Sample records for butane butylene isobutane

  1. Ignition properties of n-butane and iso-butane in a rapid compression machine

    SciTech Connect (OSTI)

    Gersen, S.; Darmeveil, J.H. [Gasunie Engineering and Technology, P.O. Box 19, 9700 MA Groningen (Netherlands); Mokhov, A.V. [Laboratory for Fuel and Combustion Science, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Levinsky, H.B. [Gasunie Engineering and Technology, P.O. Box 19, 9700 MA Groningen (Netherlands); Laboratory for Fuel and Combustion Science, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2010-02-15T23:59:59.000Z

    Autoignition delay times of n-butane and iso-butane have been measured in a Rapid Compression Machine in the temperature range 660-1010 K, at pressures varying from 14 to 36 bar and at equivalence ratios {phi} = 1.0 and {phi} = 0.5. Both butane isomers exhibit a negative-temperature-coefficient (NTC) region and, at low temperatures, two-stage ignition. At temperatures below {proportional_to}900 K, the delay times for iso-butane are longer than those for the normal isomer, while above this temperature both butanes give essentially the same results. At temperatures above {proportional_to}720 K the delay times of the lean mixtures are twice those for stoichiometric compositions; at T < 720 K, the equivalence ratio is seen to have little influence on the ignition behavior. Increasing the pressure from 15 bar to 30 bar decreases the amplitude of the NTC region, and reduces the ignition delay time for both isomers by roughly a factor of 3. In the region in which two-stage ignition is observed, 680-825 K, the duration of the first ignition stage decreases sharply in the range 680-770 K, but is essentially flat above 770 K. Good quantitative agreement is found between the measurements and calculations for n-butane using a comprehensive model for butane ignition, including both delay times in the two-stage region, with substantial differences being observed for iso-butane, particularly in the NTC region. (author)

  2. An investigation of the reactions of butylene and isobutane in the presence of concentrated sulfuric acid using a wetted wall reactor

    E-Print Network [OSTI]

    Howerton, Murlin T.

    1949-01-01T23:59:59.000Z

    AN INVESTIGATION OF THE REACTIONS OF BUTYLENE AND ISOBUTANE IN THE PRESENCE OF CONCENTRATED SULFURIC ACID USING A WETTED WALL REACTOR Approved as Head of the A Thesis By Murlin Thomas Howerton ?if May, 19U9 to^gtyle and content recommended...: Department of Chemical Engineering AN INVESTIGATION OF THE REACTIONS OF BUTYLENE AND ISOBUTANE IN THE PRESENCE OF CONCENTRATED SULFURIC, ACID USING A WETTED WALL REACTOR A Thesis By Murlin Thomas Howerton May, 19U9 AN INVESTIGATION OF THE REACTIONS...

  3. Support shape effect in metal oxide catalysis: ceria nanoshapes supported vanadia catalysts for oxidative dehydrogenation of iso-butane

    SciTech Connect (OSTI)

    Wu, Zili [ORNL; Schwartz, Viviane [ORNL; Li, Meijun [ORNL; Rondinone, Adam Justin [ORNL; Overbury, Steven {Steve} H [ORNL

    2012-01-01T23:59:59.000Z

    The activation energy of VOx/CeO2 catalysts in oxidative dehydrogenation of iso-butane was found dependent on the shape of ceria support: rods < octahedra, closely related to the surface oxygen vacancy formation energy and defects amount of the two ceria supports with different crystallographic surface planes.

  4. Efficient Energy Usage in Butane Splitters

    E-Print Network [OSTI]

    Barnwell, J.; Morris, C. P.

    1982-01-01T23:59:59.000Z

    A World surplus of mixed butanes coupled with an increased need for gasoline extenders has raised the demand for isobutane. Isobutane is readily separated from an admixture with normal butane by conventional distillation techniques. However...

  5. Etherify field butanes: Part 2

    SciTech Connect (OSTI)

    Sarathy, P.R. (John Brown, Houston, TX (United States)); Suffridge, G.S. (John Brown, Tulsa, OK (United States))

    1993-02-01T23:59:59.000Z

    Worldwide interest in technical details concerning major components of world-scale MTBE complexes continues. Part 1 reviewed alternate scenarios for MTBE production and basic technological considerations to assess component processes for producing MTBE. Commercial technologies and cost considerations for world-scale MTBE complexes call for a focus on butane isomerization, isobutane dehydrogenation and isobutylene etherification. The paper describes isomerization; four commercial processes for dehydrogenation (Oleflex, Catofin, STAR, and FBD-4 processes); three methods for etherification (fixed bed with recycle, fixed bed tubular reactor, and catalytic distillation); and capital and production costs for the MTBE complex.

  6. Alkylation of mixed olefins with isobutane in a stratco chemical reactor

    SciTech Connect (OSTI)

    Vichailak, M. [ABB Lummus Global Inc., Houston, TX (United States); Hopper, J.R.; Yaws, C.L. [Lamar Univ., Beaumont, TX (United States); Pike, R.W. [Louisiana State Univ., Baton Rouge, LA (United States)

    1996-12-31T23:59:59.000Z

    The 17 reaction model for the sulfuric acid alkylation of isobutane with propylene as proposed by Langley and Pike has been used to simulate the effluent refrigeration reactor. The simulation conditions selected to minimize the formation of light and heavy by-product were determined to be: Temperature: 9 - 10 {degrees}C,- Isobutane/Olefin Ratio: 8 - 10; % Volume of Acid: 50 %. The reactor effluent composition from the simulation program has been used to compare with several sets of published data with reasonable agreement. This model has been extrapolated to simulate the alkylation of isobutane with butylenes and amylenes. The model will be optimized with commercial data. 9 refs., 6 figs., 1 tab.

  7. Butane segregated by fluorides, olefins content at Texas terminals

    SciTech Connect (OSTI)

    Not Available

    1993-03-22T23:59:59.000Z

    Texas Eastern Products Pipeline Co., Houston (Teppco), this month has begun segregating butane streams at the company's Mont Belvieu and Baytown, Texas terminals according to fluoride and olefin contents. Streams containing fluoride or an olefin content greater than 1 ppm (or both) currently flow into Teppco's south Mont Belvieu terminal. Those fluoride-free streams with less than 1 ppm of olefins flow to its north Mont Belvieu terminal. Butane processed through an isomerization unit yields isobutane, a key component in MTBE. But high-fluoride butane from crude-oil refineries using hydrofluoric (HF) acid alkylation units cannot be used to produce MTBE because fluoride will damage isomerization units' process catalysts. Olefins also affect the efficiency of isomerization units, but less critically than fluorides. Their presence is higher in refinery product than in fractionated NGL. To extend the life of their process catalysts and to maximize yields, producers (including MTBE and isomerization unit operators) are specifying low-fluoride butanes developed from natural-gas fractionators or from refineries that do not use an HF process.

  8. Transport of Injected Isobutane by Thermal Groundwater in Long...

    Open Energy Info (EERE)

    Injected Isobutane by Thermal Groundwater in Long Valley Caldera, California, USA, In- Water-Rock Interaction-11 Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  9. Firing Excess Refinery Butane in Peaking Gas Turbines

    E-Print Network [OSTI]

    Pavone, A.; Schreiber, H.; Zwillenberg, M.

    normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper...

  10. Firing Excess Refinery Butane in Peaking Gas Turbines 

    E-Print Network [OSTI]

    Pavone, A.; Schreiber, H.; Zwillenberg, M.

    1989-01-01T23:59:59.000Z

    normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper...

  11. Heat transfer coefficients for propane (R-290), isobutane (R-600a), and 50/50 mixture of propane and isobutane

    SciTech Connect (OSTI)

    Mathur, G.D. [Zexel USA Corp., Decatur, IL (United States)

    1998-12-31T23:59:59.000Z

    Tube-side heat transfer coefficients for single-phase flow, evaporation, and condensation are presented for propane (R-290), isobutane (R-600a), and a 50/50 mixture (by weight) of propane and isobutane. Heat transfer coefficients have been presented for smooth tubes based on the standard correlations available in the literature for pure refrigerants. The correlations for evaporation and condensation have previously been verified for R-12 and other refrigerants. The correlations for evaporation and condensation have previously been verified for R-12 and other refrigerants. The mass flux of the refrigerant is varied over a wide range that is typically encountered in residential, commercial, and automotive applications. Evaporation temperatures of {minus}6.7 C (20 F) and 4.4 C (40 F) and condensation temperatures of 37.8 C (100 F) and 48.9 C (120 F) have been used for this investigation. The heat transfer coefficients for hydrocarbons (R-290, R-600a, R-290/R-600a) have been compared with R-12 and R-134a. The REFPROP computer program developed by the National Institute of Standards and Technology (NIST) has been used to determine the thermodynamic properties for R-290, R-600a, and R-290/R-600a. This study shows that the heat transfer coefficients for hydrocarbons are significantly higher than those for both R-12 and R-134a. For the range of refrigerant temperatures and mass flux studied, single-phase vapor heat transfer coefficients for hydrocarbons are greater by 234% to 259% in comparison to R-12 and are greater by 167% to 181% in comparison to R-134a. The single-phase liquid heat transfer coefficients for hydrocarbons are greater by 193% to 245% in comparison to R-12; and are greater by 155% to 198% in comparison to R-134a. Average evaporative heat transfer coefficients for hydrocarbons are greater by 194% to 238% in comparison to R-12 and are greater by 157% to 192% in comparison to R-134a. Finally, average condensing coefficients are greater by 220% to 233% in comparison to R-12 and are greater by 177% to 187% in comparison to R-134a. Tables 3 through 6 show a summary of the heat transfer coefficient enhancement of the hydrocarbons in comparison to both R-12 and R-134a.

  12. Single event kinetic modeling of solid acid alkylation of isobutane with butenes over proton-exchanged Y-Zeolites 

    E-Print Network [OSTI]

    Martinis Coll, Jorge Maximiliano

    2006-04-12T23:59:59.000Z

    Complex reaction kinetics of the solid acid alkylation of isobutane with butenes over a proton-exchanged Y-zeolite has been modeled at the elementary step level. Starting with a computer algorithm that generated the reaction ...

  13. Single event kinetic modeling of solid acid alkylation of isobutane with butenes over proton-exchanged Y-Zeolites

    E-Print Network [OSTI]

    Martinis Coll, Jorge Maximiliano

    2006-04-12T23:59:59.000Z

    runs. An experimental investigation of the solid acid alkylation process was carried out in a fixed bed catalytic reactor operating with an excess of isobutane under isothermal conditions at moderate temperatures (353-393 K) in liquid phase...

  14. Synthesis of Isobutene and Isobutane from Synthesis Gas. A Literature Review Since 1992

    SciTech Connect (OSTI)

    Petkovic, Lucia M.; Ginosar, Daniel M.

    2012-04-01T23:59:59.000Z

    The isosynthesis reaction is commonly referred as the reaction that converts selectively synthesis gas to isobutene and isobutane. The main feature of this reaction is the production of branched hydrocarbons in higher proportion with respect to linear hydrocarbons than expected from thermodynamic equilibrium and with a molecular weight distribution favoring iso-C4 hydrocarbons. This article reviews and summarizes isosynthesis research results reported in the open scientific literature with emphasis on the articles published in the last two decades.

  15. Adsorption of iso-/n-butane on an Anatase Thin Film: A Molecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    iso-n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study. Adsorption of iso-n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study....

  16. Formation of paramagnetic species upon radiolysis of a polycarbonate-poly(butylene terephthalate) system

    SciTech Connect (OSTI)

    Orlov, A.Yu.; Fel`dman, V.I.; Sukhov, F.F. [Karpov Institute of Physical Chemistry, Moscow (Russian Federation)

    1995-07-01T23:59:59.000Z

    The formation of paramagnetic species upon low-temperature radiolysis of a polycarbonate-poly(butylene terephthalate) (PC-PBTP) system was studied by ESR spectroscopy. The radiation-chemical yields of paramagnetic species in pure polymers and their blends with various blending times were measured. The decrease of G values for samples with a long blending time was explained by the suppression of formation of neutral radicals from the PC units. The formation of CO-separated radical pairs, which result from the PC fragments, is suppressed efficiently as the blending time increases. It is concluded that the spectral parameters of the radical pairs are the most sensitive features to the change in the microenvironment of the radiolysis products.

  17. ADSORPTION AND BONDING OF BUTANE AND PENTANE ON THE Pt(111) CRYSTAL SURFACES. EFFECTS OF OXYGEN TREATMENTS AND DEUTERIUM PREADSORPTION

    E-Print Network [OSTI]

    Salmeron, M.

    2012-01-01T23:59:59.000Z

    which may be due to its adsorption on D-covered regions.of Physical Chemistry ADSORPTION AND BONDING OF BUTANE ANDof California. LBL 12617 ADSORPTION AND BONDING OF BUTANE

  18. Improving fractionation lowers butane sulfur level at Saudi gas plant

    SciTech Connect (OSTI)

    Harruff, L.G.; Martinie, G.D.; Rahman, A. [Saudi Arabian Oil Co., Dhahran (Saudi Arabia)

    1998-10-12T23:59:59.000Z

    Increasing the debutanizer reflux/feed ratio to improve fractionation at an eastern Saudi Arabian NGL plant reduced high sulfur in the butane product. The sulfur resulted from dimethyl sulfide (DMS) contamination in the feed stream from an offshore crude-oil reservoir in the northern Arabian Gulf. The contamination is limited to two northeastern offshore gas-oil separation plants operated by Saudi Arabian Oil Co. (Saudi Aramco) and, therefore, cannot be transported to facilities outside the Eastern Province. Two technically acceptable solutions for removing this contaminant were investigated: 13X molecular-sieve adsorption of the DMS and increased fractionation efficiency. The latter would force DMS into the debutanizer bottoms.

  19. untitled

    Gasoline and Diesel Fuel Update (EIA)

    combining isobutane with olefin hydrocarbons (e.g., propylene, butylene) through the control of temperature and pressure in the presence of an acid catalyst, usually sulfuric...

  20. PSMDEFS.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    combining isobutane with olefin hydrocarbons (e.g., propylene, butylene) through the control of temperature and pressure in the presence of an acid catalyst, usually sulfuric...

  1. EFFECT OF FUEL TYPE ON FLAME IGNITION BY TRANSIENT PLASMA Jianbang Liu1,2

    E-Print Network [OSTI]

    ABSTRACT Rise and delay times of mixtures of methane, propane, n-butane, iso-butane and iso- octane mixed performance of various fuels including methane, propane, iso-butane, n-butane and iso-octane mixed with air with air ignited by transient plasma discharge were investigated and compared with spark discharge ignition

  2. Surface Adsorption Isotherms and Surface Excess Densities of n-Butane in Silicalite-1

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Surface Adsorption Isotherms and Surface Excess Densities of n-Butane in Silicalite-1 Isabella 27, 2008. ReVised Manuscript ReceiVed NoVember 13, 2008 We present isotherms for the adsorption of n were considered: a flat surface having only one adsorption site and a surface with a zigzag texture

  3. METHANE AND n-BUTANE OXIDATION WITH CO2 UNDER RADIOFREQUENCY PLASMAS OF MODERATE PRESSURES (*)

    E-Print Network [OSTI]

    Boyer, Edmond

    the gas to the reactor walls. It is capacitively coupled to the radiofrequency generator (35 MHz, 10 k ) and constant pressure of 20 torr. Experimental details on discharges parameters, sampling procedure, gas analy1205 METHANE AND n-BUTANE OXIDATION WITH CO2 UNDER RADIOFREQUENCY PLASMAS OF MODERATE PRESSURES

  4. Production of olefins by oxidative dehydrogenation of propane and butane over monoliths at short contact times

    SciTech Connect (OSTI)

    Huff, M.; Schmidt, L.D. [Univ. of Minnesota, Minneapolis, MN (United States)] [Univ. of Minnesota, Minneapolis, MN (United States)

    1994-09-01T23:59:59.000Z

    The autothermal production of olefins from propane or n-butane by oxidative dehydrogenation and cracking in air or oxygen at atmospheric pressure over noble metal coated ceramic foam monoliths at contact times of {approximately}5 milliseconds has been studied. On Pt, synthesis gas (CO and H{sub 2}) dominates near its stoichiometry, while olefin production dominates at higher fuel-to-oxygen ratios. No carbon buildup is observed, and catalysts exhibit no deactivation over at least several days. On Rh, primarily synthesis gas is produced under these conditions, while on Pd, carbon deposition rapidly deactivates the catalyst. The authors observed up to 65% selectivity to olefins at nearly 100% conversion of propane or n-butane with a catalyst contact time of 5 ms. Ethylene selectivity is maximized by increasing the reaction temperature, either by preheating the reactants or by using oxygen enriched air. Propylene selectivity is maximized by lower temperature and shorter catalyst contact time. Very small amounts alkanes and higher molecular weight species are obtained, suggesting that a homogeneous pyrolysis mechanism is not occurring. A very simple reaction mechanism appears to explain the observed product distribution. Reactions are initiated by oxidative dehydrogenation of the alkane by adsorbed oxygen to form a surface alkyl. On Pt, {beta}-hydrogen and {beta}-alkyl elimination reactions of adsorbed alkyl dominate which lead to olefin production rather than cracking to C{sub s} and H{sub s}. 24 refs., 14 figs., 4 tabs.

  5. Study of the single cluster response of a helium-isobutane drift chamber prototype using 8 keV X-rays

    E-Print Network [OSTI]

    G. Cavoto; S. Dabagov; D. Hampai; G. Piredda; F. Renga; E. Ripiccini; C. Voena

    2014-10-31T23:59:59.000Z

    The identification of single clusters in the electronic signals produced by ionizing particles within a drift chamber is expected to significantly improve the performances of this kind of detectors in terms of particle identification capabilities and space resolution. In order to develop refined cluster recognition algorithms, it is essential to measure the response of the chamber and its electronics to single ionization clusters. This can be done by irradiating the chamber with X-rays. We report here on the studies performed on a drift chamber prototype for the MEG-II experiment at the X-ray facility of the INFN Frascati's National Laboratories "XLab Frascati". The prototype is operated with a helium-isobutane mixture and instrumented with high bandwidth custom pre-amplifiers. The results of this study have been used to develop an innovative method for cluster recognition, based on the Wiener filter technique. As a side measurement, we also performed a study of the gas gain in a configuration which is similar to that of the MEG-II experiment.

  6. LIDEM unit for the production of methyl tert-butyl ether from butanes

    SciTech Connect (OSTI)

    Rudin, M.G.; Zadvornov, M.A.

    1994-09-01T23:59:59.000Z

    One of the basic problems in the production of motor fuels is how to obtain high-octane unleaded gasolines that will meet today`s ecological requirements. The term {open_quotes}reformulated gasolines{close_quotes} has come into general use throughout the world to denote fuels with a certain chemical composition. These gasolines consist of preselected components; as shown by worldwide experience, they must include oxygen-containing compounds that are distinguished by high octane numbers and low reactivities. Standards in effect in the United States, Japan, and certain Western European countries require that automotive gasolines must contain at least 2-4% by weight of oxygen-containing compounds (calculated as oxygen). In the last 15 years, in order to meet these requirements, production has been set up in various countries for the manufacture of high-octane oxygen-containing components known as oxygenates. The most common of these is methyl tert-butyl ether (MTBE), obtained by etherification of isobutene by methanol. Process technology developed by this last organization was used as the basis for constructing a unit in the Nizhnekamskneftekhim Production Association and at the Mazheikyai Petroleum Refinery in Lithuania. MTBE production has been held back mainly by a shortage of isobutene, which is obtained mainly from butane-butene cuts produced in cat crackers. In order to alleviate this shortage, it has been proposed that MTBE should be obtained from saturated C{sub 4} hydrocarbons that are recovered in processing oilfield associated gas, and also in the refinery from primary distillation units, catalytic reformers, and hydrocrackers. A working design was developed in 1991-1992 by Lengiproneftekhim for a basically new combination unit designed for the processing of saturated C{sub 4} hydrocarbons, which has been termed the LIDEM unit (Leningrad - isomerization - dehydrogenation - MTBE).

  7. Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture

    E-Print Network [OSTI]

    Semprini, Lewis

    was indicated from direct linear plots, and the CAHs also competitively inhibited butane utilization. 1,1-DCE indicator of competitive inhibition observed. Butane was a strong inhibitor of CAH transformation, having different inhibition types were observed among the compounds. Competitive inhibition among CAHs

  8. Statistical thermodynamics of 1-butanol, 2-methyl-1-propanol, and butanal Prasenjit Seal, Ewa Papajak, Tao Yu, and Donald G. Truhlar

    E-Print Network [OSTI]

    Truhlar, Donald G

    -body decomposition of ethanedial, propanal, propenal, n-butane, 1-butene, and 1,3-butadiene J. Chem. Phys. 136 investigation is to calculate partition functions and thermodynamic quan- tities, viz., entropy, enthalpy, heat- tant roles in alternative-fuel combustion.1­5 Therefore, accu- rate estimation of the thermodynamic

  9. Measurements of the effect of a magnetic field on the transport of linear momentum in nitrogen

    E-Print Network [OSTI]

    Larchez, Mark Edward

    1968-01-01T23:59:59.000Z

    torgue in the same direction. A torque in the direction opposite to this is produced by methane, et'nane, propane, butane, isobutane, 7 hydrogen, nydrogen deuteride, and ceuterium, No torque is shown by helium, argon, xenon, water vapor, carbon...

  10. Host cells and methods for producing 3-methyl-2-buten-1-ol, 3-methyl-3-buten-1-ol, and 3-methyl-butan-1-ol

    DOE Patents [OSTI]

    Chou, Howard H. (Berkeley, CA); Keasling, Jay D. (Berkeley, CA)

    2011-07-26T23:59:59.000Z

    The invention provides for a method for producing a 5-carbon alcohol in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses a first enzyme capable of catalyzing the dephosphorylation of an isopentenyl pyrophosphate (IPP) or dimethylallyl diphosphate (DMAPP), such as a Bacillus subtilis phosphatase (YhfR), under a suitable condition so that 5-carbon alcohol is 3-methyl-2-buten-1-ol and/or 3-methyl-3-buten-1-ol is produced. Optionally, the host cell may further comprise a second enzyme capable of reducing a 3-methyl-2-buten-1-ol to 3-methyl-butan-1-ol, such as a reductase.

  11. Bimetallic Ni-Rh catalysts with low amounts of Rh for the steam and autothermal reforming of n-butane for fuel-cell applications.

    SciTech Connect (OSTI)

    Ferrandon, M.; Kropf, A. J.; Krause, T.; Chemical Sciences and Engineering Division

    2010-05-15T23:59:59.000Z

    Mono-metallic nickel and rhodium catalysts and bimetallic Ni-Rh catalysts supported on La-Al{sub 2}O{sub 3}, CeZrO{sub 2} and CeMgOx were prepared and evaluated for catalyzing the steam and autothermal reforming of n-butane. The binary Ni-Rh supported on La-Al{sub 2}O{sub 3} catalysts with low weight loading of rhodium exhibited higher H{sub 2} yields than Ni or Rh alone. The Ni-Rh/CeZrO{sub 2} catalyst exhibited higher performance and no coke formation, compared to the same metals on other supports. A NiAl{sub 2}O{sub 4} spinel phase was obtained on all Ni and Ni-Rh catalysts supported on La-Al{sub 2}O{sub 3}. The presence of rhodium stabilized the spinel phase as well as NiOx species upon reforming while Ni alone was mostly reduced into metallic species. Extended X-ray absorption fine-structure analysis showed evidence of Ni-Rh alloy during preparation and even further after an accelerated aging at 900C in a H{sub 2}/H{sub 2}O atmosphere.

  12. MTBE will be a boon to U. S. gas processors

    SciTech Connect (OSTI)

    Otto, K.W. (Purvin and Gertz, Inc. Dallas, TX (United States))

    1993-01-11T23:59:59.000Z

    This paper reports that the advent of methyl tertiary butyl ether (MTBE) as the primary oxygenate blending component for oxygenated and reformulated motor fuels promises significant benefits for the U.S. gas-processing industry. Increased demand for isobutane as MTBE-plant feedstock will buoy both normal butane and isobutane pricing in U.S. gulf Coast during the 1990s. Elimination of the need to crack normal butane in U.S. olefin plants will also strengthen competitive feedstocks somewhat, including ethane and propane. And increased use of normal butane as isomerization feedstock will result in wider recognition of the premium quality of gas plant normal butane production compared to most refinery C[sub 4] production.

  13. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01T23:59:59.000Z

    Gas, Crude Oil and Distillates NGLs consumption in CALEBConsumption Weekly Refinery and Fractionator Report Weekly Bulk Terminal Report Weekly Product Pipeline Report Weekly Crude OilCrude Oil Butane Isobutane Other Hydrocarbons, Hydrogen and Oxygenates 10,718 Unfinished Oils Source: CEC 2006a The energy sector shows the consumption

  14. Roaming radical pathways for the decomposition of alkanes.

    SciTech Connect (OSTI)

    Harding, L. B.; Klippenstein, S. J. (Chemical Sciences and Engineering Division)

    2010-01-01T23:59:59.000Z

    CASPT2 calculations predict the existence of roaming radical pathways for the decomposition of propane, n-butane, isobutane and neopentane. The roaming radical paths lead to the formation of an alkane and an alkene instead of the expected radical products. The predicted barriers for the roaming radical paths lie {approx}1 kcal/mol below the corresponding radical asymptotes.

  15. Role of the reaction intermediates in determining PHIP (parahydrogen induced polarization) effect in the hydrogenation of acetylene dicarboxylic acid with the complex [Rh (dppb)]{sup +} (dppb: 1,4-bis(diphenylphosphino)butane)

    SciTech Connect (OSTI)

    Reineri, F.; Aime, S. [Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10123 Torino (Italy)] [Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10123 Torino (Italy); Gobetto, R.; Nervi, C. [Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino (Italy)] [Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino (Italy)

    2014-03-07T23:59:59.000Z

    This study deals with the parahydrogenation of the symmetric substrate acetylene dicarboxylic acid catalyzed by a Rh(I) complex bearing the chelating diphosphine dppb (1,4-bis(diphenylphosphino)butane). The two magnetically equivalent protons of the product yield a hyperpolarized emission signal in the {sup 1}H-NMR spectrum. Their polarization intensity varies upon changing the reaction solvent from methanol to acetone. A detailed analysis of the hydrogenation pathway is carried out by means of density functional theory calculations to assess the structure of hydrogenation intermediates and their stability in the two solvents. The observed polarization effects have been accounted on the basis of the obtained structures. Insights into the lifetime of a short-lived reaction intermediate are also obtained.

  16. Transport of Injected Isobutane by Thermal Groundwater in Long Valley

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePtyTownTramaTransport Co-benefitsCaldera,

  17. Coke profile and effect on methane/ethylene conversion process

    E-Print Network [OSTI]

    Al-Solami, Bandar

    2002-01-01T23:59:59.000Z

    with distance along the reactor, and therefore the coke distribution should follow a similar pattern. A distribution of coke deposits along the reactor was also observed by Noda er al. (1974) in a study of iso-pentane isomerization. In this case the coke..., methane, ethane, ethylene, propane, iso-butane, butane, iso-pentane, pentane and hexanes. Also, the flow rate of the effluent stream is measured using the bubble meter. The mole percentages of methane and ethylene are subtracted of the effluent stream...

  18. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    DOE Patents [OSTI]

    Sachtler, W.M.H.; Huang, Y.Y.

    1998-07-28T23:59:59.000Z

    Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

  19. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    DOE Patents [OSTI]

    Sachtler, Wolfgang M. H. (Evanston, IL); Huang, Yin-Yan (Evanston, IL)

    1998-01-01T23:59:59.000Z

    Methods for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physisorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics.

  20. Effect of lower feedstock prices on economics of MTBE complex

    SciTech Connect (OSTI)

    Rahman, F.; Hamid, S.H.; Ali, M.A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

    1996-01-01T23:59:59.000Z

    Economic evaluation of the methyl tertiary butyl ether (MTBE) complex was carried out starting from n-butane and by captive production of methanol from natural gas. The processing steps consist of isomerization of n-butane to isobutane, dehydrogenation of isobutane to make isobutene, and finally, the reaction of isobutene with methanol to produce MTBE. Two different plant sizes were considered, and the effect of 30% lower feedback prices on profitability was studied. It was found that the raw materials cost is a dominant component, composing about 55% of the total production cost. An internal rate of return of 19% could be realized for 500,000 tons per annum MTBE complex based on economic data in mid-1993. The payback period estimated at this capacity was 3.8 years, and the break-even capacity was 36.6%.

  1. (2R)-4-Oxo-4[3-(Trifluoromethyl)-5,6-diihydro:1,2,4}triazolo[4,3-a}pyrazin-7(8H)-y1]-1-(2,4,5-trifluorophenyl)butan-2-amine: A Potent, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes

    SciTech Connect (OSTI)

    Kim, D.; Wang, L.; Beconi, M.; Eiermann, G.; Fisher, M.; He, H.; Hickey, G.; Kowalchick, Jennifer; Leiting, Barbara; Lyons, K.; Marsilio, F.; McCann, F.; Patel, R.; Petrov, A.; Scapin, G.; Patel, S.; Roy, R.; Wu, J.; Wyvratt, M.; Zhang, B.; Zhu, L.; Thornberry, N.; Weber, A. (Merck)

    2010-11-10T23:59:59.000Z

    A novel series of {beta}-amino amides incorporating fused heterocycles, i.e., triazolopiperazines, were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes. (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine (1) is a potent, orally active DPP-IV inhibitor (IC{sub 50} = 18 nM) with excellent selectivity over other proline-selective peptidases, oral bioavailability in preclinical species, and in vivo efficacy in animal models. MK-0431, the phosphate salt of compound 1, was selected for development as a potential new treatment for type 2 diabetes.

  2. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 8, July 1, 1992--September 30, 1992

    SciTech Connect (OSTI)

    Marcelin, G.

    1993-07-07T23:59:59.000Z

    The initial work on the synthesis of MTBE during CO hydrogenation shows that MTBE cannot be formed directly on metal sites and likely requires the presence of an acid site. However, MTBE can be made successfully when an acid site, provided by the zeolites, is present in the vicinity of the methanol-synthesis metal sites. When i-butylene was added during CO hydrogenation over a composite catalyst consisting of Li-Pd/SiO{sub 2} and a hydrogen-zeolite, MTBE was formed in measurable amounts. The major by-product of this reaction scheme was isobutane and the dimer of i-butylene. In general, ZSM-5 was found to be superior to LZ210-12 HY zeolite. CO hydrogenation over a bifunctional PdNaY catalyst shows that branched hydrocarbons as well as MEOH can be made successfully at the same time. Addition of i-butylene over this catalyst only (i.e. without other zeolite) results in the formation of trace amounts of MTBE.

  3. Diffusion of isobutane in silicalite studied by transition path sampling Thijs J. H. Vlugta)

    E-Print Network [OSTI]

    Dellago, Christoph

    WV Amsterdam, The Netherlands Received 9 May 2000; accepted 23 August 2000 The diffusion process is important in the design of petrochemical applications.1 As both adsorption and dif- fusion experiments can- ventional molecular dynamics MD techniques cannot be used to study this process. A naive way of computing

  4. Additives That Prevent Or Reverse Cathode Aging In Drift Chambers With Helium-Isobutane Gas

    E-Print Network [OSTI]

    Adam Boyarski

    2001-12-11T23:59:59.000Z

    Noise and Malter breakdown have been studied at high rates in a test chamber having the same cell structure and gas as in the BaBar drift chamber. The chamber was first damaged by exposing it to a high source level at an elevated high voltage, until its operating current at normal voltages was below 0.5nA/cm. Additives such as water or alcohol allowed the damaged chamber to operate at 25 nA/cm, but when the additive was removed the operating point reverted to the original low value. However with 0.02% to 0.05% oxygen or 5% carbon dioxide the chamber could operate at more than 25 nA/cm, and continued to operate at this level even after the additive was removed. This shows for the first time that running with an O2 or CO2 additive at high ionisation levels can cure a damaged chamber from breakdown problems.

  5. Figure A1 Time-series of N1 fan speed (% of maximum) and exhaust gas temperature for experiments conducted (a) 4% load, (b) 7% (c) 30% and (d) 85% engine loads. Warm-up and

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    Hydrogen Wt % 14.0 D3701 Aromatics Vol % 14.1 D1319 Olefins Vol % 1.4 D1319 Saturates Vol % 84.5 D1319). a Not detected. SOAM II compound class Precursor species 4% (mg kg fuel-1 ) 85% (mg kg fuel-1 ) propane 37.4 32.6 isobutane 42.7 42.2 butane 24.8 29.2 isopentane 34.0 29.9 pentane 12.0 15.6 cyclopentane 12.6 1.8 2

  6. Performance of a new LMRPC prototype for the STAR MTD system

    SciTech Connect (OSTI)

    Ruan, L.J.; Wang, Y.; Chen, H. S.; Ding, W. C.; Qiu, X. Z.; Wang, J. B.; Zhu, X. L.; Kang, K. J.; Cheng, J. P.; Li, Y. J.; Ruan, L.; Xu, Z.; Asselta, K.; Christie, W.; D'Agostino, C.; Dunlop, J.; Landgraf, J.; Ljubicic, T.; Scheblein, J.; Soja, R.; Tang, A. H.; Ullrich, T.; Crawford, H. J.; Engelage, J.; Sanchez, M. Calderon de la Barca; Reed, R.; Liu, H. D.; Butterworth, J.; Eppley, G.; Geurts, F.; Llope, W. J.; McDonald, D.; Nussbaum, T.; Roberts, J.; Xin, K.; Bridges, L.; Li, J. C.; Qian, S.; Ning, Z.; Chen, H. F.; Huang, B. C.; Li, C.; Shao, M.; Sun, Y. J.; Tang, Z. B.; Wang, X. L.; Xu, Y. C.; Zhang, Z. P.; Zeng, H.; Zhou, Y.; Clarke, R.; Mioduszewski, S.; Davila, A.; Hoffmann, G. W.; Li, L.; Markert, C.; Ray, L.; Schambach, J.; Thein, D.; Wada, M.; Ahammed, Z.; Bhaduri, P. P.; Chattopadhyay, S.; Dubey, A. K.; Dutt-Mazumdar, M. R.; Ghosh, P.; Khan, S. A.; Muhuri, S.; Mohanty, B.; Nayak, T. K.; Pal, S.; Singaraju, R.; Singhal, V.; Tribedy, P.; Viyogi, Y. P.

    2011-03-21T23:59:59.000Z

    A new prototype of a Long-Strip Multi-Gap Resistive Plate Chamber (LMRPC) for the STAR Muon Telescope Detector (MTD) at RHIC has been developed. This prototype has an active area of 52 x 90 cm{sup 2} and consists of six 250 {mu}m wide gaps. Each detector has 12 strips, read-out at both ends, which are each 3.8 cm wide and 90 cm long with 0.6 cm intervals. In cosmic-ray tests, the efficiency was larger than 95% and the time resolution was {approx}75 ps for the 94% Freon, 5% iso-butane, and 1% SF{sub 6} gas mixture. There was good uniformity in the performance across the different strips. The module was also tested in a proton beam at IHEP in Beijing. The efficiency was close to 100% and the best timing resolution achieved was 55 ps for the 90% Freon, 5% iso-butane, and 5% SF6 gas mixture. Trigger scans along and across the strip direction were also performed.

  7. CarbonCarbon Bond Cleavage and Dehydrogenation of Isobutane Over HZSM-5 at Low Pressures and Temperatures

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Acidic zeolite substrates, such as HZSM-5 are vital cata- lysts in the petrochemical industry, due-temperature activation for C­C bond cleavage to propene and methane, and dehydrogenation to isobutene and hydrogen

  8. The University of New Mexico An NSF Integrative Graduate

    E-Print Network [OSTI]

    New Mexico, University of

    , including poly(propylene fumarate) (PPF), poly (butylene fumarate) (PBF), and copolymers poly(propylene fumarate)-co-(propylene maleate) (PPFcPM) and poly(butylene fumarate)-co-(butylene maleate) (PBFcBM). We

  9. Lyondell develops one step isobutylene process

    SciTech Connect (OSTI)

    Not Available

    1992-03-23T23:59:59.000Z

    This paper reports that Lyondell Petrochemical Co., Houston, has developed a one step process to convert normal butylenes to isobutylene, a key component of methyl tertiary butyl ether (MTBE). MTBE is expected to become the additive of choice among U.S. refiners to blend oxygenated gasolines required by 1990 amendments to the Clean Air Act. Lyondell Pres. and Chief Executive Officer Bob Gower the the new process could help assure adequate supplies of MTBE to meet U.S. demand for cleaner burning fuels. Lyondell estimates the capital cost of building a grassroots plant to produce isobutylene with the new process would be less than half the cost of a grassroot plant to produce isobutylene with existing technology starting with normal butane.

  10. E. In Situ Polymerization of Cyclic Butylene Terephthalate(CBT) Oligomers with Conductive fillers for Thermal Management

    E-Print Network [OSTI]

    Harmon, Julie P.

    copolymers with Thermal conductivity Composites This research is funded by Honeywell Corporation and the Florida High Tech Corridor. NOTE: Honeywell and Julie Harmon have signed an agreement with Cyclics Corp; these materials exhibit an intrinsic fiber TC as high as 913 W/mK (51). Earlier work with Honeywell focused

  11. New processes to recovery methanol and remove oxygenates from Valero MTBE unit

    SciTech Connect (OSTI)

    Hillen, P.; Clemmons, J.

    1987-01-01T23:59:59.000Z

    The refiner today has to evaluate every available option to increase octane in the gasoline pool to make up for the loss in octane created by lead phase down. Production of MTBE is one of the most attractive options. MTBE is produced by selectivity reacting isobutylene with methanol. Valero Refining's refinery at Corpus Christie, Texas (formerly Saber Refining) is one of the most modern refineries built in the last decade to upgrade resids. As part of the gasoline upgrading Valero had built a Butamer Unit to convert normal butane to isobutane upstream of their HF Alkylation Unit. In 1984 as an ongoing optimization of its operations, Valero Refining evaluated various processes to enable it to increase the octane output, and decided to build an MTBE unit. Valero selected the MTBE process licensed by Arco Technology, Inc. and contracted with Jacobs Engineering Group, Inc., Houston, Texas to provide detailed engineering and procurement services.

  12. Catalytic conversion of light alkanes - phase V. Topical report, February 1993--October 1994

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    We have made excellent progress toward a practical route from field butanes to MTBE, the oxygenate of choice for high-octane, clean-burning, environmentally acceptable reformulated gasoline. We have evaluated two proprietary process possibilities with a potential commercial partner and have conducted a joint catalyst evaluation program. The first of the two potential processes considered during the past quarter utilizes a two-step route from isobutane to tert-butyl alcohol, TBA. Not only is TBA an intermediate for MTBE production but is equally applicable for ETBE-an oxygenate which utilizes renewable ethanol in its` manufacture. In the two-step process, isobutane is oxidized in a non-catalytic reaction to a roughly equal mixture of TBA and tert-butyl hydroperoxide. TBHP, eq. 1. We have developed an inexpensive new catalyst system based on an electron-deficient macrocyclic metal complex that selectively converts TBHP to TBA, eq. 2, and meets or exceeds all of the process criteria that we have set.

  13. Technical and operational overview of the C[sub 4] Oleflex process at Valero refinery

    SciTech Connect (OSTI)

    Hohnholt, J.F.; Payne, D. (Valero Refining Co., Corpus Christi, TX (United States)); Gregor, J.; Smith, E. (UOP, Des Plaines, IL (United States))

    1994-01-01T23:59:59.000Z

    Changes in gasoline composition stemming from the 1990 Clean Air Act (CAA) Amendments prompted Valero Energy Corporation to evaluate options for producing reformulated gasoline. The evaluation culminated in a project to upgrade butanes into methyl tertiary butyl ether (MTBE). Technology selection focused on the dehydrogenation of isobutane, and the UOP Oleflex process was selected. The MTBE project was implemented in 34 months and was $3 million under budget. The guaranteed MTBE production of 12,500 BPSD was achieved within one month of mechanical completion and has since reached 15,000 BPSD. Even at the low MTBE prices prevailing in late 1993, the butane upgrading project contributed significantly to Valero Refinery's overall profitability. Worldwide demand is expected to increase MTBE prices in 1996, thereby further increasing profits. The paper describes the project evaluation activities which led to the selection of the Oleflex process, engineering and construction, the MTBE complex start-up and operation, the Valero MTBE complex performance, and future plans. The paper also discusses feedstock utilization efficiency and MTBE market analysis.

  14. The use of acetylene and 1,3-butadiene as tracers for vehicular combustion in urban air and the estimation of the contributions of vehicular emissions to benzene, and alkane concentrations in the Edmonton industrial area

    SciTech Connect (OSTI)

    Bailey, R. [Environment Canada, Edmonton, Alberta (Canada). Prairie and Northern Region; Wong, R. [Alberta Environmental Protection, Edmonton, Alberta (Canada); Dann, T.; Wang, D. [Environment Canada, Gloucester, Ontario (Canada). Environmental Protection Service

    1998-12-31T23:59:59.000Z

    Acetylene, propylene and 1,3-butadiene concentrations at two downtown urban sites in Alberta, Canada were used to characterize an area dominated by vehicular emissions. The relationship of acetylene with 1,3-butadiene at the Edmonton industrial site was similar to that observed for the two downtown sites. This suggesting that these volatile organic compounds, VOCs, can be used as tracers for vehicular emissions for the Edmonton industrial area. The tracer VOCs were found to correlate with benzene, n-butane, iso-butane, n-pentane, iso-pentane, n-heptane and n-octane concentrations for the two Alberta downtown sites. The best fit lines from the downtown sites were used to predict daily concentrations of benzene and alkanes at the Edmonton industrial site. During the winter, when benzene levels are predicted to reach a maximum of 4.5 to 6.5 m g/m{sup 3}, it is estimated that industrial sources contribute < 1 m g/m{sup 3} to ambient levels at the Edmonton industrial site. During the summer, when predicted benzene levels are at a minimum of 1 to 2 m g/m{sup 3}, industrial area sources dominate the ambient benzene levels at the Edmonton industrial site, and can contribute up to 6 m g/m{sup 3}. For alkanes, such as butane and pentane, industrial area sources or evaporative storage tank emissions dominate throughout the year. This dominance of industrial sources is also observed for n-heptane and n-octane during summer months. During the winter when predicted n-heptane and n-octane concentrations reach a maximum, 11 to 100% of ambient daily levels can be attributed to vehicular emissions.

  15. Saving Energy and Reducing Emissions from the Regeneration Air System of a Butane Dehydrogenation Plant

    E-Print Network [OSTI]

    John, T. P.

    at 900 to 1100°F containing CO and VOC. By installing a furnace/heat recovery steam generator, Texas Petrochemicals achieved significant reductions of VOC, CO, and NOx, along with energy savings....

  16. Hydrodesulfurization of Thiophene and Benzothiophene to Butane and Ethylbenzene by a Homogeneous Iridium

    E-Print Network [OSTI]

    Jones, William D.

    in a dihydrogen environment, affording the hydrogenated organic products plus ad- sorbed sulfur or H2S. While many impurities such as thio- phenes, mercaptans, and quinolines are removed, mak- ing the oil amenable to further refining. Removal of the sulfur compounds, in particular, decreases the contribu- tions to acid rain

  17. The determination of compressibility factors of gaseous butane-nitrogen mixtures in the gas phase

    E-Print Network [OSTI]

    Evans, Robert Buckner

    1955-01-01T23:59:59.000Z

    . of mercury ejected from the mercury pump. TABLE OF NOMENCLATURE T R,: . . . . ................... . mercury pump reading expressed as apparent cc. of mercury remaining in the pump. R ..............................the gas constant - units as applicable... to a reading of -1, then rotated forward one turn. The calibration proceeded by measuring volume increments every ten turns. Ten minutes were allowed between increments to minimize thermal variations. The volume of mercury i ?-fO ejected at h5 C...

  18. ==================== !"#$%&'()*+,-+./,0)12 Development of Micro Ejector for Butane Catalytic Combustor

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    pumps ambient air to the combustion chamber by utilizing the vapor pressure of liquified fuel. Catalytic with the excessive heat of the exhaust gas. The advantage of using ejector is that air-entrainment is achieved without an additional air container or a micro pump, and thus the system should be simple, safe

  19. Direct photolysis of carbonyl compounds dissolved in cloud and fog~droplets

    E-Print Network [OSTI]

    Epstein, S. A; Tapavicza, E.; Furche, F.; Nizkorodov, S. A

    2013-01-01T23:59:59.000Z

    its ?,?-unsaturated analog acrolein, butanal and its ?,?-acid methacrolein propanal acrolein butanal crotonaldehyde 2acid methacrolein propanal acrolein butanal crotonaldehyde 2

  20. Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    ethene toluene n-butane propane i-pentane i-butane propeneethene, toluene, n-butane, propane and i-pentane. These fiveVOCs emitted. The high propane and n-butane emissions were

  1. J. Am. Chem. SOC.1988, 110, 8305-8319 8305 Hydrogenolysis of Ethane, Propane, n-Butane, and Neopentane

    E-Print Network [OSTI]

    Goodman, Wayne

    J. Am. Chem. SOC.1988, 110, 8305-8319 8305 Hydrogenolysis of Ethane, Propane, n, Pasadena, California 91125. Received February I, 1988 Abstract: The hydrogenolysisof ethane, propane, n for ethane, propane, and neopentane involvesthe cleavage of a single carbon-carbon bond, resulting

  2. Faraday Discuss. Chem. SOC.,1989, 87, 337-344 Butane Hydrogenolysis over Single-crystal Rhodium Catalysts

    E-Print Network [OSTI]

    Goodman, Wayne

    >propane. The hydrogenolysis reaction exhibits a good fit to Arrhenius behaviour for reaction temperatures surface coverage of hydrogen. The `roll over' affects product distribution, yielding more complete

  3. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    SciTech Connect (OSTI)

    Ardhapurkar, P. M. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai, MS 400 076 India and S. S. G. M. College of Engineering Shegaon, MS 444 203 (India); Sridharan, Arunkumar; Atrey, M. D. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai, MS 400 076 (India)

    2014-01-29T23:59:59.000Z

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  4. Petroleum production at maximum efficient rate, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California. Draft Supplement to the 1979 Final Environmental Impact Statement

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    The proposed action involves the continued operation of the Naval Petroleum Reserve No. 1 (NPR-1) at the Maximum Efficiency Rate (MER) through the year approximately 2025 in accordance with the requirements of the Naval Petroleum Reserves Production Act of 1976 (P.L. 94-258). NPR-1 is a large oil and gas field comprising 74 square miles. MER production primarily includes continued operation and maintenance of existing facilities; a well drilling and abandonment program; construction and operation of future gas processing, gas compression, and steamflood, waterflood, cogeneration, and butane isomerization facilities; and continued implementation of a comprehensive environmental protection program. The basis for the draft environment impact statement (DSEIS) proposed action is the April 1989 NPR-1 Long Range Plan which describes a myriad of planned operational, maintenance, and development activities over the next 25--30 years. These activities include the continued operation of existing facilities; additional well drilling; expanded steamflood operations; expanded waterflood programs; expanded gas compression, gas lift, gas processing and gas injection; construction of a new cogeneration facility; construction of a new isobutane facility; and a comprehensive environmental program designed to minimize environmental impacts.

  5. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    C-130 T0 T1 G1 Ethane Propane i-Butane n-Butane i-Pentane n-ppbv) Ethane Ethene Ethyne Propane Propene i-Butane n-Butanee.g. , ethane, ethene, propane, propane, methanol, ethanol,

  6. Finding the missing stratospheric Bry: a global modeling study of CHBr3 and CH2Br2

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    C-130 T0 T1 G1 Ethane Propane i-Butane n-Butane i-Pentane n-ppbv) Ethane Ethene Ethyne Propane Propene i-Butane n-Butanee.g. , ethane, ethene, propane, propane, methanol, ethanol,

  7. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    propene, acetone, benzene, propane and ?-pinene (Table 1).cyanide Acetonitrile Ethane Propane i-Butane n-Butane i-= Ethane Ethane Ethane Ethane Propane Propane Propane ARCTAS

  8. Gas hydrate research in the Gulf of Mexico: Final report

    SciTech Connect (OSTI)

    Bennet, R.

    1988-05-01T23:59:59.000Z

    The high energy seismic sections on the continental slope showed no evidence of a Bottom Simulating Reflector (BSR), which would indicate the presence of gas hydrates. There was no indication of metastable hydrates in continental shelf or slope sediments outside of the conventionally accepted temperature and pressure environment. Tracing the path of migrating gas from the source is much more straight forward than intercepting gas being transported and tracing it back to the source. Our study of low and medium energy seismic methods has shown that they could identify migrating gas. We feel strongly that there are hydrate zones in the Gulf of Mexico that are decomposing; they build up pressure and periodically release the trapped hydrocarbon gases. The released gases migrate vertically and/or laterally to mix with other types of gas or to form discrete pockets. Some of this gas may be emitted from underwater seeps into the overlying water column where it could be identified by a geochemical survey. The ratio of isobutane to normal butane determined by the geochemical survey can be used to assess the probability of the hydrocarbons emanating from a hydrate source. (The more the ratio exceeds 1.0 the greater the probability that the gas could be from a hydrate source.) As no indications of a hydrate zone (e.g., a BSR) were located, we were not able to establish a geophysical signature for gas hydrates; but the records indicate there are large volumes of gas migrating up the continental slope, some of which may have originated from a decomposing hydrate zone or from gas trapped below the hydrate cap. 20 refs., 13 figs., 1 tab.

  9. 4912r 2010 American Chemical Society pubs.acs.org/EF Energy Fuels 2010, 24, 49124918 : DOI:10.1021/ef1007962

    E-Print Network [OSTI]

    Gülder, �mer L.

    fractions of binary mixtures of butane isomers, ethylene-butane isomers, and propane- butane isomers were components under the same flame conditions. Binary mixtures of propane and butane isomers, however, did associated with potential interactions between pyrolysis pro- ducts of the hydrocarbons in the mixture

  10. PSADEFS.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    combining isobutane with olefin hydrocarbons (e.g., propylene, buty- lene) through the control of temperature and pressure in the presence of an acid catalyst, usually sulfuric...

  11. Polymer Crystallization and Precipitation-Induced Wrapping of Carbon Nanofibers with PBT

    E-Print Network [OSTI]

    Fisher, Frank

    were used to create hybrid nanostructures consisting of CNFs and poly(butylene terephthalate) (PBT Wiley Periodicals, Inc. J Appl Polym Sci 114: 1312­1319, 2009 Key words: hybrid nanostructures; carbon nanofiber; nanocomposites; crystallization; precipitation INTRODUCTION Poly (butylene terephthalate) (PBT

  12. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 9, October 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Marcelin, G.

    1993-06-30T23:59:59.000Z

    Figure 7 summarizes the carbon selectivities observed towards the main products. During Period IV, the main products observed were the heavy hydrocarbons, with selectivity for MTBE being less than 3--5%. The only time that high MTBE selectivity was noted was during period III, when the i-butylene feed was shut-off. The large amounts of heavy products and the low selectivity to MTBE were surprising in view of our previous experiments in the gas phase and the high methanol-to-i-butylene ratio used in these runs. In the gas-phase and with methanol/i-butylene = 0.5, over 95% selectivity to MTBE was observed with this catalyst at this temperature. The higher level of methanol used here would be expected to further improve the MTBE selectivity. Perhaps one reason for the poor MTBE selectivity relates to the relative solubilities of the reactants in the Synfluid changing the effective methanol/i-butylene ratio. Figure 8 shows the relative molar concentration of i-butylene during Period III. At 180 minutes, the gas supply of that reactant was shut-off, yet the analyses show that i-butylene continued to elute from the reactor for at least an additional 2 hours. It seems reasonable that the i-butylene is highly soluble in the Synfluid since they are both nonpolar hydrocarbons. Likewise, one would expect the methanol to not be quite as soluble and thus the methanol/i-butylene ratio in the liquid medium may be very low, favoring the oligomerization of i-butylene. Indeed, the only time that MTBE selectivity was high was after the i-butylene supply was shut-off. We intend to quantify these solubilities in future experiments.

  13. Characterization of photochemical pollution at different elevations in mountainous areas in Hong Kong

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    and (b) i-butane vs. propane at TMS and TW. Fig. 4. Theand (b) i-butane vs. propane at TMS and TW. et al. , 2001;higher ratios of ethyne/propane and benzene/propane were

  14. Incompatible Chemicals The following list is to be used only as a general guideline. Please refer to your Material Safety

    E-Print Network [OSTI]

    Slatton, Clint

    , butane, methane, propane(or other petroleum gases), hydrogen, sodium carbide, benzene, finely divided other chemicals Hydrocarbons (such as butane, propane, benzene) Fluorine, chlorine, bromine, chromic) Tellurides Reducing Agents #12;CHEMICAL STORAGE GUIDELINES STORE MATERIALS OUTLINED BY BOXES SEPARATELY

  15. Requirements Hydrocarbon

    E-Print Network [OSTI]

    Cinabro, David

    . He considered two coolants: Butane and R134a (freon replacement used in auto air conditioners). About

  16. Molecular Properties of the "Ideal" Inhaled Anesthetic: Studies of Fluorinated Methanes, Ethanes, Propanes,

    E-Print Network [OSTI]

    Hudlicky, Tomas

    , Propanes, and Butanes E. 1Eger, 11, MD*, J. Liu, MD*, D. D. Koblin, PhD, MDt, M. J. Laster, DVM*, S. Taheri unfluorinated, partially fluorinated, and perfluorinated methanes, ethanes, propanes, and butanes to define fluorinated methanes, ethanes, propanes, and butanes, also obtaining limited data on longer- chained alkanes

  17. Rice Straw Fiber Reinforced High Density Polyethylene Composite: Effect of Coupled Compatibilizating and

    E-Print Network [OSTI]

    , which are unfunctionalized ethylene/propylene copolymer (uEPR), maleic anhydride grafted EPR (EPR sty- rene/ethylene-butylenes/styrene triblock copolymer (SEBS)5,7,10­12 and ethylene/propylene

  18. untitled

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    741 317 267 1,325 IsobutaneIsobutylene 206 7 213 155 55 170 380 Other HydrocarbonsHydrogenOxygenates 512 0 512 29 18 0 47 Other HydrocarbonsHydrogen 0 0 0 28 0 0 28...

  19. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    741 317 245 1,303 IsobutaneIsobutylene 206 7 213 155 55 184 394 Other HydrocarbonsHydrogenOxygenates 512 0 512 29 18 0 47 Other HydrocarbonsHydrogen 0 0 0 28 0 0 28...

  20. Direct contact, binary fluid geothermal boiler

    DOE Patents [OSTI]

    Rapier, Pascal M. (Richmond, CA)

    1982-01-01T23:59:59.000Z

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  1. alcohol gas additives: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additives That Prevent Or Reverse Cathode Aging In Drift Chambers With Helium-Isobutane Gas HEP - Experiment (arXiv) Summary: Noise and Malter breakdown have been studied at high...

  2. Working Draft

    Office of Environmental Management (EM)

    gases-including nitrogen, carbon dioxide, hydrogen sulfide, methane, ethane, and propane-and butanes and other volatile liquids) composition, and flash gas composition....

  3. Concentrations and Size Distributions of Particulate Matter Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    ECD-1 CRT CNG1 CNG2 Carbonyl Compounds (Air Toxics) Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Croton Methyl ethyl Ketone (MEK) Methylacrolein Butanal Benzaldehyde...

  4. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    E-Print Network [OSTI]

    Saxena, Samveg

    2011-01-01T23:59:59.000Z

    the Energy Balance of Ethanol Fuels , for Applied Energyadditive are explored in Ethanol fuel. 8.2.1 Autoignition offuels Fuel Methane Propane Butane Gasoline Ethanol AFR

  5. Measuringthe Atomic or,Molecular Mass of a Gas with aifire Gauge and atutane Lighter Fluid Can

    E-Print Network [OSTI]

    Bodner, George M.

    ). Hopkins. D. E., J. C~EM.EDVC., 53,718 (1976). 4Davenport,D. A,, ". CmM. EDLC..53,306(1976). "Butane

  6. Airborne measurement of OH reactivity during INTEX-B

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    plus OH sign), reactiv- propane ing different gases gases atisoprene (plus sign), propane (star) and propene (triangle).NMHC includes ethane, ethene, propane, propene, i-butane, n-

  7. Thermo-fluid Dynamics of Flash Atomizing Sprays and Single Droplet Impacts

    E-Print Network [OSTI]

    Vu, Henry

    2010-01-01T23:59:59.000Z

    flashing propane jets. Part two: droplet size distribution.distribution evolution after continuous or intermittent injection of butane or propaneflashing propane jets. Part two: droplet size distribution.

  8. Quantum cascade laser investigations of CH4 and C2H2 interconversion in hydrocarbon/H2 gas mixtures during microwave plasma

    E-Print Network [OSTI]

    Bristol, University of

    described in Mankelevich et al. J. Appl. Phys. 104, 113304 2008 . The gas temperature distribution within source gases investigated methane, acetylene, ethane, propyne, propane, and butane are converted

  9. Title: KUPPS Procurement Matrix Purpose: To provide the preferred purchase and/or payment method for various transaction types

    E-Print Network [OSTI]

    vehicle Fuel, diesel, karosene, propane, butane Pcard Office and Research Supplies and Consumables - 137200 137200 - Computer Supplies Consumables: Flash Drives, storage media, toner cartridges Replacement

  10. Natural gas treatment process using PTMSP membrane

    DOE Patents [OSTI]

    Toy, L.G.; Pinnau, I.

    1996-03-26T23:59:59.000Z

    A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

  11. Natural gas treatment process using PTMSP membrane

    DOE Patents [OSTI]

    Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

    1996-01-01T23:59:59.000Z

    A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

  12. Kinetic and Inhibition Studies for the Aerobic Cometabolism of

    E-Print Network [OSTI]

    Semprini, Lewis

    was indicated from direct linear plots, and the CAHs also competitively inhibited butane utilization. 1,1-DCE indicator of competitive inhibition ob- served. Butane was a strong inhibitor of CAH transfor- mation different inhibition types were ob- served among the compounds. Competitive inhibition among CAHs

  13. Atmos. Chem. Phys., 9, 74917504, 2009 www.atmos-chem-phys.net/9/7491/2009/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    . This work is distributed under the Creative Commons Attribution 3.0 License. Atmospheric Chemistry most abundant VOCs observed in the tunnel were, in decreasing order, ethene, toluene, n-butane, propane. The high propane and n-butane emissions were found to be associated with liq- uefied petroleum gas (LPG

  14. Experimental and artificial neural network modeling study on soot formation in premixed hydrocarbon flamesq

    E-Print Network [OSTI]

    Senkan, Selim M.

    The formation of soot in premixed flames of methane, ethane, propane, and butane was studied at three different particle diameters at higher distances above the burner surface and propane, ethane, and butane flames came conditions in humans. Polycyclic aromatic hydro- carbons (PAH), the largest class of chemical carcinogens

  15. Conversion of methane and acetylene into gasoline range hydrocarbons

    E-Print Network [OSTI]

    Alkhawaldeh, Ammar

    2000-01-01T23:59:59.000Z

    Conversion Apparatus. . . 20 22 Temperature Profile Inside the Reactor. . 30 Methane and Acetylene Conversion over Time on Stream, T = 412 C, Molar Feed Ratio = 6/I (CH4/CqHr). . 36 Mass Flow Rate (g/s) of the Effluent Gas (Unreacted Methane... and Acetylene, Isobutane, Ethylene, and Nitrogen) from the Reactor Integrated over Time on Stream. 40 Mass Flow Rate (g/s) of the Gas Products (Isobutane and Ethylene) Integrated over Time on Stream. 41 Methane and Acetylene Conversion over Time on Stream...

  16. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 7, April 1, 1992--June 30, 1992

    SciTech Connect (OSTI)

    Marcelin, G.

    1992-09-24T23:59:59.000Z

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: addition of i-butylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch; addition of i-butylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst; and addition of methanol to slurry phase FT synthesis making iso-olefins. During the seventh quarter we continued the shake down experiments for the SBCR and conducted an initial aborted run. We have also re-started experiments on Scheme 1, i.e., the addition of iso-butylene during CO hydrogenation. Using a dual bed arrangement, we have demonstrated the synthesis of MTBE from syngas and iso-butylene.

  17. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch

    SciTech Connect (OSTI)

    Marcelin, G.

    1992-09-24T23:59:59.000Z

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: addition of i-butylene during the formation of methanol and/or higher alcohols directly from CO and H[sub 2] during slurry-phase Fischer-Tropsch; addition of i-butylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst; and addition of methanol to slurry phase FT synthesis making iso-olefins. During the seventh quarter we continued the shake down experiments for the SBCR and conducted an initial aborted run. We have also re-started experiments on Scheme 1, i.e., the addition of iso-butylene during CO hydrogenation. Using a dual bed arrangement, we have demonstrated the synthesis of MTBE from syngas and iso-butylene.

  18. Catalytic oxidation of light alkanes in presence of a base

    DOE Patents [OSTI]

    Bhinde, Manoj V. (Boothwyn, PA); Bierl, Thomas W. (West Chester, PA)

    1998-01-01T23:59:59.000Z

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol.

  19. Catalytic oxidation of light alkanes in presence of a base

    DOE Patents [OSTI]

    Bhinde, M.V.; Bierl, T.W.

    1998-03-03T23:59:59.000Z

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol. 1 fig.

  20. REQUIRED SIGNAT URES, DATE PROJECT MANAGER

    E-Print Network [OSTI]

    Llope, William J.

    North Platform to Vent Plastic tubing FM2 FM3FM1 Freon R134A 63ccm, 125lb SF6 0-3.5ccm, 56lb Isobutane 3.5ccm, 10lb w/ Heat Blanket STAR Gas Pad (outdoors) STAR Gas Mixing Room Legend MV PI FM CV MSV Manual

  1. untitled

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1,361 415 768 2,544 IsobutaneIsobutylene 151 4 155 99 62 164 325 Other HydrocarbonsHydrogenOxygenates 553 0 553 20 28 0 48 Other HydrocarbonsHydrogen 0 0 0 19 0 0 19...

  2. MOBILITIES OF POSITIVE IONS IN SOME GAS MIXTURES USED IN PROPORTIONAL AND DRIFT CHAMBERS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    67 MOBILITIES OF POSITIVE IONS IN SOME GAS MIXTURES USED IN PROPORTIONAL AND DRIFT CHAMBERS G proportional chambers or drift chambers with gas mixtures, using isobutane as a quencher. The positive ions, révisé le 11 juin 1976, accepté le 2 septembre 1976) Résumé. 2014 Le coefficient de mobilité des ions

  3. A high-resolution drift chamber for Alpha-particle position measurements

    E-Print Network [OSTI]

    Oliver, Jon Patrick

    1996-01-01T23:59:59.000Z

    A drift chamber module with 5 anode wires covering an active region of 9 cm x 76 cm has been built to locate the vertical position of a-particle trajectories to within 295 mm full-width-half-maximum (FWEM) in isobutane at a pressure of 0.25 atm...

  4. Atmospheric budget of acetone Daniel J. Jacob, Brendan D. Field, Emily M. Jin, Isabelle Bey, Qinbin Li,

    E-Print Network [OSTI]

    Li, Qinbin

    and distribution of acetone are investigated by using a priori estimates of sources and sinks to constrain a global isoalkanes (propane, isobutane, isopentane). Model simulation of isoalkanes and comparison to observations yields best global emission estimates of 12 Tg C yrÀ1 for propane (including only 0.6 Tg C yrÀ1 from

  5. Flammability Characteristics of Hydrogen and Its Mixtures with Light Hydrocarbons at Atmospheric and Sub-atmospheric Pressures 

    E-Print Network [OSTI]

    Le, Thuy Minh Hai

    2013-07-13T23:59:59.000Z

    /vapor. This research focuses on the flammability limits of hydrogen and its binary mixtures with light hydrocarbons (methane, ethane, n-butane, and ethylene) at sub-atmospheric pressures. The flammability limits of hydrogen, light hydrocarbons, and binary mixtures...

  6. 942 Inorganic Chemistry, Vol. 10, No. 5, 1971 solid (mp 43" with slight decomposition), which is sensitive to

    E-Print Network [OSTI]

    Bodner, George M.

    is sensitive to air and water. I t is soluble in carbon tetrachloride, trichloro- fluoromethane, and benzene but insoluble in butane. The infrared spectrum (4000-200 cm-l) in carbon tetrachloride showed the following

  7. Transient behaviour of dense catalytic membranes based on Cu-and Co-doped Bi4V2O11 (BIMEVOX) in the oxidation of propene and propane

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    adsorbed oxygens which mostly lead to the formation of carbon oxides [1]. In usual fixed or fluidised bed. The oxidation of n- butane to maleic anhydride in a circulating fluid bed reactor was the first industrial

  8. Accurate Computer Simulation of Phase Equilibrium for Complex Fluid Mixtures. Application to Binaries Involving Isobutene, Methanol, Methyl tert-Butyl Ether, and

    E-Print Network [OSTI]

    Lisal, Martin

    to Binaries Involving Isobutene, Methanol, Methyl tert-Butyl Ether, and n-Butane Martin Li´sal,*,, William R + methyl tert-butyl ether (MTBE) and the binaries formed by methanol with isobutene, MTBE, and n

  9. "Nanocrystal bilayer for tandem catalysis"

    E-Print Network [OSTI]

    Yamada, Yusuke

    2012-01-01T23:59:59.000Z

    Hydrogenolysis of Ethane, Propane, n-Butane and iso-Butanethe Hydroformylation of Propane over Silica-supported Groupproduct and small amount of propane, which is likely to be

  10. Feasibility of reconstructing paleoatmospheric records of selected alkanes, methyl halides, and sulfur gases from Greenland ice cores

    E-Print Network [OSTI]

    Aydin, M.; Williams, M. B; Saltzman, E. S

    2007-01-01T23:59:59.000Z

    study of ethane and propane oxidation in the tropo- sphere,alkanes (ethane, C 2 H 6 ; propane, C 3 H 8 ; n-butane, n-Cfluid contamination. 4.1.2. Propane [ 24 ] Propane levels in

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    natural gas is subject to a tax of 0.16 per diesel gallon equivalent. Compressed natural gas, butane, and propane are subject to a tax of 0.16 per gasoline gallon...

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    gallon equivalent for liquefied natural gas and 0.11 per gasoline gallon equivalent for compressed natural gas, butane, or propane. (Reference Indiana Code 6-6-2.5 and 6-6-4.1-1...

  13. Theoretical Simulation of n-Alkane Cracking on Zeolites Joseph A. Swisher,,|

    E-Print Network [OSTI]

    Bell, Alexis

    calculations for propane and butane cracking on MFI reveal that significantly better agreement between reactions, as well as the distribution of the products formed from a specified set of reactants. Impressive

  14. Embedding parameters in ab initio theory to develop well-controlled approximations based on molecular similarity

    E-Print Network [OSTI]

    Yaron, David

    is explored by training such a model on data for ethane and testing the resulting model on methane, propane and butane. The electronic distribution of the molecules is varied by placing them in strong electrostatic

  15. Hydrogen Storage -Overview George Thomas, Hydrogen Consultant to SNL*

    E-Print Network [OSTI]

    aspects of hydrogen utilization. production distribution utilization How do we achieve safe, efficient Forecourt storage (refueling stations) requirements being developed (IHIG) Distribution storage (delivery 75 100 125 hydrogen m ethane ethane propane butane pentane hexane heptane octane (gasoline) cetane

  16. Safe Handling f T iof Toxic,

    E-Print Network [OSTI]

    Farritor, Shane

    % by volumevolume Propylene, Propane, Butane, Ethylene Praxair Distribution Inc., Quality Department .Copyright by Pam HendershotNebraska Lincoln Pam Hendershot Praxair Distribution Inc. Praxair Distribution Inc Praxair Distribution Inc., Quality Department .Copyright © 2000, Praxair Technology, Inc. All rights

  17. T h e o p e n a c c e s s j o u r n a l f o r p h y s i c s New Journal of Physics

    E-Print Network [OSTI]

    Gribakin, Gleb

    methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation -spectra characterise the momentum distribution of the electron­positron pair at the instant

  18. Nitrogen limiation and nitrogen fixation during alkane biodegradation in a sandy soil

    SciTech Connect (OSTI)

    Toccalino, P.L.; Johnson, R.L.; Boone, D.R. (Oregon Graduate Institute of Science Technology, Portland, OR (United States))

    1993-09-01T23:59:59.000Z

    Leaking underground storage tanks are a significant source of petroleum hydrocarbon contamination in soils and ground water. Hydrocarbon biodegradation studies have been conducted in both ground water and topsoil regions, but few studies have been done on the unsaturated zone between these two. This study examines the effects of Nitrogen on propane and butane biodegradiations in an unsaturated sandy soil. Results indicate that nitrogen additions initially stimulated both propane and butane oxidizing organisms in the soil, but that propane-amended soil became N limited whereas butane-amended soil eventually overcame its N limitations by fixing Nitrogen and that nitrogen fixing organisms grew in butane amended but not in propane amended soil. 27 refs., 6 figs.

  19. Anzahl von Strukturisomeren der Alkane ???? und Sascha Kurz??

    E-Print Network [OSTI]

    Kurz, Sascha

    _____________________________________________________________________________ Zusammenfassung Das Ph"anomen der Strukturisomerie wird anhand der Klasse der Alkane erkl"art. * *Auf ei- nem f || 9,5 2-Methyl-butan || -158.6 || 27.9 n-Pentan || -129

  20. (2/94)(1,2,8/95)(6,7/97)(10/98)(1,9-11/99) Neuman Chapter 2 Alkanes and Cycloalkanes

    E-Print Network [OSTI]

    Reed, Christopher A.

    Conformations of Other Alkanes (2.4C) 2-30 Propane Butane Torsional Strain and Steric Strain (2.4D) 2. Conjugation, Electronic Effects, Carbonyl Groups 12. Conjugated and Aromatic Molecules 13. Carbonyl Compounds

  1. Atmos. Chem. Phys., 14, 1287112882, 2014 www.atmos-chem-phys.net/14/12871/2014/

    E-Print Network [OSTI]

    Pierce, Jeffrey

    -butane that are associated with fuel evapora- tion, an insignificant source for CO2. To better characterise the traffic is likely the obsolete feature of the VOCs speciation matrix of the inventory that has not been updated

  2. Industrial Fuel Switching - Emerging NGL Opportunities

    E-Print Network [OSTI]

    Cascone, R.

    2004-01-01T23:59:59.000Z

    Removing butanes and pentanes from gasoline to meet local and seasonal regulatory limitations on volatility requires US refiners to make up the lost octane with higher cost alternative components, and challenges them to either: store the liquids...

  3. Flammability Characteristics of Hydrogen and Its Mixtures with Light Hydrocarbons at Atmospheric and Sub-atmospheric Pressures

    E-Print Network [OSTI]

    Le, Thuy Minh Hai

    2013-07-13T23:59:59.000Z

    /vapor. This research focuses on the flammability limits of hydrogen and its binary mixtures with light hydrocarbons (methane, ethane, n-butane, and ethylene) at sub-atmospheric pressures. The flammability limits of hydrogen, light hydrocarbons, and binary mixtures...

  4. AME 513 Assigned: Tuesday 10/2/2012 Problem Set #2 Due Monday 10/15/2012 at 4:30 pm in the drop box in

    E-Print Network [OSTI]

    : 4.20 (Partial equilibrium) 5.6 (Beta scission) 5.7 (Butane oxidation) 5.8 (Reduced mechanisms) Other. (a) From this information, estimate the pre-exponential factor Z and activation energy Ea. (b

  5. Phase Equilibria Bibliography Updated 6/04 PUBLICATIONS (REFEREED)

    E-Print Network [OSTI]

    Howat, Colin S. "Chip"

    .G., and Howat, C.S., 1990. Vapor-Liquid Phase Equilibria and Molar Volumes of the Butadiene-Acetonitrile System-Butane and Acetonitrile, 1-Butene and Acetonitrile and 1,3-Butadiene and Acetonitrile. 7th International Congress

  6. U.S. Energy Information Administration (EIA) - Source

    Gasoline and Diesel Fuel Update (EIA)

    include smaller amounts of butane and ethane. Currently, most U.S. exports of LPG go to Latin America, where LPG is used for heating and cooking. International implications The...

  7. a l b L b f ^ J M P U P E O M N P F = = | = = ^ p r i l = O M...

    Gasoline and Diesel Fuel Update (EIA)

    include smaller amounts of butane and ethane. Currently, most U.S. exports of LPG go to Latin America, where LPG is used for heating and cooking. International implications The...

  8. Approaches to the synthesis of macrocyclic polystannanes 

    E-Print Network [OSTI]

    Denis, Richard Ascot

    1980-01-01T23:59:59.000Z

    (trimethylstannyl) butane Preparation of 1, 4-bis(trimethylstannyl) butane using Trimethyltin Lithium. Preparation of 1, 5-bis(trimethylstannyl) pentane. Preparation of 1, 3-bis(Bromodimethylstannylj propane (39a) . Preparation of 1, 4-bis... investigated by pedersen who reported that the solubility of dibenzo-18-crown-6 in methanol was increased in the presence of alkali (lithium ion excluded) and alkaline earth salts. This was 14 the first report of a cation being complexed by crown ethers...

  9. Supplemental Material S1 UBWOS 2012 data used in this analysis

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    propane/ppbv 20151050 Time / hrs 0.8 0.6 0.4 0.2 0.0 -0.2 2,2dimethylpropane/ ppbv 20151050 Time / hrs 60 40 20 0 -20 n-butane/ppbv 20151050 Time / hrs #12;(v) (vi) (vii) (viii -10 i-butane/ppbv 20151050 Time / hrs 0.3 0.2 0.1 0.0 2,2-dimethylbutane/ ppbv 20151050 Time / hrs 40

  10. The effect of the volume of liquid injected on recovery in solvent slug flooding

    E-Print Network [OSTI]

    Bowman, Charles Hay

    1959-01-01T23:59:59.000Z

    the effect of slug size on oil recovered. A series of verti. cal displacements was performed on a kerosene- and-water saturated core 10 feet in length, using butane as the solvent and methane as the inert dksplacing medium. Breakthrough recovery was fo... screen snd glass wool in the outlet nipple served to retain all sand within the pipe. Fluids used included technical grade methane, technical grade normal butane as the slug material, and kerosene to represent crude oil. Distilled water served...

  11. Chem 115Lithium-Halogen ExchangeMyers RLi + R'X RX + R'Li

    E-Print Network [OSTI]

    Chem 115Lithium-Halogen ExchangeMyers RLi + R'X RX + R'Li Lithium-halogen exchange reactions are essentially inert. 2 t-BuLi t-BuI + RLi t-BuLi isobutene + isobutane + LiI Lithium-halogen exchange reactions, and lithium iodide. H OEtBr H H OEtLi H1.1 eq n-BuLi Et2O, !80 °C Lau, K. S.; Schlosser, M. J. Org. Chem. 1978

  12. PROPRIETARY MATERIAL. 2011 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.

    E-Print Network [OSTI]

    Bahrami, Majid

    from the steam turbine and the binary cycle, and the thermal efficiencies for the binary cycle from the steam turbine and the binary cycle are kW15,410 kJ/kg)7.23448.1kJ/kg)(27438.19()( 433steamT,binarynet, 98isoT, inp iso wmWW hhmW steam turbine production well reinjection well isobutane turbine heat

  13. Catalytic conversion of C/sub 3/-C/sub 4/ paraffins to gasoline

    SciTech Connect (OSTI)

    Batchelder, R.F.; Pennline, H.W.; Schehl, R.R.; Finseth, D.H.

    1984-12-01T23:59:59.000Z

    The reaction of propane and butane to form gasoline-range hydrocarbons in a single-step catalytic process has been investigated in a tubular packed-bed reactor maintained at near isothermal conditions. Three catalyst systems were studied: a zeolite, ZSM-5; a dehydrogenation catalyst, chromia-alumina; and a 50:50 mixture by weight of the previous two catalysts. The effects of process parameters on the catalyst activity and product selectivity were determined. It was found that ZSM-5 alone will convert propane or butane to gasoline-range products over a temperaure range of 350/sup 0/ to 540/sup 0/C. The reaction of butane over ZSM-5 results in a large selectivity to propane (30 to 70 weight percent) depending on the temperature. The addition of chromia-alumina to ZSM-5 increased the first-order rate constant for butane conversion by 60% at 450/sup 0/C. The addition of chromia-alumina to ZSM-5 also increased the C/sub 5+/ selectivity for butane conversion by 30% at 540/sup 0/C. The addition of chromia-alumina to ZSM-5 had little effect on the rate of propane conversion, but it did increase the C/sub 5+/ selectivity for propane conversion by over 100% at 540/sup 0/C. The liquid product from alkane conversion was highly aromatic (>80%) under all conditions tested. 12 references, 8 figures.

  14. Phase equilibrium measurements on nine binary mixtures

    SciTech Connect (OSTI)

    Wilding, W.V. [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.] [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.; Giles, N.F.; Wilson, L.C. [Wiltec Research Co. Inc., Provo, UT (United States)] [Wiltec Research Co. Inc., Provo, UT (United States)

    1996-11-01T23:59:59.000Z

    Phase equilibrium measurements have been performed on nine binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following systems at two temperatures each: (aminoethyl)piperazine + diethylenetriamine; 2-butoxyethyl acetate + 2-butoxyethanol; 2-methyl-2-propanol + 2-methylbutane; 2-methyl-2-propanol + 2-methyl-2-butene; methacrylonitrile + methanol; 1-chloro-1,1-difluoroethane + hydrogen chloride; 2-(hexyloxy)ethanol + ethylene glycol; butane + ammonia; propionaldehyde + butane. Equilibrium vapor and liquid phase compositions were derived form the PTx data using the Soave equation of state to represent the vapor phase and the Wilson or the NRTL activity coefficient model to represent the liquid phase. A large immiscibility region exists in the butane + ammonia system at 0 C. Therefore, separate vapor-liquid-liquid equilibrium measurements were performed on this system to more precisely determine the miscibility limits and the composition of the vapor phase in equilibrium with the two liquid phases.

  15. Three-phase K-values for n-alkanes co-existing with water at high temperatures

    E-Print Network [OSTI]

    Forero Reyes, Helber Alfonso

    1992-01-01T23:59:59.000Z

    . Wehe and McKetta~ reported the mutual solubility of n-butane/i- butane/water. Again no PVT data of the system were provided in the paper. The first published attempt to use an equation of state for three-phase equilibrium calculations appeared... equation: L+W+G = 10 -(4. 1) Component i mole balance equations: hc Lx; +Wx; +Gy; =zi i = l, n -- -(4. 2) Restrictive equations n n g x, h'= Z x, . " i=1 i=1 = Zy, "=Lo i=1 (4. 3) Thermodynamic equations for component fugacities: V hc f. = f...

  16. Prediction of heptanes-plus equilibrium ratios from empirical correlations

    E-Print Network [OSTI]

    McKenna, Martin James

    1988-01-01T23:59:59.000Z

    6590 305 247 0. 862 low 600 3225 158 149 0. 787 8055 313 212 0. 841 low sOV 2375 127 108 0. 746 TABLE 3-PHYS ICAL AND CRITICAL PROPERTIES Component methane ethane propane i-butane n-butane i-pentane n-pentane hexane (1b... using only one property ? critical temperature- to correlate equilibrium ratios. Campbell stated that for a fixed temperature and pressure, the equilibrium ratios of a mixture in v the equation apor-liquid equilibrium can be represented by log K...

  17. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOE Patents [OSTI]

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13T23:59:59.000Z

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  18. New binding materials for metal hydride electrodes which permit good recyclability

    SciTech Connect (OSTI)

    Hara, T.; Yasuda, N. (Japan Synthetic Rubber Co., Ltd., Yokkaichi (Japan). Development Center); Takeuchi, Y. (Japan Synthetic Rubber Co., Ltd., Tokyo (Japan). Electronics Project Dept.); Sakai, T.; Uchiyama, A.; Miyamura, H.; Kuriyama, N.; Ishikawa, H. (Government Industrial Research Inst., Osaka (Japan))

    1993-09-01T23:59:59.000Z

    Thermoplastic elastomers such as styrene-butadiene-styrene block copolymer (SBS) and styrene-ethylene/butylene-styrene block copolymer (SEBS) were used successfully as binding materials for metal hydride (MH) electrodes of a nickel-metal hydride battery. These binding materials have a rubber-like nature and are soluble in organic solvents. It was easy to remove the alloy powder from a used electrode for recycling. The battery performance depended on both the kind and amount of binding materials. The best discharge capacity and rate capability were obtained for MH electrodes containing 2--5 weight percent (w/o) SEBS. The particle size distributions for the alloy were examined successfully.

  19. Study on Micro-scale Ceramic Catalytic Combustor with Embedded Heat Exchange Channels Takashi OKAMASA, Gwang-Goo LEE, Yuji SUZUKI, and Nobuhide KASAGI

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Study on Micro-scale Ceramic Catalytic Combustor with Embedded Heat Exchange Channels Takashi combustion of butane is investigated. A cost-effective and robust ceramic combustor is developed using high anodic oxidation of aluminum layer. In order to increase the thermal efficiency, a combustor

  20. Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application Takashi: A micro-scale catalytic combustor using high-precision ceramic tape-casting technology has been developed surface reaction of butane. In combustion experiments with a prototype combustor, the wall temperature

  1. Development of Micro Catalytic Combustor Using Ceramic Tape Casting Takashi OKAMASA, Gwang-Goo LEE, Yuji SUZUKI, and Nobuhide KASAGI

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Development of Micro Catalytic Combustor Using Ceramic Tape Casting Takashi OKAMASA, Gwang-Goo LEE@thtlab.t.u-tokyo.ac.jp Abstract Micro-scale catalytic combustor fueled by butane is investigated. A cost-effective ceramic combustor is developed using high- precision tape-casting technology. Nano-porous alumina fabricated through

  2. Catalytic oxidation of propylene with air at temperatures near 500° FCatalytic oxidation of propylene with air at temperatures near 500°F?

    E-Print Network [OSTI]

    Dunlop, Donald Dunwody

    1953-01-01T23:59:59.000Z

    was that of Bludworth (4). This covered the thermal oxidation of butane between 300? and 400? C. and at 300 - 400 psi using large quantities of steam as a diluent. The principal products were formaldehyde, acetaldehyde and methanol, although various acids were also...

  3. Mars long has been considered a cold, dead planet.However,recent reports of methane

    E-Print Network [OSTI]

    Manning, Craig

    , and not necessarily just methane-pro- ducing organisms. However,if these environments were found not to be inhabited as from the thermal pro- cessing of complex organic remnants of past life (thermogenesis). In the first (ethane,propane,butane). On Mars, more shallowly buried organic material from putative past life could

  4. Gassmann's fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies

    E-Print Network [OSTI]

    Boise State University

    frequencies. Samples are measured dry humidi- fied and saturated with liquid butane and brine. Our carbon- ate rock shear-modulus change from dry to brine saturation conditions, and we investigate several rock velocities for either oil- or brine-saturated samples, al- though for some samples, Gassmann's theory

  5. Seismic wave attenuation in carbonates L. Adam,1,2

    E-Print Network [OSTI]

    Boise State University

    butane or brine. This observation holds for four out of five samples at seismic (10­1000 Hz, attenuation increases by 250% when brine substitutes a light hydrocarbon in these carbonate rocks. For some of the samples. The rocks are measured dry and fully saturated with a light hydrocarbon and with a brine

  6. ORIGINAL ARTICLE Pneumatic Energy Sources for Autonomous

    E-Print Network [OSTI]

    Wood, Robert

    research projects using combustion (methane and butane) and monopropellant decomposition (hydrogen per extensive system-level development. Hydrogen peroxide decomposition requires not only few additional parts mobile robotics grows, the most common energy source remains a tether to a sta- tionary compressor. While

  7. Appears in Working Notes of the AAAI Spring Symposium on Human Interaction with Autonomous Systems in Complex Environments

    E-Print Network [OSTI]

    Krebsbach, Kurt D.

    . Background: Refineries and Control Petrochemical refining is one of the largest industrial enterprises for converting crude oil (feed) into more useful products such as gasoline, kerosene, and butane (Leffler 1985" is the industry term for more powerful mathematical control techniques (e.g., multivariate lin- ear models) used

  8. In situ vibrational spectroscopic investigation of C{sub 4} hydrocarbon selective oxidation over vanadium-phosphorus-oxide catalysts

    SciTech Connect (OSTI)

    Xue, Z.Y.

    1999-05-10T23:59:59.000Z

    n-Butane selective oxidation over the VPO catalyst to maleic anhydride is the first and only commercialized process of light alkane selective oxidation. The mechanism of this reaction is still not well known despite over twenty years of extensive studies, which can partially be attributed to the extreme difficulties to characterize catalytic reactions real-time under typical reaction conditions. In situ spectroscopic characterization techniques such as Infrared spectroscopy and laser Raman spectroscopy were used in the current mechanistic investigations of n-butane oxidation over VPO catalysts. To identify the reaction intermediates, oxidation of n-butane, 1,3-butadiene and related oxygenates on the VPO catalyst were monitored using FTIR spectroscopy under transient conditions. n-Butane was found to adsorb on the VPO catalyst to form olefinic species, which were further oxidized to unsaturated, noncyclic carbonyl species. The open chain dicarbonyl species then experienced cycloaddition to form maleic anhydride. VPO catalyst phase transformations were investigated using in situ laser Raman spectroscopy. This report contains Chapter 1: General introduction; Chapter 2: Literature review; and Chapter 5: Conclusion and recommendations.

  9. Index of Subjects Abbreviations ix,203-6

    E-Print Network [OSTI]

    Hall, Christopher

    90 Absorption of light 110-11,137-9,168 Accelerated testing 139 Acetal 14, 204, 206, see also, polymer 156-7,216 Allyl diglycol carbonate 113, 165-6 Allyl resins 165 Alumina 95 Aluminium 58 modulus 57,70,92 Bulk polymerisation 31 Butadiene 5,167,169,217 Butane 11 Butene 219 Butyl acetate 181

  10. GCMS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants

    E-Print Network [OSTI]

    Paré, Paul W.

    IN937a, with GB03 producing higher amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and butane-1. All rights reserved. Keywords: Bacillus subtilis; B. amyliquefaciens; Ehrlich pathway; 3-Methyl-1-butanol; Plant growth promoting rhizobacteria (PGPR); Principal comp- onent analysis (PCA); Solid

  11. JOURNAL DE PHYSIQUE IV C2-633 Colloque C2, suppl. au Journal de Physique 11, Vol. 1, septembre 1991

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    temperature of about 850°C, respectively from butane and nitrogen and a mixture of titanium chloridesBans cedex 2, France Abstract : Titanium carbide and nitride coatings can be deposited at a moderate, by Ti metal. Under optimized deposition conditions, a very hard titanium carbide with a polynucleated

  12. Subscriber access provided by -Access paid by the | UC Berkeley Library Journal of the American Chemical Society is published by the American Chemical

    E-Print Network [OSTI]

    Iglesia, Enrique

    and dehydrogenation of propane and n-butane differed among zeolites with varying channel structure (H-MFI, H-FER, H environments, the number of which was assessed in H-MOR by rigorous deconvolution of their infrared spectra of partial confinement, a concept previously considered phenomenologically as pore mouth catalysis

  13. A GasdynamicAcoustic Model of a Bird Scare Gun

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    ,000--200,000 explosions is attainable. The mechanism is simple. A carefully­controlled mixture of air and propane or butane gas (stoichiometric 1 mixture, or a little bit richer than that) is periodically (every 5 or 10 into the open air. An interesting detail in the design gave, without any further analy­ sis, already insight

  14. Proceedings of the Combustion Institute, Volume 29, 2002/pp. 909916 DEVELOPMENT OF A MICROREACTOR AS A THERMAL SOURCE FOR

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    -sustained combustion of hydrogen and air mixtures was demonstrated over a wide range of fuel/air mixtures and flow) than advanced electrochemical sources, provided that ambient air is available as the oxidizing agent, liquefied gaseous fuels (propane, butane, and their conjugate olefins) or hydrocarbon liquids designed

  15. A Gasdynamic-Acoustic Model of a Bird Scare Gun

    E-Print Network [OSTI]

    Rienstra, Sjoerd W.

    ,000­200,000 explosions is attainable. The mechanism is simple. A carefully-controlled mixture of air and propane or butane gas (stoichiometric1 mixture, or a little bit richer than that) is periodically (every 5 or 10 into the open air. An interesting detail in the design gave, without any further analy- sis, already insight

  16. 9118 J. Am. Chem. SOC.1992, 114, 9118-9122 Propane Buwe

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    9118 J. Am. Chem. SOC.1992, 114, 9118-9122 Scheme 111 Propane Buwe X =CHI and Y = H lossofH2 Z = H-82-8; ethane, 74- 84-0; propane, 74-98-6;butane, 106-97-8. (28) The heats of formation for C3H2are the scaled

  17. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Havstad, Mark A. (Davis, CA)

    2011-08-09T23:59:59.000Z

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  18. DOI: 10.1126/science.1194777 , 211 (2010);330Science

    E-Print Network [OSTI]

    Fineberg, Jay

    2010-01-01T23:59:59.000Z

    .colleagues, clients, or customers by , you can order high-quality copies for yourIf you wish to distribute hydrocarbon plumes is delayed with respect to that of ethane-, propane-, and butane-consuming communities. To identify potential propane- and ethane- consuming bacteria active in the deep plumes, we collected cells

  19. JOURNAL DE PHYSIQUE C o l l o q u e C8, s u p p l 6 m e n t a u no 1 2 , Tome 47, d 6 c e m b r e 1 9 8 6

    E-Print Network [OSTI]

    Boyer, Edmond

    cyclopropane, propane, cyclobutane and butane - i l l u s t r a t i n g e f f e c t s of r i n g s t r a i n distribution of unoccupied valence levels. (B) Comparison of gas and condensed phase spectra indicate t h

  20. ORIGINAL RESEARCH ARTICLE published: 14 May 2013

    E-Print Network [OSTI]

    Girguis, Peter R.

    examined the metabolism of ethane (C2), propane (C3), and butane (C4) in anoxic sediments in contrast-chain alkanes, sulfate reduction INTRODUCTION Hydrocarbongases,includingmethane(C1),ethane(C2),propane (C3, ecological physiology, and diversity of microorganisms mediating this process and the global distribution

  1. Mechanism of alkane dehydrogenation catalyzed by acidic zeolites: Ab initio transition path sampling

    E-Print Network [OSTI]

    Dellago, Christoph

    The dehydrogenation of propane over acidic chabazite has been studied using ab initio density-functional simulations products, the underlying reaction kinetics can be studied by measuring the products distribution. A correct on dehydrogenation and cracking of alkanes including propane, n-butane, n-pentane, and n-hexane catalyzed by zeolites

  2. A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro-reformer and functional

    E-Print Network [OSTI]

    Daraio, Chiara

    A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro Micro-solid oxide fuel cell Thin films Butane reformation Chemical micro-reactors Thermally independent fuel cell (micro-SOFC) systems are an attractive alternative power source for small-size portable

  3. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Jan. 2009, p. 337344 Vol. 75, No. 2 0099-2240/09/$08.00 0 doi:10.1128/AEM.01758-08

    E-Print Network [OSTI]

    Arnold, Frances H.

    based on their preferred substrates (30). The soluble and particulate methane monooxygenases (sMMO and p Mike M. Chen,1 Jan B. van Beilen,2 and Frances H. Arnold1 * Division of Chemistry and Chemical by evolutionarily unrelated methane monooxygenases. Propane and butane can be oxidized by CYP enzymes engineered

  4. 2000-32 V'B SAFETY PROVISIONS AND LPG

    E-Print Network [OSTI]

    Boyer, Edmond

    metres (m3 ) of LPG (exclusively butane and propane) not including the underground storage sites. Some 90% of these 95 sites were created between 1956 and 1975. These sites have over 300,000 m3 of storage capacity and 82 propane), 200 horizontal tanks and 2 vertical cryogenic tanks (35,000 and 20,000 m3

  5. Understanding the dynamics of a two-phase flow (liquid and gas) has been studied quite extensively over the past. This problem is indeed of direct relevance for many areas such

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    be trapped on the ground because of the presence of an obstacle. The studied products were propane, butane set-up, and pressure storage. 1 INTRODUCTION In many chemical and process plants, gas are stored for the understanding of the flow inside the pipe. The net of pipes linking the storage and the nozzle are composed

  6. This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and

    E-Print Network [OSTI]

    Semprini, Lewis

    for the in situ cometabolic treatment of 1,1-dichloroethene, 1,1-dichloroethane, and 1,1,1-trichloroethane Lewis transformation products of 1,1,1-TCA. Kinetic studies with butane grown enrichment cultures and pure cultures stimulated. The microcosm tests were consistent with the kinetics from mixed and pure cultures. Field studies

  7. Vapour extraction of heavy oil and bitumen

    SciTech Connect (OSTI)

    Das, K.A.; Butler, R.M. [Univ. of Calgary (Canada)

    1994-12-31T23:59:59.000Z

    This paper describes the process of vapor extraction for the recovery of petroleum and bitumen. The selection of solvent is critical, and it is shown that butane may be a good solvent for shallow reservoirs. Experiments are described in a Hele-Shaw cell and Packed Visual Model.

  8. A combined crossed-beam, ab initio, and RiceRamspergerKassel Marcus investigation of the reaction of carbon atoms C,,3

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    . Benzene has been detected in oxygen-poor methane, ethane, ethylene, propane, and n-butane flames,4 and has to model important pathways for the synthesis of higher polycyclic aromatic hydrocarbon derivatives aromatic hydrocarbons PAHs , is essential to understand the formation and fate of complex PAHs in various

  9. ARTICLE IN PRESS S0019-1035(05)00115-6/FLA AID:7629 Vol.() [DTD5] P.1 (1-10)

    E-Print Network [OSTI]

    Ferris, James P.

    of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction

  10. The Astrophysical Journal, 790:38 (10pp), 2014 July 20 doi:10.1088/0004-637X/790/1/38 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    hydrocarbons 1-butene (C4H8) and n-butane (C4H10). By tracing the temporal evolution of the newly formed hydrocarbons (acetylene (C2H2), ethylene (C2H4), ethane (C2H6), methylacetylene (CH3CCH), propane (C3H8. 2011; Dangi et al. 2013) and even polycyclic aromatic hydrocarbons (PAHs) such as naphthalene (Parker

  11. Laminar burning velocities of propeneair mixtures at elevated temperatures and

    E-Print Network [OSTI]

    as an intermediate in the combustion of higher alkanes, such as propane, butane, heptane and isooctane, Glassman1 and R. Stone*2 Propene (C3H6) is a key intermediate species in the combustion of higher alkanes­air List of symbols A inside surface area of the vessel B inside diameter of the vessel cp specific heat e

  12. Combustion and Flame 145 (2006) 324338 www.elsevier.com/locate/combustflame

    E-Print Network [OSTI]

    Gülder, �mer L.

    . Guo et al. / Combustion and Flame 145 (2006) 324­338 325 for ethylene, propane, and butane counterflowCombustion and Flame 145 (2006) 324­338 www.elsevier.com/locate/combustflame Numerical study into account. Radiation heat transfer from CO2, CO, H2O, and soot was calculated using the discrete- ordinates

  13. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF MICROMECHANICS AND MICROENGINEERING J. Micromech. Microeng. 16 (2006) S211S219 doi:10.1088/0960-1317/16/9/S07

    E-Print Network [OSTI]

    Tokyo, University of

    pressure of liquefied fuel. Combustion of the fuel then takes place, and heat generated is used in micro such as butane and propane have 100 times larger energy density. Power MEMS devices, taking advantage, which is harvested from fuel combustion, to electric energy, micro devices for feeding fuel and air

  14. Catalyst Activity Comparison of Alcohols over Zeolites

    SciTech Connect (OSTI)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-01-01T23:59:59.000Z

    Alcohol transformation to transportation fuel range hydrocarbon on HZSM-5 (SiO2 / Al2O3 = 30) catalyst was studied at 360oC and 300psig. Product distributions and catalyst life were compared using methanol, ethanol, 1-propanol or 1-butanol as a feed. The catalyst life for 1-propanol and 1-butanol was more than double compared to that for methanol and ethanol. For all the alcohols studied, the product distributions (classified to paraffin, olefin, napthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 hours TOS, liquid product from 1-propanol and 1-butanol transformation primarily contains higher olefin compounds. The alcohol transformation process to higher hydrocarbon involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization, and hydrogenation. Compared to ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker acidic sites. On the other hand, dehydrocyclization of propylene and butylene to form the cyclic compounds requires the sits with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1 propanol and 1 butanol compared to methanol and ethanol conversion over HZSM-5.

  15. Multivariable controller increased MTBE complex capacity

    SciTech Connect (OSTI)

    Robertson, D.; Peterson, T.J.; O`Connor, D. [DMC Corp., Houston, TX (United States); Payne, D.; Adams, V. [Valero Refining Co., Corpus Christi, TX (United States)

    1997-03-01T23:59:59.000Z

    Capacity increased by more than 4.6% when one dynamic matrix multivariable controller began operating in Valero Refining Company`s MTBE production complex in Corpus Christi, Texas. This was on a plant that was already running well above design capacity due to previously made process changes. A single controller was developed to cover an isobutane dehydrogenation (ID) unit and an MTBE reaction and fractionation plant with the intermediate isobutylene surge drum. The overall benefit is realized by a comprehensive constrained multivariable predictive controller that properly handles all sets of limits experienced by the complex, whether limited by the front-end ID or back-end MTBE units. The controller has 20 manipulated, 6 disturbance and 44 controlled variables, and covers widely varying dynamics with settling times ranging from twenty minutes to six hours. The controller executes each minute with a six hour time horizon. A unique achievement is intelligent surge drum level handling by the controller for higher average daily complex capacity as a whole. The ID unit often operates at simultaneous limits on reactor effluent compressor capacity, cold box temperature and hydrogen/hydrocarbon ratio, and the MTBE unit at impurity in butene column overhead as well as impurity in MTBE product. The paper discusses ether production, isobutane dehydrogenation, maximizing production, controller design, and controller performance.

  16. Economic evaluation of four types of dry/wet cooling applied to the 5-MWe Raft River geothermal power plant

    SciTech Connect (OSTI)

    Bamberger, J.A.; Allemann, R.T.

    1982-07-01T23:59:59.000Z

    A cost study is described which compared the economics of four dry/wet cooling systems to use at the existing Raft River Geothermal Plant. The results apply only at this site and should not be generalized without due consideration of the complete geothermal cycle. These systems are: the Binary Cooling Tower, evaporative condenser, Combin-aire, and a metal fin-tube dry cooling tower with deluge augmentation. The systems were evaluated using cooled, treated geothermal fluid instead of ground or surface water in the cooling loops. All comparisons were performed on the basis of a common plant site - the Raft River 5 MWe geothermal plant in Idaho. The Binary Cooling Tower and the Combin-aire cooling system were designed assuming the use of the isobutane/water surface condenser currently installed at the Raft River Plant. The other two systems had the isobutane ducted to the evaporative condensers. Capital credit was not given to the system employing the direct condensing process. The cost of the systems were estimated from designs provided by the vendors. The levelized energy cost range for each cooling system is listed below. The levelized energy cost reflects the incremental cost of the cooling system for the life of the plant. The estimates are presented in 1981 dollars.

  17. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-04-01T23:59:59.000Z

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  18. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-01-01T23:59:59.000Z

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  19. Preliminary assessment of future refining impacts of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Hadder, G.R.

    1991-09-01T23:59:59.000Z

    A preliminary assessment of the future refining impacts of the Clean Air Act Amendments of 1990 has been performed with the Navy Mobility Fuels Forecasting Systems. The assessment suggests that gasoline reformulation costs in domestic coastal and near-coastal refining regions in the year 2000 could be 3.5 to 5.6 cents per gallon (in terms of 1989 currency). For heating value equivalent to one gallon of conventional gasoline, the regional total added costs (including reformulation costs) for reformulated gasoline could be 5.9 to 8.0 cents. In blending reformulated gasolines, the reduction of butane for lower Reid vapor pressure and the reduction of reformate for lower aromatics are generally compensated by increased percentages of alkylate and/or straight run naphthas. Relatively larger refinery process capacity additions are required for butane isomerization, alkylation, aromatics recovery, and distillate hydrotreating. 21 refs., 3 figs., 18 tabs.

  20. Solvent deasphalting effects on whole Cold Lake bitumen

    SciTech Connect (OSTI)

    Brons, G. [Exxon Research and Engineering Co., Annandale, NJ (United States); Yu, J.M. [Imperial Oil Limited, Calgary, Alberta (Canada)

    1995-12-31T23:59:59.000Z

    Solvent separation of bitumen from the Cold Lake region of Alberta, Canada, into deasphalted oils and asphaltenes has been studied using propane, i-butane, n-butane and n-pentane. The resulting range of deasphalting was from 20 to 50 wt.% of the whole bitumen. An extensive study of the fractions, as a function of yield, has shown how and to what extent volatiles, aromatics, sulfur and metals are distributed between the fractions. It was found that the highest molecular weight asphaltenes have the most impact on the viscous nature of such heavy oils, suggesting that even low levels of deasphalting can have a dramatic impact in reducing viscosity. In addition, thiophenic sulfur is more concentrated in the asphaltenes, but the sulfides, acting as cross-links, may be responsible for the highest molecular weight fractions of the asphaltenes.

  1. Solvothermal synthesis of vanadium phosphates in the form of xerogels, aerogels and mesostructures

    SciTech Connect (OSTI)

    Sydorchuk, V.; Zazhigalov, V. [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine)] [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine); Khalameida, S., E-mail: svkhal@ukr.net [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine); Diyuk, E. [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine)] [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine); Skubiszewska-Zieba, J.; Leboda, R. [Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin (Poland)] [Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin (Poland); Kuznetsova, L. [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine)] [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine)

    2010-09-15T23:59:59.000Z

    Regularities and peculiarities of physicochemical changes, first of all phase transformations, during solvothermal treatment (with conventional and microwave heating) of the vanadium pentoxide and orthophosphoric acid mixture in organic solvents in the presence of reducing agents have been studied. Hemihydrate of vanadium hydrophosphate - the precursor of vanadium pyrophosphate, the active phase for n-butane to maleic anhydride oxidation, and ion exchanger with variable physicochemical characteristics, i.e. crystal structure, specific surface area, crystallite size and acidic properties - has been synthesized in the temperature range 170-200 {sup o}C. The obtained phases were examined using XRD, DTA-TG, SEM, FTIR spectroscopy, nitrogen adsorption as well as gas chromatographic determination of acidity through organic bases adsorption. The catalytic activity of prepared samples for n-butane oxidation has been investigated.

  2. JOURNAL DE PHYSIQUE Colloque C1, supplgment au n02, Tome 47, fbvrier 1986 page CI-587

    E-Print Network [OSTI]

    Boyer, Edmond

    t y 1200, b i s c u i t propane 25 1400 g l a z e butane 75 1060 g l a z e b i s c u i t e l e c t r i c i t y 1250 g l a z e propane 95 1400 g l a z e propane 95 1150 b i s c u i t Cerachrome * 5Omm 600

  3. Chem 350 Jasperse Ch. 3 Handouts 1 ALKANE NAMES (Memorize) (Sections 3.2)

    E-Print Network [OSTI]

    Jasperse, Craig P.

    C) Structure 1 Methane CH4 -162 H-(CH2)-H 2 Ethane C2H6 -89 H-(CH2)2-H 3 Propane C3H8 -42 H-(CH2)3-H 4 Butane C "Petroleum Gas" C2-C4 Propane C3 -42º Propane tanks, camping, etc. Gasoline C4-C9 30-180º

  4. Where's the Beef? ConAgra's Approach to Energy Sources & Efficiency in Meat Processing

    E-Print Network [OSTI]

    Kananen, T. M.

    the Kansas City Area Transportation Authority conducted tests, starting in 1997, with a beef tallow based biodiesel test program. These tests were conducted in a fleet of diesel busses (3). The results of the biodiesel test indicated reduced pollutants... converts, chemically reforms, and neutralizes wastes producing oils (biodiesel), gases (methane, propane, butane), and carbons (clean coal, fertilizer). In addition, microturbines are installed to provide heat and power. This partnership will showcase...

  5. Potential Future Impacts on Visual Air Quality for Class I Areas1

    E-Print Network [OSTI]

    Standiford, Richard B.

    PRODUCTION Crude Oil 17.9 19.0 18.0 NGL & Butane 2.6 2.0 1.8 Shale Oil 0 .1 .3 Natural Gas 19.0 17.2 16.6 PRODUCTION IMPORTS Crude Oil 8.7 16.5 20.9 Petroleum Products 3.8 6.7 7.8 Natural Gas 1.0 1.9 2.6 TOTAL

  6. Industrial Fuel Switching - Emerging NGL Opportunities 

    E-Print Network [OSTI]

    Cascone, R.

    2004-01-01T23:59:59.000Z

    INDUSTRIAL FUEL SWITCHING - EMERGING NGL OPPORTUNITIES Ron Cascone Manager Special Projects, Utilities and Environmental Nexant, Inc. White Plains, NY ABSTRACT Removing butanes and pentanes from gasoline to meet local... feedstocks, convert them to alternative fuels, or sell them as heating fuels. Industrial fuel users can switch from fuel oil, natural gas or LPG for short periods to these clean and/or more economic fuels. Current regulations will necessitate removing...

  7. COLLOQUE DE PHYSIQUE Colloque C5, supplement au n018, Tome 51, 15 septembre 1990

    E-Print Network [OSTI]

    Boyer, Edmond

    STUDIES OF HIGH TEMPERATURE EQUILIBRIA OF THE Si - N, Si - C -H AND Si - 0 - C - H SYSTEMS Z.G. KOSTIC, P dans un plasm de lmtane et propane contenant de l l h y d r o g ~(sy- Si- C-H), (3) : S y n t h h de thermal arc plasma. 2) the Si -C -H system for Sic synthesis from Si-powder in a propane-butane thermal

  8. Atmos. Chem. Phys., 10, 44034422, 2010 www.atmos-chem-phys.net/10/4403/2010/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    global distribution and budget of atmospheric C2-C5 alkanes A. Pozzer1,2, J. Pollmann2, D. Taraborrelli2 of the C2-C5 alka- nes (e.g., seasonality). While the simulated values for ethane and propane are within amount of acetone produced by propane, i-butane and i-pentane oxidation is 11.2 Tg/yr, 4.3 Tg/yr, and 5

  9. Superacid catalysis of light hydrocarbon conversion. Sixth quarterly report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Gates, B.C. [California Univ., Davis, CA (United States). Dept. of Chemical Engineering and Materials Science

    1995-08-01T23:59:59.000Z

    Iron- and Manganese-promoted sulfated zirconia is a catalyst for the conversion of propane, but the rate of conversion of propane is much less than the rate of conversion of butane. Whereas this catalyst appears to be a good candidate for practical, industrial conversion of butane, it appears to lack sufficient activity for practical conversion of propane. Perhaps more active catalysts will be useful for propane conversion. The propane conversion data reported here provide excellent insights into the chemistry of the catalytic conversions; they are consistent with the inference that the catalyst is a superacid and that the chemistry is analogous to. that determined in superacid solutions by G.A. Olah, who was awarded the most recent Nobel Prize in chemistry for his work. The catalyst was tested for conversion of propane at 1 bar, 200--300{degrees}C and propane partial pressures in the range of 0.01--0.05 bar. At 250{degrees}C, catalysis was demonstrated, as the number of propane molecules converted was at least 1 per sulfate group after 16 days of operation in a continues flow reactor. Propane was converted in high yield to butanes, but the conversions were low, for example being only a fraction of a percent at a space velocity of 9.1 {times} 10{sup {minus}7} mol(g of catalysis {center_dot} s) and 250{degrees}C. Coke formation was rapid. The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  10. Table S1. Mapping RETRO species to GEOS-Chem tracers GEOS-Chem tracer Applicable RETRO

    E-Print Network [OSTI]

    Mlllet, Dylan B.

    Global emissions (TgC/y) Comments ALK4 Butanes Pentanes Hexanes and Higher Alkanes 32.56 ALK4: >= C4 assumed to account for the total alkanal flux PRPE Propene 2.35 PRPE: >= C3 alkenes C3H8 Propane 2.88 CH2O aromatics 7.22 C8 aromatic compounds including o-, m-, p- xylenes and ethylbenzene. "Other aromatics

  11. PROPERTY TABLES AND CHARTS (SI UNITS) Table A1 Molar mass, gas constant, and

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Table A­20 Ideal-gas properties of carbon dioxide, CO2 Table A­21 Ideal-gas properties of carbon.1355 n-Butane C4H10 58.124 0.1430 425.2 3.80 0.2547 Carbon dioxide CO2 44.01 0.1889 304.2 7.39 0Appendix 1 PROPERTY TABLES AND CHARTS (SI UNITS) Table A­1 Molar mass, gas constant, and critical

  12. Experimental measurements and modeling prediction of flammability limits of binary hydrocarbon mixtures

    E-Print Network [OSTI]

    Zhao, Fuman

    2009-05-15T23:59:59.000Z

    Page 4.5 Temperature (top) and pressure (bottom) profiles for violently continuous flame propagation???????????????????..47 4.6 Flame propagation profiles with different methane concentrations in air???48 4.7 Determination of LFL... of methane in air using thermal criterion?????..50 4.8 Determination of LFL of ethylene in air using thermal criterion???...??..51 4.9 Lower flammability limits of methane and n-butane mixtures in air at standard conditions...

  13. Mechanism of olefin production on Pt, Rh, and Pd catalysts

    SciTech Connect (OSTI)

    Huff, M.; Schmidt, L.D. [Univ. of Minnesota, Minneapolis, MN (United States)

    1995-12-01T23:59:59.000Z

    The partial oxidation of ethylene, propylene, and butylene in an autothermal reactor at atmospheric pressure with contact times less that {approximately}10 milliseconds leads to high selectivities to mono-olefins over Pt/Al{sub 2}O{sub 3}, synthesis gas over Rh/Al{sub 2}O{sub 3}, and rapid carbon deposition and deactivation over Pd/Al{sub 2}O{sub 3} at complete oxygen conversion and high alkane conversion. In all cases, thermodynamics predicts carbon deposition. We will show how the product distributions vary with choice of catalyst and reaction conditions. We will use an elementary step model based on surface reaction rates on the various metals obtained from the surface science literature to simulate these experimental results. The dominant reaction pathways on the different metals can be explained by the relative preference for {beta} elimination reactions on Pt, nearly even split between {alpha} and {beta} elimination on Rh, and rapid {alpha} elimination on Pd.

  14. Comparison of precursor infiltration into polymer thin films via atomic layer deposition and sequential vapor infiltration using in-situ quartz crystal microgravimetry

    SciTech Connect (OSTI)

    Padbury, Richard P.; Jur, Jesse S., E-mail: jsjur@ncsu.edu [Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-07-01T23:59:59.000Z

    Previous research exploring inorganic materials nucleation behavior on polymers via atomic layer deposition indicates the formation of hybrid organic–inorganic materials that form within the subsurface of the polymer. This has inspired adaptations to the process, such as sequential vapor infiltration, which enhances the diffusion of organometallic precursors into the subsurface of the polymer to promote the formation of a hybrid organic–inorganic coating. This work highlights the fundamental difference in mass uptake behavior between atomic layer deposition and sequential vapor infiltration using in-situ methods. In particular, in-situ quartz crystal microgravimetry is used to compare the mass uptake behavior of trimethyl aluminum in poly(butylene terephthalate) and polyamide-6 polymer thin films. The importance of trimethyl aluminum diffusion into the polymer subsurface and the subsequent chemical reactions with polymer functional groups are discussed.

  15. Physics of the multi-functionality of lanthanum ferrite ceramics

    SciTech Connect (OSTI)

    Bhargav, K. K.; Ram, S.; Majumder, S. B., E-mail: subhasish@matsc.iitkgp.ernet.in [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India)

    2014-05-28T23:59:59.000Z

    In the present work, we have illustrated the physics of the multifunctional characteristics of nano-crystalline LaFeO{sub 3} powder prepared using auto-combustion synthesis. The synthesized powders were phase pure and crystallized into centro-symmetric Pnma space group. The temperature dependence of dielectric constant of pure LaFeO{sub 3} exhibits dielectric maxima similar to that observed in ferroelectric ceramics with non-centrosymmetric point group. The dielectric relaxation of LaFeO{sub 3} correlates well with small polaron conduction. The occurrence of polarization hysteresis in LaFeO{sub 3} (with centro-symmetric Pnma space group) is thought to be spin current induced type. The canting of the Fe{sup 3+} spins induce weak ferromagnetism in nano-crystalline LaFeO{sub 3}. Room temperature saturation magnetization of pure LaFeO{sub 3} is reported to be 3.0?emu/g. Due to the presence of both ferromagnetic as well as polarization ordering, LaFeO{sub 3} behaves like a single phase multiferroic ceramics. The magneto-electric coupling in this system has been demonstrated through the magneto-dielectric measurements which yield about 0.8% dielectric tuning (at 10?kHz) with the application of 2?T magnetic field. As a typical application of the synthesized nano-crystalline LaFeO{sub 3} powder, we have studied its butane sensing characteristics. The efficient butane sensing characteristics have been correlated to their catalytic activity towards oxidation of butane. Through X-ray photoelectron spectroscopy analyses, we detect the surface adsorbed oxygen species on LaFeO{sub 3} surface. Surface adsorbed oxygen species play major role in their low temperature butane sensing. Finally, we have hypothesized that the desorbed H{sub 2}O and O{sub 2} (originate from surface adsorbed hydroxyl and oxygen) initiate the catalytic oxidative dehydrogenation of n-butane resulting in weakening of the electrostatics of the gas molecules.

  16. Texas plant will use new process to coproduce propylene oxide, MTBE

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1993-08-30T23:59:59.000Z

    Texaco Chemical Co. is building a $400 + million facility to produce 1.2 billion lb/year (14,000 b/d) methyl tertiary butyl ether (MTBE) and 400 million lb/year (about 500 metric tons/day) propylene oxide (PO). The facility-under construction at Port Neches, Tex.-will utilize a newly developed Texaco process that coproduces the two chemicals. The process produces propylene oxide and tertiary butyl alcohol (TBA) from the reaction of isobutane with oxygen in one step, then in a second step with propylene. The TBA is then reacted with methanol in a one-step process that synthesizes MTBE. The paper describes the Port Neches facilities, construction schedule, feedstocks, product uses, and auxiliary equipment.

  17. Ignition and extinction in the catalytic oxidation of hydrocarbons over platinum

    SciTech Connect (OSTI)

    Veser, G.; Schmidt, L.D. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemical Engineering and Materials Science] [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemical Engineering and Materials Science

    1996-04-01T23:59:59.000Z

    The ignition-extinction behavior in the oxidation of methane, ethane, propane and isobutane, as well as of ethylene and propylene over a platinum-foil catalyst was studied over the entire range of fuel/air ratios at atmospheric pressure. Ignition and extinction of the heterogeneous surface reaction, homogeneous ignition and the autothermal behavior of these fuel-air mixtures were investigated. The results show a common trend in the ignition extinction behavior of the alkanes and a different trend for the olefins. This is discussed in terms of a simple model, which correctly predicts the composition dependence of the surface ignition curve for reasonable values of parameters, indicating a mainly oxygen-covered surface during ignition of the alkanes and a mainly hydrocarbon-covered surface in the case of the olefins. Different branches of the complete bifurcation diagrams are discussed separately, allowing qualitative conclusions about the catalytic activity of Pt for the oxidation reactions of different fuels.

  18. Performances of linseed oil-free bakelite RPC prototypes with cosmic ray muons

    E-Print Network [OSTI]

    S. Biswas; S. Bhattacharya; S. Bose; S. Chattopadhyay; S. Saha; M. K. Sharan; Y. P. Viyogi

    2009-07-17T23:59:59.000Z

    A comparative study has been performed on Resistive Plate Chambers (RPC) made of two different grades of bakelite paper laminates, produced and commercially available in India. The chambers, operated in the streamer mode using argon, tetrafluroethane and isobutane in 34:59:7 mixing ratio, are tested for the efficiency and the stability with cosmic rays. A particular grade of bakelite (P-120, NEMA LI-1989 Grade XXX), used for high voltage insulation in humid conditions, was found to give satisfactory performance with stable efficiency of > 96% continuously for more than 130 days. A thin coating of silicone fluid on the inner surfaces of the bakelite RPC is found to be necessary for operation of the detector.

  19. Simple electronic apparatus for the analysis of radioactively labeled gel electrophoretograms

    DOE Patents [OSTI]

    Goulianos, Konstantin (New York, NY); Smith, Karen K. (New York, NY); White, Sebastian N. (New York, NY)

    1982-01-01T23:59:59.000Z

    A high resolution position sensitive radiation detector for analyzing radiation emanating from a source, constructed of a thin plate having an elongated slot with conductive edges acting as a cathode, a charged anode wire positioned within 0.5 mm adjacent the source and running parallel to the slot and centered therein, an ionizable gas ionized by radiation emanating from the source provided surrounding the anode wire in the slot, a helical wire induction coil serving as a delay line and positioned beneath the anode wire for detecting gas ionization and for producing resulting ionization signals, and processing circuits coupled to the induction coil for receiving ionization signals induced therein after determining therefrom the location along the anode wire of any radiation emanating from the source. An ionization gas of 70% Ar, 29% Isobutane, 0.6% Freon 13BI, and 0.4% Methylal is used.

  20. Field tests of a vertical-fluted-tube condenser in the prototype power plant at the Raft River Geothermal Test Site

    SciTech Connect (OSTI)

    Murphy, R.W.

    1983-04-01T23:59:59.000Z

    A vertical-fluted-tube condenser was designed, fabricated, and tested with isobutane as the shell-side working fluid in a binary prototype power plant at the Raft River Geothermal Test Site. After shakedown and contamination removal operations were completed, the four-pass water-cooled unit (with 102 outside-fluted Admiralty tubes) achieved performance predictions while operating with the plant surface evaporator on-line. A sample comparison shows that use of this enhanced condenser concept offers the potential for a reduction of about 65% from the size suggested by corresponding designs using conventional horizontal-smooth-tube concepts. Subsequent substitution of a direct-contact evaporator for the surface evaporator brought drastic reductions in system performance, the apparent consequence of high concentrations of noncondensible gases introduced by the brine/working-fluid interaction.

  1. Selective oxidation of alkanes and/or alkenes to valuable oxygenates

    DOE Patents [OSTI]

    Lin, Manhua (Maple Glen, PA); Pillai, Krishnan S. (North Brunwick, NJ)

    2011-02-15T23:59:59.000Z

    A catalyst, its method of preparation and its use for producing at least one of methacrolein and methacrylic acid, for example, by subjecting isobutane or isobutylene or a mixture thereof to a vapor phase catalytic oxidation in the presence of air or oxygen. In the case where isobutane alone is subjected to a vapor phase catalytic oxidation in the presence of air or oxygen, the product is at least one of isobutylene, methacrolein and methacrylic acid. The catalyst comprises a compound having the formula A.sub.aB.sub.bX.sub.xY.sub.yZ.sub.zO.sub.o wherein A is one or more elements selected from the group of Mo, W and Zr, B is one or more elements selected from the group of Bi, Sb, Se, and Te, X is one or more elements selected from the group of Al, Bi, Ca, Ce, Co, Fe, Ga, Mg, Ni, Nb, Sn, W and Zn, Y is one or more elements selected from the group of Ag, Au, B, Cr, Cs, Cu, K, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Re, Ru, Sn, Te, Ti, V and Zr, and Z is one or more element from the X or Y groups or from the following: As, Ba, Pd, Pt, Sr, or mixtures thereof, and wherein a=1, 0.05

  2. Gas and hydrocarbon vapor permeation in poly(1-trimethylsilyl-1-propyne)/poly(1-phenyl-1-propyne) blends

    SciTech Connect (OSTI)

    Morisato, A.; Shen, H.C.; Toy, L.G. [North Carolina State Univ., Raleigh, NC (United States)] [and others

    1996-12-31T23:59:59.000Z

    Permeation properties of phase-separated blends prepared from glassy poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-phenyl-1-propyne) (PPP) were determined as a function of blend composition with pure hydrogen, nitrogen, oxygen, carbon dioxide, and butane. Blend permeabilities decrease significantly with increasing PPP concentration and suggest the occurrence of a phase inversion at low PPP content (5 to 20 wt%). Based on TEM analysis high-aspect-ratio (extended) PPP ellipsoidal dispersions are found in a PTMSP matrix, indicating that the phase inversion is closely related to dispersed-phase connectivity in the blends.

  3. Silicon Based Solid Oxide Fuel Cell Chip for Portable Consumer Electronics -- Final Technical Report

    SciTech Connect (OSTI)

    Alan Ludwiszewski

    2009-06-29T23:59:59.000Z

    LSI’s fuel cell uses efficient Solid Oxide Fuel Cell (“SOFC”) technology, is manufactured using Micro Electrical Mechanical System (“MEMS”) fabrication methods, and runs on high energy fuels, such as butane and ethanol. The company’s Fuel Cell on a Chip™ technology enables a form-factor battery replacement for portable electronic devices that has the potential to provide an order-of-magnitude run-time improvement over current batteries. Further, the technology is clean and environmentally-friendly. This Department of Energy funded project focused on accelerating the commercialization and market introduction of this technology through improvements in fuel cell chip power output, lifetime, and manufacturability.

  4. Simulation of the sonic velocity experiment for determination of second virial coefficients

    E-Print Network [OSTI]

    Chao, Yun-Peng

    1990-01-01T23:59:59.000Z

    (T) in the process of calculations of B(T) from W(P, T) data. However, there was also the view of some PVT experimentalists that even error-free sonic velocities could not provide accurate B(T) due to data reduction problems associated mainly with assumption.... Deviation 833 = B(T)-B&, & of selected literature from Ewing's B(T) for n-butane 2. A schematic diagram of the simulation procedure 3. Comparing Ws of this work to Ewing's values at T = 270 K; max. diK = 0. 512% 4. Plot of F(T) against T for R...

  5. Simulation study on error propagation effects when determining second virial coefficients from the speed-of-sound or the Joule-Thomson experiment

    E-Print Network [OSTI]

    Van Peursem, David J.

    1991-01-01T23:59:59.000Z

    . The errors considered in this work are i) random errors, ii) fixed absolute systematic er- rors, and iii) fixed fractional systematic errors. As a result of this work, a model consistency test (MCT) was developed which allows the experimentalist to test...- butane at 320 K 14 5, First-order MCI' for model 1 (EF). 6. First-order MCT for model 2 (EF). 7. First-order MCT for model 3 (EF). 8. First-order MCI' for model 4 (EF). 9. First-order MCT for model 5 (EF). 10. First-order MCT for model 6 (EF). 11...

  6. The catalytic oxidation of propylene: investigation of the effects of composition on activities of Fe?O?, K?O promoted chromia-alumina catalysts

    E-Print Network [OSTI]

    Perkins, Thomas Keeble

    1953-01-01T23:59:59.000Z

    manufacture of acetaldehyde from natural g*-es in i/45, Acetaldshvds was formed by the non catalytic oxidation, with air~ of EZydrocarbons such a- butane 1n the presence oi' a large excess of s~ Fjany patents involvtng ths partial oxidation of hydrocarbons... have been issued. Typical examples are ggven below. 1 British patent (33) states that propylene was oxidised principalEy to acrolsin by xwaction with oxygen over Cu20, Ths catalyst was supported on sULcax pumice~ SiC etc. Ca0 was ineffective. "'be...

  7. Process for restoring membrane permeation properties

    DOE Patents [OSTI]

    Pinnau, I.; Toy, L.G.; Casillas, C.G.

    1997-05-20T23:59:59.000Z

    A process is described for restoring the selectivity of high-free-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70--100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use. 8 figs.

  8. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, G.I.; Dietz, R.N.

    1994-04-05T23:59:59.000Z

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

  9. Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation

    SciTech Connect (OSTI)

    Yang, Dali [Los Alamos National Laboratory; Orler, Bruce [Los Alamos National Laboratory; Tornga, Stephanie [Los Alamos National Laboratory; Welch, Cindy [Los Alamos National Laboratory

    2011-01-26T23:59:59.000Z

    Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr and reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study suggests that polypropylene hollow fibers are stable after a long time exposure to C{sub 2} - C{sub 4} mixtures. The effects of packing density on the separation efficiency will be discussed.

  10. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, Gunnar I. (Patchogue, NY); Dietz, Russell N. (Patchogue, NY)

    1994-01-01T23:59:59.000Z

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

  11. Process for restoring membrane permeation properties

    DOE Patents [OSTI]

    Pinnau, Ingo (Palo Alto, CA); Toy, Lora G. (San Francisco, CA); Casillas, Carlos G. (San Jose, CA)

    1997-05-20T23:59:59.000Z

    A process for restoring the selectivity of high-flee-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70-100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use.

  12. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    DOE Patents [OSTI]

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29T23:59:59.000Z

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  13. Nucleophilic Additions to 3-Azido-hexanal

    E-Print Network [OSTI]

    Schroeder, Chad E.

    2009-04-29T23:59:59.000Z

    , the Aub? group was able to quickly convert ?-azido propanal into an azido diene, and submit it to a tandem Diels-Alder/Schmidt reaction, thus producing a tricyclic lactam diastereoselectively. 7 Another common intramolecular reaction used with linear... and butanal (Scheme 3). 12,13 The authors propose the boat transition state 5 D, in which the nucleophile is reacting with the carbonyl at the B?rgi/Dunitz angle of atack and is relatively fre of strain, as a plausible explanation for the observed...

  14. Table SI-1. kOH, a, F, and SOA yield values for VOCs. Not all VOCs are listed. Yields are for Mo = 5 g/m3. "(E)" indicates that the values are estimated.

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    ) a F Y (%) CO 0.24 1.0 1 0 methane 0.0063 2.0 1 0 ethane 0.3 2.0 0.98 0 propane 1.1 2.0 0.96 0 n-butane,2,3,4 tetramethylbenzene (M) 3-methyl 2-butanone (T) propanal (T) methylethylketone (T) #12;Table SI-2. P(Ox) pptv/s % P(SOA) 10-6 µg m-3 /s % CO 3500 0.8 8.0 0 0 ethane 27.3 0.02 0.1 0 0 propane 205 0.44 4.1 0 0

  15. Perfluorocarbons and their use in Cooling Systems for Semiconductor Particle Detectors

    E-Print Network [OSTI]

    Vacek, V; Ilie, S; Lindsay, S

    2000-01-01T23:59:59.000Z

    We report on the development of evaporative fluorocarbon cooling for the semiconductor pixel and micro-strip sensors of inner tracking detector of the ATLAS experiment at the future CERN Large Hadron Collider (LHC). We proceeded with studies using perfluoro-n-propane (3M-"PFG 5030"; C3F8), perfluoro-n-butane (3M-"PFG 5040"; C4F10), trifluoro-iodo-methane (CF3I) and custom C3F8/C4F10 mixtures. Certain thermo-physical properties had to be verified for these fluids.

  16. Evolution of gas processing industry in Saudi Arabia

    SciTech Connect (OSTI)

    Showail, A.

    1983-01-01T23:59:59.000Z

    The beginning of the natural gas processing industry in Saudi Arabia is traced back to 1959 when Aramco embarked on a program to recover natural gas liquids (NGL) for export from low pressure gases such as stabilizer overhead, spheroid, tank farm, and refinery off-gases. The processing scheme involves compression and refrigeration to extract C3+ raw NGL, a raw NGL gathering system, and a fractionation plant to separate propane, butane, and natural gasoline. NGL extracted in Abqaiq and Ras Tanura is moved to Ras Tanura for fractionation, storage, and export. The system, built in several increments, has total design capacity of 500 MMscfd of feed gases to produce 320,000 bpd of NGL composed of 40% propane, 30% butane, and 30% natural gasoline. Phase II of the Saudi gas program envisages collection and processing of associated gas produced with Arabian medium and heavy crude oils largely in the northern onshore and offshore fields. Further domestic development may focus on more diversification in gas product utilization and on upgrading to higher value products.

  17. Excitability in high-Lewis number premixed gas combustion

    SciTech Connect (OSTI)

    Pearlman, H. [NASA Lewis Research Center, Cleveland, OH (United States)] [NASA Lewis Research Center, Cleveland, OH (United States)

    1997-05-01T23:59:59.000Z

    The dynamical behavior of freely-propagating premixed gas flames in tubes is studied experimentally in the high-Lewis number (Le) regime using a mixture of butane and oxygen diluted with helium (Le {approx} 4.0). Steadily-propagating, stable flames develop traveling wave and spinning instabilities as the stoichiometry of the mixture approaches the lean flammability limit. These instabilities occur spontaneously and form target patterns and rotating spiral waves, bearing remarkable similarity with patterns observed in excitable media. Additional experiments are conducted on burner-stabilized flames and indicate that these instabilities also occur in three common air-diluted mixtures with smaller Le`s than their helium-diluted counterparts. Specifically, the instabilities are observed in stoichiometric and lean mixtures of butane-air (Le {approx} 2.1), propane-air (Le {approx} 1.9), and stoichiometric and rich mixtures of methane-air (Le {approx} 1.1) at sufficiently low mixture flow rates. Both experiments confirm model predictions that increasing conductive loss lowers the critical Le required for onset of instability.

  18. Combustion characteristics of alternative gaseous fuels

    SciTech Connect (OSTI)

    Park, O.; Veloo, Peter S.; Liu, N.; Egolfopoulos, Fokion N.

    2011-01-01T23:59:59.000Z

    Fundamental flame properties of mixtures of air with hydrogen, carbon monoxide, and C{sub 1}–C{sub 4} saturated hydrocarbons were studied both experimentally and numerically. The fuel mixtures were chosen in order to simulate alternative gaseous fuels and to gain insight into potential kinetic couplings during the oxidation of fuel mixtures. The studies included the use of the counterflow configuration for the determination of laminar flame speeds, as well as extinction and ignition limits of premixed flames. The experiments were modeled using the USC Mech II kinetic model. It was determined that when hydrocarbons are added to hydrogen flames as additives, flame ignition, propagation, and extinction are affected in a counterintuitive manner. More specifically, it was found that by substituting methane by propane or n-butane in hydrogen flames, the reactivity of the mixture is reduced both under pre-ignition and vigorous burning conditions. This behavior stems from the fact that propane and n-butane produce higher amounts of methyl radicals that can readily recombine with atomic hydrogen and reduce thus the rate of the H + O{sub 2} ? O + OH branching reaction. The kinetic model predicts closely the experimental data for flame propagation and extinction for various fuel mixtures and pressures, and for various amounts of carbon dioxide in the fuel blend. On the other hand, it underpredicts, in general, the ignition temperatures.

  19. Splitting a C-O bond in dialkylethers with bis(1,2,4-tri-t-butylcyclopentadienyl) cerium-hydride does not occur by a sigma-bond metathesis pathway: a combined experimental and DFT computational study

    SciTech Connect (OSTI)

    Werkema, Evan; Yahia, Ahmed; Maron, Laurent; Eisenstein, Odile; Andersen, Richard

    2010-04-06T23:59:59.000Z

    Addition of diethylether to [1,2,4(Me3C)3C5H2]2CeH, abbreviated Cp'2CeH, gives Cp'2CeOEt and ethane. Similarly, di-n-propyl- or di-n-butylether gives Cp'2Ce(O-n-Pr) and propane or Cp'2Ce(O-n-Bu) and butane, respectively. Using Cp'2CeD, the propane and butane contain deuterium predominantly in their methyl groups. Mechanisms, formulated on the basis of DFT computational studies, show that the reactions begin by an alpha or beta-CH activation with comparable activation barriers but only the beta-CH activation intermediate evolves into the alkoxide product and an olefin. The olefin then inserts into the Ce-H bond forming the alkyl derivative, Cp'2CeR, that eliminates alkane. The alpha-CH activation intermediate is in equilibrium with the starting reagents, Cp'2CeH and the ether, which accounts for the deuterium label in the methyl groups of the alkane. The one-step sigma-bond metathesis mechanism has a much higher activation barrier than either of the two-step mechanisms.

  20. Ultrahigh and High Resolution Structures and Mutational Analysis of Monomeric Streptococcus pyogenes SpeB Reveal a Functional Role for the Glycine-rich C-terminal Loop

    SciTech Connect (OSTI)

    González-Páez, Gonzalo E.; Wolan, Dennis W. (Scripps)

    2012-09-05T23:59:59.000Z

    Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 {angstrom} resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC{sub 50} values for trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.

  1. Source profiles for nonmethane organic compounds in the atmosphere of Cairo, Egypt.

    SciTech Connect (OSTI)

    Doskey, P. V.; Fukui, Y.; Sultan, M.; Maghraby, A. A.; Taher, A.; Environmental Research; Cairo Univ.

    1999-07-01T23:59:59.000Z

    Profiles of the sources of nonmethane organic compounds (NMOCs) were developed for emissions from vehicles, petroleum fuels (gasoline, liquefied petroleum gas (LPG), and natural gas), a petroleum refinery, a smelter, and a cast iron factory in Cairo, Egypt. More than 100 hydrocarbons and oxygenated hydrocarbons were tentatively identified and quantified. Gasoline-vapor and whole-gasoline profiles could be distinguished from the other profiles by high concentrations of the C{sub 5} and C{sub 6} saturated hydrocarbons. The vehicle emission profile was similar to the whole-gasoline profile, with the exception of the unsaturated and aromatic hydrocarbons, which were present at higher concentrations in the vehicle emission profile. High levels of the C{sub 2}-C{sub 4} saturated hydrocarbons, particularly n-butane, were characteristic features of the petroleum refinery emissions. The smelter and cast iron factory emissions were similar to the refinery emissions; however, the levels of benzene and toluene were greater in the former two sources. The LPG and natural gas emissions contained high concentrations of n-butane and ethane, respectively. The NMOC source profiles for Cairo were distinctly different from profiles for U.S. sources, indicating that NMOC source profiles are sensitive to the particular composition of petroleum fuels that are used in a location.

  2. Solvation and Acid Strength Effects on Catalysis by Faujasite Zeolites

    SciTech Connect (OSTI)

    Gounder, Rajamani P.; Jones, Andrew J.; Carr, Robert T.; Iglesia, Enrique

    2012-02-01T23:59:59.000Z

    Kinetic, spectroscopic, and chemical titration data indicate that differences in monomolecular isobutane cracking and dehydrogenation and methanol dehydration turnover rates (per H+) among FAU zeolites treated thermally with steam (H-USY) and then chemically with ammonium hexafluorosilicate (CDHUSY) predominantly reflect differences in the size and solvating properties of their supercage voids rather than differences in acid strength. The number of protons on a given sample was measured consistently by titrations with Na+, with CH3 groups via reactions of dimethyl ether, and with 2,6-di-tert-butylpyridine during methanol dehydration catalysis; these titration values were also supported by commensurate changes in acidic OH infrared band areas upon exposure to titrant molecules. The number of protons, taken as the average of the three titration methods, was significantly smaller than the number of framework Al atoms (Alf) obtained from X-ray diffraction and 27Al magic angle spinning nuclear magnetic resonance spectroscopy on H-USY (0.35 H+/Alf) and CD-HUSY (0.69 H+/Alf). These data demonstrate that the ubiquitous use of Alf sites as structural proxies for active H+ sites in zeolites can be imprecise, apparently because distorted Al structures that are not associated with acidic protons are sometimes detected as Alf sites. Monomolecular isobutane cracking and dehydrogenation rate constants, normalized non-rigorously by the number of Alf species, decreased with increasing Na+ content on both H-USY and CD-HUSY samples and became undetectable at sub-stoichiometric exchange levels (0.32 and 0.72 Na+/Alf ratios, respectively), an unexpected finding attributed incorrectly in previous studies to the presence of minority ‘‘super-acidic’’ sites. These rate constants, when normalized rigorously by the number of residual H+ sites were independent of Na+ content on both H-USY and CD-HUSY samples, reflecting the stoichiometric replacement of protons that are uniform in reactivity by Na+ cations. Monomolecular isobutane cracking and dehydrogenation rate constants (per H+; 763 K), however, were higher on H-USY than CD-HUSY (by a factor of 1.4). Equilibrium constants for the formation of protonated methanol dimers via adsorption of gaseous methanol onto adsorbed methanol monomers, determined from kinetic studies of methanol dehydration to dimethyl ether (433 K), were also higher on H-USY than CD-HUSY (by a factor of 2.1). These larger constants predominantly reflect stronger dispersive interactions in H-USY, consistent with its smaller supercage voids that result from the occlusion of void space by extraframework Al (Alex) residues. These findings appear to clarify enduring controversies about the mechanistic interpretation of the effects of Na+ and Alex species on the catalytic reactivity of FAU zeolites. They also illustrate the need to normalize rates by the number of active sites instead of more convenient but less accurate structural proxies for such sites.

  3. Superacid catalysis of light hydrocarbon conversion. DOE PETC seventh quarterly progress report, April 1, 1995--July 31, 1995

    SciTech Connect (OSTI)

    Gates, B.C. [Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering and Materials Science

    1996-02-01T23:59:59.000Z

    Iron- and manganese-promoted sulfated zirconia is a catalyst for the conversion of propane, but the rate of conversion of propane is much less than the rate of conversion of butane. Whereas this catalyst appears to be a good candidate for practical, industrial conversion of butane, it appears to lack sufficient activity for practical conversion of propane. The propane conversion data reported here provide excellent insights into the chemistry of the catalytic conversion. Solid and catalysts, namely, sulfated zirconia, iron- and manganese-promoted sulfated zirconia, and USY zeolite, were tested for conversion of propane at 1 atm, 200-450{degrees}C, and propane partial pressures in the range of 0.01-0.05 atm. Both promoted and unpromoted sulfated zirconia were found to be active for conversion of propane into butanes, pentanes, methane, ethane, ethylene, and propylene in the temperature range of 200-350{degrees}C, but catalyst deactivation was rapid. At the higher temperatures, only cracking and dehydrogenation products were observed. In contrast to the zirconia-supported catalysts, USY zeolite was observed to convert propane (into propylene, methane, and ethylene) only at temperatures {ge}400{degrees}C. The initial (5 min on stream) rates of propane conversion in the presence of iron- and manganese-promoted sulfated zirconia, sulfated zirconia, and USY zeolite at 450{degrees}C and 0.01 atm propane partial pressure were 3.3 x 10{sup -8}, 0.3 x 10{sup -8}, and 0.06 x 10{sup -8} mol/(s{center_dot}g), respectively. The product distributions in the temperature range 200-450{degrees}C are those of acid-base catalysis, being similar to what has been observed in superacid solution chemistry at temperatures <0{degrees}C. If propane conversion at 450{degrees}C can be considered as a probe of acid strength of the catalyst, the activity comparison suggests that the promoted sulfated zirconia is a stronger acid than sulfated zirconia, which is a stronger acid than USY zeolite.

  4. Potential for Microbial Stimulation in Deep Vadose Zone Sediments by Gas-Phase Nutrients

    SciTech Connect (OSTI)

    Li, S.W.; Plymale, A. E.; Brockman, F.J.

    2006-04-05T23:59:59.000Z

    Viable microbial populations are low, typically 10{sup 4} cells per gram, in deep vadose zones in arid climates. There is evidence that microbial distribution in these environments is patchy. In addition, infiltration or injection of nutrient-laden water has the potential to spread and drive contaminants downward to the saturated zone. For these reasons, there are uncertainties regarding the feasibility of bioremediation of recalcitrant contaminants in deep vadose zones. The objectives of this study were to investigate the occurrence of denitrifying activity and gaseous carbon-utilizing activity in arid-climate deep vadose zone sediments contaminated with, and/or affected by past exposure to, carbon tetrachloride (CT). These metabolisms are known to degrade CT and/or its breakdown product chloroform under anoxic conditions. A second objective was to determine if CT would be degraded in these sediments under unsaturated, bulk-phase aerobic incubation conditions. Both denitrifier population (determined by MPN) and microbial heterotrophic activity (measured by mineralization of 14-C labeled glucose and acetate) were relatively low and the sediments with greater in situ moisture (10-21% versus 2-7%) tended to have higher activities. When sediments were amended with gaseous nutrients (nitrous oxide and triethyl/tributyl phosphate) and gaseous C sources (a mixture of methane, ethane, propylene, propane, and butane) and incubated for 6 months, approximately 50% of the samples showed removal of one or more gaseous C sources, with butane most commonly used (44% of samples), followed by propylene (42%), propane (31%), ethane (22%), and methane (4%). Gaseous N and gaseous P did not stimulate removal of gaseous C substrates compared to no addition of N and P. CT and gaseous C sources were spiked into the sediments that removed gaseous C sources to determine if hydrocarbon-degraders have the potential to degrade CT under unsaturated conditions. In summary, gaseous C sources--particularly butane and propylene--have promise for increasing the numbers and activity of indigenous microbial populations in arid-climate deep vadose zone sediments.

  5. Polymer Growth Rate in a Wire Chamber with Oxygen,Water, or Alcohol Gas Additives

    SciTech Connect (OSTI)

    Boyarski, Adam; /SLAC

    2008-07-02T23:59:59.000Z

    The rate of polymer growth on wires was measured in a wire chamber while the chamber was aged initially with helium-isobutane (80:20) gas, and then with either oxygen, water, or alcohol added to the gas. At the completion of the aging process for each gas mixture, the carbon content on the wires was measured in a SEM/EDX instrument. The same physical wires were used in all the gas mixtures, allowing measurement of polymer build up or polymer depletion by each gas additive. It is found that the rate of polymer growth is not changed by the presence of oxygen, water or alcohol. Conjecture that oxygen reduces breakdown by removing polymer deposits on field wires is negated by these measurements. Instead, it appears that the reduced breakdown is due to lower resistance in the polymer from oxygen ions being transported into the polymer. It is also observed that field wires bombarded by the electrons in the SEM and then placed back into the chamber show an abundance of single electrons being emitted, indicating that electron charge is stored in the polymer layer and that a high electric field is necessary to remove the charge.

  6. One multivariable controller increased capacity of an Oleflex{trademark}/MTBE complex

    SciTech Connect (OSTI)

    Robertson, D.; Peterson, T.J.; O`Connor, D. [Dynamic Matrix Control Corp., Houston, TX (United States); Adams, V.; Payne, D. [Valero Refining Co., Corpus Christi, TX (United States)

    1996-12-01T23:59:59.000Z

    Capacity increased by more than 4.6% when one dynamic matrix controller began operating in Valero Refining Company`s MTBE production complex in Corpus Christi, Texas. This was on a plant that was already running well above design capacity due to process changes previously made on the plant. A single controller was developed to cover an Oleflex{trademark} isobutane dehydrogenation unit and an MTBe reaction and fractionation plant with the intermediate isobutylene surge drum. The overall benefit is realized by a comprehensive constrained multivariable predictive controller which properly handles all sets of limits experienced by the complex, whether limited by the front-end Oleflex{trademark} or back-end MTBE unit. The controller has 20 manipulated, 6 disturbance and 44 controlled variables, and covers widely varying dynamics with settling times ranging from twenty minutes to six hours. The controller executes each minute with a six hour time horizon. A unique achievement is intelligent handling of the surge drum level by the controller for higher average daily capacity of the complex as a whole. The Oleflex{trademark} often operates at simultaneous limits on reactor effluent compressor capacity, cold box temperature and hydrogen/hydrocarbon ratio and the MTBE at impurity in butene column overhead as well as impurity in MTBE product.

  7. Catalytic conversion of light alkanes, Phase 3. Topical report, January 1990--December 1992

    SciTech Connect (OSTI)

    NONE

    1992-12-31T23:59:59.000Z

    The mission of this work is to devise a new catalyst which can be used in the first simple, economic process to convert the light alkanes in natural gas to an alcohol-rich oxygenated product which can either be used as an environmentally friendly, high-performance liquid fuel, or a precursor to a liquid hydrocarbon transportation fuel. The authors have entered the proof-of-concept stage for converting isobutane to tert butyl alcohol in a practical process and are preparing to enter proof-of-concept of a propane to isopropyl alcohol process in the near future. Methane and ethane are more refractory and thus more difficult to oxidize than the C{sub 3} and C{sub 4} hydrocarbons. Nonetheless, advances made in this area indicate that further research progress could achieve the goal of their direct conversion to alcohols. Progress in Phase 3 catalytic vapor phase methane and ethane oxidation over metals in regular oxidic lattices are the subject of this topical report.

  8. Design and analysis of a 5-MW vertical-fluted-tube condenser for geothermal applications

    SciTech Connect (OSTI)

    Llewellyn, G.H.

    1982-03-01T23:59:59.000Z

    The design and analysis of an industtial-sized vertical-fluted-tube condenser. The condenser is used to condense superheated isobutane vapor discharged from a power turbine in a geothermal test facility operated for the US Department of Energy. The 5-MW condenser has 1150 coolant tubes in a four-pass configuration with a total heat transfer area of 725 m/sup 2/ (7800 ft/sup 2/). The unit is being tested at the Geothermal Components Test Facility in the Imperial Valley of East Mesa, California. The condenser design is based on previous experimental research work done at the Oak Ridge National Laboratory on condensing refrigerants on a wide variety of single vertical tubes. Condensing film coefficients obtained on the high-performance vertical fluted tubes in condensing refrigerants are as much as seven times greater than those obtained with vertical smooth tubes that have the same diameter and length. The overall heat transfer performance expected from the fluted tube condenser is four to five times the heat transfer obtained from the identical units employing smooth tubes. Fluted tube condensers also have other direct applications in the Ocean Thermal Energy Conversion (OTEC) program in condensing ammonia, in the petroleum industry in condensing light hydrocarbons, and in the air conditioning and refrigeration industry in condensing fluorocarbon vapors.

  9. Recovery of energy from geothermal brine and other hot water sources

    DOE Patents [OSTI]

    Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

    1981-01-01T23:59:59.000Z

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  10. Characterization of a Spherical Proportional Counter in argon-based mixtures

    E-Print Network [OSTI]

    F. J. Iguaz; A. Rodriguez; J. F. Castel; I. G. Irastorza

    2015-01-07T23:59:59.000Z

    The Spherical Proportional Counter is a novel type of radiation detector, with a low energy threshold (typically below 100 eV) and good energy resolution. This detector is being developed by the network NEWS, which includes several applications. We can name between many others Dark Matter searches, low level radon and neutron counting or low energy neutrino detection from supernovas or nuclear reactors via neutrino-nucleus elastic scattering. In this context, this works will present the characterization of a spherical detector of 1 meter diameter using two argon-based mixtures (with methane and isobutane) and for gas pressures between 50 and 1250 mbar. In each case, the energy resolution shows its best value in a wide range of gains, limited by the ballistic effect at low gains and by ion-backflow at high gains. Moreover, the best energy resolution shows a degradation with pressure. These effects will be discussed in terms of gas avalanche properties. Finally, the effect of an electrical field corrector in the homogenity of the gain and the energy threshold measured in our setup will be also discussed.

  11. Supercritical fluid thermodynamics for coal processing: Quarterly progress report, September 15, 1988--December 31, 1988

    SciTech Connect (OSTI)

    Eckert, C.A.

    1988-01-01T23:59:59.000Z

    Because of their unusual solvating and mass transfer properties, supercritical fluids show potential for a variety of coal processing applications. To establish a database of coal model compound equilibria, this quarter we have measured the solubility of 5,6-dimethyl-benzimidazole and anthraquinone in supercritical butane. In addition, we have used fluorescence spectroscopy to study the nature of the intermolecular interactions in the systems of pyrene and naphthalene in supercritical CO/sub 2/, C/sub 2/H/sub 4/, and CF/sub 3/H. The spectroscopy measurements are being used to guide the development of an equation of state that can be used to predict the solubility behavior so systems can be designed for the processing of coal with supercritical fluids. 4 figs.

  12. Economics for iso-olefin production using the fluid catalytic cracking unit

    SciTech Connect (OSTI)

    McClung, R.G.; Witoshkin, A.; Bogert, D.C.; Winkler, W.S. [Englehard Corp., Iselin, NJ (United States)

    1993-12-31T23:59:59.000Z

    The Clean Air Act of 1990 requires use of oxygenates in some gasolines to improve both CO and hydrocarbon auto tailpipe emissions. Various oxygenates are currently being used by the refining industry. For the fully integrated refinery having a fluid catalytic cracking unit, the most commonly used oxygenates are methyl tertiary butyl ether (MTBE) and tertiary amyl ether (TAME). The FCC unit produces the isobutylene and iso-amylases need for manufacture of both MTBE and TAME. The economics for an assumed refinery processing scheme for several FCC cases are examined giving estimates of income and investments for each case. Up to one-third of the total gasoline pool can be made in reformulated gasoline using TAME and MTBE with the FCC unit as the sole source of feedstock. This processing route is much more economical than the alternative scheme using butane isomerization/iosbutane dehydrogenation.

  13. Autoignition behavior of lean mixtures: Chemical and thermodynamics effects

    SciTech Connect (OSTI)

    Ronney, P.D.; Shoda, M.; Waida, S.T. [Princeton Univ., NJ (United States). Dept. of Mechanical and Aerospace Engineering; Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Lab., CA (United States)

    1992-01-15T23:59:59.000Z

    Knock characteristics of natural gas (NG), 89 octane unleaded gasoline, 2,2-dimethyl butane (22DMB), and methyl tert-butyl ether (MTBE) in stoichiometric and lean fuel-air mixtures were studied in a production 4-cylinder automotive engine. The Intake Temperature at the Knock Limit (ITKL) was different for each fuel but always higher in lean mixtures. Gasoline and 22DMB exhibited much greater increases in ITKL than MTBE and NG at lean conditions. Surprisingly, for lean mixtures 22DMB exhibited higher ITKL than MTBE and was almost as high as NG. Comparison with detailed numerical modelling was very favorable. Computations show that both differences in chemistry and end-gas temperature and pressure histories are responsible for these trends. This behavior is interpreted in terms of the Negative Temperature Coefficient behavior of hydrocarbon oxidation. The implication of these results for the specification of optimal fuels for lean-burn engine is discussed.

  14. Supercritical catalysts of light hydrocarbon conversion. DOE PETC eighth quartery report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    Gates, B.C.

    1996-06-01T23:59:59.000Z

    The solid superacid catalysts investigated in this project catalyze hydrocarbon conversions by routes involving carbocation intermediates. This report is a summary of mechanisms of hydrocarbon conversion catalyzed by these and related solid acids. This mechanistic information summarized here is important to the present project because it provides guidance for the modeling of the kinetics of the catalytic butane conversion and propane conversion. Because of the difficulty of determining surface reaction intermediates, understanding of surface reaction mechanisms lags far behind that of solution reaction mechanisms, and what is known about the former is fragmentary and often largely based on presumed analogies with the latter, combined with results such as those from tracer experiments, kinetics experiments, and theoretical chemistry.

  15. Pentan isomers compound flame front structure

    SciTech Connect (OSTI)

    Mansurov, Z.A.; Mironenko, A.W.; Bodikov, D.U.; Rachmetkaliev, K.N. [Kazakh Al-Farabi State National Univ., Almaty (Kazakhstan)

    1995-08-13T23:59:59.000Z

    The fuels (hexane, pentane, diethyl ether) and conditions investigated in this study are relevant to engine knock in spark- ignition engines. A review is provided of the field of low temperature hydrocarbon oxidation. Studies were made of radical and stable intermediate distribution in the front of cool flames: Maximum concentrations of H atoms and peroxy radicals were observed in the luminous zone of the cool flame front. Peroxy radicals appear before the luminous zone at 430 K due to diffusion. H atoms were found in cool flames of butane and hexane. H atoms diffuses from the luminous zone to the side of the fresh mixture, and they penetrate into the fresh mixture to a small depth. Extension of action sphear of peroxy radicals in the fresh mixture is much greater than that of H atoms due to their small activity and high concentrations.

  16. Chemical microreactor and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan

    2005-11-01T23:59:59.000Z

    A chemical microreactor suitable for generation of hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. One such microreactor employs a packed catalyst capillary microchannel and at least one porous membrane. Another employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2 /cm.sup.3. The packed catalyst capillary microchannels, porous membranes and porous membrane support structures may be formed by a variety of methods.

  17. Minutes of the tenth meeting of the centers for the analysis of thermal/mechanical energy conversion concepts

    SciTech Connect (OSTI)

    DiPippo, R.

    1981-03-01T23:59:59.000Z

    The agenda, list of participants, and minutes of the meeting are presented. Included in the appendices are figures, data, outlines, etc. from the following presentations: 500 kW Direct-Contact Heat Exchanger Pilot Plant; LBL/EPRI Heat Exchanger Field Test, Critical Temperature and Pressure Comparisons for n-Butane/n-Pentane Mixtures; Second Law Techniques in the Correlation of Cost-Optimized Binary Power Plants; Outline of Chapter on Geothermal Well Logging; Outline and Highlights from Geothermal Drilling and Completion Technology Development Program Annual Progress: October 1979-September 1980; Geothermal Well Stimulation; World Update on Installed Geothermal Power Plants; Baca No. 1 Demonstration Flask Plant: Technical and Cost Data; Heber Binary Project; 45 mw Demonstration Plant; Raft River 5 mw Geothermal Dual-Boiling-Cycle Plant; Materials Considerations in the Design of Geothermal Power Plants; Raft River Brine Treatment for Tower Make-up; and Site Photographs of Raft River Valley.

  18. Effect of positron-atom interactions on the annihilation gamma spectra of molecules

    E-Print Network [OSTI]

    Green, D G; Wang, F; Gribakin, G F; Surko, C M

    2012-01-01T23:59:59.000Z

    Calculations of gamma spectra for positron annihilation on a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation gamma spectra characterise the momentum distribution of the electron-positron pair at the instant of annihilation. The contribution to the gamma spectra from individual molecular orbitals is obtained from electron momentum densities calculated using modern computational quantum chemistry density functional theory tools. The calculation, in its simplest form, effectively treats the low-energy (thermalised, room-temperature) positron as a plane wave and gives annihilation gamma spectra that are about 40% broader than experiment, although the main chemical trends are reproduced. We show that this effective "narrowing" of the experimental spectra is due to the action of the molecular potential on the positron, chiefly, due to the positron repulsion from the nuclei. It leads to a suppression of the contribution of smal...

  19. Relaxed active space: Fixing tailored-CC with high order coupled cluster. II

    SciTech Connect (OSTI)

    Melnichuk, Ann, E-mail: melnichu@qtp.ufl.edu; Bartlett, Rodney J. [Quantum Theory Project, Department of Chemistry and Physics, University of Florida, Gainesville, Florida 32611 (United States)

    2014-02-14T23:59:59.000Z

    Due to the steep increase in computational cost with the inclusion of higher-connected cluster operators in coupled-cluster applications, it is usually not practical to use such methods for larger systems or basis sets without an active space partitioning. This study generates an active space subject to unambiguous statistical criteria to define a space whose size permits treatment at the CCSDT level. The automated scheme makes it unnecessary for the user to judge whether a chosen active space is sufficient to correctly solve the problem. Two demanding applications are presented: twisted ethylene and the transition states for the bicyclo[1,1,0]butane isomerization. As bi-radicals both systems require at least a CCSDT level of theory for quantitative results, for the geometries and energies.

  20. A molecular dynamics investigation of the unusual concentration dependencies of Fick diffusivities in silica mesopores

    SciTech Connect (OSTI)

    Krishna, Rajamani; van Baten, Jasper M

    2011-01-01T23:59:59.000Z

    Molecular Dynamics (MD) simulations were carried out to determine the self-diffusivitiy, D{sub i,self}, the Maxwell–Stefan diffusivity, Ð{sub i}, and the Fick diffusivity, D{sub i}, for methane (C1), ethane (C2), propane (C3), n-butane (nC4), n-pentane (nC5), n-hexane (nC6), n-heptane (nC7), and cyclohexane (cC6) in cylindrical silica mesopores for a range of pore concentrations. The MD simulations show that zero-loading diffusivity Ð{sub i}(0) is consistently lower, by up to a factor of 20, than the values anticipated by the classical Knudsen formula. The concentration dependence of the Fick diffusivity, D{sub i} is found to be unusually complex, and displays a strong minimum in some cases; this characteristic can be traced to molecular clustering.

  1. A Texas project illustrates the benefits of integrated gasification

    SciTech Connect (OSTI)

    Philcox, J. [Praxair Inc., Houston, TX (United States); Fenner, G.W. [Praxair Inc., Tonawanda, NY (United States)

    1997-07-14T23:59:59.000Z

    Gasification can be an attractive option for converting a variety of petroleum feedstocks to chemicals. Natural gas is commonly sued to produce acetic acid, isocyanates, plastics, and fibers. But low-cost, bottom-of-the-barrel feeds, such as vacuum resid, petroleum coke, and asphaltenes, also can be used. In any case, gasification products include synthesis gas, carbon monoxide, hydrogen, steam, carbon dioxide, and power. The more a gasification facility is integrated with utilities and other non-core operations of a production complex, the more economical the products are for all consumers. The paper discusses gasification of natural gas, light hydrocarbons (ethane, propanes, and butanes), and heavy hydrocarbons (distillates, heavy residues, asphalts, coals, petroleum coke). The paper then describes a Texas City Gasification Project, which gasifies methane to produce carbon monoxide, hydrogen, and alcohol. The plant is integrated with a cogeneration plant. Economics are discussed.

  2. Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856

    SciTech Connect (OSTI)

    McDonald, Dale Edward

    2013-02-12T23:59:59.000Z

    This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  3. On the chemical composition of Titan's dry lakebed evaporites

    E-Print Network [OSTI]

    Cordier, Daniel; Ferreira, Abel

    2013-01-01T23:59:59.000Z

    Titan, the main satellite of Saturn, has an active cycle of methane in its troposphere. Among other evidence for a mechanism of evaporation at work on the ground, dry lakebeds have been discovered. Recent Cassini infrared observations of these empty lakes have revealed a surface composition poor in water ice compared to that of the surrounding terrains --- suggesting the existence of organic evaporites deposits. The chemical composition of these possible evaporites is unknown. In this paper, we study evaporite composition using a model that treats both organic solids dissolution and solvent evaporation. Our results suggest the possibility of large abundances of butane and acetylene in the lake evaporites. However, due to uncertainties of the employed theory, these determinations have to be confirmed by laboratory experiments.

  4. Method for forming a chemical microreactor

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan (Livermore, CA)

    2009-05-19T23:59:59.000Z

    Disclosed is a chemical microreactor that provides a means to generate hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water. The microreactor contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. Two distinct embodiment styles are discussed. One embodiment style employs a packed catalyst capillary microchannel and at least one porous membrane. Another embodiment style employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2/cm.sup.3. Various methods to form packed catalyst capillary microchannels, porous membranes and porous membrane support structures are also disclosed.

  5. Velocity of sound measurements in gaseous per-fluorocarbons and their custom mixtures

    E-Print Network [OSTI]

    Vacek, V; Lindsay, S

    2000-01-01T23:59:59.000Z

    An inexpensive sonar instrument was prepared for measurements of sound velocity in two fluorocarbon vapors; per-fluoro-n-propane (C3F8), per-fluoro-n-butane (C4F10), and their custom mixtures. The apparatus, measurement principle and instrument software are described. All sound velocity measurements in per-fluorocarbons were made in the low pressure range between 0.01 and 0.4 MPa, and at temperatures between 253 and 303 K. The purity of the C3F8 and C4F10 samples was checked using gas chromatography. Uncertainties in the speed of sound measurements were better than ± 0.1 %. Comparisons were made with theoretical predictions of sound velocity for the two individual components. The instrument was then used for concentration monitoring of custom C3F8/C4F10 mixtures.

  6. EVAPORATIVE COOLING - CONCEPTUAL DESIGN FOR ATLAS SCT

    E-Print Network [OSTI]

    Niinikoski, T O

    1998-01-01T23:59:59.000Z

    The conceptual design of an evaporative two-phase flow cooling system for the ATLAS SCT detector is described, using perfluorinated propane (C3F8) as a coolant. Comparison with perfluorinated butane (C4F10) is made, although the detailed design is presented only for C3F8. The two-phase pressure drop and heat transfer coefficient are calculated in order to determine the dimensions of the cooling pipes and module contacts for the Barrel SCT. The region in which the flow is homogeneous is determined. The cooling cycle, pipework, compressor, heat exchangers and other main elements of the system are calculated in order to be able to discuss the system control, safety and reliability. Evaporative cooling appears to be substantially better than the binary ice system from the point of view of safety, reliability, detector thickness, heat transfer coefficient, cost and simplicity.

  7. Influence of Crystal Expansion/Contraction on Zeolite Membrane Permeation

    SciTech Connect (OSTI)

    Sorenson, Stephanie G [University of Colorado, Boulder; Payzant, E Andrew [ORNL; Noble, Richard D [University of Colorado, Boulder; Falconer, John L. [University of Colorado, Boulder

    2010-01-01T23:59:59.000Z

    X-ray diffraction was used to measure the unit cell parameters of B-ZSM-5, SAPO-34, and NaA zeolite powders as a function of adsorbate loading at 303 K, and in one case, at elevated temperatures. Most adsorbates expanded the zeolite crystals below saturation loading at 303 K: n-hexane and SF6 in B-ZSM-5, methanol and CO2 in SAPO-34, and methanol in NaA zeolite. As the loadings increased, the crystals expanded more. Changes in the unit cell volumes of B-ZSM-5 and SAPO-34 zeolite powders correlated with changes in permeation through zeolite membranes defects. When the zeolite crystals expanded or contracted upon adsorption, the defect sizes decreased or increased. In B-ZSM-5 membranes, the fluxes through defects decreased dramatically when n-hexane or SF6 adsorbed. In contrast, i-butane adsorption at 303 K contracted B-ZSM-5 crystals at low loadings and expanded them at higher loadings. Correspondingly, the flux through B-ZSM-5 membrane defects increased at low i-butane loadings and decreased at high loading because the defects increased in size at low loading and decreased at high loadings. At 398 K and 473 K, n-hexane expanded the B-ZSM-5 unit cell more as the temperature increased from 303 to 473 K. The silicalite-1 and B-ZSM-5 unit cell volumes expanded similarly upon n-hexane adsorption at 303 K; boron substitution had little effect on volume expansion.

  8. Conductive porous scaffolds as potential neural interface materials.

    SciTech Connect (OSTI)

    Hedberg-Dirk, Elizabeth L.; Cicotte, Kirsten N.; Buerger, Stephen P.; Reece, Gregory; Dirk, Shawn M.; Lin, Patrick P.

    2011-11-01T23:59:59.000Z

    Our overall intent is to develop improved prosthetic devices with the use of nerve interfaces through which transected nerves may grow, such that small groups of nerve fibers come into close contact with electrode sites, each of which is connected to electronics external to the interface. These interfaces must be physically structured to allow nerve fibers to grow through them, either by being porous or by including specific channels for the axons. They must be mechanically compatible with nerves such that they promote growth and do not harm the nervous system, and biocompatible to promote nerve fiber growth and to allow close integration with biological tissue. They must exhibit selective and structured conductivity to allow the connection of electrode sites with external circuitry, and electrical properties must be tuned to enable the transmission of neural signals. Finally, the interfaces must be capable of being physically connected to external circuitry, e.g. through attached wires. We have utilized electrospinning as a tool to create conductive, porous networks of non-woven biocompatible fibers in order to meet the materials requirements for the neural interface. The biocompatible fibers were based on the known biocompatible material poly(dimethyl siloxane) (PDMS) as well as a newer biomaterial developed in our laboratories, poly(butylene fumarate) (PBF). Both of the polymers cannot be electrospun using conventional electrospinning techniques due to their low glass transition temperatures, so in situ crosslinking methodologies were developed to facilitate micro- and nano-fiber formation during electrospinning. The conductivity of the electrospun fiber mats was controlled by controlling the loading with multi-walled carbon nanotubes (MWNTs). Fabrication, electrical and materials characterization will be discussed along with initial in vivo experimental results.

  9. Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994

    SciTech Connect (OSTI)

    Anthony, R.G.; Akgerman, A.

    1994-05-06T23:59:59.000Z

    Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed before isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.

  10. Papers from U.S. Department of Energy Science Undergraduate Laboratory Internship Program (SULI) 2006

    SciTech Connect (OSTI)

    Edwards, A., (ed.); Majewski, S., (ed.); Woods, M., (ed.)

    2006-09-27T23:59:59.000Z

    The BaBar drift chamber (DCH) is used to measure the properties of charged particles created from e{sup +}e{sup -} collisions in the PEP-II asymmetric-energy storage rings by making precise measurements of position, momentum and ionization energy loss (dE/dx). In October of 2005, the PEP-II storage rings operated with a luminosity of 10 x 10{sup 33} cm{sup -2}s{sup -1}; the goal for 2007 is a luminosity of 20 x 10{sup 33} cm{sup -2}s{sup -1}, which will increase the readout dead time, causing uncertainty in drift chamber measurements to become more significant in physics results. The research described in this paper aims to reduce position and dE/dx uncertainties by improving our understanding of the BaBar drift chamber performance. A simulation program --called garfield--is used to model the behavior of the drift chamber with adjustable parameters such as gas mixture, wire diameter, voltage, and magnetic field. By exploring the simulation options offered in garfield, we successfully produced a simulation model of the BaBar drift chamber. We compared the time-to-distance calibration from BaBar to that calculated by garfield to validate our model as well as check for discrepancies between the simulated and calibrated time-to-distance functions, and found that for a 0{sup o} entrance angle there is a very good match between calibrations, but at an entrance angle of 90{sup o} the calibration breaks down. Using this model, we also systematically varied the gas mixture to find one that would optimize chamber operation, which showed that the gas mixture of 80:20 Helium:isobutane is a good operating point, though more calculations need to be done to confirm that it is the optimal mixture.

  11. The Anderson Quin Cycle

    SciTech Connect (OSTI)

    Anderson, J.H.; Bilbow, W.M.

    1993-03-18T23:59:59.000Z

    The objective of this study was to make a more refined evaluation of the Anderson Quin Cycle based on most recent information on the performance of various elements that will be used in the Anderson Quin Cycle. My original estimate of the work plan for evaluating and optimizing the Anderson Quin Cycle called for 7000 man hours of work. Since this grant was limited to 2150 man hours, we could not expect to achieve all the objectives within the allotted period of work. However, the most relevant program objectives have been completed as reported here. The analysis generally confirms the results originally estimated in my paper on the subject. (Ref. 2) Further optimizations should show even higher efficiencies. The Anderson Quin Cycle (US Patent applied for) basically consists of 5 elements in the power cycle: A refrigeration system to cool and clean the inlet air before it enters the compressor that supplies air for the gas turbine; a gas turbine consisting of a compressor, combustor, and turbine; a steam boiler and steam turbine system using the heat from the exhaust gas out of the gas turbine; a vapor turbine cycle, which utilizes the condensed heat from the exhaust of the steam turbine and the exhaust gas heat leaving the steam boiler to operate a vapor turbine cycle which utilizes another fluid than water, in this case isobutane; and the fifth element consists of a gas cooler and heat pump system, which removes the heat from the exhaust gas to lower its temperature essentially to atmospheric temperature, and at the same time permits treatment of the exhaust gas to remove acid components such as sulfur dioxide and nitrogen oxides. Current industry accepted component characteristics were incorporated in the performance analysis of the overall cycle, ensuring accurate and meaningful operating predictions. The characteristics and performance of each of the elements are described. The thermal efficiency of the optimized calculated Anderson Quin Cycle is 62 percent.

  12. The Anderson Quin Cycle. Final report

    SciTech Connect (OSTI)

    Anderson, J.H.; Bilbow, W.M.

    1993-03-18T23:59:59.000Z

    The objective of this study was to make a more refined evaluation of the Anderson Quin Cycle based on most recent information on the performance of various elements that will be used in the Anderson Quin Cycle. My original estimate of the work plan for evaluating and optimizing the Anderson Quin Cycle called for 7000 man hours of work. Since this grant was limited to 2150 man hours, we could not expect to achieve all the objectives within the allotted period of work. However, the most relevant program objectives have been completed as reported here. The analysis generally confirms the results originally estimated in my paper on the subject. (Ref. 2) Further optimizations should show even higher efficiencies. The Anderson Quin Cycle (US Patent applied for) basically consists of 5 elements in the power cycle: A refrigeration system to cool and clean the inlet air before it enters the compressor that supplies air for the gas turbine; a gas turbine consisting of a compressor, combustor, and turbine; a steam boiler and steam turbine system using the heat from the exhaust gas out of the gas turbine; a vapor turbine cycle, which utilizes the condensed heat from the exhaust of the steam turbine and the exhaust gas heat leaving the steam boiler to operate a vapor turbine cycle which utilizes another fluid than water, in this case isobutane; and the fifth element consists of a gas cooler and heat pump system, which removes the heat from the exhaust gas to lower its temperature essentially to atmospheric temperature, and at the same time permits treatment of the exhaust gas to remove acid components such as sulfur dioxide and nitrogen oxides. Current industry accepted component characteristics were incorporated in the performance analysis of the overall cycle, ensuring accurate and meaningful operating predictions. The characteristics and performance of each of the elements are described. The thermal efficiency of the optimized calculated Anderson Quin Cycle is 62 percent.

  13. MTBE still in poor health, despite the Clean Air Act

    SciTech Connect (OSTI)

    Wood, A.

    1994-05-25T23:59:59.000Z

    After the second winter oxygenated fuels program of the 1990 Clean Air Act, producers of methyl tert-butyl ether (MTBE) are still feeling the chill of poor profitability. Despite the strong demand growth for MTBE to meet oxygen requirements in reformulated gasoline (RFG), oversupply still dogs the market. That, combined with a run-up in feedstock prices, has seen margins for MTBE markers all but evaporate. And it seems matters are likely to get worse before they get better. This week, Belvieu Environmental Fuels (BEF; Houston) expects to startup its 15,000-bbl/day MTBE plant at Mont Belvieu, TX. In late July, Texaco will start up its 15,000-bbl/day MTBE/propylene oxide (PO) plant at Port Neches, TX. In addition, a rash of refinery-based MTBE and tert-amyl methyl ether projects are nearing completion. {open_quotes}Profitability in MTBE has been extremely poor,{close_quotes} says Marvin O. Schlanger, president of Arco Chemical Americas, the largest MTBE producer. There has, however, been some recent recovery on the spot market, with MTBE moving from less than 60 cts/gal to near cash-cost levels of 70 cts/gal. But contract prices remain depressed, and strength in butane and methanol pricing have all buy wiped out any gains in MTBE.

  14. End use energy consumption data base: transportation sector

    SciTech Connect (OSTI)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01T23:59:59.000Z

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  15. Portable thermo-photovoltaic power source

    DOE Patents [OSTI]

    Zuppero, Anthony C. (Idaho Falls, ID); Krawetz, Barton (Idaho Falls, ID); Barklund, C. Rodger (Idaho Falls, ID); Seifert, Gary D. (Idaho Falls, ID)

    1997-01-14T23:59:59.000Z

    A miniature thermo-photovoltaic (TPV) device for generation of electrical power for use in portable electronic devices. A TPV power source is constructed to provide a heat source chemical reactor capable of using various fuels, such as liquid hydrocarbons, including but not limited to propane, LPG, butane, alcohols, oils and diesel fuels to generate a source of photons. A reflector dish guides misdirected photon energy from the photon source toward a photovoltaic array. A thin transparent protector sheet is disposed between the photon source and the array to reflect back thermal energy that cannot be converted to electricity, and protect the array from thermal damage. A microlens disposed between the protector sheet and the array further focuses the tailored band of photon energy from the photon source onto an array of photovoltaic cells, whereby the photon energy is converted to electrical power. A heat recuperator removes thermal energy from reactor chamber exhaust gases, preferably using mini- or micro-bellows to force air and fuel past the exhaust gases, and uses the energy to preheat the fuel and oxidant before it reaches the reactor, increasing system efficiency. Mini- or micro-bellows force ambient air through the system both to supply oxidant and to provide cooling. Finally, an insulator, which is preferably a super insulator, is disposed around the TPV power source to reduce fuel consumption, and to keep the TPV power source cool to the touch so it can be used in hand-held devices.

  16. Determination of ideal-gas enthalpies of formation for key compounds:

    SciTech Connect (OSTI)

    Steele, W.V.; Chirico, R.D.; Nguyen, A.; Hossenlopp, I.A.; Smith, N.K.

    1991-10-01T23:59:59.000Z

    The results of a study aimed at improvement of group-contribution methodology for estimation of thermodynamic properties of organic and organosilicon substances are reported. Specific weaknesses where particular group-contribution terms were unknown, or estimated because of lack of experimental data, are addressed by experimental studies of enthalpies of combustion in the condensed phase, vapor-pressure measurements, and differential scanning calorimetric (d.s.c.) heat-capacity measurements. Ideal-gas enthalpies of formation of ({plus minus})-butan-2-ol, tetradecan-1-ol, hexan-1,6-diol, methacrylamide, benzoyl formic acid, naphthalene-2,6-dicarboxylic acid dimethyl ester, and tetraethylsilane are reported. A crystalline-phase enthalpy of formation at 298.15 K was determined for naphthalene-2,6-dicarboxylic acid, which decomposed at 695 K before melting. The combustion calorimetry of tetraethylsilane used the proven fluorine-additivity methodology. Critical temperature and critical density were determined for tetraethylsilane with differential scanning calorimeter and the critical pressure was derived. Group-additivity parameters useful in the application of group- contribution correlations are derived. 112 refs., 13 figs., 19 tabs.

  17. Embedding parameters in ab initio theory to develop approximations based on molecular similarity

    E-Print Network [OSTI]

    Tanha, Matteus; Kaul, Shiva; Cappiello, Alexander; Gordon, Geoffrey J; Yaron, David J

    2015-01-01T23:59:59.000Z

    A means to take advantage of molecular similarity to lower the computational cost of electronic structure theory is explored, in which parameters are embedded into a low-cost, low-level (LL) ab initio model and adjusted to obtain agreement with results from a higher-level (HL) ab initio model. A parametrized LL (pLL) model is created by multiplying selected matrix elements of the Hamiltonian operators by scaling factors that depend on element types. Various schemes for applying the scaling factors are compared, along with the impact of making the scaling factors linear functions of variables related to bond lengths, atomic charges, and bond orders. The models are trained on ethane and ethylene, substituted with -NH2, -OH and -F, and tested on substituted propane, propylene and t-butane. Training and test datasets are created by distorting the molecular geometries and applying uniform electric fields. The fitted properties include changes in total energy arising from geometric distortions or applied fields, an...

  18. Inter-staple Dithiol Crosslinking in Au25(SR)18 Nanomolecules: A Combined Mass Spectrometric and Computational Study

    SciTech Connect (OSTI)

    Dass, Amala [University of Mississippi, The; Jiang, Deen [ORNL; Jupally, Vijay [University of Mississippi, The; Kota, Rajesh [University of Mississippi, The; Mattern, Daniell [University of Mississippi, The; Tschumper, Gregory [University of Mississippi, The; Van Dornshuld, Eric [University of Mississippi, The

    2011-01-01T23:59:59.000Z

    A systematic study of cross-linking chemistry of the Au{sub 25}(SR){sub 18} nanomolecule by dithiols of varying chain length, HS-(CH{sub 2}){sub n}-SH where n = 2, 3, 4, 5, and 6, is presented here. Monothiolated Au{sub 25} has six [RSAuSRAuSR] staple motifs on its surface, and MALDI mass spectrometry data of the ligand exchanged clusters show that propane (C3) and butane (C4) dithiols have ideal chain lengths for interstaple cross-linking and that up to six C3 or C4 dithiols can be facilely exchanged onto the cluster surface. Propanedithiol predominately exchanges with two monothiols at a time, making cross-linking bridges, while butanedithiol can exchange with either one or two monothiols at a time. The extent of cross-linking can be controlled by the Au{sub 25}(SR){sub 18} to dithiol ratio, the reaction time of ligand exchange, or the addition of a hydrophobic tail to the dithiol. MALDI MS suggests that during ethane (C2) dithiol exchange, two ethanedithiols become connected by a disulfide bond; this result is supported by density functional theory (DFT) prediction of the optimal chain length for the intrastaple coupling. Both optical absorption spectroscopy and DFT computations show that the electronic structure of the Au{sub 25} nanomolecule retains its main features after exchange of up to eight monothiol ligands.

  19. Interstaple Dithiol Cross-Linking in Au(25)(SR)(18) Nanomolecules: A Combined Mass Spectrometric and Computational Study

    SciTech Connect (OSTI)

    Jiang, Deen [ORNL; Dass, Amala [University of Mississippi, The; Tschumper, Gregory [University of Mississippi, The; Mattern, Daniell [University of Mississippi, The; Van Dornshuld, Eric [University of Mississippi, The; Kota, Rajesh [University of Mississippi, The; Jupally, Vijay [University of Mississippi, The

    2011-01-01T23:59:59.000Z

    A systematic study of cross-linking chemistry of the Au{sub 25}(SR){sub 18} nanomolecule by dithiols of varying chain length, HS-(CH2)n-SH where n = 2, 3, 4, 5, and 6, is presented here. Monothiolated Au{sub 25} has six [RSAuSRAuSR] staple motifs on its surface, and MALDI mass spectrometry data of the ligand exchanged clusters show that propane (C3) and butane (C4) dithiols have ideal chain lengths for interstaple cross-linking and that up to six C3 or C4 dithiols can be facilely exchanged onto the cluster surface. Propanedithiol predominately exchanges with two monothiols at a time, making cross-linking bridges, while butanedithiol can exchange with either one or two monothiols at a time. The extent of cross-linking can be controlled by the Au{sub 25}(SR){sub 18} to dithiol ratio, the reaction time of ligand exchange, or the addition of a hydrophobic tail to the dithiol. MALDI MS suggests that during ethane (C2) dithiol exchange, two ethanedithiols become connected by a disulfide bond; this result is supported by density functional theory (DFT) prediction of the optimal chain length for the intrastaple coupling. Both optical absorption spectroscopy and DFT computations show that the electronic structure of the Au{sub 25} nanomolecule retains its main features after exchange of up to eight monothiol ligands.

  20. Embedding parameters in ab initio theory to develop well-controlled approximations based on molecular similarity

    E-Print Network [OSTI]

    Tanha, Matteus; Cappiello, Alex; Gordon, Geoffrey J; Yaron, David J

    2013-01-01T23:59:59.000Z

    A means to take advantage of molecular similarity to lower the computational cost of electronic structure theory is proposed, in which parameters are embedded into a low-cost, low-level (LL) ab initio theory and adjusted to obtain agreement with a higher level (HL) ab initio theory. This approach is explored by training such a model on data for ethane and testing the resulting model on methane, propane and butane. The electronic distribution of the molecules is varied by placing them in strong electrostatic environments consisting of random charges placed on the corners of a cube. The results find that parameters embedded in HF/STO-3G theory can be adjusted to obtain agreement, to within about 2 kcal/mol, with results of HF/6-31G theory. Obtaining this level of agreement requires the use of parameters that are functions of the bond lengths, atomic charges, and bond orders within the molecules. The argument is made that this approach provides a well-controlled means to take advantage of molecular similarity in...

  1. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    SciTech Connect (OSTI)

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08T23:59:59.000Z

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  2. Phase equilibrium measurements on twelve binary mixtures

    SciTech Connect (OSTI)

    Giles, N.F. [Wiltec Research Co., Inc., Provo, UT (United States)] [Wiltec Research Co., Inc., Provo, UT (United States); Wilson, H.L.; Wilding, W.V. [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.] [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.

    1996-11-01T23:59:59.000Z

    Phase equilibrium measurements have been performed on twelve binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following binary systems at two temperatures each: ethanethiol + propylene; nitrobenzene + methanol; pyridine + ethyl acetate; octane + tert-amyl methyl ether; diisopropyl ether + butane; 1,3-dichloro-2-propanol + epichlorohydrin; 2,3-dichloro-1-propanol + epichlorohydrin; 2,3-epoxy-1-propanol + epichlorohydrin; 3-chloro-1,2-propanediol + epichlorohydrin; methanol + hydrogen cyanide. For these systems, equilibrium vapor and liquid phase compositions were derived from the PTx data using the Soave equation of state to represent the vapor phase and the Wilson, NRTL, or Redlich-Kister activity coefficient model to represent the liquid phase. The infinite dilution activity coefficient of methylamine in N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone-rich half of the binary. Liquid-liquid equilibrium studies were made on the triethylene glycol + 1-pentene system at two temperatures by directly analyzing samples taken from each liquid phase.

  3. Annual report of operations. [Naval Petroleum Reserves No. 1, 2, 3; oil shale reserves

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Naval Petroleum and Oil Shale Reserves during FY 1980 deliver 59,993,213 bbl of crude oil and substantial quantities of natural gas, butane, propane and natural gasoline to the United States market. During September, Naval Petroleum Reserve oil was utilized to resume filling the Strategic Petroleum Reserve. During FY 1980, Naval Petroleum Reserve No. 1, Elk Hills, became the largest producing oil field in California and the second largest producing field in the United States. Production at the end of September was 165,000 bbl/d; production is expected to peak at about 190,000 bbl/d early in calender year 1982. Production from Naval Petroleum Reserves Nos. 2 and 3 in California and Wyoming, contributed 1,101,582 and 1,603,477 bbl of crude oil to the market, respectively. Enhanced oil recovery work has been inititated at Naval Petroleum Reserve no. 3. Total revenues from the Naval Petroleum Reserves during FY 1980 were 1.6 billion. The three Naval Oil Shale Reserves in Colorado and Utah have substantial potential. In addition to containing approximately 2.5 billion bbl recoverable shale oil. They probably contain significant quantities of conventional oil and gas.

  4. Fundamental Study of the Oxidation Characteristics and Pollutant Emissions of Model Biodiesel Fuels

    SciTech Connect (OSTI)

    Feng, Q.; Wang, Y. L.; Egolfopoulos, Fokion N.; Tsotsis, T. T.

    2010-01-01T23:59:59.000Z

    In this study, the oxidation characteristics of biodiesel fuels are investigated with the goal of contributing toward the fundamental understanding of their combustion characteristics and evaluating the effect of using these alternative fuels on engine performance as well as on the environment. The focus of the study is on pure fatty acid methyl-esters (FAME,) that can serve as surrogate compounds for real biodiesels. The experiments are conducted in the stagnation-flow configuration, which allows for the systematic evaluation of fundamental combustion and emission characteristics. In this paper, the focus is primarily on the pollutant emission characteristics of two C{sub 4} FAMEs, namely, methyl-butanoate and methyl-crotonate, whose behavior is compared with that of n-butane and n-pentane. To provide insight into the mechanisms of pollutant formation for these fuels, the experimental data are compared with computed results using a model with consistent C{sub 1}?C{sub 4} oxidation and NO{sub x} formation kinetics.

  5. Method and apparatus for controlling fuel/air mixture in a lean burn engine

    DOE Patents [OSTI]

    Kubesh, John Thomas (San Antonio, TX); Dodge, Lee Gene (San Antonio, TX); Podnar, Daniel James (San Antonio, TX)

    1998-04-07T23:59:59.000Z

    The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

  6. Modeling of NO sensitization of IC engines surrogate fuels auto-ignition and combustion

    E-Print Network [OSTI]

    Anderlohr, Jörg; Bounaceur, Roda; Battin-Leclerc, Frédérique

    2009-01-01T23:59:59.000Z

    This paper presents a new chemical kinetic model developed for the simulation of auto-ignition and combustion of engine surrogate fuel mixtures sensitized by the presence of NOx. The chemical mechanism is based on the PRF auto-ignition model (n-heptane/iso-octane) of Buda et al. [1] and the NO/n-butane/n-pentane model of Glaude et al. [2]. The later mechanism has been taken as a reference for the reactions of NOx with larger alcanes (n-heptane, iso-octane). A coherent two components engine fuel surrogate mechanism has been generated which accounts for the influence of NOx on auto-ignition. The mechanism has been validated for temperatures between 700 K and 1100 K and pressures between 1 and 10 atm covering the temperature and pressure ranges characteristic of engine post-oxidation thermodynamic conditions. Experiments used for validation include jet stirred reactor conditions for species evolution as a function of temperature, as well as diesel HCCI engine experiments for auto-ignition delay time measurements...

  7. Ambient concentrations, sources, emission rates, and photochemical reactivity of C{sub 2}-C{sub 10} hydrocarbons in Porto Alegre, Brazil

    SciTech Connect (OSTI)

    Grosjean, E.; Grosjean, D. [DGA, Inc., Ventura, CA (United States)] [DGA, Inc., Ventura, CA (United States); Rasmussen, R.A. [Oregon Graduate Inst. of Science and Technology, Portland, OR (United States). Dept. of Environmental Science and Engineering] [Oregon Graduate Inst. of Science and Technology, Portland, OR (United States). Dept. of Environmental Science and Engineering

    1998-07-15T23:59:59.000Z

    The combination of vehicle fuels used in Porto Alegre, Brazil, is unique in the world. As a result, air pollution control strategies for Porto Alegre, where vehicles account for ca. 99% and ca. 86% of total city wide CO and hydrocarbons emissions, respectively, must make use of air quality data specific to the Porto Alegre area. In this study, ambient concentrations of 66 C{sub 2}-C{sub 10} hydrocarbons have been measured for ca. 1 year (March 1996--April 1997) at downtown Porto Alegre locations. On the average, the 10 most abundant hydrocarbons on a mass concentration basis were, in decreasing order, as follows: acetylene, ethylene, propane, toluene, isopentane, (m+p)-xylene, propene, n-butane, benzene, and n-pentane. Scatterplots of ambient concentrations showed a high degree of correlation among hydrocarbon classes (e.g., alkenes, isobutene vs 1-pentene), between hydrocarbons (alkanes, alkenes, and aromatics) and acetylene, and between hydrocarbons and carbon monoxide. Mid-1996 hydrocarbon emissions rates (e.g., 3,274 {+-} 828 and 1,418 {+-} 369 t per year for acetylene and isopentane, respectively) are estimated from regression analysis of ambient hydrocarbon vs ambient CO. Reactivity rankings are presented, one involving reaction with OH (using hydrocarbon-OH reaction rate constants) and the other involving the production of ozone (using maximum incremental reactivity coefficients).

  8. Studying the Internal Ballistics of a Combustion Driven Potato Cannon using High-speed Video

    E-Print Network [OSTI]

    Courtney, E D S

    2013-01-01T23:59:59.000Z

    A potato cannon was designed to accommodate several different experimental propellants and have a transparent barrel so the movement of the projectile could be recorded on high-speed video (at 2000 frames per second). Both combustion chamber and barrel were made of polyvinyl chloride (PVC). Five experimental propellants were tested: propane (C3H8), acetylene (C2H2), ethanol (C2H6O), methanol (CH4O), and butane (C4H10). The amount of each experimental propellant was calculated to approximate a stoichometric mixture and considering the Upper Flammability Limit (UFL) and the Lower Flammability Limit (LFL), which in turn were affected by the volume of the combustion chamber. Cylindrical projectiles were cut from raw potatoes so that there was an airtight fit, and each weighed 50 (+/- 0.5) grams. For each trial, position as a function of time was determined via frame by frame analysis. Five trials were taken for each experimental propellant and the results analyzed to compute velocity and acceleration as functions...

  9. Toxicity Data to Determine Refrigerant Concentration Limits

    SciTech Connect (OSTI)

    Calm, James M.

    2000-09-30T23:59:59.000Z

    This report reviews toxicity data, identifies sources for them, and presents resulting exposure limits for refrigerants for consideration by qualified parties in developing safety guides, standards, codes, and regulations. It outlines a method to calculate an acute toxicity exposure limit (ATEL) and from it a recommended refrigerant concentration limit (RCL) for emergency exposures. The report focuses on acute toxicity with particular attention to lethality, cardiac sensitization, anesthetic and central nervous system effects, and other escape-impairing effects. It addresses R-11, R-12, R-22, R-23, R-113, R-114, R-116, R-123, R-124, R-125, R-134, R-134a, R-E134, R-141b, R-142b, R-143a, R-152a, R-218, R-227ea, R-236fa, R-245ca, R-245fa, R-290, R-500, R-502, R-600a, R-717, and R-744. It summarizes additional data for R-14, R-115, R-170 (ethane), R-C318, R-600 (n-butane), and R-1270 (propylene) to enable calculation of limits for blends incorporating them. The report summarizes the data a nd related safety information, including classifications and flammability data. It also presents a series of tables with proposed ATEL and RCL concentrations-in dimensionless form and the latter also in both metric (SI) and inch-pound (IP) units of measure-for both the cited refrigerants and 66 zerotropic and azeotropic blends. They include common refrigerants, such as R-404A, R-407C, R-410A, and R-507A, as well as others in commercial or developmental status. Appendices provide profiles for the cited single-compound refrigerants and for R-500 and R-502 as well as narrative toxicity summaries for common refrigerants. The report includes an extensive set of references.

  10. The oxidation of soot and carbon monoxide in hydrocarbon diffusion flames

    SciTech Connect (OSTI)

    Puri, R.; Santoro, R.J. (Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical Engineering); Smyth, K.C. (National Inst. of Standards and Technology, Gaithersburg, MD (United States). Building and Fire Research Lab.)

    1994-05-01T23:59:59.000Z

    Quantitative hydroxyl radical concentrations and primary soot particle sizes have been determined in the soot oxidation regions of axisymmetric diffusion flames burning methane, methane/butane, and methane/1-butene in air at atmospheric pressure. The total carbon flow rate was held constant in these flames while the maximum amount of soot varied by a factor of seven along the centerline. Laser-induced fluorescence measurements of OH were placed on an absolute basis by calibration against earlier absorption results. The primary size measurements of the soot particles were made using thermophoretic sampling and transmission electron microscopy. OH concentrations are greatly reduced in the presence of soot particles. Whereas large super-equilibrium ratios are observed in the high-temperature reaction zones in the absence of soot, the OH concentrations approach equilibrium values when the soot loading is high. The diminished OH concentrations are found to arise from reactions with the soot particles and only to a minor degree from lower temperatures due to soot radiation losses. Analysis of the soot oxidation rates computed from the primary particle size profiles as a function of time along the flame centerlines shows that OH is the dominant oxidizer of soot, with O[sub 2] making only a small contribution. Higher collision efficiencies of OH reactions with soot particles are found for the flames containing larger soot concentrations at lower temperatures. A comparison of the soot and CO oxidation rates shows that although CO is inherently more reactive than soot, the soot successfully competes with CO for OH and hence suppresses CO oxidation for large soot concentrations.

  11. 1996 Paso del Norte ozone study VOC measurements

    SciTech Connect (OSTI)

    Seila, R.L.; Main, H.; Arriaga, J.L.; Martinez, G.; Ramadan, A.B.

    1999-07-01T23:59:59.000Z

    Ambient air VOC samples were collected at surface air quality monitoring sites, near sources of interest, and aloft on the US and Mexican side of the border during a six week period of the 1996 Paso del Norte Ozone Study. On nine intensive operations (IOP) days, when high ozone concentrations were forecast, five 2-hr samples were collected at five IOP sites, three on the US side and two on the Mexican side. Six special survey sites on the US side and two on the Mexican side were sampled to characterize up-wind, down-wind and other emissions. In Ciudad Juarez, rush hour traffic, propane-powered bus exhaust, automobile paint shop emissions, propane and butane fuels, and an industrial manufacturing site were sampled. Carbonyl samples were collected at three surface sites. Carbonyl and canister grab samples were also collected during aircraft and hot air balloon flights. Most of the hydrocarbon samples were collected in electro-polished stainless steel canisters which were returned to laboratories for determination of C-2 to C-10+ hydrocarbons by cryogenic preconcentration GC-FID. The carbonyl samples were collected on DNPH impregnated C-18 Sep-Pak cartridges and analyzed by HPLC to quantify 13, C-1 to C-8 species. This paper presents the spatial and temporal characteristics of VOC species concentrations and compositions to examine the differences and similarities of the various locations and time periods. Overall surface TNMOC values ranged from 0.1 to 3.4 ppmC with the highest concentrations being recorded in the morning at three vehicle-dominated sites, two in Ciudad Juarez and one in downtown El Paso. Toluene in El Paso samples and propane, which is used as a cooking and transportation fuel in Ciudad Juarez, were the most abundant hydrocarbons. The most abundant carbonyls were acetaldehyde and acetone.

  12. Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface Geochemical Hydrocarbon Prospecting

    SciTech Connect (OSTI)

    Mani, Devleena, E-mail: devleenatiwari@ngri.res.in [National Geophysical Research Institute (Council of Scientific and Industrial Research) (India); Kumar, T. Satish [Oil India Limited (India); Rasheed, M. A.; Patil, D. J.; Dayal, A. M.; Rao, T. Gnaneshwar; Balaram, V. [National Geophysical Research Institute (Council of Scientific and Industrial Research) (India)

    2011-03-15T23:59:59.000Z

    The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a geochemical exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a geochemical indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana-Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospective for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r{sup 2} < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface geochemical indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of geochemical observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and geochemical data suggests its efficacy as one of the potential tool in surface geochemical exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.

  13. Cu{sup II} coordination polymers based on 5-methoxyisophthalate and flexible N-donor ligands: Structures and magnetic properties

    SciTech Connect (OSTI)

    Chang, Xin-Hong; Qin, Jian-Hua [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Ma, Lu-Fang, E-mail: mazhuxp@126.com [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Wang, Li-Ya, E-mail: wlya@lynu.edu.cn [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061 (China)

    2014-04-01T23:59:59.000Z

    Three Cu{sup II} coordination polymers, ([Cu{sub 2}(CH{sub 3}O-ip){sub 2}(bmib)]){sub n} (1), ([Cu{sub 2}(CH{sub 3}O-ip){sub 2}(bmib){sub 2}]){sub n} (2) and ([Cu(CH{sub 3}O-ip)(bbip)]?2H{sub 2}O){sub n} (3) (CH{sub 3}O-H{sub 2}ip is 5-methoxyisophthalic acid, bmib is 1,4-bis(2-methylimidazol-1-yl)butane and bbip is 1,3-bis(1H-benzimidazolyl)propane), have been synthesized by hydrothermal methods. Complexes 1–3 were structurally characterized by elemental analysis, infrared (IR) spectra and X-ray single-crystal diffraction. Complex 1 shows a 3D six-connected self-penetrating network based on paddlewheel secondary building units. Complex 2 has a 3-fold interpenetrating 3D diamond framework. Complex 3 possesses a 1D tube-like chain. Thermo-gravimetric and magnetic properties of 1–3 were also investigated. - Graphical abstract: Structures and magnetic properties of copper(II) coordination polymers constructed from 5-methoxyisophthalate linker and two flexible N-donor ancillary ligands. Three copper(II) coordination polymers with 5-methoxyisophthalate and two related flexible N-donor ancillary ligands have been synthesized and structurally characterized. Moreover, thermal behaviors and magnetic properties of these complexes have also been investigated. - Highlights: • Three Cu(II) coordination polymers were synthesized. • The conformations of N-donor ligands and pH value have an effect on the final structures. • The magnetic properties of 1–3 have been investigated.

  14. Vapour extraction (VAPEX) process for recovery of heavy oil and bitumen

    SciTech Connect (OSTI)

    Jha, K.N. [CANMET, Ottawa, Ontario (Canada); Butler, R.M. [Univ. of Calgary, Alberta (Canada); Lim, G.B. [Imperial Oil Resources Limited, Calgary, Alberta (Canada)] [and others

    1995-12-31T23:59:59.000Z

    For over 90% of the vast resources of bitumen and heavy oil in Canada, in situ recovery processes have to be developed to produce and utilize them efficiently and economically. Thermal recovery processes using steam, although effective for thick reservoirs with good quality sands, are increasingly proving to be uneconomical, particularly for thin, shaley, or bottom water reservoirs. The inefficiency is caused by large heat losses, high water requirement, extensive surface facilities, and adverse environmental impact. To overcome these problems, a new non-thermal vapour extraction (VAPEX) process has been developed. The process is closely related to the Steam-Assisted Gravity Drainage (SAGD) concept. However, in the VAPEX process the steam chamber is replaced with a chamber containing light hydrocarbon vapours close to its dew point at the reservoir pressure. If the pressure used is close to the saturation pressure of hydrocarbons, deasphalting may occur in the reservoir causing a substantial reduction in viscosity and heavy metal contents. Experiments conducted in a Hele-Shaw cell and in a 2D physical scaled model using Lloydminster, Cold Lake, and Peace River heavy oil/bitumen and ethane, propane, and butane as solvents demonstrated that this process is very promising technically as well as economically. An active aquifer underlying the bitumen zone made the reservoir more valuable because of spreading of the solvent vapour directly underneath the formation which increased the vapour-bitumen contact extensively. The investigation was extended from a dual horizontal continuous injection/production well strategy described above to a single horizontal well cyclic process for the Cold Lake reservoir in a 3D physical scaled model. The tests illustrated that ethane was an effective solvent in producing Cold Lake bitumen and that the cyclic VAPEX process has the potential to be a breakthrough recovery technology.

  15. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 14, January--March 1996

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-04-30T23:59:59.000Z

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by June 1997. During Quarter 14 (January--March 1996), parametric testing of the 30-inch Microcel{trademark} flotation column at the Lady Dunn Plant continued under Subtask 3.2. Subtask 3. 3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter with parametric testing of the batch dewatering unit. Coal product moistures of 3 to 12 percent were achieved, with higher percent solids slurry feeds resulting in lower product moistures. For a given percent solids feed, the product moisture decreased with increasing butane to dry coal ratios. Stirring time, stirring rate, and settling time were all found to have little effect on the final moisture content. Continuing Subtask 6.4 work, investigating coal-water-fuel slurry formulation for coals cleaned by selective agglomeration, indicated that pH adjustment to 10 resulted in marginally better (lower viscosity) slurries for one of the two coals tested. Subtask 6.5 agglomeration bench-scale testing results indicate that the new Taggart coal requires a grind with a d{sub 80} of approximately 33 microns to achieve the 1 lb ash/MBtu product quality specification. Also under Subtask 6.5, reductions in the various trace element concentrations accomplished during selective agglomeration were determined. Work was essentially completed on the detailed design of the PDU selective agglomeration module under Task 7 with the issuing of a draft report.

  16. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2013-11-21T23:59:59.000Z

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  17. Computational Capabilities for Predictions of Interactions at the Grain Boundary of Refractory Alloys

    SciTech Connect (OSTI)

    Sengupta, Debasis; Kwak, Shaun; Vasenkov, Alex; Shin, Yun Kyung; Duin, Adri van

    2014-09-30T23:59:59.000Z

    New high performance refractory alloys are critically required for improving efficiency and decreasing CO2 emissions of fossil energy systems. The development of these materials remains slow because it is driven by a trial-and-error experimental approach and lacks a rational design approach. Atomistic Molecular Dynamic (MD) design has the potential to accelerate this development through the prediction of mechanical properties and corrosion resistance of new materials. The success of MD simulations depends critically on the fidelity of interatomic potentials. This project, in collaboration with Penn State, has focused on developing and validating high quality quantum mechanics based reactive potentials, ReaxFF, for Ni-Fe-Al-Cr-O-S system. A larger number of accurate density functional theory (DFT) calculations were performed to generate data for parameterizing the ReaxFF potentials. These potentials were then used in molecular dynamics (MD) and molecular dynamics-Monte Carlo (MD-MC) for much larger system to study for which DFT calculation would be prohibitively expensive, and to understand a number of chemical phenomena Ni-Fe-Al-Cr-O-S based alloy systems . These include catalytic oxidation of butane on clean Cr2O3 and pyrite/Cr2O3, interfacial reaction between Cr2O3 (refractory material) and Al2O3 (slag), cohesive strength of at the grain boundary of S-enriched Cr compared to bulk Cr and Ssegregation study in Al, Al2O3, Cr and Cr2O3 with a grain structure. The developed quantum based ReaxFF potential are available from the authors upon request. During this project, a number of papers were published in peer-reviewed journals. In addition, several conference presentations were made.

  18. Energy and environmental research emphasizing low-rank coal: Task 5.7, Coal char fuel evaporation canister sorbent

    SciTech Connect (OSTI)

    Aulich, T.R.; Grisanti, A.A.; Knudson, C.L.

    1995-08-01T23:59:59.000Z

    Atomobile evaporative emission canisters contain activated carbon sorbents that trap and store fuel vapors emitted from automobile fuel tanks during periods of hot ambient temperatures and after engine operation. When a vehicle is started, combustion air is pulled through the canister, and adsorbed vapors are removed from the sorbent and routed to the intake manifold for combustion along with fuel from the tank. The two primary requirements of an effective canister sorbent are that (1) it must be a strong enough adsorbent to hold on to the fuel vapors that contact it and (2) it must be a weak enough adsorbent to release the captured vapors in the presence of the airflow required by the engine for fuel combustion. Most currently available commercial canister sorbents are made from wood, which is reacted with phosphoric acid and heat to yield an activated carbon with optimum pore size for gasoline vapor adsorption. The objectives of Task 5.7 were to (1) design and construct a test system for evaluating the performance of different sorbents in trapping and releasing butane, gasoline, and other organic vapors; (2) investigate the use of lignite char as an automobile fuel evaporation canister sorbent; (3) compare the adsorbing and desorbing characteristics of lignite chars with those of several commercial sorbents; and (4) investigate whether the presence of ethanol in fuel vapors affects sorbent performance in any way. Tests with two different sorbents (a wood-derived activated carbon and a lignite char) showed that with both sorbents, ethanol vapor breakthrough took about twice as long as hydrocarbon vapor breakthrough. Possible reasons for this, including an increased sorbent affinity for ethanol vapors, will be investigated. If this effect is real (i.e., reproducible over an extensive series of tests under varying conditions), it may help explain why ethanol vapor concentrations in SHED test evaporative emissions are often lower than would be expected.

  19. Toxicologic evaluation of analytes from Tank 241-C-103

    SciTech Connect (OSTI)

    Mahlum, D.D.; Young, J.Y.; Weller, R.E.

    1994-11-01T23:59:59.000Z

    Westinghouse Hanford Company requested PNL to assemble a toxicology review panel (TRP) to evaluate analytical data compiled by WHC, and provide advice concerning potential health effects associated with exposure to tank-vapor constituents. The team`s objectives would be to (1) review procedures used for sampling vapors from tanks, (2) identify constituents in tank-vapor samples that could be related to symptoms reported by workers, (3) evaluate the toxicological implications of those constituents by comparison to establish toxicological databases, (4) provide advice for additional analytical efforts, and (5) support other activities as requested by WHC. The TRP represents a wide range of expertise, including toxicology, industrial hygiene, and occupational medicine. The TRP prepared a list of target analytes that chemists at the Oregon Graduate Institute/Sandia (OGI), Oak Ridge National Laboratory (ORNL), and PNL used to establish validated methods for quantitative analysis of head-space vapors from Tank 241-C-103. this list was used by the analytical laboratories to develop appropriate analytical methods for samples from Tank 241-C-103. Target compounds on the list included acetone, acetonitrile, ammonia, benzene, 1, 3-butadiene, butanal, n-butanol, hexane, 2-hexanone, methylene chloride, nitric oxide, nitrogen dioxide, nitrous oxide, dodecane, tridecane, propane nitrile, sulfur oxide, tributyl phosphate, and vinylidene chloride. The TRP considered constituent concentrations, current exposure limits, reliability of data relative to toxicity, consistency of the analytical data, and whether the material was carcinogenic or teratogenic. A final consideration in the analyte selection process was to include representative chemicals for each class of compounds found.

  20. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01T23:59:59.000Z

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

  1. Water-Soluble 2-Hydroxyisophthalamides for Sensitization of Lanthanide Luminescence

    SciTech Connect (OSTI)

    Samuel, Amanda P. S.; Moore, Evan G.; Melchior, Marco; Xu, Jide; Raymond, Kenneth N.

    2008-02-20T23:59:59.000Z

    A series of octadentate ligands featuring the 2-hydroxyisophthalamide (IAM) antenna chromophore (to sensitize Tb(III) and Eu(III) luminescence) has been prepared and characterized. The length of the alkyl amine scaffold that links the four IAM moieties has been varied in order to investigate the effect of the ligand backbone on the stability and photophysical properties of the Ln(III) complexes. The amine backbones utilized in this study are N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-ethane-1,2-diamine [H(2,2)-], N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-propane-1,3-diamine [H(3,2)-] and N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-butane-1,4-diamine [H(4,2)-]. These ligands also incorporate methoxyethylene [MOE] groups on each of the IAM chromophores to increase their water solubility. The aqueous ligand protonation constants and Tb(III) and Eu(III) formation constants were determined from solution thermodynamic studies. The resulting values indicate that at physiological pH, the Eu(III) and Tb(III) complexes of H(2,2)-IAM-MOE and H(4,2)-IAM-MOE are sufficiently stable to prevent dissociation at nanomolar concentrations. The photophysical measurements for the Tb(III) complexes gave overall quantum yield values of 0.56, 0.39, and 0.52 respectively for the complexes with H(2,2)-IAM-MOE, H(3,2)-IAM-MOE and H(4,2)-IAM-MOE, while the corresponding Eu(III) complexes displayed significantly weaker luminescence, with quantum yield values of 0.0014, 0.0015, and 0.0058, respectively. Analysis of the steady state Eu(III) emission spectra provides insight into the solution symmetries of the complexes. The combined solubility, stability and photophysical performance of the Tb(III) complexes in particular make them well suited to serve as the luminescent reporter group in high sensitivity time-resolved fluoroimmunoassays.

  2. Commercial potential of natural gas storage in lined rock caverns (LRC)

    SciTech Connect (OSTI)

    NONE

    1999-11-01T23:59:59.000Z

    The geologic conditions in many regions of the United States will not permit the development of economical high-deliverability gas storage in salt caverns. These regions include the entire Eastern Seaboard; several northern states, notably Minnesota and Wisconsin; many of the Rocky Mountain States; and most of the Pacific Northwest. In late 1997, the United States Department of Energy (USDOE) Federal Energy Technology Center engaged Sofregaz US to investigate the commercialization potential of natural gas storage in Lined Rock Caverns (LRC). Sofregaz US teamed with Gaz de France and Sydkraft, who had formed a consortium, called LRC, to perform the study for the USDOE. Underground storage of natural gas is generally achieved in depleted oil and gas fields, aquifers, and solution-mined salt caverns. These storage technologies require specific geologic conditions. Unlined rock caverns have been used for decades to store hydrocarbons - mostly liquids such as crude oil, butane, and propane. The maximum operating pressure in unlined rock caverns is limited, since the host rock is never entirely impervious. The LRC technology allows a significant increase in the maximum operating pressure over the unlined storage cavern concept, since the gas in storage is completely contained with an impervious liner. The LRC technology has been under development in Sweden by Sydkraft since 1987. The development process has included extensive technical studies, laboratory testing, field tests, and most recently includes a storage facility being constructed in southern Sweden (Skallen). The LRC development effort has shown that the concept is technically and economically viable. The Skallen storage facility will have a rock cover of 115 meters (375 feet), a storage volume of 40,000 cubic meters (250,000 petroleum barrels), and a maximum operating pressure of 20 MPa (2,900 psi). There is a potential for commercialization of the LRC technology in the United States. Two regions were studied in some detail - the Northeast and the Southeast. The investment cost for an LRC facility in the Northeast is approximately $182 million and $343 million for a 2.6-billion cubic foot (bcf) working gas facility and a 5.2-bcf working gas storage facility, respectively. The relatively high investment cost is a strong function of the cost of labor in the Northeast. The labor union-related rules and requirements in the Northeast result in much higher underground construction costs than might result in Sweden, for example. The LRC technology gas storage service is compared to other alternative technologies. The LRC technology gas storage service was found to be competitive with other alternative technologies for a variety of market scenarios.

  3. Synthesis, structures and properties of a family of four two-dimensional coordination polymers constructed from 5-hydroxyisophthalate

    SciTech Connect (OSTI)

    Zhang, Kou-Lin, E-mail: klzhang@yzu.edu.cn [Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zhang, Jing-Bo; Jing, Chu-Yue; Zhang, Lei [Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Walton, Richard I. [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Zhu, Peizhi, E-mail: pzzhu@yzu.edu.cn [Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Ng, Seik Weng [Department of Chemistry, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-15T23:59:59.000Z

    Four 2D coordination polymers (CPs) with different structures containing the multifunctional ligand 5-hydroxyisophthalate (5-OH-BDC{sup 2?}), [Zn(5-OH-BDC)(btb)]·2H{sub 2}O (1), [Cd(5-OH-BDC)(btp)(H{sub 2}O)]·3H{sub 2}O (2), [Cd(5-OH-BDC)(bth){sub 2}(H{sub 2}O)]·H{sub 2}O (3) and [Pb(5-OH-BDC)]·H{sub 2}O (4) [btp=1, 3-bis(1,2,4-triazol-1-yl)propane, btb=1,4-bis(1,2,4-triazol-1-yl)butane, bth=1, 6-bis(1,2,4-triazol-1-yl)hexane] were obtained. 1–3 were synthesised hydrothermally, while 4 was obtained under ambient condition. The adjacent (2D?2D) polycatenated 2D layers of 1 polythread in a parallel manner to form an unusual 2D?3D polythreaded framework. 2 contains an undulated 2D (4, 4) network and further extends into an “embracing” double-layer structure through the C–H···? and ?···? stacking interactions. 3 exhibits a non-interpenetrating 2D (4, 4)-network. 4 exhibits a 2D double-layered binodal (4, 4)-net containing oblong nanochannels with symbol (4{sup 3}6{sup 3}){sub 2}. Reversible dehydration–rehydration is observed in 1, 2 and 4, which fall within the category of “recoverable collapsing” and “guest-induced re-formation” frameworks, while 3 exhibits irreversible dehydration–rehydration behaviour. The solid state fluorescent properties of 1–4 have been investigated. -- Graphical abstract: Among four 2D CPs reported, 1 is an unusual 2D?3D polythreaded framework. 4 exhibits 2D double-layered binodal (4, 4)-net containing nanochannels. Reversible dehydration–rehydration is observed in 1, 2 and 4. Highlights: • Four 2D CPs based on 5-hydroxyisophthalate with d{sup 10} and Pb(II) ions were reported. • 1 is an unusual 2D?3D polythreaded framework. • 4 shows a binodal (4, 4)-connected 2D double-layer network with nanochannels. • The materials 1, 2 and 4 show reversible dehydration–rehydration behaviours. • Solid state fluorescent properties were investigated.

  4. Appearance, temperature, and NO{sub x} emission of two inverse diffusion flames with different port design

    SciTech Connect (OSTI)

    Sze, L.K.; Cheung, C.S.; Leung, C.W. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (China)

    2006-01-01T23:59:59.000Z

    Experiments were carried out to investigate the appearance, temperature distribution, and NO{sub x} emission index of two inverse diffusion flames, one with circumferentially arranged ports (CAPs) and the other with co-axial (CoA) jets, both burning LPG with 70% butane and 30% propane. Flame appearances were investigated first with a fixed fueling rate at different airflow rates equivalent to air jet Reynolds numbers (Re) of 1000 to 4500; and then at a fixed airflow rate with different fueling rates equivalent to overall equivalence ratios (F) of 1.0 to 2.0. The CAP flame is found to consist of two zones: a lower entrainment zone and an upper mixing and combustion zone. The CoA flame in most cases is similar to a diffusion flame. The two-zone structure can be observed only at Re larger than 2500. The temperature distributions of the flames are similar at overall equivalence ratios of 1.0 and 1.2 for Re=2500, except that the corresponding CoA flame is longer. The flame temperature is higher in the CAP flame than the CoA flame at higher overall equivalence ratios. A measurement of centerline oxygen concentrations shows that the oxygen concentration reaches a minimum value at a flame height of 50 mm in the CAP flame but decreases more gradually in the CoA flame. It can be concluded that there is more intense air-fuel mixing in a CAP flame than the CoA flame. Investigation of the emission index of NO{sub x} (EINO{sub x}) for both flames at Re=2500 and overall equivalence ratios of 1.0 to 6.0 reveals that the EINO{sub x} curve of each flame is bell-shaped, with a maximum value of 3.2 g/kg at F=1.2 for the CAP flame and 3 g/kg at F=2.2 for the CoA flame.

  5. Quantum cascade laser investigations of CH{sub 4} and C{sub 2}H{sub 2} interconversion in hydrocarbon/H{sub 2} gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    SciTech Connect (OSTI)

    Ma Jie; Cheesman, Andrew; Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey [Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Mankelevich, Yuri A. [Skobel'tsyn Institute of Nuclear Physics, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation)

    2009-08-01T23:59:59.000Z

    CH{sub 4} and C{sub 2}H{sub 2} molecules (and their interconversion) in hydrocarbon/rare gas/H{sub 2} gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm{sup -1} using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H{sub 2} plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH{sub 4} and C{sub 2}H{sub 2} molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH{sub 4} and C{sub 2}H{sub 2}. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH{sub 4}->C{sub 2}H{sub 2} conversion occurs most efficiently in an annular shell around the central plasma (characterized by 1400CH{sub 4} is favored in the more distant regions where T{sub gas}<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH{sub 4}->C{sub 2}H{sub 2} conversion, whereas the reverse C{sub 2}H{sub 2}->CH{sub 4} process only requires H atoms to drive the reactions; H atoms are not consumed by the overall conversion.

  6. First-principles binary diffusion coefficients for H, H{sub 2}, and four normal alkanes + N{sub 2}

    SciTech Connect (OSTI)

    Jasper, Ahren W., E-mail: ajasper@sandia.gov; Kamarchik, Eugene [Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551 (United States); Miller, James A.; Klippenstein, Stephen J. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-28T23:59:59.000Z

    Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species colliding with N{sub 2}. The most detailed calculations make no assumptions regarding the complexity of the potential energy surface, and the resulting classical collision integrals are in excellent agreement with previous semiclassical results for H + N{sub 2} and H{sub 2} + N{sub 2} and with recent experimental results for C{sub n}H{sub 2n+2} + N{sub 2}, n = 2–4. The detailed classical results are used to test the accuracy of three simplifying assumptions typically made when calculating collision integrals: (1) approximating the intermolecular potential as isotropic, (2) neglecting the internal structure of the colliders (i.e., neglecting inelasticity), and (3) employing unphysical R{sup ?12} repulsive interactions. The effect of anisotropy is found to be negligible for H + N{sub 2} and H{sub 2} + N{sub 2} (in agreement with previous quantum mechanical and semiclassical results for systems involving atomic and diatomic species) but is more significant for larger species at low temperatures. For example, the neglect of anisotropy decreases the diffusion coefficient for butane + N{sub 2} by 15% at 300 K. The neglect of inelasticity, in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical R{sup ?12} interaction is a significant source of error at all temperatures for the weakly interacting systems H + N{sub 2} and H{sub 2} + N{sub 2}, with errors as large as 40%. For the normal alkanes in N{sub 2}, which feature stronger interactions, the 12/6 Lennard–Jones approximation is found to be accurate, particularly at temperatures above ?700 K where it predicts the full-dimensional result to within 5% (although with somewhat different temperature dependence). Overall, the typical practical approach of assuming isotropic 12/6 Lennard–Jones interactions is confirmed to be suitable for combustion applications except for weakly interacting systems, such as H + N{sub 2}. For these systems, anisotropy and inelasticity can safely be neglected but a more detailed description of the repulsive wall is required for quantitative predictions. A straightforward approach for calculating effective isotropic potentials with realistic repulsive walls is described. An analytic expression for the calculated diffusion coefficient for H + N{sub 2} is presented and is estimated to have a 2-sigma error bar of only 0.7%.

  7. Spectroelectrochemical Sensor for Pertechnetate Applicable to Hanford and Other DOE Sites

    SciTech Connect (OSTI)

    Heineman, William R; Seliskar, Carl J; Bryan, Samuel A

    2012-09-18T23:59:59.000Z

    The general aim of our work funded by DOE is the design and implementation of a new sensor technology that offers unprecedented levels of specificity needed for analysis of the complex chemical mixtures found at DOE sites nationwide. The specific goal of this project was the development of a sensor for technetium (Tc) that is applicable to characterizing and monitoring the vadose zone and associated subsurface water at the Hanford Site and other DOE sites. The concept for the spectroelectrochemical sensor is innovative and represents a breakthrough in sensor technology. The sensor combines three modes of selectivity (electrochemistry, spectroscopy, and selective partitioning) into a single sensor to substantially improve selectivity. The sensor consists of a basic spectroelectrochemical configuration that we have developed under our previous DOE grants: a waveguide with an optically transparent electrode (OTE) that is coated with a thin chemically-selective film that preconcnetrates the analyte. The key to adapting this generic sensor to detect TcO4- and Tc complexes lies in the development of chemically-selective films that preconcentrate the analyte and, when necessary, chemically convert it into a complex with electrochemical and spectroscopic properties appropriate for sensing. Significant accomplishments were made in the general areas of synthesis and characterization of polymer films that efficiently preconcentrate the analyte, development and characterization of sensors and associated instrumentation, and synthesis and characterization of relevant Re and Tc complexes. Two new polymer films for the preconcentration step in the sensor were developed: partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SSEBS) and phosphine containing polymer films. The latter was a directed polymer film synthesis that combined the proper electrostatic properties to attract TcO4- and also incorporated a suitable ligand for covalently trapping a lower oxidation state Tc complex within the film for spectroelectrochemical detection. Spectroelectrochemical sensors were developed and demonstrated, first using [Re(dmpe)3]+ (dmpe = 1,2-bis(dimethylphosphino)ethane) as a model compound with the non-radioactive Re surrogate for radioactive Tc. A fluorescence based spectroelectrochemical sensor for [Tc(dmpe)3]+/2+was then developed using SSEBS as the preconcentrating film. Portable instrumentation for the fluorescence spectroelectrochemical sensor was fabricated and tested. The effects of components in Hanford subsurface water on sensor performance with a detailed evaluation of the effect of total ionic strength on sensitivity demonstrated the ability to use the spectroelectrochemical sensor on representative water samples. A variety Re and Tc complexes were synthesized and characterized to explore the best ligands to use for detection of Tc. A lower oxidation-state Tc-complex [Tc(dmpe)3]+ (dmpe = 1,2-bis(dimethylphosphino)ethane) was synthesized to use as a model compound for developing Tc sensors. [Tc(dmpe)3]+/2+ exhibited the important properties of solution fluorescence at ambient temperatures and reversible electrochemistry. A range of low oxidation state dioxo Re- and Tc-complexes of formulae [ReO2(py)4]+, [ReO2(CN)4]-, [ReO2(P-P)2]+ and [ReO2(S-S)2]+ (py = pyridine) were synthesized. An exhaustive study of the spectroscopy and electrochemistry of Re(diimine)(CO)3(halide) complexes was performed. These complexes served as models for the Tc(diimine)(CO)3(halide) complexes that were readily formed from Tc(CO)x(halides)6-x complexes which are themselves constituents of tank waste samples from Hanford. Of particular interest were new Tc complexes with the +5 and +6 oxidation states. Tetrabutylammonium salt of tetrachlorooxotechnetate(V), (nBu4N)[TcOCl4] (I) was synthesized and the structure determined. [TcO2(CN)4]3- , [TcO2(en)2]2+ , [TcO2(im)4]+, and [TcO2(py)4]+ (en = ethylenediamine; im = imidazole; py = pyridine) complexes were synthesized and solution and solid state 99Tc NMR spectra were acquired giving

  8. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect (OSTI)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Thaer N.N. Mahmoud; Wagirin Ruiz Paidin

    2006-01-01T23:59:59.000Z

    This report describes the progress of the project ''Development And Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the thirteenth project quarter (Oct 1, 2005 to Dec 30, 2005). There are three main tasks in this research project. Task 1 is a scaled physical model study of the GAGD process. Task 2 is further development of a vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. Section I reports experimental work designed to investigate wettability effects of porous medium, on secondary and tertiary mode GAGD performance. The experiments showed a significant improvement of oil recovery in the oil-wet experiments versus the water-wet runs, both in secondary as well as tertiary mode. When comparing experiments conducted in secondary mode to those run in tertiary mode an improvement in oil recovery was also evident. Additionally, this section summarizes progress made with regard to the scaled physical model construction and experimentation. The purpose of building a scaled physical model, which attempts to include various multiphase mechanics and fluid dynamic parameters operational in the field scale, was to incorporate visual verification of the gas front for viscous instabilities, capillary fingering, and stable displacement. Preliminary experimentation suggested that construction of the 2-D model from sintered glass beads was a feasible alternative. During this reporting quarter, several sintered glass mini-models were prepared and some preliminary experiments designed to visualize gas bubble development were completed. In Section II, the gas-oil interfacial tensions measured in decane-CO{sub 2} system at 100 F and live decane consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane against CO{sub 2} gas at 160 F have been modeled using the Parachor and newly proposed mechanistic Parachor models. In the decane-CO{sub 2} binary system, Parachor model was found to be sufficient for interfacial tension calculations. The predicted miscibility from the Parachor model deviated only by about 2.5% from the measured VIT miscibility. However, in multicomponent live decane-CO{sub 2} system, the performance of the Parachor model was poor, while good match of interfacial tension predictions has been obtained experimentally using the proposed mechanistic Parachor model. The predicted miscibility from the mechanistic Parachor model accurately matched with the measured VIT miscibility in live decane-CO2 system, which indicates the suitability of this model to predict miscibility in complex multicomponent hydrocarbon systems. In the previous reports to the DOE (15323R07, Oct 2004; 15323R08, Jan 2005; 15323R09, Apr 2005; 15323R10, July 2005 and 154323, Oct 2005), the 1-D experimental results from dimensionally scaled GAGD and WAG corefloods were reported for Section III. Additionally, since Section I reports the experimental results from 2-D physical model experiments; this section attempts to extend this 2-D GAGD study to 3-D (4-phase) flow through porous media and evaluate the performance of these processes using reservoir simulation. Section IV includes the technology transfer efforts undertaken during the quarter. This research work resulted in one international paper presentation in Tulsa, OK; one journal publication; three pending abstracts for SCA 2006 Annual Conference and an invitation to present at the Independents Day session at the IOR Symposium 2006.