8-1 is located at the north end of Yucca Flat approximately 580 meters south-southeast of the surface exposure of the Climax granitic intrusive. Detailed lithologic descriptions with stratigraphic assignments are included in this report. These are based on composite drill cuttings samples collected every 3 meters, and 21 sidewall samples taken at various depths between 351.1 and 573.0 meters, supplemented by incomplete geophysical log data. Detailed petrographic, geochemical, and mineralogical studies of rock samples were conducted on 22 samples of drill cuttings. Drilling began in tuffaceous alluvium, and the borehole penetrated Tertiary age bedded tuffs of the Volcanics of Oak Spring Butte and carbonate sediments of Paleozoic age, which were encountered at a depth of 334 meters. The borehole unexpectedly penetrated granite at the depth of 538.9 meters in which drilling was stopped. Contact metamorphic rocks and intrusive dikes associated with the Cretaceous-age granitic intrusive and at least one significant fault zone were encountered.

  8. A Self-Calibrating Remote Control Chemical Monitoring System

    SciTech Connect (OSTI)

    Jessica Croft

    2007-06-01T23:59:59.000Z

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TAs system was operational, the data collected after MSE-TAs system was shut down and suggested improvements to the existing system.

  9. Evolution of organic matter indicators in response to major environmental changes: The case of a formerly cut-over peat bog (Le Russey, Jura Mountains, France)

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    peat re-accumulation and long term carbon sequestration in formerly exploited peatlands of pristine peatlands to act as carbon sinks is now well established (Gorham, 1991). Nevertheless, peat bogs for their specific biodiversity and suitability for long term carbon storage. Thus, much work has been carried out

  10. Historical corner Photosynthesis Research in Canada from 1945 to the early 1970s

    E-Print Network [OSTI]

    Fragata, Mário

    Historical corner Photosynthesis Research in Canada from 1945 to the early 1970s Paul R. Gorham1, action spectra of photosynthesis, Andreas Hauschild, artificial leaf, Bill Vidaver, Bob Emerson, Bruce, Paul Vittorio, phospholipase, photo- respiration, photosynthesis in algae, photosynthesis of trees

  11. For additional information, contact: Department of Agricultural Economics & Economics

    E-Print Network [OSTI]

    Lawrence, Rick L.

    For additional information, contact: Department of Agricultural Economics & Economics Montana State.montana.edu/econ agecon@montana.edu 1 2 AGRICULTURAL ECONOMICS & ECONOMICS KELLY GORHAM 1 Austin Owens traveled to Greece as mentors for students in Economics 101 4 Chris Stoddard was the recipient of a MSU Cox Family Faculty

  12. Department of Land Resources & Environmental

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    on soil arsenic levels Photo: Kelly Gorham #12;Operations Management and Social Influences on Supply Chain Bass LRES Ph.D. Student Operations Management and Social Influences on Supply Chain Optimization strategic, tactical and operational factors and social relationships influence their sustainability

  13. Habitat Evaluation Procedures (HEP) Report : Hellsgate Project, 1999-2000 Technical Report.

    SciTech Connect (OSTI)

    Berger, Matthew

    2000-05-01T23:59:59.000Z

    A Habitat Evaluation Procedure (HEP) study was conducted on lands acquired and/or managed (4,568 acres total) by the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate project) to mitigate some of the losses associated with the original construction and operation of Grand Coulee Dam and inundation of habitats behind the dams. Three separate properties, totaling 2,224 acres were purchased in 1998. One property composed of two separate parcels, mostly grassland lies southeast of the town of Nespelem in Okanogan County (770 acres) and was formerly called the Hinman property. The former Hinman property lies within an area the Tribes have set aside for the protection and preservation of the sharp-tailed grouse (Agency Butte unit). This special management area minus the Hinman acquisition contains 2,388 acres in a long-term lease with the Tribes. The second property lies just south of the Silver Creek turnoff (Ferry County) and is bisected by the Hellsgate Road (part of the Friedlander unit). This parcel contains 60 acres of riparian and conifer forest cover. The third property (now named the Sand Hills unit) acquired for mitigation (1,394 acres) lies within the Hellsgate Reserve in Ferry County. This new acquisition links two existing mitigation parcels (the old Sand Hills parcels and the Lundstrum Flat parcel, all former Kuehne purchases) together forming one large unit. HEP team members included individuals from the Colville Confederated Tribes Fish and Wildlife Department (CTCR), Washington Department of Fish and Wildlife (WDFW), and Bureau of Land Management (BLM). The HEP team conducted a baseline habitat survey using the following HEP species models: mule deer (Odocoileus hemionus), mink (Mustela vison), downy woodpecker (Picoides pubescens), bobcat (Lynx rufus), yellow warbler (Dendroica petechia), and sharp-tailed grouse (Tympanuchus phasianellus columbianus). HEP analysis and results are discussed within the body of the text. The cover types evaluated for this study were grasslands, shrub-steppe, rock, conifer forest and woodland, and riparian. These same cover types were evaluated for other Hellsgate Project acquisitions within the same geographic area. Mule deer habitat on the Sand Hills unit rated good overall for winter food and cover in the shrub-steppe and conifer woodland cover types. Sharp-tailed grouse habitat on the former Hinman property and special management area rated good for nesting and brood rearing in the grassland cover type. Mink habitat on the Friedlander parcel rated poor due to lack of food and cover in and along the riparian cover type. The Downy woodpecker rated poor for food and cover on the Friedlander parcel in the conifer forest cover type. This species also rated poor on the conifer woodland habitat on the Hinman parcel. Yellow warbler habitat on the Agency Butte Special Management area rated very poor due to lack of shrubs for cover and reproduction around the scattered semi/permanent ponds that occur on the area. Bobcat habitat on this same area rated poor due to lack of cover and food. Fragmentation of existing quality habitat is also a problem for both these species. This report is an analysis of baseline habitat conditions on mitigation and managed lands, and provides estimated habitat units for mitigation crediting purposes. In addition, this information will be used to manage these lands for the benefit of wildlife.

  14. MAJOR PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Craig D. Morgan; Thomas C. Chidsey

    2003-11-01T23:59:59.000Z

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land-use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the second project year (July 1 through September 30, 2003). This work included (1) describing the Conventional Southern Uinta Basin Play, subplays, and outcrop reservoir analogs of the Uinta Green River Conventional Oil and Gas Assessment Unit (Eocene Green River Formation), and (2) technology transfer activities. The Conventional Oil and Gas Assessment Unit can be divided into plays having a dominantly southern sediment source (Conventional Southern Uinta Basin Play) and plays having a dominantly northern sediment source (Conventional Northern Uinta Basin Play). The Conventional Southern Uinta Basin Play is divided into six subplays: (1) conventional Uteland Butte interval, (2) conventional Castle Peak interval, (3) conventional Travis interval, (4) conventional Monument Butte interval, (5) conventional Beluga interval, and (6) conventional Duchesne interval fractured shale/marlstone. We are currently conducting basin-wide correlations to define the limits of the six subplays. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. Outcrop analogs for each subplay except the Travis interval are found in Indian and Nine Mile Canyons. During this quarter, the project team members submitted an abstract to the American Association of Petroleum Geologists for presentation at the 2004 annual national convention in Dallas, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

  15. First quarter Hanford seismic report for fiscal year 2000

    SciTech Connect (OSTI)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-02-23T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EW uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 311 triggers on two parallel detection and recording systems during the first quarter of fiscal year (FY) 2000. Twelve seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree}N latitude and 119--120{degree}W longitude; 2 were earthquakes in the Columbia River Basalt Group, 3 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 1 was a quarry blast. Two earthquakes appear to be related to a major geologic structure, no earthquakes occurred in known swarm areas, and 9 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the first quarter of FY 2000.

  16. Third Quarter Hanford Seismic Report for Fiscal Year 2000

    SciTech Connect (OSTI)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-09-01T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its con-tractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (E WRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 818 triggers on two parallel detection and recording systems during the third quarter of fiscal year (FY) 2000. Thirteen seismic events were located by the Hanford Seismic Network within the reporting region of 46-47{degree} N latitude and 119-120{degree} W longitude; 7 were earthquakes in the Columbia River Basalt Group, 1 was an earthquake in the pre-basalt sediments, and 5 were earthquakes in the crystalline basement. Three earthquakes occurred in known swarm areas, and 10 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the third quarter of FY 2000.

  17. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    SciTech Connect (OSTI)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-07-17T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree} N latitude and 119--120{degree} W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the second quarter of FY 2000.

  18. Sorbent Testing for Solidification of Organic Plutonium/Uranium Extraction Waste - Phase IV

    SciTech Connect (OSTI)

    Bickford, J.L.; Joyce, H.O. [MSE Technology Applications, Inc., P.O. Box 4078, Butte, MT 59701 (United States); Holmes-Burns, H. [Westinghouse Savannah River Company, Building 705-3C, P.O. Box A, Aiken SC 29802 (United States)

    2006-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is evaluating various sorbents to solidify and immobilize hazardous constituents of the organic fraction of plutonium/uranium extraction (PUREX) process waste at the Savannah River Site (SRS).[5] The purpose of the solidification is to provide a cost-effective alternative to incineration of the waste. Incineration at the Consolidated Incinerator Facility (CIF) at SRS is currently identified as the treatment technology for PUREX waste. However, the CIF is not in operation at this time, so SRS is interested in pursuing alternatives to incineration for treatment of this waste. The DOE Western Environmental Technology Office in Butte, MT was designated as the facility for conducting the sorbent testing and evaluation for the organic PUREX waste surrogate. MSE Technology Applications, Inc. tested and evaluated two clay and two polymer sorbents with the capability of solidifying organic PUREX waste. A surrogate organic PUREX waste recipe was utilized, and sorbents were tested and evaluated at bench-scale, 22-liter (5-gallon) scale, and 242-liter (55-gallon) scale. This paper presents experimental results evaluating four sorbent materials including: Imbiber Beads{sup TM} IMB230301-R, Nochar A610 Petrobond{sup TM}, Petroset II{sup TM}, and Petroset II Granular{sup TM}. Previous work at SRS indicated that these products could solidify organic PUREX waste on a bench scale [1]. The sorbents were evaluated using operational criteria and final wasteform properties. Operational criteria included: sorbent capacity; sorption rate; sorbent handling; and mixing requirements. Final wasteform evaluation properties included: ignitability; thermal stability; offgas generation, leachability tests and volumetric expansion. Bench-scale tests, 22-liter (5-gallon) tests, and initial 242-liter (55-gallon) tests are complete. This paper summarizes the results of the bench-scale, 22-liter (5-gallon) scale, and 242-liter (55-gallon) scale tests performed during FY05 with an aqueous/PUREX surrogate. (authors)

  19. Experimental Investigations on Pulsed Nd:YAG Laser Welding of C17300 Copper-Beryllium and 49Ni-Fe Soft Magnetic Alloys

    SciTech Connect (OSTI)

    Mousavi, S. A. A. Akbari [School of Metallurgy and Materials Engineering, School of Engineering University of Tehran, Tehran (Iran, Islamic Republic of); School of Metallurgy and Materials Engineering, School of Engineering University of Tehran, Tehran (Iran, Islamic Republic of); Ebrahimzadeh, H. [School of Metallurgy and Materials Engineering, School of Engineering University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-01-17T23:59:59.000Z

    Copper-beryllium and soft magnetic alloys must be joined in electrical and electro-mechanical applications. There is a high difference in melting temperatures of these alloys which cause to make the joining process very difficult. In addition, copper-beryllium alloys are of age hardenable alloys and precipitations can brittle the weld. 49Ni-Fe alloy is very hot crack sensitive. Moreover, these alloys have different heat transfer coefficients and reflection of laser beam in laser welding process. Therefore, the control of welding parameters on the formation of adequate weld puddle composition is very difficult. Laser welding is an advanced technique for joining of dissimilar materials since it can precisely control and adjust the welding parameters. In this study, a 100W Nd:YAG pulsed laser machine was used for joining 49Ni-Fe soft magnetic to C17300 copper-beryllium alloys. Welding of samples was carried out autogenously by changing the pulse duration, diameter of beam, welding speed, voltage and frequency. The spacing between samples was set to almost zero. The ample were butt welded. It was required to apply high voltage in this study due to high reflection coefficient of copper alloys. Metallography, SEM analysis, XRD and microhardness measurement was used for survey of results. The results show that the weld strength depends upon the chemical composition of the joints. To change the wells composition and heat input of the welds, it was attempted to deviate the laser focus away from the weld centerline. The best strength was achieved by deviation of the laser beam away about 0.1mm from the weld centerline. The result shows no intermetallic compounds if the laser beam is deviated away from the joint.

  20. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    SciTech Connect (OSTI)

    Xu, Z. (Nuclear Engineering Division)

    2012-04-03T23:59:59.000Z

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  1. Bedrock erosion in the lower Big Wood River channel, southcentral Idaho

    SciTech Connect (OSTI)

    Maley, T.S.; Oberlindacher, P. (Bureau of Land Management, Boise, ID (United States))

    1993-04-01T23:59:59.000Z

    The Big Wood River, which is fed from the mountains to the north of the Snake River Plain, cuts through 0.8 m.y. old basalt in an area north and east of Shoshone, Idaho. The basalt channel carved by the Big Wood River exhibits remarkable and unusual bedrock erosional features. Approximately 10,000 years ago, nearby Black Butte shield volcano erupted basaltic lave which rerouted the Big Wood River. At the time the new river channel formed 10,000 years ago, alpine glaciers in the mountains were also beginning to melt. High flows of water from the melting glaciers during the next few thousand years carried large sediment loads and were instrumental in developing the spectacular potholes now found in the channel. Most of the scouring agents are pebbles and cobbles derived from quartzite, granitic, and gneissic rocks. As potholes began to develop, they were closely spaced and generally less than 1 m apart. However, as the potholes enlarged and expanded both horizontally and vertically, they coalesced with one another. The merging process occurred when the walls of two or more adjacent potholes were breached by the outward expansion of each pothole. The deeper of the two potholes captured the pebbles of the adjacent pothole. When pebbles are captured, pothole growth is terminated and the more shallow pothole was gradually cannibalized. All of the features within the channel are overprinted with a strong asymmetry caused by the current-driven pebbles against the upstream side of the features. Consequently, the upstream side of the features tends to be smooth, convex and rounded; whereas, the downstream side tends to be concave with the leading edge of the feature pointing in the downstream direction.

  2. Quarterly technical progress report for the period ending June 30, 1984

    SciTech Connect (OSTI)

    Not Available

    1984-10-01T23:59:59.000Z

    The Magnetohydrodynamics Program (Component Development and Integration Facility) in Butte, Montana, continued its site preparation for the TRW first-stage combustor installation. In the area of flue gas cleanup, our in-house research program is continuing its investigation into the causes of sorbent attrition in PETC's fluidized-bed copper oxide process for simultaneous SO/sub 2//NO/sub x/ removal. Interwoven with these tests is a series of spray dryer/electrostatic precipitator tests that are being conducted with the cooperation of Wheelabrator-Frye, Inc. This test series was completed this quarter, and the data show that when using a Kentucky coal, Wheelabrator-Frye's electrostatic precipitator provides excellent particulate control efficiency while using a spray dryer for sulfur dioxide removal. A unique project at Carnegie-Mellon University is looking at the concept of integrated environmental control for coal-fired power plants making use of precombustion, combustion, and postcombustion control, including systems for the simultaneous removal of more than one pollutant. The objective of this research is to develop a computer model and assessment for integrated environmental control systems that utilize conventional or advanced systems. The Liquid Phase Methanol Project Development Unit in LaPorte, Texas, was restarted after a successful shakedown run was completed. PETC has recently begun an in-house research project aimed at exploring the basic chemistry of liquefying coal in the presence of water under supercritical conditions. In the Alternative Fuels Technology Program, the Gulf Research and Development Company has completed the preliminary testing phase of its erosion test loop. Their results indicate that when pumping a coal-water slurry fuel through a flow loop, the erosion rate increases as velocity increases, suggesting a well-defined relationship between these two parameters.

  3. Repair welding of fusion reactor components. Final technical report

    SciTech Connect (OSTI)

    Chin, B.A.; Wang, C.A.

    1997-09-30T23:59:59.000Z

    The exposure of metallic materials, such as structural components of the first wall and blanket of a fusion reactor, to neutron irradiation will induce changes in both the material composition and microstructure. Along with these changes can come a corresponding deterioration in mechanical properties resulting in premature failure. It is, therefore, essential to expect that the repair and replacement of the degraded components will be necessary. Such repairs may require the joining of irradiated materials through the use of fusion welding processes. The present ITER (International Thermonuclear Experimental Reactor) conceptual design is anticipated to have about 5 km of longitudinal welds and ten thousand pipe butt welds in the blanket structure. A recent study by Buende et al. predict that a failure is most likely to occur in a weld. The study is based on data from other large structures, particularly nuclear reactors. The data used also appear to be consistent with the operating experience of the Fast Flux Test Facility (FFTF). This reactor has a fuel pin area comparable with the area of the ITER first wall and has experienced one unanticipated fuel pin failure after two years of operation. The repair of irradiated structures using fusion welding will be difficult due to the entrapped helium. Due to its extremely low solubility in metals, helium will diffuse and agglomerate to form helium bubbles after being trapped at point defects, dislocations, and grain boundaries. Welding of neutron-irradiated type 304 stainless steels has been reported with varying degree of heat-affected zone cracking (HAZ). The objectives of this study were to determine the threshold helium concentrations required to cause HAZ cracking and to investigate techniques that might be used to eliminate the HAZ cracking in welding of helium-containing materials.

  4. Effects of Temperature and Humidity on Wilethane 44 Cure

    SciTech Connect (OSTI)

    John C. Weigle

    2006-10-01T23:59:59.000Z

    Wilethane 44 is a polyurethane adhesive developed by the Materials Team within ESA-MEE at Los Alamos National Laboratory as a replacement for Hexcel Corporation Urethane 7200. Urethane 7200 is used in numerous weapon systems, but it was withdrawn from the market in 1989. The weapons complex requires a replacement material for use in the W76-1 LEP and the W88, as well as for assembly of JTAs for other warheads. All polyurethane systems are susceptible to moisture reacting with unreacted isocyanate groups. This side reaction competes with the curing reaction and results in CO{sub 2} formation. Therefore, a polyurethane adhesive can exhibit foaming if appropriate environmental controls are not in place while it cures. A designed experiment has been conducted at TA-16-304 to determine the effects of ambient conditions on the properties of cured Wilethane 44. Temperature was varied from 15 C to 30 C and relative humidity from 15% to 40%. The density, hardness at 24 hours, and butt tensile strength on aluminum substrates were measured and fitted to quadratic equations over the experimental space. Additionally, the loss and storage moduli during cure were monitored as a function of cure temperature. These experiments provide a stronger basis for establishing appropriate environmental conditions and cure times when using Wilethane 44. The current guidelines are a working time of 90 minutes, a cure time of 18 hours, and a relative humidity of less than 25%, regardless of ambient temperature. Viscosity measurements revealed that the working time is a strong function of temperature and can be as long as 130 minutes at 15 C or as short as 90 minutes at 30 C. The experiments also showed that the gel time is much longer than originally thought, as long as 13 hours at 15 C. Consequently, it may be necessary to extend the required cure time at temperatures below 20 C. Allowable humidity varies as a function of temperature from 34% at 15 C to 15% at 30 C.

  5. Effect of Nd:YAG laser welding on microstructure and hardness of an Al-Li based alloy

    SciTech Connect (OSTI)

    Cui, Li, E-mail: cuili@bjut.edu.cn [Beijing University of Technology (China)] [Beijing University of Technology (China); Li, Xiaoyan, E-mail: xyli@bjut.edu.cn [Beijing University of Technology (China)] [Beijing University of Technology (China); He, Dingyong, E-mail: dyhe@bjut.edu.cn [Beijing University of Technology (China)] [Beijing University of Technology (China); Chen, Li, E-mail: ouchenxi@163.com [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China)] [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China); Gong, Shuili, E-mail: gongshuili@sina.com [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China)] [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China)

    2012-09-15T23:59:59.000Z

    Butt joints of 3.0 mm thick sheets of an Al-Li based alloy have been produced using Nd:YAG laser welding without filler metals. The hardness distribution and microstructure of the alloy and welded joints were investigated. The changes in the grain shapes, grain orientations, microtexture, and precipitates of the fusion zone were analyzed using optical microscope, electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results show that Nd:YAG laser welding leads to a change of the microhardness, grain shape, grain orientations, and a disappearance of the microtexture and precipitates. A narrow band of EQZ along the fusion boundary and a predominantly equiaxed dendritic structure are developed in the fusion zone. The formation of the predominately equiaxed dendritic grains is due to a heterogeneous nucleation mechanism aided by equilibrium A1{sub 3}Zr phases as well as the growth of pre-existing nuclei created by dendrite fragmentation, or by grain detachment resulted from Nd:YAG laser welding processes. In addition, Nd:YAG laser welding produces lower Vickers hardness than that of the base metal due to the decrease in the in quantity of {delta} Prime precipitates in the fusion zone. - Graphical Abstract: The grain shapes, grain orientations, microtexture, and precipitates of the solidified fusion zone were investigated and compared with the base metal using optical microscope, electron back scattered diffraction (EBSD) and transmission electron microscope (TEM). EBSD orientation map of laser welded joint in 5A90 alloys is presented in Fig. 3. It clearly shows that a narrow band EQZ along the fusion boundary and the predominantly equiaxed grains have been developed in the fusion zone of 5A90 alloys. Also, it is clear that the microstructure of the base metal is characterized by laminated grains with preferred orientations, whereas the fusion zone is predominately equiaxed grains in different colors having random orientations. Highlights: Black-Right-Pointing-Pointer The predominantly equiaxed dendritic structure is developed in the fusion zone. Black-Right-Pointing-Pointer The fusion zone with equiaxed grains shows random orientations and microtexture. Black-Right-Pointing-Pointer The loss in hardness in the fusion zone is due to the decrease in {delta} Prime precipitates. Black-Right-Pointing-Pointer The non-epitaxial growth occurs at fusion boundary. Black-Right-Pointing-Pointer The equilibrium A1{sub 3}Zr phases maybe the nuclei of new grains in the fusion zone.

  6. Solid State Joining of High Temperature Alloy Tubes for USC and Heat-Exchanger Systems

    SciTech Connect (OSTI)

    Bimal Kad

    2011-12-31T23:59:59.000Z

    The principal objective of this project was to develop materials enabling joining technologies for use in forward looking heat-exchanger fabrication in Brayton cycle HIPPS, IGCC, FutureGen concepts capable of operating at temperatures in excess of 1000{degree}C as well as conventional technology upgrades via Ultra Super-Critical (USC) Rankine-cycle boilers capable of operating at 760{degree}C (1400F)/38.5MPa (5500psi) steam, while still using coal as the principal fossil fuel. The underlying mission in Rankine, Brayton or Brayton-Rankine, or IGCC combined cycle heat engine is a steady quest to improving operating efficiency while mitigating global environmental concerns. There has been a progressive move to higher overall cycle efficiencies, and in the case of fossil fuels this has accelerated recently in part because of concerns about greenhouse gas emissions, notably CO{sub 2}. For a heat engine, the overall efficiency is closely related to the difference between the highest temperature in the cycle and the lowest temperature. In most cases, efficiency gains are prompted by an increase in the high temperature, and this in turn has led to increasing demands on the materials of construction used in the high temperature end of the systems. Our migration to new advanced Ni-base and Oxide Dispersion Strengthened (ODS) alloys poses significant fabrication challenges, as these materials are not readily weldable or the weld performs poorly in the high temperature creep regime. Thus the joining challenge is two-fold to a) devise appropriate joining methodologies for similar/dissimilar Ni-base and ODS alloys while b) preserving the near baseline creep performance in the welded region. Our program focus is on solid state joining of similar and dissimilar metals/alloys for heat exchanger components currently under consideration for the USC, HIPPS and IGCC power systems. The emphasis is to manipulate the joining methods and variables available to optimize joint creep performance compared to the base material creep performance. Similar and dissimilar butt joints were fabricated of MA956, IN740 alloys and using inertia welding techniques. We evaluated joining process details and heat treatments and its overall effect on creep response. Fixed and incrementally accelerated temperature creep tests were performed for similar and dissimilar joints and such incremental creep life data is compiled and reported. Long term MA956-MA556 joint tests indicate a firm 2Ksi creep stress threshold performance at 850{degree}C with a maximum exposure of over 9725 hours recorded in the current program. A Larsen Miller Parameter (LMP) of 48.50 for a 2Ksi test at 850{degree}C was further corroborated with tests at 2Ksi stress at 900{degree}C yielding a LMP=48.80. Despite this threshold the joints exhibit immense temperature sensitivity and fail promptly when test temperature raised above 900{degree}C. In comparison the performance of dissimilar joints was inferior, perhaps dictated by the creep characteristics of the mating nickel-base alloys. We describe a parametric window of joint development, and post weld heat treatment (PWHT) in dissimilar joints with solid solution (IN601, IN617) and precipitate strengthened (IN740) materials. Some concerns are evident regarding the diffusion of aluminum in dissimilar joints during high temperature recrystallization treatments. It is noted that aggressive treatments rapidly deplete the corrosion protecting aluminum reservoir in the vicinity of the joint interface. Subsequently, the impact of varying PWHT has been evaluated in the context on ensuing creep performance.

  7. Interwell Connectivity and Diagnosis Using Correlation of Production and Injection Rate Data in Hydrocarbon Production

    SciTech Connect (OSTI)

    Jerry L. Jensen; Larry W. Lake; Ali Al-Yousef; Dan Weber; Ximing Liang; T.F. Edgar; Nazli Demiroren; Danial Kaviani

    2007-03-31T23:59:59.000Z

    This report details progress and results on inferring interwell communication from well rate fluctuations. Starting with the procedure of Albertoni and Lake (2003) as a foundation, the goal of the project was to develop further procedures to infer reservoir properties through weights derived from correlations between injection and production rates. A modified method, described in Yousef and others (2006a,b), and herein referred to as the 'capacitance model', is the primary product of this research project. The capacitance model (CM) produces two quantities, {lambda} and {tau}, for each injector-producer well pair. For the CM, we have focused on the following items: (1) Methods to estimate {lambda} and {tau} from simulated and field well rates. The original method uses both non-linear and linear regression and lacks the ability to include constraints on {lambda} and {tau}. The revised method uses only non-linear regression, permitting constraints to be included as well as accelerating the solution so that problems with large numbers of wells are more tractable. (2) Approaches to integrate {lambda} and {tau} to improve connectivity evaluations. Interpretations have been developed using Lorenz-style and log-log plots to assess heterogeneity. Testing shows the interpretations can identify whether interwell connectivity is controlled by flow through fractures, high-permeability layers, or due to partial completion of wells. Applications to the South Wasson and North Buck Draw Fields show promising results. (3) Optimization of waterflood injection rates using the CM and a power law relationship for watercut to maximize economic return. Tests using simulated data and a range of oil prices show the approach is working. (4) Investigation of methods to increase the robustness of {lambda} and {tau} estimates. Human interventions, such as workovers, also cause rate fluctuations and can be misinterpreted by the model if bottom hole pressure data are not available. A revised method, called the 'segmented capacitance model', identifies times when production changes might not be caused strictly by water injection changes. Application to data from Monument Butte Field shows encouraging results. Our results show the CM and its modified forms can be an important tool for waterflood management. We have moved beyond the proof of principle stage to show it can actually be applied to assess connectivity in field situations. Several shortcomings, however, remain to be addressed before the CM can be routinely applied by field operators. The CM and its modifications analyze well rates in the time domain. We also explored the assessment of interwell connectivity in the spectral domain. We applied conventional methods, based on analyzing passive linear electrical networks, to the analysis of injection and production data. In particular, we assessed the effects of near-wellbore gas on the apparent connectivity. With only oil and water in the system, the results were as expected, giving good connectivity estimates. In the presence of gas, however, the methods could not produce useful estimates of connectivity.

  8. Sequestration and Enhanced Coal Bed Methane: Tanquary Farms Test Site, Wabash County, Illinois

    SciTech Connect (OSTI)

    Scott Frailey; Thomas Parris; James Damico; Roland Okwen; Ray McKaskle; Charles Monson; Jonathan Goodwin; E. Beck; Peter Berger; Robert Butsch; Damon Garner; John Grube; Keith Hackley; Jessica Hinton; Abbas Iranmanesh; Christopher Korose; Edward Mehnert; Charles Monson; William Roy; Steven Sargent; Bracken Wimmer

    2012-05-01T23:59:59.000Z

    The Midwest Geological Sequestration Consortium (MGSC) carried out a pilot project to test storage of carbon dioxide (CO{sub 2}) in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} sequestration and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot was conducted at the Tanquary Farms site in Wabash County, southeastern Illinois. A four-well design?? an injection well and three monitoring wells??was developed and implemented, based on numerical modeling and permeability estimates from literature and field data. Coal cores were taken during the drilling process and were characterized in detail in the lab. Adsorption isotherms indicated that at least three molecules of CO{sub 2} can be stored for each displaced methane (CH{sub 4}) molecule. Microporosity contributes significantly to total porosity. Coal characteristics that affect sequestration potential vary laterally between wells at the site and vertically within a given seam, highlighting the importance of thorough characterization of injection site coals to best predict CO{sub 2} storage capacity. Injection of CO{sub 2} gas took place from June 25, 2008, to January 13, 2009. A ??continuous? injection period ran from July 21, 2008, to December 23, 2008, but injection was suspended several times during this period due to equipment failures and other interruptions. Injection equipment and procedures were adjusted in response to these problems. Approximately 92.3 tonnes (101.7 tons) of CO{sub 2} were injected over the duration of the project, at an average rate of 0.93 tonne (1.02 tons) per day, and a mode injection rate of 0.6??0.7 tonne/day (0.66??0.77 ton/day). A Monitoring, Verification, and Accounting (MVA) program was set up to detect CO{sub 2 leakage. Atmospheric CO{sub 2} levels were monitored as were indirect indicators of CO{sub 2} leakage such as plant stress, changes in gas composition at wellheads, and changes in several shallow groundwater characteristics (e.g., alkalinity, pH, oxygen content, dissolved solids, mineral saturation indices, and isotopic distribution). Results showed that there was no CO{sub 2} leakage into groundwater or CO{sub 2} escape at the surface. Post-injection cased hole well log analyses supported this conclusion. Numerical and analytical modeling achieved a relatively good match with observed field data. Based on the model results the plume was estimated to extend 152 m (500 ft) in the face cleat direction and 54.9 m (180 ft) in the butt cleat direction. Using the calibrated model, additional injection scenarios??injection and production with an inverted five-spot pattern and a line drive pattern??could yield CH{sub 4} recovery of up to 70%.

  9. Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking

    SciTech Connect (OSTI)

    Das, S.K.; Ningileri, S.; Long, Z.; Saito, K.; Khraisheh, M.; Hassan, M.H.; Kuwana, K.; Han, Q.; Viswanathan, S.; Sabau, A.S.; Clark, J.; Hyrn, J. (ANL)

    2006-08-15T23:59:59.000Z

    Approximately 68% of the aluminum produced in the United States is first cast into ingots prior to further processing into sheet, plate, extrusions, or foil. The direct chill (DC) semi-continuous casting process has been the mainstay of the aluminum industry for the production of ingots due largely to its robust nature and relative simplicity. Though the basic process of DC casting is in principle straightforward, the interaction of process parameters with heat extraction, microstructural evolution, and development of solidification stresses is too complex to analyze by intuition or practical experience. One issue in DC casting is the formation of stress cracks [1-15]. In particular, the move toward larger ingot cross-sections, the use of higher casting speeds, and an ever-increasing array of mold technologies have increased industry efficiencies but have made it more difficult to predict the occurrence of stress crack defects. The Aluminum Industry Technology Roadmap [16] has recognized the challenges inherent in the DC casting process and the control of stress cracks and selected the development of 'fundamental information on solidification of alloys to predict microstructure, surface properties, and stresses and strains' as a high-priority research need, and the 'lack of understanding of mechanisms of cracking as a function of alloy' and 'insufficient understanding of the aluminum solidification process', which is 'difficult to model', as technology barriers in aluminum casting processes. The goal of this Aluminum Industry of the Future (IOF) project was to assist the aluminum industry in reducing the incidence of stress cracks from the current level of 5% to 2%. Decreasing stress crack incidence is important for improving product quality and consistency as well as for saving resources and energy, since considerable amounts of cast metal could be saved by eliminating ingot cracking, by reducing the scalping thickness of the ingot before rolling, and by eliminating butt sawing. Full-scale industrial implementation of the results of the proposed research would lead to energy savings in excess of 6 trillion Btu by the year 2020. The research undertaken in this project aimed to achieve this objective by a collaboration of industry, university, and national laboratory personnel through Secat, Inc., a consortium of aluminum companies. During the four-year project, the industrial partners and the research team met in 16 quarterly meetings to discuss research results and research direction. The industrial partners provided guidance, facilities, and experience to the research team. The research team went to two industrial plants to measure temperature distributions in commercial 60,000-lb DC casting ingot production. The project focused on the development of a fundamental understanding of ingot cracking and detailed models of thermal conditions, solidification, microstructural evolution, and stress development during the initial transient in DC castings of the aluminum alloys 3004 and 5182. The microstructure of the DC casting ingots was systematically characterized. Carefully designed experiments were carried out at the national laboratory and university facilities as well as at the industrial locations using the industrial production facilities. The advanced computational capabilities of the national laboratories were used for thermodynamic and kinetic simulations of phase transformation, heat transfer and fluid flow, solidification, and stress-strain evolution during DC casting. The achievements of the project are the following: (1) Identified the nature of crack formation during DC casting; (2) Developed a novel method for determining the mechanical properties of an alloy at the nonequilibrium mushy zone of the alloy; (3) Measured heat transfer coefficients (HTCs) between the solidifying ingot and the cooling water jet; (4) Determined the material constitutive model at high temperatures; and (5) Developed computational capabilities for the simulation of cracking formation in DC casting ingot. The models and the database de

  10. Wheeler County Riparian Buffers; 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Homer, Will (Wheeler County Soil and Water Conservation District, John Day, OR)

    2006-01-01T23:59:59.000Z

    Number of Contacts Made--I have contacted 35 landowners in Wheeler County. Of the 35 contacts 12 have resulted in meeting on their property to discuss available options. Included an article in the Annual Report and Wheeler SWCD newsletter mailed to 550 landowners. Contacts are primarily through networking with others here in the office as well as working closely with the NRCS office. Number of Contracts Negotiated--This Project has produced five riparian buffers within the past contract year. Each has greater meaning to the landowner than simply a buffer. In most cases the buffer is providing the landowner with improved grazing management and/or more reliable water source for livestock. Landowners also feel the enhanced wildlife habitat is a bonus to the program. Other Accomplishments--I took part in the John Day Subbasin Planning process and was able to offer assistance into the inventory items related to Wheeler County. I was often the only local representative able to attend the meetings. I assisted the Wheeler SWCD in writing a successful OWEB grant to remove 110 acres of junipers for watershed restoration, range rehabilitation, and economic development. One partner in the project is a manufacturer that uses juniper as their primary construction material. The goal is to create a pilot project that may grow into a self sustaining industry within the county. I also assisted in writing a small grant to improve water usage in the Muddy Creek watershed. I assisted with the Pine Creek Conservation Area ''Twilight Tour'' as well as the Wheeler SWCD ''Annual Meeting and Dinner''. Both events were successful in getting information out about our riparian buffer program. Facilitate office training and utilization of advanced GIS technology and mapping. Problems Encountered During Contract Year--The NRCS Cultural Resources Review process has ground to a halt. It is takes 6 months to get initial results from the Portland offices. Nearly all requests require site surveys that delay the process even further. The Farm Services Agency is not user friendly when it comes to the CREP program. The program has not been designed to fit everyone along a steelhead stream. Crop/Field designations often negate or complicate CREP eligibility along qualifying streams. I spend a great deal of time mediating between FSA and the landowner. I have lost one interested landowner specifically to the fears related to the Oregon Department of State Lands ''Navigability'' study. Outlook for Contract Year 3--I am currently working on a project area that will encompass nearly six miles of steelhead habitat. It is located in the critical Bridge Creek watershed. Another is nearly three miles in the Mountain Creek Watershed. Both projects will take great steps in improving fish habitat. Both are on Steelhead streams. Further out I am working with two landowners for projects in the Butte Creek watershed that will be highly visible and will likely gain the attention of many more landowners. Like all previous projects, there is a great deal of work in future projects in massaging the landowner into feeling comfortable with the riparian buffer program. The potential to do great things with this program is huge in Wheeler County. Continuing outreach and education efforts will help the process.

  11. D and D (System Closure) Mockup Testing Demonstration. Remediation of Legacy Radioactive Piping and Tank Systems at the Reactor Technology Complex (RTC) (2007)

    SciTech Connect (OSTI)

    Byrne-Kelly, D.; Brown, Ch.; Hart, A. [MSE Technology Applications, Inc., Butte, Montana (United States); Welty, B. [Portage, Inc., Idaho Falls, ID (United States); Winterholler, K. [CWI, Idaho Falls, ID (United States)

    2008-07-01T23:59:59.000Z

    This paper presents the results of an integrated mockup demonstration of technologies and equipment designed to remove radioactively contaminated piping systems from underground vaults and pipe trenches at the Idaho National Laboratory. The integrated mockup demonstration included performing a bench scale wax fixative study and field demonstrations of the remotely operated equipment that will be used to remove radioactively contaminated pipe systems. The bench-scale wax fixative study involved defining optimum temperature and moisture conditions for effectively filling pipe sections containing residual wastes with a wax based fixative. The field demonstrations involved dismantling underground vault and trench piping systems, including pipe sections filled with the wax fixative. The purpose of the demonstration was to ensure the selected technologies and equipment would be effective prior to field deployment. The demonstration was conducted as a joint effort by MSE Technology Applications, Inc., and CWI on behalf of the U.S. Department of Energy at the Mike Mansfield Advanced Technology Center in Butte Montana. In summary: The mockup included two main tests at the MSE facility: 1) a vault mockup that included stainless and carbon steel pipe cutting and removal; and 2) a trench mockup that included cutting and removing buried Duriron and ductile iron piping. Both mockups included cutting and removing a pipe filled with the WAXFIX stabilizing material. Based on the MSE moisture tests, project personnel concluded that the WAXFIX product would be effective when used on wastes with different moisture contents that may be encountered in piping systems during the closure of the TRA-630 Catch Tank System at INL. A section of stainless steel pipe was also used to test a number of leak stop alternatives for wax leaks that may be encountered in a degraded piping system. Both the vault and the trench mockup demonstration proved successful for ICP, DOE, and MSE. The ICP operators received valuable hands-on training using the selected equipment and tooling in situations very similar to what they will encounter at INL. Proper tool selection and tool change procedures were defined as situations requiring these operations were encountered. Methodologies for approaching similar trench and vault situations (including safety concerns) were identified and experienced, and wax filled pipes were successfully cut and removed without spilling the surrogate materials within the pipes. All of the tools performed well except the band saw tool. The band saw was specifically designed to cut pipe; however, it was not robust enough and generally the shear was used in its place. Mockups are essential in gaining actual hands on training before going to the field. Mockups improve efficiency and safety that results in cost effective remediation. The MSE facility provides a valuable resource for demonstration of mockups. The facility has several acres of available space and a highly qualified support staff. The integrated mockup demonstration was considered a great success by all involved parties. ICP operators received valuable experience using the equipment selected for catch tank system closure before field deployment in a radiological contaminated environment. The selected equipment proved to be applicable to the safe and effective closure of the catch tank systems, and MSE demonstrated the ability to provide facility and services necessary to support closure mockup demonstrations. (authors)

  12. IN SITU FIELD TESTING OF PROCESSES

    SciTech Connect (OSTI)

    J.S.Y. YANG

    2004-11-08T23:59:59.000Z

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and analyses provide data useful for refining and confirming the understanding of flow, drift seepage, and transport processes in the UZ. The UZ testing activities included measurement of permeability distribution, quantification of the seepage of water into the drifts, evaluation of fracture-matrix interaction, study of flow along faults, testing of flow and transport between drifts, characterization of hydrologic heterogeneity along drifts, estimation of drying effects on the rock surrounding the drifts due to ventilation, monitoring of moisture conditions in open and sealed drifts, and determination of the degree of minimum construction water migration below drift. These field tests were conducted in two underground drifts at Yucca Mountain, the Exploratory Studies Facility (ESF) drift, and the cross-drift for Enhanced Characterization of the Repository Block (ECRB), as described in Section 1.2. Samples collected in boreholes and underground drifts have been used for additional hydrochemical and isotopic analyses for additional understanding of the UZ setting. The UZ transport tests conducted at the nearby Busted Butte site (see Figure 1-4) are also described in this scientific analysis report.

  13. Final Report for Research in High Energy Physics (University of Hawaii)

    SciTech Connect (OSTI)

    Browder, Thomas E.

    2013-08-31T23:59:59.000Z

    Here we present a final report for the DOE award for the University of Hawaii High Energy Physics Group (UHHEPG) for the period from December 1, 2009 to May 31, 2013 (including a period of no-cost extension). The high energy physics (HEP) group at the University of Hawaii (UH) has been engaged in experiments at the intensity frontier studying flavor physics (Task A: Belle, Belle-II and Task B: BES) and neutrinos (Task C: SuperK, LBNE, Double Chooz, DarkSide, and neutrino R\\&D). On the energy frontier, new types of pixel detectors were developed for upgrades of the ATLAS experiment at the LHC (Task D). On the cosmic frontier, there were investigations of ultra high-energy neutrino astrophysics and the highest energy cosmic rays using special radio detection techniques (Task E: AMBER, ANITA R\\&D) and results of the analysis of ANITA data. In addition, we have developed new types of sophisticated and cutting edge instrumentation based on novel ``oscilloscope on a chip'' electronics (Task F). Theoretical physics research (Task G) is phenomenologically oriented and has studied experimental consequences of existing and proposed new theories relevant to the energy, cosmic and intensity frontiers. The senior investigators for proposal were T. E. Browder (Task A), F. A. Harris (Task B), P. Gorham (Task E), J. Kumar (Task G), J. Maricic (Task C), J. G. Learned (Task C), S. Pakvasa (Task G), S. Parker (Task D), S. Matsuno (Task C), X. Tata (Task G) and G. S. Varner (Tasks F, A, E).