Powered by Deep Web Technologies
Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Small Business Innovation Research and Small Business Technology Transfer  

Broader source: Energy.gov [DOE]

The DOE Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are highly competitive opportunities that encourage U.S.-based small businesses to engage in...

2

Business Plan Competitions and Technology Transfer  

SciTech Connect (OSTI)

An evaluation of business plan competitions, with a focus on the NREL-hosted Industry Growth Forum, and how it helps cleantech startups secure funding and transfer their technology to market.

Worley, C.M.; Perry, T.D., IV

2012-09-01T23:59:59.000Z

3

AUGUST 7, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network [OSTI]

AUGUST 7, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series "Software Patent Associate of Technology Transfer & Business Development (TTBD). August 7, 2013 from 12:00 - 1. Technology Transfer & Business Development www.ohsu.edu/techtransfer techmgmt@ohsu.edu 503-494-8200 #12;

Chapman, Michael S.

4

Oregon Health & Science University Technology Transfer and Business Development  

E-Print Network [OSTI]

Oregon Health & Science University Technology Transfer and Business Development Annual Report 2011 Business Development 6 Impacting Global Health - Drs. David and Deborah Lewinsohn Technology Transfer 7 System OHSU is reinventing technology transfer. Over the years the office has evolved from "Tech Transfer

Chapman, Michael S.

5

April 12, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network [OSTI]

April 12, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series -"TTBD of Technology Transfer & Business Development (TTBD) is the place to start. Join us for a brown bag presentation and Q&A on"TTBD: An Overview"led by Andrew Watson, PhD, CLP, Interim Director, Technology Transfer

Chapman, Michael S.

6

April 3, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network [OSTI]

April 3, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series -"TTBD of Technology Transfer & Business Development (TTBD) is the place to start. Join us for a brown bag presentation and Q&A on"TTBD: An Overview"led by Andrew Watson, PhD, CLP, Interim Director, Technology Transfer

Chapman, Michael S.

7

How to Qualify for NIH Small Business Innovation and Technology Transfer Grants  

E-Print Network [OSTI]

How to Qualify for NIH Small Business Innovation and Technology Transfer Grants Professional) and Small Business Technology Transfer (STTR) proposal development services to technology based

Berdichevsky, Victor

8

Project Summary for Small Business Technology Transfer (STTR) Phase II Proposal  

E-Print Network [OSTI]

Project Summary for Small Business Technology Transfer (STTR) Phase II Proposal Title: Real-time Analysis and Feedback during Colonoscopy to improve Quality This Small Business Technology Transfer Phase

Oh, JungHwan

9

The Picatinny Technology Transfer Innovation Center: A business incubator concept adapted to federal laboratory technology transfer  

SciTech Connect (OSTI)

In recent years, the US defense industrial base spawned the aerospace industry, among other successes, and served as the nation`s technology seed bed. However, as the defense industrial base shrinks and public and private resources become scarcer, the merging of the commercial and defense communities becomes necessary to maintain national technological competencies. Cooperative efforts such as technology transfer provide an attractive, cost-effective, well-leveraged alternative to independently funded research and development (R and D). The sharing of knowledge, resources, and innovation among defense contractors and other public sector firms, academia, and other organizations has become exceedingly attractive. Recent legislation involving technology transfer provides for the sharing of federal laboratory resources with the private sector. The Army Research, Development and Engineering Center (ARDEC), Picatinny Arsenal, NJ, a designer of weapons systems, is one of the nation`s major laboratories with this requirement. To achieve its important technology transfer mission, ARDEC reviewed its capabilities, resources, intellectual property, and products with commercial potential. The purpose of the review was to develop a viable plan for effecting a technology transfer cultural change within the ARDEC, Picatinny Arsenal and with the private sector. This report highlights the issues identified, discussed, and resolved prior to the transformation of a temporarily vacant federal building on the Picatinny installation into a business incubator. ARDEC`s discussions and rationale for the decisions and actions that led to the implementation of the Picatinny Technology Transfer Innovation Center are discussed.

Wittig, T. [Geo-Centers, Inc. (United States); Greenfield, J. [Armaments Research, Development and Engineering Center, Picatinny Arsenal, NJ (United States)

1996-10-01T23:59:59.000Z

10

9Tomorrow's Technology Transfer Volume 1, Number 1 WiNter 2009 small U.S. businesses would have certainty  

E-Print Network [OSTI]

9Tomorrow's Technology Transfer Volume 1, Number 1 WiNter 2009 small U.S. businesses would have of technology transfer. Interest expanded until, in 2006, AUTM's Licensing SurveyTM identified tech- nology "Communicating the Full Value of Aca- demic Technology Transfer: Some Lessons Learned," originally published

McQuade, D. Tyler

11

Sandia National Laboratories: Small Business Technology Transfer Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSiting Siting At theprogram Technology

12

US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer  

SciTech Connect (OSTI)

Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

Hsieh, S.T. [Tulane Univ., New Orleans, LA (United States). US/China Inst.; Atwood, T. [Dept. of Energy, Washington, DC (United States); Qiu Daxiong [Tsinghua Univ., Beijing (China); Zhang Guocheng [State Science and Technology Commission, Beijing (China)

1997-12-31T23:59:59.000Z

13

USDOE Technology Transfer, Working with DOE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment SBIRSTTR - Small Business Innovation Research and Small Business Technology Transfer Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer...

14

The Department of Energy's Small Business Innovation Research and Small Business Technology Transfer Programs, IG-0876  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeThe AllegationsSmall Business Innovation

15

International technology transfer (ITT) and corporate social responsibility (CSR) : A study in the interaction of two business functions within the Norwegian petroleum company Statoil.  

E-Print Network [OSTI]

??I study Statoil?s use of international technology transfer (ITT) and corporate social responsibility (CSR), and ways in which the two business functions interact within Statoil.… (more)

Bakken, Bent Egil Roalkvam

2011-01-01T23:59:59.000Z

16

Roadmap: Business Management Technology Business Administration Associate of Applied Business  

E-Print Network [OSTI]

Roadmap: Business Management Technology ­ Business Administration ­ Associate of Applied Business Credit Hours] ACTT 11000 Accounting I-Financial 4 BMRT 11000 Introduction to Business 3 COMT 11000 21000 Business Law and Ethics I 3 BMRT 21011 Fundamentals of Financial Management 3 BMRT 21050

Sheridan, Scott

17

Entrepreneurial separation to transfer technology.  

SciTech Connect (OSTI)

Entrepreneurial separation to transfer technology (ESTT) program is that entrepreneurs terminate their employment with Sandia. The term of the separation is two years with the option to request a third year. Entrepreneurs are guaranteed reinstatement by Sandia if they return before ESTT expiration. Participants may start up or helpe expand technology businesses.

Fairbanks, Richard R.

2010-09-01T23:59:59.000Z

18

Technology Transfer from the University of Oxford  

E-Print Network [OSTI]

Technology Transfer from the University of Oxford www.isis-innovation.com #12;Isis Innovation Ltd Oxford Technology Transfer IP, Patents, Licences, Spin-outs, Material Sales, Seed Funds, Isis Angels Network Oxford Expertise Consulting, Services Isis Consulting Business Technology Transfer and Innovation

Paxton, Anthony T.

19

INL Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Through collaboration with industry partners, INL's Technology Deployment office makes available to American agencies and international organizations unique...

20

Small Business Innovation Research (SBIR) and Small Business...  

Broader source: Energy.gov (indexed) [DOE]

Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) An...

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2008 Prepared by: National Institute to submit this fiscal year 2008 Technology Transfer Summary Report to the President and the Congress transfer authorities established by the Technology Transfer Commercialization Act of 2000 (P.L. 106

Perkins, Richard A.

22

Technology Transfer Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory...

23

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

24

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2009 Prepared by: National Institute to submit this fiscal year 2009 Technology Transfer Summary Report to the President and the Congress in accordance with 15 USC Sec 3710(g)(2) for an annual summary on the implementation of technology transfer

Perkins, Richard A.

25

INTRODUCTION TO THE TECHNOLOGY TRANSFER OFFICE The Technology Transfer Office directly contributes to the three-pronged mission of Dartmouth  

E-Print Network [OSTI]

contributes to the three-pronged mission of Dartmouth College: teaching, research and public service setting. The Technology Transfer Office provides public service by transferring technologies to industry Business Innovation Research (SBIR), Small Business Technology Transfer program (STTR), and New Hampshire

26

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division to them in California. TECHNOLOGY TRANSFER PROGRAM MAY 2011, VOL. 3, NO. 1 California's Transition

California at Berkeley, University of

27

Dartmouth College Technology Transfer Office Annual Report  

E-Print Network [OSTI]

and public service missions of Dartmouth College. 1 #12;Invention Disclosures Research Enterprise Support, such as Small Business Innovation Research (SBIR), Small Business Technology Transfer (STTR), and New Hampshire of the sluggish economy, we were able to secure 6 new licenses, including one to local start-up ImmuNext, Inc

Myers, Lawrence C.

28

Technology transfer 1994  

SciTech Connect (OSTI)

This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

Not Available

1994-01-01T23:59:59.000Z

29

SHARED TECHNOLOGY TRANSFER PROGRAM  

SciTech Connect (OSTI)

The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

GRIFFIN, JOHN M. HAUT, RICHARD C.

2008-03-07T23:59:59.000Z

30

Technology Application Centers: Facilitating Technology Transfer  

E-Print Network [OSTI]

transfer plus technology application. A&C Enercom has learned from experience that technology deployment will not occur unless utilities achieve both technology transfer (e.g, the dissemination of information) and technology application (e.g., the direct...

Kuhel, G. J.

31

Technology Transfer Office November 2009  

E-Print Network [OSTI]

Technology Transfer Office November 2009 INVENTION AGREEMENT In consideration of my employment in writing to Dartmouth through the Technology Transfer Office any such discovery or invention and identify

Myers, Lawrence C.

32

Chapter 9 Research & Technology Transfer (2 Edition) 118  

E-Print Network [OSTI]

117 #12;Chapter 9 ­ Research & Technology Transfer (2 nd Edition) 118 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Michigan, University of

33

Chapter 9 Research & Technology Transfer (3 Edition) 118  

E-Print Network [OSTI]

117 #12;Chapter 9 ­ Research & Technology Transfer (3 rd Edition) 118 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Eustice, Ryan

34

Chapter 9 Research & Technology Transfer (4 Edition) 117  

E-Print Network [OSTI]

116 #12;Chapter 9 ­ Research & Technology Transfer (4 th Edition) 117 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Awtar, Shorya

35

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division of asphalt pavements. TECHNOLOGY TRANSFER PROGRAM JULY 2010, VOL. 2, NO. 1 Warm Mix Asphalt Hits the Road, and California LTAP Field Engineer, Technology Transfer Program, Institute of Transportation Studies, UC Berkeley

California at Berkeley, University of

36

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division solve the very serious problem of waste tire disposal. TECHNOLOGY TRANSFER PROGRAM SEPTEMBER 2009, VOL, University of California Pavement Research Center, and California LTAP Field Engineer, Technology Transfer

California at Berkeley, University of

37

Technology transfer @ VUB Hugo Loosvelt  

E-Print Network [OSTI]

13/12/2012 Technology transfer @ VUB Hugo Loosvelt #12;VUB in Brussels www.vub.ac.be including or conclude licensing contracts #12;Technology transfer TTI assists academics to realise knowledge transfer by needed for R&D collaboration, licensing and spin-out company formation Technology transfer is the process

Steels, Luc

38

Ames Lab 101: Technology Transfer  

ScienceCinema (OSTI)

Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

Covey, Debra

2012-08-29T23:59:59.000Z

39

Ames Lab 101: Technology Transfer  

SciTech Connect (OSTI)

Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

Covey, Debra

2010-01-01T23:59:59.000Z

40

Technology transfer 1995  

SciTech Connect (OSTI)

Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

Not Available

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Technology Transfer Ombudsman Program | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November...

42

NREL: Technology Transfer - Ombuds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology Transfer Ombuds

43

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary stent is a small,...

44

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Immobilized Amine Sorbent (BIAS) Process Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Capturing carbon dioxide (CO 2 ) from the flue or...

45

Managing Technology and Operations in Emerging Submitted to the Tepper School of Business  

E-Print Network [OSTI]

of the business world is therefore more and more shaped by globalization and technol- ogy. My dissertation technologies. Chapter one studies the implications for global sourcing and technology transfer in the pres- ence of technological imitators. Technology transfer o¤ers global ...rms an opportunity to reduce costs

Sadeh, Norman M.

46

National Security Technology Incubator Business Plan  

SciTech Connect (OSTI)

This document contains a business plan for the National Security Technology Incubator (NSTI), developed as part of the National Security Preparedness Project (NSPP) and performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This business plan describes key features of the NSTI, including the vision and mission, organizational structure and staffing, services, evaluation criteria, marketing strategies, client processes, a budget, incubator evaluation criteria, and a development schedule. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety, security, and protection of the homeland. The NSTI is operated and managed by the Arrowhead Center, responsible for leading the economic development mission of New Mexico State University (NMSU). The Arrowhead Center will recruit business with applications for national security technologies recruited for the NSTI program. The Arrowhead Center and its strategic partners will provide business incubation services, including hands-on mentoring in general business matters, marketing, proposal writing, management, accounting, and finance. Additionally, networking opportunities and technology development assistance will be provided.

None

2007-12-31T23:59:59.000Z

47

DIGITAL TECHNOLOGY BUSINESS CASE METHODOLOGY GUIDE & WORKBOOK  

SciTech Connect (OSTI)

Performance advantages of the new digital technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on demonstrating actual cost reductions that can be credited to budgets and thereby truly reduce O&M or capital costs. Technology enhancements, while enhancing work methods and making work more efficient, often fail to eliminate workload such that it changes overall staffing and material cost requirements. It is critical to demonstrate cost reductions or impacts on non-cost performance objectives in order for the business case to justify investment by nuclear operators. This Business Case Methodology approaches building a business case for a particular technology or suite of technologies by detailing how they impact an operator in one or more of the three following areas: Labor Costs, Non-Labor Costs, and Key Performance Indicators (KPIs). Key to those impacts will be identifying where the savings are “harvestable,” meaning they result in an actual reduction in headcount and/or cost. The report consists of a Digital Technology Business Case Methodology Guide and an accompanying spreadsheet workbook that will enable the user to develop a business case.

Thomas, Ken; Lawrie, Sean; Hart, Adam; Vlahoplus, Chris

2014-09-01T23:59:59.000Z

48

FUEL CELL TECHNOLOGIES PROGRAM Small Business  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Small Business Innovation Research (SBIR) Award Success Story Fuel up to 90 MW per year with full utilization. FuelCell Energy has received Small Business Innovation compression at fueling stations. However in the short term, EHCs can be used to compress hydro

49

FUEL CELL TECHNOLOGIES PROGRAM Small Business  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Small Business Innovation Research (SBIR) Award Success Story Proton Energy Systems Proton Energy Systems is a suc- cessful small business specializing in clean production that can be coupled with HOGEN RE® hydrogen generators are wind, solar, hydro, and wave power. Proton

50

Technology Transfer Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure...

51

Technology Transfer and Commercialization Annual Report 2008  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers, technicians, support staff, and operators of the INL workforce. Their achievements and recognized capabilities are what make the accomplishments cataloged here possible. Without them, none of these transactions would occur.

Michelle R. Blacker

2008-12-01T23:59:59.000Z

52

Summary Report on Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Summary Report on Federal Laboratory Technology Transfer Agency Approaches; FY 2001 Activity Metrics and Outcomes 2002 Report to the President and the Congress under the Technology Transfer: FEDERAL LAB TECHNOLOGY TRANSFER TABLE OF CONTENTS LIST OF FIGURES AND TABLES

Perkins, Richard A.

54

Technology Transfer for Brownfields Redevelopment Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer for Brownfields Redevelopment Project Technology Transfer for Brownfields Redevelopment Project The U.S. Department of Energy has provided six computers to...

55

Deadline Approaching for Small Business Innovation Research Opportunit...  

Broader source: Energy.gov (indexed) [DOE]

of Energy's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) awards, which help small businesses develop technologies with a strong...

56

CONNET -DESIGN ISSUES1 Issues in Designing a European Technology Transfer Network for the  

E-Print Network [OSTI]

CONNET - DESIGN ISSUES1 Issues in Designing a European Technology Transfer Network of European Union's Technology Transfer Network such a one-stop-shop for the construction industry of Europe and techniques that enable technology transfer to SMEs as well as provide new business opportunities and models

Amor, Robert

57

Successfully transfer HPI proprietary technology  

SciTech Connect (OSTI)

Intellectual property such as petrochemical/refining licensed technologies are revenue generators for many operating and E/C companies. Successful transfers of available technologies involve many critical elements beyond the basic design engineering stages. Buyers and sellers both have obligations to the licensing agreements. These obligations will vary widely as to the clients` needs and strengths, especially for facilities to be constructed in developing areas. Using the author`s guidelines can streamline new technology evaluations and acquisitions.

Hassan, N. [BE and K, Newark, DE (United States)

1997-02-01T23:59:59.000Z

58

How to explore new business models for technological innovations  

E-Print Network [OSTI]

How to explore new business models for technological innovations Valérie Chanal Grenoble University also involved business model innovation. Exploration of new business models is however particularly to target. This article proposes a scenario-based method for exploring business models for technological

Paris-Sud XI, Université de

59

Technology Transfer Office FY2011 Annual Report  

E-Print Network [OSTI]

Technology Transfer Office FY2011 Annual Report #12;TECHNOLOGY TRANSFER ADVISORY COMMITTEES The UC San Diego Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the universityĂ? s technology transfer program. This standing committee is appointed by the chancellor

Hasty, Jeff

60

Technology Transfer office 2008 Annual Report  

E-Print Network [OSTI]

Technology Transfer office 2008 Annual Report #12;The UC San Diego Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the university's technology transfer program. It meets periodically to assess UC San Diego's technology transfer practices and guides the overall

Fainman, Yeshaiahu

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Technology Transfer and Intellectual Property Services  

E-Print Network [OSTI]

Technology Transfer and Intellectual Property Services B I E N N I A L R E P O R T 03­04 #12;University of California, San Diego Technology Transfer Advisory Committee The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the UCSD Technology Transfer Program

Fainman, Yeshaiahu

62

Transfer Guide: Forestry-Business -1 -Revised: 1 August 2010 TRANSFER GUIDE AND PLANNING WORKSHEET  

E-Print Network [OSTI]

Transfer Guide: Forestry-Business - 1 - Revised: 1 August 2010 TRANSFER GUIDE AND PLANNING WORKSHEET Colorado Community Colleges Colorado State University Bachelor of Science Degree ­ Forestry forestry-business concentration This planning worksheet represents a guide for community college students

63

Technology Transfer Plan  

SciTech Connect (OSTI)

BPF developed the concept of a mobile, on-site NORM remediation and disposal process in late 1993. Working with Conoco and receiving encouragement born the Department of Energy, Metarie Office, and the Texas Railroad Commission the corporation conducted extensive feasibility studies on an on-site disposal concept. In May 1994, the Department of Energy issued a solicitation for cooperative agreement proposal for, "Development and Testing of a Method for Treatment and Underground Disposal of Naturally Occurring Radioactive Materials (NORM)". BPF submitted a proposal to the solicitation in July 1994, and was awarded a cooperative agreement in September 1995. BPF proposed and believed that proven equipment and technology could be incorporated in to a mobile system. The system would allow BPF to demonstrate an environmentally sound and commercially affordable method for treatment and underground disposal of NORM. The key stop in the BPF process incorporates injection of the dissolved radioactive materials into a water injection or disposal well. Disposal costs in the BPF proposal of July 1995 were projected to range from $1000 to $5000 per cubic yard. The process included four separate steps. (1) De-oiling (2) Volume Reduction (3) Chemical Dissolution of the Radium (4) Injection

None

1998-12-31T23:59:59.000Z

64

Diploma in Internet Business Technology Looking for a Career in Internet Business? ........................................... 2  

E-Print Network [OSTI]

Diploma in Internet Business Technology Contents Looking for a Career in Internet Business? ........................................... 2 How can a McGill Program prepare you for a career in Internet Business the right to change this information at any time. #12;2 Looking for a Career in Internet Business? Since

Barthelat, Francois

65

Technology Transfer and Intellectual Property Services  

E-Print Network [OSTI]

Technology Transfer and Intellectual Property Services 2005 A n n u a l R e p o r t #12;The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the UCSD Technology chancellor of Research. It meets periodically to assess UCSD technology transfer policy and guide

Fainman, Yeshaiahu

66

An Inventor's Guide to Technology Transfer  

E-Print Network [OSTI]

An Inventor's Guide to Technology Transfer at the Massachusetts Institute of Technology on the University of Michigan's "Inventor's Guide to Technology Transfer," with adaptations for MIT and the MIT of Technology Transfer for their kind permission to use their excellent material and to the University

Reuter, Martin

67

Technology Transfer award funding data* Figure 1. Current Technology Transfer awards  

E-Print Network [OSTI]

6 1 4 3 48 23 30 10 Technology Transfer award funding data* Figure 1. Current Technology Transfer awards Numbers represent active grants as at 1 October 2013 Figure 2. Technology Transfer award Transfer funding division. In the 2012/13 financial year Technology Transfer approved awards worth a total

Rambaut, Andrew

68

Australian School of BusinessNever Stand Still AGSM Master of Business & Technology (MBT)  

E-Print Network [OSTI]

application of technology, efficient resource planning, minimisation of waste, collaboration along the supplyAustralian School of BusinessNever Stand Still AGSM Master of Business & Technology (MBT) Program'. This unique program, developed by UNSW's world-class engineering faculty and business school, brings together

New South Wales, University of

69

Attn Technology Transfer Questions.txt - Notepad  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Attn Technology Transfer Questions.txt From: eschaput esandc@prodigy.net Sent: Monday, January 26, 2009 10:31 PM To: GC-62 Subject: Attn: Technology Transfer Questions We have...

70

Spin-out Company Portfolio Technology Transfer  

E-Print Network [OSTI]

Spin-out Company Portfolio 2012 Technology Transfer The Sir Colin Campbell Building The University `Entrepreneurial University of the Year' in 2008. The Technology Transfer Office (TTO) has close links detail. Dr Susan Huxtable Director, Technology Transfer Tel: +44 (0)115 84 66388 Email: susan

Aickelin, Uwe

71

Frequently Asked Questions 1. Technology Transfer  

E-Print Network [OSTI]

Frequently Asked Questions 1. Technology Transfer 2. Patent 3. Requirements for obtaining a patent is not addressed, please contact Colleen Michael at 631-344 -4919. #12;What is Technology Transfer? Technology Transfer is the process of developing practical applications for the results of scientific research

72

Bidirectional Technology Transfer: Sabbaticals in Industry  

E-Print Network [OSTI]

Bidirectional Technology Transfer: Sabbaticals in Industry Mark D. Hill University of Wisconsin---not just technology transfer---through a ten­month sabbatical in an industrial product group. I advocate product group. The next sections discuss technology transfer, my recent sabbatical, and conclude

Hill, Mark D.

73

Requirements Engineering Technology Transfer: An Experience Report  

E-Print Network [OSTI]

Requirements Engineering Technology Transfer: An Experience Report Francisco A. C. Pinheiro1 Julio of software engineering technology transfer was identified by Pfleeger (1999). She came to the con- clusion Journal of Technology Transfer, 28, 159­165, 2003 ©2003 Kluwer Academic Publishers. Manufactured

Leite, Julio Cesar Sampaio do Prado

74

Technology Transfer at Penn State University  

E-Print Network [OSTI]

Technology Transfer at Penn State University An Inventor's Guide to #12;Our mission is to protect on the University of Michigan's "Inventor's Guide to Technology Transfer," with adaptation for Penn State, and the staff of the UM Office of Technology Transfer for their kind permission to use their excellent material

Lee, Dongwon

75

Summary Report on Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Summary Report on Federal Laboratory Technology Transfer FY 2003 Activity Metrics and Outcomes 2004 Report to the President and the Congress under the Technology Transfer and Commercialization Act Office Chapter 2. Trends in Federal Lab Technology Transfer 2.1 Cooperative Research and Development

Perkins, Richard A.

76

Research and Technology Transfer Faculty Conference  

E-Print Network [OSTI]

Research and Technology Transfer Faculty Conference August 18th 2014 Bruce D. Honeyman Office of the VPRTT #12;Role of the Office of the Vice President for Research and Technology Transfer · `The role Poate. · Support Mines' Strategic Plan Office of the Vice President of Research and Technology Transfer

77

WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY?  

E-Print Network [OSTI]

1 WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY? A Comparison with Biotech, where technology transfer and knowledge-bridging will play a pivotal role in the industrial dynamics of the microelectronics sector. Keywords. Nanotechnology ­ biotechnology ­ microelectronics ­ technology transfer

Paris-Sud XI, Université de

78

Trinity Technology Transfer News December 2012  

E-Print Network [OSTI]

Trinity Technology Transfer News December 2012 SRS was set up by Dr Paul Sutton and Prof Linda licensing fees. Dr. Margaret Woods | Technology Transfer Manager mjwoods@tcd.ie Ms. Audrey Crosbie;Trinity Technology Transfer News December 2012 Trinity Campus Company Funding Round EmpowerTheUser (www

O'Mahony, Donal E.

79

NREL: Technology Transfer - Technologies Available for Licensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology Transfer

80

Business Partnerships & Enterprise Strategy Faculty of Science and Technology: Business Partnerships & Enterprise Strategy 2011-2015  

E-Print Network [OSTI]

of ICT, Engineering and Environmental Technology SMEs. Significantly increased participationBusiness Partnerships & Enterprise Strategy 2011-2015 #12;Faculty of Science and Technology 2008 and 2011, science and technology departments at Lancaster continued to develop and deepen

Meju, Max

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Climate Change: A Challenge to the Means of Technology Transfer  

E-Print Network [OSTI]

TO THE MEANS OF TECHNOLOGY TRANSFER Gordon J. MacDonaldthe importance of technology transfer in dealing withthe discussion of technology transfer has centered on

MacDonald, Gordon J. F.

1992-01-01T23:59:59.000Z

82

Intellectual Property Protection and Technology Transfer: Evidence From US Multinationals  

E-Print Network [OSTI]

International Technology Transfer? Empirical Evidence FromProtection and Technology Transfer: Evidence from USProperty Protection and Technology Transfer Evidence from US

Kanwar, Sunil

2007-01-01T23:59:59.000Z

83

Guidance for Preparing Annual Agency Technology Transfer Reports Under the Technology Transfer Commercialization Act  

E-Print Network [OSTI]

Guidance for Preparing Annual Agency Technology Transfer Reports Under the Technology Transfer U.S. Department of Commerce in conjunction with The Interagency Working Group on Technology Transfer May 2013 #12;2 Introduction Under the Technology Transfer Commercialization Act of 2000 (P.L. 106

84

Geo energy research and development: technology transfer  

SciTech Connect (OSTI)

Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

Traeger, R.K.

1982-03-01T23:59:59.000Z

85

Small Businesses Receive $2 Million to Advance HVAC Technologies...  

Energy Savers [EERE]

of Energy announced March 20, 2014, approximately 2 million to advance next generation water heating technologies developed by America's small businesses. The two selected Phase...

86

Investigating the Effort of Using Business Process Management Technology  

E-Print Network [OSTI]

-Franck-Ring, 89069 Ulm, Germany Abstract Business Process Management (BPM) technology has become an important aspects and effects of BPM technology and BPM tools. Key words: Process-aware Information System, Workflow (e.g., WS-BPEL, BPMN), and business process manage- ment (BPM) tools (e.g., Tibco Staffware, FLOWer

Ulm, Universität

87

Technology Partnering Mechanisms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

expand a business with INL technologies, or require business support our Technology Transfer team is available to discuss the following contractual mechanisms: Cooperative...

88

International technology transfer, firm productivity and employment.  

E-Print Network [OSTI]

??This dissertation contributes to the empirical literature on the effects of international technology transfer on firms' productivity and employment in developing and transition countries. It… (more)

Pantea, Smaranda

2012-01-01T23:59:59.000Z

89

NETL Technology Transfer Case Studies and Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a 2012 R&D 100 Award and a 2010 Federal Laboratory Consortium Excellence in Technology Transfer Award. This technology is available for licensing PLATINUM-CHROMIUM ALLOY FOR...

90

SWAMI II technology transfer plan  

SciTech Connect (OSTI)

Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection.

Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

1995-12-31T23:59:59.000Z

91

Evolution of technology transfer in Latin America  

SciTech Connect (OSTI)

The author discusses how Latin American countries have grown up buying technology, transferring technology from more developed nations, and attempting to adapt it to their own countries for their own environment. Although this is the approach that was and is necessary, there are still some shortfalls that have occurred in the process of licensing and acquisition of technology. Governments around the world also have had powerful impacts on technology transfer. Those in Latin America are no exception.

Kahl, L.F. (Carborundum Co., Niagara Falls, NY (USA))

1989-07-01T23:59:59.000Z

92

Contacts for the Assistant General Counsel for Technology Transfer...  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer and Procurement Contacts for the Assistant General Counsel for Technology Transfer and Procurement Subject MatterFunctional Area Lead Backup Technology...

93

Accelerating the transfer in Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies Office AboutAccelerateAccelerating the

94

Technology Assistance Program Growing technology-based business with free service  

E-Print Network [OSTI]

Technology Assistance Program Growing technology-based business with free service Economic Development Is your small, technology-based business faced with a specific challenge, but lacking scientist or engineer help your company? If the answer is yes, the Technology Assistance Program (TAP

95

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY  

E-Print Network [OSTI]

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM · INSTITUTE OF TRANSPORTATION STUDIES · UNIVERSITY THURSDAY SATURDAYFRIDAYWEDNESDAYTUESDAY TECHNOLOGY TRANSFER PROGRAM · INSTITUTE OF TRANSPORTATION STUDIES's to another year of working safer and smarter. Laura Melendy Director, Technology Transfer Program #12;AUGUST

California at Berkeley, University of

96

DOE Announces Small Business Awards at its Annual Small Business...  

Office of Environmental Management (EM)

Technologies, Inc. President and CTO: Abe Lederman Santa Fe, New Mexico Small Technology Transfer Research-Small Business of the Year Recipient: SABIA, Inc. President: Clint...

97

Business models for sustainable technologies: Exploring business model evolution in the case of electric vehicles  

E-Print Network [OSTI]

of electric vehicles René Bohnsacka , Jonatan Pinkseb , & Ans Kolka a University of Amsterdam Business School in the case of electric vehicles Abstract Sustainable technologies challenge prevailing business practices models for electric vehicles. Based on a qualitative analysis of electric vehicle projects of key

Paris-Sud XI, Université de

98

Engineering and information technology: Using imaging to reengineer business  

SciTech Connect (OSTI)

Image processing can be a great asset to business process reengineering. This paper examines image processing`s impact on workflow and attempts to list the questions that should be addressed before imaging technology is introduced.

Norton, F.J.

1996-06-10T23:59:59.000Z

99

Small Business Innovation Research and Small Business Technology Transfer  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman ResourcesScience DriversServices Integrated

100

Small Business Innovation Research and Small Business Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to thin PV strips at the panel edge. One of the advantages of using this technology in a solar panel is that the holograms provide the ability to track the sun without any moving...

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda  

E-Print Network [OSTI]

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda technology transfer. In addition, major incentives for using RE methods are discussed, along with ideas engineering; Technology transfer 1. Introduction In a 1993 evaluation of requirements engineering (RE

Leite, Julio Cesar Sampaio do Prado

102

Small Business Innovation Research (SBIR) and Small Business Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Success StoriesSiteTransfer (STTR)

103

BMDO: New Mexico Technology Transfer Demonstration Project. Interim final report  

SciTech Connect (OSTI)

The BMDO-New Mexico Technology Transfer Demonstration Project(BMDO-NM) was a collaborative effort among the national laboratories to identify and evaluate the commercial potential of selected SDI-funded technologies. The project was funded by BMDO (formerly known as the Strategic Defense Initiative Office or SDIO), the Technology Enterprise Division (NM-TED) of the NM Economic Development Division, and the three National Laboratories. The project was managed and supervised by SAGE Management Partners of Albuquerque, and project funding was administered through the University of New Mexico. The BMDO-NM Demonstration Project focused on the development of a process to assist technology developers in the evaluation of selected BMDO technology programs so that commercialization decisions can be made in an accelerated manner. The project brought together BMDO, the NM-TED, the University of New Mexico, and three New Mexico Federal laboratories -- Los Alamos (DOE), Phillips (DOD) and Sandia (DOE). Each national laboratory actively participated throughout the project through its technology transfer offices. New Mexico was selected as the site for the Demonstration Program because of its three national and federal research laboratories engaged in BMDO programs, and the existing relationship among state govemment, the labs, universities and local economic development and business assistance organizations. Subsequent Commercialization and Implementation phases for the selected technologies from LANL and SNL were completed by SAGE and the Project Team. Funding for those phases was provided by the individual labs as well as BMDO and NM-TED in kind services. NM-TED played a proactive role in this New Mexico partnership. Its mandate is to promote technology-based economic development, with a commitment to facilitate the use of technology by industry and business statewide. TED assumed the role of program manager and executing agent for BMDO in this demonstration project.

Not Available

1993-11-01T23:59:59.000Z

104

Assessing Software Engineering Technology Transfer  

E-Print Network [OSTI]

, and technology infusion, or the adoption of a new technology by an individual organization. 1 #12;Table ¢ ¡ £ ¡ ¢ ¡ ¡ ¢ ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 15 3.4 Exporting and Infusing Technology ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 16 4 Infusion of Technology 18 4.1 Technologies of Interest

Zelkowitz, Marvin V.

105

TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rfien@campbellap.com Sent: Monday, January 26, 2009 5:34 PM To: GC-62 Subject: TECHNOLOGY TRANSFER QUESTIONS. Sensitivity: Confidential To Whom It May Concern, Campbell Applied...

106

[Technology transfer of building materials by ECOMAT  

SciTech Connect (OSTI)

This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

NONE

1996-01-01T23:59:59.000Z

107

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

108

Office of the Assistant General Counsel for Technology Transfer...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer & Intellectual Property Office of the Assistant General Counsel for Technology Transfer & Intellectual Property The Office of the Assistant General Counsel for...

109

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

110

Service for Research Management & Technology Transfer NEWS & EVENTS  

E-Print Network [OSTI]

Service for Research Management & Technology Transfer NEWS & EVENTS IX Premio de InvestigaciĂłn for Research Management & Technology Transfer #12;

Escolano, Francisco

111

Clean coal technologies: A business report  

SciTech Connect (OSTI)

The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

Not Available

1993-01-01T23:59:59.000Z

112

Search Technology Internet Start-Ups Business Computing Companies  

E-Print Network [OSTI]

#12;Search Technology Internet Start-Ups Business Computing Companies Inside Technology Bits Blog engineer at Google, uses statistical analysis of data to help improve the company's search engine » Cellphones, Cameras, Computers and more Personal Tech » Advertise on NYTimes.com Search All NYTimes

Oyet, Alwell

113

Roadmap: Information Technology for Administrative Professionals Associate of Applied Business  

E-Print Network [OSTI]

Roadmap: Information Technology for Administrative Professionals ­ Associate of Applied Business This roadmap is a recommended semester-by-semester plan of study for this major. However, courses Minimum Total Hours Minimum Major GPA Overall GPA 61 2.000 2.000 #12;Roadmap: Information Technology

Sheridan, Scott

114

Targeted Technology Transfer to US Independents  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

Donald F. Duttlinger; E. Lance Cole

2006-09-29T23:59:59.000Z

115

NREL: Technology Transfer - Technology Partnership Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of theNews AprilTechnology

116

Refining and Extending the Business Model with Information Technology: Dell Computer Corporation  

E-Print Network [OSTI]

of Dell’s Direct Business Model Fuels Fifteenth ConsecutiveAND EXTENDING THE REFINING AND EXTENDING THE BUSINESS MODELBUSINESS MODEL CENTER FOR RESEARCH ON INFORMATION TECHNOLOGY

Kraemer, Kenneth L; Dedrick, Jason; Yamashiro, Sandra

1999-01-01T23:59:59.000Z

117

Technology Transfer at VTIP VTIP in 20 Minutes  

E-Print Network [OSTI]

Technology Transfer at VTIP VTIP in 20 Minutes What You Need to Know Virginia Tech Intellectual Properties, Inc. #12;Technology Transfer at VTIP VTIP Overview Virginia Tech Intellectual Properties, Inc;Technology Transfer at VTIP Tech Transfer · The tech transfer process typically includes: · Identifying new

Liskiewicz, Maciej

118

Technology transfer | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeignTechnology-Selection-Process SignL. PaulTechnology

119

Energy Department Announces New Grant Topics to Help Small Businesses...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and 26 new subtopics under its Small Business Innovation Research (SBIR) and Technology Transfer (STTR) programs that will help small businesses develop and deliver...

120

Browser-based Software for Technology Transfer Judith Bishop  

E-Print Network [OSTI]

1 Browser-based Software for Technology Transfer Judith Bishop Jonathan de Halleux Nikolai Tillmann Technology transfer is typically viewed as being from academia to industry but it can indeed go in either Keywords Technology transfer, browser-based software, F#, Pex4Fun INTRODUCTION Technology transfer is most

Xie, Tao

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

122

Managing the Business Continuity of Information Technology  

E-Print Network [OSTI]

the Public's Business: Continuity Planning & NYS Government As the title describes, this work deals with continuity planning for the New York State government, and it goes through its evolution over a twenty year period of continuity planning until after... to be purchased anyway after a disaster. If the building where an organization’s digital data is destroyed, even after retrieving an off-site backup of that data, they would need the hardware to retrieve the data from the backup and to use it effectively in a...

Kissell, Jeremy

2008-12-19T23:59:59.000Z

123

Technology transfer in the petrochemical industry  

SciTech Connect (OSTI)

The paper deals with the development of the Japanese petrochemical industry from the 1950s through the 1960s solely from the standpoint of the process of technology transplantation. The Japanese petrochemical industry in this period is interesting as it relates to technology transfer to Japan because: (1) It was an industry at the core of the heavy and chemical industries, which were an important pillar of Japan's industrial policy; (2) It was a new technical field with no past history; and (3) Unraveling of technology was successfully pursued, with the result that Japan became a petrochemical technology-exporting country in the 1960s.

Tanaka, M.

1994-01-01T23:59:59.000Z

124

Los Alamos National Laboratory and technology transfer  

SciTech Connect (OSTI)

From its beginning in 1943, Los Alamos National Laboratory (Los Alamos) has traditionally used science and technology to fine creative, but practical solutions to complex problems. Los Alamos National Laboratory is operated by the University of California, under contact to the Department of Energy. We are a Government Owned-contractor Operated (GOCO) facility, and a Federally-funded research and Development Center (FFRDC). At Los Alamos, our mission is to apply science and engineering capabilities to problems of national security. Recently our mission has been broadened to include technology transfer to ensure the scientific and technical solutions are available to the marketplace. We are, in staff and technical capabilities, one of the worlds largest multidisciplinary, multiprogram laboratories. We conduct extensive research in energy, nuclear safeguards and security, biomedical science, conventional defense technologies, space science, computational science, environmental protection and cleanup, materials science, and other basic sciences. Since 1980, by a series of laws and executive orders, the resources of the federal laboratories have been made increasingly available to private industry via technology transfer efforts. Los Alamos National Laboratory uses a variety of technology transfer methods including laboratory visits, cooperative research, licensing, contract research, user facility access, personnel exchanges, consulting, publications, and workshops, seminars and briefings. We also use unique approaches, such as our negotiating teams, to ensure that transfer of our developed technology takes place in an open and competitive manner. During my presentation, I will discuss the overall process and some of the mechanism that we use at Los Alamos to transfer laboratory developed technology.

Bearce, T.D.

1992-01-01T23:59:59.000Z

125

Los Alamos National Laboratory and technology transfer  

SciTech Connect (OSTI)

From its beginning in 1943, Los Alamos National Laboratory (Los Alamos) has traditionally used science and technology to fine creative, but practical solutions to complex problems. Los Alamos National Laboratory is operated by the University of California, under contact to the Department of Energy. We are a Government Owned-contractor Operated (GOCO) facility, and a Federally-funded research and Development Center (FFRDC). At Los Alamos, our mission is to apply science and engineering capabilities to problems of national security. Recently our mission has been broadened to include technology transfer to ensure the scientific and technical solutions are available to the marketplace. We are, in staff and technical capabilities, one of the worlds largest multidisciplinary, multiprogram laboratories. We conduct extensive research in energy, nuclear safeguards and security, biomedical science, conventional defense technologies, space science, computational science, environmental protection and cleanup, materials science, and other basic sciences. Since 1980, by a series of laws and executive orders, the resources of the federal laboratories have been made increasingly available to private industry via technology transfer efforts. Los Alamos National Laboratory uses a variety of technology transfer methods including laboratory visits, cooperative research, licensing, contract research, user facility access, personnel exchanges, consulting, publications, and workshops, seminars and briefings. We also use unique approaches, such as our negotiating teams, to ensure that transfer of our developed technology takes place in an open and competitive manner. During my presentation, I will discuss the overall process and some of the mechanism that we use at Los Alamos to transfer laboratory developed technology.

Bearce, T.D.

1992-05-01T23:59:59.000Z

126

NREL: Technology Transfer - Commercialization Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies TheState andPrograms

127

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New(19):4355-4364 Nidhi Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal

128

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;

de Lange, Titia

129

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal

130

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New,049,814 · US Patent 8,553,143 Nidhi Sabharwal, Ph.D. Technology Manager Technology Transfer (212) 327

131

Disruptive technology business models in cloud computing  

E-Print Network [OSTI]

Cloud computing, a term whose origins have been in existence for more than a decade, has come into fruition due to technological capabilities and marketplace demands. Cloud computing can be defined as a scalable and flexible ...

Krikos, Alexis Christopher

2010-01-01T23:59:59.000Z

132

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network [OSTI]

. Various avenues exist for transferring energy conservation technologies to industry. Briefing documents, presentations at trade meetings and con ferences, or simple diffusion by word-of-mouth are a few methods. However, when left to chance, tech... of 444 ESL-IE-83-04-68 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 TABLE 1. Current Energy Impacts of Foam Processing of Textiles BROADWOVENS AND KNITS User Site (a) Average Production...

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

133

MOT Applied Research Projects Where science, technology, and business meet  

E-Print Network [OSTI]

MOT Applied Research Projects Where science, technology, and business meet Project Details) Compensation: No charge for selected company projects Your Commitment: Involvement ranges from a few check Science Engineering Arts and Sciences Life Sciences Average age: 33 Typical work experience: 5 - 8 years

134

CIOSS Five Year Review 5. Technology Transfer  

E-Print Network [OSTI]

SST fields will be documented in a peer-reviewed paper, as will the wind climatologies of CheltonCIOSS Five Year Review 5. Technology Transfer 10-11-06 A. How are research results from and the nature of the collaboration. As an example, the collaboration between Richard Reynolds and Dudley Chelton

Kurapov, Alexander

135

Business developments of nonthermal solar technologies  

SciTech Connect (OSTI)

Information on the developments of nonthermal solar technologies is presented. The focus is on the success of wind energy conversion systems (WECS) and photovoltaics. Detailed information on the installed generating capacity, market sectors, financing sources, systems costs and warranties of WECS and photovoltaic systems is summarized. (BCS)

Smith, S.A.; Watts, R.L.; Williams, T.A.

1985-10-01T23:59:59.000Z

136

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New://newswire.rockefeller.edu/?page=engine&id=939 Nidhi Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

137

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

138

MHD Technology Transfer, Integration and Review Committee  

SciTech Connect (OSTI)

As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee's activities to date have focused primarily on the technology transfer'' aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

Not Available

1989-10-01T23:59:59.000Z

139

Technology Transfer of Computational Intelligence for Manufacturing Process Control  

E-Print Network [OSTI]

Technology Transfer of Computational Intelligence for Manufacturing Process Control Alice E. Smith applications is a large and uncertain step. This paper focuses on the technology transfer issues and solutions

Smith, Alice E.

140

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New,383,370. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

142

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.1016/j.jmb.2008.01.066 Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327

143

MHD Technology Transfer, Integration and Review Committee  

SciTech Connect (OSTI)

This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

Not Available

1992-01-01T23:59:59.000Z

144

Response to the Notice of Inquiry: Technology Transfer Practices...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Attn: Technology Transfer Questions ')lh ' ; ;09 Hra:41 Subject: Questions Concerning Technology...

145

Research and Technology Transfer Organization www.techtransfer.psu.edu  

E-Print Network [OSTI]

Research and Technology Transfer Organization www.techtransfer.psu.edu from idea to product #12;About us Research and Technology Transfer Organization from idea to product The Penn State Research and Technology Transfer Organization (RTTO) consists of four units working together to connect industry to Penn

Guiltinan, Mark

146

CERNA WORKING PAPER SERIES Innovation and international technology transfer  

E-Print Network [OSTI]

1 CERNA WORKING PAPER SERIES Innovation and international technology transfer: The case technology transfer: The case of the Chinese photovoltaic industry Arnaud de la Tour, Matthieu Glachant, Yann emphasis on the role of technology transfers and innovation. Our analysis combines a review

Paris-Sud XI, Université de

147

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www

148

Office of Technology Transfer 1 | P a g e  

E-Print Network [OSTI]

Office of Technology Transfer 1 | P a g e Updated.02.23.12_KT Instructions for submitting; Office of Technology Transfer 2 | P a g e Updated.02.23.12_KT 4 myUM Authentication's window of screen. Invention Disclosure Form #12; Office of Technology Transfer 3 | P a g e

Weber, David J.

149

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.1217207109 Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

150

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New activation. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

151

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10065 www

152

National Aeronautics and Space Administration NASA Technology Transfer Program  

E-Print Network [OSTI]

National Aeronautics and Space Administration NASA Technology Transfer Program Bringing NASA of technology transfer that NASA maximizes the benefit of the Nation's investment in cutting-edge research technology transfer has made us confident that these solutions, while originally conceived to solve NASA

Waliser, Duane E.

153

Technology Transfer David Basin and Thai Son Hoang  

E-Print Network [OSTI]

Technology Transfer David Basin and Thai Son Hoang Institute of Information Security, ETH Zurich, Switzerland Abstract. This paper presents our experience of knowledge and technology transfer within the lessons learned and what we would do differently in future technology transfer projects. Keywords

Basin, David

154

Federal Technology Transfer Data 1987-2009 Gary Anderson  

E-Print Network [OSTI]

Federal Technology Transfer Data 1987-2009 Gary Anderson Economist National Institute of Standards. Among other things, this Act explicitly incorporated technology transfer into the mission of all federal departments and agencies. More recently, the Technology Transfer Commercialization Act of 2000 revised

Perkins, Richard A.

155

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue NewRNA and antisense therapeutics Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

156

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto

de Lange, Titia

157

Technology Transfer Expansion Planned UTCA is conducting a major project  

E-Print Network [OSTI]

Technology Transfer Expansion Planned UTCA is conducting a major project to evaluate and extend its technology transfer activities (UTCA project 03217). Steven Jones and David Eckhoff of UAB are working to expand the current technology transfer program to showcase the successes of the UTCA projects. Samples

Carver, Jeffrey C.

158

SOLAP technology: Merging business intelligence with geospatial technology for interactive spatio-temporal  

E-Print Network [OSTI]

SOLAP technology: Merging business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis of data Sonia Rivest a,1 , Yvan Bédard a,, Marie-Josée Proulx a,1 , Martin Nadeau a,1 in Geospatial Databases for Decision Support, Centre for Research in Geomatics, Laval University, Quebec, Canada

159

Business Process Modeling for developing Process Oriented IT Systems Track: Business Process Management Tools and Technologies  

E-Print Network [OSTI]

Business Process Modeling for developing Process Oriented IT Systems Track: Business Process should be like. Therefore, business process modeling becomes a pre-requisite for system requirements, the paradigm of Business Process Management contrasts with traditional information system development, which

Paris-Sud XI, Université de

160

U.S. Department of Energy Announces $102 Million for Small Business...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Department's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, today's 104 selections are for Phase II work. In Phase II,...

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology.S. patent application US 2013-0064762-A1 is pending. Tari Suprapto, Ph.D. Assistant Director Technology

162

TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during FY04. Activities remained at high levels. Board and staff interaction has defined strategic thrusts to further outreach. Networking, involvement in technical activities and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database and a growing E-mail Technology Alert service are expanding PTTC's audience.

Donald F. Duttlinger; E. Lance Cole

2005-01-01T23:59:59.000Z

163

Technology Transfer Ombudsman Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary ChuAsWhatThe Technology Transfer

164

Targeted Technology Transfer to US Independents  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the period was approximately 32,000, 70% of whom were repeat attendees. Participant feedback established that 40% of them said they had applied a technology they learned of through PTTC. Central/Eastern Gulf Univ. of Alabama, LSU Center for Energy Studies 77 Eastern West Virginia University, Illinois Geological Survey, W. Michigan Univ. 99 Midcontinent University of Kansas, University of Tulsa, Okla. Geological Survey (past) 123 Rocky Mountains Colorado School of Mines 147 Texas/SE New Mexico Bureau of Economic Geology, U. of Texas at Austin 85 West Coast Conservation Committee of California O&G Producers, Univ. So. Cal. (past) 54 At the national level HQ went from an office in Houston to a virtual office in the Tulsa, Okla. area with AAPG providing any physical assets required. There are no employees, rather several full time and several part time contractors. Since inception, PTTC has produced quarterly and mailed the 16-page Network News newsletter. It highlights new advances in technology and has a circulation of 19,000. It also produces the Tech Connections Column in The American Oil & Gas Reporter, with a circulation of 13,000. On an approximate three-week frequency, the electronic Email Tech Alert goes out to 9,000 readers. The national staff also maintains a central website with information of national interest and individual sections for each of the six regions. The national organization also provides legal and accounting services, coordinates the RLO activities, exhibits at at least major national and other meetings, supports the volunteer Board as it provides strategic direction, and is working to restore the Producer Advisory Groups to bolster the regional presence. Qualitative Value: Three qualitative factors confirm PTTC's value to the domestic O&G producing industry. First, AAPG was willing to step in and rescue PTTC, believing it was of significant interest to its domestic membership and of potential value internationally. Second, through a period of turmoil and now with participant fees dramatically increased, industry participants 'keep coming back' to wo

E. Lance Cole

2009-09-30T23:59:59.000Z

165

A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)  

SciTech Connect (OSTI)

This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

Schoeling, L.G.

1993-09-01T23:59:59.000Z

166

innovati nAdvanced Heat Transfer Technologies Increase Vehicle  

E-Print Network [OSTI]

innovati nAdvanced Heat Transfer Technologies Increase Vehicle Performance and Reliability Keeping with industry to develop and demonstrate advanced heat transfer technologies such as jet impingement cooling for thermal grease and significantly enhances direct heat transfer from the electronics. A series of nozzles

167

A planning framework for transferring building energy technologies: Executive Summary  

SciTech Connect (OSTI)

Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report summarizes some of the key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (the full report is published under SERI number TP-260-3729). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes in summary these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some example technology transfer activities; and summarizes the Advisory Group's recommendations.

Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

1990-08-01T23:59:59.000Z

168

A planning framework for transferring building energy technologies  

SciTech Connect (OSTI)

Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

1990-07-01T23:59:59.000Z

169

Technology transfer -- protecting technologies during the transfer cycle (intellectual property issues)  

SciTech Connect (OSTI)

The success of technology transfer agreements depends not just on the technical work, but on how well the arrangements to protect and dispose of the intellectual properties that make up the technologies are handled. Pertinent issues that impact the protection and disposition of intellectual properties during the technology transfer process at Sandia National Laboratories, a multiprogram laboratory operated for the Department of Energy by the Martin Marietta Corporation, are discussed. Subjects addressed include the contracting mechanisms (including the Cooperative Research and Development Agreement [CRADA] and the Work-for-Others agreement), proprietary information, The Freedom of Information Act, patents and copyrights, the statement of work, Protected CRADA Information, licensing considerations, title to intellectual properties, march-in rights, and nondisclosure agreements.

Graham, G.G.

1993-12-31T23:59:59.000Z

170

Formal Methods Technology Transfer: A View from NASA  

E-Print Network [OSTI]

Formal Methods Technology Transfer: A View from NASA James L. Caldwell Flight Electronics Home Page on the World­Wide Web 1 . In this paper I remark on the technology transfer strategy and its Formal Methods Home Page on the World­Wide Web. In this paper we concentrate on aspects of technology

Caldwell, James

171

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New:1484-1488. #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology

172

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic  

E-Print Network [OSTI]

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic Technology Researchers of the Vienna University of Technology and the Medical University of Vienna have found application filed International patent application (PCT) filed Next steps · Electrophysiological testing

Szmolyan, Peter

173

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

: business administration, energy management, wind farm management, automation and controls, aircraft, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four students must talk to their advisor about transferring their courses over for WSU credit. Laboratory

174

Biofuel technology at Argonne | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-Site environmental protection --Site waste management -Site sustainability --Site pollution prevention Operations -Business diversity -Technology transfer -Procurement -Human...

175

Nuclear export and technology transfer controls  

SciTech Connect (OSTI)

A review of the U.S. implementation of nuclear export and technology transfer controls is undertaken to assess whether the U.S. controls is undertaken to assess whether the U.S. controls meet the full scope of the international commitment toward non-proliferation controls. The international non-proliferation controls have been incorporated into CoCom, the Coordinating Committee of the multinational organization established to protect the mutual interests of the participating countries in the area of strategic export controls. However, this CoCom list is classified and each participating country implements these controls pursuant to its own laws. A comparison to the non-proliferation controls promulgated by the U.K. is used to verify that the U.S. controls are at least as comprehensive as the British controls.

Hower, J.J.; Primeau, S.J. (Eagle Research Group, Inc., Arlington, VA (US))

1988-01-01T23:59:59.000Z

176

Geo energy research and development: technology transfer update  

SciTech Connect (OSTI)

Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

Traeger, R.K.; Dugan, V.L.

1983-01-01T23:59:59.000Z

177

USDOE Technology Transfer, Responses to the Notice of Inquiry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On November 26, 2008, a Notice of Inquiry regarding Questions Concerning Technology Transfer Practices at DOE Laboratories was posted for public comment. DOE received...

178

USDOE Technology Transfer, Frequently Asked Questions about Agreement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were raised in public responses to a DOE Request for Information on improving technology transfer. These concerns include requirements for advance payments, indemnification and...

179

USDOE Technology Transfer, Working with DOE Labs - Arrangements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alone, our 17 National Laboratories and 5 facilities engaged in more than 12,000 technology transfer transactions. These included more than 700 CRADAs, 2500 WFO Agreements, more...

180

Notice of Inquiry: Technology Transfer Practices at Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OFFICE OF THE PROVOST AND EXECUTIVE VICE PRESIDENT - ACADEMIC AFFAIRS OFFICE OF TECHNOLOGY TRANSFER 1111 Franklin Street, 5 th Floor Oakland, California 94607-5200 Web Site:...

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

INTERNAL POSTING - Head of Technology Transfer, Patents & Publications...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INTERNAL POSTING - Head of Technology Transfer, Patents & Publications Department: Best Practices Supervisor(s): John Delooper Staff: AM 7 Requisition Number: 1400936 The Head of...

182

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

SciTech Connect (OSTI)

This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

Kelly, K.

2009-05-01T23:59:59.000Z

183

Management of international transfer of innovative technologies in the enterprise.  

E-Print Network [OSTI]

?? The objective is to clarify the concept of technology transfer and the accompanying components to deliver them to the reader. The object of this… (more)

Trofimchuk, Olena

2012-01-01T23:59:59.000Z

184

Secretarial Policy Statement on Technology Transfer at Department...  

Broader source: Energy.gov (indexed) [DOE]

Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities Introduction This Policy Statement is designed to help guide and strengthen the Department of...

185

Transfer of hot dry rock technology  

SciTech Connect (OSTI)

The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

Smith, M.C.

1985-11-01T23:59:59.000Z

186

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Information U.S. Patent 7,323,683 (issued January 28, 2008) Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

187

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New. References Sandu, et al. 2010. J. Cell. Biol, 190:1039-52. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

188

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New://www.nature.com/tp/journal/v4/n1/abs/tp2013124a.html Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327

de Lange, Titia

189

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10065 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu Alleles of Human Kappa Opioid Receptors and Uses Thereof

190

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu A Novel Disc-Based Apparatus for High-Throughput Sample

191

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu A Novel Regulator Of Extracellular Virulence Genes

192

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu Novel Inhibitors of Thrombotic Clot Formation RU808+ RU

193

A model technology transfer program for independent operators  

SciTech Connect (OSTI)

In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

Schoeling, L.G.

1996-08-01T23:59:59.000Z

194

Technology, Government, Business, and Universities: The Innovation Ecosystem  

E-Print Network [OSTI]

The purpose of this presentation is to present an overview of the roles of the government, business enterprises,

Tang, Victor

2007-10-01T23:59:59.000Z

195

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2013 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2013 Activities Institute for Telecommunication Sciences Pursuant to the Technology Transfer and Commercialization Act This report summarizes technology transfer activities and achievements of the Department of Commerce's (DOC

196

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2012 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2012 Activities Institute for Telecommunication Sciences Pursuant to the Technology Transfer and Commercialization Act This report summarizes technology transfer activities and achievements of the Department of Commerce's (DOC

197

Abi Barrow, PhD Founding Director of the Massachusetts Technology Transfer Center  

E-Print Network [OSTI]

Abi Barrow, PhD Founding Director of the Massachusetts Technology Transfer Center Dr. Abigail Barrow is the Founding Director of the Massachusetts Technology Transfer Center (MTTC). She and accelerates technology transfer between all universities, hospitals and research institutions

Vajda, Sandor

198

EDINBURGH TECHNOLOGY TRANSFER CENTRE LIMITED GUIDE TO INFORMATION AVAILABLE THROUGH OUR PUBLICATION SCHEME  

E-Print Network [OSTI]

EDINBURGH TECHNOLOGY TRANSFER CENTRE LIMITED GUIDE TO INFORMATION AVAILABLE THROUGH OUR PUBLICATION and what it might cost. Edinburgh Technology Transfer Centre Limited ("the company") has adopted the Model Unless otherwise stated, Edinburgh Technology Transfer Centre Limited reserves copyright in all

Edinburgh, University of

199

Technology Transfer Webinar on November 12: High-Performance...  

Broader source: Energy.gov (indexed) [DOE]

DOEOE and EPRI will host a technology transfer webinar on Wednesday, November 12, 2014 from noon to 2 p.m. (ET). The purpose of this open webinar is to disseminate results and...

200

Notice of Inquiry: Technology Transfer Practices at Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electronically to GC-62@hq.doe.gov Office of the Assistant General Counsel for Technology Transfer U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 Dear...

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Questions concerning Technology Transfer Practices at DOE Labs...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

concerning Technology Transfer Practices at DOE Labs.txt From: Gary S. Selwyn gary.selwyn@apjet.com Sent: Tuesday, February 10, 2009 7:00 PM To: GC-62 Subject: Questions...

202

Small Business Technology Transfer (STTR) Programs Participating DOE Research Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite Cultural Resourcestepidum FMOSmallResearch

203

E-Print Network 3.0 - accelerating technology transfer Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technology transfer Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerating technology transfer Page: << < 1 2 3 4 5 > >> 1 BOARD OF TRUSTEES...

204

Advancing science and technology-based business Companies with roots in PNNL  

E-Print Network [OSTI]

Advancing science and technology-based business Companies with roots in PNNL These companiesFoundations(2001) · MobilityEngineeringCompany(1996) · Mohr&Associates(1983) · MundoCommunicationsNetwork (now El

205

technology offer Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network [OSTI]

technology offer Research and Transfer Support | Tanja Sovic-Gasser Favoritenstrasse 16/E0154 | A of the deposition process their surface topography can be adjusted for repellent - "easy to clean" properties-current pulse phase are major problems in industrial applications. Technology Electroplating is done at constant

Szmolyan, Peter

206

Technology Transfer The Institute could not accomplish its goals without shar-  

E-Print Network [OSTI]

Technology Transfer The Institute could not accomplish its goals without shar- ing its expertise. Technology transfer also communicates to the world who we are--raising the profile of the Institute and its report highlights some of our technology transfer activities over the past year. Technology Transfer

Minnesota, University of

207

Technology Transfer The Research Profile of the Johannes Gutenberg University Mainz  

E-Print Network [OSTI]

Science Research Technology Transfer The Research Profile of the Johannes Gutenberg University Mainz #12;#12;Science Research Technology Transfer 3 Foreword In light of the tough international Technology Transfer 38 Imprint Contents Science Research Technology Transfer 5 #12;Clear Commitment

Kaus, Boris

208

Research Projects > Research Services > Technology Transfer Cover: Electromagnetic Collapse of Metallic Cylinders  

E-Print Network [OSTI]

Research Projects > Research Services > Technology Transfer INDUSTRY GUIDE TO TECHNION #12;Cover > Research Services > Technology Transfer Produced by Technion Research and Development Foundation (TRDF Technology Transfer 25 Technion Technology Transfer (T3 ) 30 Alfred Mann Institute at the Technion (AMIT) 31

Avron, Joseph

209

VIEWS ON U.S. WATER RESEARCH AND TECHNOLOGY TRANSFER PROGRAMS  

E-Print Network [OSTI]

#12;VIEWS ON U.S. WATER RESEARCH AND TECHNOLOGY TRANSFER PROGRAMS By MAMADOU H. WATT, Director . . . . . . . . . . 18 5. Technology Transfer and Information Dissemination . . . . 20 5.1 Definition and Purpose. . . . . . . . . . . . . . . 20 5.2 The Process of Technology Transfer. . . . . . . . . 21 5.3 Products of Technology Transfer

District of Columbia, University of the

210

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network [OSTI]

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic for repellent - "easy to clean" properties ­ or vice versa for fluid retention properties as well, properties applications. Technology Electroplating is done at constant current density and structure formation is done

Szmolyan, Peter

211

Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Page 1 of 3 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture  

E-Print Network [OSTI]

Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Page 1 of 3 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Policy Number & Name: 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Approval

Yang, Eui-Hyeok

212

NREL: Technology Transfer - Commercialization Assistance Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies TheState and

213

NREL: Awards and Honors - Technology Transfer Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards and Honors(PPS) CoatingTechnology

214

Office of Technology Transfer and Innovation Partnerships, Innovative Technologies Complex, Suite 2100 Mailing Address: PO Box 6000, Binghamton, New York 13902-6000  

E-Print Network [OSTI]

Office of Technology Transfer and Innovation Partnerships, Innovative Technologies Complex, Suite Hancock Assistant Director for Licensing Binghamton University Office of Technology Transfer

Suzuki, Masatsugu

215

Incubator Center of Technology Businesses CIETEC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISIIrrigationDesert PeakIncubatorBusinesses CIETEC

216

Technology transfer: A cooperative agreement and success story  

SciTech Connect (OSTI)

This paper describes the cooperative agreement between the U.S. Department of Energy and Envirocare of Utah, Inc., wherein the former transferred macroencapsulative technology to the latter for purposes of demonstrating commercialization of treatment and disposal of 225, 000 Kg of radioactive lead stored at departmental installations.

Reno, H.W.; McNeel, K. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Armstrong, A.T. [USDOE Idaho Operations Office, Idaho Falls, ID (United States); Vance, J.K. [Envirocare of Utah, Inc., Salt Lake City, UT (UNited States)

1996-08-01T23:59:59.000Z

217

Pathways to Technology Transfer and Adoption: Achievements and Challenges (Mini-Tutorial)  

E-Print Network [OSTI]

Pathways to Technology Transfer and Adoption: Achievements and Challenges (Mini-Tutorial) Dongmei. There are some common challenges faced when pursuing technology transfer and adoption while particular challenges transfer and adoption. This mini-tutorial presents achievements and challenges of technology transfer

Xie, Tao

218

Technology transfer by CDM projects: a comparison of Brazil, China, India and Mexico  

E-Print Network [OSTI]

Technology transfer by CDM projects: a comparison of Brazil, China, India and Mexico Antoine (DechezleprĂŞtre et al., 2008), we gave a general description of technology transfers by CDM projects and we important role in facilitating international technology transfers through the CDM. International transfers

219

Fermilab | Office of Partnerships and Technology Transfer | Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMO GISMO Great

220

An Inventor's Guide:Technology Transfer at LSU Health Sciences Center -New Orleans Office of Technology Management  

E-Print Network [OSTI]

1 An Inventor's Guide:Technology Transfer at LSU Health Sciences Center - New Orleans Office://www.lsuhsc.edu/administration/academic/otm/ #12;2 A MESSAGE FROM THE DIRECTOR The `An Inventor's Guide: Technology Transfer at LSU Health Sciences Center' outlines the essential elements of technology transfer and commercialization on our campus

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

An Inventor's Guide:Technology Transfer at LSU Health Sciences Center New Orleans Office of Technology Management  

E-Print Network [OSTI]

1 An Inventor's Guide:Technology Transfer at LSU Health Sciences Center New Orleans Office://www.lsuhsc.edu/administration/academic/otm/ #12;2 A MESSAGE FROM THE DIRECTOR The `An Inventor's Guide: Technology Transfer at LSU Health Sciences Center' outlines the essential elements of technology transfer and commercialization on our campus

222

Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report  

SciTech Connect (OSTI)

Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

Brice, R.; Carton, D.; Rhyne, T. [and others] [and others

1997-06-01T23:59:59.000Z

223

Business Talks at the Technology Showcase | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout »Operations »Business Talks at

224

Analysis of the impacts of Internet-based business activities on the container shipping industry : the system dynamics modeling approach with the framework of technological evolution  

E-Print Network [OSTI]

The internet-based business (e-business) activities have become a new technological challenge to the container shipping industry (CSI) in recent years. Despite the growing importance of e-business in the CSI, little ...

Auh, Jae Hyuck, 1969-

2003-01-01T23:59:59.000Z

225

Business  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,ServicesBurning PlasmaBusiness

226

Richard Bland College Transfer Guide  

E-Print Network [OSTI]

and Technology-IDT Interdisciplinary Studies-IDS International Business-INBU International Studies-IS ItalianRichard Bland College Transfer Guide #12;Using the Transfer Guide Thank you for your interest in Old Dominion University!!! The ODU Transfer Guide is designed to assist students transferring to ODU

227

Mining Online Users' Access Records for Web Business Intelligence Faculty of Science and Technology  

E-Print Network [OSTI]

in the database when clicked. This way, data- mining can be performed on a relatively clean set of access records technologies namely Data-warehousing (that includes data-mining modules and decision support modules), Web log model for e-CRM and data-mining for business intelligence, that is tailored to meet the requirements

Fong, Chi Chiu "Simon"

228

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor)  

E-Print Network [OSTI]

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) Tradeoff manuscript, published in "Software Tools for Technology Transfer (STTT) 15, 3 (2013) 229-245" DOI : 10.1007/s

Paris-Sud XI, Université de

229

Made in China : A Norwegian Perspective on How Cultural Differences Affect Technology Transfer.  

E-Print Network [OSTI]

??In this thesis, an attempt to incorporate cross-cultural research to an innovation-oriented approach to technology transfer is made. As cultural aspects of international technology transfer… (more)

Gulliksen, Jřrgen Horn

2010-01-01T23:59:59.000Z

230

The EMDEX Project: Technology transfer and occupational measurements  

SciTech Connect (OSTI)

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order of priority were: to transfer the EMDEX technology to utilities; to develop measurement protocols and data management capabilities for large exposure data sets; and to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Field exposure data measured by an EMDEX system were collected by volunteer utility employees at 59 sites in the US and three other countries between October 1988 and September 1989. Approximately 50,000 hours of magnetic field and 23,000 hours of electric field exposure records taken at 10-second intervals were obtained, of which 70% were from Work environments. Exposures and time spent in environments have been analyzed by Primary Work Environment, by occupied environment, and by job classification. Generally, the measured fields and exposures in the Generation, Transmission, Distribution and Substation environments were higher than in other occupational environments in utilities. The Nonwork fields and exposures for workers associated with various categories were comparable. Evaluation of the project by participants indicated general satisfaction with the EMDEX system and with this approach to technology transfer. This document, Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables.

Not Available

1990-11-01T23:59:59.000Z

231

Technology Transfer Sustaining Our Legacy of Addressing National Challenges  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeignTechnology-Selection-Process Sign In About |Transfer

232

Technology Transfer Working Group (TTWG) | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration atStandardsAnalysis »Technology Transfer Working

233

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization efficiently has an impact on business economics as the focus remains on proven applicable technologies, which target cost reduction and efficiency gains.

Donald Duttlinger

2001-11-01T23:59:59.000Z

234

The EMDEX Project: Technology transfer and occupational measurements  

SciTech Connect (OSTI)

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order of priority were: (1) to transfer the EMDEX technology to utilities; (2) to develop measurement protocols and data management capabilities for large exposure data sets; and (3) to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Documentation of the EMDEX Project is contained in three volumes: Volume 1 summarizes the methods and results, and provides and assessment of project objectives; Volume 2 provides detailed descriptions of methods, procedures, protocols, materials and analyses; and Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables. 8 refs., 12 figs., 2 tabs.

Bracken, T.D.

1990-11-01T23:59:59.000Z

235

Connect, Collaborate, Commercialize There are many different opportunities for engagement and technology transfer at Georgia  

E-Print Network [OSTI]

and technology transfer at Georgia Tech. Working together we can tailor a relationship unique to your company

Garmestani, Hamid

236

Business  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBESEnergyArchaeology onEnergyAboutBusiness

237

The Sandia National Laboratories technology transfer program for physical protection technologies  

SciTech Connect (OSTI)

As the Lead Laboratory for the Department of Energy in the field of physical security, Sandia National Laboratories has had the opportunity to collect extensive amounts of information on the technologies of physical security. Over the past 15 years, the volume of this knowledge has become so extensive that Sandia is now taking steps to make this information as available as possible to the DOE community and, where possible, other government agencies and NRC licensees. Through these technology transfer efforts, there are also programs available that allow cooperative research agreements between Sandia and the private sector as well. Six different technology transfer resources are being developed and used by the Safeguards Engineering Department: (1) tech transfer manuals; (2) SAND documents; (3) safeguards libraries; (4) training courses conferences; (5) technical assistance tours; and (6) cooperative research developments agreements (CRADAs).

Green, M.; Miyoshi, D.; Dry, B.

1990-01-01T23:59:59.000Z

238

The World Wide Web and Technology Transfer at NASA Langley Research Center  

E-Print Network [OSTI]

The World Wide Web and Technology Transfer at NASA Langley Research Center Michael L. Nelson with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non allows for the implementation, evolution and integration of many technology transfer applications

Nelson, Michael L.

239

Houston, We Have a Success Story: Technology Transfer at the NASA IV&V Facility  

E-Print Network [OSTI]

Houston, We Have a Success Story: Technology Transfer at the NASA IV&V Facility Ken McGill, Wes of and technology transfer from NASA's research program in Independent Verification and Validation (IV, Verification. Keywords Technology transfer, Independent Verification and Validation, Research. 1. INTRODUCTION

Dekhtyar, Alexander

240

X. SELECTED ADMINISTRATIVE POLICIES FOR FACULTY H. Technology Transfer (Patent) Policy  

E-Print Network [OSTI]

X. SELECTED ADMINISTRATIVE POLICIES FOR FACULTY H. Technology Transfer (Patent) Policy 1. Introduction a. Relation of Technology Transfer to the Mission of the College A significant aspect available for public use and benefit. This "technology transfer" is accomplished in many ways, including

Kasman, Alex

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor)  

E-Print Network [OSTI]

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) Editorial W This marks the inaugural issue of the Springer­Verlag journal Software Tools for Technology Transfer (STTT. This aim goes hand in hand with the technology transfer support offered by the related Electronic Tool

Cleaveland, Rance

242

Trinity Technology Transfer News In recent months Creme has been working with their customers  

E-Print Network [OSTI]

Trinity Technology Transfer News April 2013 In recent months Creme has been working. Margaret Woods | Technology Transfer Manager mjwoods@tcd.ie Ms. Audrey Crosbie | Industry Liaison Manager Enterprise Ireland technology Transfer grant, 2007-2012 Creme Global, is a TCD campus company spun out

O'Mahony, Donal E.

243

Trinity Technology Transfer News TTCCDD CCaammppuuss CCoommppaannyy ttoo llaauunncchh nneeww pprroodduucctt  

E-Print Network [OSTI]

Trinity Technology Transfer News TTCCDD CCaammppuuss CCoommppaannyy ttoo llaauunncchh nneeww programmes". One of the functions of the Technology Transfer Office is to promote and foster a culture communities. All members of the TTO deliver seminars, workshops, and course modules on IP, technology transfer

O'Mahony, Donal E.

244

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2008 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2008 Activities--Institute for Telecommunication Sciences In response to the: Technology Transfer and Commercialization Act of 2000 (P.L. 106 (FY) 2008. At the Department of Commerce, technology transfer is a significant part of the mission

Perkins, Richard A.

245

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2011 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2011 Activities Pursuant to the Technology Transfer Commercialization Act of 2000 (Pub. L. 106-404) January 2012 #12;ii This page is intentionally left blank FOREWORD This report summarizes technology transfer activities

Perkins, Richard A.

246

PATENTING AND LICENSING The major thrust of the Technology Transfer Office's activity is directed towards  

E-Print Network [OSTI]

PATENTING AND LICENSING The major thrust of the Technology Transfer Office's activity that he or she may have created an invention, to promptly report it to the Technology Transfer Office. 2. Patentability Determination After the invention is reported to the Technology Transfer Office

247

Specificationbased Testing of Reactive Software: A Case Study in Technology Transfer  

E-Print Network [OSTI]

Specification­based Testing of Reactive Software: A Case Study in Technology Transfer Lalita be effective in practice. The case study illustrates that technology transfer efforts can benefit from that limit formal methods technology transfer. We also found that there is often a tension between the scope

Porter, Adam

248

A GRADUATE'S ROLE IN TECHNOLOGY TRANSFER: FROM REQUIREMENTS TO DESIGN WITH UML  

E-Print Network [OSTI]

A GRADUATE'S ROLE IN TECHNOLOGY TRANSFER: FROM REQUIREMENTS TO DESIGN WITH UML Stephen Hallinan in the discipline of software engineering and is often categorised under the umbrella of technology transfer analyse the role of a recently qualified stu- dent1 in facilitating technology transfer in the form

Gibson, J. Paul

249

februari 2008 MassMass transfer & separation technology 424302 2008transfer & separation technology 424302 2008 --APPENDIXAPPENDIX  

E-Print Network [OSTI]

Multicomponent mixturesmixtures"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna, DelftDelft University Press (2000Transfer in MulticomponentMulticomponent mixturesmixtures"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna, DelftDelft University Press (2000

Zevenhoven, Ron

250

Startup Business Plan for Educational Technology Providing Firm in India  

E-Print Network [OSTI]

markets, Indian education industry is showing some positive trends such as adoption of technology is increasing, online and correspondence courses are rising in vocational education market etc [1]. 22 Although, India is the IT powerhouse... colleges and polytechnics in each state of India [7, 8]. EasyEd considers all these colleges and polytechnics as the ultimate demand for their ITC products. According to the statistical data presented, there are total 24,517 higher education institutes...

Thakkar, Urvashi

2012-12-14T23:59:59.000Z

251

FY05 Targeted Technology Transfer to US Independents  

SciTech Connect (OSTI)

Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions, the PTTC from the start has captured and reported data that document the myriad ways its programs impact industry. Of 119 workshops in FY05 where repeat attendance was reported, 59 percent of attendees on average had attended a PTTC event previously, indicating that a majority felt they were receiving enough value to come back. It also is encouraging that, after 11 years, PTTC events continue to attract new people. The form used at workshops to get participants feedback asks for a ''yes'' or ''no'' response to the question: ''Have you used any new technologies based on knowledge gained through PTTC?'' With data now available from 611 workshops, 41 percent of respondents said, ''yes'', confirming that people are applying the information they receive at PTTC workshops. PTTC in FY04 asked RLO directors, oilfield service companies and producers in 11 areas with significant technological barriers to adding new reserves to estimate the ''PTTC Impact Factor''--that is, the percentage of the total reserves added in their areas that logically could be attributed to PTTC's efforts. Of the estimated 1,266 million barrels of oil equivalent (BOE) added in the 11 areas, participants estimated that roughly 88 million BOE had been added as a result of PTTC's techtransfer efforts. PTTC's 10 regions are the primary delivery mechanism for technology transfer. Attendance at PTTC regional activities set a record in FY05, with 8,900 individuals attending 154 workshops, lunch-and-learn events, or student training and internships. When appropriate, regional workshops incorporate R&D findings from DOE-funded projects. This year HQ began a ''Microhole Technology Integration'' Initiative with DOE to more clearly present their microhole program to producers. Often events are held cooperatively with other national organizations, regional producer associations and professional society groups. This practice leverages outreach and engenders future cooperation. Of the more than 61,000 individuals PTTC has attracted to its events since its inception, more than 15,000 have attended in the past two years. Eight-eight percent of PTTC event attendees during FY05 were from industry. The numb

Donald F. Duttlinger; E. Lance Cole

2005-11-01T23:59:59.000Z

252

EPA and the Federal Technology Transfer Act: Opportunity knocks  

SciTech Connect (OSTI)

In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

1990-12-31T23:59:59.000Z

253

Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report  

SciTech Connect (OSTI)

Over the past decade, numerous companies have been formed to commercialize research results from leading U.S. academic and research institutions. Emerging small businesses in areas such as Silicon Valley, Boston`s Route 128 corridor, and North Carolina`s Research Triangle have been especially effective in moving promising technologies from the laboratory bench to the commercial marketplace--creating new jobs and economic expansion in the process. Unfortunately, many of the U.S. national laboratories have not been major participants in this technology/commercialization activity, a result of a wide variety of factors which, until recently, acted against successful commercialization. This {open_quotes}commercialization gap{close_quotes} exists partly due to a lack, within Los Alamos in particular and the DOE in general, of in-depth expertise and experience in such business areas as new business development, securities regulation, market research and the determination of commercial potential, the identification of entrepreneurial management, marketing and distribution, and venture capital sources. The immediate consequence of these factors is the disappointingly small number of start-up companies based on technologies from Los Alamos National Laboratory that have been attempted, the modest financial return Los Alamos has received from these start-ups, and the lack of significant national recognition that Los Alamos has received for creating and commercializing these technologies.

Brice, R.; Cartron, D.; Rhyne, T.; Schulze, M.; Welty, L.

1997-06-01T23:59:59.000Z

254

Cast Metals Coalition Technology Transfer and Program Management Final Report  

SciTech Connect (OSTI)

The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.

Gwyn, Mike

2009-03-31T23:59:59.000Z

255

Technology transfer package on seismic base isolation - Volume III  

SciTech Connect (OSTI)

This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

NONE

1995-02-14T23:59:59.000Z

256

OSWER source book: Training and technology-transfer resources  

SciTech Connect (OSTI)

The OSWER Source Book consolidates information on the numerous training and other technology transfer resources sponsored by EPA's Office of Solid Waste and Emergency Response (OSWER) and others. The OSWER Source Book provides descriptions of training courses, videos and publications of interest to Federal and State personnel working in solid and hazardous waste management. The OSWER Source Book should be especially useful to Federal personnel working in programs under authorities of the RCRA, CERCLA, SARA, or other similar Federal environmental management and restoration programs.

Not Available

1991-05-01T23:59:59.000Z

257

NREL: Technology Transfer - The Quest for Inexpensive Silicon Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology TransferThe Quest

258

NREL: Technology Transfer - The Quest for Inexpensive Silicon Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology TransferThe

259

Technology Transfer Office (TTO) Promote and facilitate the transfer of UC San Diego innovations for the benefit of the University community and the public.  

E-Print Network [OSTI]

Technology Transfer Office (TTO) MISSION Promote and facilitate the transfer of UC San Diego San Diego established its Technology Transfer Office (TTO) to promote and facilitate this process TECHNOLOGY TRANSFER RESULTS FY2000 ­ FY2007 Fiscal Year 2000 2001 2002 2003 2004 2005 2006 2007 Licenses 47

Fainman, Yeshaiahu

260

Business Name:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Name: AECOM Technology Services, Inc. Business Size: Large Point of Contact: Frank Coffman Email: frank.coffman@aecom.com Phone Number: 714-504-0400 Business Name: AppleOne...

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Refining and Extending the Business Model with Information Technology: Dell Computer Corporation  

E-Print Network [OSTI]

REFINING ANDEXTENDING THE REFINING AND EXTENDING THE BUSINESS MODELfinal version 5-99.doc REFINING AND EXTENDING THE BUSINESS

Kraemer, Kenneth L; Dedrick, Jason; Yamashiro, Sandra

1999-01-01T23:59:59.000Z

262

Web 2.0 Wiki technology : enabling technologies, community behaviors, and successful business techniques and models  

E-Print Network [OSTI]

Many technologies fall under the umbrella of what is commonly known as "Web 2.0," including the Wiki, a software product which allows multiple users to review and edit documents online. Like all Web 2.0 technologies, Wikis ...

Davidi, Ilana

2007-01-01T23:59:59.000Z

263

Technology transfer significance of the International Safeguards Project Office  

SciTech Connect (OSTI)

The safeguards implemented by the International Atomic Energy Agency (IAEA) are of major importance to the non-proliferation objectives of the United States of America and other nations of the world. Assurance of safeguards effectiveness is mandatory to continued peaceful use of nuclear power. To enhance the ability of the IAEA to apply safeguards effectively, and to ensure that the IAEA does not lack technical assistance in critical areas, the US Congress has made available a special authorization for a Program for Technical Assistance to IAEA Safeguards (POTAS). This substantial program of technology transfer was initiated in 1976. The United States Departments of State and Energy, the Arms control and Disarmament Agency and the Nuclear Regulatory Commission have each accepted responsibility for parts of the Program for Technical Assistance to IAEA Safeguards. Funding is provided by state through the Foreign Assistance Act. This report provides a discussion of this program.

Marcuse, W.; Waligura, A.J.

1988-06-01T23:59:59.000Z

264

Analysis and technology transfer report, 1989 and 1990  

SciTech Connect (OSTI)

The buildings sector used 29.6 quadrillion Btus (quads) of energy in 1989, or 36 percent of the total primary energy consumed in the United States. The major uses are for space heating and cooling, water heating, refrigeration, and lighting. Electricity is the dominant fuel, followed by natural gas, petroleum, and other fuels. Although there were dramatic improvements in energy efficiency in this sector from 1975 to 1985, in recent years energy use has grown rapidly. The large growth expected in commercial building floor space and in residential units means that total building-sector energy consumption could increase dramatically by the year 2030. The mission of the US DOE's Office of Building Technologies (OBT) is to lead a national program supporting private sector efforts to improve the energy efficiency of the nation's buildings and to increase their utilization of renewable energy sources. The Office is also responsible for energy efficiency planning and management for Federal buildings as well as buildings-related associated information, financial incentives, and regulatory functions that are determined to be appropriate for the Federal government. To accomplish its goals, OBT plans and conducts research and development to make technologies available and provides information on their effectiveness. The selection and management of OBT research activities requires an understanding of where and how energy is used within the buildings sectors, how energy use is expected to change in the future, and the potential impact of new and emerging technologies on energy use. Analysis activities serve to collect energy use information, provide the analysis necessary to apply this information to research and development planning, and develop analysis tools which the program uses to set priorities for research projects. This report summarizes analysis and technology transfer activities undertaken by OBT during 1989 and 1990. 101 refs., 19 figs., 9 tabs.

Not Available

1991-08-01T23:59:59.000Z

265

Can sustainable development be facilitated through regime-based preventative technology transfer?.  

E-Print Network [OSTI]

??This International Relations study examines the relationship between sustainable development and preventative technology transfer. Specifically, the focus is on whether preventative environmental regimes (facilitating organisations)… (more)

Valentin, Jorg D.

2010-01-01T23:59:59.000Z

266

Technology transfer and U.S. national security policy| The Joint Strike Fighter.  

E-Print Network [OSTI]

?? This is a dissertation about United States international technology transfer policy relating to the Department of Defense (DOD) F-35 Joint Strike Fighter (JSF) weapons… (more)

Krueger, Richard D.

2010-01-01T23:59:59.000Z

267

An extended model for measuring the technology transfer potentials at the industrial level.  

E-Print Network [OSTI]

??Technology contributes to the development of society and economy of the nation through the invention, diffusion, transfer, and application of new knowledge. In the emerging… (more)

Pachamuthu, Sathayanarayanan

2011-01-01T23:59:59.000Z

268

business.rutgers.edu Rutgers Business School  

E-Print Network [OSTI]

business.rutgers.edu Rutgers Business School #12;The mission of Rutgers Business School - Newark economy by integrating science and technology into business education and research. Talented students to make positive contributions to the economy of New Jersey and the world. Rutgers Business School

Lin, Xiaodong

269

Technology Innovation Honoring Students, Faculty, and Staff  

E-Print Network [OSTI]

2012 Technology Innovation Awards Honoring Students, Faculty, and Staff for their Dedication Portland, Oregon Sponsored by: #12;2012 Technology Innovation Awards WELCOME & AWARDS REMARKS Andrew R.O. Watson, PhD, CLP Interim Director, Technology Transfer Technology Transfer and Business Development

Chapman, Michael S.

270

Information systems and technology transfer programs on geothermal energy and other renewable sources of energy  

SciTech Connect (OSTI)

In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

Lippmann, M.J.; Antunez, E.

1996-01-01T23:59:59.000Z

271

Information systems and technology transfer programs on geothermal energy and other renewable sources of energy  

SciTech Connect (OSTI)

In order to remain competitive it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them is also given.

Lippmann, Marcelo J.; Antunez, Emilio u.

1996-01-24T23:59:59.000Z

272

New Mexico Small Business  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Business Assistance Program (NMSBA) helps small businesses in New Mexico access cutting-edge technologies, solve technical issues, and gain knowledge from technical experts...

273

Inspection of selected issues regarding the Department`s Enhanced Technology Transfer Program  

SciTech Connect (OSTI)

An inspection was conducted to review the Department of Energy`s Enhanced Technology Transfer Program, now referred to as the Department`s Technology Transfer Program, in order to improve the effectiveness of the program and to identify issues that require management attention. Specifically, selected Departmental and Laboratory plans, policies, and procedures for implementing technology transfer activities were reviewed. Legislation, Department directives, Management and Operating contract clauses, and selected Cooperative Research and Development Agreements/Joint Work Statements were also collected and reviewed. The inspection identified four issues for management`s attention: (1) there is a lack of uniform budget guidelines for the Department`s technology transfer activities, (2) there is a lack of objectives for the Department`s Technology Transfer Program, (3) the budget and accounting information submitted to the Office of Management and Budget regarding the Department`s technology transfer activities is incomplete, and (4) there is a Department`s Technology Transfer Program. The report includes specific recommendations to address these matters.

Not Available

1994-07-01T23:59:59.000Z

274

Int. J. Technology Transfer and Commercialisation, Vol. 8, No. 1, 2009 51 Copyright 2009 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

Int. J. Technology Transfer and Commercialisation, Vol. 8, No. 1, 2009 51 Copyright © 2009. Technology Transfer and Commercialisation, Vol. 8, No. 1, pp.51­87. Biographical notes: Kevin W. Boyack spent

275

UNLOCKING THE TREASURE CHEST OF LEVEL-II RADAR DATA: LESSONS IN TECHNOLOGY TRANSFER POLICY FOR THE ATMOSPHERIC SCIENCES  

E-Print Network [OSTI]

P 1.6 UNLOCKING THE TREASURE CHEST OF LEVEL-II RADAR DATA: LESSONS IN TECHNOLOGY TRANSFER POLICY This analysis of Level-II radar data presents a great success story about partnerships in technology transfer

276

A study on international technology transfer critical factors in Hong Kong/Pearl River Delta manufacturing industries.  

E-Print Network [OSTI]

???International Technology Transfer (ITT) has been increasingly an important issue in technology diffusion, and has accumulated a vast body of research over past years. ITT… (more)

Dong, Qiuling (???)

2008-01-01T23:59:59.000Z

277

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu University of Memphis Licensing Opportunity  

E-Print Network [OSTI]

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu University over time #12;Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Why it's Better Aerogel

Dasgupta, Dipankar

278

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Wireless Compact Radar  

E-Print Network [OSTI]

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Wireless 1: Ramp signals obtained from Target #12;Kevin P. Boggs || Office of Technology Transfer || 901.242 m. #12;Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs

Dasgupta, Dipankar

279

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu AutoWitness  

E-Print Network [OSTI]

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Auto and lifelong traumatic experience for its victims. #12;Kevin P. Boggs || Office of Technology Transfer || 901://www.popsci.com/science/article/2010-10/brilliant-10-santosh-kumar-sensor-guru #12;Kevin P. Boggs || Office of Technology Transfer

Dasgupta, Dipankar

280

Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya  

E-Print Network [OSTI]

Time period Pre 07/2008 Lighting Technology (Nightly Cost,2 Self-reported Impacts of LED Lighting Technology Comparedto Fuel-based Lighting on Night Market Business Prosperity

Johnstone, Peter

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

International technology transfer for climate change mitigation and the cases of Russia and China  

SciTech Connect (OSTI)

The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs.

Martinot, E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group] [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; [Stockholm Environment Inst., Boston, MA (United States); Sinton, J.E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group] [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; [Lawrence Berkeley National Lab., CA (United States). International Energy Studies Group; Haddad, B.M. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States)

1997-12-31T23:59:59.000Z

282

Chapter 212: Role of Standardization in Technology Development, Transfer, Diffusion and Management  

E-Print Network [OSTI]

Chapter 212: Role of Standardization in Technology Development, Transfer, Diffusion and Management by John W. Bagby Abstract Since the industrial revolution, standardization has become a hybrid. Standards are increasingly developed outside government regulatory venues in consortia and other forms

Bagby, John

283

EA-1175: Proposed Title Transfer of East Tennessee Technology Park Land and Facilities, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to transfer the title of unneeded DOE real property located at the U.S. Department of Energy East Tennessee Technology Park (ETTP) in...

284

The role of immigrant scientists and entrepreneurs in international technology transfer  

E-Print Network [OSTI]

This thesis characterizes the important role of US ethnic scientists and entrepreneurs for international technology diffusion. Chapter 1 studies the transfer of tacit knowledge regarding new innovations through ethnic ...

Kerr, William Robert, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

285

Energy Technology Transfer for Industry Through the Texas Energy Extension Service  

E-Print Network [OSTI]

ENERGY TECHNOLOGY TRANSFER FOR INDUSTRY THROUGH THE TEXAS ENERGY EXTENSION SERVICE Stephen Riter Texas Energy Extension Service. Texas A&M University College Station, Texas ABSTRACT The Texas Energy Extension Service (EES) is one of ten...

Riter, S.

1979-01-01T23:59:59.000Z

286

Closing the loop : improving technology transfer by learning from the past  

E-Print Network [OSTI]

Technology transfer is a significant challenge within the highly regulated pharmaceutical industry. While much focus is put on the logistics and strategy of the process, less attention has been paid to how to change the ...

Witinski, Paul (Paul F.)

2010-01-01T23:59:59.000Z

287

Demonstration: The Key to Technology Transfer in the Field of Energy Conservation in the UK  

E-Print Network [OSTI]

Technology transfer has been one of the most intractable problems faced on a worldwide basis. The problem is particularly acute in the field of energy efficiency because none of the 3 major parties involved, the researcher, the manufacturer...

Carter, D. E. F.; Lawrence, J. E.

1983-01-01T23:59:59.000Z

288

Partnerships for Clean Development and Climate: Business and Technology Cooperation Benefits  

E-Print Network [OSTI]

on renewable energy and clean coal development, is a coreentrepreneurs in India. The Clean Coal Business Development

Sathaye, Jayant A.; Price, Lynn; Kumar, Satish; de la Rue du Can, Stephane; Warfield, Corina; Padmanabhan, S.

2006-01-01T23:59:59.000Z

289

Transfer of Air Force technical procurement bid set data to small businesses, using CALS and EDI: Test report  

SciTech Connect (OSTI)

This report documents a test transfer of three Air Force technical procurement bid sets to one large and twelve small businesses, using the Department of Defense (DoD) Continuous Acquisition and Life-cycle Support (CALS) and ANSI ASC X12 Electronic Data Interchange (EDI) standards. The main goal of the test was to evaluate the effectiveness of using CALS technical data within the context of the DoD`s EDI-based standard approach to electronic commerce in procurement, with particular emphasis on receipt and use of the data by small contractors. Air Force procurement data was provided by the Sacramento Air Logistics Center at McClellan Air Force Base; the manufacturing participants were selected from among McClellan`s ``Blue Ribbon`` contractors, located throughout the US. The test was sponsored by the Air Force CALS Test Network, headquartered at Wright-Patterson Air Force Base. The test successfully demonstrated the technical feasibility of including CALS MIL-R-28002 (Raster) engineering data in an EDI Specification/Technical Information transaction set (ANSI ASC X12 841) when issuing electronic requests for quotation to small businesses. In many cases, the data was complete enough for the contractor participant to feel comfortable generating a quote. Lessons learned from the test are being fed back to the CALS and EDI standards organizations, and to future implementors of CALS-EDI based acquisition or contracting systems, which require the transfer of technical information, such as engineering data, manufacturing process data, quality test data, and other product or process data, in the form of a CALS or other digital datafile.

NONE

1994-08-15T23:59:59.000Z

290

USDOE Technology Transfer, Working with Department of Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cutting Edge Research DOE National Laboratories and facilities have expertise in many areas that support key national missions and are also critical to major high-technology...

291

ORNL technology transfer continues strong upward trend | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

help utilities achieve deeper and broader energy savings from their energy efficiency and demand-response programs. Dry Surface Technologies of Guthrie, Okla, licensed Barrian, a...

292

Oil and gas technology transfer activities and potential in eight major producing states. Volume 1  

SciTech Connect (OSTI)

In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

Not Available

1993-07-01T23:59:59.000Z

293

TWO SBIR-STTR GRANTS SELECTED FOR AWARD FOR SSL TECHNOLOGY (FY15 PHASE II RELEASE 1)  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Office of Science has selected for award two Small Business Innovation Research (SBIR)-Small Business Technology Transfer (STTR) proposals targeting advances in solid...

294

FOUR SBIR-STTR GRANTS SELECTED FOR AWARD FOR SSL TECHNOLOGY (FY15 PHASE I RELEASE 1)  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Office of Science has selected for award four Small Business Innovation Research (SBIR)-Small Business Technology Transfer (STTR) proposals targeting advances in solid...

295

Transfer Information Sheet for SUNY Canton College of Technology  

E-Print Network [OSTI]

elective 3 Bsad 340 Bus Communications Bus elective 3 Science elective Lab Science recommended GenEd"L" 3-4 Humanities elective Cinema, theater, art, music, etc recommended GenEd "A" 3 Semester 4 Bus elective Bsad 310 Science elective Any Elective 3-4 GenEd Elective Any GenEd 3 Total transfer credits 57-61 Recommended

Suzuki, Masatsugu

296

The Impact of Human Capital and Organizational Characteristics on the Business Value of Information Technology.  

E-Print Network [OSTI]

??In order for a company to operate effectively within today’s marketplace, an information system (IS) represents a necessary business asset in terms of efficiency and… (more)

Fraiha, Shady

2011-01-01T23:59:59.000Z

297

U.S.-MEXICO TECHNOLOGY TRANSFER; BILATERAL TECHNICAL EXCHANGES FOR SUSTAINABLE ECONOMIC GROWTH IN THE BORDER REGION  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) maintains a strong commitment to transfer the results of its science and technology programs to the private sector. The intent is to apply innovative and sometimes advanced technologies to address needs while simultaneously stimulating new commercial business opportunities. Such focused “technology transfer” was evident in the late 1990s as the results of DOE investments in environmental management technology development led to new tools for characterizing and remediating contaminated sites as well as handling and minimizing the generation of hazardous wastes. The Department’s Office of Environmental Management was attempting to reduce the cost, accelerate the schedule, and improve the efficacy of clean-up efforts in the nuclear weapons complex. It recognized that resulting technologies had broader world market applications and that their commercialization would further reduce costs and facilitate deployment of improved technology at DOE sites. DOE’s Albuquerque Operations Office (now part of the National Nuclear Security Administration) began in 1995 to build the foundation for a technology exchange program with Mexico. Initial sponsorship for this work was provided by the Department’s Office of Environmental Management. As part of this effort, Applied Sciences Laboratory, Inc. (ASL) was contracted by the DOE Albuquerque office to identify Mexico’s priority environmental management needs, identify and evaluate DOE-sponsored technologies as potential solutions for those needs, and coordinate these opportunities with decision makers from Mexico’s federal government. That work led to an improved understanding of many key environmental challenges that Mexico faces and the many opportunities to apply DOE’s technologies to help resolve them. The above results constituted, in large part, the foundation for an initial DOE-funded program to apply the Department’s technology base to help address some of Mexico’s challenging environmental issues. The results also brought focus to the potential contributions that DOE’s science and technology could make for solving the many difficult, multi-generational problems faced by hundreds of bi-national communities along the 2,000-mile shared border of the United States and Mexico. Efforts to address these U.S.-Mexico border issues were initially sponsored by the DOE’s Albuquerque and Carlsbad offices. In subsequent years, the U.S. Congress directed appropriations to DOE’s Carlsbad office to address public health, safety and security issues prevalent within U.S.-Mexico border communities. With ASL’s assistance, DOE’s Albuquerque office developed contacts and formed partnerships with interested U.S and Mexican government, academic, and commercial organizations. Border industries, industrial effluents, and public health conditions were evaluated and documented. Relevant technologies were then matched to environmental problem sets along the border. Several technologies that were identified and subsequently supported by this effort are now operational in a number of U.S.-Mexico border communities, several communities within Mexico’s interior states, and in other parts of Latin America. As a result, some serious public health threats within these communities caused by exposure to toxic airborne pollutants have been reduced. During this time, DOE’s Carlsbad office hosted a bilateral conference to establish a cross-border consensus on what should be done on the basis of these earlier investigative efforts. Participating border region stakeholders set an agenda for technical collaborations. This agenda was supported by several Members of Congress who provided appropriations and directed DOE’s Carlsbad office to initiate technology demonstration projects. During the following two years, more than 12 private-sector and DOE-sponsored technologies were demonstrated in partnership with numerous border community stakeholders. All technologies were well received and their effectiveness at addressing health, safety and security issues w

Jimenez, Richard, D., Dr.

2007-10-01T23:59:59.000Z

298

Symbol Keyword My Portfolio CNN.comHome Business News Markets Personal Finance Real Estate Technology Small Business Luxury Fortune  

E-Print Network [OSTI]

Cabellon Northrop Grumman Electronic Systems (410) 765-7192 paul.cabellon@ngc.com Top Stories 'It's going Przybysz, a senior consulting engineer at Northrop Grumman. "Carbon nanotube technology changes the way we look at power requirements for military sensor systems because they perform equally with other

Rogers, John A.

299

Transferring building energy technologies by linking government and private-sector programs  

SciTech Connect (OSTI)

The US Department of Energy's Office of Building Technologies (OBT) may wish to use existing networks and infrastructures wherever possible to transfer energy-efficiency technologies for buildings. The advantages of relying on already existing networks are numerous. These networks have in place mechanisms for reaching audiences interested in energy-efficiency technologies in buildings. Because staffs in trade and professional organizations and in state and local programs have responsibilities for brokering information for their members or client organizations, they are open to opportunities to improve their performance in information transfer. OBT, as an entity with primarily R D functions, is, by cooperating with other programs, spared the necessity of developing an extensive technology transfer program of its own, thus reinventing the wheel.'' Instead, OBT can minimize its investment in technology transfer by relying extensively on programs and networks already in place. OBT can work carefully with staff in other organizations to support and facilitate their efforts at information transfer and getting energy-efficiency tools and technologies into actual use. Consequently, representatives of some 22 programs and organizations were contacted, and face-to-face conversations held, to explore what the potential might be for transferring technology by linking with OBT. The briefs included in this document were derived from the discussions, the newly published Directory of Energy Efficiency Information Services for the Residential and Commercial Sectors, and other sources provided by respondents. Each brief has been sent to persons contacted for their review and comment one or more times, and each has been revised to reflect the review comments.

Farhar, B.C.

1990-07-01T23:59:59.000Z

300

November 2010 Features | News | Media | Events Business, Science, and Technology New alumni group strengthens  

E-Print Network [OSTI]

and integrated a comprehensive financial management system that improved the quality and timeliness of business Homeowners Association. After earning a bachelor's degree in chemical engineering and an MBA from Rutgers Communications and Marketing contact info Top news stories: 1. Rutgers Business School offers One-Year MBA track

Lin, Xiaodong

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Technology transfer, resources import, and economic growth of newly industrializing countries  

SciTech Connect (OSTI)

The general characteristics of developing economies are poor resources endowments and relatively backward technologies. These characteristics are considered to be obstacles to economic growth. Yet, despite embodying these characteristics, Hong Kong, Korea, Singapore, and Taiwan have grown rapidly in the past two decades. Their phenomenal growth is attributed to rapid export expansion which serves as a vehicle in securing the financing of resources import and technology transfer. The important role of export expansion was investigated in models of economic growth and international trade. The models generally fall into two classes. The first class is solely concerned with the importation of resources while the second class emphasizes transfer of technology. This dissertation presents a new class of model combining the two existing classes. In the new model, resources are being introduced into the technology transfer model developed by Feldstein and Hartman, Berglas and Jones, and Khang. Thus, the new model contains two types of imports instead of one. The two imports are advanced capital, which embodies advanced technology, and resources. The new model explains fully the phenomenal growth of the four Asian NICs by demonstrating that rapid economic growth requires massive technology transfer and the alleviation of resource constraints.

Cheung, Y.H.

1984-01-01T23:59:59.000Z

302

College of Business College of Business  

E-Print Network [OSTI]

and Innovation Management Organization and Innovation Management--Business Education Real Estate UNDERGRADUATE, finance, marketing, organization and innovation management, and real estate to undergraduates. The skills orientation, technology, business processes, and corporate social responsibility. Lower-division work provides

Stephens, Graeme L.

303

LANL Transfers Glowing Bio Technology to Sandia Biotech  

ScienceCinema (OSTI)

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.

Nakhla, Tony;

2014-06-25T23:59:59.000Z

304

LANL Transfers Glowing Bio Technology to Sandia Biotech  

SciTech Connect (OSTI)

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.

Nakhla, Tony; ,

2012-05-21T23:59:59.000Z

305

Technology_Transfer_Memo.pdf | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration atStandardsAnalysis »Technology Transferto

306

Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

2012-11-15T23:59:59.000Z

307

Technology transfer effectiveness through international joint ventures (IJVs) to their component suppliers: a study of the automotive industry of Pakistan.  

E-Print Network [OSTI]

??This thesis investigates the important topic of technology transfer effectiveness from international joint ventures (IJVs) established in the automotive industry of Pakistan to their local… (more)

Khan, Sardar Zaheer Ahmad

2011-01-01T23:59:59.000Z

308

The Influence of Inward Technology Transfers and International Entrepreneurial Orientation on the Export Performance of Egyptian SMEs.  

E-Print Network [OSTI]

??This study examines the influence of inward technology transfers and international entrepreneurial orientation (IEO) on the export performance of small and medium-sized firms (SMEs). IEO… (more)

Gaber, Heba

2013-01-01T23:59:59.000Z

309

LANL Transfers Glowing Bio Technology to Sandia Biotech  

SciTech Connect (OSTI)

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

Rorick, Kevin

2012-01-01T23:59:59.000Z

310

Fermilab | Office of Partnerships and Technology Transfer | Fermilab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMO GISMO Great Ideas

311

Fermilab | Office of Partnerships and Technology Transfer | Work for Others  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMO GISMO

312

Technology Transfer: Triggering New Global Markets and Job Growth |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary ChuAsWhatThe Technology

313

LANL Transfers Glowing Bio Technology to Sandia Biotech  

ScienceCinema (OSTI)

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

Rorick, Kevin

2012-08-02T23:59:59.000Z

314

DOE Announces Small Business Awards at its Annual Small Business...  

Broader source: Energy.gov (indexed) [DOE]

California Small Business Innovative Research-Small Business of the Year Recipient: Deep Web Technologies, Inc. President and CTO: Abe Lederman Santa Fe, New Mexico Small...

315

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

Donald Duttlinger

1999-12-01T23:59:59.000Z

316

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

Unknown

1999-10-31T23:59:59.000Z

317

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

Unknown

2000-05-01T23:59:59.000Z

318

Business model transformation for the international division of a fortune 100 high technology company  

E-Print Network [OSTI]

Raytheon Canada in Waterloo, Ontario offers a very interesting but challenging research case. As one of the international divisions of Raytheon Corporation, the company has a business model similar to its parent company. ...

Mokhtari Dizaji, Reza, 1968-

2008-01-01T23:59:59.000Z

319

technology offer Vienna University of Technology/ Research and Transfer Support | Hildegard Sieberth  

E-Print Network [OSTI]

developed. The liquid precursors can be either cured in vivo or printed by additive manufacturing technology be tuned, in-vivo curing or high resolution additive manufacturing is not possible Technology A new

Szmolyan, Peter

320

Cross-border transfer of climate change mitigation technologies : the case of wind energy from Denmark and Germany to India  

E-Print Network [OSTI]

This research investigated the causal factors and processes of international development and diffusion of wind energy technology by examining private sector cross-border technology transfer from Denmark and Germany to India ...

Mizuno, Emi, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Oswer source book. Volume 1. Training and technology transfer resources, 1992-1993  

SciTech Connect (OSTI)

The OSWER Source Book provides a consolidated listing of training and technology transfer resources of potential interest to U.S. Environmental Protection Agency (EPA), State, and local government personnel concerned with solid and hazardous waste management. Volume I contains information on OSWER training (including the CERCLA Education Center), publications, videotapes, information systems and software, and support programs.

Not Available

1992-09-01T23:59:59.000Z

322

Small Business Innovation / Technology Transfer | U.S. DOE Office of  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960Real PropertyScience»Siegfried S. Hecker,Science

323

April 2010 News | Media | Events Business, Science, and Technology Rutgers Day 2010  

E-Print Network [OSTI]

experience of energy giant's operations Partnership between pharmaceutical industry and RBS ensures relevant-Year Anniversary Celebration of the Pharmaceutical MBA Program April 26, 2010 Rutgers Business School's Pharmaceutical MBA Program will be recognizing its ten year partnership with seven pharmaceutical sponsors

Lin, Xiaodong

324

Centre for Advanced Learning Technologies (CALT) European Institute of Business Administration (INSEAD)  

E-Print Network [OSTI]

of learning such as e-Learning communities and experiential learning (business simulations) rather than just: Intelligent Learning Agents (InCAs) and Advanced Simulations of Organisational Dynamics. Intelligent Learning- oriented (L- InCA). Advanced Simulations of Organisational Dynamics are experiential learning systems

Corran, Ruth

325

A METHOD FOR REWRITING LEGACY SYSTEMS USING BUSINESS PROCESS MANAGEMENT TECHNOLOGY  

E-Print Network [OSTI]

Process Management (BPM). The use of BPM for migrating legacy systems facilitates the monitoring, in this paper we present a method for rewriting legacy systems based on Busi- ness Process Management (BPM). During the last years we have seen an increasing adoption of BPM tools by enterprises as well as emerging

Ulm, Universität

326

MHD Technology Transfer, Integration and Review Committee. Second semiannual status report, July 1988--March 1989  

SciTech Connect (OSTI)

As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee`s activities to date have focused primarily on the ``technology transfer`` aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

Not Available

1989-10-01T23:59:59.000Z

327

TECHNOLOGY TRANSFER  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClient update resolve008 HighDepartmentTopic Groups

328

Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How To License ORNL

329

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

Unknown

2003-04-30T23:59:59.000Z

330

New media technology and new business models: Speculations on ‘post-advertising’ paradigms  

E-Print Network [OSTI]

This article offers some speculations on the challenges that new media technology poses to the concept and practice of advertising, particularly the impact of open-content technology. It canvasses a number of globalizing ...

Wang, Jing

331

Oswer source book. Volume 1. Training and technology transfer resources, 1992-1993  

SciTech Connect (OSTI)

Volumes I and II of The OSWER Source Book provide information on the many training courses, publications, videotapes, and information systems and software available to support EPA staff, State and local agencies, and others involved in managing the Nation's hazardous and solid waste programs. The Office of Solid Waste and Emergency Response's (OSWER) Technology Innovation Office (TIO) has compiled listings of the most significant training and technology transfer resources available to assist individuals with the responsibility for accomplishing OSWER's mission. Volume I of The Source Book contains listings of OSWER and other office training courses, publications, videotapes, information systems and software, and support programs devoted to hazardous and solid waste issues.

Not Available

1992-09-01T23:59:59.000Z

332

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

Unknown

2000-11-01T23:59:59.000Z

333

Water Power Program: Marine and Hydrokinetic Technologies  

Broader source: Energy.gov [DOE]

Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

334

Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer  

SciTech Connect (OSTI)

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

Burn, G. (comp.)

1990-07-01T23:59:59.000Z

335

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network [OSTI]

microorganisms Halophiles | recyclable waste | carotenoids | recombinant products | nonsterile process Halophilic concentrations. Industrial waste streams often contain diverse organic matter, which can be recovered to valuable are often rich in organic carbon. Disposal or recycling is then complex and expensive. The novel technology

Szmolyan, Peter

336

The EMDEX (Electric and Magnetic Field Digital Exposure) Project: Technology transfer and occupational measurements  

SciTech Connect (OSTI)

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order to priority were: (1) to transfer the EMDEX technology to utilities; (2) to develop measurement protocols and data management capabilities for large exposure data sets; and (3) to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Documentation of the EMDEX Project is contained in three volumes: Volume 1 summarizes the methods and results, and provides an assessment of project objectives; Volume 2 provides detailed descriptions of methods, procedures, protocols, materials and analyses, and Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables. 12 refs., 27 figs., 23 tabs.

Not Available

1990-11-01T23:59:59.000Z

337

Technology transfer support services to the Carbon Dioxide Research Division, US Department of Energy  

SciTech Connect (OSTI)

The US Department of Energy (DOE) serves as the lead Federal agency with respect to atmospheric carbon dioxide (CO{sub 2}) and the greenhouse effect.'' Within DOE, the Carbon Dioxide Research Division (CDRD) has been responsible for leading the research effort investigating atmospheric CO{sub 2}, global warming, and other aspects of the greenhouse effect. Critical to CDRD's endeavors is accurate, effective communication of research findings -- not only to scientists, but to policymakers and the general public as well. The past three-and-a-half years, Walcoff Associates, Inc., (Walcoff) has supported CDRD in meeting this technology transfer challenge. Walcoff has drawn upon a wide range of technical and professional skills to support the CDRD in its technology transfer services. Underlying all tasks has been the need to communicate highly complex, information across scientific, political and economic disciplines. During the three and a half year contract period, Walcoff has successfully provided support to the CDRD to enhance its technology transfer resources and accomplishments. 5 figs., 1 tab.

Not Available

1990-01-13T23:59:59.000Z

338

EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends  

SciTech Connect (OSTI)

This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University. The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared toward a safer, greener and more connected driving. Moreover, it draws from and adds to Dr. Andrew Brown Jr.'s SAE books 'Active Safety and the Mobility Industry', 'Connectivity and Mobility Industry', and 'Green Technologies and the Mobility Industry'. Magnetic resonant coupling is the foundation of modern wireless power transfer. Its efficiency can be controlled through impedance matching and magnetic field shaping. Current implementations use one or both of these control methods and enable both stationary and mobile charging with typical efficiency within the 80% and 90% range for an air gap up to 25 cm.

Miller, John M [ORNL; Rakouth, Heri [Delphi Automotive Systems, USA; Suh, In-Soo [Korea Advanced Institute of Science and Technology

2012-01-01T23:59:59.000Z

339

The following national Sea Grant aquaculture extension and technology transfer projects were awarded in 2012 (final year of three-year projects from a 2010 competition)  

E-Print Network [OSTI]

The following national Sea Grant aquaculture extension and technology transfer projects were Oregon Sea Grant Aquaculture Extension and Technology Transfer $99,906 Puerto Rico Sea Grant Chaparro extension and technology transfer in Washington and the Pacific Northwest $100,000 Wisconsin Sea Grant

340

Conflict of Interest Relating Specifically to Technology Transfer Agreements The University increasingly grants the right to exploit its IP and/or know-how to commercial  

E-Print Network [OSTI]

Conflict of Interest Relating Specifically to Technology Transfer Agreements The University that may arise as a result of technology transfer transactions. 1. When a primary candidate for a technology transfer agreement is identified and before any agreement is negotiated, the Industrial Liaison

Schellekens, Michel P.

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Technology Transfer: An Integrated `Culture-Friendly' I.J. Bate, A. Burns, T.O. Jackson, T.P. Kelly,  

E-Print Network [OSTI]

Technology Transfer: An Integrated `Culture-Friendly' Approach I.J. Bate, A. Burns, T.O. Jackson, T. This is in contrast to many other technology transfer initiatives which have failed because academics have not truly not been prepared to perform the technology transfer in a suitable incremental and consultative manner. 1

Kelly, Tim

342

Technology Transfer and Intellectual Property Services TechTIPS a n n u a l r e p o r t 2 0 0 2  

E-Print Network [OSTI]

Technology Transfer and Intellectual Property Services · TechTIPS a n n u a l r e p o r t 2 0 0 2 #12;University of California, San Diego Technology Transfer Advisory Committee Richard Attiyeh Vice Management and Planning The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general

Fainman, Yeshaiahu

343

[To be printed on the headed notepaper of the Administering Organisation or its Technology Transfer Group (if an independent organisation) or the Company  

E-Print Network [OSTI]

[To be printed on the headed notepaper of the Administering Organisation or its Technology Transfer of Signature:___________________________ [Signed by Head Technology Transfer Office (TTO) or Group on behalf of Administering Organisation or its Technology Transfer Group if independent or if the University does not have

Rambaut, Andrew

344

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Novel Real-Time Sub-Millimeter Imaging Device and Methods  

E-Print Network [OSTI]

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Novel Real || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu The image scanning methodology makes #12;Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs

Dasgupta, Dipankar

345

A core competency model for aligning information technology with business objectives  

E-Print Network [OSTI]

Advances in Information Technology and Information Systems delivery over the past decades have restructured industries and created enormous value. Interestingly however, research shows companies traditionally have a very ...

Campbell, Kurt (Kurt A.)

2007-01-01T23:59:59.000Z

346

Climate change: Evolving technologies, U.S. business, and the world economy in the 21. century  

SciTech Connect (OSTI)

The International Climate Change Partnership presents this report as one of its efforts to present current information on climate change to the public. One often hears about the expenses entailed in protecting the environment. Unfortunately, one hears less about the economic benefits that may be associated with prudent actions to counter environmental threats. This conference is particularly useful because it focuses attention on profitable business opportunities in the United States and elsewhere that arise from practical efforts to mitigate the risks of climate change. The report contains a brief synopsis of each speaker`s address on climate change.

Harter, J.J.

1996-12-31T23:59:59.000Z

347

Healthcare technology, patient engagement and adherence : systems and business opportunity analysis  

E-Print Network [OSTI]

In the current shift in the US healthcare system, lower cost, higher quality of care, access and safety are the main drivers that are effecting changes. Patient compliance with medication and technology enabled wellness ...

Jog, Chetan R. (Chetan Ravindra)

2012-01-01T23:59:59.000Z

348

Information technology and business transformation : work location and the allocation of decision rights  

E-Print Network [OSTI]

(cont.) as well, firms have an incentive to require coordinated investments in technology across the enterprise. Still, research in IS has also highlighted the fact that the productivity of computer investments is highly ...

Fitoussi, David, 1974-

2004-01-01T23:59:59.000Z

349

New Mexico Chapter of the Energy, Technology, and Environmental Business Association (ETEBA) Roundtable  

Broader source: Energy.gov [DOE]

ETEBA is a non-profit trade association representing more than 200 small, large and mid-sized companies that provide environmental, technology, energy, engineering, construction and related services to government and commercial clients.

350

A technology transfer plan for the US Department of Energy's Electric Energy Systems Program  

SciTech Connect (OSTI)

The major objective of this study was to develop a technology transfer plan that would be both practical and effective in promoting the transfer of the products of DOE/EES research to appropriate target audiences. The study drew upon several major components of the marketing process in developing this plan: definition/charcterization of the products being produced by the DOE/EES program, identification/characterization of possible users of the products being produced by the program, and documentation/analysis of the methods currently being used to promote the adoption of DOE/EES products. Fields covered include HVDC, new materials, superconductors, electric field effects, EMP impacts, battery storage/load leveling, automation/processing concepts, normal/emergency operating concepts, Hawaii deep water cable, and failure mechanisms.

Harrer, B.J.; Hurwitch, J.W.; Davis, L.J.

1986-11-01T23:59:59.000Z

351

WICHITA STATE UNIVERSITY RESEARCH AND TECHNOLOGY TRANSFER 1845 Fairmount Street Wichita, Kansas 67260-0007 tele: (316) 978-3285 fax: (316) 978-3750  

E-Print Network [OSTI]

WICHITA STATE UNIVERSITY RESEARCH AND TECHNOLOGY TRANSFER 1845 Fairmount Street Wichita, Kansas for each of its virtual development tools. www.vimo-tech.com ### CONTACT: Becky Hundley Technology Transfer for the commercialization of Olivares' technology is one that John Tomblin, vice president of research and technology

352

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

Unknown

2002-05-31T23:59:59.000Z

353

Business Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technology forBudgetThisonBusinessBusiness

354

Dr. Shirley M. Davey1,3, Dr. Michael Brennan1,2, Prof. Brian J Meenan3, Hiran Basnayake1,4 and Dr. Simon Taylor1,4 1 Multidisciplinary Assessment of Technology Centre for Health (MATCH), 2Ulster Business School, 3Nanotechnology and Integrated Bioengineeri  

E-Print Network [OSTI]

) Open Business Models, Harvard Business School Press. Osterwalder, A. and Pigneur, Y. (2009) Business Sector: An Open Business Model Approach for High-Tech Small Firms', Technology Analysis & Strategic business models that operate within a range of healthcare companies in order to ascertain how evidence

Oakley, Jeremy

355

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC's accomplishments during FY02. Activities were maintained at recent record levels. Strategic planning from multiple sources within the framework of the organization gives PTTC the vision to have even more impact in the future. The Houston Headquarters (HQ) location has strived to serve PTTC well in better connecting with producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database, exhibit at more trade shows and a new E-mail Technology Alert service are expanding PTTC's audience. All considered, the PTTC network has proven to be an effective way to reach domestic producers locally, regionally and nationally.

Unknown

2002-11-01T23:59:59.000Z

356

Oswer source book. Volume 2. Training and technology transfer resources, 1994-1995  

SciTech Connect (OSTI)

This edition of The OSWER Source Book builds on the previous versions and provides a descriptive listing of the numerous technology transfer resources available to EPA staff, State and local agencies, and others concerned with hazardous and solid waste management. Volume II lists frequently requested publications issued by the Office of Solid Waste (OSW). Publications are listed in a number of ways -- by title, document number, and subject area -- to facilitate locating a particular item. Publication order forms also are provided at the conclusion of Volume II.

Not Available

1994-09-01T23:59:59.000Z

357

Oswer source book, Volume 2. Training and technology transfer resources, 1994-1995  

SciTech Connect (OSTI)

This edition of The OSWER Source Book builds on the previous versions and provides a descriptive listing of the numerous technology transfer resources available to EPA staff, State and local agencies, and others concerned with hazardous and solid waste management. Volume II lists frequently requested publications issued by the Office of Solid Waste (OSW). Publications are listed in a number of ways -- by title, document number, and subject area -- to facilitate locating a particular item. Publication order forms also are provided at the conclusion of Volume II.

Not Available

1994-09-01T23:59:59.000Z

358

Metso Corporation is a EUR 4.2 billion engineering and technology company with core businesses in the areas of fiber and paper making,  

E-Print Network [OSTI]

rollout to 2,600 employees · Marked improvement in product delivery, project management and salesMetso Corporation is a EUR 4.2 billion engineering and technology company with core businesses in the areas of fiber and paper making, rock and minerals processing, and automation and control. Metso

Fisher, Kathleen

359

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. PTTC's Board made a strategic decision to relocate the Headquarters (HQ) office from Washington, DC to Houston, Texas. Driving force behind relocation was to better connect with independent producers, but cost savings could also be realized. Relocation was accomplished in late December 2000, with the HQ office being fully operational by January 2001. Early indications are that the HQ relocation is, in fact, enabling better networking with senior executives of independents in the Houston oil community. New Board leadership, elected in March 2001, will continue to effectively guide PTTC.

Unknown

2001-05-01T23:59:59.000Z

360

Oswer source book. Volume 2. Training and technology transfer resources, 1992-1993  

SciTech Connect (OSTI)

Volumes I and II of The OSWER Source Book provide information on the many training courses, publications, videotapes, and information systems and software available to support EPA staff, State and local agencies, and others involved in managing the Nation's hazardous and solid waste programs. The Office of Solid Waste and Emergency Response's (OSWER) Technology Innovation Office (TIO) has compiled listings of the most significant training and technology transfer resources available to assist individuals with the responsibility for accomplishing OSWER's mission. Volume II contains frequently requested OSW publications, including those that address municipal solid waste and recycling. This second volume of The Source Book is new for this edition, and provides much additional information compared to the earlier version.

Not Available

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Before the House Small Business Subcommittee on Contracting and...  

Broader source: Energy.gov (indexed) [DOE]

Subcommittee on Contracting and Technology Before the House Small Business Subcommittee on Contracting and Technology Before the House Small Business Subcommittee on Contracting...

362

Contact Information College of Business and Economics  

E-Print Network [OSTI]

Contact Information College of Business and Economics Center for Business Research and Economic Research and Economic Development Center What's your challenge? We help businesses and organizations can lie in Accountancy, Economics, Information Technology and Supply Chain Management, International

Barrash, Warren

363

Report on dipole-dipole resistivity and technology transfer at the Ahuachapan Geothermal field Ahuachapan, El Salvador  

SciTech Connect (OSTI)

The Ahuachapan Geothermal Field (AGF) is a 90 megawatt geothermal-sourced powerplant operated by the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) of El Salvador. During the period November 1987 through May 1988 a deep resistivity survey and technology transfer was performed at the AGF at the request of Los Alamos National Laboratory (LANL) as part of a United States Agency for International Development (USAID) project. The resistivity surveying is ongoing at the time of this report under the supervision of CEL personnel. LANL and contract personnel were present at the site during performance of the initial surveying for the purpose of technology transfer. This report presents the results and interpretation of the two initial resistivity survey lines performed on site during and shortly after the technology transfer period.

Fink, J.B. (Geophynque International, Tucson, AZ (United States))

1988-08-01T23:59:59.000Z

364

Scale-up and Technology Transfer of Protein-based Plastic Products  

SciTech Connect (OSTI)

Over the last number of years researchers at ISU have been developing protein based plastics from soybeans, funded by Soy Works Corporation. These materials have been characterized and the processing of these materials into prototype products has been demonstrated. A wide range of net-shape forming processes, including but not limited to extrusion, injection molding and compression molding have been studied. Issues, including technology transfer, re-formulation and product consistency, have been addressed partially during this contract. Also, commercial-scale processing parameters for protein based plastic products were designed, but not yet applicable in the industry. Support in the trouble shooting processing and the manufacturing of protein based plastic products was provided by Iowa State University during the one year contract.

Grewell, David

2008-12-08T23:59:59.000Z

365

Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors  

SciTech Connect (OSTI)

The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

2010-01-21T23:59:59.000Z

366

RBS' New BAIT Major: Business Analytics and  

E-Print Network [OSTI]

:623:386) ­ Analytics / decision making and planning ­ Building mathematical models of business situations ­ Also builds · 33:623:485 Time Series Modeling for Business · 33:623:400 Business Decision Analytics underRBS' New BAIT Major: Business Analytics and Information Technology "Introducing the New Business

367

Development and transfer of fuel fabrication and utilization technology for research reactors  

SciTech Connect (OSTI)

Approximately 300 research reactors supplied with US-enriched uranium are currently in operation in about 40 countries, with a variety of types, sizes, experiment capabilities and applications. Despite the usefulness and popularity of research reactors, relatively few innovations in their core design have been made in the last fifteen years. The main reason can be better understood by reviewing briefly the history of research reactor fuel technology and enrichment levels. Stringent requirements on the enrichment of the uranium to be used in research reactors were considered and a program was launched to assist research reactors in continuing their operation with the new requirements and with minimum penalties. The goal of the new program, the Reduced Enrichment Research and Test Reactor (RERTR) Program, is to develop the technical means to utilize LEU instead of HEU in research reactors without significant penalties in experiment performance, operating costs, reactor modifications, and safety characteristics. This paper reviews briefly the RERTR Program activities with special emphasis on the technology transfer aspects of interest to this conference.

Travelli, A.; Domagala, R.F.; Matos, J.E.; Snelgrove, J.L.

1982-01-01T23:59:59.000Z

368

Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies Division March 2011  

E-Print Network [OSTI]

of the energy efficiency business model in further detail.7   4.3 Business Modelenergy efficiency business model on utility earnings .

Satchwell, Andrew

2011-01-01T23:59:59.000Z

369

A simulation model for the diffusion of a new technology in an environment populated by heterogeneous agents. The case of business to business (B2B) ecommerce.  

E-Print Network [OSTI]

1 A simulation model for the diffusion of a new technology in an environment populated. + , Vistori F. § Abstract In this paper we propose an agent­based simulation model for the diffusion

Gallo, Giorgio

370

Contact: John Hampson ABIA Business Engagement Manager  

E-Print Network [OSTI]

to underpin growth amongst small-to-medium sized businesses (SMEs) operating in the science and technology and facilities of the University to support technology development, R&D, business development and growth

Birmingham, University of

371

J Technol Transfer (2008) 33:560578 DOI 10.1007/s10961-008-9092-0  

E-Print Network [OSTI]

J Technol Transfer (2008) 33:560­578 DOI 10.1007/s10961-008-9092-0 Globalization of technology+Business Media, LLC 2008 Abstract The United States became the dominant technology-based economy after World War, organizational, and marketing assets. However, the world is witnessing the rapid globalization of technology

2008-01-01T23:59:59.000Z

372

Office of Technology Transfer and Innovation Partnerships, PO Box 6000, Binghamton, NY, 13902-6000. Ph: (607) 777-5870. FORM TT-2 Revised 03/19/09 FORM TT -2  

E-Print Network [OSTI]

Office of Technology Transfer and Innovation Partnerships, PO Box 6000, Binghamton, NY, 13902-6000. Ph: (607) 777-5870. FORM TT-2 Revised 03/19/09 FORM TT - 2 Technology Transfer NEW TECHNOLOGY DISCLOSURE PLEASE SUBMIT COMPLETED FORM TO OFFICE OF TECHNOLOGY TRANSFER AND INNOVATIVE PARTNERSHIPS 1

Suzuki, Masatsugu

373

2815 San Gabriel Austin, Texas 78705 www.ic2.utexas.edu 512.475.8900 Butler, John Sibley and David V. Gibson (eds.), 2011. Global Perspectives on Technology Transfer and  

E-Print Network [OSTI]

Sibley and David V. Gibson (eds.), 2011. Global Perspectives on Technology Transfer and Commercialization. "University Technology Transfer," U.S. Economic Outlook, 2/4 2011, 31-33. Echeverri-Carroll, Elsie L has produced a catalog of cutting-edge research on new technologies, technology transfer

Ghosh, Joydeep

374

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback confirms that producers are taking action with the information they receive. RLO Directors captured examples demonstrating how PTTC activities influenced industry activity. Additional follow-up in all regions explored industry's awareness of PTTC and the services it provides. PTTC publishes monthly case studies in the ''Petroleum Technology Digest in World Oil'' and monthly Tech Connections columns in the ''American Oil and Gas Reporter''. Email Tech Alerts are utilized to notify the O&G community of DOE solicitations and demonstration results, PTTC key technical information and meetings, as well as industry highlights. Workshop summaries are posted online at www.pttc.org. PTTC maintains an active exhibit schedule at national industry events. The national communications effort continues to expand the audience PTTC reaches. The network of national and regional websites has proven effective for conveying technology-related information and facilitating user's access to basic oil and gas data, which supplement regional and national newsletters. The regions frequently work with professional societies and producer associations in co-sponsored events and there is a conscious effort to incorporate findings from DOE-supported research, development and demonstration (RD&D) projects within events. The level of software training varies by region, with the Rocky Mountain Region taking the lead. Where appropriate, regions develop information products that provide a service to industry and, in some cases, generate moderate revenues. Data access is an on-going industry priority, so all regions work to facilitate access to public source databases. Various outreach programs also emanate from the resource centers, including targeted visits to producers.

Donald F. Duttlinger; E. Lance Cole

2003-12-15T23:59:59.000Z

375

Business Continuity Planning Checklist  

E-Print Network [OSTI]

of your business, making sure you can recover the technology and processes required to operate after/Security, Physical Plant, Insurance, Legal Affairs, Public Affairs, Personnel Department, Comptroller, Audit Division the event. ­ Conduct a technology asset inventory to determine and document the mission-critical technology

Greenberg, Albert

376

Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.  

SciTech Connect (OSTI)

Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

2007-01-01T23:59:59.000Z

377

Clean Energy Business Plan Competition  

ScienceCinema (OSTI)

Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv;

2013-05-29T23:59:59.000Z

378

143Business Administration BUSINESS ADMINISTRATION  

E-Print Network [OSTI]

143Business Administration BUSINESS ADMINISTRATION (BUS) PROFESSORS CLINE, DEAN, KESTER VISITING ASSOCIATE PROFESSOR GIBBS ASSISTANT PROFESSOR REITER MAJOR A major in business administration leading at least 24 credits in business administration and 26 credits not in business administration, as follows: 1

Dresden, Gregory

379

Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya  

SciTech Connect (OSTI)

The notion of"productive use" is often invoked in discussions about whether new technologies improve productivity or otherwise enhance commerce in developing-country contexts. It an elusive concept,especially when quantitative measures are sought. Improved and more energy efficient illumination systems for off-gridapplication--the focus of the Lumina Project--provide a case in which a significant productivity benefit can be imagined, given the importance of light to the successful performance of many tasks, and the very low quality of baseline illumination provided by flame-based source. This Research Note summarizes self-reported quantitative and qualitative impacts of switching to LED lighting technology on the prosperity of night-market business owners and operators. The information was gathered in the context of our 2008 market testing field work in Kenya?s Rift Valley Province, which was performed in the towns of Maai Mahiu and Karagita by Arne Jacobson, Kristen Radecsky, Peter Johnstone, Maina Mumbi, and others. Maai Mahiu is a crossroads town; provision of services to travelers and freight carriers is a primary income source for the residents. In contrast, the primary income for Karagita's residents is from work in the large, factory style flower farms on the eastern shores of Lake Naivasha that specialize in producing cut flowers for export to the European market. According to residents, both towns had populations of 6,000 to 8,000 people in June 2008. We focused on quantifying the economics of fuel-based and LED lighting technology in the context of business use by night market vendors and shop keepers. Our research activities with the business owners and operators included baseline measurement of their fuel-based lighting use, an initial survey, offering for sale data logger equipped rechargeable LED lamps, monitoring the adoption of the LED lamps, and a follow-up survey.

Johnstone, Peter; Jacobson, Arne; Mills, Evan; Mumbi, Maina

2009-02-11T23:59:59.000Z

380

MHD Technology Transfer, Integration and Review Committee. Seventh semi-annual status report, April 1991--September 1991  

SciTech Connect (OSTI)

This seventh semi-annual status report of the MHD Technology Transfer, Integration and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1991 through September 1991. It includes a summary and minutes of the General Committee meeting, progress summaries of ongoing POC contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months. The meeting included test plan with Western coal, seed regeneration economics, power management for the integrated topping cycle and status of the Clean Coal Technology Proposal activities. Appendices cover CDIF operations HRSR development, CFFF operations etc.

Not Available

1993-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

International Business Machines Corporation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center 1101 Kitchawan Road, NY 10598 Office of the Assistant General Counsel for Technology Transfer and Intellectual Property U.S. Department of Energy 1000 Independence Ave, SW,...

382

The Division of Research Affairs (DRA) and the Technology Transfer Office (TTO work together to serve SDSU for the management of new intellectual property developed by SDSU faculty and staff. Both play  

E-Print Network [OSTI]

The Division of Research Affairs (DRA) and the Technology Transfer Office (TTO work together are important documents for technology transfer; they can be both free as well as generate revenue, they allow

Ponce, V. Miguel

383

MHD Technology Transfer, Integration and Review Committee. Fifth semi-annual status report, April 1990--September 1990  

SciTech Connect (OSTI)

This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

Not Available

1992-01-01T23:59:59.000Z

384

Networks permeate our daily lives, underpinning our economies and societies and provide the infrastructure for business, science, technology, social sys-  

E-Print Network [OSTI]

communication networks. They provide electricity to run the computers and to light our businesses, oil and gas as to visit colleagues and friends and to explore new vistas and expand our hori- zons. They enable manufacturing processes through the supply of the neces- sary input components and the ultimate distribution

Nagurney, Anna

385

Issue 01 September 2009 This issue: 1 STFC Innovations Ltd to lead ESA's UK technology transfer work 2 RSE/STFC Enterprise Fellowships 3 RSE/STFC Enterprise Fellowships  

E-Print Network [OSTI]

Issue 01 September 2009 This issue: 1 STFC Innovations Ltd to lead ESA's UK technology transfer in knowledge exchange and technology transfer has been recognised with the awarding of a prestigious contract by the European Space Agency (ESA). STFC Innovations Ltd to lead ESA's UK technology transfer work STFC

386

Lighting Business Case -- A Report Analyzing Lighting Technology Opportunities with High Return on Investment Energy Savings for the Federal Sector  

SciTech Connect (OSTI)

This document analyzes lighting technology opportunities with high return on investment energy savings for the Federal sector.

Jones, Carol C.; Richman, Eric E.

2005-12-30T23:59:59.000Z

387

Vehicle Technologies Office Merit Review 2014: Advanced Wireless Power Transfer and Infrastructure Analysis  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

388

A Business Process Explorer: Recovering Business Processes from Business Applications  

E-Print Network [OSTI]

1 A Business Process Explorer: Recovering Business Processes from Business Applications Jin Guo and software developers. We present a business process explorer tool which automatically recovers business of business applications, we developed a business process explorer tool which recovers as-implemented business

Zou, Ying

389

Graduate Certificate in Internet Business Looking for a Career in Internet Business?  

E-Print Network [OSTI]

1 Graduate Certificate in Internet Business Looking for a Career in Internet Business? Since growth, hence a demand for experts who know how to effectively analyze and manage a business with the appropriate internet technology. Small to large-sized businesses require professionals who are able to design

Pientka, Brigitte

390

7. Business Models LearningsfromfoundingaComputerVisionStartup  

E-Print Network [OSTI]

7. Business Models #12;LearningsfromfoundingaComputerVisionStartup Flickr:dystopos How are you models ! ! (not only technology) #12;LearningsfromfoundingaComputerVisionStartup Auction business model! Bricks and clicks business model! Collective business models! Component business model! Cutting out

Solem, Jan Erik

391

7. Business Models LearningsfromfoundingaComputerVisionStartup  

E-Print Network [OSTI]

7. Business Models #12;LearningsfromfoundingaComputerVisionStartup Flickr:dystopos How are you models (not only technology) #12;LearningsfromfoundingaComputerVisionStartup Auction business model Bricks and clicks business model Collective business models Component business model Cutting out

Quack, Till

392

Business and Travel Expense Policy Effective February 1, 2013  

E-Print Network [OSTI]

Business and Travel Expense Policy Effective February 1, 2013 Updated April 4, 2014 1 BUSINESS" and "Business Expense" #12;Business and Travel Expense Policy Effective February 1, 2013 Updated April 4, 2014 2 STEVENS INSTITUTE OF TECHNOLOGY BUSINESS AND TRAVEL EXPENSE POLICY TABLE OF CONTENTS TABLE OF CONTENTS

Yang, Eui-Hyeok

393

Business Administratio  

E-Print Network [OSTI]

#12;#12;#12;Business Administratio n 579 MBA Capstone A Catalog Description: V 1 (1-3) May be repeated for credit. Letter grading. Prereq: Admission to the MBA, Master of Accounting, or Business PhD programs. Analyze, evaluate, and recommend management actions for a specific strategic business project

Collins, Gary S.

394

Comparative study of social economic differences in relation to technology competency expectations as perceived by business and educational leaders  

E-Print Network [OSTI]

in the selected schools in San Antonio by participating in curriculum development or as partnerships within the schools. All teachers had a high level of understanding about the importance of technology competencies for students. Furthermore, they believed...

Reyna, Janice Mae

2007-04-25T23:59:59.000Z

395

Technology transfer and commercialization initiatives at TRI/Austin: Resources and examples  

SciTech Connect (OSTI)

Located at TRI/Austin, and operated under a Department of Defense contract, is the Nondestructive Testing Information Analysis Center (NTIAC). This is a full service Information Analysis Center sponsored by the Defense Technical Information Center (DTIC), although services of NTIAC are available to other government agencies, government contractors, industry and academia. The principal objective of NTIAC is to help increase the productivity of the nation`s scientists, engineers, and technical managers involved in, or requiring, nondestructive testing by providing broad information analysis services of technical excellence. TRI/Austin is actively pursuing commercialization of several products based on results from outside funded R and D programs. As a small business, TRI/Austin has limited capabilities for large scale fabrication, production, marketing or distribution. Thus, part of a successful commercialization process involves making appropriate collaboration arrangements with other organizations to augment TRI/Austin`s capabilities. Brief descriptions are given here of two recent commercialization efforts at TRI/Austin.

Matzkanin, G.A.; Dingus, M.L. [Texas Research Institute, Austin, Inc., TX (United States). Nondestructive Testing Information Analysis Center

1995-12-31T23:59:59.000Z

396

FINANCIAL & BUSINESS SERVICES Financial & Business Services  

E-Print Network [OSTI]

FINANCIAL & BUSINESS SERVICES Financial & Business Services Presidential Briefing #12;FINANCIAL & BUSINESS SERVICES Financial & Business Services (FBS) · FBS currently has approx. 140 employees · We) ­ Financial Solutions (6) ­ Travel, Training & Policy Development (6) #12;FINANCIAL & BUSINESS SERVICES Our

397

Engineering at Illinois delivers successful partnerships that impact businesses. Illinois has a strong track record of technology innovation and commercialization. We also lead the nation in funding from the National Science  

E-Print Network [OSTI]

» Dow Chemical » Intel » Bloom Energy » BP » Flex-n-Gate » PayPal » Yelp » YouTube Illinois Talent BuiltEngineering at Illinois delivers successful partnerships that impact businesses. Illinois has areas including: Big Data/Data Analytics/ Computing, Biomedical/Bioengineering, and Energy Technologies

Lewis, Jennifer

398

Capturing Variability in Business Process Models: The Provop Approach  

E-Print Network [OSTI]

Capturing Variability in Business Process Models: The Provop Approach Alena Hallerbach1 , Thomas be transferred to cross-organizational business processes as well [4]. A business process model captures models there exists a multitude of tools like ARIS Business Architect [5], ADONIS [6], and Web

Ulm, Universität

399

Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies Division March 2011  

E-Print Network [OSTI]

Business Model for the Successful Achievement of Energy Efficiency ResourceBusiness Model for the Successful Achievement of Energy Efficiency Resourcebusiness model on utility ROE 13   Table 1. Lifetime savings, resource costs and benefits of alternative energy efficiency

Satchwell, Andrew

2011-01-01T23:59:59.000Z

400

NREL: Technology Transfer - About Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of the U.S. Virgin

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Indirect Heat Transfer Technology For Waste Heat Recovery Can Save You Money  

E-Print Network [OSTI]

-drllt fIn lb. FI~-to_heot-roccvery .ylt8m Stoek gl' ..---::-----'1 _._.__.@_.; -+ Farcod?drall fan le. Air-prohe8ting syotem UBing I ....Hransfer ayltem Three typical arrangements for recovering waste heat from furnace flue gas Fig. 1 *Trademark... heat transfer fluid and thence to selected heat "user" sites (Figure 1C). This basic method often offers an attractive investment return, particu larly in applications where stack gas exit tempera tures exceed 316?C (600?F) and the furnace duty...

Beyrau, J. A.; Bogel, N. G.; Seifert, W. F.; Wuelpern, L. E.

1984-01-01T23:59:59.000Z

402

Development and technology transfer of the BNL flame quality indicator for oil-fired applications: Project report  

SciTech Connect (OSTI)

The purpose of a flame quality indicator is to continuously and closely monitor the quality of the flame to determine a heating system`s operating performance. The most efficient operation of a system is achieved under clean burning conditions at low excess air level. By adjusting a burner to function in such a manner, monitoring the unit to maintain these conditions can be accomplished with a simple, cheap and reliable device. This report details the development of the Flame Quality Indicator (FQI) at Brookhaven National Laboratory for residential oil-heating equipment. It includes information on the initial testing of the original design, field testing with other cooperating organizations, changes and improvements to the design, and finally technology transfer and commercialization activities geared towards the development of commercially available products designed for the oil heat marketplace. As a result of this work, a patent for the technology was obtained by the U.S. Department of Energy (DOE). Efforts to commercialize the technology have resulted in a high level of interest amongst industry members including boiler manufacturers, controls manufacturers, oil dealers, and service organizations. To date DOE has issued licenses to three different manufacturers, on a non-exclusive basis, to design, build, and sell FQIs.

Butcher, T.A.; Litzke, Wai Lin; McDonald, R.J.

1994-09-01T23:59:59.000Z

403

BUSINESS SENSITIVE  

Broader source: Energy.gov (indexed) [DOE]

that this action supports), is as follows: (State the following in bullet format BUSINESS SENSITIVE Funding is being provided for Notice Number (fill-in), entitled ("provide...

404

BUSINESS SENSITIVE  

Broader source: Energy.gov (indexed) [DOE]

Dear Chairmen Rogers, Mikulski, Simpson and Feinstein: No earlier than three full business days from the date of this notification, the Department of Energy (DOE) intends to...

405

Technology Deployment Annual Report 2009  

SciTech Connect (OSTI)

Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties.

Keith Arterburn

2009-12-01T23:59:59.000Z

406

UNL POLICY FOR DIVISION OF NET ROYALTY AND PROCEEDS Section 5 of the RP-4.4.2 Regents' Patent and Technology Transfer Policy includes  

E-Print Network [OSTI]

UNL POLICY FOR DIVISION OF NET ROYALTY AND PROCEEDS Section 5 of the RP-4.4.2 Regents' Patent and Technology Transfer Policy includes information on the division of net royalties and proceeds: "With respect by the University associated with such action. After such expenses are reimbursed, royalties and other proceeds from

Logan, David

407

EA-2000: Proposed Land Transfer to Develop a General Aviation Airport at the East Tennessee Technology Park Heritage Center, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

DOE is preparing an EA to assess potential environmental impacts of the proposed land transfer to the Metropolitan Knoxville Airport Authority for the development of a general aviation airport at the East Tennessee Technology Park Heritage Center, in Oak Ridge, Tennessee. Public Comment Opportunities None available at this time. Documents Available for Download No downloads found for this office.

408

Lubar School of Business MBAMaster of Business  

E-Print Network [OSTI]

business foundation based on traditional theories with current models and applications in businessLubar School of Business MBAMaster of Business Administration #12;AACSB Accreditation The Lubar School of Business is accredited by the Association to Advance Collegiate Schools of Business (AACSB

Saldin, Dilano

409

Business Services Business Casual Dress Policy  

E-Print Network [OSTI]

Business Services Business Casual Dress Policy A business casual dress policy calls for everyone general parameters for proper business casual dress within Business Services and to help you make appropriate dress decisions. Keep in mind that business casual does not mean weekend or sport casual

Holland, Jeffrey

410

Business Application Instructions Section 2: Business Information  

E-Print Network [OSTI]

Business Application Instructions Section 2: Business Information New (or "Eligible") business: means a business that satisfies all of the following tests: a) the business must not be operating; b) the business must not be moving existing jobs into the Tax-Free NY Area from another area

Suzuki, Masatsugu

411

BUSINESS CONTINUITY PLANNING RESOURCES FOR SMALL-AND MEDIUM-  

E-Print Network [OSTI]

BUSINESS CONTINUITY PLANNING RESOURCES FOR SMALL- AND MEDIUM- SIZED BUSINESSES May 2010 Prepared and supported by the Northwest Regional Technology Center for Homeland Security Business Continuity Planning Resources for Small- and Medium- Sized Businesses KS Judd AM Lesperance May 14, 2010 #12;DISCLAIMER

412

business.uts.edu.au/bacc THINK.CHANGE.DO  

E-Print Network [OSTI]

business.uts.edu.au/bacc THINK.CHANGE.DO UTS: BACHELOR OF ACCOUNTING COURSE GUIDE 2014 #12;DEAN'S INTRODUCTION UTS Business School knows what business education is about in the twenty-first century. As a world class business school in a world-leading university of technology, our task is to prepare graduates

University of Technology, Sydney

413

NREL Quickens its Tech Transfer Efforts  

SciTech Connect (OSTI)

Innovations and 'aha' movements in renewable energy and energy efficiency, while exciting in the lab, only truly live up to their promise once they find a place in homes or business. Late last year President Obama issued a directive to all federal agencies to increase their efforts to transfer technologies to the private sector in order to achieve greater societal and economic impacts of federal research investments. The president's call to action includes efforts to establish technology transfer goals and to measure progress, to engage in efforts to increase the speed of technology transfer and to enhance local and regional innovation partnerships. But, even before the White House began its initiative to restructure the commercialization process, the National Renewable Energy Laboratory had a major effort underway designed to increase the speed and impact of technology transfer activities and had already made sure its innovations had a streamlined path to the private sector. For the last three years, NREL has been actively setting commercialization goals and tracking progress against those goals. For example, NREL sought to triple the number of innovations over a five-year period that began in 2009. Through best practices associated with inventor engagement, education and collaboration, NREL quadrupled the number of innovations in just three years. Similar progress has been made in patenting, licensing transactions, income generation and rewards to inventors. 'NREL is known nationally for our cutting-edge research and companies know to call us when they are ready to collaborate,' William Farris, vice president for commercialization and technology transfer, said. 'Once a team is ready to dive in, they don't want be mired in paperwork. We've worked to make our process for licensing NREL technology faster; it now takes less than 60 days for us to come to an agreement and start work with a company interested in our research.' While NREL maintains a robust patent portfolio, often companies are looking to do more than just license a technology. These relationships are invaluable in successfully moving technologies from NREL to the marketplace. 'We may generate new and potentially valuable innovations, but our commercialization partners do the heavy work of building a successful business around our technology,' Farris said. Tools such as CRADAs (Cooperative Research and Development Agreements) allow NREL to continue working with companies to refine and develop technologies. And, working with businesses is an area where NREL excels. NREL is responsible for one quarter of the CRADAs in the DOE system. 'When you look at the results of our CRADA program, you can demonstrate that we are actively engaged with companies in collaborating on research and moving technologies to market,' Farris said. NREL is first among DOE labs with 186 active CRADAs. And last year, NREL also was first with the number of new CRADAs signed. 'Part of the success in our working with industry goes back to NREL's mission to grow and support new industries,' Farris added. 'NREL has basic research capabilities, but we are never going to be the ultimate producer of a commercial product. That is the role of the private sector.' Farris also credits the advocacy and support that the Office of Energy Efficiency and Renewable Energy at DOE provides for these technology transfer activities. 'EERE's support is critical to our success,' Farris said. To assist the private sector in moving a technology from the lab to the manufacturing line, NREL has a number of programs in place to give that first, or even final, nudge toward commercialization. For instance, the Commercialization Assistance Program helps startups overcome technical barriers by granting free access to 40 hours of work at the lab. Through the Innovation and Entrepreneurship Center, NREL also helps clean energy businesses develop strong links with the financial community, as well as other key stakeholders in the commercialization process. In March, NREL formally opened the Colorado Center for Renewable Ene

Lammers, H.

2012-02-01T23:59:59.000Z

414

BUSINESS SENSITIVE  

Office of Environmental Management (EM)

Section 311 of P.L. 112-74 and as continued in P.L. 113-6, no earlier than three full business days from the date of this notification, the Department of Energy intends to announce...

415

14 201 4 /2015 C A L E N DA R Student, Business & Professional Studies  

E-Print Network [OSTI]

-commerce Management 40 IT Security Management 40 Mobile Business Technologies & Applications 41 Innovation 41 36 Occupational Health & Safety 36 Information Technology & E-commerce Management 36 Business Information Technology Management 37 Cloud Computing 37 Enterprise Architecture 37 Certificate in Human

Sokolowski, Marla

416

Business Expense Guidelines Page 1 Revision date: 12-06-12 Caltech Business Expense Guidelines Rev 01-04-13.doc  

E-Print Network [OSTI]

Business Expense Guidelines Page 1 Revision date: 12-06-12 Caltech Business Expense Guidelines Rev 01-04-13.doc California Institute of Technology BUSINESS EXPENSE GUIDELINES Office of Financial Services March 2003 Revised January, 2013 #12;Business Expense Guidelines Page 2 Caltech Business Expense

Bruck, Jehoshua (Shuki)

417

Federal technology transfer requirements :a focused study of principal agencies approaches with implications for the Department of Homeland Security.  

SciTech Connect (OSTI)

This report provides relevant information and analysis to the Department of Homeland Security (DHS) that will assist DHS in determining how to meet the requirements of federal technology transfer legislation. These legal requirements are grouped into five categories: (1) establishing an Office of Research and Technology Applications, or providing the functions thereof; (2) information management; (3) enabling agreements with non-federal partners; (4) royalty sharing; and (5) invention ownership/obligations. These five categories provide the organizing framework for this study, which benchmarks other federal agencies/laboratories engaged in technology transfer/transition Four key agencies--the Department of Health & Human Services (HHS), the U.S. Department of Agriculture (USDA), the Department of Energy (DOE), and the Department of Defense (DoD)--and several of their laboratories have been surveyed. An analysis of DHS's mission needs for commercializing R&D compared to those agencies/laboratories is presented with implications and next steps for DHS's consideration. Federal technology transfer legislation, requirements, and practices have evolved over the decades as agencies and laboratories have grown more knowledgeable and sophisticated in their efforts to conduct technology transfer and as needs and opinions in the federal sector have changed with regards to what is appropriate. The need to address requirements in a fairly thorough manner has, therefore, resulted in a lengthy paper. There are two ways to find summary information. Each chapter concludes with a summary, and there is an overall ''Summary and Next Steps'' chapter on pages 57-60. For those readers who are unable to read the entire document, we recommend referring to these pages.

Koker, Denise; Micheau, Jill M.

2006-07-01T23:59:59.000Z

418

Rural Electrification with Renewable Energy: Technologies, quality...  

Open Energy Info (EERE)

standards and business models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Rural Electrification with Renewable Energy: Technologies, quality standards and business...

419

Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report  

SciTech Connect (OSTI)

Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50˘/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12˘/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

Grogan, Dylan C. P.

2013-08-15T23:59:59.000Z

420

Business Honors Program A Bright Business Future  

E-Print Network [OSTI]

Business Honors Program Achieve! #12;2page A Bright Business Future If you are a talented no further. The Business Honors Program at Mihaylo College of Business and Economics provides a socially and professionally stimulating academic environment to a select group of business administration students. As you

de Lijser, Peter

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

College of Business College of Business  

E-Print Network [OSTI]

College of Business _______________ 2.6 Page 1 College of Business Office in Rockwell Hall, Room Associate Dean Professor John Hoxmeier, Associate Dean MAJOR IN BUSINESS ADMINISTRATION WITH CONCENTRATIONS UNDERGRADUATE MINOR Business Administration UNDERGRADUATE PROGRAMS The College of Business is accredited

422

Initiating Business with INL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Initiating Business with INL The INL Small Business Program Office (SBPO) serves as the advocate and point of contact for businesses seeking contracting opportunities. We ask you...

423

Heat Transfer Technology  

E-Print Network [OSTI]

,(C) 122 (5OJ 140 (6OJ 158 (70 DRY TOWER 6< F, (K) (15)18 (10) 36 (20 ~ATER "OUT" F, (C) 27 104 (40) 113 (45) 122 (50 ApPROACH F, (C) (15)18 (10) 36 (20 DRY BULB F, (D 27 (30)86 (30) 86(3086 Wn SFrTlo. WATER "IN" F, (() 104 (40) 113 (45) 122... (50 IIET TOWER 6t F, (K) 18 (10) 0 WATER "OlIT" F, (D S 86 (30) 104 (40) ApPROACH F, (K) ~~ (~l 27 (15)3 (5) ~ET BULB F, (C) 77 (25) 77 (25) 77 (25 VARIATiON OF TEMPERATURES AS A FUNCTION OF THE MODE OF OPERATION. To decrease...

Lefevre, M. R.

1984-01-01T23:59:59.000Z

424

NREL: Technology Transfer - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of the U.S.

425

NREL: Technology Transfer - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of theNews April 27, 2015

426

NREL: Technology Transfer - Webmaster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of theNews

427

Technology Transfer Reporting Form  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122 DOEServicesThis form is to

428

Partnerships and Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartment of Energy PartneringPartnerships and

429

2006 Technology Transfer Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable7O(α,5 2005 ORNL StoryNovember6 2006

430

2007 Technology Transfer Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable7O(α,5 20057 2007 ORNL Story Tips 1-10 of7

431

2008 Technology Transfer Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable7O(α,5 200578 Tue, 12/23/200874 FR8 20088

432

2009 Technology Transfer Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable7O(α,5 200578August09search09 - March 31,9

433

Operational safety enhancement of Soviet-designed nuclear reactors via development of nuclear power plant simulators and transfer of related technology  

SciTech Connect (OSTI)

The US Department of Energy (DOE), under the US government`s International Nuclear Safety Program (INSP), is implementing a program of developing and providing simulators for many of the Russian and Ukrainian Nuclear Power Plants (NPPs). Pacific Northwest National Laboratory (PNNL) and Brookhaven National Laboratory (BNL) manage and provide technical oversight of the various INSP simulator projects for DOE. The program also includes a simulator technology transfer process to simulator design organizations in Russia and Ukraine. Training programs, installation of new simulators, and enhancements in existing simulators are viewed as providing a relatively fast and cost-effective technology transfer that will result in measurable improvement in the safety culture and operation of NPPs. A review of this program, its present status, and its accomplishments are provided in this paper.

Kohut, P.; Epel, L.G.; Tutu, N.K. [and others

1998-08-01T23:59:59.000Z

434

Business communications  

SciTech Connect (OSTI)

Over the last few years, the need to communicate worldwide has produced positive results among standards bodies. This enabled differing factions to resolve conflicts among higher layer protocols. The European communities regulatory bodies will gain considerable flexibility with a uniform standard. At present X.400 stands ready to provide global business communication. 9 refs., 1 fig.

Bratten, W.A.; Emrich, M.L.

1989-01-01T23:59:59.000Z

435

China Business Development  

E-Print Network [OSTI]

China Business Development Postgraduate Programme #12;Programme: China Business Development with China: Intercultural Management 3 1 Daily life and business behaviour explained from a cultural perspective Chinese strategic thinking China's political constellation and its impact on business life Human

Einmahl, Uwe

436

Technology Assistance Program | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assistance Program SHARE Technology Assistance Program Electronics Research Assistance is available for small business licensees of ORNL technologies to leverage ORNL's expertise...

437

SECOQC Business White Paper  

E-Print Network [OSTI]

In contemporary cryptographic systems, secret keys are usually exchanged by means of methods, which suffer from mathematical and technology inherent drawbacks. That could lead to unnoticed complete compromise of cryptographic systems, without a chance of control by its legitimate owners. Therefore a need for innovative solutions exists when truly and reliably secure transmission of secrets is required for dealing with critical data and applications. Quantum Cryptography (QC), in particular Quantum Key Distribution (QKD) can answer that need. The business white paper (BWP) summarizes how secret key establishment and distribution problems can be solved by quantum cryptography. It deals with several considerations related to how the quantum cryptography innovation could contribute to provide business effectiveness. It addresses advantages and also limitations of quantum cryptography, proposes a scenario case study, and invokes standardization related issues. In addition, it answers most frequently asked questions about quantum cryptography.

Solange Ghernaouti-Helie; Igli Tashi; Thomas Laenger; Christian Monyk

2009-04-27T23:59:59.000Z

438

Business Practices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,ServicesBurningOperations Business Operations

439

Business Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,ServicesBurningOperations Business

440

MATERIALS TRANSFER AGREEMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wireless Power Transfer  

SciTech Connect (OSTI)

Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

None

2013-07-22T23:59:59.000Z

442

Wireless Power Transfer  

ScienceCinema (OSTI)

Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

None

2013-11-19T23:59:59.000Z

443

Modeling Business Objectives for Business Process Management  

E-Print Network [OSTI]

Modeling Business Objectives for Business Process Management Matthias Lohrmann and Manfred Reichert quality, business objective models assume the role of formal requirements definitions as in software engi a refined business objective modeling approach. Our approach builds on use case-based effectiveness criteria

Ulm, Universität

444

BUSINESS APPLICATION SECTION 1: BUSINESS CONTACT INFORMATION  

E-Print Network [OSTI]

Location: (street, building, city, State) Number of Employees in NYS prior to moving out of state: Cert ID Limited Liability Company SECTION 2: BUSINESS INFORMATION New Business Existing NYS Business Expanding Previous NYS Business relocating to NYS NYS Incubator Graduate FEIN #: Website: Indicate the Primary North

Suzuki, Masatsugu

445

College of Business College of Business  

E-Print Network [OSTI]

College of Business College of Business Office in Rockwell Hall, Room 178 (970) 491-6471 biz, Associate Dean MAJOR IN BUSINESS ADMINISTRATION WITH CONCENTRATIONS IN Accounting Finance Human Resource Management UNDERGRADUATE MINOR Business Administration Real Estate UNDERGRADUATE PROGRAMS The College

Collett Jr., Jeffrey L.

446

14 201 3 /2014 C A L E N DA R Instructor, Business & Professional Studies  

E-Print Network [OSTI]

Professionals (Advanced) 28 Digital & IT Management 28 Business Information Technology Management 29 Digital (BSSO) Designation 32 Mobile Business Technologies & Applications 32 Web Writing & Social Media 20 Financial Analysis & Investment Management 21 Financial Trading & Option Strategies 21 Internal

Sokolowski, Marla

447

Tennessee Veterans Business Association 3rd Annual Business and...  

Broader source: Energy.gov (indexed) [DOE]

Tennessee Veterans Business Association 3rd Annual Business and Education Showcase Tennessee Veterans Business Association 3rd Annual Business and Education Showcase January 28,...

448

CYBERSECURITY FUNDAMENTALS FOR SMALL BUSINESS OWNERS Shirley Radack, Editor  

E-Print Network [OSTI]

CYBERSECURITY FUNDAMENTALS FOR SMALL BUSINESS OWNERS Shirley Radack, Editor Computer Security and Technology (NIST) recently issued a new guide that tailors basic information on cybersecurity to the specific

449

The Developer's Role in the Cogeneration Business  

E-Print Network [OSTI]

Although cogeneration technology is well-established, the business is new and still taking shape. Cogeneration projects involve a diverse mix of organizations, including equipment suppliers, engineering and construction firms, fuel suppliers...

Whiting, M. Jr.

450

BPA Business  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program CumulusA t iBudget2/4/139/4/2012 B O NBelow isBusiness

451

FINANCIAL & BUSINESS SERVICES Procurement &  

E-Print Network [OSTI]

FINANCIAL & BUSINESS SERVICES Procurement & Payment Summary Accounts Payable Perry H. Hull #12;FINANCIAL & BUSINESS SERVICES Agenda · Accounts Payable: Who we are...what we do... · Accounts Payable;FINANCIAL & BUSINESS SERVICES Financial & Business Services #12;FINANCIAL & BUSINESS SERVICES Accounts

Tipple, Brett

452

Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies DivisionMarch 2011  

SciTech Connect (OSTI)

Energy efficiency resource standards (EERS) are a prominent strategy to potentially achieve rapid and aggressive energy savings goals in the U.S. As of December 2010, twenty-six U.S. states had some form of an EERS with savings goals applicable to energy efficiency (EE) programs paid for by utility customers. The European Union has initiated a similar type of savings goal, the Energy End-use Efficiency and Energy Services Directive, where it is being implemented in some countries through direct partnership with regulated electric utilities. U.S. utilities face significant financial disincentives under traditional regulation which affects the interest of shareholders and managers in aggressively pursuing cost-effective energy efficiency. Regulators are considering some combination of mandated goals ('sticks') and alternative utility business model components ('carrots' such as performance incentives) to align the utility's business and financial interests with state and federal energy efficiency public policy goals. European countries that have directed their utilities to administer EE programs have generally relied on non-binding mandates and targets; in the U.S., most state regulators have increasingly viewed 'carrots' as a necessary condition for successful achievement of energy efficiency goals and targets. In this paper, we analyze the financial impacts of an EERS on a large electric utility in the State of Arizona using a pro-forma utility financial model, including impacts on utility earnings, customer bills and rates. We demonstrate how a viable business model can be designed to improve the business case while retaining sizable ratepayer benefits. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other countries looking to significantly increase savings targets that can be achieved from their own utility-administered EE programs.

Satchwell, Andrew; Cappers, Peter; Goldman, Charles

2011-03-22T23:59:59.000Z

453

(Business/Store Name) (Business/Store Address)  

E-Print Network [OSTI]

(Business/Store Name) (Business/Store Address) (City) (State) (Zip Code) (Business/Store Phone Number) (Business/Store Fax Number) (Business Description) (Business/Store Primary Contact) (Primary Contact E-mail address) (Business/Store Secondary Contact) (Secondary Contact E-mail Address) (Business

Maroncelli, Mark

454

The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China  

SciTech Connect (OSTI)

Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

Chen Xudong, E-mail: chen.xudong@nies.go.jp [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan); Xi Fengming [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Geng Yong, E-mail: gengyong@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Fujita, Tsuyoshi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan)

2011-01-15T23:59:59.000Z

455

Environmental Baseline Survey Report for the Title Transfer of Parcel ED-9 at the East Tennessee Technology Park, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This environmental baseline survey (EBS) report documents the baseline environmental conditions of the U. S. Department of Energy's (DOE's) Parcel ED-9 at the East Tennessee Technology Park (ETTP). Parcel ED-9 consists of about 13 acres that DOE proposes to transfer to Heritage Center, LLC (hereafter referred to as 'Heritage Center'), a subsidiary of the Community Reuse Organization of East Tennessee (CROET). The 13 acres include two tracts of land, referred to as ED-9A (7.06 acres) and ED-9B (5.02 acres), and a third tract consisting of about 900 linear feet of paved road and adjacent right-of-way, referred to as ED-9C (0.98 acres). Transfer of the title to ED-9 will be by deed under a Covenant Deferral Request (CDR) pursuant to Section 120(h)(3)(C) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This report provides a summary of information to support the transfer of this government-owned property at ETTP to a non-federal entity.

SAIC

2010-05-01T23:59:59.000Z

456

Small Business - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Prime Contracts Current Solicitations Small Business Other Sources DOE RL Contracting Officers DOE RL Contracting Officer Representatives Small Business Email Email Page...

457

INL Small Business Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Business Program The Idaho National Laboratory Idaho National Laboratory (INL) Small Business Program is a fundamental component of the Supply Chain Management organization....

458

Technology Deployment Annual Report 2010  

SciTech Connect (OSTI)

This report is a catalog of selected INL technology transfer and commercialization transactions during FY-2010.

Keith Arterburn

2010-12-01T23:59:59.000Z

459

Covenant Deferral Request for the Proposed Transfer of Land Parcel ED-8 at the East Tennessee Technology Park, Oak Ridge, Tennessee - Final - May 2009  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) is proposing to transfer a land parcel (hereinafter referred to as 'the Property') designated as Land Parcel ED-8 at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, by deed, and is submitting this Covenant Deferral Request (CDR) pursuant to Section 120(h)(3)(C) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, and applicable U. S. Environmental Protection Agency (EPA) guidance. The Oak Ridge Reservation (ORR), which includes ETTP, was placed on the National Priorities List (NPL) in November 1989. Environmental investigation and cleanup activities are continuing at ETTP in accordance with CERCLA, the National Contingency Plan (NCP), and the Federal Facility Agreement (FFA). The FFA was entered into by the DOE-Oak Ridge Office (ORO), EPA Region 4, and the Tennessee Department of Environment and Conservation (TDEC) in 1991. The FFA establishes the schedule and milestones for environmental remediation of the ORR. The proposed property transfer is a key component of the Oak Ridge Performance Management Plan (ORPMP) for accelerated cleanup of the ORR. DOE, using its authority under Section 161(g) of the Atomic Energy Act of 1954 (AEA), proposes to transfer the Property to Heritage Center, LLC, a subsidiary of the Community Reuse Organization of East Tennessee (CROET), hereafter referred to as 'Heritage Center.' CROET is a 501(c)(3) not-for-profit corporation established to foster the diversification of the regional economy by re-utilizing DOE property for private-sector investment and job creation. The Property is located in the southern portion of ETTP and consists of approximately 84 acres proposed as the potential site for new facilities to be used for office space, industrial activities, or other commercial uses. The parcel contains both grassy fields located outside the ETTP 'main plant' area and infrastructure located inside the 'main plant' area. No buildings are included in the proposed ED-8 transfer. The buildings in ED-8 have already been transferred (Buildings K-1007, K-1580, K-1330, and K-1000). These buildings are not included in the transfer footprint of Land Parcel ED-8. A number of temporary structures, such as trailers and tents (non-real property), are located within the footprint. These temporary structures are not included in the transfer. DOE would continue to be responsible for any contamination resulting from DOE activities that is present on the property at the time of transfer but found after the date of transfer. The deed transferring the Property contains various restrictions and prohibitions on the use of the Property that are subject to enforcement pursuant to State Law Tennessee Code Annotated (T.C.A.) 68-212-225 and state real property law. These restrictions and prohibitions are designed to ensure protection of human health and the environment.

SAIC

2009-05-01T23:59:59.000Z

460

Unlocking Growth Opportunities for Minority Businesses Through...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Through Technology Transfer December 6, 2013 - 9:38am Addthis Chris Ford Technical Advisor to the Director Office of Economic Impact and Diversity This week the country...

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

1 School of Business SCHOOL OF BUSINESS  

E-Print Network [OSTI]

1 School of Business SCHOOL OF BUSINESS Dean D.C. Kayes (Interim) / L.A. Livingstone (as of August. Jabbour, V. Perry (Interim) First organized as the School of Government in 1928, the School of Business development of individuals assuming leadership roles in society. The School has eight departments

Vertes, Akos

462

Northwest Regional Technology Center  

E-Print Network [OSTI]

Northwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate technology transfer to the national user community. Foster a collaborative spirit across agencies

463

BUSINESS AND The certificate or associate of applied science degree in applied  

E-Print Network [OSTI]

APPLIED BUSINESS AND ACCOUNTING The certificate or associate of applied science degree in applied business provides you with a well-rounded business education covering a wide range of related subjects. The program covers basic business and accounting knowledge and skills, emerging technologies, advanced

Ickert-Bond, Steffi

464

EA-1640: Transfer of Land and Facilities within the East Tennessee Technology Park and Surrounding Area, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

DOE’s Oak Ridge Operations Office issued a final EA and a finding of no significant impact for a proposal to convey DOE property located at the East Tennessee Technology Park and the surrounding area to the Community Reuse Organization of East Tennessee, City of Oak Ridge, other agencies, or private entities for mixed use economic development.Public Comment Opportunities.

465

Aboriginal Business Administration  

E-Print Network [OSTI]

Aboriginal Business Administration Certificate #12;What is the Aboriginal Business Administra on Cer ficate (ABAC) Program? The Aboriginal Business Administra on Cer ficate (ABAC) is designed a cer ficate in business but do not want to study in a four year degree program. ABAC allows Aboriginal

Saskatchewan, University of

466

Business Analyst Certificate Program  

E-Print Network [OSTI]

Business Analyst Certificate Program BusinessandManagement extension.uci.edu/ba #12;Business Analyst Certificate Program Business Analysts Capture Requirements to Build What the Customer Wants. The Business Analyst serves as the key liaison between the client, stakeholders, and the solutions team

Rose, Michael R.

467

BUSINESS MINORS Courses Credits  

E-Print Network [OSTI]

BUSINESS MINORS ACCOUNTING Courses Credits BMIS 211 ­ Intro to Business Decision Support 3 ACTG 201 courses (9cr.): BFIN 322 ­ Business Finance 3 ACTG 328 ­ Intermediate Fin Acct & Reporting II 3 ACTG 401 students with the exception of students pursuing a business degree with an accounting option

Maxwell, Bruce D.

468

Better Buildings Neighborhood Program Business Models Guide:...  

Broader source: Energy.gov (indexed) [DOE]

Guide: HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model HVAC contractor business model...

469

Photonics.com Spectra Home Technology World Innovative Products Business World Presstime Bulletin Article Abstracts Accent on Applications Photonics Research Subs Accent on Applications | September 2006  

E-Print Network [OSTI]

Article Enter search term Entire SiteExplore Photonics.com Page 1 of 4Testing (and Tasting) Beer on Sight of Kenneth S. Suslick. "This technology might be termed an `optoelectronic nose' or an `optoelectronic tongue

Suslick, Kenneth S.

470

Entrepreneurial Programs | Tech Transfer | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

economic development in the region and state is to support the creation of new start-ups businesses that can will license ORNL technology and focus on developing commercial...

471

Business plan proposal  

E-Print Network [OSTI]

about you and your business. The following guideline has been provided to ensure that important points are included in the executive summary. Your business may believe that other information may be pertinent to the completion of the agribusiness plan..., partnership, corporation), if it is a merchandising, processing, or service related business. Is it a new business? an expansion? or a relocation? If it is a relocation, where are you currently located? Trace the history of your business: when was it formed...

Kucera, Carolyn

1991-01-01T23:59:59.000Z

472

Business Stories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technology

473

Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and InnovationexperimentsTechnology

474

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS  

SciTech Connect (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

HAAS CC; KOVACH JL; KELLY SE; TURNER DA

2010-06-24T23:59:59.000Z

475

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS  

SciTech Connect (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

KELLY SE; HAASS CC; KOVACH JL; TURNER DA

2010-06-03T23:59:59.000Z

476

8. Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications Final Report  

SciTech Connect (OSTI)

Abstract Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interest in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (? 0.1 % by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ?20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m2s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site density changes, but no definitive correlation between the nucleation site density and the heat transfer coefficient data could be found. Wettability of the surface was substantially increased for heater coupons boiled in alumina and zinc oxide nanofluids, and such wettability increase seems to correlate reasonably well with the observed marked CHF enhancement for the respective nanofluids. Interpretation of the experimental data was conducted in light of the governing surface parameters (surface area, contact angle, roughness, thermal conductivity) and existing models. It was found that no single parameter could explain the observed HTC or CHF phenomena.

Buongiorno, Jacopo; Hu, Lin-wen

2009-07-31T23:59:59.000Z

477

Development of a robust work transfer iomplementation process  

E-Print Network [OSTI]

The industry-wide need for a robust method of transferring the manufacturing of a component from one location to another is addressed in this thesis. Work transfer activities can be initiated due to a number of business ...

Murdoch, Kimberly R

2004-01-01T23:59:59.000Z

478

Planning your business: The Business Plan A business plan is like a road map for your business. Careful  

E-Print Network [OSTI]

Planning your business: The Business Plan A business plan is like a road map for your business. Careful planning is key to any successful business. A business plan ensures that resources are available, including (time, money, and opportunities). It helps you decide where you want to go with the business

479

Student, Business & Professional Studies "The Strategic Leadership  

E-Print Network [OSTI]

Foundations of Business Process Management (BPM) 232 Organizational Aspects of Business Process Management (BPM) 232 Tools & Techniques of Business Process Management (BPM) 232 Business Strategy 232 Business

Toronto, University of

480

SearchHome Video News Images Health Education Topics Blogs Mobile Space Science Technology Health General Sci-Fi & Gaming Oddities International Business Education Mars Science Laboratory Curiosity  

E-Print Network [OSTI]

SearchHome Video News Images Health Education Topics Blogs Mobile Space Science Technology Health the Video: Stingless Bees Fight Over Food Source ] April Flowers for redOrbit.com ­ Your Universe Online Dancing Bees Show Researchers The Way To The Best Environmental Schemes UK Honeybees Threatened

Nieh, James

Note: This page contains sample records for the topic "business technology transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Where Science becomes Business UF Tech Connect is housed and supported by the Office of Technology Licensing November 2009 Fall, Issue 1  

E-Print Network [OSTI]

of Technology Licensing Update November 2009 Fall, Issue 1 In This Issue Federal Grant Helps Create Florida to Assist with SBIR/STTR Proposals Xhale Awarded $1.7 Million NIH/NIMH SBIR Grant Nanotherapeutics Awarded $30.9 Million NIAID Contract Verenium and BP Announce Vercipia Biofuels AxoGen Announces U.S. Market

Wu, Dapeng Oliver

482

Technology Deployment Annual Report 2013 December  

SciTech Connect (OSTI)

Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In a multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Deployment. However, the accomplishments cataloged in the report reflect the achievements and creativity of the researchers, technicians, support staff, and operators of the INL workforce.

N /A

2014-01-01T23:59:59.000Z

483

Large Business Development Program (Illinois)  

Broader source: Energy.gov [DOE]

The Large Business Development Program, administered by the Illinois Department of Commerce and Economic Opportunity, provides grants to large businesses for bondable business activities, including...

484

Electroless nickel bath recycle. Project accomplishment summary for DOE Technology Transfer Initiative project 93-Y12P-086-C1  

SciTech Connect (OSTI)

The Lockheed Martin Energy Systems plating group has decades of experience in electroless nickel plating. The group conceived of, established the validity of, and patented the ENVIRO-CP process for plating bath rejuvenation, which eliminates the generation of hazardous waste from plating processes. Fidelity Chemical Products Corporation supplies chemicals to and has knowledge of the plating industry. A second partner (CRADA identity protected) conducts production plating. The objective of this Cooperative Research and Development Agreement (CRADA) project was to transfer the ENVIRO-CP process to the plating industry. Energy Systems personnel were to evaluate and modify the general process so that it could be used for a specific plating process, working in concert with the partner. Technical results/accomplishments: the plating solutions and the ENVIRO-CP process were analyzed and modified for direct use in the partner`s plating facility. An engineering flowsheet and pilot plant production-scale equipment were designed. Some pilot-scale equipment was fabricated; the balance will be procured and the system tested when the partner is able to budget for purchase of the remaining equipment.

NONE

1996-03-22T23:59:59.000Z

485

Isothermal Battery Calorimeter Technology Transfer and Development: Cooperative Research and Development Final Report, CRADA Number CRD-12-461  

SciTech Connect (OSTI)

During the last 15 years, NREL has been utilizing its unique expertise and capabilities to work with industry partners on battery thermal testing and electric and hybrid vehicle simulation and testing. Further information and publications about NREL's work and unique capabilities in battery testing and modeling can be found at NREL's Energy Storage website: http://www.nrel.gov/vehiclesandfuels/energystorage/. Particularly, NREL has developed and fabricated a large volume isothermal battery calorimeter that has been made available for licensing and potential commercialization (http://techportal.eere.energy.gov/technology.do/techID=394). In summer of 2011, NREL developed and fabricated a smaller version of the large volume isothermal battery calorimeter, called hereafter 'cell-scale LVBC.' NETZSCH Instruments North America, LLC is a leading company in thermal analysis, calorimetry, and determination of thermo-physical properties of materials (www.netzsch-thermal-analysis.com). NETZSCH is interested in evaluation and eventual commercialization of the NREL large volume isothermal battery calorimeter.

Pesaran, A.; Keyser, M.

2014-12-01T23:59:59.000Z

486

2013-2014 Transfer Equivalency Worksheet Milwaukee Area Technical College  

E-Print Network [OSTI]

Resource Planning, International Business, Real Estate, and Investment Management Potential applicants majors: Accounting, Finance, Information Technology Management, Human Resources Management, Marketing of Wisconsin-Milwaukee Lubar School of Business Cultural Diversity Yes No Foreign Language Yes No English

Saldin, Dilano

487

3Building a Business Building a Business  

E-Print Network [OSTI]

15 3Building a Business Building a Business This section provides direction on the kinds. If you contemplate building a "garage- based" company to sell a product into a niche market, you should-ups conjure up images of future wealth, of building the next Amgen or Microsoft, of launching what will become

Arnold, Jonathan

488

Overview of Business Planning and Business Models, Opening Plenary  

Broader source: Energy.gov [DOE]

U.S. Department of Energy Better Buildings Neighborhood Program: Overview of Business Planning and Business Models, October 25, 2011

489

Business, management and finance  

E-Print Network [OSTI]

Business, management and finance Essentials Taught degrees Masters in Business Administration (MBA) MSc in Banking and Finance MSc in Corporate and Financial Risk Management MSc in Financial Mathematics MSc in International Accounting and Corporate Governance MSc in International Finance MSc

Sussex, University of

490

Business Entity Planning  

E-Print Network [OSTI]

There are a number of ways farm and ranch businesses can be structured, including partnerships, corporations, limited liability companies, and others. This publication explains how the structure of a business affects estate planning, management...

Thompson, Bill; Hayenga, Wayne

2008-10-10T23:59:59.000Z

491

Small Business Status  

Broader source: Energy.gov (indexed) [DOE]

Teaming Arrangements on Small Business Status The Department of Energy is planning to set aside for small businesses a number of acquisitions of a very complex nature, requiring a...

492

BUSINESS PROCESSES EXTENSIONS TO UML PROFILE FOR BUSINESS MODELING  

E-Print Network [OSTI]

BUSINESS PROCESSES EXTENSIONS TO UML PROFILE FOR BUSINESS MODELING Pedro Sinogas, André Vasconcelos@ceo.inesc.pt, jneves@ieee.org, rmendes@ceo.inesc.pt, jmt@inesc.pt Key words: Business Modeling, Business Process modeling business processes. This paper proposes an extension to UML Profile for Business Modeling

493

SUGGESTED BUSINESS ELECTIVES For College of Business Administration Students  

E-Print Network [OSTI]

SUGGESTED BUSINESS ELECTIVES For College of Business Administration Students Business electives consist of any business course taught in the college of Business Administration (ACCT, BA, ECON, FIN, HRT: Business Students are NOT eligible to take any 4400 or 4401 courses (i.e.: BA 4400, MANG 4400, MKT 4400

Kulp, Mark

494

darla moore school of business darla moore school of business  

E-Print Network [OSTI]

darla moore school of business #12;darla moore school of business "All of us at the Moore School communities, relevant and cutting-edge business and management knowledge for our corporate partners, International Business #12;the promise to business: education and support "Business, more than any other

Almor, Amit

495

Business Planning Resources  

Broader source: Energy.gov [DOE]

Business Planning Resources, a presentation of the U.S. Department of Energy's Better Buildings Neighborhood Program.

496

FACULTYFACULTYFACULTY BUSINESS ANDBUSINESS AND  

E-Print Network [OSTI]

(Acc&Fin) curriculum. DEGREES OFFERED Website: http://www.fbe.hku.hk BUSINESS AND ECONOMICS k BUSINESSANDECONOMICS #12

Tam, Vincent W. L.

497

Business Agreements Printing & Mail Services  

E-Print Network [OSTI]

Business Agreements Storehouse Printing & Mail Services Receiving Equipment Management Director Planning/ Resource Planning Space ManagementAccounting Services Student Business Services Education Administration Finance and Business Operations Organization Risk Management Finance & Business Operations

498

Data analysis, analytical support, and technology transfer support for the Federal Energy Management Program Office of Conservation and Renewable Energy Department of Energy. Final technical report, August 8, 1987--August 7, 1992  

SciTech Connect (OSTI)

Activities included the collecting, reporting, and analysis of Federal energy usage and cost data; development of program guidance and policy analysis of Federal energy usage and cost data; development of program guidance and policy analysis; inter-agency liaison; promotion of energy efficiency initiatives; and extensive technology transfer and outreach activities.

Tremper, C.

1992-12-31T23:59:59.000Z

499

At the end of the secure period, Technology Transfer (for patent works) or the Office of Research and Creative Activities (Export Controls) will be contacted to verify that the work can be released.  

E-Print Network [OSTI]

At the end of the secure period, Technology Transfer (for patent works) or the Office of Research a patent, OR 2. Works with Export Control restrictions. Graduate Studies 105 FPH, Provo, UT, 84602 Tel@byu.edu patent OR export control restrictions #12;

Hart, Gus

500

Business Services Strategic Plan  

E-Print Network [OSTI]

Business Services Strategic Plan Updated September 2008 New Synergies: Launching Tomorrow's Leaders Discovery with Delivery Meeting Global Challenges Excellence in Business and Support Services #12;Introduction The mission of Business Services at Purdue University is to enable, serve, and support others

Holland, Jeffrey