Powered by Deep Web Technologies
Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

West Coast (PADD 5) Exports of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

Normal Butane/Butylene Exports; Normal Butane/Butylene Supply and Disposition; West Coast (PADD 5) Exports of Crude Oil and Petroleum Products ...

2

Rocky Mountain (PADD 4) Exports of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

Normal Butane/Butylene Supply and Disposition; Rocky Mountain (PADD 4) Exports of Crude Oil and Petroleum Products ...

3

East Coast (PADD 1) Normal Butane-Butylene Stock Change ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Normal Butane-Butylene Stock Change (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 4-3: 1: ...

4

Midwest (PADD 2) Exports of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

Midwest (PADD 2) Exports of Normal Butane-Butylene (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 0: 0: 0: 0: ...

5

Midwest (PADD 2) Normal Butane-Butylene Stock Change (Thousand ...  

U.S. Energy Information Administration (EIA)

Midwest (PADD 2) Normal Butane-Butylene Stock Change (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981-4-34-7: 14: ...

6

West Coast (PADD 5) Imports of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

West Coast (PADD 5) Imports of Normal Butane-Butylene (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 9: 18: ...

7

West Coast (PADD 5) Product Supplied of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

West Coast (PADD 5) Product Supplied of Normal Butane-Butylene (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; ...

8

East Coast (PADD 1) Gas Plant Production of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Gas Plant Production of Normal Butane-Butylene (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

9

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 7,016: 5,987: ...

10

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; ...

11

U.S. Normal Butane-Butylene Stocks at Natural Gas Processing ...  

U.S. Energy Information Administration (EIA)

U.S. Normal Butane-Butylene Stocks at Natural Gas Processing Plants (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: ...

12

U.S. Refinery Normal Butane/Butylene Shell Storage Capacity as ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Normal Butane/Butylene Shell Storage Capacity as of January 1 (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

13

U.S. Ending Stocks of Normal Butane-Butylene (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Ending Stocks of Normal Butane-Butylene (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 26,098: 24,979: 24,689: ...

14

U.S. Normal Butane-Butylene Stocks in Pipelines (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Normal Butane-Butylene Stocks in Pipelines (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 1,901: 1,455: 1,356: 1,810: 2,062 ...

15

U.S. Refinery Net Production of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Net Production of Normal Butane-Butylene (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005-4,241-2,244: 2,431: 7,319: 7,538 ...

16

Total electron scattering cross sections of ethane, propane, n-butane, 1,3-butadiene and butylene in the energy range 0.3 to 4.0 keV.  

E-Print Network (OSTI)

??The total electron scattering cross sections of Ethane, Propane, n-Butane, 1,3-Butadiene and Butylene were measured in the energy range 0.3 to 4.0 keV using linear… (more)

Wickramarachchi, Priyangika.

2006-01-01T23:59:59.000Z

17

Rocky Mountain (PADD 4) Product Supplied of Normal Butane ...  

U.S. Energy Information Administration (EIA)

Normal Butane/Butylene Supply and Disposition; Product Supplied for Normal Butane/Butylene ; Rocky Mountain (PADD 4) Product Supplied for Crude Oil ...

18

Normal Butane/Butylene Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

19

East Coast (PADD 1) Gas Plant Production of Normal Butane ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Gas Plant Production of Normal Butane-Butylene (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; ...

20

Refinery Stocks of Normal Butane/Butylene  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: "Other Oxygenates ...

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Normal Butane/Butylene - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Working storage ...

22

Normal Butane/Butylene Refinery Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

23

Refinery & Blender Net Production of Normal Butane/Butylene  

U.S. Energy Information Administration (EIA)

East Coast: 382: 612: 603: 584: 549-349: 1993-2013: Appalachian No. 1: 67: 42: 68: 37: 39: 16: 1995 ... La. Gulf Coast: 919: 1,323: 917: 984: 882: ...

24

Normal Butane/Butylene Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

25

Gulf Coast (PADD 3) Normal Butane-Butylene Stock Change ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981-58-3-1: 78: 50: 25: 31: 35: 70-11-92-132: 1982-70-64-93-26: 36: 46: 37: 39: 20-43-76-102: ...

26

Refinery Net Production of Normal Butane/Butylene  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

27

U.S. Product Supplied of Normal Butane-Butylene (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 134: 101: 124: 143: 117: 146: 151: 163: 188: 1990's: 110: 102: 113: 86: 128: 113 ...

28

U.S. Exports of Normal Butane-Butylene (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 316: 278: 293: 421: 330: 382: 312: 2,765: 310: 1,334: 991: 917: 1982: 1,314: 864: 1,174: ...

29

U.S. Refinery and Blender Net Input of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 237: 165: 117: 104: 77: 89: 80: 91: 144: 185: 242: 301: 1982: 243: 213: 144: 123: 120: ...

30

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 226: 214: 215: 222: 219: 218: 221: 219: 231: 247: 226: 203: 1982: 222: 219: 215: 219: 232: ...

31

U.S. Exports of Normal Butane-Butylene (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 31: 10: 9: 7: 8: 11: 11: 1990's: 12: 14: 16: 16: 14: 20: 23: 17: ...

32

Emissions with butane/propane blends  

Science Conference Proceedings (OSTI)

This article reports on various aspects of exhaust emissions from a light-duty car converted to operate on liquefied petroleum gas and equipped with an electrically heated catalyst. Butane and butane/propane blends have recently received attention as potentially useful alternative fuels. Butane has a road octane number of 92, a high blending vapor pressure, and has been used to upgrade octane levels of gasoline blends and improve winter cold starts. Due to reformulated gasoline requirements for fuel vapor pressure, however, industry has had to remove increasing amounts of butane form the gasoline pool. Paradoxically, butane is one of the cleanest burning components of gasoline.

NONE

1996-11-01T23:59:59.000Z

33

Ignition properties of n-butane and iso-butane in a rapid compression machine  

Science Conference Proceedings (OSTI)

Autoignition delay times of n-butane and iso-butane have been measured in a Rapid Compression Machine in the temperature range 660-1010 K, at pressures varying from 14 to 36 bar and at equivalence ratios {phi} = 1.0 and {phi} = 0.5. Both butane isomers exhibit a negative-temperature-coefficient (NTC) region and, at low temperatures, two-stage ignition. At temperatures below {proportional_to}900 K, the delay times for iso-butane are longer than those for the normal isomer, while above this temperature both butanes give essentially the same results. At temperatures above {proportional_to}720 K the delay times of the lean mixtures are twice those for stoichiometric compositions; at T butane using a comprehensive model for butane ignition, including both delay times in the two-stage region, with substantial differences being observed for iso-butane, particularly in the NTC region. (author)

Gersen, S.; Darmeveil, J.H. [Gasunie Engineering and Technology, P.O. Box 19, 9700 MA Groningen (Netherlands); Mokhov, A.V. [Laboratory for Fuel and Combustion Science, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Levinsky, H.B. [Gasunie Engineering and Technology, P.O. Box 19, 9700 MA Groningen (Netherlands); Laboratory for Fuel and Combustion Science, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

2010-02-15T23:59:59.000Z

34

Efficient Energy Usage in Butane Splitters  

E-Print Network (OSTI)

A World surplus of mixed butanes coupled with an increased need for gasoline extenders has raised the demand for isobutane. Isobutane is readily separated from an admixture with normal butane by conventional distillation techniques. However, application of the heat pump principle to this separation can reduce energy consumption by over 50%, though capital costs increase. The conventional fractionation scheme is compared to two different methods of applying the heat pump principle; overhead compression and bottoms flash compression. For both heat pump designs, payout time is less than one year for a Middle East location, based upon a detailed study of an actual case.

Barnwell, J.; Morris, C. P.

1982-01-01T23:59:59.000Z

35

Gulf Coast (PADD 3) Refinery Grade Butane Stocks at Bulk ...  

U.S. Energy Information Administration (EIA)

Gulf Coast (PADD 3) Refinery Grade Butane Stocks at Bulk Terminals (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 935: ...

36

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Plant Net Stocks Natural Gas Plant Net Stocks Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Butylene (C4H8) An olefinic hydrocarbon recovered from refinery processes. Ethane (C2H6) A normally gaseous straight-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of -127.48º F. It is extracted from natural gas and refinery gas streams. Isobutane (C4H10) A normally gaseous branch-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of 10.9º F. It is extracted from natural gas or refinery gas streams. Liquefied Petroleum Gases (LPG) A group of hydrocarbon-based gases derived from crude oil refining or nautral gas fractionation. They include: ethane, ethylene, propane, propylene, normal butane, butylene, isobutane, and isobutylene. For convenience of transportation, these gases are liquefied through pressurization.

37

Firing Excess Refinery Butane in Peaking Gas Turbines  

E-Print Network (OSTI)

New environmentally-driven regulations for motor gasoline volatility will significantly alter refinery light ends supply/demand balancing. This, in turn, will impact refinery economics. This paper presumes that one outcome will be excess refinery normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper identifies the fundamental driving forces which are changing refinery butane economics, examines how these forces influence refinery production, and evaluates the potential for using normal butanes as peaking utility gas turbine fuel, especially on the US East Coast.

Pavone, A.; Schreiber, H.; Zwillenberg, M.

1989-09-01T23:59:59.000Z

38

Coupling of oxidative dehydrogenation and aromatization reactions of butane  

Science Conference Proceedings (OSTI)

Coupling of oxidative dehydrogenation and aromatization of butane by using a dual function catalyst has led to a significant enhancement of the yields (from 25 to 40%) and selectivities to aromatics (from 39 to 64%). Butane is converted to aromatics by using either zinc-promoted [Ga]-ZSM-5 or zinc and gallium copromoted [Fe]-ZSM-5 zeolite as a catalyst. However, the formation of aromatics is severely limited by hydrocracking of butane to methane, ethane, and propane due to the hydrogen formed during aromatization reactions. On the other hand, the oxidative dehydrogenation of butane to butene over molybdate catalysts is found to be accompanied by a concurrent undesirable reaction, i.e., total oxidation. When two of these reactions (oxidative dehydrogenation and aromatization of butane) are coupled by using a dual function catalyst they have shown to complement each other. It is believed that the rate-limiting step for aromatization (butane to butene) is increased by adding an oxidative dehydrogenation catalyst (Ga-Zn-Mg-Mo-O). The formation of methane, ethane, and propane was suppressed due to the removal of hydrogen initially formed as water. Studies of ammonia TPD show that the acidities of [Fe]-ZSM-5 are greatly affected by the existence of metal oxides such as Ga[sub 2]O[sub 3], MgO, ZnO, and MoO[sub 3]. 40 refs., 9 figs., 1 tab.

Xu, Wen-Qing; Suib, S.L. (Univ. of Connecticut, Storrs, CT (United States))

1994-01-01T23:59:59.000Z

39

ADSORPTION AND BONDING OF BUTANE AND PENTANE ON THE Pt(111) CRYSTAL SURFACES. EFFECTS OF OXYGEN TREATMENTS AND DEUTERIUM PREADSORPTION  

E-Print Network (OSTI)

ADSORPTION AND BONDING OF BUTANE AND PENTANE ON THE .Pt(111)ADSORPTION AND BONDING OF BUTANE AND PENTANE ON THE Pt(lll)adsorption characteristics of butane and pentane on the (

Salmeron, M.

2012-01-01T23:59:59.000Z

40

Kinetics and deactivation of sulfated zirconia catalysts for butane isomerization  

Science Conference Proceedings (OSTI)

Reaction kinetics studies were conducted of n-butane and isobutane isomerization over sulfated zirconia at 423 K. The kinetic data can be described well by a rate expression based on a reversible, bimolecular surface reaction between two adsorbed n-C{sub 4} species, probably through a C{sub 8} intermediate, to produce one i-C{sub 4} species, as well as surface reaction between two adsorbed i-C{sub 4} species to produce one n-C{sub 4} species. This reaction sequence also describes well the rates of C{sub 4}-disproportionation reactions to produce C{sub 3} and C{sub 5} species. The initial rate of catalyst deactivation is faster during n-butane isomerization than during isobutane isomerization, and the longer-term rate of deactivation during n-butane isomerization increases with the pressures of n-butane. The more rapid catalyst deactivation during n-butane isomerization may be related to the formation of n-C{sub 4}-diene species. 25 refs., 10 figs., 4 tabs.

Fogash, K.B.; Larson, R.B.; Gonzalez, M.R. [Univ. of Wisconsin, Madison, WI (United States)] [and others] [Univ. of Wisconsin, Madison, WI (United States); and others

1996-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermochemistry of radicals formed by hydrogen abstraction from 1-butanol, 2-methyl-1-propanol, and butanal  

E-Print Network (OSTI)

, and butanal Ewa Papajak, Prasenjit Seal, Xuefei Xu, and Donald G. Truhlar Citation: J. Chem. Phys. 137, 104314 abstraction from 1-butanol, 2-methyl-1-propanol, and butanal Ewa Papajak, Prasenjit Seal, Xuefei Xu- propanol, and butanal. Electronic structure calculations for all conformers of the radicals were car- ried

Truhlar, Donald G

42

Transition events in butane simulations: Similarities across models Daniel M. Zuckermana)  

E-Print Network (OSTI)

Transition events in butane simulations: Similarities across models Daniel M. Zuckermana of long simulations of all-atom butane using both stochastic and fully solved molecular dynamics, we have behavior in molecular simulations has long been a topic of interest, and butane has been an important test

Zuckerman, Daniel M.

43

934 / JOURNAL OF ENVIRONMENTAL ENGINEERING / OCTOBER 2000 CHLORINATED SOLVENT COMETABOLISM BY BUTANE-GROWN  

E-Print Network (OSTI)

BY BUTANE-GROWN MIXED CULTURE By Young Kim,1 Daniel J. Arp,2 and Lewis Semprini3 ABSTRACT: A survey of aerobic cometabolism of chlorinated aliphatic hydrocarbons by a butane-grown mixed culture was performed and was inhibited by butane and inactivated by acetylene, indicating that a monooxygenase enzyme was likely involved

Semprini, Lewis

44

Surface Adsorption Isotherms and Surface Excess Densities of n-Butane in Silicalite-1  

E-Print Network (OSTI)

Surface Adsorption Isotherms and Surface Excess Densities of n-Butane in Silicalite-1 Isabella 27, 2008. ReVised Manuscript ReceiVed NoVember 13, 2008 We present isotherms for the adsorption of n-butane have thus studied, as a representative example, the adsorption properties of one hy- drocarbon, n-butane

Kjelstrup, Signe

45

==================== !"#$%&'()*+,-+./,0)12 Development of Micro Ejector for Butane Catalytic Combustor  

E-Print Network (OSTI)

==================== !"#$%&'()*+,-+./,0)12 Development of Micro Ejector for Butane Catalytic Combustor ===== ==== !" = !" = = !" A micro ejector for butane catalytic combustor is investigated. Quasi-1 ejector that the volume flow rate of entrained air can reach 43 times the value of butane when the back

Kasagi, Nobuhide

46

Raman and IR spectra of butane: Anharmonic calculations and interpretation of room temperature spectra  

E-Print Network (OSTI)

Raman and IR spectra of butane: Anharmonic calculations and interpretation of room temperature-principles anharmonic calculations are carried out for the IR and Raman spectra of the CAH stretch- ing bands in butane.V. All rights reserved. 1. Introduction n-Butane is of great importance in several disciplines

Potma, Eric Olaf

47

Cometabolic transformation of cis-1,2-dichloroethylene and cis-1,2-dichloroethylene epoxide by a butane-  

E-Print Network (OSTI)

by a butane- grown mixed culture Y. Kim* and L. Semprini** *Department of Environmental Engineering, Korea cometabolism of cis-1,2-dichloroethylene (c-DCE) by a butane-grown mixed culture was evaluated in batch kinetic by butane and was inactivated by acetylene (a known monooxygenase inactivator), indicating that a butane

Semprini, Lewis

48

Transient FTIR studies of the reaction pathway for n-butane selective oxidation over vanadyl pyrophosphate  

SciTech Connect

New information has been provided about the reaction pathway for n-butane partial oxidation to maleic anhydride over vanadyl pyrophosphate (VPO) catalysts using FTIR spectroscopy under transient conditions. Adsorption studies of n-butane, 1,3-butadiene, and related oxygenates were performed to gain information about reaction intermediates. n-Butane was found to adsorb on the VPO catalyst to form olefinic species at low temperatures. Unsaturated, noncyclic carbonyl species were determined to be precursors to maleic anhydride.

Xue, Z.Y.; Schrader, G.L. [Ames Lab., IA (United States)] [Ames Lab., IA (United States); [Iowa State Univ., Ames, IA (United States). Dept. of Chemical Engineering

1999-05-15T23:59:59.000Z

49

Investigating the basis of substrate specificity in butane monooxygenase and chlorinated ethene toxicity in Pseudomonas butanovora.  

E-Print Network (OSTI)

??Pseudomonas butanovora, Mycobacterium vaccae, and Nocardioides sp. CF8 utilize distinctly different butane monooxygenases (BMOs) to initiate degradation of recalcitrant chlorinated ethenes (CEs) that pollute aquifers… (more)

[No author

2007-01-01T23:59:59.000Z

50

Dc slice imaging, crossed beam reaction of chlorine radical with butane.  

E-Print Network (OSTI)

?? We present an investigation of the reaction dynamics of Cl radicals with Butane using crossed molecular beams, at two collision energies: ~ 6.5 and… (more)

Abdul ghani, Tarek Oussama

2012-01-01T23:59:59.000Z

51

EIA’s Proposed NGL Realignment: Overview of Proposed Changes  

U.S. Energy Information Administration (EIA)

Water . Dry Gas . Olefins (Ethylene, Propylene, Butylene, Isobutylene) Hydrocarbon Gas Liquids . Natural Gas Liquids (Ethane, Propane, Butanes, & Pentanes Plus) 2 .

52

Transition Events in Butane Simulations: Similarities Across Models  

E-Print Network (OSTI)

From a variety of long simulations of all-atom butane using both stochastic and fully-solved molecular dynamics, we have uncovered striking generic behavior which also occurs in one-dimensional systems. We find an apparently universal distribution of transition event durations, as well as a characteristic speed profile along the reaction coordinate. An approximate analytic distribution of event durations, derived from a one-dimensional model, correctly predicts the asymptotic behavior of the universal distribution for both short and long durations. 1 1

Daniel M. Zuckerman; Thomas B. Woolf

2008-01-01T23:59:59.000Z

53

Transition Events in Butane Simulations Similarities Across Models  

E-Print Network (OSTI)

From a variety of long simulations of all-atom butane using both stochastic and fully-solved molecular dynamics, we have uncovered striking generic behavior which also occurs in one-dimensional systems. We find an apparently universal distribution of transition event durations, as well as a characteristic speed profile along the reaction coordinate. An approximate analytic distribution of event durations, derived from a one-dimensional model, correctly predicts the asymptotic behavior of the universal distribution for both short and long durations.

Zuckerman, D M; Zuckerman, Daniel M.; Woolf, Thomas B.

2001-01-01T23:59:59.000Z

54

198 J. Am. Chem. SOC.1994,116, 198-203 Hydrodesulfurization of Thiophene to Butadiene and Butane  

E-Print Network (OSTI)

198 J. Am. Chem. SOC.1994,116, 198-203 Hydrodesulfurization of Thiophene to Butadiene and Butane. Reaction of the butadiene complex with H2 produces butane. Introduction

Jones, William D.

55

Experimental and DFT studies of initiation processes for butane isomerization over sulfated-zirconia catalysts  

SciTech Connect

Reaction kinetics studies were conducted of isobutane and n-butane isomerization at 423 K over sulfated-zirconia, with the butane feeds purified of olefins. Dihydrogen evolution was observed during butane isomerization over fresh catalysts, as well as over catalysts selectively poisoned by preadsorbed ammonia. Butane isomerization over sulfated-zirconia can be viewed as a surface chain reaction comprised of initiation, propagation, and termination steps. The primary initiation step in the absence of feed olefins is considered to be the dehydrogenation of butane over sulfated-zirconia, generating butenes which adsorb onto acid sites to form protonated olefinic species associated with the conjugate base form of the acid sites. Quantum-chemical calculations, employing density-functional theory, suggest that the dissociative adsorption of dihydrogen, isobutylene hydrogenation, and dissociative adsorption of isobutane are feasible over the sulfated-zirconia cluster, and these reactions take place over Zr-O sites.

Hong, Z.; Watwe, R.M.; Natal-Santiago, M.A.; Hill, J.M.; Dumesic, J.A. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Chemical Engineering] [Univ. of Wisconsin, Madison, WI (United States). Dept. of Chemical Engineering; Fogash, K.B. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [Air Products and Chemicals, Inc., Allentown, PA (United States); Kim, B. [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemical Engineering] [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemical Engineering; Masqueda-Jimenez, B.I. [Univ. Autonoma de San Luis Potosi (Mexico). Centro de Investigacion y Estudios de Posgrado] [Univ. Autonoma de San Luis Potosi (Mexico). Centro de Investigacion y Estudios de Posgrado

1998-09-10T23:59:59.000Z

56

Momentum Profile and Final Correlation Effects of Iso-butane Inner Valence by Binary (e, 2e) Spectroscopy  

E-Print Network (OSTI)

Momentum Profile and Final Correlation Effects of Iso-butane Inner Valence by Binary (e, 2e Momentum Profile and Final Correlation Effects of Iso-butane Inner Valence by Binary (e, 2e) Spectroscopy) The binding energy spectra and the momentum distributions of the valence orbitals of iso-butane, also known

Wang, Yayu

57

J. Am. Chem. SOC.1988, 110, 8305-8319 8305 Hydrogenolysis of Ethane, Propane, n-Butane, and Neopentane  

E-Print Network (OSTI)

J. Am. Chem. SOC.1988, 110, 8305-8319 8305 Hydrogenolysis of Ethane, Propane, n-Butane, Pasadena, California 91125. Received February I, 1988 Abstract: The hydrogenolysisof ethane, propane, n-butane in "demethylization"of the parent hydrocarbon. For n-butane, the major reaction channels on the two surfaces are n-C4

Goodman, Wayne

58

Bioaugmentation of butane-utilizing microorganisms to promote cometabolism of 1,1,1-trichloroethane in groundwater microcosms  

E-Print Network (OSTI)

Bioaugmentation of butane-utilizing microorganisms to promote cometabolism of 1,1,1-trichloroethane. The initial inoculum for bioaugmentation was a butane-utilizing enrichment from the subsurface of the Hanford DOE site. The non-augmented microcosm required 80 days of incubation before butane

Semprini, Lewis

59

Faraday Discuss. Chem. SOC.,1989, 87, 337-344 Butane Hydrogenolysis over Single-crystal Rhodium Catalysts  

E-Print Network (OSTI)

Faraday Discuss. Chem. SOC.,1989, 87, 337-344 Butane Hydrogenolysis over Single-crystal Rhodium&M University, College Station, Texas 77843, U.S.A. Hydrogenolysis of n-butane has been studied over the (110 of surface composition and geometry.' For example, in our laboratories, the activity for ethane' and butane

Goodman, Wayne

60

Ionization of ethane, butane, and octane in strong laser fields  

Science Conference Proceedings (OSTI)

Strong-field photoionization of ethane, butane, and octane are reported at intensities from 10{sup 14} to 10{sup 17} W/cm{sup 2}. The molecular fragment ions, C{sup +} and C{sup 2+}, are created in an intensity window from 10{sup 14} to 10{sup 15} W/cm{sup 2} and have intensity-dependent yields similar to the molecular fragments C{sub m}H{sub n}{sup +} and C{sub m}H{sub n}{sup 2+}. In the case of C{sup +}, the yield is independent of the molecular parent chain length. The ionization of more tightly bound valence electrons in carbon (C{sup 3+} and C{sup 4+}) has at least two contributing mechanisms, one influenced by the parent molecule size and one resulting from the tunneling ionization of the carbon ion.

Palaniyappan, Sasi; Mitchell, Rob; Ekanayake, N.; Watts, A. M.; White, S. L.; Sauer, Rob; Howard, L. E.; Videtto, M.; Mancuso, C.; Wells, S. J.; Stanev, T.; Wen, B. L.; Decamp, M. F.; Walker, B. C. [Physics and Astronomy Department, University of Delaware, Newark, Delaware 19716 (United States)

2010-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

METHANE AND n-BUTANE OXIDATION WITH CO2 UNDER RADIOFREQUENCY PLASMAS OF MODERATE PRESSURES (*)  

E-Print Network (OSTI)

1205 METHANE AND n-BUTANE OXIDATION WITH CO2 UNDER RADIOFREQUENCY PLASMAS OF MODERATE PRESSURES) Résumé. 2014 L'oxydation du méthane et du n-butane avec CO2 a été étudiée dans des décharges électriques intermédiaires en C2 (C2H2, C2H4, C2H6) qui est la voie principale pour convertir mé- thane et n-butane en CO

Paris-Sud XI, Université de

62

U.S. Refinery and Blender Net Production of Normal Butane ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery and Blender Net Production of Normal Butane (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993-884: 268: 4,851: 6,387: 6,489 ...

63

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; ...

64

Unimolecular dissociations of ionized azo-tert-butane and acetone azine .  

E-Print Network (OSTI)

??This M.Sc. thesis presents an experimental and a theoretical study of azo-tert-butane and acetone azine ions which belong to the azo and azine class of… (more)

Rabaev, Madlena

2008-01-01T23:59:59.000Z

65

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 1,077: 999: 1,362: ...

66

Improving the stability of H-mordenite for n-butane isomerization  

SciTech Connect

The conversion of n-butane over mordenite-based catalysts in the presence of hydrogen and water was investigated for reaction temperatures between 523 and 623 K. Special attention was given to the influence of Pt upon catalytic activity, selectivity, and stability. With parent mordenite the catalytic activity for n-butane conversion decreased markedly after a short time on stream. Deactivation can be minimized by hydrogen (in the presence of Pt) and water addition. Both measures are thought to reduce the concentration of intermediate olefins in the zeolite pores. The best results with respect to selective conversion of n-butane to isobutane were obtained for 0.25 wt% Pt on mordenite in the presence of hydrogen. Higher concentrations of Pt in the catalyst are shown to be detrimental for n-butane isomerization, because of increasing selectivity to hydrogenolysis. A detailed mechanistic scheme for n-butane conversion over Pt-containing mordenites is presented. n-Butane conversion is concluded to occur via a bimolecular mechanism involving a complex network of hydrogen transfer, oligomerization/cracking, isomerization, hydrogenation/dehydrogenation, and hydrogenolysis. 23 refs., 14 figs., 5 tabs.

Asuquo, R.A.; Eder-Mirth, G.; Lercher, J.A. [Catalysis Univ. of Twente, Enschede (Netherlands)] [and others] [Catalysis Univ. of Twente, Enschede (Netherlands); and others

1997-06-01T23:59:59.000Z

67

Stat 511 MS Exam, Spring 2003 Page 1 of 3 This question concerns several analyses of a small set of data on the operation of a Butane  

E-Print Network (OSTI)

of data on the operation of a Butane Hydrogenolysis Reactor. The response variable percent conversion (cc/sec at STP) feed ratio (Hydrogen/Butane) the reactor wall temperature ( F) flow ratio temp

Vardeman, Stephen B.

68

Low temperature n-butane oxidation skeletal mechanism, based on multilevel approach  

Science Conference Proceedings (OSTI)

In order to reconcile an increasingly large deviation (order of magnitude) of the ignition delay time at decreasing initial temperature, computed using the prior art kinetic schemes, with the available experimental values, a new skeletal mechanism (54 species, 94 reactions) for low-temperature (500-800 K) ignition of n- butane in air based on ab initio calculations is developed. The skeletal mechanism obtained accurately reproduces n-butane combustion kinetics for the practically important ranges of pressure, temperature and fuel-air equivalence ratio, especially in the low-temperature range. The elaborated first principal skeletal chemical kinetic mechanism of n-butane oxidation was validated against available experimental results for normal and elevated initial pressure (1-15 atm) using the Chemical Work Bench code. A good agreement with experiments was shown. (author)

Strelkova, M.I.; Sukhanov, L.P.; Kirillov, I.A. [RRC Kurchatov Institute, Kurchatov Sq.1, 123182 Moscow (Russian Federation); Safonov, A.A. [Kintech Lab., Kurchatov Sq.1, 123182 Moscow (Russian Federation); Photochemistry Center, Novatorov Str. 7a, 119421 Moscow (Russian Federation); Umanskiy, S.Ya. [Kintech Lab., Kurchatov Sq.1, 123182 Moscow (Russian Federation); N.N.Semenov Institute of Chemical Physics, Kosygin Str. 4, 119991 Moscow (Russian Federation); Potapkin, B.V. [RRC Kurchatov Institute, Kurchatov Sq.1, 123182 Moscow (Russian Federation); Kintech Lab., Kurchatov Sq.1, 123182 Moscow (Russian Federation); Pasman, H.J. [Delft University of Technology, Postbus 5, 2600 AA Delft (Netherlands); Tentner, A.M. [Argonne National Laboratories, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

2010-04-15T23:59:59.000Z

69

Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium  

E-Print Network (OSTI)

Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 AND ENVIRONMENTAL MICROBIOLOGY 63 (9): 3607-3613 SEP 1997 Abstract: Chloroform (CF) degradation by a butane-grown enrichment culture, CF8, was compared to that by butane-grown Pseudomonas butanovora and Mycobacterium vaccae

Semprini, Lewis

70

Statistical thermodynamics of 1-butanol, 2-methyl-1-propanol, and butanal Prasenjit Seal, Ewa Papajak, Tao Yu, and Donald G. Truhlar  

E-Print Network (OSTI)

Statistical thermodynamics of 1-butanol, 2-methyl-1-propanol, and butanal Prasenjit Seal, Ewa-body decomposition of ethanedial, propanal, propenal, n-butane, 1-butene, and 1,3-butadiene J. Chem. Phys. 136, and butanal Prasenjit Seal, Ewa Papajak, Tao Yu, and Donald G. Truhlara) Department of Chemistry

Truhlar, Donald G

71

Bioaugmentation with butane-utilizing microorganisms to promote in situ cometabolic treatment of 1,1,1-trichloroethane and 1,1-dichloroethene  

E-Print Network (OSTI)

Bioaugmentation with butane-utilizing microorganisms to promote in situ cometabolic treatment of 1) through bioaugmentation with a butane enrichment culture containing predominantly two Rhodococcus sp of butane and dissolved oxygen and or hydrogen peroxide as sources of dissolved oxygen, about 70% removal

Semprini, Lewis

72

Transport coefficients of n-butane into and through the surface of silicalite-1 from non-equilibrium molecular dynamics study  

E-Print Network (OSTI)

Transport coefficients of n-butane into and through the surface of silicalite-1 from non dynamics Non-equilibrium thermodynamics Silicalite-1 n-Butane adsorption a b s t r a c t We have studied coupled heat and mass transfer of n-butane through a membrane of silicalite-1. A description

Kjelstrup, Signe

73

Selective oxidation of n-butane and butenes over vanadium-containing catalysts  

Science Conference Proceedings (OSTI)

The oxidative dehydrogenation (OXDH) of n-butane, 1-butene, and trans-2-butene on different vanadia catalysts has been compared. MgO, alumina, and Mg-Al mixed oxides with Mg/(Al + Mg) ratios of 0.25 and 0.75 were used as supports. The catalytic data indicate that the higher the acid character of catalysts the lower is both the selectivity to C{sub 4}-olefins from n-butane and the selectivity to butadiene from both 1-butene or trans-2-butene. Thus, OXDH reactions are mainly observed from n-butane and butenes on basic catalysts. The different catalytic performance of both types of catalysts is a consequence of the isomerization of olefins on acid sites, which appears to be a competitive reaction with the selective way, i.e., the oxydehydrogenation process by a redox mechanism. Infrared spectroscopy data of 1-butene adsorbed on supported vanadium oxide catalysts suggest the presence of different adsorbed species. O-containing species (carbonyl and alkoxide species) are observed on catalysts with acid sites while adsorbed butadiene species are observed on catalysts with basic sites. According to these results a reaction network for the oxydehydrogenation of n-butane is proposed with parallel and consecutive reactions.

Nieto, J.M.L.; Concepcion, P.; Dejoz, A.; Knoezinger, H.; Melo, F.; Vazquez, M.I.

2000-01-01T23:59:59.000Z

74

Formative time of breakdown modeled for the ignition of air and n-butane mixtures using effective ionization coefficients  

Science Conference Proceedings (OSTI)

It is shown that simulations of ignition by electric arc discharge in n-butane and air mixtures have interesting features, which deviate from results obtained by simple extension of calculations based on methanelike fuels. In particular, it is demonstrated that lowering the temperature of the n-butane-air mixture before ignition under certain conditions will actually decrease the ignition stage time as well as the required electric field.

Kudryavtsev, A. A.; Popugaev, S. D. [St. Petersburg State University, St. Petersburg 198904 (Russian Federation); Demidov, V. I. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Adams, S. F. [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Jiao, C. Q. [ISSI Inc., Dayton, Ohio 45440-3638 (United States)

2008-12-15T23:59:59.000Z

75

Dynamics of Exchange at Gas-Zeolite Interfaces 1: Pure Component n-Butane and Isobutane  

SciTech Connect

The authors present the results of molecular dynamics simulations of n-butane and isobutane in silicalite. They begin with a comparison of the bulk adsorption and diffusion properties for two different parameterizations of the interaction potential between the hydrocarbon species, both of which have been shown to reproduce experimental gas-liquid coexistence curves. They examine diffusion as a function of the loading of the zeolite, as well as the temperature dependence of the diffusion constant at loading and for infinite dilution. They continue with simulations in which interfaces are formed between single component gases and the zeolite. After reaching equilibrium, they examine the dynamics of exchange between the bulk gas and the zeolite. Finally, they calculate the permeability of the zeolite for n-butane and isobutane as a function of pressure. Their simulations are performed for a number of different gas temperatures and pressures, covering a wide range of state points.

CHANDROSS,MICHAEL E.; WEBB III,EDMUND B.; GREST,GARY S.; MARTIN,MARCUS G.; THOMPSON,AIDAN P.; ROTH,M.W.

2000-07-13T23:59:59.000Z

76

Saving Energy and Reducing Emissions from the Regeneration Air System of a Butane Dehydrogenation Plant  

E-Print Network (OSTI)

Texas Petrochemicals operates a butane dehydrogenation unit producing MTBE for reformulated gasoline that was originally constructed when energy was cheap and prior to environmental regulation. The process exhausts 900,000 pounds per hour of air at 900 to 1100°F containing CO and VOC. By installing a furnace/heat recovery steam generator, Texas Petrochemicals achieved significant reductions of VOC, CO, and NOx, along with energy savings.

John, T. P.

1998-04-01T23:59:59.000Z

77

Thermodynamics of Liquid Mixtures of Xenon with Alkanes: (Xenon + n-Butane) and (Xenon + Isobutane)  

E-Print Network (OSTI)

The total vapor pressure of liquid mixtures of (xenon + n-butane) has been measured at 182.34 and 195.49 K, and of (xenon + isobutane) at 195.49 K. The liquid molar volumes have also been measured at 182.34 K for both systems. The mixtures follow the behavior already found for other (xenon + alkane) mixtures, i.e., E negative deviations from Raoult’s law, negative excess molar Gibbs energies (Gm) and negative excess molar

Eduardo J. M. Filipe; Luís F. G. Martins; Jorge C. G. Calado; Clare Mccabe; George Jackson

1999-01-01T23:59:59.000Z

78

A B  

Gasoline and Diesel Fuel Update (EIA)

oils and diesel) Crude oil and lease condensate Motor gasoline LPG (Ethane, ethylene, propane, propylene, butane, butylene) Natural gas Anthracite Bituminous and subbituminous...

79

U.S. Exports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Propane/Propylene: 308: 269: 271: 294: 335: 408: 1973-2013: Normal Butane/Butylene: 30: 33: 48: 44: 30: 20: 1981-2013: Isobutane/Isobutylene : ...

80

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

82

OMB No. 1905-0165 Expiration Date: 1/31/2013 Version No.:2011 ...  

U.S. Energy Information Administration (EIA)

Propane/Propylene: 246 Normal Butane/Butylene 244 ... Report storage capacity of trans-shipment and other tanks and underground storage operated as ...

83

OMB No. 1905-0165 Version No.:xxxx.xx FORM EIA-812 MONTHLY ...  

U.S. Energy Information Administration (EIA)

Propane/Propylene. 246: Normal Butane/Butylene. 244: ... Report storage capacity of trans-shipment and other tanks and underground storage operated as ...

84

ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION...  

Open Energy Info (EERE)

> 0.001 mol % typically have ethane > ethylene, propane > propylene, and butane > butylene. There are three end member fluid compositions: type 1 fluids in which...

85

Gulf Coast (PADD 3) Net Receipts by Pipeline, Tanker, and ...  

U.S. Energy Information Administration (EIA)

Gulf Coast (PADD 3) Net Receipts by Pipeline, Tanker, and Barge from Other PADDs of Normal Butane-Butylene (Thousand Barrels per Day)

86

Safe Operating Procedure (Revised 7/09)  

E-Print Network (OSTI)

://ehs.unl.edu/) LPG includes propane, butane, and butylenes used for heating, cooking, and fuel. The purpose Food Service No more than two 10 ounce non-refillable butane cylinders in use per appliance

Farritor, Shane

87

Effect of Pt and H{sub 2} on n-butane isomerization over Fe and Mn promoted sulfated zirconia  

Science Conference Proceedings (OSTI)

The activity of a 0.4 wt% Pt-containing Fe and Mn promoted sulfated zirconia (PtSFMZ) catalyst in n-butane isomerization at 35{degrees}C was compared to that of a Pt-free catalyst (SFMZ). The maximum rate of n-butane conversion observed in helium over PtSFMZ was found to be 2.5 times higher than that over the SFMZ catalyst under the same conditions. It is believed that n-butane isomerization proceeds via a bimolecular mechanism in which the formation of hydrogen-deficient intermediates (carbenium ions and butenes), is necessary and the presence of transition metals such as Pt, Fe, and Mn on sulfated zirconia facilitates the formation/accumulation of these intermediates and increases their stability on the catalyst surface. The presence of H{sub 2} had a strong negative effect on n-butane conversion over PtSFMZ, but had no effect over SFMZ. The negative effect of H{sub 2} on PtSFMZ catalyst in n-butane isomerization reaction was attributed to the decreased concentration of butenes in the presence of hydrogen atoms which are formed by the dissociation of H{sub 2} on Pt. The ability of calcined Pt-containing catalysts to activate hydrogen at 35{degrees}C was demonstrated. Reduced SFMZ with or without Pt was not active at 35{degrees}C regardless of the nature of the carrier gas. 42 refs., 5 figs.

Song, Xuemin; Reddy, K.R.; Sayari, A. [Universite Laval, Quebec (Canada)] [Universite Laval, Quebec (Canada)

1996-06-01T23:59:59.000Z

88

Structure of an n-butane monolayer adsorbed on magnesium oxide (100)  

Science Conference Proceedings (OSTI)

Neutron diffraction has been used to characterize the structure of the solid phase of the completed monolayer of n butane on the MgO(100) surface at low temperature. The monolayer is found to adopt a commensurate (7{radical}(2)x{radical}(2)R45 deg. ) structure with lattice constants a=29.47 A ring and b=4.21 A ring , P{sub 2gg} symmetry and four molecules in the unit cell. Excellent agreement with the experimental diffraction pattern is realized, using a Lorenztian profile to describe the line shape.

Arnold, T. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Chanaa, S.; Cook, R. E. [Department of Chemistry, Buehler Hall, University of Tennessee, Knoxville, Tennessee 37996 (United States); Clarke, S. M. [BP Institute and Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Larese, J. Z. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Department of Chemistry, Buehler Hall, University of Tennessee, Knoxville, Tennessee 37996 (United States)

2006-08-15T23:59:59.000Z

89

Gas processing/The boiling behavior of LPG and liquid ethane, ethylene, propane, and n-butane spilled on water  

SciTech Connect

Boiling-rate calorimeter studies showed that unlike liquid nitrogen, methane, and LNG, LPG (84.7% propane, 6.0% ethane, and 9.3% n-butane; 442/sup 0/C bp), or pure propane, when rapidly spilled on water, reacted violently, ejecting water and ice into the vapor space; but in 1-2 sec, a coherent ice layer was formed and further boiloff was quiet and well predicted by a simple one-dimensional, moving-boundary-value, heat transfer model with a growing ice shield. Increasing the content of ethane and butane in LPG to 20% and 10%, respectively, had almost no effect on the LPG boiling, indicating that boiling may be modeled by using pure propane. Ethane, ethylene, and n-butane behaved quite differently from LPG. In spills of pure liquid propane on solid ice, the boiloff rate was almost identical to that predicted by the moving-boundary model.

Reid, R.C.; Smith, K.A.

1978-04-01T23:59:59.000Z

90

Thermodynamics of the liquid mixture carbon dioxide + butane below 285 K topical report  

SciTech Connect

Carbon dioxide and butane are frequently encountered as minor components of natural gas. These will liquefy first as it is cooled, so a knowledge of their vapor-liquid equilibrium behavior, especially at low temperatures, is desirable. However, only one isotherm of vapor-liquid equilibrium data below 250 K is available in the literature. Models of phase equilibrium can be expressed in terms of the excess Gibbs free energy, and the temperature dependence of the excess Gibbs free energy is related to the excess enthalpy. Thus measurements of excess enthalpy may be combined with phase equilibrium measurements to produce a model that gives reliable vapor-liquid equilibrium predictions. Under the contract, measurements of the heat of mixing of liquid n-butane with liquid carbon dioxide were performed at two temperatures below 250 K in a flow calorimeter. A maximum likelihood method was used to combine these calorimetric results with available vapor-liquid equilibrium data to produce a model of the nonideality in this system that gives much more reliable estimates of the phase equilibrium pressures, compositions, and enthalpies than had been available before.

Hall, E.J.; Guedes, H.J.R.; Zollweg, J.A.

1991-03-01T23:59:59.000Z

91

n-Butane: Ignition delay measurements at high pressure and detailed chemical kinetic simulations  

Science Conference Proceedings (OSTI)

Ignition delay time measurements were recorded at equivalence ratios of 0.3, 0.5, 1, and 2 for n-butane at pressures of approximately 1, 10, 20, 30 and 45 atm at temperatures from 690 to 1430 K in both a rapid compression machine and in a shock tube. A detailed chemical kinetic model consisting of 1328 reactions involving 230 species was constructed and used to validate the delay times. Moreover, this mechanism has been used to simulate previously published ignition delay times at atmospheric and higher pressure. Arrhenius-type ignition delay correlations were developed for temperatures greater than 1025 K which relate ignition delay time to temperature and concentration of the mixture. Furthermore, a detailed sensitivity analysis and a reaction pathway analysis were performed to give further insight to the chemistry at various conditions. When compared to existing data from the literature, the model performs quite well, and in several instances the conditions of earlier experiments were duplicated in the laboratory with overall good agreement. To the authors' knowledge, the present paper presents the most comprehensive set of ignition delay time experiments and kinetic model validation for n-butane oxidation in air. (author)

Healy, D.; Curran, H.J. [Combustion Chemistry Centre, School of Chemistry, NUI Galway (Ireland); Donato, N.S.; Aul, C.J.; Petersen, E.L. [Department of Mechanical Engineering, Texas A and M University, College Station, TX (United States); Zinner, C.M. [Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL (United States); Bourque, G. [Rolls-Royce Canada Limited, 9500 Cote de Liesse, Lachine, Quebec, H8T 1A2 (Canada)

2010-08-15T23:59:59.000Z

92

Support shape effect in metal oxide catalysis: ceria nanoshapes supported vanadia catalysts for oxidative dehydrogenation of iso-butane  

SciTech Connect

The activation energy of VOx/CeO2 catalysts in oxidative dehydrogenation of iso-butane was found dependent on the shape of ceria support: rods < octahedra, closely related to the surface oxygen vacancy formation energy and defects amount of the two ceria supports with different crystallographic surface planes.

Wu, Zili [ORNL; Schwartz, Viviane [ORNL; Li, Meijun [ORNL; Rondinone, Adam Justin [ORNL; Overbury, Steven {Steve} H [ORNL

2012-01-01T23:59:59.000Z

93

Adsorption of iso-/n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study  

SciTech Connect

Binding energies and adsorption probabilities have been determined for n/iso-butane adsorption on an anatase thin film grown on SrTiO3(001) by means of thermal desorption spectroscopy (TDS) and molecular beam scattering. The sample has been characterized by x-ray diffraction (XRD) and Auger electrons spectroscopy (AES).

Goering, J.; Kadossov, E.; Burghaus, Uwe; Yu, Zhongqing; Thevuthasan, Suntharampillai; Saraf, Laxmikant V.

2007-07-01T23:59:59.000Z

94

n-Alkanes on MgO(100). I: Coverage-Dependent Desorption Kinetics of n-Butane  

SciTech Connect

High quality temperature programmed desorption (TPD) measurements of n-butane from MgO(100) have been made for a large number of initial butane coverages (0-3.70 ML) and a wide range of heating ramp rates (0.3-10 K/s). We present a TPD analysis technique which allows the coverage-dependent desorption energy to be accurately determined by mathematical inversion of a TPD spectrum, assuming only that the prefactor is coverage-independent. A variational method is used to determine the prefactor that minimizes the difference between a set of simulated TPD spectra and corresponding experimental data. The best fit for butane desorption from MgO is obtained with a prefactor of 1015.7?1.6 s-1. The desorption energy is 34.9?3.4 kJ/mol at 0.5 ML coverage, and varies with coverage. Simulations based on these results can accurately reproduce TPD experiments for submonolayer initial coverages over a wide range of heating ramp rates (0.3-10 K/s). Advantages and limitations of this method are discussed.

Tait, Steven L.; Dohnalek, Zdenek; Campbell, C T.; Kay, Bruce D.

2005-04-22T23:59:59.000Z

95

Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture  

E-Print Network (OSTI)

,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture Kim Y, Arp DJ, Semprini L BIOTECHNOLOGY,1- dichloroethane (1,1-DCA) by a butane-grown mixed culture. These chlorinated aliphatic hydrocarbons (CAHs for butane (2.6 mumol/mg TSS/ h) followed by 1,1-DCE (1.3 mumol/mg TSS/h), 1,1-DCA (0.49 mumol/mg TSS

Semprini, Lewis

96

A study of the kinetics and mechanism of the adsorption and anaerobic partial oxidation of n-butane over a vanadyl pyrophosphate catalyst  

SciTech Connect

The interaction of n-butane with a ((VO){sub 2}P{sub 2}O{sub 7}) catalyst has been investigated by temperature-programmed desorption and anaerobic temperature-programmed reaction. n-Butane has been shown to adsorb on the (VO){sub 2}P{sub 2}O{sub 7} to as a butyl-hydroxyl pair. When adsorption is carried out at 223 K, upon temperature programming some of the butyl-hydroxyl species recombine resulting in butane desorption at 260 K. However, when adsorption is carried out at 423 K, the hydroxyl species of the butyl-hydroxyl pair migrate away from the butyl species during the adsorption, forming water which is detected in the gas phase. Butane therefore is not observed to desorb at 260 K after the authors lowered the temperature to 223 K under the butane/helium from the adsorption temperature of 423 K prior to temperature programming from that temperature to 1100 K under a helium stream. Anaerobic temperature-programmed oxidation of n-butane produces butene and butadiene at a peak maximum temperature of 1000 K; this is exactly the temperature at which, upon temperature programming, oxygen evolves from the lattice and desorbs as O{sub 2}. This, and the fact that the amount of oxygen desorbing from the (VO){sub 2}P{sub 2}O{sub 7} at {approximately}1000 K is the same as that required for the oxidation of the n-butane to butene and butadiene, strongly suggests (1) that lattice oxygen as it emerges at the surface is the selective oxidant and (2) that its appearance at the surface is the rate-determining step in the selective oxidation of n-butane. The surface of the (VO){sub 2}P{sub 2}O{sub 7} catalyst on which this selective oxidation takes place has had approximately two monolayers of oxygen removed from it by unselective oxidation of the n-butane to CO, CO{sub 2}, and H{sub 2}O between 550 and 950 K and has had approximately one monolayer of carbon deposited on it at {approximately}1000 K. It is apparent, therefore, that the original crystallography of the (VO){sub 2}P{sub 2}O{sub 7} catalyst will not exist during this selective oxidation and that theories that relate selectivity in partial oxidation to the (100) face of the (VO){sub 2}P{sub 2}O{sub 7} catalyst cannot apply in this case.

Sakakini, B.H.; Taufiq-Yap, Y.H.; Waugh, K.C.

2000-01-25T23:59:59.000Z

97

Toward Understanding the Nature of Internal Rotation Barriers with a New Energy Partition Scheme: Ethane and n-Butane  

Science Conference Proceedings (OSTI)

Based on an alternative energy partition scheme where density-based quantification of the steric effect was proposed [S.B. Liu, J. Chem. Phys. 126, 244103 (2007)], the origin of the internal rotation barrier between the eclipsed and staggered conformers of ethane and n-butane is systematically investigated in this work. The new definition is repulsive, exclusive, and extensive, and is intrinsically related to Bader’s atoms in molecules approach. Two kinds of differences, adiabatic (with optimal structure) and vertical (with fixed geometry), are considered in this work. We find that in the adiabatic case the eclipsed conformer possesses a larger steric repulsion than the staggered conformer for both molecules, but in the vertical cases the staggered conformer retains a larger steric repulsion. For ethane, a strong correlation between the total energy difference and the fermionic quantum energy difference is discovered. This linear relationship, however, does not hold for n-butane, whose behaviors in energy component differences are found to be more complicated. The impact of basis set and density functional choices on energy components from the new energy partition scheme has been investigated, as has its comparison with another definition of the steric effect in the literature in terms of the natural bond orbital analysis through the Pauli Exclusion Principle. Profiles of conceptual DFT reactivity indices as a function of dihedral angle changes have also been examined. Put together, these results suggest that the new energy partition scheme provides insights from a different perspective of internal rotation barriers.

Liu, Shubin; Govind, Niri

2008-07-24T23:59:59.000Z

98

West Coast (PADD 5) Product Supplied for Crude Oil and ...  

U.S. Energy Information Administration (EIA)

Area: 2007 2008 2009 2010 2011 2012 View History; Total Crude Oil and Petroleum Products: 3,235: 3,057: 2,845: 2,903: ... 51: 1989-2012: Normal Butane/Butylene-3: 2-3 ...

99

U.S. Product Supplied for Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Propane/Propylene: 1,235: 1,154: 1,160: 1,160: 1,153: 1,175: 1973-2012: Normal Butane/Butylene: 101: 111: 72: 108: 68: 77: 1981-2012: ... 1985-2012: ...

100

U.S. Natural Gas Processing Plant  

U.S. Energy Information Administration (EIA) Indexed Site

647 837 1993-2012 PropanePropylene 864 1,575 1,329 1,371 1,505 1,944 1993-2012 Normal ButaneButylene 646 1,373 907 1,292 688 907 1993-2012 IsobutaneButylene 499 453 567 500 500...

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ethane and n-butane oxidation over supported vanadium oxide catalysts: An in situ UV-visible diffuse reflectance spectroscopic investigation  

SciTech Connect

The coordination/oxidation states of surface vanadium oxide species on several oxide supports (Al{sub 2}O{sub 3}, ZrO{sub 2}, SiO{sub 2}) during ethane and n-butane oxidation were examined by in situ UV-vis diffuse reflectance spectroscopy (DRS). Only a small amount of the surface V(V)cations are reduced to V(IV)/V(III) cations under present steady-state reaction conditions. The extents of reduction of the surface V(V) species are a strong function of the specific oxide support, V{sub 2}O{sub 5}/ZrO{sub 2} {gt} V{sub 2}O{sub 5}/Al{sub 2}O{sub 5}/Al{sub 2}O{sub 3} {gt} V{sub 2}O{sub 5}/SiO{sub 2}, and also correlate with their reactivities (turnover frequencies) for ethane and n-butane oxidation reactions. For ZrO{sub 2}-supported samples, the polymerized surface vanadia species were found to be more easily reduced than the isolated surface vanadia species in reducing environments (i.e., ethane or n-butane in He), but no significant differences in the extents of reduction were observed under present steady-state reaction conditions (i.e., ethane/O{sub 2}/He or n-butane/O{sub 2}/He). This observation is also consistent with the ethane oxidation catalytic study, which revealed that the polymerization degree, the domain size, of the surface vanadia species does not appear to significantly affect the reactivity of the supported vanadia catalysts for ethane oxidation.

Gao, X.; Banares, M.A.; Wachs, I.E.

1999-12-10T23:59:59.000Z

102

Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature  

Science Conference Proceedings (OSTI)

The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800 K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. (author)

Choi, B.C.; Chung, S.H. [Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

2010-12-15T23:59:59.000Z

103

Role of metal-support interactions on the activity of Pt and Rh catalysts for reforming methane and butane.  

DOE Green Energy (OSTI)

For residential fuel cell systems, reforming of natural gas is one option being considered for providing the H{sub 2} necessary for the fuel cell to operate. Industrially, natural gas is reformed using Ni-based catalysts supported on an alumina substrate, which has been modified to inhibit coke formation. At Argonne National Laboratory, we have developed a new family of catalysts derived from solid oxide fuel cell technology for reforming hydrocarbon fuels to generate H{sub 2}. These catalysts consist of a transition metal supported on an oxide-ion-conducting substrate, such as ceria, that has been doped with a small amount of a non-reducible element, such as gadolinium, samarium, or zirconium. Unlike alumina, the oxide-ion-conducting substrate has been shown to induce strong metal-support interactions. Metal-support interactions are known to play an important role in influencing the catalytic activity of many metals supported on oxide supports. Based on results from temperature-programmed reduction/oxidation and kinetic reaction studies, this paper discusses the role of the metal and the substrate in the metal-support interactions, and how these interactions influence the activity and the selectivity of the catalyst in reforming methane and butane to hydrogen for use in fuel cell power systems.

Rossignol, C.; Krause, T.; Krumpelt, M.

2002-01-11T23:59:59.000Z

104

Carbon nanotube-induced preparation of vanadium oxide nanorods: Application as a catalyst for the partial oxidation of n-butane  

SciTech Connect

A vanadium oxide-carbon nanotube composite was prepared by solution-based hydrolysis of NH{sub 4}VO{sub 3} in the presence of carbon nanotubes. The carbon nanotubes induce the nucleation of the 1D vanadium oxide nanostructures, with the nuclei growing into long freestanding nanorods. The vanadium oxide nanorods with the lengths up to 20 {mu}m and the widths of 5-15 nm exhibit a well-ordered crystalline structure. Catalytic tests show that the composite with nanostructured vanadium oxide is active for the partial oxidation of n-butane to maleic anhydride at 300 deg. C.

Chen Xiaowei [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany); Zhu Zhenping [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany); Haevecker, Michael [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany); Su Dangsheng [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany)]. E-mail: dangsheng@fhi-berlin.mpg.de; Schloegl, Robert [Department of Inorganic Chemistry, Fritz-Haber-Institute of MPG, Faradayweg 4-6, D-14195 Berlin (Germany)

2007-02-15T23:59:59.000Z

105

(Butan-2-ol-jO)[2-({(ethylsulfanyl)- [2-(2-oxidobenzylidene-jO)hydrazinylidene-jN 2]methyl}iminomethyl)phenolato-jO]dioxidouranium(VI)  

E-Print Network (OSTI)

disorder in main residue; R factor = 0.038; wR factor = 0.078; data-to-parameter ratio = 17.4. The U atom in the title complex, [U(C17H15N3O2S)O2-(C4H10O)], exists within a distorted pentagonal–bipyramidal geometry where the oxide O atoms occupy axial positions [O—U—O = 179.61 (18) ] and the pentagonal plane is defined by the N2O2 atoms of the tetradentate Schiff base ligand and the O atom of the butan-2-ol molecule. In the crystal, centrosymmetric aggregates are formed via pairs of hydroxy–phenoxide O—H O hydrogen bonds. The azomethine C N atoms, the ethylthiolyl group and the butyl group of the butan-2-ol molecule are disordered over two positions in a 0.668 (3):0.332 (3) ratio. Related literature For background to uranyl Schiff base complexes, see: S ¸ ahin et al. (2010); Özdemir et al. (2011). For a related structure, see: Takjoo et al. (2012).

Reza Takjoo; A Atefeh Najafi; A Seik Weng Ng B; Edward R. T. Tiekink B

2012-01-01T23:59:59.000Z

106

The Accurate Computer Simulation of Phase Equilibrium for Complex Fluid Mixtures. Application to Binaries Involving isobutene, methanol, MTBE, and n-butane  

E-Print Network (OSTI)

We have developed a new method, called the Reaction Gibbs Ensemble Monte Carlo (RGEMC) method for the computer simulation of the phase equilibria for multicomponent mixtures, given an intermolecular potential model for the constituent molecular species. The approach treats the phase equilibrium conditions as a special type of chemical reaction, and incorporates knowledge of the pure-substance vapor pressure data into the simulations. Unlike macroscopic thermodynamic-based approaches like the Wilson and the UNIFAC approximations, no experimental information concerning the mixtures is required. In addition to the PTxy phase equilibrium data, the volumetric properties of the mixture are calculated. We developed intermolecular potential models based on the OPLS potential models of Jorgensen, and used the RGEMC method to predict phase equilibrium data for the binary systems isobutene+MTBE and the binaries formed by methanol with isobutene, MTBE, and n-butane. The predictions are excellent, ...

Martin Lísal; William R. Smith; Ivo Nezbeda

1999-01-01T23:59:59.000Z

107

Isobutane/Butylene Refinery Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

108

Pt3Ru6 Clusters Supported on gamma-Al2O3: Synthesis from Pt3Ru6(Cu)21(u3-H)(u-H)3, Structural Characterization, and Catalysis of Ethylene Hydrogenation and n-Butane Hydrogenolysis  

SciTech Connect

The supported clusters Pt-Ru/{gamma}-Al{sub 2}O{sub 3} were prepared by adsorption of the bimetallic precursor Pt{sub 3}Ru{sub 6}(Cu){sub 21}({mu}{sub 3}-H)({mu}-H){sub 3} from CH{sub 2}Cl{sub 2} solution onto {gamma}-Al{sub 2}O{sub 3} followed by decarbonylation in He at 300 C. The resultant supported clusters were characterized by infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies and as catalysts for ethylene hydrogenation and n-butane hydrogenolysis. After adsorption, the {nu}{sub CO} peaks characterizing the precursor shifted to lower wavenumbers, and some of the hydroxyl bands of the support disappeared or changed, indicating that the CO ligands of the precursor interacted with support hydroxyl groups. The EXAFS results show that the metal core of the precursor remained essentially unchanged upon adsorption, but there were distortions of the metal core indicated by changes in the metal-metal distances. After decarbonylation of the supported clusters, the EXAFS data indicated that Pt and Ru atoms interacted with support oxygen atoms and that about half of the Pt-Ru bonds were maintained, with the composition of the metal frame remaining almost unchanged. The decarbonylated supported bimetallic clusters reported here are the first having essentially the same metal core composition as that of a precursor metal carbonyl, and they appear to be the best-defined supported bimetallic clusters. The material was found to be an active catalyst for ethylene hydrogenation and n-butane hydrogenolysis under conditions mild enough to prevent substantial cluster disruption.

Chotisuwan,S.; Wittayakun, J.; Gates, B.

2006-01-01T23:59:59.000Z

109

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Plant Field Production Plant Field Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Butylene (C4H8) An olefinic hydrocarbon recovered from refinery processes. Ethane (C2H6) A normally gaseous straight-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of -127.48º F. It is extracted from natural gas and refinery gas streams. Field Production Represents crude oil production on leases, natural gas liquids production at natural gas processing plants, new supply of other hydrocarbons/oxygenates and motor gasoline blending components, and fuel ethanol blended into finished motor gasoline. Isobutane (C4H10) A normally gaseous branch-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of 10.9º F. It is extracted from natural gas or refinery gas streams.

110

Rhenium Complexes and Clusters Supported on c-Al2O3: Effects of Rhenium Oxidation State and Rhenium Cluster Size on Catalytic Activity for n-butane Hydrogenolysis  

SciTech Connect

Supported metals prepared from H{sub 3}Re{sub 3}(CO){sub 12} on {gamma}-Al{sub 2}O{sub 3} were treated under conditions that led to various rhenium structures on the support and were tested as catalysts for n-butane conversion in the presence of H{sub 2} in a flow reactor at 533 K and 1 atm. After use, two samples were characterized by X-ray absorption edge positions of approximately 5.6 eV (relative to rhenium metal), indicating that the rhenium was cationic and essentially in the same average oxidation state in each. But the Re-Re coordination numbers found by extended X-ray absorption fine structure spectroscopy (2.2 and 5.1) show that the clusters in the two samples were significantly different in average nuclearity despite their indistinguishable rhenium oxidation states. Spectra of a third sample after catalysis indicate approximately Re{sub 3} clusters, on average, and an edge position of 4.5 eV. Thus, two samples contained clusters approximated as Re{sub 3} (on the basis of the Re-Re coordination number), on average, with different average rhenium oxidation states. The data allow resolution of the effects of rhenium oxidation state and cluster size, both of which affect the catalytic activity; larger clusters and a greater degree of reduction lead to increased activity.

Lobo Lapidus, R.; Gates, B

2009-01-01T23:59:59.000Z

111

Isobutane/Butylene Bulk Terminal Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

112

TABLE17.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

7. 7. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, January 1998 Liquefied Refinery Gases ........................................... 576 -7 569 2,415 -51 392 2,756 Ethane/Ethylene ..................................................... 0 0 0 0 0 0 0 Ethane ............................................................... W W W W W W W Ethylene ............................................................ W W W W W W W Propane/Propylene ................................................ 1,656 33 1,689 2,645 329 628 3,602 Propane ............................................................. W W W 1,979 W W W Propylene .......................................................... W W W 666 W W W Normal Butane/Butylene ........................................ -804 -39 -843 -320 -337 -180 -837 Normal Butane ..................................................

113

Refinery Net Production of Normal Butane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

114

Natural Gas Plant Stocks of Normal Butane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

115

Refinery & Blender Net Production of Normal Butane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

116

Refinery & Blenders Net Input of Normal Butane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether, RBOB ...

117

Natural Gas Plant Field Production: Normal Butane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

118

Refinery Net Input of Normal Butane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and ...

119

TABLE27.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

7. 7. Exports of Crude Oil and Petroleum Products by PAD District, January 1998 Crude Oil a ....................................................................... 0 1,168 0 0 5,978 7,146 231 Natural Gas Liquids ...................................................... 24 752 885 6 451 2,118 68 Pentanes Plus ............................................................. 1 455 0 5 (s) 461 15 Liquefied Petroleum Gases ......................................... 24 297 885 (s) 450 1,657 53 Ethane/Ethylene ..................................................... 0 0 0 0 0 0 0 Propane/Propylene ................................................. 20 96 637 (s) 149 904 29 Normal Butane/Butylene ......................................... 3 201 248 0 301 753 24 Isobutane/Isobutylene ............................................ 0 0 0 0 0 0 0 Other Liquids ..................................................................

120

LPG--a direct source of C/sub 3/-C/sub 4/ olefins  

SciTech Connect

This article describes the selective production of olefins by the catalytic dehydrogenation of the corresponding paraffins by means of UOP's Oleflex process. In this process, propylene can be obtained at about 85 mol % selectivity by the catalytic dehydrogenation of propane. Isobutylene can be obtained at selectivities in excess of 90 mol % from isobutane, and n-butenes (1-butene plus 2-butene) at about 80 mol % from n-butane. The availability of this technology, coupled with an abundant supply of LPG (C/sub 3/ and C/sub 4/ paraffins), opens new avenues for the selective production of propylene and butylenes.

Pujado, P.R.; Berg, R.C.; Vora, B.V.

1983-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Jet fuel from LPG  

SciTech Connect

Explains how jet fuel can be manufactured from propane and/or butane with attractive rates of return. This scheme is advantageous where large reserves of LPG-bearing gas is available or LPG is in excess. The following sequence of processes in involved: dehydrogenation of propane (and/or butane) to propylene (and/or butylene); polymerization of this monomer to a substantial yield of the desired polymer by recycling undesired polymer; and hydrotreating the polymer to saturate double bonds. An attribute of this process scheme is that each of the individual processes has been practiced commercially. The process should have appeal in those parts of the world which have large reserves of LPG-bearing natural gas but little or no crude oil, or where large excesses of LPG are available. Concludes that economic analysis shows attractive rates of return in a range of reasonable propane costs and product selling prices.

Maples, R.E.; Jones, J.R.

1983-02-01T23:59:59.000Z

122

LIQUID BUTANE FILLED LOAD FOR A LINER DRIVEN PEGASUS EXPERIMENT  

DOE Green Energy (OSTI)

A hydrogen rich, low density liquid, contained within the internal volume of a cylindrical liner, was requested of the Polymers and Coatings Group (MST-7) of the Los Alamos Materials Science Division for one of the last liner driven experiments conducted on the Los Alamos Pegasus facility. The experiment was a continuation of the Raleigh-Taylor hydrodynamics series of experiments and associated liners that have been described previously [1,2].

M.A. SALAZAR; W. ANDERSON; ET AL

2001-06-01T23:59:59.000Z

123

Liquid butane filled load for a liner driven Pegasus experiment.  

SciTech Connect

A hydrogen rich, low density liquid, contained within the internal volume of a cylindrical liner, was requested of the Polymers and Coatings Group (MST-7) of the Los Alamos Materials Science Division for one of the last liner driven experiments conducted on the Los Alamos Pegasus facility. The experiment (Fig.1) was a continuation of the Raleigh-Taylor hydrodynamics series of experiments and associated liners that have been described previously.

Salazar, M. A. (Mike A.); Armijo, E. V. (Elfino V.); Anderson, W. E. (Wallace E.); Atchison, W. L. (Walter L.); Bartos, J. J. (Jacob J.); Garcia, F. (Fermin); Randolph, B. (Blaine); Sheppard, M. G. (Maurice G.); Stokes, J. L. (John L.)

2001-01-01T23:59:59.000Z

124

Fueling Requirements for Steady State high butane current fraction discharges  

SciTech Connect

The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection in NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs.

R.Raman

2003-10-08T23:59:59.000Z

125

Refinery Grade Butane Bulk Terminal Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

126

U.S. Refinery Grade Butane Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

127

Gulf Coast (PADD 3) Gas Plant Production of Normal Butane ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 150: 143: 147: 153: 152: 154: 161: 157: 170: 184: 166: 139: 1982: 150: 148: 150: 150: 167: ...

128

Midwest (PADD 2) Refinery Grade Butane Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

129

U.S. Refinery and Blender Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 559,639 599,643 591,916 616,905 613,451 578,101 1981-2013 Liquefied Refinery Gases 24,599 26,928 25,443 26,819 25,951 19,023 1981-2013 Ethane/Ethylene 464 426 407 441 487 379 1981-2013 Ethane 317 277 283 312 332 232 1993-2013 Ethylene 147 149 124 129 155 147 1993-2013 Propane/Propylene 16,840 17,792 16,966 17,839 18,063 17,254 1981-2013 Propane 8,051 8,949 8,756 9,002 9,153 8,816 1995-2013 Propylene 8,789 8,843 8,210 8,837 8,910 8,438 1993-2013 Normal Butane/Butylene 7,270 8,876 8,122 8,676 7,664 1,738 1981-2013 Normal Butane 7,447 9,044 8,314 8,832 8,067 1,743 1993-2013 Butylene -177 -168 -192 -156 -403 -5 1993-2013 Isobutane/Isobutylene

130

Refinery & Blender Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

& Blender Net Production & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha For Petro. Feed. Use Other Oils For Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

131

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

132

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

working fluids including butane, pentane, isopentane,xylene p-xylene pentane butane Alkanes cyclopentane BACKONEalkanes (pentane, butane, cyclopentane, cyclohexane,

Ho, Tony

2012-01-01T23:59:59.000Z

133

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

,980 842 4,204 1,948 672 -339 187 3,995 240 4,886 ,980 842 4,204 1,948 672 -339 187 3,995 240 4,886 Crude Oil 1,472 - - - - 1,839 556 -359 17 3,416 76 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 508 -17 115 63 -14 - - 75 105 71 404 Pentanes Plus 63 -17 - - 0 98 - - -18 37 53 72 Liquefied Petroleum Gases 444 - - 115 63 -112 - - 93 68 18 332 Ethane/Ethylene 163 - - - 0 -100 - - 11 - - 52 Propane/Propylene 186 - - 104 49 -22 - - 66 - 7 244 Normal Butane/Butylene 52 - - 16 5 5 - - 22 17 11 29 Isobutane/Isobutylene 43 - - -4 8 5 - - -6 50 - 7 Other Liquids - - 858 - - 12 -143 127 346 474 40 -6 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 858 - - 5 -547 -8 11 271 26 0 Hydrogen - - - - - - 23 - - 23 0 - -

134

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 September 2013 Table 49. Exports of Crude Oil and Petroleum Products by PAD District, September 2013 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1 ............................................................ 94 2,282 598 1 - 2,975 99 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 453 2,129 10,579 380 396 13,937 465 Pentanes Plus .................................................. 300 1,599 652 346 92 2,989 100 Liquefied Petroleum Gases .............................. 153 530 9,927 34 304 10,947 365 Ethane/Ethylene ........................................... - - - - - - - Propane/Propylene ....................................... 126 199 9,412 4 299 10,040 335 Normal Butane/Butylene ...............................

135

table07.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

558 558 - 893 -73 1,935 -111 0 3,387 38 0 Natural Gas Liquids and LRGs ....... 283 89 116 - 9 -210 - 123 24 558 Pentanes Plus .................................. 37 - 1 - 17 7 - 25 15 9 Liquefied Petroleum Gases .............. 246 89 115 - -8 -217 - 98 10 550 Ethane/Ethylene ........................... 94 0 (s) - -71 -4 - 0 0 26 Propane/Propylene ....................... 100 116 86 - 31 -155 - 0 3 485 Normal Butane/Butylene .............. 37 -27 16 - 18 -48 - 74 6 12 Isobutane/Isobutylene ................... 15 (s) 13 - 14 -10 - 24 0 27 Other Liquids .................................... 24 - 0 - 38 40 - 46 (s) -24 Other Hydrocarbons/Oxygenates .... 45 - 0 - 0 7 - 37 (s) 0 Unfinished Oils ................................. - - 0 - -4 17 - 3 0 -24 Motor Gasoline Blend. Comp. .......... -21 - 0 - 42 16 - 6 (s) 0 Aviation Gasoline Blend. Comp. ....... - - 0 - 0 -1 - 1 0 0 Finished Petroleum Products .......... 71 3,648 9 - 646 154

136

TABLE13.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

3. 3. PAD District V - Daily Average Supply and Disposition of Crude Oil and Petroleum (Thousand Barrels per Day) January 1998 Crude Oil ............................................ 2,165 - 440 154 -73 101 0 2,393 193 0 Natural Gas Liquids and LRGs ........ 93 43 (s) - 0 -51 - 98 15 75 Pentanes Plus ................................... 51 - 0 - 0 (s) - 42 (s) 9 Liquefied Petroleum Gases .............. 42 43 (s) - 0 -51 - 56 15 66 Ethane/Ethylene ............................ (s) 0 0 - 0 0 - 0 0 (s) Propane/Propylene ....................... 12 47 (s) - 0 -26 - 0 5 80 Normal Butane/Butylene ............... 21 -8 0 - 0 -25 - 43 10 -15 Isobutane/Isobutylene ................... 10 5 0 - 0 (s) - 13 0 2 Other Liquids ..................................... 87 - 71 - 24 87 - 73 3 19 Other Hydrocarbons/Oxygenates ..... 109 - 28 - 0 14 - 121 3 0 Unfinished Oils ................................. - - 43 - 0 32 - -8 0 19 Motor

137

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

562 822 4,163 1,839 735 -69 52 3,955 244 4,801 562 822 4,163 1,839 735 -69 52 3,955 244 4,801 Crude Oil 1,116 - - - - 1,730 800 -87 62 3,442 55 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 446 -16 121 74 -25 - - -12 105 111 395 Pentanes Plus 50 -16 - - 1 82 - - -4 31 101 -12 Liquefied Petroleum Gases 396 - - 121 73 -107 - - -8 74 11 407 Ethane/Ethylene 163 - - - 0 -108 - - -2 - - 58 Propane/Propylene 156 - - 108 59 -24 - - -3 - 2 300 Normal Butane/Butylene 48 - - 11 9 10 - - -4 29 9 45 Isobutane/Isobutylene 29 - - 2 6 14 - - 1 46 - 5 Other Liquids - - 838 - - 5 -258 -159 8 408 25 -16 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 838 - - 3 -565 4 1 257 21 0 Hydrogen - - - - - - 22 - - 22 0 - -

138

TABLE18.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

8. 8. Refinery Stocks of Crude Oil and Petroleum Products by PAD and Refining Districts, January 1998 Crude Oil .................................................................... 14,835 511 15,346 8,591 1,779 2,386 12,756 Petroleum Products .................................................. 53,526 2,604 56,130 37,545 10,689 14,376 62,610 Pentanes Plus .......................................................... 0 0 0 4 209 225 438 Liquefied Petroleum Gases ...................................... 1,482 13 1,495 2,085 308 672 3,065 Ethane/Ethylene ................................................... 0 0 0 3 0 0 3 Propane/Propylene ............................................... 564 5 569 1,196 16 332 1,544 Normal Butane/Butylene ....................................... 584 6 590 608 205 232 1,045 Isobutane/Isobutylene ...........................................

139

table05.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

27 27 - 1,721 -65 -3 170 0 1,511 0 0 Natural Gas Liquids and LRGs ....... 27 18 40 - 153 -28 - 8 1 257 Pentanes Plus .................................. 3 - 0 - 0 (s) - 0 (s) 2 Liquefied Petroleum Gases .............. 24 18 40 - 153 -28 - 8 1 254 Ethane/Ethylene ............................ 8 0 0 - 0 0 - 0 0 8 Propane/Propylene ........................ 11 54 39 - 149 -8 - 0 1 261 Normal Butane/Butylene ............... 4 -27 1 - 3 -18 - 5 (s) -7 Isobutane/Isobutylene ................... 1 -9 0 - 0 -2 - 3 0 -8 Other Liquids .................................... -9 - 183 - 11 17 - 234 1 -67 Other Hydrocarbons/Oxygenates ..... 64 - 22 - 0 7 - 79 1 0 Unfinished Oils ................................. - - 34 - 0 -2 - 104 0 -68 Motor Gasoline Blend. Comp. ........... -72 - 126 - 11 12 - 54 (s) 0 Aviation Gasoline Blend. Comp. ....... - - 0 - 0 1 - -2 0 1 Finished Petroleum Products .......... 76 1,798 771 - 2,918 -104 - - 63 5,603 Finished

140

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

124 22 3,585 1,761 3,291 117 -137 3,532 241 5,264 124 22 3,585 1,761 3,291 117 -137 3,532 241 5,264 Crude Oil 34 - - - - 897 1 113 -43 1,084 3 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 90 0 25 32 86 - - 16 27 15 174 Pentanes Plus 15 0 - - - - - - 0 - 10 4 Liquefied Petroleum Gases 75 - - 25 32 86 - - 16 27 5 169 Ethane/Ethylene 1 - - 0 - - - - 0 - - 1 Propane/Propylene 51 - - 36 27 83 - - 24 - 4 168 Normal Butane/Butylene 16 - - -11 3 3 - - -8 17 1 0 Isobutane/Isobutylene 8 - - 0 2 - - - -1 9 - 0 Other Liquids - - 22 - - 555 1,614 193 -31 2,421 5 -10 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 22 - - 25 273 -19 -35 332 5 0 Hydrogen - - - - - - 4 - - 4 0 - - Oxygenates (excl. Fuel Ethanol)

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

1,164 20 3,171 1,425 308 193 28 2,990 349 2,914 1,164 20 3,171 1,425 308 193 28 2,990 349 2,914 Crude Oil 1,104 - - - - 1,209 - 140 10 2,443 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 61 0 66 4 - - - 36 59 13 22 Pentanes Plus 26 0 - - - - - - 5 18 3 -1 Liquefied Petroleum Gases 34 - - 66 4 - - - 30 41 10 23 Ethane/Ethylene 0 - - - - - - - - - - 0 Propane/Propylene 14 - - 49 4 - - - 12 - 10 45 Normal Butane/Butylene 5 - - 15 0 - - - 13 19 0 -11 Isobutane/Isobutylene 15 - - 1 - - - - 5 22 - -12 Other Liquids - - 20 - - 107 252 94 -71 488 13 43 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 20 - - 19 143 37 -2 219 3 0 Hydrogen - - - - - - 47 - - 47 0 - - Oxygenates (excl. Fuel Ethanol)

142

table09.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

3,434 3,434 - 5,080 -9 -1,729 230 0 6,546 0 0 Natural Gas Liquids and LRGs ....... 1,272 347 65 - -68 -208 - 229 29 1,566 Pentanes Plus .................................. 188 - 33 - -5 30 - 66 0 119 Liquefied Petroleum Gases .............. 1,084 347 31 - -63 -238 - 163 29 1,446 Ethane/Ethylene ........................... 503 24 18 - 112 -52 - 0 0 709 Propane/Propylene ....................... 363 301 4 - -158 -120 - 0 21 610 Normal Butane/Butylene .............. 76 3 6 - -11 -89 - 100 8 54 Isobutane/Isobutylene ................... 142 19 4 - -6 22 - 63 0 73 Other Liquids .................................... 172 - 223 - -73 82 - 216 65 -41 Other Hydrocarbons/Oxygenates .... 149 - 1 - 0 6 - 97 46 0 Unfinished Oils ................................. - - 221 - 4 72 - 195 0 -41 Motor Gasoline Blend. Comp. .......... 23 - 1 - -77 4 - -76 19 0 Aviation Gasoline Blend. Comp. ....... - - 0 - 0 (s) - (s) 0 0 Finished Petroleum Products

143

ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS  

Open Energy Info (EERE)

ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ANALYSES Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ANALYSES Details Activities (1) Areas (1) Regions (0) Abstract: Measurement of organic compounds in Karaha- Telaga Bodas and Coso fluid inclusions shows there are strong relationships between H2 concentrations and alkane/alkene ratios and benzene concentrations. Inclusion analyses that indicate H2 concentrations > 0.001 mol % typically have ethane > ethylene, propane > propylene, and butane > butylene. There are three end member fluid compositions: type 1 fluids in which alkane compounds predominate, type 2 fluids that have ethane and propylene and no

144

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

1,173 16 2,988 1,321 324 106 21 2,811 344 2,751 1,173 16 2,988 1,321 324 106 21 2,811 344 2,751 Crude Oil 1,111 - - - - 1,160 2 62 4 2,331 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 61 0 50 5 - - - 1 66 15 35 Pentanes Plus 28 0 - - - - - - 0 21 3 4 Liquefied Petroleum Gases 33 - - 50 5 - - - 1 45 12 31 Ethane/Ethylene 0 - - - - - - - - - - 0 Propane/Propylene 12 - - 46 4 - - - 1 - 10 51 Normal Butane/Butylene 6 - - 6 1 - - - 0 26 1 -14 Isobutane/Isobutylene 15 - - -2 0 - - - 0 20 - -7 Other Liquids - - 16 - - 74 245 103 11 414 13 1 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 16 - - 7 138 37 2 193 3 0 Hydrogen - - - - - - 43 - - 43 0 - - Oxygenates (excl. Fuel Ethanol) - - - - 1 1 0

145

TABLE11.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

1. 1. PAD District IV-Daily Average Supply and Disposition of Crude Oil and Petroleum (Thousand Barrels per Day) January 1998 Crude Oil ........................................... 356 - 204 52 -131 -1 0 483 0 0 Natural Gas Liquids and LRGs ........ 131 (s) 17 - -93 (s) - 19 (s) 35 Pentanes Plus .................................. 25 - 4 - -11 (s) - 5 (s) 12 Liquefied Petroleum Gases .............. 106 (s) 14 - -82 (s) - 14 (s) 23 Ethane/Ethylene ........................... 31 0 0 - -41 0 - 0 0 -10 Propane/Propylene ....................... 48 9 8 - -23 -2 - 0 (s) 43 Normal Butane/Butylene ............... 18 -7 6 - -10 1 - 11 0 -5 Isobutane/Isobutylene ................... 9 -3 0 - -8 1 - 2 0 -4 Other Liquids .................................... 11 - 0 - 0 18 - -5 0 -2 Other Hydrocarbons/Oxygenates .... 3 - 0 - 0 -1 - 4 0 0 Unfinished Oils ................................. - - 0 - 0 3 - -1 0 -2 Motor Gasoline

146

table03.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

3. 3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................... 6,541 - 8,339 60 389 0 14,319 231 0 Natural Gas Liquids and LRGs ........... 1,805 497 238 - -497 - 478 68 2,492 Pentanes Plus .................................... 303 - 38 - 37 - 138 15 151 Liquefied Petroleum Gases ................ 1,502 497 200 - -534 - 340 53 2,340 Ethane/Ethylene ............................ 636 24 18 - -55 - 0 0 734 Propane/Propylene ........................ 533 527 137 - -310 - 0 29 1,478 Normal Butane/Butylene ............... 155 -65 28 - -179 - 234 24 39 Isobutane/Isobutylene ................... 178 11 17 - 11 - 106 0 89 Other Liquids ........................................ 285 - 476 - 244 - 564 69 -116 Other Hydrocarbons/Oxygenates ...... 369 - 51 - 33 - 337 50 0 Unfinished Oils ...................................

147

TABLE35.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Thousand Thousand Barrels) January 1998 Crude Oil .................................................................. 344 433 -89 62,087 2,094 59,993 Petroleum Products ................................................ 103,659 8,121 95,538 34,597 13,141 21,456 Pentanes Plus ....................................................... 0 0 0 678 159 519 Liquefied Petroleum Gases ................................... 4,737 0 4,737 6,111 6,365 -254 Ethane/Ethylene ............................................... 0 0 0 773 2,988 -2,215 Propane/Propylene ........................................... 4,630 0 4,630 3,760 2,792 968 Normal Butane/Butylene ................................... 107 0 107 1,086 515 571 Isobutane/Isobutylene ...................................... 0 0 0 492 70 422 Unfinished Oils ......................................................

148

Production of biodiesel using expanded gas solvents  

Science Conference Proceedings (OSTI)

A method of producing an alkyl ester. The method comprises providing an alcohol and a triglyceride or fatty acid. An expanding gas is dissolved into the alcohol to form a gas expanded solvent. The alcohol is reacted with the triglyceride or fatty acid in a single phase to produce the alkyl ester. The expanding gas may be a nonpolar expanding gas, such as carbon dioxide, methane, ethane, propane, butane, pentane, ethylene, propylene, butylene, pentene, isomers thereof, and mixtures thereof, which is dissolved into the alcohol. The gas expanded solvent may be maintained at a temperature below, at, or above a critical temperature of the expanding gas and at a pressure below, at, or above a critical pressure of the expanding gas.

Ginosar, Daniel M [Idaho Falls, ID; Fox, Robert V [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID

2009-04-07T23:59:59.000Z

149

U.S. Refinery  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil and Petroleum Products Crude Oil and Petroleum Products 354,918 353,802 345,413 343,062 345,025 342,763 1993-2013 Crude Oil 98,082 97,563 90,880 93,075 97,586 90,778 1981-2013 All Oils (Excluding Crude Oil) 256,836 256,239 254,533 249,987 247,439 251,985 1993-2013 Pentanes Plus 947 867 828 805 708 856 1993-2013 Liquefied Petroleum Gases 12,896 14,096 15,761 16,662 18,296 18,683 1993-2013 Ethane/Ethylene 281 321 261 242 205 171 1993-2013 Propane/Propylene 2,692 2,994 3,569 3,518 4,099 4,104 1993-2013 Normal Butane/Butylene 7,627 8,451 9,511 10,757 11,921 12,147 1993-2013 Isobutane/Butylene 2,296 2,330 2,420 2,145 2,071 2,261 1993-2013 Other Hydrocarbons 19 43 49 33 26 21 2009-2013 Oxygenates (excluding Fuel Ethanol) 116 99 100 82 71 78 2009-2013

150

U.S. Refinery  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil and Petroleum Products Crude Oil and Petroleum Products 346,915 338,782 331,615 339,907 336,327 341,211 1993-2012 Crude Oil 89,070 86,598 90,944 88,982 90,640 88,781 1981-2012 All Oils (Excluding Crude Oil) 257,845 252,184 240,671 250,925 245,687 252,430 1993-2012 Pentanes Plus 949 997 1,006 971 895 884 1993-2012 Liquefied Petroleum Gases 13,161 12,456 12,611 14,896 14,429 15,934 1993-2012 Ethane/Ethylene 31 185 118 220 223 214 1993-2012 Propane/Propylene 4,120 3,293 3,577 4,278 4,087 4,574 1993-2012 Normal Butane/Butylene 6,320 6,482 6,478 7,818 7,794 8,774 1993-2012 Isobutane/Butylene 2,690 2,496 2,438 2,580 2,325 2,372 1993-2012 Other Hydrocarbons 29 20 41 42 2009-2012 Oxygenates (excluding Fuel Ethanol) 47 24 58 112 2009-2012

151

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

152

U.S. Total Stocks  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil and Petroleum Products Crude Oil and Petroleum Products 1,665,345 1,736,739 1,776,375 1,794,099 1,750,087 1,807,777 1956-2012 Crude Oil 983,046 1,027,663 1,051,795 1,059,975 1,026,630 1,060,764 1913-2012 All Oils (Excluding Crude Oil) 682,299 709,076 724,580 734,124 723,457 747,013 1993-2012 Pentanes Plus 10,278 13,775 10,481 12,510 17,596 12,739 1981-2012 Liquefied Petroleum Gases 95,592 113,134 102,147 108,272 111,778 140,529 1967-2012 Ethane/Ethylene 14,869 27,591 20,970 24,323 22,892 35,396 1967-2012 Propane/Propylene 52,007 55,408 50,140 49,241 54,978 67,991 1967-2012 Normal Butane/Butylene 21,862 23,031 24,149 27,652 26,779 28,574 1981-2012 Isobutane/Butylene 6,854 7,104 6,888 7,056 7,129 8,568 1981-2012 Other Hydrocarbons 29 20 41 42 2009-2012

153

Gas flux and carbonate occurrence at a shallow seep of thermogenic natural gas  

E-Print Network (OSTI)

dioxide, ethane, propane, and butane. Hydrocarbon seeps havemethane, ethane, propane and butane. Geochim Cosmochim Acta

2010-01-01T23:59:59.000Z

154

U.S. Refinery Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 5,383,494 5,119,100 4,676,865 4,568,301 4,484,600 4,395,128 2005-2012 Liquefied Refinery Gases 238,904 230,431 227,470 240,454 225,992 230,413 2005-2012 Ethane/Ethylene 7,323 6,671 7,069 7,228 7,148 6,597 2005-2012 Ethane 5,145 4,608 5,229 5,200 5,105 4,835 2005-2012 Ethylene 2,178 2,063 1,840 2,028 2,043 1,762 2005-2012 Propane/Propylene 205,179 190,020 196,011 204,223 201,492 202,309 2005-2012 Propane 120,596 114,268 106,177 102,913 98,508 100,933 2005-2012 Propylene 84,583 75,752 89,834 101,310 102,984 101,376 2005-2012 Normal Butane/Butylene 24,285 30,887 24,148 30,281 17,449 20,580 2005-2012 Normal Butane 25,715 33,092 25,825 32,094 19,263 22,965 2005-2012

155

U.S. Refinery and Blender Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 6,567,929 6,641,293 6,527,069 6,735,067 6,815,590 6,794,407 1981-2012 Liquefied Refinery Gases 238,904 230,431 227,470 240,454 225,992 230,413 1981-2012 Ethane/Ethylene 7,323 6,671 7,069 7,228 7,148 6,597 1981-2012 Ethane 5,145 4,608 5,229 5,200 5,105 4,835 1993-2012 Ethylene 2,178 2,063 1,840 2,028 2,043 1,762 1993-2012 Propane/Propylene 205,179 190,020 196,011 204,223 201,492 202,309 1981-2012 Propane 120,596 114,268 106,177 102,913 98,508 100,933 1995-2012 Propylene 84,583 75,752 89,834 101,310 102,984 101,376 1993-2012 Normal Butane/Butylene 24,285 30,887 24,148 30,281 17,449 20,580 1981-2012 Normal Butane 25,715 33,092 25,825 32,094 19,263 22,965 1993-2012

156

Pressure and Temperature Dependence of the Reaction of Vinyl Radical with Alkenes III: Measured Rates and Predicted Product Distributions for Vinyl + Butene  

E-Print Network (OSTI)

This work reports experimental and theoretical first-order rate constants for the reaction of vinyl radical with C4H8 alkenes: 1-butene, 2-butene, and iso-butene. The experiments are performed over a temperature range of ...

Ismail, Huzeifa

157

Hydrodesulfurization of Thiophene and Benzothiophene to Butane and Ethylbenzene by a Homogeneous Iridium  

E-Print Network (OSTI)

)(SC4H6) (3), which was also structurally character- ized. Introduction The hydroprocessing of crude oil impurities such as thio- phenes, mercaptans, and quinolines are removed, mak- ing the oil amenable to further such as benzothiophene. This led us to explore the reactivity of the bis(µ-hydrido)- bis

Jones, William D.

158

Resonance Raman Spectroscopy of 0-A12O3- Supported Vanadium Oxide Catalysts for Butane Dehydrogenation  

SciTech Connect

This chapter contains sections titled: Introduction; Structure of Al{sub 2}O{sub 3}-Supported Vanadia Catalysts; Quantification of Surface VOx Species on Supported Vanadia Catalysts; Conclusion; Acknowledgements; and References.

Wu, Zili [ORNL; Kim, Hack-Sung [Northwestern University, Evanston; Stair, Peter [Northwestern University, Evanston

2008-01-01T23:59:59.000Z

159

Planar laser-induced fluorescence of nitric oxide in isomeric butanol and butane stagnation flames.  

E-Print Network (OSTI)

??The significant efforts to reduce global fossil fuel dependence have led to the development of biofuels as an alternative. Despite their growing significance, alcohol biofuels… (more)

Chung, Gregory

2012-01-01T23:59:59.000Z

160

PCR Primers for The Detection of Propane and Butane-Oxidizing Microorganisms.  

E-Print Network (OSTI)

?? In an increasingly energy-hungry world, our capacity to meet the heightened energy demands of the future has become a pressing matter. The most urgent… (more)

Chan, Brian Jeremy

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

U.S. Refinery and Blender Net Production of Normal Butane ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 799: 890: 736: 1,087: 1,210: 1,603: 1,460: 823: 815: 293: 337-299: 1982-399: 146: 58: 430: ...

162

N-butane activation over ruthenium and iron promoted VPO catalysts.  

E-Print Network (OSTI)

??The Fe- and Ru-promoted vanadium phosphorus oxide (VPO) catalysts were synthesized via the organic route in iso-butanol to form the VPO precursor, VOHPO4·0.5H2O. The resulting… (more)

Masilo, Neoentle.

2009-01-01T23:59:59.000Z

163

Field pilot tests for tertiary recovery using butane and propane injection  

SciTech Connect

This work describes a pilot project for tertiary recovery of liquid hydrocarbons through LPG injection in water-out sections of the Bolivar reservoir in La Pena Field, Santa Cruz, Boliva. The promising results obtained in the initial field miscibility tests, as well as the results from a mathematical model built to stimulate and evaluate the tertiary recovery project, directed subsequent work into a cyclic scheme for enhanced recovery. This scheme is explained and injection production data is presented. Field facilities built to handle both the injected LPG and the produced oil-LPG mixture are described. The oil/LPG ratio and the LPG recovered/injected fraction are the main factors measured in this to make further considerations for a full scale project.

Pacheco, E.F.; Garcia, A.I.

1981-01-01T23:59:59.000Z

164

Variability of Gas Composition and Flux Intensity in Natural Marine Hydrocarbon Seeps  

E-Print Network (OSTI)

2 Methane Ethane Propane Butane nd nd nd nd October 4, 2004methane, ethane, propane, and butane. Methods The flux buoyfor methane, ethane, propane, butane, oxygen, nitrogen, and

Clark, J F; Schwager, Katherine; Washburn, Libe

2005-01-01T23:59:59.000Z

165

The role of Entamoeba histolytica Cysteine Proteinase 1 (EhCP1) in the pathogenesis of amebiasis  

E-Print Network (OSTI)

leucylamido (4-guanidino) butane (E- 64) and its analoguesleucylamido-(4- guanidino) butane ECM Extracellular Matrixleucylamido-(4-guanidino) butane (E-64) and not by the

Melendez-Lopez, Samuel G.

2007-01-01T23:59:59.000Z

166

Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality  

E-Print Network (OSTI)

components—particularly butane—in the gasoline they sell (times more reactive than butane, the compound that refinersprimarily by removing the VOC butane from their gasoline, as

Auffhammer, Maximilian; Kellogg, Ryan

2009-01-01T23:59:59.000Z

167

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

such as ethane, propane, butane, naphtha or gasoline. AnOthers Losses Ethane Propane Butane Naphtha Gas oil Source:by dehydrogenation of propane and butane respectively. The

Neelis, Maarten

2008-01-01T23:59:59.000Z

168

HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A SUMMARY OF THE LITERATURE WITH CONCLUSIONS AND RECOMMENDATIONS, FY 78 FINAL REPORT  

E-Print Network (OSTI)

Agents used by painters include butane, calcium carbonate,Benzene* Laboratory - Reagent Butane* Painters - PropellentBenzene* Laboratory - Reagent Butane* Painters - Propellent

DeRoos, R.L.

2011-01-01T23:59:59.000Z

169

Final Report for completed IPP-0110 and 0110A Projects: "High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications"  

E-Print Network (OSTI)

methane-hydrogen mixtures, butane, and benzol vapors wereglow discharge instability in butane and benzol vapors makessccm. Methane and a propane-butane mixture were also used as

Brown, Ian

2010-01-01T23:59:59.000Z

170

EFFECT OF FUEL TYPE ON FLAME IGNITION BY TRANSIENT PLASMA Jianbang Liu1,2  

E-Print Network (OSTI)

ABSTRACT Rise and delay times of mixtures of methane, propane, n-butane, iso-butane and iso- octane mixed performance of various fuels including methane, propane, iso-butane, n-butane and iso-octane mixed with air

171

Population based exposure assessment methodology for carbon monoxide: Development of a Carbon Monoxide Passive Sampler and Occupational Dosimeter  

E-Print Network (OSTI)

hydrocarbons (toluene), alkanes (butane, methane, heptane),tube/GC (NIOSH 1 5 0 0 ) a Butane 300ppm Charcoal tube/GC (O toluene toluene + C O butane butane + C O methane methane

Apte, Michael G.

2010-01-01T23:59:59.000Z

172

Pyrolysis of Organic Molecules Relevant to Combustion as Monitored by Photoionization Time-of-Flight Mass Spectrometry  

E-Print Network (OSTI)

OF 2-METHOXY TRIMETHYL BUTANE-d 6 (MTMB-d 6 ) VI. PYROLYSISexception of propane and butane. 7 This approach is powerfulthe exceptions of propane and butane. The performance of VUV

Weber, Kevin Howard

2010-01-01T23:59:59.000Z

173

On the ignition of fuel beds by firebrands  

Science Conference Proceedings (OSTI)

... The firebrand ignition apparatus consists of four butane burners and a firebrand mounting probe. The butane flowrate is ...

2006-12-12T23:59:59.000Z

174

Development of Energy Balances for the State of California  

E-Print Network (OSTI)

composed of ethane, propane, butane, and pentane plus—whichconsist mainly of propane and butane or a combination of the

Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

2005-01-01T23:59:59.000Z

175

Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards & Labeling Programs for Copy Machines, External Power Supplies, LED Displays, Residential Gas Cooktops and Televisions  

E-Print Network (OSTI)

grills, ovens or portable butane stoves. The EU Ecodesign isgrills, ovens and portable butane stoves Proposed Mandatory

Zheng, Nina

2013-01-01T23:59:59.000Z

176

Interaction of Dimethylmethylphosphonate with Zeolite Y: Impedance-Based Sensor for Detecting Nerve Agent Simulants  

E-Print Network (OSTI)

increased impedance upon exposure to butane, and was proposed to arise from blocking effects of the butane

Dutta, Prabir K.

177

Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices  

E-Print Network (OSTI)

the volume of normal butane blended into gasoline, or bythe volume of normal butane rejected from motor gasoline.

Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

2007-01-01T23:59:59.000Z

178

Pergamon Atmospheric Environment Vol. 31, No. 23, pp. 4017 4038, 1997 X-1997 Elsevier Science Ltd  

E-Print Network (OSTI)

, propane, n-butane, iso-butane, ethene and acetylene) display a seasonal variation of a winter maximum

Aneja, Viney P.

179

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 101, NO. D22, PAGES 29,061-29,074, DECEMBER 20, 1996 Measurement of O3 and related compounds  

E-Print Network (OSTI)

determinedusingphotochemicalageestimatesderived from the ratios,In (n-butane/propane)andIn (/-butane/propane).Age estimatesare used

180

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Inputs kbbl Crude Oil Butane Isobutane Other Hydrocarbons,674,276 kbbl. Data on butane, isobutene, other hydrocarbons

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Dendrimer Templated Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole Hydrogenation.  

E-Print Network (OSTI)

temperatures, data not shown). Butane was also observed as ainteractions. 47 Secondly, butane formation was reported to

Huang, Wenyu

2009-01-01T23:59:59.000Z

182

7, 1164711683, 2007 VOC ratios as probes  

E-Print Network (OSTI)

chemistry, and [isobutane]/[n-butane] and [methyl ethyl ketone]/[n-5 butane] are used to study the extent

Paris-Sud XI, Université de

183

Thermo-fluid Dynamics of Flash Atomizing Sprays and Single Droplet Impacts  

E-Print Network (OSTI)

or intermittent injection of butane or propane in a confinedor intermittent injection of butane or propane in a confined

Vu, Henry

2010-01-01T23:59:59.000Z

184

Regional Analysis of Nonmethane Volatile Organic Compounds in the Lower Troposphere of the Southeast  

E-Print Network (OSTI)

, acetylene, propane, i-butane, and n-butane with a winter maximum and a summer minimum. An analysis

Aneja, Viney P.

185

"Nanocrystal bilayer for tandem catalysis"  

E-Print Network (OSTI)

Part VI. Hydrogenolysis of Ethane, Propane, n-Butane andiso-Butane over Supported Platinum Catalysts. J. Catal. 176,

Yamada, Yusuke

2012-01-01T23:59:59.000Z

186

U.S. Exports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

96,229 107,478 106,354 120,656 114,693 108,925 1981-2013 96,229 107,478 106,354 120,656 114,693 108,925 1981-2013 Crude Oil 3,965 3,863 3,591 3,029 2,052 2,975 1920-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 12,522 14,761 10,699 17,203 15,796 13,937 1981-2013 Pentanes Plus 3,327 4,292 1,655 7,308 5,315 2,989 1984-2013 Liquefied Petroleum Gases 9,194 10,468 9,044 9,895 10,481 10,947 1981-2013 Ethane/Ethylene 1981-1992 Propane/Propylene 8,363 9,542 8,057 8,407 9,125 10,040 1981-2013 Normal Butane/Butylene 832 927 987 1,488 1,356 907 1981-2013 Isobutane/Isobutylene 1984-1992 Other Liquids 7,489 6,277 6,728 7,063 5,570 6,579 1991-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 2,897 3,520 3,180 3,430 4,056 3,543 1991-2013 Oxygenates (excl. Fuel Ethanol)

187

U.S. Imports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

302,265 311,620 293,713 317,538 316,119 299,380 1981-2013 302,265 311,620 293,713 317,538 316,119 299,380 1981-2013 Crude Oil 231,793 239,848 231,900 250,207 251,054 237,344 1920-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 5,268 5,261 4,667 4,819 3,708 4,020 1981-2013 Pentanes Plus 1,366 2,222 730 1,461 316 772 1981-2013 Liquefied Petroleum Gases 3,902 3,039 3,937 3,358 3,392 3,248 1981-2013 Ethane 1993-2006 Ethylene 9 12 8 12 12 9 1993-2013 Propane 2,585 1,818 2,474 2,105 1,901 1,875 1995-2013 Propylene 728 680 814 595 722 728 1993-2013 Normal Butane 181 121 149 106 272 194 1995-2013 Butylene 143 241 162 153 146 139 1993-2013 Isobutane 256 167 330 387 339 303 1995-2013 Isobutylene 1993-2010 Other Liquids 43,066 47,595 40,206 44,400 38,927 40,118 1981-2013

188

East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by  

U.S. Energy Information Administration (EIA) Indexed Site

Type: Net Receipts Receipts Shipments Type: Net Receipts Receipts Shipments Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Type Area 2007 2008 2009 2010 2011 2012 View History Total Crude Oil and Petroleum Products 1,009,989 959,458 1,099,509 1,131,797 1,168,599 1,191,766 1981-2012 Crude Oil -3,860 -5,544 8,672 5,983 5,106 4,126 1981-2012 Petroleum Products 1,013,849 965,002 1,090,837 1,125,814 1,163,493 1,187,640 1986-2012 Pentanes Plus -590 -452 -113 -19 1991-2012 Liquefied Petroleum Gases 32,846 32,207 20,384 34,725 33,545 26,723 1981-2012 Ethane/Ethylene 1989-2002 Propane/Propylene 32,199 31,673 19,415 33,585 33,025 26,601 1989-2012 Normal Butane/Butylene

189

table06.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

7,308 7,308 - 27,686 -2,263 59,993 -3,449 0 105,005 1,168 0 70,132 Natural Gas Liquids and LRGs ......... 8,763 2,756 3,599 - 265 -6,499 - 3,820 752 17,310 23,020 Pentanes Plus ................................... 1,146 - 42 - 519 214 - 769 455 269 1,988 Liquefied Petroleum Gases ............... 7,617 2,756 3,557 - -254 -6,713 - 3,051 297 17,041 21,032 Ethane/Ethylene ............................ 2,909 0 12 - -2,215 -110 - 0 0 816 2,868 Propane/Propylene ....................... 3,095 3,602 2,661 - 968 -4,799 - 0 96 15,029 13,173 Normal Butane/Butylene ............... 1,156 -837 486 - 571 -1,497 - 2,303 201 369 3,305 Isobutane/Isobutylene ................... 457 -9 398 - 422 -307 - 748 0 827 1,686 Other Liquids ..................................... 738 - 0 - 1,171 1,228 - 1,429 11 -759 26,014 Other Hydrocarbons/Oxygenates ..... 1,380 - 0 - 0 225 - 1,144 11 0 2,175 Unfinished Oils ..................................

190

table02.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

2. 2. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................... 202,756 - 258,506 1,851 12,065 0 443,902 7,146 0 880,184 Natural Gas Liquids and LRGs ............ 55,963 15,419 7,378 - -15,412 - 14,810 2,118 77,244 79,784 Pentanes Plus .................................... 9,388 - 1,185 - 1,137 - 4,282 461 4,693 6,852 Liquefied Petroleum Gases ................ 46,575 15,419 6,193 - -16,549 - 10,528 1,657 72,551 72,932 Ethane/Ethylene ............................ 19,726 751 556 - -1,715 - 0 0 22,748 17,192 Propane/Propylene ........................ 16,528 16,343 4,241 - -9,623 - 0 904 45,831 34,422 Normal Butane/Butylene ................ 4,818 -2,023 880 - -5,547 - 7,256 753 1,213 12,826 Isobutane/Isobutylene .................... 5,503 348 516 - 336 - 3,272 0 2,759 8,492

191

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

25,966 7,956 1,280,301 725,573 1,191,766 9,116 -19,377 1,260,324 25,966 7,956 1,280,301 725,573 1,191,766 9,116 -19,377 1,260,324 90,720 1,909,011 152,389 Crude Oil 9,418 - - - - 316,140 4,126 8,405 -1,574 336,230 3,434 0 8,328 Natural Gas Plant Liquids and Liquefied Refinery Gases 16,548 -84 14,202 18,043 26,704 - - -1,588 7,264 3,052 66,685 6,377 Pentanes Plus 2,828 -84 - - 185 -19 - - 12 63 315 2,520 43 Liquefied Petroleum Gases 13,720 - - 14,202 17,858 26,723 - - -1,600 7,201 2,737 64,165 6,334 Ethane/Ethylene 174 - - 93 - - - - 0 - - 267 - Propane/Propylene 9,223 - - 12,922 16,074 26,601 - - -793 - 1,230 64,383 5,184 Normal Butane/Butylene 2,091 - - 1,435 616 122 - - -866 3,435 1,507 188 837 Isobutane/Isobutylene 2,232 - - -248 1,168 - - - 59 3,766 - -673 313

192

U.S. Product Supplied for Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

556,591 575,071 561,721 590,423 591,817 573,483 1981-2013 556,591 575,071 561,721 590,423 591,817 573,483 1981-2013 Crude Oil 0 0 0 0 0 0 1981-2013 Natural Gas Liquids and LRGs 68,909 64,655 64,147 67,242 66,924 69,929 1981-2013 Pentanes Plus 1,561 1,486 3,400 -1,627 474 3,432 1981-2013 Liquefied Petroleum Gases 67,349 63,170 60,747 68,869 66,450 66,498 1981-2013 Ethane/Ethylene 27,620 28,821 26,806 29,847 29,153 30,817 1981-2013 Propane/Propylene 34,429 28,651 29,365 32,619 32,108 32,780 1981-2013 Normal Butane/Butylene 3,899 4,288 2,546 4,356 3,201 2,347 1981-2013 Isobutane/Isobutylene 1,400 1,409 2,030 2,047 1,988 554 1981-2013 Other Liquids 1,994 3,096 713 5,708 -1,348 5,977 1981-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 0 0 0 0 0 0 1991-2013

193

East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by  

U.S. Energy Information Administration (EIA) Indexed Site

Type: Net Receipts Receipts Shipments Type: Net Receipts Receipts Shipments Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total Crude Oil and Petroleum Products 96,936 96,489 98,076 99,950 102,408 98,737 1981-2013 Crude Oil -533 -654 -152 -479 -42 20 1981-2013 Petroleum Products 97,469 97,143 98,228 100,429 102,450 98,717 1986-2013 Pentanes Plus -2 1987-2013 Liquefied Petroleum Gases 2,739 1,357 1,555 1,342 1,959 2,568 1981-2013 Ethane/Ethylene 1989-2002 Propane/Propylene 2,739 1,357 1,555 1,342 1,959 2,483 1989-2013 Normal Butane/Butylene 85 1989-2013 Isobutane/Isobutylene 1989-2013

194

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

3,707 661 107,540 52,842 98,737 3,513 -4,105 105,957 7,218 3,707 661 107,540 52,842 98,737 3,513 -4,105 105,957 7,218 157,931 153,902 Crude Oil 1,020 - - - - 26,908 20 3,378 -1,285 32,517 94 0 10,326 Natural Gas Plant Liquids and Liquefied Refinery Gases 2,687 -11 747 945 2,568 - - 471 798 453 5,214 6,541 Pentanes Plus 443 -11 - - - - - - 2 - 300 130 82 Liquefied Petroleum Gases 2,244 - - 747 945 2,568 - - 469 798 153 5,084 6,459 Ethane/Ethylene 27 - - 9 - - - - 6 - - 30 15 Propane/Propylene 1,517 - - 1,078 813 2,483 - - 724 - 126 5,041 4,442 Normal Butane/Butylene 474 - - -333 80 85 - - -246 523 27 2 1,673 Isobutane/Isobutylene 226 - - -7 52 - - - -15 275 - 11 329 Other Liquids - - 672 - - 16,653 48,432 5,798 -936 72,642 156 -307 61,003

195

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

196

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

34,932 594 95,116 42,741 9,239 5,791 830 89,707 10,470 87,406 34,932 594 95,116 42,741 9,239 5,791 830 89,707 10,470 87,406 142,840 Crude Oil 33,114 - - - - 36,279 - 4,213 311 73,295 - 0 52,719 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,818 -8 1,970 134 - - - 1,076 1,782 396 660 8,270 Pentanes Plus 794 -8 - - - - - - 163 552 92 -21 314 Liquefied Petroleum Gases 1,024 - - 1,970 134 - - - 913 1,230 304 681 7,956 Ethane/Ethylene 3 - - - - - - - - - - 3 - Propane/Propylene 420 - - 1,475 124 - - - 374 - 299 1,346 2,272 Normal Butane/Butylene 158 - - 451 10 - - - 378 556 5 -320 5,110 Isobutane/Isobutylene 443 - - 44 - - - - 161 674 - -348 574 Other Liquids - - 602 - - 3,200 7,556 2,809 -2,126 14,630 387 1,276 46,625

197

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

198

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

3,256,148 352,785 6,794,407 3,878,852 122,574 57,691 6,406,693 3,256,148 352,785 6,794,407 3,878,852 122,574 57,691 6,406,693 1,172,965 6,767,418 1,807,777 Crude Oil 2,374,842 - - - - 3,120,755 52,746 34,134 5,489,516 24,693 0 1,060,764 Natural Gas Plant Liquids and Liquefied Refinery Gases 881,306 -6,534 230,413 62,192 - - 23,894 186,270 115,054 842,159 153,268 Pentanes Plus 116,002 -6,534 - - 10,680 - - -4,857 63,596 43,136 18,273 12,739 Liquefied Petroleum Gases 765,304 - - 230,413 51,512 - - 28,751 122,674 71,918 823,886 140,529 Ethane/Ethylene 356,592 - - 6,597 115 - - 12,504 - - 350,800 35,396 Propane/Propylene 260,704 - - 202,309 42,460 - - 13,013 - 62,490 429,970 67,991 Normal Butane/Butylene 65,555 - - 20,580 5,567 - - 1,795 52,246 9,428 28,233 28,574

199

table04.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

4. 4. PAD District I-Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ........................................... 824 - 53,357 -2,000 -89 5,262 0 46,830 0 0 16,235 Natural Gas Liquids and LRGs ........ 829 569 1,233 - 4,737 -869 - 252 24 7,961 5,223 Pentanes Plus ................................ 79 - 0 - 0 7 - 0 1 71 19 Liquefied Petroleum Gases ............ 750 569 1,233 - 4,737 -876 - 252 24 7,889 5,204 Ethane/Ethylene ........................ 262 0 0 - 0 0 - 0 0 262 0 Propane/Propylene .................... 334 1,689 1,206 - 4,630 -262 - 0 20 8,101 4,043 Normal Butane/Butylene ............ 116 -843 27 - 107 -548 - 162 3 -210 821 Isobutane/Isobutylene ................ 38 -277 0 - 0 -66 - 90 0 -263 340 Other Liquids .................................... -272 - 5,668 - 350 537 - 7,268 17 -2,076 19,354 Other Hydrocarbons/Oxygenates ... 1,973

200

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

59,397 25,268 126,131 58,449 20,168 -10,157 5,610 119,848 7,211 59,397 25,268 126,131 58,449 20,168 -10,157 5,610 119,848 7,211 146,586 280,571 Crude Oil 44,167 - - - - 55,181 16,673 -10,758 505 102,476 2,282 0 102,610 Natural Gas Plant Liquids and Liquefied Refinery Gases 15,230 -515 3,462 1,887 -432 - - 2,252 3,146 2,129 12,105 58,830 Pentanes Plus 1,896 -515 - - 6 2,928 - - -549 1,119 1,599 2,146 7,743 Liquefied Petroleum Gases 13,334 - - 3,462 1,881 -3,360 - - 2,801 2,027 530 9,959 51,087 Ethane/Ethylene 4,901 - - - 9 -3,013 - - 339 - - 1,558 4,694 Propane/Propylene 5,587 - - 3,111 1,470 -650 - - 1,991 - 199 7,328 24,444 Normal Butane/Butylene 1,561 - - 475 162 156 - - 651 514 331 858 20,078 Isobutane/Isobutylene 1,285 - - -124 240 147 - - -180 1,513 - 215 1,871

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

202

U.S. Product Supplied for Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

18,553 18,551 18,724 19,046 19,091 19,116 1963-2013 18,553 18,551 18,724 19,046 19,091 19,116 1963-2013 Crude Oil 0 0 0 0 0 0 1981-2013 Natural Gas Liquids and LRGs 2,297 2,086 2,138 2,169 2,159 2,331 1981-2013 Pentanes Plus 52 48 113 -52 15 114 1981-2013 Liquefied Petroleum Gases 2,245 2,038 2,025 2,222 2,144 2,217 1973-2013 Ethane/Ethylene 921 930 894 963 940 1,027 1981-2013 Propane/Propylene 1,148 924 979 1,052 1,036 1,093 1973-2013 Normal Butane/Butylene 130 138 85 141 103 78 1981-2013 Isobutane/Isobutylene 47 45 68 66 64 18 1981-2013 Other Liquids 66 100 24 184 -43 199 1981-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 0 0 0 0 0 0 1991-2013 Unfinished Oils 67 100 24 184 -43 199 1981-2013 Motor Gasoline Blend. Comp. 0 0 0 0 0 0 1981-2013

203

U.S. Total Shell Storage Capacity at Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2008 2009 2010 2011 2012 2013 View History Total 765,593 758,619 710,413 -- -- -- 1982-2013 Crude Oil 180,830 179,471 180,846 -- -- -- 1985-2013 Liquefied Petroleum Gases 34,772 32,498 33,842 -- -- -- 1982-2013 Propane/Propylene 10,294 8,711 8,513 -- -- -- 1982-2013 Normal Butane/Butylene 24,478 23,787 25,329 -- -- -- 1982-2013 Other Liquids 95,540 96,973 96,157 -- -- -- 1982-2013 Oxygenates 1,336 1,028 1,005 -- -- -- 1994-2013

204

TABLE12.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

2. 2. PAD District V-Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................ 67,121 - 13,641 4,786 -2,251 3,132 0 74,187 5,978 0 63,808 Natural Gas Liquids and LRGs ........ 2,884 1,346 5 - 0 -1,591 - 3,038 451 2,337 3,315 Pentanes Plus ................................... 1,572 - 0 - 0 -1 - 1,293 (s) 280 23 Liquefied Petroleum Gases .............. 1,312 1,346 5 - 0 -1,590 - 1,745 450 2,058 3,292 Ethane/Ethylene ............................ 2 0 0 - 0 0 - 0 0 2 0 Propane/Propylene ....................... 358 1,447 5 - 0 -805 - 0 149 2,466 1,676 Normal Butane/Butylene ............... 639 -241 0 - 0 -771 - 1,348 301 -480 1,111 Isobutane/Isobutylene ................... 313 140 0 - 0 -14 - 397 0 70 505 Other Liquids ..................................... 2,710 - 2,197 - 734 2,707 - 2,248 94 592 36,195 Other

205

table08.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

106,453 106,453 - 157,490 -279 -53,603 7,143 0 202,918 0 0 717,193 Natural Gas Liquids and LRGs ........ 39,438 10,759 2,005 - -2,109 -6,438 - 7,105 885 48,541 46,872 Pentanes Plus .................................. 5,820 - 1,031 - -167 925 - 2,057 0 3,702 4,603 Liquefied Petroleum Gases .............. 33,618 10,759 974 - -1,942 -7,363 - 5,048 885 44,839 42,269 Ethane/Ethylene ........................... 15,603 751 544 - 3,485 -1,605 - 0 0 21,988 14,111 Propane/Propylene ....................... 11,268 9,321 136 - -4,893 -3,707 - 0 637 18,902 15,091 Normal Butane/Butylene ............... 2,346 107 176 - -356 -2,748 - 3,088 248 1,685 7,266 Isobutane/Isobutylene ................... 4,401 580 118 - -178 697 - 1,960 0 2,264 5,801 Other Liquids .................................... 5,321 - 6,903 - -2,255 2,536 - 6,692 2,021 -1,280 65,913 Other Hydrocarbons/Oxygenates .... 4,613 - 22

206

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

429,215 5,872 1,093,588 483,473 118,666 38,688 7,789 1,028,754 429,215 5,872 1,093,588 483,473 118,666 38,688 7,789 1,028,754 126,026 1,006,933 150,671 Crude Oil 406,791 - - - - 424,639 598 22,523 1,445 853,106 0 0 56,432 Natural Gas Plant Liquids and Liquefied Refinery Gases 22,424 -123 18,260 1,933 - - - 404 24,108 5,319 12,663 4,734 Pentanes Plus 10,215 -123 - - - - - - -20 7,565 1,094 1,453 51 Liquefied Petroleum Gases 12,209 - - 18,260 1,933 - - - 424 16,543 4,225 11,210 4,683 Ethane/Ethylene 34 - - - - - - - - - - 34 - Propane/Propylene 4,422 - - 16,669 1,593 - - - 335 - 3,714 18,635 1,915 Normal Butane/Butylene 2,360 - - 2,258 332 - - - 129 9,346 512 -5,037 2,249 Isobutane/Isobutylene 5,393 - - -667 8 - - - -40 7,197 - -2,423 519

207

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

302,630 5,088 230,918 121,366 -164,290 -11,531 4,472 221,774 5,269 302,630 5,088 230,918 121,366 -164,290 -11,531 4,472 221,774 5,269 252,667 39,043 Crude Oil 163,870 - - - - 115,845 -53,264 -13,771 3,101 209,575 5 0 18,928 Natural Gas Plant Liquids and Liquefied Refinery Gases 138,760 -110 3,391 3,503 -119,108 - - 94 6,946 4,261 15,135 1,470 Pentanes Plus 18,508 -110 - - - -13,355 - - 14 2,156 3,795 -922 194 Liquefied Petroleum Gases 120,252 - - 3,391 3,503 -105,753 - - 80 4,790 466 16,057 1,276 Ethane/Ethylene 63,265 - - - - -61,214 - - -6 - - 2,057 400 Propane/Propylene 36,541 - - 3,406 3,155 -28,078 - - 7 - 12 15,005 363 Normal Butane/Butylene 15,114 - - 294 255 -9,019 - - 88 2,241 455 3,860 366 Isobutane/Isobutylene 5,332 - - -309 93 -7,442 - - -9 2,549 - -4,866 147

208

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

315,006 29,943 578,101 299,380 14,453 11,088 543,388 108,925 315,006 29,943 578,101 299,380 14,453 11,088 543,388 108,925 573,483 1,831,621 Crude Oil 233,810 - - - - 237,344 8,334 7,688 468,825 2,975 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases 81,196 -552 19,023 4,020 - - 3,027 16,794 13,937 69,929 189,672 Pentanes Plus 11,167 -552 - - 772 - - -700 5,666 2,989 3,432 18,036 Liquefied Petroleum Gases 70,029 - - 19,023 3,248 - - 3,727 11,128 10,947 66,498 171,636 Ethane/Ethylene 30,015 - - 379 9 - - -414 - - 30,817 34,444 Propane/Propylene 25,545 - - 17,254 2,603 - - 2,582 - 10,040 32,780 67,782 Normal Butane/Butylene 6,893 - - 1,738 333 - - 999 4,711 907 2,347 58,942 Isobutane/Isobutylene 7,576 - - -348 303 - - 560 6,417 - 554 10,468

209

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

8,897 964 18,564 10,598 335 158 17,505 3,205 18,490 8,897 964 18,564 10,598 335 158 17,505 3,205 18,490 Crude Oil 6,489 - - - - 8,527 144 93 14,999 67 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 2,408 -18 630 170 - - 65 509 314 2,301 Pentanes Plus 317 -18 - - 29 - - -13 174 118 50 Liquefied Petroleum Gases 2,091 - - 630 141 - - 79 335 196 2,251 Ethane/Ethylene 974 - - 18 0 - - 34 - - 958 Propane/Propylene 712 - - 553 116 - - 36 - 171 1,175 Normal Butane/Butylene 179 - - 56 15 - - 5 143 26 77 Isobutane/Isobutylene 225 - - 3 9 - - 4 192 - 41 Other Liquids - - 981 - - 1,257 53 51 1,997 214 28 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 981 - - 40 151 5 1,050 116 0 Hydrogen - - - - - - 190 - - 190 0 - -

210

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

71 22 3,498 1,982 3,256 25 -53 3,444 248 5,216 71 22 3,498 1,982 3,256 25 -53 3,444 248 5,216 Crude Oil 26 - - - - 864 11 23 -4 919 9 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 45 0 39 49 73 - - -4 20 8 182 Pentanes Plus 8 0 - - 1 0 - - 0 0 1 7 Liquefied Petroleum Gases 37 - - 39 49 73 - - -4 20 7 175 Ethane/Ethylene 0 - - 0 - - - - 0 - - 1 Propane/Propylene 25 - - 35 44 73 - - -2 - 3 176 Normal Butane/Butylene 6 - - 4 2 0 - - -2 9 4 1 Isobutane/Isobutylene 6 - - -1 3 - - - 0 10 - -2 Other Liquids - - 22 - - 717 1,611 114 -5 2,505 10 -47 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 22 - - 29 291 -9 3 324 6 0 Hydrogen - - - - - - 4 - - 4 0 - - Oxygenates (excl. Fuel Ethanol) - - - - 0 - 0 0

211

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

212

U.S. Exports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 522,879 659,392 738,803 858,685 1,089,848 1,172,965 1981-2012 Crude Oil 10,006 10,464 15,985 15,198 17,158 24,693 1870-2012 Natural Gas Plant Liquids and Liquefied Refinery Gases 25,584 36,951 50,681 59,842 90,968 115,054 1981-2012 Pentanes Plus 4,776 12,393 14,337 11,792 36,837 43,136 1984-2012 Liquefied Petroleum Gases 20,809 24,558 36,344 48,050 54,131 71,918 1981-2012 Ethane/Ethylene 1983-1992 Propane/Propylene 15,501 19,264 30,925 39,860 45,243 62,490 1981-2012 Normal Butane/Butylene 5,308 5,294 5,419 8,189 8,888 9,428 1981-2012 Isobutane/Isobutylene 1984-1992 Other Liquids 32,049 23,477 23,625 44,514 67,981 78,359 1991-2012 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons

213

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

571,552 300,900 1,523,608 673,109 268,869 -25,130 18,853 1,447,490 571,552 300,900 1,523,608 673,109 268,869 -25,130 18,853 1,447,490 89,370 1,757,194 287,201 Crude Oil 408,314 - - - - 633,223 292,624 -31,767 22,602 1,259,826 19,966 0 115,743 Natural Gas Plant Liquids and Liquefied Refinery Gases 163,238 -6,037 44,417 27,019 -9,288 - - -4,496 38,476 40,729 144,640 43,693 Pentanes Plus 18,229 -6,037 - - 213 29,889 - - -1,599 11,319 36,827 -4,253 6,686 Liquefied Petroleum Gases 145,009 - - 44,417 26,806 -39,177 - - -2,897 27,157 3,902 148,893 37,007 Ethane/Ethylene 59,649 - - - 115 -39,435 - - -716 - - 21,045 3,590 Propane/Propylene 57,022 - - 39,605 21,464 -8,812 - - -1,114 - 580 109,813 22,020 Normal Butane/Butylene 17,564 - - 4,181 3,156 3,807 - - -1,354 10,449 3,322 16,291

214

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

10,500 998 19,270 9,979 482 370 18,113 3,631 19,116 10,500 998 19,270 9,979 482 370 18,113 3,631 19,116 Crude Oil 7,794 - - - - 7,911 278 256 15,628 99 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 2,707 -18 634 134 - - 101 560 465 2,331 Pentanes Plus 372 -18 - - 26 - - -23 189 100 114 Liquefied Petroleum Gases 2,334 - - 634 108 - - 124 371 365 2,217 Ethane/Ethylene 1,001 - - 13 0 - - -14 - - 1,027 Propane/Propylene 852 - - 575 87 - - 86 - 335 1,093 Normal Butane/Butylene 230 - - 58 11 - - 33 157 30 78 Isobutane/Isobutylene 253 - - -12 10 - - 19 214 - 18 Other Liquids - - 1,015 - - 1,337 296 304 1,926 219 199 Hydrogen/Oxygenates/Renewables/Other Hydrocarbons - - 1,015 - - 75 121 -36 1,129 118 0 Hydrogen - - - - - - 208 - - 208 0 - -

215

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

216

A PrototypeFi er-Opti DiOpti Level-Sensor forLi Propane-Butane  

E-Print Network (OSTI)

This paper descr= es a fiber7---L=. levelsensor designed tomeasur the level of liquidprid.7---L7L.M= in ar8D= tivelyshor rrD (60 cm) in the top par ofstorfl7 tanks at oil ril.8---j= with the pur ose of monitorMj the level of thispr duct in the filledor slightly under88.M or over7---'fl tanks durs. var79= measurMj oper9Dfl'.Mj discrfl' multi-element device employing novel r7'7'.Mj=9---'. tr'7'.Mj=9 was selected because it yields both alar' measurMjj tr7---fl and high rh.8=8flD.M Sever. innovationso#er a competitive advantage toindustrMj useru 1) Special micr77L'7.Mj rr77L'7.Mj8 tr77L'7. 2) Efficient and economicalsensor multiplexing scheme; 3) Fast leveltr - king oper---LL.Mj algorMjfl'flL. verflj---9 rflj---9.Mjfl of the sensor

Vladimir Spw Victor; A Prototypefi; Vladimir A. Spww +a; Victor De Leon

2000-01-01T23:59:59.000Z

217

Sol-gel synthesis of vanadium phosphorous oxides for the partial oxidation of n-butane to maleic anhydride.  

E-Print Network (OSTI)

??Vanadium phosphorous oxide (VPO) is traditionally manufactured from solid vanadium oxides by synthesizing VOHPO[4subscript][dot in middle of line]0.5H[2subscript]O (the precursor) followed by in-situ activation to… (more)

Salazar, Juan Manuel

2007-01-01T23:59:59.000Z

218

6, 36873707, 2006 Vehicular fuel  

E-Print Network (OSTI)

) samples were collected only in Hong Kong and were comprised mainly of n-butane, propane and i-butane found that the relative amount of propane, i-butane, and n-butane increased between 2001 to 2003, consistent with the 40% increase in LPG fueled vehicles. Propane to butanes ratios were calculated for LPG

Paris-Sud XI, Université de

219

Atmos. Chem. Phys., 6, 32813288, 2006 www.atmos-chem-phys.net/6/3281/2006/  

E-Print Network (OSTI)

comprised mainly of n-butane, propane and i-butane. Traffic samples indicated that evaporative loss of propane, i-butane, and n- butane increased between 2001 to 2003, consistent with the Correspondence to: L. Y. Chan (celychan@polyu.edu.hk) 40% increase in LPG fueled vehicles. Propane to butanes ra- tios

Meskhidze, Nicholas

220

REFPROP AddIns  

Science Conference Proceedings (OSTI)

... Optional Units, Optional Prop1, Optional Prop2), butane, butane.fld, 106-97-8, n-butane, 134.895-575 K, 69 MPa, R402A, R125/Propane/R22, ...

2013-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT  

E-Print Network (OSTI)

·omatography, mass , propane, butane , wa:ter, and CO co dueethane ( 1. 7 flillOl) , n~butane (0.17 flmol), isobutane (not possess Isobutane/n~butane activity, this activity The

Benner, Linda S.

2013-01-01T23:59:59.000Z

222

COMPUTATIONAL METHODS FOR MOLEUCLAR STRUCTURE DETERMINATION: THEORY AND TECHNIQUE  

E-Print Network (OSTI)

study on the topology of n-butane. While the anti-conforma­were too low for gauche- butane type interactions, so a hardhydrogen and a good gauche-butane energy. Overall, however,

Lester, W.A.

2010-01-01T23:59:59.000Z

223

Selective Nanocatalysis of Organic Transformation by Metals: Concepts, Model Systems, and Instruments  

E-Print Network (OSTI)

on the open (100) surface. The iso- butane isomerizationto n-butane occurs more readily on the Pt(100) and theof the N–C bond to form butane and ammonia. Figure 9 shows

Somorjai, Gabor A.; Li, Yimin

2010-01-01T23:59:59.000Z

224

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network (OSTI)

such as ethane, propane, butanes, pentanes and hexanes plus,such as ethane, propane, butanes, pentanes and hexanes plus,LM6 is a high propane, high butane gas with a WN of 1385 and

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

225

Fire Interactions and Pulsation - Theoretical and Physical Modeling  

E-Print Network (OSTI)

flame to be captured. A butane lighter was used for ignitionFuels were ignited using a butane torch and were allowed toFuels were ignited using a butane torch and were allowed to

Maynard, Trevor

2013-01-01T23:59:59.000Z

226

Preparation of 1-C14-Propene-1 and the Mechanism of Permanganate Oxidation of Propene  

E-Print Network (OSTI)

propene, 9% butenes, 9% butanes and pentanes and 1% pentenes0.5/0 propane and 0.5% n-butane. The yield of propene waspropene, 16% butenes f 3% i-butane, 3% ethyl propy:i. ether

Fries, B.A.

2010-01-01T23:59:59.000Z

227

Development and Applications of Advanced Electronic Structure Methods  

E-Print Network (OSTI)

diphosphoniobicyclo[1.1.0]butane) rearrangements of the PBPB2,4-diphosphoniocyclo- butane-1,3-diyl doubly substituteddiphosphoniobicyclo[1.1.0]butane) rearrangements of the PBPB

Bell, Franziska

2012-01-01T23:59:59.000Z

228

Design, Control, and Measurement of Molecular and Supramolecular Assemblies  

E-Print Network (OSTI)

4-phenylazo- phenyl)-ethoxy]-butane-1-thiol), Azo. Scanning4-phenylazo-phenyl)- ethoxy]-butane-1-thiol (Azo2), and thephenylazo-phenyl)-ethoxy]-butane-1-thiol (Azo, shown in Fig.

Pathem, Bala Krishna

2012-01-01T23:59:59.000Z

229

Quantifying the Reactive Uptake of OH by Organic Aerosols in a Continuous Flow Stirred Tank Reactor  

E-Print Network (OSTI)

determination of the n-butane + OH reaction rate coefficientof the hexane (?) and butane (?) GC peak areas during therate constant ( k but ) for the n-butane + OH reaction. The

Che, Dung L.

2010-01-01T23:59:59.000Z

230

Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry  

E-Print Network (OSTI)

induced formation of n-butane. Although absorption bandsthe fundamental modes of the n-butane species in the presentspectra indicates that n-butane was not formed under the

Kaiser, Ralf I.

2010-01-01T23:59:59.000Z

231

Coupling nonpolar and polar solvation free energies in implicit solvent models  

E-Print Network (OSTI)

?Me?, ethane, propane, and butane from the study of AshbaughMe Ethane CH 3 Propane Butane CH 2 CH 3 In this section weabove calculation for propane and butane ?three and four LJ

Dzubiella, J; Swanson, JMJ; McCammon, J A

2006-01-01T23:59:59.000Z

232

Surface Reactivity of Copper Precursors for Atomic Layer Deposition (ALD) on Metal Surfaces  

E-Print Network (OSTI)

110) surfaces is described; butane and a small amidine were110) surface. No butene is produced at lower butane, 3 L;only some butane is desorption observed (58 amu). However,

MA, QIANG

2010-01-01T23:59:59.000Z

233

ISHHC XIII International Symposium on the Relations between Homogeneous and Heterogeneous Catalysis  

E-Print Network (OSTI)

for Partial Oxidation of n-butane to Maleic Anhydride Y.H.catalytic activity of n-butane oxidation to maleic anhydrideconversion of methane with n-butane to give other alkanes.

Somorjai Ed., G.A.

2007-01-01T23:59:59.000Z

234

Development of a Next-Generation Environmental Chamber Facility for Chemical Mechanism and VOC Reactivity Research  

E-Print Network (OSTI)

ethylene, propylene, n-butane and trans-2-butene wereas ethylene, propylene, n-butane and trans-2-butene and 30 mpropane, propylene, n-butane, n-hexane, toluene, n-octane

2005-01-01T23:59:59.000Z

235

Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts  

E-Print Network (OSTI)

of benzene, butene, or butane with oxygen over V 203all U.S. production is butane-based (17). Studies of theby the catalytic initial of butane the vapor phase; either

Poole, L.J.

2008-01-01T23:59:59.000Z

236

THE CHEMISTRY OF HO2NO2 AND THE PHOTOCHEMISTRY OF THE HOX-NOX-COX SYSTEM  

E-Print Network (OSTI)

smog chamber experiments n-butane photo-oxidation, Jesson etthe unimolecular decornposition without added n-butane.The NO n~butane th and is an effective scavenger of OH by

Littlejohn, David

2013-01-01T23:59:59.000Z

237

Superfluid 4He interferometers: construction and experiments  

E-Print Network (OSTI)

using a small, commercial butane torch and blasting the sealtubes from the stycast using a butane torch as described inonto the D-ring and the butane torch removal method is just

Joshi, Aditya Ajit

2013-01-01T23:59:59.000Z

238

EARTH SCIENCES DIVISION ANNUAL REPORT 1978  

E-Print Network (OSTI)

Ethane Propane Normal-butane, is0bu t ane X Normal-pentane,the mole fraction of normal-butane. Because a binary mixtureof the mole fraction of normal-butane. The discrep- ancy is

Authors, Various

2012-01-01T23:59:59.000Z

239

Characterizing biomolecular recognition and solvation with end-point free energy calculations and implicit solvent models  

E-Print Network (OSTI)

Me), ethane, propane, and butane from the study of Ashbaughas ethane, propane, or butane in a one-dimensional chainabove calculation for propane and butane (three and four LJ-

Swanson, Jessica M.J.

2006-01-01T23:59:59.000Z

240

Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) for Indoor Air Applications: Conversion of Volatile Organic Compounds at Low Part-per-Billion Concentrations  

E-Print Network (OSTI)

alkene hydrocarbon; and n-butane, an alkane hydrocarbon. UV> 2-butanone > 1-butene > n-butane. The order followed thedipole interaction for 1-butane, and weak dispersive forces

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

396 J. Phys. Chem. 1990, 94, 396-409 Reaction of Cyclopropane, Methylcyclopropane, and Propylene with Hydrogen on the  

E-Print Network (OSTI)

by the production of n-butane. This result was interpreted qualitatively by invokingparallel reaction mechanisms for the production of n-butane and isobutane, with the n-butane channel exhibiting a higher apparent activation

Goodman, Wayne

242

Homogeneous Non-Equilibrium Molecular Dynamics Methods for Calculating the Heat Transport Coefficient of Solids and Mixtures  

E-Print Network (OSTI)

of flexible molecules - Butane. Molecular Physics, 81(6):in polyatomic fluids: n-Butane as an illustration. Chemicalfor two models of liquid Butane. Chemical Physics, 198(1-2):

Mandadapu, Kranthi Kiran

2011-01-01T23:59:59.000Z

243

STUDIES OF THE SURFACES STRUCTURES OF MOLECULAR CRYSTALS AND OF ADSORBED MOLECULAR MONOLAYERS ON THE (111) CRYSTAL FACES OF PLATINUM AND SILVER BY LOW-ENERGY ELECTRON DIFFRACTION  

E-Print Network (OSTI)

transitions. The adsorption n-butane on Pt(lll) producesat 34 eV of monolayer of n-butane adsorbed on Agelll). The90-l05K, adsorption of n-butane on clean Pt(111) produces

Firment, L.E.

2010-01-01T23:59:59.000Z

244

Critical temperatures and pressures for hydrocarbon mixtures from an equation of state with renormalization-group-theory corrections  

E-Print Network (OSTI)

Relationship of Binary Systems n-Butane-n- Pentaneand n-Butane- n-Hexane, J. Chern. Eng. Data 20 (1975) 333-in the Ethane-Propane-n-Butane System, Fluid Phase Equil.

Jiang, J.

2011-01-01T23:59:59.000Z

245

Investigation of the Atmospheric Ozone Impacts of Methyl Iodide  

E-Print Network (OSTI)

ethylene, propylene, n-butane and trans-2-butene werepropane, propylene, n-butane, n-hexane, toluene, n-octaneas ethylene, propylene, n-butane and trans-2-butene and 30 m

Carter, W P L

2007-01-01T23:59:59.000Z

246

Energy-resolved annihilation studies : vibrational Feshbach resonances and positron- molecule bound states  

E-Print Network (OSTI)

Z e? for butane . . . . . . . . . . . . . . . . . . Figure2,2-di?uoropropane . . . Figure 5.9: Z e? for butane and 1-?resolved Z e? spectrum for butane (C 4 H 10 ). This spectrum

Young, Jason Asher

2007-01-01T23:59:59.000Z

247

Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity  

E-Print Network (OSTI)

methane, ethane, propane, n-butane) and alkenes (ethene,respectively). With propane and n-butane, all the Ln 2+ ionsof La 2+ with propane and n-butane, and the absence of their

Gibson, John K.

2010-01-01T23:59:59.000Z

248

CATALYSIS BY PLATINUM SINGLE CRYSTAL SURFACES: LOW PRESSURE HYDROCARBON REACTIONS AND THE EFFECTS OF INTRODUCING STRONGLY BOUND OXYGEN AT THE SURFACE  

E-Print Network (OSTI)

of neo-pentane and iso-butane in the presence of excessof neo-pentane to iso-butane was found to be a demandingof neo-pentane and iso-butane in the presence of excess

Smith, Carol Ellen

2011-01-01T23:59:59.000Z

249

Formation mechanisms and quantification of organic nitrates in atmospheric aerosol  

E-Print Network (OSTI)

limonene-1-nitrate, 1-hydroxy-butane- 2-nitrate, 3-hydroxy-our measured spectra of the butane hydroxynitrate we foundstandards except for the butane hydroxynitrate the O/C based

Rollins, Andrew Waite

2010-01-01T23:59:59.000Z

250

A Simulation Study of Diffusion in Microporous Materials  

E-Print Network (OSTI)

dynamics simulation of the diffusion of n- butane andi-butane in silicalite. J. Chem. Phys. 108, 2170–2172 (Stefan diffusivity of iso-butane in MFI zeolite. Chem. Phys.

Abouelnasr, Mahmoud Kamal Forrest

2013-01-01T23:59:59.000Z

251

Splitting a C-O bond in dialkylethers with bis(1,2,4-tri-t-butylcyclopentadienyl) cerium-hydride does not occur by a sigma-bond metathesis pathway: a combined experimental and DFT computational study  

E-Print Network (OSTI)

and propane or Cp’ 2 Ce(O-n-Bu) and butane, respectively.CeD, the propane and butane contain deuterium predominantlysites of (n-Bu) 2 O, but the butane produced by the reaction

Werkema, Evan

2011-01-01T23:59:59.000Z

252

A BRIEF HISTORY OF INDUSTRIAL CATALYSIS  

E-Print Network (OSTI)

there were supplies of n-butane which could be isomerized.as a catalytic liquid n~butane gas was passed; in the other,and ts: butadiene, 2) 1) butane lbenzene dehydro~~ genation

Heinemann, Heinz

2013-01-01T23:59:59.000Z

253

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network (OSTI)

to approximate propane, butane, and LPG purchases, and U.S.Groundwater (MJ/L) Electricity NG Propane/ Butane/LPG DieselElectricity NG Propane/ Butane/ LPG Diesel AL 2.1E-05 N/A N/

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

254

Coupling nonpolar and polar solvation free energies in implicit solvent models  

E-Print Network (OSTI)

methane ?Me?, ethane, propane, and butane from the study ofJones sphere Me Ethane CH 3 Propane Butane CH 2 CH 3 In thisthe above calculation for propane and butane ?three and four

Dzubiella, J; Swanson, JMJ; McCammon, J A

2006-01-01T23:59:59.000Z

255

xml version="1.0" encoding="UTF-8"?>

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a
real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Whole-Genome Analysis of Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1  

E-Print Network (OSTI)

by pure cultures of butane-degrading bacteria. Appl.of K s values for MTBE by butane- degrading bacteria (52).

2007-01-01T23:59:59.000Z

262

THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE  

E-Print Network (OSTI)

upward for nixtures of n-butane and n-pentane, whereasand iie Table 11 I so butane Propane Isopentane @-factor (Fe

Pope, William L.

2012-01-01T23:59:59.000Z

263

Mechanical and charge transport properties of alkanethiol self-assembled monolayers on Au (111) surface: The Role of Molecular Tilt  

E-Print Network (OSTI)

consisting of a single butane-dithiol molecule in a largefind that for the single butane-dithiol molecule bonded to

Qi, Yabing

2007-01-01T23:59:59.000Z

264

Local Models for Strongly Correlated Molecules  

E-Print Network (OSTI)

08). Largest system: t-butane (24,24) pictured. Parameters08). Largest system: t-butane (24,24) pictured. Parameters

Parkhill, John Anthony

2010-01-01T23:59:59.000Z

265

Synthesis, characterization and X-ray crystal structures of chiral ferrocene-containing -diketones  

E-Print Network (OSTI)

-(1-ferrocenylethyl)-butane-1,3-dione (2), and 1- ferrocenyl-2-(1-ferrocenylethyl)-butane-1,3-dione (3), have been

266

Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities  

E-Print Network (OSTI)

ethane, propane or butane. Concentrations of metabolitesacid COO - CH 3 O H 3 C Butane (C 4 H 10 ) H 3 C CH 3 O - O

Duncan, Kathleen E.

2010-01-01T23:59:59.000Z

267

GAMMA-RAY DETECTION WITH PbO GLASS CONVERTERS IN MWPC: ELECTRON CONVERSION EFFICIENCY AND TIME RESOLUTION  

E-Print Network (OSTI)

10X CF and 30% iso- butane, respectively. The effects of gas+ 67% Ar 3% methylal+30% Iso­ butane + 67% Ar Comparing the

Lum, G.K.

2010-01-01T23:59:59.000Z

268

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network (OSTI)

dry fuels were ignited using a butane pilot lighter applied4 H 8 (butene), and C 4 H 10 (n-butane) gases with a Hewlett

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

269

Cyclization Phenomena in the Sol-Gel Polymerization of a,w-Bis(triethoxysilyl)alkanes and Incorporation of the Cyclic Structures into Network Silsesquioxane Polymers  

Science Conference Proceedings (OSTI)

Intramolecular cyclizations during acid-catalyzed, sol-gel polymerizations of ct,co- bis(tietioxysilyl)aWmes substintidly lengtien gelties formonomers witietiylene- (l), propylene- (2), and butylene-(3)-bridging groups. These cyclizations reactions were found, using mass spectrometry and %i NMR spectroscopy, to lead preferentially to monomeric and dimeric products based on six and seven membered disilsesquioxane rings. 1,2- Bis(triethoxysilyl)ethane (1) reacts under acidic conditions to give a bicyclic drier (5) that is composed of two annelated seven membered rings. Under the same conditions, 1,3- bis(triethoxysilyl)propane (2), 1,4-bis(triethoxysilyl)butane (3), and z-1,4- bis(triethoxysilyl)but-2-ene (10) undergo an intramolecular condensation reaction to give the six membemd and seven membered cyclic disilsesquioxanes 6, 7, and 11. Subsequently, these cyclic monomers slowly react to form the tricyclic dirners 8,9 and 12. With NaOH as polymerization catalyst these cyclic silsesquioxanes readily ~aeted to afford gels that were shown by CP MAS z%i NMR and infr=d spectroscopes to retain some cyclic structures. Comparison of the porosity and microstructwe of xerogels prepared from the cyclic monomers 6 and 7 with gels prepared directly from their acyclic precursors 2 and 3, indicate that the final pore structure of the xerogels is markedly dependent on the nature of the precursor. In addition, despite the fact that the monomeric cyclic disilsesquioxane species can not be isolated from 1-3 under basic conditions due to their rapid rate of gelation, spectroscopic techniques also detected the presence of the cyclic structures in the resulting polymeric gels.

Alam, T.M.; Carpenter, J.P.; Dorhout, P.K.; Greaves, J.; Loy, D.A.; Shaltout, R.; Shea, K.J.; Small, J.H.

1999-01-04T23:59:59.000Z

270

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

926,785 32,969 2,665,992 1,875,331 -1,415,011 111,431 45,954 926,785 32,969 2,665,992 1,875,331 -1,415,011 111,431 45,954 2,448,351 861,579 1,841,613 1,178,473 Crude Oil 1,386,449 - - - - 1,630,908 -244,084 67,355 8,560 2,830,779 1,288 0 861,333 Natural Gas Plant Liquids and Liquefied Refinery Gases 540,336 -180 150,143 11,694 101,692 - - 29,480 109,476 61,693 603,036 96,994 Pentanes Plus 66,222 -180 - - 10,282 -16,515 - - -3,264 42,493 1,105 19,475 5,765 Liquefied Petroleum Gases 474,114 - - 150,143 1,412 118,207 - - 32,744 66,983 60,588 583,561 91,229 Ethane/Ethylene 233,470 - - 6,504 - 100,649 - - 13,226 - - 327,397 31,406 Propane/Propylene 153,496 - - 129,707 174 10,289 - - 14,578 - 56,954 222,134 38,509 Normal Butane/Butylene 28,426 - - 12,412 1,208 5,090 - - 3,798 26,775 3,633 12,930

271

Crystallization, mechanical, rheological and degradation behavior of polytrimethylene terephthalate, polybutylene terephthalate and polycarbonate blend.  

E-Print Network (OSTI)

??Blends of polycarbonate (PC), polytrimethylene terephthalate (PTT) and poly butylene terephthalate (PBT) are an important class of commercial blends with numerous applications providing good chemical… (more)

Al-Omairi, L

2010-01-01T23:59:59.000Z

272

Total Synthesis of a Bicyclo[1.1.0]butane Fatty Acid and Biosynthetically Empowered Investigation of the Biological Activity of Apoptolidin.  

E-Print Network (OSTI)

??Complex secondary metabolites from diverse life forms play key roles in mediating many biological processes but the exact nature of their function is often unknown.… (more)

DeGuire, Sean Michael

2013-01-01T23:59:59.000Z

273

Partial oxidation of Raffinate II and other mixtures of n-Butane and n-Butenes to maleic anhydride in a fixed-bed reactor.  

E-Print Network (OSTI)

??The utilisation of the C4 streams of steamcrackers by converting raffinate II to maleic anhydride was studied. The oxidation reactions were investigated in a laboratory-scale… (more)

Brandstädter, Willi Michael

2008-01-01T23:59:59.000Z

274

Thermal Conductivity of Liquids and Gases  

Science Conference Proceedings (OSTI)

... JCED Supporting Information: Propane.(ASCII)(pdf)(Postscript). JCED Supporting Information: Butane.(ASCII)(pdf)(Postscript). ...

2006-10-31T23:59:59.000Z

275

3.System Design Basis 2) MODELING  

E-Print Network (OSTI)

-0012) Vendor Prints 2) All equipments are modelled using the standard HYSYS unit operation models. 3) Butane BOG compressors with butane storage system is modelled for this report. 4) Modelling have been streams and out streams specifications for the butane storage tanks(T-1/2/3/4) with Butane BOG compressor

Hong, Deog Ki

276

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 0099-2240/99/$04.00 0  

E-Print Network (OSTI)

. 10 Copyright © 1999, American Society for Microbiology. All Rights Reserved. Diversity in Butane Monooxygenases among Butane-Grown Bacteria NATSUKO HAMAMURA,1 RYAN T. STORFA,2 LEWIS SEMPRINI,3 AND DANIEL J. ARP April 1999/Accepted 19 July 1999 Butane monooxygenases of butane-grown Pseudomonas butanovora

Semprini, Lewis

277

A Tentative Modeling Study of the Effect of Wall Reactions on Oxidation Phenomena  

E-Print Network (OSTI)

temperature diagram of oxidation phenomena in the case of n-butane. Reactions which depend on the type-Ta ignition diagrams for equimolar n-butane/oxygen in an untreated silica vessel, a vessel internally coated Figure 1. Experimental p-Ta ignition diagrams for equimolar n-butane + oxygen mixtures (50 % n- butane

Paris-Sud XI, Université de

278

Power MEMS 2005, Nov. 28-30, 2005, Tokyo, Japan We have developed a large-entrainment-ratio micro ejector to supply fuel-air mixture for a catalytic combustor. As the key  

E-Print Network (OSTI)

ejector has achieved a maximum air-to-butane volume flow rate ratio of 43 when the back pressure employs butane as the fuel because it has both high energy density (13300 Wh/kg) and favorable storage. The requirement of designing an ejector for a butane combustor is to achieve an air-to-butane volume flow rate

Kasagi, Nobuhide

279

I Reprinted from the Journal of the American Chemical Society. 92. 1426 ( 1970).1 Copyright 1970 by the American ChemicalSociety and reprinted by permissionof rhi.opf.ight owner.  

E-Print Network (OSTI)

dominantparhwayfor thermaldecom- positionof this alkylcopper(l)compound to ,?-butane and l-butenedoesrto, in-butene (51%) n-butane(4971),and hydrogen (10%); lessthan 0.t I n-octaneis formed. Hydrolysis oi the solution' rr-butvl-2.2-tl:(tri-rr-butylphosphine)cop- per(l)(2)yieldsno butane-r/,,butane-dc,ot butene

Prentiss, Mara

280

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 0099-2240/97/$04.00 0  

E-Print Network (OSTI)

. 9 Copyright © 1997, American Society for Microbiology Chloroform Cometabolism by Butane-Grown CF8) degradation by a butane-grown enrichment culture, CF8, was compared to that by butane-grown Pseudomonas. All three butane-grown bacteria were able to degrade CF at rates comparable to that of M

Semprini, Lewis

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application  

E-Print Network (OSTI)

surface reaction of butane. In combustion experiments with a prototype combustor, the wall temperature is proportional to the butane concentration, is employed to characterize the activity of the catalyst layer for n-butane profile of butane-air mixture is assumed at the inlet. The volumetric flow rate QB is kept at 10 sccm

Kasagi, Nobuhide

282

Journal of Molecular Catalysis A: Chemical 166 (2001) 5972 Electronic structure of vanadyl pyrophosphate  

E-Print Network (OSTI)

in oxidation of n-butane to maleic anhydride (MA) [12­26]. The other phase of a great importance is vanadyl of butane oxidation [14]. One has to stress that the oxidation on n-butane to MA is one of the most collapse. One has also to add that oxidation of butane to MA is the only process of the selective oxidation

283

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

284

www.eia.gov  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Per Unit of Volume or Mass Per Million Btu For homes and businesses Propane gallon Butane Butane/Propane Mix Home Heating and Diesel Fuel

285

Mark L. Robin Great Lakes Chemical Corporation Fluorine ...  

Science Conference Proceedings (OSTI)

... Results for the FM-100/air/propane and FM-lOO/air/i-butane systems are shown in Figures 3 and 4 , respectively. ... n-heptane n-butane methanol ...

2011-09-27T23:59:59.000Z

286

DIFFUSIVE DYNAMICS OF ALKANE CHAINS Ronald M. Levy  

E-Print Network (OSTI)

alkanes studied were butane, heptane,and eicosane (4 atoms, 7 atoms, and 20 atoms). We regard this work, the results of the dynamics simulations are presented and the equilibrium and kinetic pro- perties of butane

287

Atmos. Chem. Phys., 9, 31973207, 2009 www.atmos-chem-phys.net/9/3197/2009/  

E-Print Network (OSTI)

hydrocarbons i-butane (7.87 µg.m-2 s-1), i- pentane (3.61 µg.m-2 s-1) and n-butane (3.23 µg.m-2 s-1

Meskhidze, Nicholas

288

C-H functionalisation through singlet chlorocarbenes insertions – MP2 and DFT investigations  

Science Conference Proceedings (OSTI)

The insertion reactions of singlet mono and dichlorocarbenes (1CHCl and 1CCl2) into primary, secondary and tertiary C-H bonds of methane, ethane, propane, n-butane and iso-butane have been investigated at ...

M. Ramalingam; K. Ramasami; P. Venuvanalingam; V. Sethuraman

2006-05-01T23:59:59.000Z

289

Hydrogen Storage -Overview George Thomas, Hydrogen Consultant to SNL*  

E-Print Network (OSTI)

75 100 125 hydrogen m ethane ethane propane butane pentane hexane heptane octane (gasoline) cetane (diesel) octane (gasoline) heptane hexane pentane butane ethane propane ethanol m ethane m ethanol am m

290

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network (OSTI)

blending components), natural-gas liquids (such as pentanes and butanes), alcohols, and other hydrocarbons (such as coal-

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

291

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

Safety Plan m Chemical$torase Guidelines Chemical Is Incompatible llll i With ii Hydrocarbons (such as butane, propane,

Ricks Editor, R.

2009-01-01T23:59:59.000Z

292

NIST, Theory and Modeling of Fluids Group  

Science Conference Proceedings (OSTI)

... of predicting thermodynamic properties of mixtures containing nitrogen, argon, oxygen, carbon dioxide, methane, ethane, propane, n-butane, and i ...

293

Firebrand Production From Burning Vegetation  

Science Conference Proceedings (OSTI)

... Reduced Scale Firebrand Ignition Experiments The firebrand ignition apparatus consists of four butane burners and a firebrand mounting probe. ...

2006-07-03T23:59:59.000Z

294

Exam 1, Chemistry 210, Dr. Rainer Glaser, W97, MU --1 --Chemistry 210Chemistry 210  

E-Print Network (OSTI)

,4-dimethyl-octane (4 points) 7-tert.-butyl-4-iso.-propyl-3,5-decadiene (3 pts) H O butanal (3 pts) O ethylmethylketone Condensed structural formula of n-butane. (2 pts) H3C-CH2-CH2-CH3 Bond line structure of butane. (2 pts) Newman projection of gauche butane along the central C2-C3 bond. (4 pts) H H Me Me H H

Glaser, Rainer

295

Ultrafast Carbon-Carbon Single-Bond Rotational Isomerization in  

E-Print Network (OSTI)

of the barrier heights of 1, n-butane, and ethane, the time constants for n-butane and ethane internal rotation is not completely free. (2) The trans-gauche isomerization of 1,2- disubstituted ethane derivatives, such as n-butane energy barrier of the n-butane (Ã?3.4 kcal/mol) and of other simple 1,2-disubstituted ethane derivatives

Fayer, Michael D.

296

Anthropogenic emissions of nonmethane hydrocarbons in the northeastern United States: Measured seasonal variations from  

E-Print Network (OSTI)

in relative emissions for this series of trace gases. Seasonal changes in n-butane and i-butane emissions may [Seinfeld and Pandis, 1998]. [3] In this study, we present the seasonality of C2-C6 (ethane, propane, n-butane, i-butane, n-pentane, i-pentane and n-hexane) hydrocarbons, NOy and CO as measured at Harvard Forest

Goldstein, Allen

297

Nucleation mechanisms of aromatic polyesters, PET, PBT, and PEN, on single-wall carbon nanotubes: early nucleation stages  

Science Conference Proceedings (OSTI)

Nucleation mechanisms of poly (ethylene terephthalate) (PET), poly (butylene terephthalate) (PBT), and poly (ethylene naphthalate) (PEN) on single-wall carbon nanotubes (SWNTs) are proposed, based on experimental evidence, theoretical epitaxy analysis, ...

Adriana Espinoza-Martínez, Carlos Avila-Orta, Víctor Cruz-Delgado, Oscar Olvera-Neria, Julio González-Torres, Francisco Medellín-Rodríguez

2012-01-01T23:59:59.000Z

298

Water-Soluble 2-Hydroxyisophthalamides for Sensitization of Lanthanide Luminescence  

E-Print Network (OSTI)

tetrakis-(2- aminoethyl)-butane-1,4-diamine [H(4,2)-]. These1 '',N 1 '''-(2,2',2'',2'''-(Butane-1,4-diylbis(azanetriyl))N'-tetrakis-(2- aminoethyl)-butane-1,4-diamine (6c) 12 (0.26

Samuel, Amanda P. S.

2009-01-01T23:59:59.000Z

299

Experimental investigations of photochemically-generated organic aerosols and applications to early Earth and Mars  

E-Print Network (OSTI)

1,3-butadiyne C 4 H 10 n-butane † For C 3 H 4 and C 4 H 2 ,n-propane) and C 4 H 10 (n-butane), respectively. Table 2.1:~12‰, while propane and butane are depleted by ~15‰ relative

Chu, Emily Faye

2013-01-01T23:59:59.000Z

300

Molecular Components of Catalytic Selectivity  

E-Print Network (OSTI)

Hexagonal Square isobutane n-butane isobutane C 1 – C 3H 2 O H 3 C OH 1-Butanol H 3 C H 2 Butane H H 3 C + H 2 CH 3Pyrrolidine + H 2 +NH 3 Butane and ammonia Scheme 1. (a) (b)

Somorjai, Gabor A.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes  

E-Print Network (OSTI)

in a laminar premixed n-butane flame", Combustion and Flame,1.5 atm; T=1431-1680 K; (b) n-butane [22], ?=1.0; 2.5% C 4 Hof the parameters for n- butane were obtained from Marinov

Saxena, Priyank

2007-01-01T23:59:59.000Z

302

Zwittermicin A : determination of its complete configuration and total synthesis of its enantiomer  

E-Print Network (OSTI)

dimethyl-1,3-dioxan-4-yl)butane- 1,3-diol (233). Under andimethyl-1,3-dioxan-4-yl)butane- 1,3-diol (234). Under andimethyl-1,3-dioxan-4-yl)butane-1,3-diol (265-268). Under an

Rogers, Evan W.

2008-01-01T23:59:59.000Z

303

Physical and Chemical Characterization of Particulate and Gas phase Emissions from Biomass Burning  

E-Print Network (OSTI)

literature. For example, EF of butane in this study was 5.0-Alkanes Propane 2M-Propane 2M-Propene Butane 2,2-DM-PropanePentane 2,2-DM-Butane 107-167 a , 169 b a b 8.69-13.12 a ,

Hosseini, Seyedehsan

2012-01-01T23:59:59.000Z

304

2007 Botany and Plant Pathology Publications Arp, Daniel  

E-Print Network (OSTI)

-subunit of butane monooxygenase. J. Bacteriol. 189: 5068-5074 (2007). Gvakharia, B.O., E.A. Permina, M.A. Sayavedra-Soto, D.J. Arp. Butane monooxygenase of Pseudomonas butanovora: purification and biochemical of butane monooxygenase activity in Pseudomonas butanovora; Biochemical and physiological implications

Grünwald, Niklaus J.

305

Requirements Hydrocarbon  

E-Print Network (OSTI)

. Butane is also an option. If material is driving factor these become attractive. Advantages Radiation. He considered two coolants: Butane and R134a (freon replacement used in auto air conditioners). About.021 Butane 72.6 0.014 0.012 10 #12; Advantages Radiation Length Even R134a (Radiation length 80% of wa- ter

Cinabro, David

306

DIRECT CONTACT HEAT EXCHANGER 10 kW POWER LOOP. SECTION 1: EXECUTIVE SUMMARY. SECTION 2: TEST SERIES NO. 1. SECTION 3; TEST SERIES NO. 2  

E-Print Network (OSTI)

i t h e r l i q u i d iso- butane or brine. The c o n s t rand thermometers located in d butane temperatures and , and-e t o t h e DCHX 330 + 5OF Butane o u t l e t t e m p e r a

Engineering, Barber-Nicholas

2011-01-01T23:59:59.000Z

307

Exam 1, Chemistry 210, Dr. Rainer Glaser, W97, MU --1 --Chemistry 210Chemistry 210  

E-Print Network (OSTI)

) (3 points) (4 points) (3 pts) H O (3 pts) O Condensed structural formula of n-butane. (2 pts) Bond line structure of butane. (2 pts) Newman projection of gauche butane along the central C2-C3 bond. (4

Glaser, Rainer

308

MOUSE ORGAN HARVEST PROTOCOL 10/01 TO FREEZE TISSUES FOR FROZEN SECTIONS  

E-Print Network (OSTI)

bits of dry ice and 2 methyl butane. This will be the freezing mixture which will freeze the organs OCT turns white 9. Remove plastic molds with frozen organs from dry ice/ 2 methyl butane and let them No 15160-215 3. Frozen sample write-on bags: VWR Cat. No: 01-002-37 4. 2 methyl butane: Fisher Cat. No

Abagyan, Ruben

309

Characterization and permeation properties of ZSM-5 tubular membranes  

SciTech Connect

ZSM-5 zeolite membranes with reproducible properties were prepared by in-situ synthesis on porous {alpha}- and {gamma}-alumina tubular supports and characterized by XRD, SEM and electron microprobe analysis. Single-gas permeances for H{sub 2}, CH{sub 4}, N{sub 2}, CO{sup 2}, n-butane, and i-butane increase over some temperature range, but some gases exhibit maxima or minima. The highest ideal selectivities at room temperature are 299 for N{sub 2}/SF{sub 6}, 392 for H{sup 2}/n-butane, and 2,820 for H{sub 2}/i-butane. These membranes can separate n-butane/i-butane, H{sub 2}/n-butane and H{sub 2}/i-butane mixtures. All n-butane/i-butane separation selectivities have maxima as a function of temperature and are higher than ideal selectivities because n-butane inhibits i-butane permeation. Thus, separation is not by size selectivity, but is due to pore blocking. Temperature dependencies of single-gas permeances and separation selectivities depend strongly on the location of zeolite crystals and the location is determined by preparation procedure. Ideal selectivities also depend strongly on the preparation procedure. When the zeolite forms a continuous layer on the inside surface of the support tubes, pure i-butane permeates faster than pure n-butane so that the single-gas permeances are not determined just by molecular size. The i-butane permeance also increases much more with temperature than the n-butane permeance. The permeation behavior may be the result of permeation through nonzeolitic pores in parallel with zeolite pores. When zeolite crystals are dispersed throughout the pores of {alpha}-alumina supports, permeances are lower and gas permeation and separation properties are quite different. Ideal selectivities are lower, pure n-butane permeates faster than i-butane, and the permeances increase much less with temperature. Separation selectivities are lower but can be maintained to higher temperatures.

Coronas, J.; Falconer, J.L.; Noble, R.D. [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemical Engineering] [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemical Engineering

1997-07-01T23:59:59.000Z

310

Kinetic and Inhibition Studies for the Aerobic Cometabolism of  

E-Print Network (OSTI)

,1-Dichloroethylene, and 1,1-Dichloroethane by a Butane-Grown Mixed Culture Young Kim,1 Daniel J. Arp,2 Lewis Semprini), and 1,1-dichloroethane (1,1-DCA) by a butane- grown mixed culture. These chlorinated aliphatic hydro. The highest kmax was obtained for butane (2.6 µmol/mg TSS/ h) followed by 1,1-DCE (1.3 µmol/mg TSS/h), 1,1-DCA

Semprini, Lewis

311

Importance of Gas-Phase Kinetics within the Anode Channel of a Solid-Oxide Fuel Cell Chad Y. Sheng and Anthony M. Dean*  

E-Print Network (OSTI)

ReceiVed: December 12, 2003; In Final Form: February 27, 2004 Experiments using n-butane channel of a solid-oxide fuel cell (SOFC). Butane conversion and product formation were monitored used: neat n-butane, 50% n-C4H10/50% H2O, and 50% n-C4H10/50% N2. These experiments demonstrate

Dean, Anthony M.

312

It's The Fluids SEG Honorary Lecture  

E-Print Network (OSTI)

T.P. Water Butane CO2 #12;Fluid ­ Density 800 1000 1200FluidDensity[kg/m3] Brine CO2 0 2 4 6 8 10 0 200 400 600 Fluid Pressure [MPa] FluidDensity[kg/m Butane CO2 #12;Fluid ­ Modulus 2000 2500 3000 FluidModulus[MPa] Brine 0 2 4 6 8 10 0 500 1000 1500 Fluid Pressure [MPa] FluidModulus[MPa] Butane CO2 #12;GENERAL PHASE

313

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

for this sample, but Raman bands from both samples were essentially identical: methane and ethane along with trace amounts of isobutene and trans-butane. Small angle...

314

EIA-816 MONTHLY NATURAL GAS PLANT LIQUIDS REPORT INSTRUCTIONS ...  

U.S. Energy Information Administration (EIA)

EIA-816, Monthly Natural Gas Plant Liquids Report Page 3 Inputs During Month Report only inputs of normal butane being converted by an isomerization process into ...

315

Table E2.1. Nonfuel (Feedstock) Use of Combustible Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

ethane-propane mixtures, propane-butane mixtures, and isobutane" "produced at refineries or natural gas processing plants, including plants that fractionate raw" "Natural...

316

Dr. William V. (Vance) Payne, II  

Science Conference Proceedings (OSTI)

... His refrigerant work included examining natural refrigerants such as propane and iso-butane (hydrocarbons) as well as carbon dioxide (CO2). ...

2012-08-23T23:59:59.000Z

317

Conntents  

Science Conference Proceedings (OSTI)

... With Isobutane and n-Butane: Modified Ingham, and John J. Lynch Leung-Griffiths Correlation and Data Evaluation Conference Reports ...

2003-10-06T23:59:59.000Z

318

Measurements of Vapor Pressures and PVT Properties for n ...  

Science Conference Proceedings (OSTI)

Page 1. Measurements of Vapor Pressures and PVT Properties for n-Butane from 280 to 440 K at Pressures to 200 MPa ...

2006-07-20T23:59:59.000Z

319

Publications Portal  

Science Conference Proceedings (OSTI)

... A correlation for estimating the vapor pressure of normal alkanes from methane through n-hexatriacontane and isomers of butane to nonane is ...

2012-09-17T23:59:59.000Z

320

Stephanie L. Outcalt  

Science Conference Proceedings (OSTI)

... The instrument has also been used to measure the solubility of carbon dioxide, propane, propene, butane, and 1-butene in the ionic liquid 1-butyl-3 ...

2012-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NIST - Physical and Chemical Properties Division - Technical ...  

Science Conference Proceedings (OSTI)

... We are now working to develop formulations for propane, butane, and isobutane (so-called "natural refrigerants") that are of increasing interest. ...

322

Richard A. Perkins: Publications  

Science Conference Proceedings (OSTI)

... MLV, Nieto de Castro, CA, Cusco, L., and Perkins, RA, "Improved correlations for the thermal conductivity of propane and n-butane," in Thermal ...

2006-10-30T23:59:59.000Z

323

BlackBerry Torch 9800 Smartphone - Consignes de sécurité ...  

Science Conference Proceedings (OSTI)

... le stockage de carburants ou de produits chimiques, de véhicules utilisant du gaz de pétrole liquéfié (tel que du propane ou du butane), des zones ...

2012-11-15T23:59:59.000Z

324

BlackBerry Torch 9800 Smartphone - Safety and Product ...  

Science Conference Proceedings (OSTI)

... deck on boats; fuel or chemical transfer or storage facilities; vehicles using liquefied petroleum gas (such as propane or butane); areas where the ...

2012-11-15T23:59:59.000Z

325

Publications Portal  

Science Conference Proceedings (OSTI)

... particle sizes have been determined in the soot oxidation regions of axisymmetric diffusion flames burning methane, methane/butane, and methane ...

2012-09-17T23:59:59.000Z

326

A New Functional Form and New Fitting Techniques for ...  

Science Conference Proceedings (OSTI)

... Of the 34 equa- tions of state compared in this work (see Table 1), only the equations for ammonia, argon, butane, ethane, ethylene, isobutane ...

2008-06-09T23:59:59.000Z

327

Fuel Gases  

Science Conference Proceedings (OSTI)

...often used in torch brazing of steel. Hydrogen, butane, and producer (city) gas are seldom employed. In manual torch brazing, pure oxygen is

328

Using JCP format  

Science Conference Proceedings (OSTI)

... critical temperature, is gas–liquid solubility, where as the equilibrium set up at the same temperature between the same polymer and n-butane is an ...

2008-06-09T23:59:59.000Z

329

Publications N  

Science Conference Proceedings (OSTI)

... J. Chem. Phys., 1983. 79(3): p. 1480-6. Nelson, EE and WS Bonnell, Solubility of hydrogen in n-butane. Ind. Eng. Chem., 1943. ...

330

Geometrical structures of phosphorus-containing heterocyclic ...  

Science Conference Proceedings (OSTI)

phites based on meso- and d/-butane-2, 3-diol. The synthesis and properties of the thiophosphates (VI)-. (IX) have been described in [19, 20]. The thiophosphate  ...

331

MTBE Prices Responded to Natural Gas Prices  

U.S. Energy Information Administration (EIA)

On top of the usual factors impacting gasoline prices, natural gas has had some influence recently. ... Both methane and butane come from natural gas streams.

332

EIA-182 DOMESTIC CRUDE OIL FIRST PURCHASE REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

average wellhead price for selected domestic crude oil streams aggregated by State. First purchase volumes are also used in ... such as butane and

333

Publications Portal  

Science Conference Proceedings (OSTI)

... from methane through n-hexatriacontane and isomers of butane to nonane is ... semiconductors are critical to the realization of low cost, large area ...

2012-09-17T23:59:59.000Z

334

NITROGEN GAS AS A HALON REPLACEMENT ...  

Science Conference Proceedings (OSTI)

... TABLE 4. INERTION CONCENTRATIONS. - m Fuel Inertion Conc., vol.% Butane 40.0 44.0 Propane 42.0 46.2 ... COST AND AVAILABILITY ...

2011-10-20T23:59:59.000Z

335

TEMPERATURE DEPENDENCE OF THE RELATIVE ... - Springer  

Science Conference Proceedings (OSTI)

aqueous solutions [5, 6], while relative constants for the methane–butane series [ 7-9] and for cyclopentane [10] were measured by photolysis and radiolysis ...

336

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Oregon homeowners and renters who heat with oil, wood, propane, kerosene, or butane are eligible for home weatherization rebates of up to 500. A variety of measures,...

337

Solid phase isotope exchange with spillover hydrogen in amino ...  

Science Conference Proceedings (OSTI)

isomerization reaction of n-butane on BACs was shown to proceed by monomolecular mechanism and not to be connected with the intermediate formation of ...

338

Overview of sSupply of Chicago/Milwaukee Gasoline This Spring:  

U.S. Energy Information Administration (EIA)

... the refiner may have added fractionation capability to remove butane from the inputs, or may be splitting the alkylate into light and heavy ...

339

Table Definitions, Sources, and Explanatory Notes  

Annual Energy Outlook 2012 (EIA)

lease separation facilities. This category excludes natural gas plant liquids, such as butane and propane, which are recovered at downstream natural gas processing plants or...

340

LE JOURNAL DE PHYSIQUE CALCUL APPROCH DE QUELQUES FRQUENCES PROPRES  

E-Print Network (OSTI)

'isopentane, du méthyl-3-pentane, du méthyl-~, . 3-butane et du tétraméthyl-22 . 33-butane. Tous les radicaux résultats du calcul à ceux des expériences. 3. D$méthyl-2.3-butane. - Le système en �, est Posons L résul- tats du calcul aux résultats expérimentaux. 4. Tétraméthyl- 2 2. 3 3-butane. - Avec le modèle

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Natural gas treatment process using PTMSP membrane  

DOE Patents (OSTI)

A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

Toy, L.G.; Pinnau, I.

1996-03-26T23:59:59.000Z

342

A Parameterized Interatomic Potential for Saturated Hydrocarbons ...  

Science Conference Proceedings (OSTI)

The experimental PVT data for methane, ethane, propane, and butane systems with different densities were predicted reasonably well by MEAM. Proceedings ...

343

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2010...  

NLE Websites -- All DOE Office Websites (Extended Search)

petroleum gas (LPG), which is predominately butane in South Korea (as opposed to Propane in the United States). Another notable feature of this vehicle is its lithium polymer...

344

Natural gas treatment process using PTMSP membrane  

DOE Patents (OSTI)

A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

1996-01-01T23:59:59.000Z

345

Table 3.9 Value of Fossil Fuel Net Imports, 1949-2011 (Billion ...  

U.S. Energy Information Administration (EIA)

1 Includes petroleum preparations, liquefied propane and butane, and, beginning in 1997, other mineral fuels. R=Revised. P=Preliminary. E=Estimate.

346

fernihough  

Science Conference Proceedings (OSTI)

... cb1. cashback. carbody. calvary. calvaert. butane/propane. bursts. burnie. bulog. budde. ... near. need. neighbour. network. new. news. ngo. nicholas. night ...

347

Gas fuel in a four-stroke engine  

Science Conference Proceedings (OSTI)

This paper refers to the behavior of a four-stroke gasoline engine that is used for the function of a small generator. The generator functioned at different electrical loads 500W, 1000W, 1500W and 2000W. During the use of gas fuel 80%butane -20%propane ... Keywords: biofuels, gas emissions, gas propane-butane mixture

Charalampos Arapatsakos

2009-02-01T23:59:59.000Z

348

Natural Gas Flow Calibration Service (NGFCS)  

Science Conference Proceedings (OSTI)

... Methane 94.8 to 96.2 Ethane 1.5 to 2.3 Propane 0.055 to 0.3 iButane 0.0008 to 0.03 nButane 0.0003 to 0.04 iPentane 0 to 0.01 nPentane 0 to ...

2013-01-22T23:59:59.000Z

349

5 DYNAMIC SIMULATION 5.1 DYNAMIC SIMULATION CASE  

E-Print Network (OSTI)

.64 12.27 12.00 Propane (mol%) 86.86 87.28 87.65 87.92 i-Butane (mol%) 0.07 0.07 0.07 0.07 n-Butane (mol

Hong, Deog Ki

350

Interaction of alkanes with an amorphous methanol film at 15-180 K  

SciTech Connect

The hydrogen-bond imperfections and glass-liquid transition of the amorphous methanol film have been investigated on the basis of the film dewetting and the incorporation/desorption of alkane molecules adsorbed on the surface. The butane is incorporated completely in the bulk of the porous methanol film up to 70 K. At least two distinct states exist for the incorporated butane; one is assignable to solvated molecules in the bulk and the other is weakly bound species at the surface or in the subsurface site. For the nonporous methanol film, the uptake of butane in the bulk is quenched but butane forms a surface complex with methanol above 80 K. The butane incorporated in the bulk of the glassy methanol film is released at 120 K, where dewetting of the methanol film occurs simultaneously due to evolution of the supercooled liquid phase.

Souda, Ryutaro [Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

2005-09-15T23:59:59.000Z

351

Early maturation processes in coal. Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the Morwell Brown Coal seam  

E-Print Network (OSTI)

In this work, we develop a theoretical approach to evaluate maturation process of kerogen-like material, involving molecular dynamic reactive modeling with a reactive force field to simulate the thermal stress. The Morwell coal has been selected to study the thermal evolution of terrestrial organic matter. To achieve this, a structural model is first constructed based on models from the literature and analytical characterization of our samples by modern 1-and 2-D NMR, FTIR, and elemental analysis. Then, artificial maturation of the Morwell coal is performed at low conversions in order to obtain, quantitative and qualitative, detailed evidences of structural evolution of the kerogen upon maturation. The observed chemical changes are a defunctionalization of the carboxyl, carbonyl and methoxy functional groups coupling with an increase of cross linking in the residual mature kerogen. Gaseous and liquids hydrocarbons, essentially CH4, C4H8 and C14+ liquid hydrocarbons, are generated in low amount, merely by clea...

Salmon, Elodie; Lorant, François; Hatcher, Patrick G; Marquaire, Paul-Marie; 10.1016/j.orggeochem.2009.01.004

2009-01-01T23:59:59.000Z

352

ORIGINAL PAPER Natural Fiber Reinforced Poly(vinyl chloride) Composites: Effect  

E-Print Network (OSTI)

, electric wires, window profiles, siding, etc. Recently, wood fiber reinforced PVC is getting more popular straw, rice husk, and pine fiber) and loading level of styrene-ethylene-butylene-styrene (SEBS) block copolymer on composite properties was investigated. Mechanical analysis showed that storage modulus

353

Superacid catalysis of light hydrocarbon conversion. Final report, August 26, 1993--August 26, 1996  

DOE Green Energy (OSTI)

Motivated by the goal of finding improved catalysts for low- temperature conversion of light alkanes into fuel components or precursors of fuel components, the researchers have investigated sulfated zirconia and promoted sulfated zirconia for conversion of butane, propane, and ethane. Catalyst performance data for sulfated zirconia promoted with iron and manganese show that it is the most active noncorrosive, nonhalide catalyst known for n-butane isomerization, and it is an excellent candidate catalyst for new low- temperature n-butane isomerization processes to make isobutane, which can be converted by established technology into methyl t-butyl ether (MTBE). Various transition metals have been found to work as promoters of sulfated zirconia for n-butane isomerization. The combination of iron and manganese is the best known combination of promoters yet discovered. The iron- and manganese-promoted sulfated zirconia is also a catalyst for conversion of propane and of ethane. Ethane is converted into ethylene and butanes in the presence of the iron- and manganese-promoted sulfated zirconia; propane is also converted into butane, among other products. However, the activities of the catalyst for these reactions are orders of magnitude less than the activity for n-butane conversion, and there is no evidence that the catalyst would be of practical value for conversion of alkanes lighter than butane. The product distribution data for ethane and propane conversion provide new insights into the nature of the catalyst and its acidity. These data suggest the involvement of Olah superacid chemistry, whereby the catalyst protonates the alkane itself, giving carbonium ions (as transition states). The mechanism of protonation of the alkane may also pertain to the conversion of butane, but there is good evidence that the butane conversion also proceeds via alkene intermediates by conventional mechanisms of carbenium ion formation and rearrangement.

Gates, B.C.

1996-12-31T23:59:59.000Z

354

Effect of operating conditions and membrane quality on the separation performance of composite silicalite-1 membranes  

Science Conference Proceedings (OSTI)

The separation capacity of silicalite-1 membranes for various hydrocarbon mixtures is determined as a function of membrane quality, operating conditions, and orientation of the composite membrane with respect to the feed side. The quality of the membranes is judged on the basis of the n-butane/i-butane permselectivity. Membranes with a different n-butane/i-butane permselectivity showed an identical separation capacity for ethane/methane mixtures, but the quality difference was affecting separation of hydrogen from the butane isomers. The selectivity of the membrane is significantly affected by the operating conditions, such as mixture composition, temperature, and absolute pressure. These effects are shown for ethane/methane, propene/ethene, and n-butane/i-butane mixtures. The selectivity for ethane in ethane/methane mixtures, found when the zeolite layer is facing the feed side, is completely lost when the orientation of the composite membrane is reversed, due to concentration polarization. Depending on the membrane orientation, the major resistance of the composite is in the support layer or in the zeolite layer.

Graaf, J.M. van de; Bijl, E. van der; Stol, A.; Kapteijn, F.; Moulign, J.A. [Delft Univ. of Technology (Netherlands)

1998-10-01T23:59:59.000Z

355

Fuel Switching Strategies for the 1990s  

E-Print Network (OSTI)

Prices of petroleum fuels and natural gas are predicted to rise in the 1990's, due to a number of global factor including supplies, demands and environmental pressure. Environmental regulatory initiatives will force the use of cleaner fuels. Excess butane in summer resulting from lowered gasoline volatility and various increasing supply factors will create fuel purchasing opportunities. It was found that in-place propane switching capability among manufacturers could be adapted to absorb all the excess butane. Economics and risks of acquiring and storing spot-market butane as a strategic switching fuel are explored. Other fuel switching concepts are also considered.

Cascone, R.

1990-06-01T23:59:59.000Z

356

Send Orders of Reprints at reprints@benthamscience.net 226 Current Computer-Aided Drug Design, 2013, 9, 226-232  

E-Print Network (OSTI)

. Consider the molecular graph of 2-methyl butane, with the vertex labelling as shown in Fig. (1). Fig. (1). The molecular graph of 2-methyl butane (CAS 78-78-4). The adjacency matrix A(G) and the distance matrix D(G) of 2-methyl butane are: A(G) D(G) 1 2 3 4 5 1 0 1 0 0 0 2 1 0 1 0 1 3 0 1 0 1 0 4 0 0 1 0 0 5 0 1 0 0 0

Gini, Giuseppina

357

May 13, 1998 Gas Frac. Mol.Wt. Density Speci c Ht. Boil. Pt.  

E-Print Network (OSTI)

Argon 30 39.95 1.784 0.125 Butane 8 58.12 2.6 0.389 -0.5 HFC-134a 62 102.0 4.5 0.20 -26.3 Table 1-pressure for every 1 m height. Gas is non- ammable. Butane and HFC-134a must be heated during winter 1 #12;RPC drop across one layer less than 5 mmH2O at 10 cc=min ow rate. 2 #12;(Outside) Ar Butane Scale Thermal

Llope, William J.

358

Figure S1. Relative contribution to total OH reactivity (a), of observed VOCs to calculated OH reactivity (b) and alkyl nitrate production (c,d) in the afternoon (12pm  

E-Print Network (OSTI)

.0050 0.65 i-butane 0.77 0.02 2.31E-12(4) 0.00088 0.086 n-Butane 2.2 0.077 2.51E-12(2) 0.011 0.26 n 0.05* 0.1 5.08E-12(2) 0.00048 0.0086 #12;4 2,3-dimethyl butane 0.17* 0.14 2.32E-12(10) 0.00048 0

Meskhidze, Nicholas

359

Make aromatics from LPG  

SciTech Connect

Liquefied petroleum gas (LPG) consists mainly of the propane and butane fraction recovered from gas fields, associated petroleum gas and refinery operations. Apart from its use in steam cracking and stream reforming, LPG has few petrochemical applications. The relative abundance of LPG and the strong demand for aromatics - benzene, toluene and xylenes (BTX) - make it economically attractive to produce aromatics via the aromatization of propane and butanes. This paper describes the Cyclar process, which is based on a catalyst formulation developed by BP and which uses UOP's CCR catalyst regeneration technology, converts propane, butanes or mixtures thereof to petrochemical-quality aromatics in a single step.

Doolan, P.C. (BP Exploration Co. Ltd., London (GB)); Pujado, P.R. (UOP, Des Plaines, IL (US))

1989-09-01T23:59:59.000Z

360

Table Definitions, Sources, and Explanatory Notes  

Annual Energy Outlook 2012 (EIA)

not include the propane portion of any natural gas liquid mixes, i.e., butane-propane mix. Refiner A firm or the part of a firm that refines products or blends and substantially...

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

untitled  

Gasoline and Diesel Fuel Update (EIA)

include the propane portion of any natural gas liquids (NGL) mixes; i.e., butane-propane mix. Rack Sales: Wholesale truckload sales or smaller of pe- troleum products where title...

362

STATE ALTERNATIVE FUELS PLAN COMMISSIONREPORT  

E-Print Network (OSTI)

American Lung Association Autumn Wind Associates Aventine Renewable Energy Batley Enterprises Baytech-Westport DaimlerChrysler Delta Liquid Energy/San Luis Butane Diesel Technology Forum Downstream Alternatives, Inc

363

A comprehensive environment for property prediction and ...  

Science Conference Proceedings (OSTI)

... Density LAMMPS/OPLSAA Error (K) (g/cm3) (g/cm3) Butane 273 0.6013 0.6010 ± .0026 -0.05% Isobutane 273.2 0.58052 0.6046 ± .0039 4.15% ...

2010-08-25T23:59:59.000Z

364

Study on the Interaction Coefficients in PR Equation with VdW ...  

Science Conference Proceedings (OSTI)

... The values of ki for HFCs and HCs, including Propane, Isobutane, n-butane, HFC32, HFC125, HFC134a, HFC143a, HFC152a and HFC227ea ...

2006-07-20T23:59:59.000Z

365

Carbon Sources  

Science Conference Proceedings (OSTI)

...as natural gas (primarily methane), propane, or butane with air. Endogas is usually produced in a separately fired retort furnace (Endogas generator) using an air-to-hydrocarbon feed ratio that will

366

U.S. Refinery Net Input - Energy Information Administration  

U.S. Energy Information Administration (EIA)

413: 420: 2005-2013: Pentanes Plus: 166: 168: 156: 130: 148: 151: 2005-2013: Liquefied Petroleum Gases: 300: 281: 241: 238: 265: 270: 2005-2013: Normal Butane: 132 ...

367

Monitoring moisture content in the production of check gas mixtures  

Science Conference Proceedings (OSTI)

xenon mixture. Xenon. Methane n-Butane. Neon. Propane. Carbon dioxide. Ethane. " 0.016. Not subject to norm. Not more than 0.02. Not subject to norm.

368

Rocky Mountain (PADD 4) Refinery and Blender Net Production of ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery and Blender Net Production of Normal Butane (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

369

NEWTON, Ask a Scientist at Argonne National Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

Location: NY Country: USA Date: Winter 2011-2012 Question: Why is it that a gas like butane can be compressed into a liquid and stored at room temperature (for example in simple...

370

Chapter 1  

NLE Websites -- All DOE Office Websites (Extended Search)

the low porosity rock, there is only a small density difference between the liquid n-butane and methane, so the difference between CT numbers of C 1 -nC 4 mixture saturated , C 1...

371

The Future of the U.S. NGL Markets - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Propane is long in the U.S. Exports out of U.S. will solve the problem in the medium term. Longer term issues remain. Exports of butanes and natural gasoline are

372

Numerical Simulations of Leakage from Underground LPG Storage Caverns  

E-Print Network (OSTI)

Petroleum gases, such as propane and butane, are liquefiedIn this study, we focused on propane (C 3 H 8 ) as the mostis capable of treating propane in the same way as other

Yamamoto, Hajime; Pruess, Karsten

2004-01-01T23:59:59.000Z

373

Microsoft Word - RBL_Jan_2009_RG13-1-398.doc  

Office of Legacy Management (LM)

N001 4.67 Methane percent 01072009 N001 84.98 Ethane percent 01072009 N001 6.97 Propane percent 01072009 N001 1.97 Isobutane percent 01072009 N001 0.464 Butane percent...

374

Data Report  

Office of Legacy Management (LM)

N001 5.18 Methane percent 5282008 N001 89.69 Ethane percent 5282008 N001 3.70 Propane percent 5282008 N001 0.695 Isobutane percent 5282008 N001 0.159 Butane percent 5...

375

I T L L C P M O N  

Office of Legacy Management (LM)

"A" No. 29-95 on June 8,1966) * Component-. , Carbon Dioxtde Nitrogen Methane ,Ethane Propane iso-Butane. nqentanb Hexanes Heptanes plus . *As reported by Core Laboratories, Inc....

376

Microsoft Word - May_2008_BM26-42_Data_Rpt.doc  

Office of Legacy Management (LM)

N001 3.21 Methane percent 05282008 N001 88.77 Ethane percent 05282008 N001 3.89 Propane percent 05282008 N001 0.963 Isobutane percent 05282008 N001 0.179 Butane percent...

377

Industrial Fuel Switching - Emerging NGL Opportunities  

E-Print Network (OSTI)

Removing butanes and pentanes from gasoline to meet local and seasonal regulatory limitations on volatility requires US refiners to make up the lost octane with higher cost alternative components, and challenges them to either: store the liquids in summer

Cascone, R.

2004-01-01T23:59:59.000Z

378

Dr. Oktay Demircan Post Doctoral Fellow,  

E-Print Network (OSTI)

such as hydrogen, carbon monoxide (CO), n- butane, coal syngas, and logistic fuels in Solid Oxide Fuel Cells (SOFCs conversion. Examine coal syngas impurities on SOFCs performance. Application of nanoparticles on anode

379

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

and diesel can be refined. Fuel gases like methane (SNG) and liquefied petroleum gas (LPG; mostly propane and butane) are usually also formed in small amounts by CTL but are...

380

Microsoft Word - _NT42962_ Revised NETL Report Covers.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

1.470 0.934 0.983 1.790 1.300 1.230 3 PROPANE 0.100 0.024 0.029 0.100 0.034 0.100 4 i-BUTANE 0.050 0.025 0.025 0.030 0.025 0.060 5 n-BUTANE 0.050 0.009 0.010 0.030 0.011 0.090 6...

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

STATEMENT OF CONSIDERATIONS REQUEST BY SABIC INNOVATIVE PLASTICS FOR WAIVER OF U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SABIC INNOVATIVE PLASTICS FOR WAIVER OF U.S. SABIC INNOVATIVE PLASTICS FOR WAIVER OF U.S. AND FOREIGN RIGHTS IN AN IDENTIFIED INVENTION, DOE DOCKET NO . S-109,544 MADE UNDER DOE AWARD NO. DE-FC36-03G013000, SUBCONTRACT 60105 WITH GENERAL ELECTRIC. W(l)-08-009; CH- 1453 S-109 ,544 "SYNTHESIS OF POL Y(BUTYLENE-CO-ISOSORBIDE TEREPHTHALA TE) AND ITS PROPERTIES" The Petitioner, SABIC Innovative Plastics IP B.V. ("SABIC"), has requested a waiver of domestic and foreign patent rights in the subject invention entitled "SYNTHESIS OF POL Y(BUTYLENE-CO-ISOSORBIDE TEREPHTHALA TE) AND ITS PROPERTIES." The invention relates to copolymers made from biological materials. The invention was made under the above identified subcontract with General Electric Plastics (GE). GE was subsequently purchased by SABIC

382

Environmental Regulations and Changes in Petroleum Refining Operations  

Gasoline and Diesel Fuel Update (EIA)

Environmental Regulations and Environmental Regulations and Changes in Petroleum Refining Operations By Tancred C.M. Lidderdale Contents * Introduction * Motor Gasoline Summer Volatility (RVP) Regulations o Table 1. Summer Volatility Regulations for Motor Gasoline o Table 2. Refinery Inputs and Production of Normal Butane o Figure 1. Refinery Inputs and Production of Normal Butane o Table 3. Price Relationship Between Normal Butane and Motor Gasoline o Table 4. Market Price Premium for Low Vapor Pressure (RVP) Gasoline * Oxygenate Content of Motor Gasoline o Figure 2. Oxygenate Content of Motor Gasoline o Table 5. Oxygenated and Conventional Motor Gasoline Price Relationship o Table 6. Reformulated and Conventional Motor Gasoline Price Relationship o Figure 3. Price Differences Between RFG or MTBE and Conventional Gasoline

383

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Production Production Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Butane (C4H10) A normally gaseous straight-chain or branch-chain hydrocarbon extracted from natural gas or refinery gas streams. It includes isobutane and normal butane and is designated in ASTM Specification D1835 and Gas Processors Association Specifications for commercial butane.

384

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Receipts by Pipeline, Tanker, and Barge Between PAD Districts Receipts by Pipeline, Tanker, and Barge Between PAD Districts Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Butane (C4H10) A normally gaseous straight-chain or branch-chain hydrocarbon extracted from natural gas or refinery gas streams. It includes isobutane and normal butane and is designated in ASTM Specification D1835 and Gas Processors Association Specifications for commercial butane.

385

The North American natural gas liquids markets are chaotic  

SciTech Connect

In this paper the authors test for deterministic chaos (i.e., nonlinear deterministic processes which look random) in seven Mont Belview, Texas hydrocarbon markets, using monthly data from 1985:1 to 1996:12--the markets are those of ethane, propane, normal butane, iso-butane, naptha, crude oil, and natural gas. In doing so, they use the Lyapunov exponent estimator of Nychka, Ellner, Gallant, and McCaffrey. They conclude that there is evidence consistent with a chaotic nonlinear generation process in all five natural gas liquids markets.

Serletis, A.; Gogas, P. (Univ. of Calgary, Alberta (Canada). Dept. of Economics)

1999-01-01T23:59:59.000Z

386

Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure  

DOE Patents (OSTI)

Methods for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physisorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics.

Sachtler, Wolfgang M. H. (Evanston, IL); Huang, Yin-Yan (Evanston, IL)

1998-01-01T23:59:59.000Z

387

Superacid catalysis of light hydrocarbon conversion. DOE PETC fourth quarterly report, May 25, 1994--August 24, 1994  

SciTech Connect

The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments include testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. A solid superacid catalyst was prepared by addition of iron and manganese to sulfated zirconium hydroxide followed by calcination. The catalyst was tested for n-butane conversion in a packed-bed flow reactor at temperatures of 40 to 225{degrees}C with the reactant partial pressure in the range of 0.0025-0.01 attn. The predominant catalytic reaction was n-butane isomerization, and this was accompanied at 40{degrees}C by near stoichiometric disproportionation. The C3/C5 molar ratio was generally greater than 1, consistent with conversion of the secondary C5 products. As the temperature increased, the selectivity for isomerization decreased and that for disproportionation increased. In a typical experiment the activity of the catalyst increased for about 1 h on stream and then declined rapidly. The rate maxima as a function of time on stream were taken as a measure of the initial activity of the catalyst. For example, the approximate rate of isomerization of n-butane at the maximum was 4.3 x 10-8 mol/(g of catalyst {center_dot} s) with a feed n-butane partial pressure of 0.0025 atm at 75{degrees}C. With a feed n-butane partial pressure of 0.005 atm at 40{degrees}C and a conversion of 1 1%, the molar ratio of propane to i-butane was 0.03, and with the same feed composition at 100{degrees}C, this ratio at a conversion of 50% was 0.1. The iron- and manganese-promoted solid superacid catalyst is potentially of value for practical low-temperature paraffin isomerization accompanied by disproportionation of n-butane.

Gates, B.C. [Univ. of California, Davis, CA (United States)

1995-12-31T23:59:59.000Z

388

Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure  

DOE Patents (OSTI)

Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

Sachtler, W.M.H.; Huang, Y.Y.

1998-07-28T23:59:59.000Z

389

Regioselective alkane hydroxylation with a mutant AlkB enzyme  

DOE Patents (OSTI)

AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

Koch, Daniel J.; Arnold, Frances H.

2012-11-13T23:59:59.000Z

390

Asia, North America lead way in growth of NGL, LPG trade  

SciTech Connect

Recent analyses of world NGL trade indicate that important changes in LPG supply and demand are under way in Asia and North America. LPG markets in the 1990s reflect a rapidly shifting balance between East-of-Suez and West-of-Suez markets. This shift has increased concern about availability of future LPG supplies for Asia. The paper discusses world developments, East versus West of Suez, end uses and supplies in Asia, Canadian ethane, propane, butane, and natural gasoline, Mexican ethane, LPG, and natural gasoline, US ethane, propane, butanes, and iso-C{sub 4} and C{sub 5}.

Otto, K.; Gist, R.; Whitley, C. [Purvin and Gertz Inc., Houston, TX (United States); Haun, R. [Purvin and Gertz Inc., Dallas, TX (United States)

1998-01-12T23:59:59.000Z

391

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

0 0 December 2011 Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH3-(CH2)n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate. The product of an alkylation reaction. It usually refers to the high octane product from alkylation units. This alkylate is used in blending high octane gasoline. Alkylation. A refining process for chemically combining isobutane with olefin hydrocarbons (e.g., propylene, butylene) through the control of temperature and pressure in the presence of an acid catalyst,

392

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 September 2013 Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH3-(CH2)n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate. The product of an alkylation reaction. It usually refers to the high octane product from alkylation units. This alkylate is used in blending high octane gasoline. Alkylation. A refining process for chemically combining isobutane with olefin hydrocarbons (e.g., propylene, butylene) through the control of temperature and pressure in the presence of an acid catalyst,

393

Engineering development of advanced physical fine coal cleaning for premium fuel applications: Subtask 3.3 - dewatering studies  

SciTech Connect

If successful, the novel Hydrophobic Dewatering (HD) process being developed in this project will be capable of efficiently removing moisture from fine coal without the expense and other related drawbacks associated with mechanical dewatering or thermal drying. In the HD process, a hydrophobic substance is added to a coal-water slurry to displace water from the surface of coal, while the spent hydrophobic substance is recovered for recycling. For this process to have commercialization potential, the amount of butane lost during the process must be small. Earlier testing revealed the ability of the hydrophobic dewatering process to reduce the moisture content of fine coal to a very low amount as well as the determination of potential butane losses by the adsorption of butane onto the coal surface. Work performed in this quarter showed that the state of oxidation affects the amount of butane adsorbed onto the surface of the coal and also affects the final moisture content. the remaining work will involve a preliminary flowsheet of a continuous bench-scale unit and a review of the economics of the system. 1 tab.

Yoon, R.H., Phillips, D.I., Sohn, S.M., Luttrell, G.H. [Virginia Polytechnic Inst. and State Univ., Center for Coal and Mineral Processing, Blacksburg, VA (United States)

1996-10-01T23:59:59.000Z

394

55Home Power #21 February / March 1991 ALTERNATIVES TO FOSSIL FUELED  

E-Print Network (OSTI)

be handled by the same devices that regulate natural gas and it will work in burners or as a fuel is a simple hydrocarbon gas which occurs in natural gas and can also be obtained from anaerobic bacterial replacement for fossil fuel gases (natural gas or liquified petroleum gases such as propane or butane). It can

395

WTT User's Guide - Lite Edition compounds  

Science Conference Proceedings (OSTI)

... ethane, C 2 H 6, 30.07. propane, C 3 H 8, 44.10. butane, C 4 H 10, 58.12. 2-methylpropane, C 4 H 10, 58.12. pentane, C 5 H 12, 72.15. ...

2012-05-29T23:59:59.000Z

396

Corrosion Resistance of Zinc  

Science Conference Proceedings (OSTI)

Table 15 Compatibility of untreated zinc with various media...free Excellent Gas (a) Towns, natural, propane, butane Excellent Glycerine . . . Excellent Inks Printing Excellent Aqueous writing Not recommended Insecticides Dry Excellent In solution Not recommended Lubricants Mineral, acid free Excellent Organic Not recommended Paraffin . . . Excellent...

397

Formation mechanism for polycyclic aromatic hydrocarbons in methane flames  

E-Print Network (OSTI)

exhausts,7­17 coal-fired, electricity generating power plants,18,19 tobacco smoke,20 residential wood applications including heating systems and gas turbines for electric power generation.62­64 The combustion propane,57,58 butane,59 ethane,31,53,60 and other aliphatic61 flames. Methane is used as fuel in many

Sattler, Klaus

398

MEMS-based fuel cells with integrated catalytic fuel processor and method thereof  

Science Conference Proceedings (OSTI)

Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Havstad, Mark A. (Davis, CA)

2011-08-09T23:59:59.000Z

399

J. DALTON YORK 110 Sheffield Ct., Cookeville, TN 38506 | 931-854-1068 | dyork@tntech.edu  

E-Print Network (OSTI)

channel of a solid-oxide fuel cell (SOFC). Butane conversion and product formation were monitored hydrocarbons in the anode channels of a SOFC. Additional efforts are required to account for catalytic. Solid-oxide fuel cells (SOFC), in particular, offers a very promising method for direct production

Firoozabadi, Abbas

400

2000 CONTRACTUAL SERVICES 2001 Communication  

E-Print Network (OSTI)

12211 Printing and Binding (Payments to State Facilities only) ­ Surcharge B 12230 Duplicating, Blue collected for that purpose, is coded C 3301 Fuel (non-motor vehicle use) B 13310 Coal and Coke B 13320 Fuel oil, diesel and Kerosene B 13330 Liquid propane gas and butane B 13390 Other Fuel 3401 Maintenance

Peterson, Blake R.

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Butane (C 4 H 10 ) ZA 0.59497 E GeV b brems b pair b nucl b tot 2. 0.2191 0.0928 0.4841 0.7961 5. 0.2977 0.2326 0.5114 1.0417 10. 0.3637 0.3582...

402

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Butane (C 4 H 10 ) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.59497 2.489 10 -3 48.3 0.10852 3.4884 1.3792 3.7528 8.5651 0.00 T p Ionization Brems Pair prod...

403

A room temperature CuO nanowire sensor for organic volatile gases  

Science Conference Proceedings (OSTI)

CuO nanowires have been synthesised by the thermal method in 100% oxygen ambient at 600°C. Gas sensing property has been examined by measuring the resistance change of the materials to 1% of butane gas and 1% of ethanol vapour separately under the ... Keywords: copper oxide (CuO) nanowires, room temperature gas sensor and organic volatile gas

C. F. Dee; T. Y. Tiong; M. M. Salleh; M. M. Yahya; B. Y. Majlis

2011-02-01T23:59:59.000Z

404

In situ vibrational spectroscopic investigation of C{sub 4} hydrocarbon selective oxidation over vanadium-phosphorus-oxide catalysts  

Science Conference Proceedings (OSTI)

n-Butane selective oxidation over the VPO catalyst to maleic anhydride is the first and only commercialized process of light alkane selective oxidation. The mechanism of this reaction is still not well known despite over twenty years of extensive studies, which can partially be attributed to the extreme difficulties to characterize catalytic reactions real-time under typical reaction conditions. In situ spectroscopic characterization techniques such as Infrared spectroscopy and laser Raman spectroscopy were used in the current mechanistic investigations of n-butane oxidation over VPO catalysts. To identify the reaction intermediates, oxidation of n-butane, 1,3-butadiene and related oxygenates on the VPO catalyst were monitored using FTIR spectroscopy under transient conditions. n-Butane was found to adsorb on the VPO catalyst to form olefinic species, which were further oxidized to unsaturated, noncyclic carbonyl species. The open chain dicarbonyl species then experienced cycloaddition to form maleic anhydride. VPO catalyst phase transformations were investigated using in situ laser Raman spectroscopy. This report contains Chapter 1: General introduction; Chapter 2: Literature review; and Chapter 5: Conclusion and recommendations.

Xue, Z.Y.

1999-05-10T23:59:59.000Z

405

--No Title--  

NLE Websites -- All DOE Office Websites (Extended Search)

Butane (C4H10) Quantity Value Units Value Units 0.59497 Specific gravity (20 C, 1 atm) 2.49E-03 g cm-3 Mean excitation energy 48.3 eV Minimum ionization 2.278 MeV g-1cm2...

406

Corrosion Resistance of Zinc  

Science Conference Proceedings (OSTI)

Table 15   Compatibility of untreated zinc with various media...Sulfur free Excellent Gas (a) Towns, natural, propane, butane Excellent Glycerine � Excellent Inks Printing Excellent Aqueous writing Not recommended Insecticides Dry Excellent In solution Not recommended Lubricants Mineral, acid free Excellent Organic Not recommended Paraffin � Excellent...

407

A nonlinear programming test problem  

Science Conference Proceedings (OSTI)

Figure 1 is a flow diagram of the chemical process. The test problem was a hydrocarbon refrigeration process in which the feed stream (stream number 1 of Figure 1) is a vapor mixture of ethane, propane, and n-butane (subscripts e, p and b, respectively) ...

D. M. Himmelblau

1979-07-01T23:59:59.000Z

408

Roaming radical pathways for the decomposition of alkanes.  

Science Conference Proceedings (OSTI)

CASPT2 calculations predict the existence of roaming radical pathways for the decomposition of propane, n-butane, isobutane and neopentane. The roaming radical paths lead to the formation of an alkane and an alkene instead of the expected radical products. The predicted barriers for the roaming radical paths lie {approx}1 kcal/mol below the corresponding radical asymptotes.

Harding, L. B.; Klippenstein, S. J. (Chemical Sciences and Engineering Division)

2010-01-01T23:59:59.000Z

409

MTBE Prices Responded to Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: On top of the usual factors impacting gasoline prices, natural gas has had some influence recently. MTBE is an oxygenate used in most of the RFG consumed in the U.S. Generally, it follows gasoline prices and its own supply/demand balance factors. But this winter, we saw it respond strongly to natural gas prices. MTBE is made from methanol and isobutylene, which in turn come from methane and butane. Both methane and butane come from natural gas streams. Until this year, the price of natural gas has been so low that it had little effect. But the surge that occurred in December and January pulled MTBE up . Keep in mind that about 11% MTBE is used in a gallon of RFG, so a 30 cent increase in MTBE is only about a 3 cent increase in the price of RFG. While we look ahead at this summer, natural gas prices should be

410

Determination of alternative fuels combustion products: Phase 2 final report  

DOE Green Energy (OSTI)

This report describes the laboratory efforts to accomplish four independent tasks: (1) speciation of hydrocarbon exhaust emissions from a light-duty vehicle operated over the chassis dynamometer portion of the light-duty FTP after modifications for operation on butane and butane blends; (2) evaluation of NREL`s Variable Conductance Vacuum Insulated Catalytic Converter Test Article 4 for the reduction of cold-start FTP exhaust emissions after extended soak periods for a Ford FFV Taurus operating on E85; (3) support of UDRI in an attempt to define correlations between engine-out combustion products identified by SwRI during chassis dynamometer testing, and those found during flow tube reactor experiments conducted by UDRI; and (4) characterization of small-diameter particulate matter from a Ford Taurus FFV operating in a simulated fuel-rich failure mode on CNG, LPG, M85, E85, and reformulated gasoline. 22 refs., 18 figs., 17 tabs.

Whitney, K.A.

1997-06-01T23:59:59.000Z

411

The efficient use of natural gas in transportation  

DOE Green Energy (OSTI)

Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

Stodolsky, F.; Santini, D.J.

1992-01-01T23:59:59.000Z

412

The efficient use of natural gas in transportation  

DOE Green Energy (OSTI)

Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

Stodolsky, F.; Santini, D.J.

1992-04-01T23:59:59.000Z

413

U.S. LPG pipeline begins deliveries to Pemex terminal  

SciTech Connect

LPG deliveries began this spring to the new Mendez LPG receiving terminal near Juarez, State of Chihuahua, Mexico. Supplying the terminal is the 265-mile, 8-in. Rio Grande Pipeline that includes a reconditioned 217-mile, 8-in. former refined-products pipeline from near Odessa, Texas, and a new 48-mile, 8-in. line beginning in Hudspeth County and crossing the US-Mexico border near San Elizario, Texas. Capacity of the pipeline is 24,000 b/d. The LPG supplied to Mexico is a blend of approximately 85% propane and 15% butane. Before construction and operation of the pipeline, PGPB blended the propane-butane mix at a truck dock during loading. Demand for LPG in northern Mexico is strong. Less than 5% of the homes in Juarez have natural gas, making LPG the predominant energy source for cooking and heating in a city of more than 1 million. LPG also is widely used as a motor fuel.

Bodenhamer, K.C. [Mid-America Pipeline Co., Tulsa, OK (United States)

1997-08-11T23:59:59.000Z

414

Thermal decomposition of Mg/V hydrotalcites and catalytic performance of the products in oxidative dehydrogenation reactions  

Science Conference Proceedings (OSTI)

Layered double hydroxides with the hydrotalcite-type structure containing Mg{sup 2+} and V{sup 3+} in the brucite-like layers, possessing different V contents, have been prepared and characterised by elemental chemical analysis, powder X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy and specific surface area and porosity assessment by nitrogen adsorption; thermal decomposition was studied by Differential Thermal Analysis and Thermogravimetric Analysis. The solids obtained after calcination at 800 deg. C were tested as catalysts for oxidative dehydrogenation of propane and n-butane. Results indicate that the relative amounts of Mg{sub 3}(VO{sub 4}) and MgO, depending on the V content in the starting hydrotalcite, determines the performance of the catalysts in oxidative dehydrogenation of propane and n-butane.

Holgado, M.J.; Labajos, F.M.; Montero, M.J.S.; Rives, V

2003-11-26T23:59:59.000Z

415

Synthesis of SnO{sub 2} Nanoparticles Using Ultrasonication  

Science Conference Proceedings (OSTI)

The use of ultrasonic energy for chemical synthesis has recently become an interesting and growing area of research. Using this form of energy, we have synthesized nanoparticles of SnO{sub 2}(8-30 nm) at room temperature by a sonication assisted precipitation technique. In order to understand the effect of ultrasonic energy on particle size and their distribution, the precipitation time was varied during the preparation. A sonication time of 3 h was found to be optimum to produce SnO{sub 2} nanoparticles having size below 10 nm. We found that a gradual increase of the sonication time gradually decreases the particle size with interesting morphology and increased surface area. The butane sensing properties of the synthesized powders exhibited a direct influence of the sonication time on the sensing properties. A 3 h sonicated sample, exhibited a maximum response of around 98.88% towards 5000 ppm butane at 450 deg. C with a fast recovery time.

Majumdar, Sanhita; Devi, P. Sujatha [Nano-Structured Materials Division, Central Glass and Ceramic Research Institute, Council of Scientific and Industrial Research, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

2010-10-04T23:59:59.000Z

416

Fuel property effects on engine combustion processes. Final report  

DOE Green Energy (OSTI)

A major obstacle to improving spark ignition engine efficiency is the limitations on compression ratio imposed by tendency of hydrocarbon fuels to knock (autoignite). A research program investigated the knock problem in spark ignition engines. Objective was to understand low and intermediate temperature chemistry of combustion processes relevant to autoignition and knock and to determine fuel property effects. Experiments were conducted in an optically and physically accessible research engine, static reactor, and an atmospheric pressure flow reactor (APFR). Chemical kinetic models were developed for prediction of species evolution and autoignition behavior. The work provided insight into low and intermediate temperature chemistry prior to autoignition of n-butane, iso-butane, n-pentane, 1-pentene, n-heptane, iso-octane and some binary blends. Study of effects of ethers (MTBE, ETBE, TAME and DIPE ) and alcohols (methanol and ethanol) on the oxidation and autoignition of primary reference fuel (PRF) blends.

Cernansky, N.P.; Miller, D.L.

1995-04-27T23:59:59.000Z

417

atomicrpp.dvi  

NLE Websites -- All DOE Office Websites (Extended Search)

111.7 444. Ethane (C 2 H 6 ) 0.59861 55.0 75.9 45.66 (2.304) (1.263) 90.36 184.5 Propane (C 3 H 8 ) 0.58962 55.3 76.7 45.37 (2.262) 0.493(1.868) 85.52 231.0 Butane (C 4 H 10...

418

Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy Inference System and Radial Basis Function Neural Network  

Science Conference Proceedings (OSTI)

Adaptive Neuro-Fuzzy Inference System (ANFIS) and Radial Basis Function Neural Network (RBF NN) have been developed for prediction of solubility of various gases in polystyrene. Solubility of butane, isobutene, carbon dioxide, 1,1,1,2-tetrafluoroethane ... Keywords: ANFIS, ANN, ARD, Adaptive Neuro-Fuzzy Inference System (ANFIS), BP, HCFC-142b, HFC-134a, HFC-l52a, MLP, PS, Polystyrene, RBF NN, Radial Basis Function Neural Network (RBF NN), S-L EOS, Solubility

Aboozar Khajeh; Hamid Modarress

2010-04-01T23:59:59.000Z

419

Superacid catalysis of light hydrocarbon conversion. Sixth quarterly report, January 1, 1995--March 31, 1995  

DOE Green Energy (OSTI)

Iron- and Manganese-promoted sulfated zirconia is a catalyst for the conversion of propane, but the rate of conversion of propane is much less than the rate of conversion of butane. Whereas this catalyst appears to be a good candidate for practical, industrial conversion of butane, it appears to lack sufficient activity for practical conversion of propane. Perhaps more active catalysts will be useful for propane conversion. The propane conversion data reported here provide excellent insights into the chemistry of the catalytic conversions; they are consistent with the inference that the catalyst is a superacid and that the chemistry is analogous to. that determined in superacid solutions by G.A. Olah, who was awarded the most recent Nobel Prize in chemistry for his work. The catalyst was tested for conversion of propane at 1 bar, 200--300{degrees}C and propane partial pressures in the range of 0.01--0.05 bar. At 250{degrees}C, catalysis was demonstrated, as the number of propane molecules converted was at least 1 per sulfate group after 16 days of operation in a continues flow reactor. Propane was converted in high yield to butanes, but the conversions were low, for example being only a fraction of a percent at a space velocity of 9.1 {times} 10{sup {minus}7} mol(g of catalysis {center_dot} s) and 250{degrees}C. Coke formation was rapid. The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

Gates, B.C. [California Univ., Davis, CA (United States). Dept. of Chemical Engineering and Materials Science

1995-08-01T23:59:59.000Z

420

@Title = Definitions of Petroleum Products and Other Terms  

U.S. Energy Information Administration (EIA) Indexed Site

Definitions of Petroleum Products and Other Terms (Revised January 2010) Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH 3 - (CH 2 )n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate. The product of an alkylation reaction. It usually refers to the high octane product from alkylation units. This alkylate is used in blending high octane gasoline. Alkylation. A refining process for chemically combining isobutane with olefin hydrocarbons (e.g., propylene, butylene) through the control of temperature and pressure in the presence of an acid catalyst, usually sulfuric acid or hydrofluoric acid. The product, alkylate, an

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

petroleum petroleum Alcohol: The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH(3)-(CH(2))n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate: The product of an alkylation reaction. It usually refers to the high-octane product from alkylation units. This alkylate is used in blending high octane gasoline. Alkylation: A refining process for chemically combining isobutane with olefin hydrocarbons (e.g., propylene, butylene) through the control of temperature and pressure in the presence of anacid catalyst, usually sulfuric acid or hydrofluoric acid. The product alkylate, an isoparaffin, has high octane value and is blended with motor and aviation gasoline to

422

Kinetics of HEX-BCC Transition in a Triblock Copolymer in a Selective Solvent: Time Resolved Small Angle X-ray Scattering Measurements and Model Calculations  

E-Print Network (OSTI)

Time-resolved small angle x-ray scattering (SAXS) was used to examine the kinetics of the transition from HEX cylinders to BCC spheres at various temperatures in poly(styrene-b- ethylene-co-butylene-b-styrene) (SEBS) in mineral oil, a selective solvent for the middle EB block. Temperature-ramp SAXS and rheology measurements show the HEX to BCC order-order transition (OOT) at ~127 oC and order-disorder transition (ODT) at ~180 oC. We also observed the metastability limit of HEX in BCC with a spinodal temperature, Ts ~ 150 oC. The OOT exhibits 3 stages and occurs via a nucleation and growth mechanism when the final temperature Tf peak into two peaks when the cylinder spacing and modulation wavelength are incommensurate predicted by the model is confirmed by analysis of the SAXS data.

Minghai Li; Yongsheng Liu; Huifen Nie; Rama Bansil; Milos Steinhart

2007-10-24T23:59:59.000Z

423

Superacid catalysis of light hydrocarbon conversion. Tenth quarterly report, January 1, 1996--March 31, 1996  

DOE Green Energy (OSTI)

Transition metal promoters markedly increase the activity of sulfated zirconia for isomerization of butane. Data presented here demonstrate the effects of the promoters zinc, iron, and manganese; none of these is as effective as the iron/manganese combination. The effects of feed impurities (olefins and/or isobutane in n-butane) are consistent with those described in the preceding quarterly report: they lead to an improvement in catalytic activity. These observations are inferred to be of practical importance; they indicate the benefit of the impurities in increasing butane conversion. The product distribution data show that reactions accompanying isomerization and disproportionation are more important with some promoters (e.g., iron) than others (e.g., zinc). The data demonstrate that the iron- and manganese-promoted catalyst can be regenerated at least sever times with negligible loss of activity (within the experimental error). To apply this catalyst or a related catalyst industrially, it seems very likely to be necessary to reduce the rate of deactivation substantially and/or to regenerate the catalyst through many cycles.

Gates, B.C. [California Univ., Davis, CA (United States). Dept. of Chemical Engineering and Materials Science

1996-09-01T23:59:59.000Z

424

Superacid catalysis of light hydrocarbon conversion. Eleventh quarterly report, April 1, 1996--June 30, 1996  

DOE Green Energy (OSTI)

The new catalyst Fe- and Mn-promoted sulfated zirconia is remarkably active for the low-temperature (even room temperature) isomerization of n-butane to give isobutane in the near absence of side products. Thus this catalyst offers excellent potential for practical application in this process. The catalyst is so active that it even converts smaller alkanes, including propane and ethane. The ethane conversion is orders of magnitude slower than the butane conversion, and the prospects for practical application with ethane are apparently negligible. However, the results for ethane conversion provide strong evidence that the alkane conversions proceed (at least under some conditions) by protonation of the alkane with the catalyst; thus the catalyst is comparable to superacids, and the chemistry is analogous to that occurring in superacid solutions. This insight will be useful in further improvement of the catalyst and the potential process for butane isomerization. The catalyst is active for alkane cracking at temperatures of typically 200-300{degrees}C, and evidence, summarized here, indicates that numerous reactions of alkanes begin as the catalyst protonates the alkane reactant. The kinetics data for this family of reactions fall on a linear compensation effect plot; such data for reactions that do not proceed via such a mechanism do not fall near the line representing the compensation effect. Thus the analysis of the kinetics data provides a good diagnostic tool for understanding the fundamental chemistry of the acid-catalyzed hydrocarbon conversions.

Gates, B.C. [California Univ., Davis, CA (United States). Dept. of Chemical Engineering and Materials Science

1996-12-31T23:59:59.000Z

425

X-Ray Absorption Studies of Vanadium-Containing Metal Oxide Nanocrystals  

Science Conference Proceedings (OSTI)

Metal oxide nanocrystals offer significant potential for use as catalysts or catalyst supports due to their high surface areas and unique chemical properties that result from the high number of exposed corners and edges. However, little is known about the catalytic activity of these materials, especially as oxidation catalysts. This research focused on the preparation, characterization and use of vanadium-containing nanocrystals as selective oxidation catalysts. Three vanadium-containing nanocrystals were prepared using a modified sol-gel procedure: V/MgO, V/SiO2, and vanadium phosphate (VPO). These represent active oxidation catalysts for a number of industrially relevant reactions. The catalysts were characterized by x-ray diffraction and Raman, UV-VIS, infrared and x-ray absorption spectroscopies with the goal of determining the primary structural and chemical differences between nanocrystals and microcrystals. The catalytic activity of these catalysts was also studied in oxidative dehydrogenation of butane and methanol oxidation to formaldehyde. V/MgO nanocrystals were investigated for activity in oxidative dehydrogenation of butane and compared to conventional V/MgO catalysts. Characterization of V/MgO catalysts using Raman spectroscopy and x-ray absorption spectroscopy showed that both types of catalysts contained magnesium orthovanadate at vanadium loadings below 15 weight%, but above that loading, magnesium pyrovanadate may have been present. In general, MgO nanocrystals had roughly half the crystal size and double the surface area of the conventional MgO. In oxidative dehydrogenation of butane, nanocrystalline V/MgO gave higher selectivity to butene than conventional V/MgO at the same conversion. This difference was attributed to differences in vanadium domain size resulting from the higher surface areas of the nanocrystalline support, since characterization suggested that similar vanadium phases were present on both types of catalysts. Experiments in methanol oxidation were used to probe the chemical differences between sol-gel prepared and conventionally prepared metal oxides. Both V/MgO and V/SiO2 were studied. For both catalysts, similar product selectivities were noted for either preparation method, suggesting similar acid/base and redox properties for the catalysts. At lower weight loadings (butane oxidation to maleic anhydride. In this method vanadium (V) triisopropoxide was reacted with orthophosphoric acid in THF to form a gel. Drying this gel under air resulted in an intercalated VOPO4 compound, where solvent molecules were trapped between layers of the vanadium phosphate compound. Higher surface areas could be achieved by drying this gel at high pressure in an autoclave. The amount of solvent (THF) placed in the autoclave was important in this process. Low amounts of solvent led to a lower surface area, as the solvent evaporated before reaching the critical point and collapsed the gel's pores. In addition, vanadium reduction occurred in the autoclave due to reaction of isopropanol with the vanadium phosphate. Higher amounts of THF reduced the concentration of isopropanol, leading to less reduction. Surfaces areas in excess of 100 m2/g were achieved with this method, and the product was confirmed through XPS and IR to be VOHPO4*0.5H2O, the common precursor for industrial VPO catalysts. Furthermore, this product displayed a platelet morphology, which is desirable for butane oxidation. Further work showed that this material could be transformed to (VO)2P2O7 (the industrial catalyst for butane oxidation to maleic anhydride) by heating under nitrogen without losing much surface are

Hohn, Keith, L.

2006-01-09T23:59:59.000Z

426

Hydrophobic Dewatering of Fine Coal. Topical report, March 1, 1995-March 31, 1997  

Science Conference Proceedings (OSTI)

Many advanced fine coal cleaning technologies have been developed in recent years under the auspices of the U.S. Department of Energy. However, they are not as widely deployed in industry as originally anticipated. An important reason for this problem is that the cleaned coal product is difficult to dewater because of the large surface area associated with fine particles. Typically, mechanical dewatering, such as vacuum filtration and centrifugation, can reduce the moisture to 20-35% level, while thermal drying is costly. To address this important industrial problem, Virginia Tech has developed a novel dewatering process, in which water is displaced from the surface of fine particulate materials by liquid butane. Since the process is driven by the hydrophobic interaction between coal and liquid butane, it was referred to as hydrophobic dewatering (HD). A fine coal sample with 21.4 pm median size was subjected to a series of bench-scale HD tests. It was a mid-vol bituminous coal obtained from the Microcel flotation columns operating at the Middle Fork coal preparation plant, Virginia. All of the test results showed that the HD process can reduce the moisture to substantially less than 10%. The process is sensitive to the amount of liquid butane used in the process relative to the solids concentration in the feed stream. Neither the intensity nor the time of agitation is critical for the process. Also, the process does not require long time for phase separation. Under optimal operating conditions, the moisture of the fine coal can be reduced to 1% by weight of coal.

Yoon, R.; Sohn, S.; Luttrell, J.; Phillips, D.

1997-12-31T23:59:59.000Z

427

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 32. Blender Net Inputs of Petroleum Products by PAD District, September 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 308 5 313 45 44 345 434 Pentanes Plus ...................................................... - - - - 2 75 77 Liquefied Petroleum Gases .................................. 308 5 313 45 42 270 357 Normal Butane .................................................. 308 5 313 45 42 270 357 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

428

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

0.PDF 0.PDF Table 20. Blender Net Inputs of Petroleum Products by PAD Districts, January 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 158 5 163 47 18 168 233 Pentanes Plus ...................................................... 5 - 5 - - 5 5 Liquefied Petroleum Gases .................................. 153 5 158 47 18 163 228 Normal Butane .................................................. 153 5 158 47 18 163 228 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

429

TABLE16.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

6. 6. Refinery Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 1998 Crude Oil ................................................................... 44,047 2,783 46,830 70,320 12,891 21,794 105,005 Natural Gas Liquids ................................................. 252 0 252 2,613 131 1,076 3,820 Pentanes Plus ....................................................... 0 0 0 202 45 522 769 Liquefied Petroleum Gases ................................... 252 0 252 2,411 86 554 3,051 Ethane ............................................................... 0 0 0 0 0 0 0 Propane ............................................................. 0 0 0 0 0 0 0 Normal Butane .................................................. 162 0 162 1,792 76 435 2,303 Isobutane ..........................................................

430

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Inputs & Utilization Inputs & Utilization Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline.

431

Bio-butanol: Combustion properties and detailed chemical kinetic model  

Science Conference Proceedings (OSTI)

Autoignition delay time measurements were performed at equivalence ratios of 0.5, 1 and 2 for butan-1-ol at reflected shock pressures of 1, 2.6 and 8 atm at temperatures from 1100 to 1800 K. High-level ab initio calculations were used to determine enthalpies of formation and consequently bond dissociation energies for each bond in the alcohol. A detailed chemical kinetic model consisting of 1399 reactions involving 234 species was constructed and tested against the delay times and also against recent jet-stirred reactor speciation data with encouraging results. The importance of enol chemistry is highlighted. (author)

Black, G.; Curran, H.J.; Pichon, S.; Simmie, J.M.; Zhukov, V. [Combustion Chemistry Centre, National University of Ireland, Galway (Ireland)

2010-02-15T23:59:59.000Z

432

Monthly petroleum product price report  

SciTech Connect

Monthly report supplies national weighted average prices on a monthly basis at different levels of the marketing chain, for petroleum products sold by refiners, large resellers, gas plant operators, and importers. Data are for the year to date and previous year. Some historic data are included to indicate trends. Gasoline price data are collected from retail gasoline dealers. Heating oil prices come from sellers of heating oil to ultimate consumers. A glossary of petroleum products is appended. Petroleum products include motor gasoline, distillate fuel oil, diesel fuel, heating oil, residual fuel oil, aviation fuel, kerosene, petrochemical feedstocks, propane, butane, ethane, and natural gasoline. 12 tables.

1977-11-01T23:59:59.000Z

433

Catalytic steam gasification of carbon  

DOE Green Energy (OSTI)

Unsupported carbide powders with high specific surface area, namely {alpha}-WC (35 m{sup 2}/g, hexagonal), {beta}-WC{sub 0.61} (100 m{sup 2}/g, cubic face centered) and {beta}-WC{sub 0.5} (15 m{sup 2}/g, hexagonal) have been prepared. The key element in this preparation is the successful removal of surface polymeric carbon by careful gasification to methane by means of dihydrogen. These tungsten carbide powders have been used in catalytic reactions of oxidation of H{sub 2} and hydrogenolysis of alkanes, such as butane, hexane, and neopentane.

Boudart, M.

1990-12-31T23:59:59.000Z

434

Olefins by catalytic oxidation of alkanes in fluidized bed reactors  

SciTech Connect

The production of ethylene or syngas from ethane and olefins from propane, n-butane, and isobutane in the presence of air or O{sub 2} at atmospheric pressure has been examined over 100 {mu}m {alpha}-Al{sub 2}O{sub 3} beads coated with noble metals in a static fluidized bed reactor at contact times from 0.05 to 0.2 s. Variations in feed composition, preheating temperature, and flow rate were examined. 21 refs., 5 figs., 1 tab.

Bharadwaj, S.S.; Schmidt, L.D. [Univ. of Minnesota, Minneapolis, MN (United States)] [Univ. of Minnesota, Minneapolis, MN (United States)

1995-09-01T23:59:59.000Z

435

Silicon Based Solid Oxide Fuel Cell Chip for Portable Consumer Electronics -- Final Technical Report  

Science Conference Proceedings (OSTI)

LSI’s fuel cell uses efficient Solid Oxide Fuel Cell (“SOFC”) technology, is manufactured using Micro Electrical Mechanical System (“MEMS”) fabrication methods, and runs on high energy fuels, such as butane and ethanol. The company’s Fuel Cell on a Chip™ technology enables a form-factor battery replacement for portable electronic devices that has the potential to provide an order-of-magnitude run-time improvement over current batteries. Further, the technology is clean and environmentally-friendly. This Department of Energy funded project focused on accelerating the commercialization and market introduction of this technology through improvements in fuel cell chip power output, lifetime, and manufacturability.

Alan Ludwiszewski

2009-06-29T23:59:59.000Z

436

Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation  

SciTech Connect

Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr and reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study suggests that polypropylene hollow fibers are stable after a long time exposure to C{sub 2} - C{sub 4} mixtures. The effects of packing density on the separation efficiency will be discussed.

Yang, Dali [Los Alamos National Laboratory; Orler, Bruce [Los Alamos National Laboratory; Tornga, Stephanie [Los Alamos National Laboratory; Welch, Cindy [Los Alamos National Laboratory

2011-01-26T23:59:59.000Z

437

Homogeneous bubble nucleation predicted by a molecular interaction model  

SciTech Connect

The homogenous bubble nucleation of various hydrocarbons was estimated by the modified classical nucleation theory. In this modification, the kinetic formalism of the classical theory is retained while the surface energy needed for the bubble formation is calculated form the interaction energy between molecules. With a nucleation rate value of J{sub n{sub c}} = 10{sup 22} nuclei/cm{sup 3}s, this modified model gives a very good prediction of the superheat limits of liquids. In another test of the model the complete evaporation time of a butane droplet at its superheat limit is compared with experiments and found to be in good agreement.

Hoyoung Kwak; Sangbum Lee (Chung-Ang Univ., Seoul (Korea))

1991-08-01T23:59:59.000Z

438

Natural Gas Organization of Thailand will begin the first phase of its $400-$500 million project  

SciTech Connect

The project consists of collecting, transmitting, and treating facilities for 500-600 million cu ft/day of gas. It will include onshore and offshore pipelines, compressor stations, offshore platforms, a receiving terminal, and gas-treating and processing units to recover propane, butane, and possibly ethane. A large-diameter, 355 mi submarine line will carry gas from offshore fields to onshore facilities at Sattahip, southeast of Bangkok. Treated gas will be transported through a 110 mi onshore line to Bangkok. A letter of intent has been signed with Fluor Corp., which will begin the first phase of the project.

1978-05-29T23:59:59.000Z

439

LABORATORY STUDIES ON THE IRRADIATION OF SOLID ETHANE ANALOG ICES AND IMPLICATIONS TO TITAN'S CHEMISTRY  

SciTech Connect

Pure ethane ices (C{sub 2}H{sub 6}) were irradiated at 10, 30, and 50 K under contamination-free, ultrahigh vacuum conditions with energetic electrons generated in the track of galactic cosmic-ray (GCR) particles to simulate the interaction of GCRs with ethane ices in the outer solar system. The chemical processing of the samples was monitored by a Fourier transform infrared spectrometer and a quadrupole mass spectrometer during the irradiation phase and subsequent warm-up phases on line and in situ in order to extract qualitative (products) and quantitative (rate constants and yields) information on the newly synthesized molecules. Six hydrocarbons, methane (CH{sub 4}), acetylene (C{sub 2}H{sub 2}), ethylene (C{sub 2}H{sub 4}), and the ethyl radical (C{sub 2}H{sub 5}), together with n-butane (C{sub 4}H{sub 10}) and butene (C{sub 4}H{sub 8}), were found to form at the radiation dose reaching 1.4 eV per molecule. The column densities of these species were quantified in the irradiated ices at each temperature, permitting us to elucidate the temperature and phase-dependent production rates of individual molecules. A kinetic reaction scheme was developed to fit column densities of those species produced during irradiation of amorphous/crystalline ethane held at 10, 30, or 50 K. In general, the yield of the newly formed molecules dropped consistently for all species as the temperature was raised from 10 K to 50 K. Second, the yield in the amorphous samples was found to be systematically higher than in the crystalline samples at constant temperature. A closer look at the branching ratios indicates that ethane decomposes predominantly to ethylene and molecular hydrogen, which may compete with the formation of n-butane inside the ethane matrix. Among the higher molecular products, n-butane dominates. Of particular relevance to the atmosphere of Saturn's moon Titan is the radiation-induced methane production from ethane-an alternative source of replenishing methane into the atmosphere. Finally, we discuss to what extent the n-butane could be the source of ''higher organics'' on Titan's surface thus resembling a crucial sink of condensed ethane molecules.

Kim, Y. S.; Bennett, C. J.; Chen, L-H; Kaiser, R. I. [Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); O'Brien, K. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86011 (United States)

2010-03-10T23:59:59.000Z

440

Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme  

DOE Patents (OSTI)

Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

Koch, Daniel J.; Arnold, Frances H.

2013-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydrogen-assisted catalytic ignition characteristics of different fuels  

SciTech Connect

Hydrogen-assisted catalytic ignition characteristics of methane (CH{sub 4}), n-butane (n-C{sub 4}H{sub 10}) and dimethyl ether (DME) were studied experimentally in a Pt-coated monolith catalytic reactor. It is concluded that DME has the lowest catalytic ignition temperature and the least required H{sub 2} flow, while CH{sub 4} has the highest catalytic ignition temperature and the highest required H{sub 2} flow among the three fuels. (author)

Zhong, Bei-Jing; Yang, Fan [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Yang, Qing-Tao [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); China Aerodynamics Research and Development Center, Mianyang 621000 (China)

2010-10-15T23:59:59.000Z

442

Geothermal binary-cycle working-fluid properties information. Annual report  

DOE Green Energy (OSTI)

The research discussed was performed prior to December 31, 1979. The report was not released until September 30, 1981, so that pressure-enthalpy diagrams for a number of potential geothermal binary cycle working fluids could be prepared in SI units. Efforts were directed principally to working fluid thermophysical property correlation and presentation of properties information. Pressure-enthalpy diagrams are presented for propane, normal butane, isobutane, normal pentane, isopentane and propylene. Generalized correlations are presented for the thermodynamic and transport properties of hydrocarbon pure and mixture working fluids. Specific correlations are presented for the thermodynamic properties of 27 fluids and for the viscosity and thermal conductivity of hydrocarbons including isobutane and isopentane.

Starling, K.E.; Kumar, K.H.; Malik, Z.I.; Batson, B.; Plumb, P.

1981-09-30T23:59:59.000Z

443

Process for restoring membrane permeation properties  

DOE Patents (OSTI)

A process for restoring the selectivity of high-flee-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70-100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use.

Pinnau, Ingo (Palo Alto, CA); Toy, Lora G. (San Francisco, CA); Casillas, Carlos G. (San Jose, CA)

1997-05-20T23:59:59.000Z

444

Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation  

Science Conference Proceedings (OSTI)

Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr and reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of 5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study suggests that polypropylene hollow fibers are stable after a long time exposure to C{sub 2} - C{sub 4} mixtures. The effects of packing density on the separation efficiency will be discussed.

Yang, Dali [Los Alamos National Laboratory; Orler, Bruce [Los Alamos National Laboratory; Tornga, Stephanie [Los Alamos National Laboratory; Welch, Cindy [Los Alamos National Laboratory

2011-01-26T23:59:59.000Z

445

Process for restoring membrane permeation properties  

DOE Patents (OSTI)

A process is described for restoring the selectivity of high-free-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70--100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use. 8 figs.

Pinnau, I.; Toy, L.G.; Casillas, C.G.

1997-05-20T23:59:59.000Z

446

Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases  

DOE Patents (OSTI)

This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

Senum, Gunnar I. (Patchogue, NY); Dietz, Russell N. (Patchogue, NY)

1994-01-01T23:59:59.000Z

447

Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases  

DOE Patents (OSTI)

This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

Senum, G.I.; Dietz, R.N.

1994-04-05T23:59:59.000Z

448

Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality  

Science Conference Proceedings (OSTI)

Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined processes of unburned leakage and incomplete combustion of LPG play significant role in causing the excessive ozone characteristic of Mexico City. Reductions in ozone levels should be possible through changes in LPG composition and lowered rates of leakage. 23 refs., 3 tabs.

Blake, D.R.; Rowland, F.S. [Univ. of California, Irvine, CA (United States)

1995-08-18T23:59:59.000Z

449

New and existing gas wells promise bountiful LPG output in Michigan  

SciTech Connect

Michigan remains the leading LP-gas producer in the Northeast quadrant of the U.S. This paper reports that boosted by a number of new natural gas wells and a couple of new gas processing plants, the state is firmly anchored in the butane/propane production business. Since 1981, more than 100 deep gas wells, most in excess of 8000 feet in depth, have been completed as indicated producers in the state. Many of these are yielding LPG-grade stock. So, combined with LPG-grade production from shallower geologic formations, the supply picture in this area looks promising for the rest of the country.

1991-01-01T23:59:59.000Z

450

Japan taxis already on LNG  

SciTech Connect

Most of Japan's taxi fleet has been using liquefied propane or butane gas for more than a decade. About 45,000 taxis in Tokyo, logging an average of approx. 75,000 mi/yr, use LPG because of significant (50%) savings on fuel costs. LPG use requires good engineering of the vehicle and rigorous maintenance, including a mandatory change of gas tanks every two years. Peoples Gas Light and Coke Co. is planning to fuel its fleet of automotive vehicles with natural gas.

Kikuchi, K.D.

1980-09-15T23:59:59.000Z

451

Petroleum recovery materials and process  

SciTech Connect

A petroleum recovery process uses micellar solutions made from liquefied petroleum gas (LPG). During the process, microemulsions utilizing LPG in the external phase are injected through at least one injection well into the oil-bearing formations. The microemulsions are driven toward at least one recovery well and crude petroleum is recovered through the recovery well. The LPG in the micellar system may be propane or butane. Corrosion inhibitors can be used in sour fields, and bactericides can be used where necessary. The microemulsions used contain up to about 10-20% water and about 8% surfactant. (4 claims)

Gogarty, W.B.; Olson, R.W.

1967-01-31T23:59:59.000Z

452

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Blender Net Inputs of Petroleum Products by PAD Districts, 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 1,744 80 1,824 345 324 2,161 2,830 Pentanes Plus ...................................................... 63 - 63 - - 87 87 Liquefied Petroleum Gases .................................. 1,681 80 1,761 345 324 2,074 2,743 Normal Butane .................................................. 1,681 80 1,761 345 324 2,074 2,743 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

453

Natural Gas Plant Field Production: Natural Gas Liquids  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 PADD 1 1,525 1,439 2,394 2,918 2,821 2,687 1981-2013 East Coast 1993-2008 Appalachian No. 1 1,525 1,439 2,394 2,918 2,821 2,687 1993-2013 PADD 2 12,892 13,208 13,331 13,524 15,204 15,230 1981-2013 Ind., Ill. and Ky. 1,975 1,690 2,171 1,877 2,630 2,746 1993-2013

454

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Plant Processing Plant Processing Definitions Key Terms Definition Extraction Loss The reduction in volume of natural gas due to the removal of natural gas liquid constituents such as ethane, propane, and butane at natural gas processing plants. Natural Gas Processed Natural gas that has gone through a processing plant. Natural Gas Processing Plant A facility designed to recover natural gas liquids from a stream of natural gas which may or may not have passed through lease separators and/or field separation facilities. These facilities also control the quality of the natural gas to be marketed. Cycling plants are classified as natural gas processing plants. For definitions of related energy terms, refer to the EIA Energy Glossary. Sources Natural Gas Processed, Total Liquids Extracted, and Extraction Loss Volume: Form EIA-64A, "Annual Report of the Origin of Natural Gas Liquids Production" . Estimated Heat Content of Extraction Loss: Estimated, assuming the makeup to total liquids production as reported on Form EIA-64A for each State was proportional to the components and products ultimately separated in the States as reported on the 12 monthly reports on Energy Information Administration, Form EIA-816, "Monthly Natural Gas Liquids Report," and applying the following conversion factors to the individual component and product production estimates (million Btu extraction loss per barrel of liquid produced): ethane - 3.082; propane - 3.836; normal butane - 4.326; isobutane - 3.974; pentanes plus - 4.620.

455

Natural Gas Plant Stocks of Natural Gas Liquids  

Gasoline and Diesel Fuel Update (EIA)

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5,419 6,722 6,801 5,826 6,210 6,249 1993-2013 PADD 1 122 121 115 189 246 248 1993-2013 East Coast 1993-2010 Appalachian No. 1 122 121 115 189 246 248 1993-2013 PADD 2 959 891 880 1,129 1,104 1,041 1993-2013 Ind., Ill. and Ky. 311 300 298 308 262 260 1993-2013 Minn., Wis., N. Dak., S. Dak. 56 64 58 60 51 64 1993-2013 Okla., Kans., Mo. 592 527 524 761 791 717 1993-2013 PADD 3 3,810 5,007 5,032 3,817 4,246 4,272 1993-2013

456

Environment - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

environment environment Carbon Dioxide Emissions Coefficients Release Date: February 14, 2013 | Also available in spreadsheet Carbon Dioxide Emissions Coefficients by Fuel Pounds CO2 Kilograms CO2 Pounds CO2 Kilograms CO2 Carbon Dioxide (CO2) Factors: Per Unit of Volume or Mass Per Unit of Volume or Mass Per Million Btu Per Million Btu For homes and businesses Propane 12.7/gallon 5.8/gallon 139.0 63.1 Butane 14.8/gallon 6.7/gallon 143.2 65.0 Butane/Propane Mix 13.7/gallon 6.2/gallon 141.1 64.0 Home Heating and Diesel Fuel 22.4/gallon 10.2/gallon 161.3 73.2 Kerosene 21.5/gallon 9.8/gallon 159.4 72.3 Coal (All types) 4,631.5/short ton 2,100.8/short ton 210.2 95.3 Natural Gas 117.1/thousand cubic feet 53.1/thousand cubic feet 117.0 53.1

457

High-pressure/high-temperature gas-solubility study in hydrogen-phenanthrene and methane-phenanthrene systems using static and chromatographic techniques  

SciTech Connect

The design and discovery of sources for alternative energy such as coal liquefaction has become of major importance over the past two decades. One of the major problems in such design in the lack of available data, particularly, for gas solubility in polycyclic aromatics at high temperature and pressure. Static and gas-liquid partition chromatographic methods were used for the study of hydrogen-phenanthrene and methane-phenanthrene systems. The static data for these two binaries were taken along 398.2, 423.2, 448.2, and 473.2 K isotherms up to 25.23 MPa. Gas-liquid partition chromatography was used to study the infinite dilution behavior of methane, ethane, propane, n-butane, and carbon dioxide in the hydrogen-phenanthrene system as well as hydrogen, ethane, n-butane, and carbon dioxide in the methane-phenanthrene binary. The principle objective was to examine the role of the elution gas. Temperatures were along the same isotherms as the static data and up to 20.77 MPa. With the exception of carbon dioxide, Henry's constants were calculated for all systems. Expressions for the heat of solution as a function of pressure were derived for both binary and chromatographic data. Estimates of delta H/sub i/sup sol/ at high pressure were presented.

Malone, P.V.

1987-01-01T23:59:59.000Z

458

Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992  

Science Conference Proceedings (OSTI)

The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

1992-12-31T23:59:59.000Z

459

Ultrahigh and High Resolution Structures and Mutational Analysis of Monomeric Streptococcus pyogenes SpeB Reveal a Functional Role for the Glycine-rich C-terminal Loop  

Science Conference Proceedings (OSTI)

Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 {angstrom} resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC{sub 50} values for trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.

González-Páez, Gonzalo E.; Wolan, Dennis W. (Scripps)

2012-09-05T23:59:59.000Z

460

Isobutane ignition delay time measurements at high pressure and detailed chemical kinetic simulations  

SciTech Connect

Rapid compression machine and shock-tube ignition experiments were performed for real fuel/air isobutane mixtures at equivalence ratios of 0.3, 0.5, 1, and 2. The wide range of experimental conditions included temperatures from 590 to 1567 K at pressures of approximately 1, 10, 20, and 30 atm. These data represent the most comprehensive set of experiments currently available for isobutane oxidation and further accentuate the complementary attributes of the two techniques toward high-pressure oxidation experiments over a wide range of temperatures. The experimental results were used to validate a detailed chemical kinetic model composed of 1328 reactions involving 230 species. This mechanism has been successfully used to simulate previously published ignition delay times as well. A thorough sensitivity analysis was performed to gain further insight to the chemical processes occurring at various conditions. Additionally, useful ignition delay time correlations were developed for temperatures greater than 1025 K. Comparisons are also made with available isobutane data from the literature, as well as with 100% n-butane and 50-50% n-butane-isobutane mixtures in air that were presented by the authors in recent studies. In general, the kinetic model shows excellent agreement with the data over the wide range of conditions of the present study. (author)

Healy, D.; Curran, H.J. [Combustion Chemistry Centre, School of Chemistry, NUI Galway (Ireland); Donato, N.S.; Aul, C.J.; Petersen, E.L. [Department of Mechanical Engineering, Texas A and M University, College Station, TX (United States); Zinner, C.M. [Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL (United States); Bourque, G. [Rolls-Royce Canada Limited, 9500 Cote de Liesse, Lachine, Quebec (Canada)

2010-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Performance of a new LMRPC prototype for the STAR MTD system  

SciTech Connect

A new prototype of a Long-Strip Multi-Gap Resistive Plate Chamber (LMRPC) for the STAR Muon Telescope Detector (MTD) at RHIC has been developed. This prototype has an active area of 52 x 90 cm{sup 2} and consists of six 250 {mu}m wide gaps. Each detector has 12 strips, read-out at both ends, which are each 3.8 cm wide and 90 cm long with 0.6 cm intervals. In cosmic-ray tests, the efficiency was larger than 95% and the time resolution was {approx}75 ps for the 94% Freon, 5% iso-butane, and 1% SF{sub 6} gas mixture. There was good uniformity in the performance across the different strips. The module was also tested in a proton beam at IHEP in Beijing. The efficiency was close to 100% and the best timing resolution achieved was 55 ps for the 90% Freon, 5% iso-butane, and 5% SF6 gas mixture. Trigger scans along and across the strip direction were also performed.

Ruan, L.J.; Wang, Y.; Chen, H. S.; Ding, W. C.; Qiu, X. Z.; Wang, J. B.; Zhu, X. L.; Kang, K. J.; Cheng, J. P.; Li, Y. J.; Ruan, L.; Xu, Z.; Asselta, K.; Christie, W.; D'Agostino, C.; Dunlop, J.; Landgraf, J.; Ljubicic, T.; Scheblein, J.; Soja, R.; Tang, A. H.; Ullrich, T.; Crawford, H. J.; Engelage, J.; Sanchez, M. Calderon de la Barca; Reed, R.; Liu, H. D.; Butterworth, J.; Eppley, G.; Geurts, F.; Llope, W. J.; McDonald, D.; Nussbaum, T.; Roberts, J.; Xin, K.; Bridges, L.; Li, J. C.; Qian, S.; Ning, Z.; Chen, H. F.; Huang, B. C.; Li, C.; Shao, M.; Sun, Y. J.; Tang, Z. B.; Wang, X. L.; Xu, Y. C.; Zhang, Z. P.; Zeng, H.; Zhou, Y.; Clarke, R.; Mioduszewski, S.; Davila, A.; Hoffmann, G. W.; Li, L.; Markert, C.; Ray, L.; Schambach, J.; Thein, D.; Wada, M.; Ahammed, Z.; Bhaduri, P. P.; Chattopadhyay, S.; Dubey, A. K.; Dutt-Mazumdar, M. R.; Ghosh, P.; Khan, S. A.; Muhuri, S.; Mohanty, B.; Nayak, T. K.; Pal, S.; Singaraju, R.; Singhal, V.; Tribedy, P.; Viyogi, Y. P.

2011-03-21T23:59:59.000Z

462

Optimizing C{sup 4+} and C{sup 5+} beams of the Kei2 electron cyclotron resonance ion source using a special gas-mixing technique  

SciTech Connect

With the prototype electron cyclotron resonance ion source for the next carbon therapy facility in Japan a series of measurements has been performed in order (a) to find the best condition for producing high beam currents of C{sup 4+} ions, and (b) to study the effect of 'special' gas mixing by using a chemical compound as a feed gas. The effect would then appear as an increase in high charge state production in this case of C{sup 5+} ions. In 'regular' gas-mixing experiments it is well known that an isotopic phenomenon occurs: a heavier isotope of the mixing gas is increasing the production of high charge states of the beam gas ions. A similar isotopic effect has been found in the present experiment: with deuterated methane (CD{sub 4} gas) the C{sup 5+} beam currents are about 10% higher than with regular methane (CH{sub 4} gas). The 'mixing-gas' ratio D (or H) to C can be decreased by choosing, e.g., butane gas; in this case the isotopic effect for C{sup 5+} production is even stronger (>15%). For production of C{sup 4+} ions the isotopic effect appears to be absent. Clearly this is related to the much easier production. It turns out that the relative amount of carbon is much more important: butane gives about 10% higher C{sup 4+}-ion currents than methane.

Drentje, A.G.; Muramatsu, M.; Kitagawa, A. [K.V.I., University of Groningen, Zernikelaan 25, 9747AA Groningen (Netherlands); National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan)

2006-03-15T23:59:59.000Z

463

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 8, January--March, 1995  

DOE Green Energy (OSTI)

Activities during this quarter focused on fine tuning of catalyst characterization and synthesis techniques. Improvements in catalyst activity test methods were also implemented but more remains to be done. Specific accomplishments include: improved characterization of vanadyl pyrophosphate (VPO) and Si promoted VPO by FTIR and FTIR of chemisorbed bases; several minor improvements in catalyst preparation technique resulting in enhanced catalyst yield, better control of catalyst composition, and generation of less waste; preliminary pulsed reaction data on methane oxidation were also acquired. Preliminary activity measurements for methane conversion (without oxygen) in a pulsed reactor over VPO indicate that the primary reaction product is CO. Carbon dioxide is also formed but selectivity to CO{sub 2} decreases with number of pulses. These results suggest that selectivity to partially oxidized products improves with catalyst reduction and suggest that some surface modification will be required to obtain oxidized hydrocarbon products. Note that catalyst activation (conversion from the precursor to VPO) has been carried out using air. For butane oxidation catalysts VPO is activated in a 1% butane/air mixture which produces a slightly reduced catalyst.

McCormick, R.L.

1995-05-25T23:59:59.000Z

464

Conversion of light naphthas over sulfided nickle erionite  

Science Conference Proceedings (OSTI)

A natural erionite ore has been exchanged with ammonium and nickel salts to yield a Ni/H erionite catalyst that is active and stable for selectively hydrocracking only the n-paraffins from light straight-run naphthas. The primary product is a C[sup 5+] liquid that is 15-20 octane numbers higher than the feed and a propane- and butane-rich gas by-product. Results from a 110-day pilot plant run demonstrated that a catalyst life of more than 1 year should be possible. Naphthenes, aromatics, and isoparaffins are neither produced nor consumed in this process, resulting in a C[sup 5+] liquid product that is lower in benzene and total aromatics than attainable by catalytic reforming of these feeds. Although no further work is planned with this catalyst, a naphtha-upgrading process based on shape-selective zeolitic hydrocracking could provide an attractive alternative to catalytic reforming or isomerization for these hard to upgrade naphthas. It should be particularly attractive in areas where the by-product propane and butane have good value.

Heck, R.H.; Chen, Nai Y. (Mobil Research and Development Corp., Princeton, NJ (United States). Central Research Laboratory)

1993-06-01T23:59:59.000Z

465

Splitting a C-O bond in dialkylethers with bis(1,2,4-tri-t-butylcyclopentadienyl) cerium-hydride does not occur by a sigma-bond metathesis pathway: a combined experimental and DFT computational study  

Science Conference Proceedings (OSTI)

Addition of diethylether to [1,2,4(Me3C)3C5H2]2CeH, abbreviated Cp'2CeH, gives Cp'2CeOEt and ethane. Similarly, di-n-propyl- or di-n-butylether gives Cp'2Ce(O-n-Pr) and propane or Cp'2Ce(O-n-Bu) and butane, respectively. Using Cp'2CeD, the propane and butane contain deuterium predominantly in their methyl groups. Mechanisms, formulated on the basis of DFT computational studies, show that the reactions begin by an alpha or beta-CH activation with comparable activation barriers but only the beta-CH activation intermediate evolves into the alkoxide product and an olefin. The olefin then inserts into the Ce-H bond forming the alkyl derivative, Cp'2CeR, that eliminates alkane. The alpha-CH activation intermediate is in equilibrium with the starting reagents, Cp'2CeH and the ether, which accounts for the deuterium label in the methyl groups of the alkane. The one-step sigma-bond metathesis mechanism has a much higher activation barrier than either of the two-step mechanisms.

Werkema, Evan; Yahia, Ahmed; Maron, Laurent; Eisenstein, Odile; Andersen, Richard

2010-04-06T23:59:59.000Z

466

Measurement of liquified petroleum gas  

SciTech Connect

Propane, iso-butane, and normal butane commonly referred to as Liquified Petroleum Gases or LPG's are used as heating and transportation fuels, feed-stocks for petrochemical plants, gasoline additives, and aerosol propellents. These liquids are commonly stored in high pressure vessels, underground caverns, or salt domes. Pipelines, trucks, and rail cars are used for transporting these fluids. LPG's must conform to industry accepted specifications regarding their composition and the allowable amounts of contaminants that may be present such as sulphur, heavy hydrocarbons, and water. GPA Standard 2140-80, Liquified Petroleum Gas Specifications and Test Methods, outlines the test procedures to be followed in determining product quality. The physical properties of LPG's including low specific gravities (0.498 to 0.584), high vapor pressures, low boiling points, and lack of lubricity must be considered when storing, transporting, or measuring them. LPG's are easily measured if certain precautions are taken. The equipment must be properly installed, maintained, and calibrated. If meters are used, product flow must be in liquid phase. Due to the considerable effect of temperature and pressure on LPG's, volumes obtained at operating conditions must be reduced to standard conditions.

Vehe, R.E.

1984-04-01T23:59:59.000Z

467

SNG seen bolstering LP-gas traffic  

SciTech Connect

A surge in SNG production from LPG, which could stem in part from government policies, may raise the declining profits of marine transporters and U.S. importers of LPG; such SNG would have a distinct cost advantage over Alaskan gas and coal-derived gas and could compete with LNG; if LNG costs $5/million Btu in 1984, it would equal the cost of SNG made from butane at $0.30/gal (butane will probably be the favored SNG feed); an industrial market for LPG would develop immediately if there were a 10% cut in the price spread between LPG and No. 2 fuel oil, which were priced at $3.50 and $2.47/million Btu, respectively, in the summer 1977. At the seminar, H. Nygaard (Norw. Guarantee Inst. Ships and Drilling Vessels A/S) proposed a plan calling for independent tanker-owners to charter-in their tankers, probably for a two-year period; inefficient tankers would be laid up, and over-all profits from working tankers would be redistributed between their owners and owners of laid-up tankers. U.S. Government crude-import policies and tanker safety standards are discussed.

Becraft, J.; Nygaard, H.

1978-03-27T23:59:59.000Z

468

Source profiles for nonmethane organic compounds in the atmosphere of Cairo, Egypt.  

Science Conference Proceedings (OSTI)

Profiles of the sources of nonmethane organic compounds (NMOCs) were developed for emissions from vehicles, petroleum fuels (gasoline, liquefied petroleum gas (LPG), and natural gas), a petroleum refinery, a smelter, and a cast iron factory in Cairo, Egypt. More than 100 hydrocarbons and oxygenated hydrocarbons were tentatively identified and quantified. Gasoline-vapor and whole-gasoline profiles could be distinguished from the other profiles by high concentrations of the C{sub 5} and C{sub 6} saturated hydrocarbons. The vehicle emission profile was similar to the whole-gasoline profile, with the exception of the unsaturated and aromatic hydrocarbons, which were present at higher concentrations in the vehicle emission profile. High levels of the C{sub 2}-C{sub 4} saturated hydrocarbons, particularly n-butane, were characteristic features of the petroleum refinery emissions. The smelter and cast iron factory emissions were similar to the refinery emissions; however, the levels of benzene and toluene were greater in the former two sources. The LPG and natural gas emissions contained high concentrations of n-butane and ethane, respectively. The NMOC source profiles for Cairo were distinctly different from profiles for U.S. sources, indicating that NMOC source profiles are sensitive to the particular composition of petroleum fuels that are used in a location.

Doskey, P. V.; Fukui, Y.; Sultan, M.; Maghraby, A. A.; Taher, A.; Environmental Research; Cairo Univ.

1999-07-01T23:59:59.000Z

469

Assessing a Spectroelectrochemical Sensor's Performance for Detecting [Ru(bpy)3]2+ in Natural and Treated Water  

Science Conference Proceedings (OSTI)

A spectroelectrochemical sensor that combines three modes of selectivity in a single device was evaluated in natural and treated water samples using tris-(2,2’-bipyridyl) ruthenium(II) dichloride hexahydrate, [Ru(bpy)3]2+, as a model analyte. The sensor was an optically transparent indium tin oxide (ITO) electrode coated with a thin film of partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SSEBS). As the potential of the ITO electrode was cycled from +0.7 to +1.3 V, the analyte changed from the colored [Ru(bpy)3]2+ complex to colorless [Ru(bpy)3]3+ complex and the change in absorbance at 450 nm was used as the optical signal for quantification. Calibration curves were obtained for [Ru(bpy)3]2+ in natural well water, river water and treated tap water with detection limits of 108, 139 and 264 nM, respectively. A standard addition method was developed to determine an *unknown* spike addition concentration of [Ru(bpy)3]2+ in well water. The spectroelectrochemical sensor determined the concentration of [Ru(bpy)3]2+ spiked into a sample of Hanford well water to be 0.39*0.03 mM versus the actual concentration of 0.40 mM.

Abu, Eme A.; Bryan, Samuel A.; Seliskar, Carl J.; Heineman, William R.

2012-07-01T23:59:59.000Z

470

Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report No. 1, May 1--August 1, 1998  

Science Conference Proceedings (OSTI)

The overall aim of the project is to demonstrate the performance and practical use of a laser ultrasonic probe for measuring the thickness of coke deposits located within the high temperature tubes of a thermal cracking furnace. This aim will be met by constructing an optical probe that will be tested using simulated coke deposits that are positioned inside of a bench-scale furnace. Successful development of the optical coke detector will provide industry with the only available method for on-line measurement of coke deposits. The optical coke detector will have numerous uses in the refining and petrochemical sectors including monitoring of visbreakers, hydrotreaters, delayed coking units, vacuum tower heaters, and various other heavy oil heating applications where coke formation is a problem. The coke detector will particularly benefit the olefins industry where high temperature thermal crackers are used to produce ethylene, propylene, butylene and other important olefin intermediates. The ethylene industry requires development of an on-line method for gauging the thickness of coke deposits in cracking furnaces because the current lack of detailed knowledge of coke deposition profiles introduces the single greatest uncertainty in the simulation and control of modern cracking furnaces. The laser ultrasonic coke detector will provide operators with valuable new information allowing them to better optimize the decoking turnaround schedule and therefore maximize production capacity.

NONE

1998-08-15T23:59:59.000Z

471

Method  

E-Print Network (OSTI)

Abstract: The biodegradabilities of poly(butylene succinate) (PBS) powders in a controlled compost at 58 °C have been studied using a Microbial Oxidative Degradation Analyzer (MODA) based on the ISO 14855-2 method, entitled “Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions—Method by analysis of evolved carbon dioxide—Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test”. The evolved CO2 was trapped by an additional aqueous Ba(OH)2 solution. The trapped BaCO3 was transformed into graphite via a serial vaporization and reduction reaction using a gas-tight tube and vacuum manifold system. This graphite was analyzed by accelerated mass spectrometry (AMS) to determine the percent modern carbon [pMC (sample)] based on the 14 C radiocarbon concentration. By using the theory that pMC (sample) was the sum of the pMC (compost) (109.87%) and pMC (PBS) (0%) as the respective ratio in the determined period, the CO2 (respiration) was calculated from only one reaction vessel. It was found that the biodegradabilities determined by the CO2 amount from PBS in the sample vessel were about 30 % lower than those based on the ISO method. These differences between the

Masao Kunioka; Fumi Ninomiya; Masahiro Funabashi

2009-01-01T23:59:59.000Z

472

Potential for Microbial Stimulation in Deep Vadose Zone Sediments by Gas-Phase Nutrients  

Science Conference Proceedings (OSTI)

Viable microbial populations are low, typically 10{sup 4} cells per gram, in deep vadose zones in arid climates. There is evidence that microbial distribution in these environments is patchy. In addition, infiltration or injection of nutrient-laden water has the potential to spread and drive contaminants downward to the saturated zone. For these reasons, there are uncertainties regarding the feasibility of bioremediation of recalcitrant contaminants in deep vadose zones. The objectives of this study were to investigate the occurrence of denitrifying activity and gaseous carbon-utilizing activity in arid-climate deep vadose zone sediments contaminated with, and/or affected by past exposure to, carbon tetrachloride (CT). These metabolisms are known to degrade CT and/or its breakdown product chloroform under anoxic conditions. A second objective was to determine if CT would be degraded in these sediments under unsaturated, bulk-phase aerobic incubation conditions. Both denitrifier population (determined by MPN) and microbial heterotrophic activity (measured by mineralization of 14-C labeled glucose and acetate) were relatively low and the sediments with greater in situ moisture (10-21% versus 2-7%) tended to have higher activities. When sediments were amended with gaseous nutrients (nitrous oxide and triethyl/tributyl phosphate) and gaseous C sources (a mixture of methane, ethane, propylene, propane, and butane) and incubated for 6 months, approximately 50% of the samples showed removal of one or more gaseous C sources, with butane most commonly used (44% of samples), followed by propylene (42%), propane (31%), ethane (22%), and methane (4%). Gaseous N and gaseous P did not stimulate removal of gaseous C substrates compared to no addition of N and P. CT and gaseous C sources were spiked into the sediments that removed gaseous C sources to determine if hydrocarbon-degraders have the potential to degrade CT under unsaturated conditions. In summary, gaseous C sources--particularly butane and propylene--have promise for increasing the numbers and activity of indigenous microbial populations in arid-climate deep vadose zone sediments.

Li, S.W.; Plymale, A. E.; Brockman, F.J.

2006-04-05T23:59:59.000Z

473

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Area of Entry Area of Entry Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

474

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Total Stocks Total Stocks Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton.

475

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Stocks by Type Stocks by Type Definitions Key Terms Definition Alaskan in Transit Alaskan crude oil stocks in transit by water between Alaska and the other States, the District of Columbia, Puerto Rico, and the Virgin Islands. Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

476

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

U.S. Imports by Country of Origin U.S. Imports by Country of Origin Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

477

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Refinery Stocks Refinery Stocks Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

478

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

and Blender Net Inputs and Blender Net Inputs Definitions Key Terms Definition Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates. Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline.

479

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Supply and Disposition Balance Supply and Disposition Balance Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

480

Word Pro - A  

U.S. Energy Information Administration (EIA) Indexed Site

Thermal Conversion Factor Thermal Conversion Factor Source Documentation Approximate Heat Content of Petro- leum and Natural Gas Plant Liquids Asphalt. The U.S. Energy Information Administration (EIA) adopted the thermal conversion factor of 6.636 million British thermal units (Btu) per barrel as estimated by the Bureau of Mines and first published in the Petro- leum Statement, Annual, 1956. Aviation Gasoline. EIA adopted the thermal conversion factor of 5.048 million Btu per barrel as adopted by the Bureau of Mines from the Texas Eastern Transmission Corporation publication Competition and Growth in Ameri- can Energy Markets 1947-1985, a 1968 release of histori- cal and projected statistics. Butane. EIA adopted the Bureau of Mines thermal conver- sion factor of 4.326 million Btu per barrel as published in

Note: This page contains sample records for the topic "butane butylene c4h8" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Atmospheric Measurements of Climate-Relevant Species  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Measurements of Climate-Relevant Species Atmospheric Measurements of Climate-Relevant Species CDIAC's data collection includes measurements of the following climate-relevant chemical species. A summary of recent greenhouse gas concentrations is also available. To determine how compounds are named, see the CDIAC "Name that compound" page. Butane (C4H10) Carbon Dioxide (CO2) Carbon Isotopes Carbon Monoxide (CO) Carbon Tetrachloride (CCl4) Chlorofluorocarbons Chloroform (CHCl3) Deuterium (2H) Ethane (C2H6) Ethyl Nitrate (C2H5ONO2) Ethyne (C2H2) Fluoroform (CHF3) Halogenated Compounds (modern records) Halons (fluorocarbons) Hydrogen (H2) Hydrochlorofluorocarbons (HCFCs) Hydrofluorocarbons (HFCs) i-Propyl Nitrate (C3H7ONO2) Methane (CH4) Methyl Bromide (CH3Br) Methyl Chloride (CH3Cl) Methyl Chloroform (CH3CCl3)

482

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Imports & Exports Imports & Exports Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock.

483

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

PAD District Imports by Country of Origin PAD District Imports by Country of Origin Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

484

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

15, 2013 | Release Date: May 16, 15, 2013 | Release Date: May 16, 2013 | Next Release: May 23, 2013 Previous Issues Week: 12/29/2013 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Natural gas liquids price information added to the Natural Gas Weekly Upd Starting today, the Natural Gas Weekly Update will include a graph and a brief text overview of natural gas liquids (NGL) spot prices for five products: ethane, propane, butane, isobutane, and natural gasoline, as well as a volume-weighted composite of these prices. The natural gas plant liquids (NGPL) composite price is calculated by applying the proportionate yield of liquids produced at natural gas processing plants to the daily spot prices. Next week's Natural Gas Weekly Update will feature the NGL

485

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Imports by Destination Imports by Destination Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

486

untitled  

Gasoline and Diesel Fuel Update (EIA)

8 8 404 line, diesel and jet fuels; lubricants; asphalt; ethane, propane, and butane; and many other products used for their energy or chemical content. Crude oil is considered as either domestic or im- ported according to the following: 1. Domestic Crude Oil: Crude oil produced in the United States or from its "outer continen- tal shelf" as defined in 43 U.S.C. 1331. 2. Imported Crude Oil: Crude oil produced out- side the United States and brought into the United States. 3. First purchase volume and cost data for crude oil are classified in accordance with what the product was sold as, regardless of the actual specifications. Hence, its volumes may in- clude some of the excluded liquids discussed above. Crude Oil Acquisitions (unfinished oil acquisi- tions): The volume of crude oil either (1) acquired by the respondent for processing for its own account in accordance with accounting

487

 

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

recover/recycle recover/recycle or dispose of an identified inventory of legacy Compressed Gas Cylinders that contain, but not limited to: acetylene, argon, boron trifluoride, butane, carbon dioxide, Freon, helium, hydrogen, krypton, liquid nitrogen, methane, mixed, neon, nitrogen, oxygen, P-10, propane, sulfur hexafluoride, tetrafluoro methane. The Cylinders are to be turned over to a Gas vendor or destroyed by the sub-contractor. The subcontractor will provide all equipment and services necessary to accomplish this off-site at an approved location. All tanks are to be decontaminated prior any inspection or disposition. All unknown cylinders will be sampled as required. Compressed Gas Cylinders (4491) Y-12 Site Office Oak Ridge Tennessee Jan 5, 2010 Pamela L. Gorman Digitally signed by Pamela L. Gorman DN: cn=Pamela L. Gorman, o=NEPA Compliance Officer, ou=Y-12 Site Office, email=GormanPL@yso.doe.gov, c=US

488

State Home Oil Weatherization (SHOW) Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Oil Weatherization (SHOW) Program Home Oil Weatherization (SHOW) Program State Home Oil Weatherization (SHOW) Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Maximum Rebate $500/household Program Info State Oregon Program Type State Rebate Program Rebate Amount Blower-door test - 100% of the cost up to $100. All other technologies are 25% of the total cost, up to $150 or $500, depending on the upgrade. Provider Oregon Department of Energy Oregon homeowners and renters who heat with oil, wood, propane, kerosene, or butane are eligible for home weatherization rebates of up to $500. A

489

Getting Energized  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting Energized Elementary School Curriculum Created by the National Renewable Energy Laboratory (NREL) Click on the links below to take you to the Chapter heading: Materials list Activity Guide Energy Sources Energy Uses/Limits Energy Conversion Energy Conservation Energy for the Future Student Assessments Student Evaluation Getting Energized Equipment and Materials List Item/Activity Number Activity 1 Butane Lighter Coal (Bituminous) Amount Where to find 1-Demo Discount /Grocery (Target, Wal-mart, Kmart or similar) 1-Demo **See next line http://www.sciencekit.com/category.asp?c=365904 Cost $6.95 (Prices may change) Electrical Appliance 1-Demo Teacher Energy Source Posters & Puzzles Pieces 8-Display **See next line http://www.nef1.org/Merchant2/merchant.mv?Screen=CTGY&Category_Code=P

490

EIA-816  

U.S. Energy Information Administration (EIA) Indexed Site

6281 6281 Receipts During Month Inputs During Month Production During Month Shipments During Month Plant Fuel Use & Losses 247 Pentanes Plus Isobutane Normal Butane 249 Month 220 243 Ethane Propane Stocks End of Month Product Code Stocks Beginning of Month FORM EIA-816 MONTHLY NATURAL GAS LIQUIDS REPORT A completed form must be received by the 20th calendar day following the end of the report month. This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure to comply may result in criminal fines, civil penalties and other sanctions as provided by law. Title 18 USC 1001 makes it a criminal offense for any person knowingly and willingly to make to any Agency or Department of the United States any false, fictitious, or fraudulent statements as to any matter within its jurisdiction. See Instructions for further details on

491

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

492

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Note: Note: The conversion factor for asphalt is 5.5 barrels per short ton. ASTM: American Society for Testing and Materials Aviation Gasoline (Finished): A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifi- cations are provided in ASTM Specification D 910 and Military Specifica- tion MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Aviation Gasoline Blending Components: Naphthas that will be used for blending or compounding into finished aviation gasoline (e.g., straight run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes ox- ygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are re- ported as other hydrocarbons, hydrogen, and oxygenates. Barrel

493

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Exports by Destination Exports by Destination Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

494

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8.PDF 8.PDF Table 18. Refinery Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 2012 (Thousand Barrels, Except Where Noted) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ................................................................. 22,762 2,792 25,554 70,449 14,098 23,700 108,247 Natural Gas Plant Liquids ...................................... 544 - 544 2,607 144 644 3,395 Pentanes Plus ...................................................... - - - 689 5 267 961 Liquefied Petroleum Gases .................................. 544 - 544 1,918 139 377 2,434 Normal Butane ..................................................

495

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT_CODE","PORT_CITY  

U.S. Energy Information Administration (EIA) Indexed Site

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT_CODE","PORT_CITY","PORT_STATE","PORT_PADD","GCTRY_CODE","CNTRY_NAME","QUANTITY","SULFUR","APIGRAVITY","PCOMP_RNAM","PCOMP_SNAM","PCOMP_STAT","STATE_NAME","PCOMP_PADD" RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT_CODE","PORT_CITY","PORT_STATE","PORT_PADD","GCTRY_CODE","CNTRY_NAME","QUANTITY","SULFUR","APIGRAVITY","PCOMP_RNAM","PCOMP_SNAM","PCOMP_STAT","STATE_NAME","PCOMP_PADD" 41547,"AEROPRES CORP ",1,253,"Isobutane/Ngl",3402,"NOYES, MN","MINNESOTA",2,260,"CANADA",2,0,0,,,,," " 41547,"AEROPRES CORP ",2,252,"Normal Butane/Ngl",3402,"NOYES, MN","MINNESOTA",2,260,"CANADA",5,0,0,,,,," "

496

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 September 2013 Table 30. Refinery Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, September 2013 (Thousand Barrels, Except Where Noted) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ................................................................. 29,611 2,906 32,517 67,983 12,033 22,460 102,476 Natural Gas Plant Liquids ...................................... 485 - 485 1,969 56 687 2,712 Pentanes Plus ...................................................... - - - 777 - 265 1,042 Liquefied Petroleum Gases .................................. 485 - 485 1,192 56 422 1,670 Normal Butane ..................................................

497

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Input Input Definitions Key Terms Definition Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Crude Oil A mixture of hydrocarbons that exists in liquid phase in natural underground reservoirs and remains liquid at atmospheric pressure after passing through surface separating facilities. Depending upon the characteristics of the crude stream, it may also include:

498

Troubleshooting natural gas processing: Wellhead to transmission  

Science Conference Proceedings (OSTI)

This book describes practical, day-to-day problems of natural gas handling. This book combines field experience with technical principles on natural gas production treating and transmission. This volume is dominated by illustrative case histories and rules of thumb. The book also provides a checklist of distillation problems which is a summary of causes and cures of the problems encountered in the fractionation of propane, butane and natural gasoline. A glossary of terms used in natural gas transmission is another good part of this book. The author has avoided complex mechanical details in favor of simple line drawings. Among the topics discussed are; wellhead pressure and gas flow, vapor-liquid separation at the wellhead, wellhead compression, corrosion in gathering systems, gas sweetening using amines, sulfur recovery, dehydration, centrifugal gas compression, reciprocal gas compression, hydrates, gas cooling and condensate recovery.

Lieberman, N.

1987-01-01T23:59:59.000Z

499

Pentan isomers compound flame front structure  

DOE Green Energy (OSTI)

The fuels (hexane, pentane, diethyl ether) and conditions investigated in this study are relevant to engine knock in spark- ignition engines. A review is provided of the field of low temperature hydrocarbon oxidation. Studies were made of radical and stable intermediate distribution in the front of cool flames: Maximum concentrations of H atoms and peroxy radicals were observed in the luminous zone of the cool flame front. Peroxy radicals appear before the luminous zone at 430 K due to diffusion. H atoms were found in cool flames of butane and hexane. H atoms diffuses from the luminous zone to the side of the fresh mixture, and they penetrate into the fresh mixture to a small depth. Extension of action sphear of peroxy radicals in the fresh mixture is much greater than that of H atoms due to their small activity and high concentrations.

Mansurov, Z.A.; Mironenko, A.W.; Bodikov, D.U.; Rachmetkaliev, K.N. [Kazakh Al-Farabi State National Univ., Almaty (Kazakhstan)

1995-08-13T23:59:59.000Z

500

An experimental study of isobutane oxidation at transition temperatures  

SciTech Connect

The oxidation of isobutane at temperatures in the range 563-693 K has been studied experimentally using a static reactor. Gas chromatographic analysis was used to measure stable species concentrations. The experimental results were used to postulate the main reaction paths of the mechanism at these temperatures. A region of negative temperature coefficient (NTC) was observed between 650 and 680 K. Changes in the product yields and product distribution indicated a transition in the mechanism across the NTC region, from low to intermediate temperatures. Analysis of the experimental results and comparison with results for other fuels, such as n-butane, propane and propene, indicated that the NTC and mechanism transition were strongly dependent on the shift in the equilibrium of CH/sub 3/ + O/sub 2/ <==> CH/sub 3/O/sub 2/. The results are also discussed in relation in relation to recent engine results.

Wilk, R.D.; Cernansky, N.P.; Miller, D.L.

1986-01-01T23:59:59.000Z