National Library of Energy BETA

Sample records for burns michael cole

  1. Michael Strayer

    Broader source: Energy.gov [DOE]

    Michael Strayer is the Associate Director of Advanced Scientific Computing in the Office of Science.

  2. Cole Edick | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cole Edick About Us Cole Edick - Intern, Office of Public Affairs Most Recent NHL Scores Big with Sustainability June 10

  3. Michael Urashka

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Urashka Michael Urashka murashka_2.jpg Michael Urashka Computer Systems Engineer Infrastructure Services National Energy Research Scientific Computing Center meurashka@lbl.gov Phone: (510) 486-5256 Fax: (510) 486-6459 Lawrence Berkeley National Laboratory 1 Cyclotron Road Mailstop 59R4010A Berkeley, CA 94720 US Biographical Sketch Michael Urashka has been at LBNL since 2003. Computer Systems Engineer. Webops and scalable infrastructure for application deployments. Web operations for the

  4. Michael Sinatra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sinatra Engineering Services The Network OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Michael Sinatra Michael Sinatra Network Engineer Network Engineering Services Group Sinatra@es.net Michael Sinatra is engaged in assisting Department of

  5. Michael Colbert

    Broader source: Energy.gov [DOE]

    Michael Colbert is the Deputy Director of the Office of Diversity and Inclusion at the Department of Energy, where he is working to create and sustain an organizational culture that values...

  6. Michael Milner

    Broader source: Energy.gov [DOE]

    Michael S. Milner became the Assistant Inspector General for Investigation in July 2012. Prior to this he was Director of the Computer Crime Investigative Unit with the U.S. Army Criminal...

  7. Michael Titus

    Broader source: Energy.gov [DOE]

    Michael joined the Office of Technology Transitions in January of 2016, where he currently serves as a research analyst for the office's strategic projects and data analysis teams. Prior to his...

  8. Michael Rencheck

    Broader source: Energy.gov [DOE]

    Michael Rencheck was appointed the president and chief executive officer of AREVA Inc. in March 2012.  In January 2010, Mike was named the Chief Operating Officer of AREVA Inc., as part of...

  9. Michael Baskin

    Office of Energy Efficiency and Renewable Energy (EERE)

    Michael Baskin is an Oak Ridge Institute for Science and Education (ORISE) Fellow in the Office of Energy Efficiency and Renewable Energy (EERE). In his role with EERE he focuses on common areas of...

  10. Michael Gardipe | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michael Gardipe About Us Michael Gardipe - Deputy Designated Federal Officer

  11. Michael Dopheide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Dopheide About ESnet Our Mission The Network ESnet History Governance & Policies Career Opportunities ESnet Staff & Org Chart ESnet Leadership Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Network Planning Operational Enhancements Office of the CTO Science Engagement Tools Team Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1

  12. Michael Ravnitzky

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    24, 2009 Michael Ravnitzky 1905 August Drive Silver Spring, MD 20902 Re: FOIA-2009-000360 Dear Mr. Ravnitzky: This is in final response to the request for information that you sent to the Department of Energy (DOE) under the Freedom of Information Act (FOIA), 5 U.S.C. § 552. You asked for copies of each Weekly Departmental Report for the Department of Energy produced between January 1, 2009 and May 1, 2009. Your request was assigned to the Office of the Executive Secretariat for responsive

  13. Michael Demkowicz: MIT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Demkowicz: MIT Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Michael Demkowicz: MIT Former postdoc now an Associate Professor at MIT September 3, 2014 Michael Demkowicz Michael Demkowicz Contact Linda Anderman Email Michael Demkowicz Demkowicz now at MIT Michael Demkowicz worked at the Lab from 2005 to 2008 with the Materials Science and Technology division, first as a postdoc and then as a technical staff

  14. Michael Griffin | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Griffin Michael Griffin Research Engineer Michael.Griffin@nrel.gov | 303-384-6205 Research Interests Development of catalytic materials for the conversion of biomass into fuels and ...

  15. Employee Spotlight: Michael Torrez

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Torrez Michael Torrez-Tracing family lineages to colonial New Mexico Michael Torrez, by day a research technologist in the Laboratory's Materials Physics and Applications Division, spends much of his free time researching New Mexico's family histories. August 26, 2014 Michael Torrez Michael Torrez in front of a family tree he is researching. "Tracing one's family history is quite tricky. ...But nowadays we have much greater access to genealogical information than ever before, and

  16. Michael Ratzloff | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Ratzloff Scientist II Mike.Ratzloff@nrel.gov | 303-384-7861 Research Interests Michael Ratzloff received his B.S. in Chemistry from the Colorado School of Mines in 2008, ...

  17. The Honorable Rick.~Cole, ~

    Office of Legacy Management (LM)

    : . Department of Energy, Washington, DC 20585 . DE; 1 3 &g4 " ' The Honorable Rick.~Cole, ~ 100 N. Garfiild'Avenue Pasadena, California 91109. ., . Dear Mayor Cole: / Secretary of'Energy Hazel.O',Leary has announced a new approach to openness in,, the Department of Energy (DOE) and its communications with the'publ'ic. In support of this initiative, we are pleased'to forward the,enclosed information related to the Electric Circuits, Inc. s,ite in your jurisdiction that performed work

  18. Michael McDowell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publicatons Contact Us Ring Status Current Schedule Michael W. McDowell Argonne National Laboratory 9700 S. Cass Ave 431E006 Argonne, IL 60439 Phone: 252-6422 Fax: 252-7392...

  19. Michael H. Schlender- Biography

    Broader source: Energy.gov [DOE]

    Michael Schlender is Chief Operations Officer and Associate Laboratory Director for Operational Systems at Pacific Northwest National Laboratory, a VPP Star Site operated by Battelle for the U.S. Department of Energy.

  20. Michael L. Rodrigue

    Broader source: Energy.gov [DOE]

    Michael L. Rodrigue coordinates and executes the administrative operations that support the mission of the U.S. Department of Energy Office of Indian Energy, including acquisitions, human...

  1. Welcome Michael Pesin

    Broader source: Energy.gov [DOE]

    Michael Pesin has joined the Office of Electricity Delivery and Energy Reliability as Deputy Assistant Secretary for the Power Systems Engineering Research and Development Division. Michael has 30 years of experience in the electric utility industry, much of it directing development and execution of advanced technology programs. His most recent assignment was with Seattle City Light (SCL) where he developed the technology strategy, managed research and development projects and directed strategic programs to management demonstration projects.

  2. Employee Spotlight: Michael Torrez

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Torrez August 26, 2014 Michael (Miguél) Torrez, by day a research technologist in the Laboratory's Materials Physics and Applications Division, spends much of his free time researching New Mexico's family histories and helping interested parties verify or fill in their family tree by complementing any existing document trail with the genetic testing that has become available in recent years. Torrez conducts research at the New Mexico State Library (photo courtesy of the Albuquerque

  3. Michael J. Banda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael J. Banda Print Deputy Division Director, Operations, Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory. Advanced Light Source Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 80R0114 Berkeley, CA 94720 USA Tel. (510) 495-2837 Fax (510) 486-4960 Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Michael Banda is the Deputy Division Director for Operations of the Advanced Light Source. "Banda,"

  4. Isotopic Analysis At Northern Basin & Range Region (Cole, 1983...

    Open Energy Info (EERE)

    Cole, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Northern Basin & Range Region (Cole, 1983) Exploration Activity...

  5. Michael Hess | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michael Hess About Us Michael Hess - Former Digital Communications Specialist, Office of Public Affairs Michael Hess Michael joined the Office of New Media at the Energy Department in August 2011 to write and promote stories about science technology, basic and applied science, technology transfer, commercialization, research and development, and the National Labs. In a previous life, Michael was an enlisted Air Force public affairs representative where he worked as the editor of RAF Lakenheath's

  6. Michael Koentop | Department of Energy

    Energy Savers [EERE]

    Michael Hess About Us Michael Hess - Former Digital Communications Specialist, Office of Public Affairs Michael Hess Michael joined the Office of New Media at the Energy Department in August 2011 to write and promote stories about science technology, basic and applied science, technology transfer, commercialization, research and development, and the National Labs. In a previous life, Michael was an enlisted Air Force public affairs representative where he worked as the editor of RAF Lakenheath's

  7. Michael O'Connor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O'Connor Engineering Services The Network OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Michael O'Connor Michael (Moc) P. O'Connor Network Engineer Network Engineering Services Group MOC@es.net Mike O'Connor goes by his UNIX ID "moc"

  8. ORISE Research Team Experiences: Michael Smith

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Smith Astrophysicist Uses Celestial Knowledge to Cultivate Rising Stars Michael Smith ORNL Nuclear Astrophysicist Michael Smith inspects the framework of what will ...

  9. Michael T. Guarnieri | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael.Guarnieri@nrel.gov | 303-384-7921 Research Interests Dr. Michael Guarnieri is a research scientist in the National Bioenergy Center's Applied Biology group at the National ...

  10. Michael Budney | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michael Budney About Us Michael Budney - Director of Business Operations Photo of Michael Budney. Michael Budney is the Director of Business Operations for the Office of Energy Efficiency and Renewable Energy (EERE). He manages the daily operations of EERE's Project Management Coordination Office, Workforce Management Office and Information Technology Services Office to ensure their efforts are aligned, effective, and responsive to the organization's needs. Before joining EERE in May 2015,

  11. Michael Reed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michael Reed About Us Michael Reed - Director, Technical and Project Management Division Mike_Reed.jpg Mr. Michael Reed is the Director of the Technical and Project Management Division (TPMD) for the Department of Energy's Loan Programs Office (LPO). In this role, he provides technical management and performance monitoring of LPO's $30 billion portfolio of clean energy projects. This portfolio includes projects in renewable energy and energy efficiency, advanced technology vehicle manufacturing,

  12. Michael S. Talmadge | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. Talmadge Michael S. Talmadge Senior Process Engineer, Biorefinery Analysis Michael.Talmadge@nrel.gov | 303-275-4632 Areas of Expertise Michael S. Talmadge has 15 years of experience in fuel production technologies with the first 10 years of his career spent in petroleum production and refining process development with ExxonMobil Research and Engineering Company and Valero Energy Corporation. Since joining the National Renewable Energy Laboratory (NREL), Talmadge has supported the development

  13. NREL: Energy Analysis - Michael Woodhouse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Woodhouse Photo of Michael Woodhouse Michael Woodhouse is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Solar PV Technologies and Economics Analyst On staff since 2008 Phone number: 303-384-7623 E-mail: Michael.Woodhouse@nrel.gov Areas of expertise Fundamental science of photovoltaics (PV) and solar hydrogen technologies Economics of PV - From manufacturing to levelized cost of energy (LCOE) Primary research interests Manufacturing

  14. Michael Levitt and Computational Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Levitt and Computational Biology Resources with Additional Information * Publications Michael Levitt Courtesy of Linda A. Cicero / Stanford News Service Michael Levitt, PhD, professor of structural biology at the Stanford University School of Medicine, has won the 2013 Nobel Prize in Chemistry. ... Levitt ... shares the ... prize with Martin Karplus ... and Arieh Warshel ... "for the development of multiscale models for complex chemical systems." Levitt's work focuses on

  15. NREL: Energy Analysis - Michael Gleason

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Gleason is a member of the Data Analysis and Visualization Group in the Strategic Energy Analysis Center. Scientist III - GIS On staff since April 2014 Phone number: ...

  16. ORISE: Undergraduate Research Experiences - Michael Capozzoli

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Website development effort leads to career opportunity for NETL intern Michael Capozzoli Michael Capozzoli configures the content management system that will power the new website ...

  17. Cole County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cole County, Missouri: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.5052486, -92.2630393 Show Map Loading map... "minzoom":false,"mapping...

  18. National Laboratory]; Chertkov, Michael [Los Alamos National...

    Office of Scientific and Technical Information (OSTI)

    Chertkov, Michael Los Alamos National Laboratory Construction and Facility Engineering; Energy Conservation, Consumption, & Utilization(32); Energy Planning, Policy, &...

  19. ORISE: Undergraduate Research Experiences - Michael Capozzoli

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Capozzoli Website development effort leads to career opportunity for NETL intern Michael Capozzoli Michael Capozzoli configures the content management system that will power the new website at National Energy Technology Laboratory in Pittsburgh, Pa. Photo by Brian Albin/NETL Michael Capozzoli just needed an internship for graduation. What he got was even better. Capozzoli's assignment, offered through a National Energy Technology Laboratory professional internship program and

  20. Michael DeSantis | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael DeSantis Michael DeSantis Michael DeSantis Michael DeSantis Alumnus Website: Washington University in St. Louis Graduated with PhD in 2012. Dr. DeSantis is a former...

  1. Michael Sternberg | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Sternberg Senior Scientific Associate Ph.D., University of Paderborn, Germany Research focus is in the integration of various modeling programs, to enable researchers to combine the strengths of each approach to allow solving more complex problems Responsibility for the high-performance computing systems at the center Telephone 630.252.4631 Fax 630.252.4646 E-mail sternberg@anl.gov CV/Resume PDF icon sternberg

  2. John Michael Yarbrough | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Yarbrough Research Scientist John.Yarbrough@nrel.gov | 303-384-6831 Research Interests John Yarbrough received his Ph.D. in Applied Physics from the Colorado School of Mines (CSM) in 2007 where his research activities primarily involved investigating the electronic and optical properties of advanced polycrystalline semiconductor materials systems and device structures. He spent most of his time at CSM developing and using novel characterization techniques to obtain a fundamental

  3. Michael Stewart! NERSC User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Stewart! NERSC User Services Compilers on NERSC Systems --- 1 --- September 10, 2013 Compilers on NERSC Systems Crays ( Hopper a nd E dison) PrgEnv m odules p rovide l inks t o M PI a nd m ath l ibrary l ibraries a nd includes. Invoke c ompilers w ith w rapper c ommands a nd t he l oaded PrgEnv m odule will i nvoke t he p roper c ompiler: ?n ( Fortran), c c ( C c ompiler), a nd C C ( C+ +). Available c ompiler m odules: pgi ( only o n H opper), i ntel, c ray, a nd g nu (gcc). Default

  4. Michael G. Zimmerman | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    G. Zimmerman About Us Michael G. Zimmerman - Director, Office of Headquarters Security Operations Michael G. Zimmerman Mr. Michael Zimmerman is the Director of the Office of Headquarters Security Operations. The office supports DOE Headquarters through a comprehensive safeguards and security program providing protection for personnel, information and facilities at DOE Headquarters buildings. The protection programs within the Office of Headquarters Security Operations include the Protective

  5. Michael J. Ardaiz | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J. Ardaiz About Us Michael J. Ardaiz - Chief Medical Officer, Office of the Associate Under Secretary for Environment, Health, Safety and Security Michael J. Ardaiz Dr. Michael Ardaiz is the DOE Chief Medical Officer within the office of the Associate Under Secretary for Environment, Health, Safety, and Security. Currently, Dr. Ardaiz serves as the chief Occupational Medicine physician for the Department in support of over 50 occupational health facilities which in turn provide health care to

  6. Michael Pesin, OE-10 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michael Pesin, OE-10 About Us Michael Pesin, OE-10 - Deputy Assistant Secretary, Advanced Grid Research and Development Michael Pesin is Deputy Assistant Secretary for the Advanced Grid Research and Development Division in the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability. Mr. Pesin has 30 years of experience in the electric utility industry, much of it directing development and execution of advanced technology programs. His most recent assignment was with

  7. Michael Seibert - Research Fellow Emeritus | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Seibert - Research Fellow Emeritus Photo of Michael Seibert Research Fellows Dr. Michael Seibert is a Research Fellow Emeritus of the National Renewable Energy Laboratory (NREL) and Research Professor in the Environmental Science and Engineering Department at the Colorado School of Mines, Golden. His current research interests include primary processes of and water-oxidation in oxygenic photosynthesis, structure and function of [Fe]-hydrogenases, molecular engineering of hydrogenases,

  8. Memorial Gathering Pending for NERSC's Michael Welcome

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Memorial Gathering Pending for NERSC's Michael Welcome Memorial Gathering Pending for NERSC's Michael Welcome February 4, 2014 MWelcome.JPG Mike Welcome A celebration of life is pending for Michael Welcome, a member of NERSC's Mass Storage Group, who collapsed at work on Thursday, Jan. 30, and subsequently died. Welcome spent his entire career working for computing organizations at Lawrence Berkeley and Lawrence Livermore national laboratories. He was 56. During his 30-year career, Welcome made

  9. Michael Gross | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Gross Michael Gross Michael Gross Principal Investigator E-mail: mgross@wustl.edu Phone: (314) 935-4814 Website: Washington University in St. Louis Principal Investigator Dr. Gross's research interests include analytical chemistry, biological chemistry, biophysical chemistry, FT-ICR instrument development, MALDI matrix development, mass spectrometry for protein biochemistry and biophysics, modified DNA and cancer, physical organic chemistry, protein and peptide analysis, and proteomics.

  10. Michael Andersen, LLC | Open Energy Information

    Open Energy Info (EERE)

    Zip: 80202 Region: Rockies Area Sector: Services Product: Renewable Energy Artwork Photography Website: www.MichaelAndersenLLC.com Coordinates: 39.7541032, -105.0002242 Show...

  11. Michael R. Maraya (Acting) | Department of Energy

    Office of Environmental Management (EM)

    R. Maraya (Acting) About Us Michael R. Maraya (Acting) - Deputy CIO for Enterprise Policy, Portfolio Management & Governance Mike Maraya is the Acting Deputy CIO for Enterprise...

  12. Method for promoting Michael addition reactions

    DOE Patents [OSTI]

    Shah, Pankaj V.; Vietti, David E.; Whitman, David William

    2010-09-21

    Homogeneously dispersed solid reaction promoters having an average particle size from 0.01 .mu.m to 500 .mu.m are disclosed for preparing curable mixtures of at least one Michael donor and at least one Michael acceptor. The resulting curable mixtures are useful as coatings, adhesives, sealants and elastomers.

  13. WBU-14-0011- In the Matter of Dr. Paul M. Cole, Ph.D

    Broader source: Energy.gov [DOE]

    On November 3, 2014, the Office of Hearings and Appeals (OHA) issued a decision denying a jurisdictional appeal filed by Dr. Paul M. Cole, Ph.D (Dr. Cole), a former Oak Ridge Institute for Science...

  14. TEE-0073 - In the Matter of Cole Distributing, Inc. | Department of Energy

    Energy Savers [EERE]

    3 - In the Matter of Cole Distributing, Inc. TEE-0073 - In the Matter of Cole Distributing, Inc. On December 13, 2010, Cole Distributing, Inc. (Cole) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). The firm requests that it be permanently relieved of the requirement to prepare and file the Energy Information Administration (EIA) Form EIA-782B, entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report." As

  15. Michael Liebreich (Energy All Stars Presentation)

    Broader source: Energy.gov [DOE]

    Michael Liebreich, CEO of Bloomberg New Energy Finance, delivered this presentation on the energy economy at the Energy All Stars event on January 19, 2013, at the US Department of Energy in...

  16. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  17. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  18. Michael C Zarnstorff | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael C Zarnstorff Deputy Director for Research Michael Zarnstorff is the deputy director for research at PPPL, where he oversees research that ranges from test- ing ideas for harnessing fusion to developing rockets for space flight. His job encompasses keeping projects aligned with DOE goals and envision- ing new research opportunities for PPPL. An award-winning physicist and a co-discoverer of the bootstrap current, he joined PPPL in 1984 and has been deputy director for research since 2009.

  19. Michael Papka | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Papka Division Director Michael Papka Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 4134 Argonne, IL 60439 630-252-1556 papka@anl.gov http://papka.alcf.anl.gov Michael E. Papka is the Director of the ALCF. He is also Argonne's Deputy Associate Laboratory Director for Computing, Environment and Life Sciences. Both his laboratory leadership roles and his research interests relate to high-performance computing in support of scientific discovery. Dr. Papka holds a Senior

  20. Michael Vaughn | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Vaughn Graduate student Subtask 1 and 2 project: "Modification of the Turnover Potential of Plastoquinol Terminal Oxidase: Can an Oxygen Reducing Enzyme Operate in Reverse?" Watch Michael's interview at 2012 Bisfuel Retreat

  1. Michael Stone | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Michael Stone Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Current Fellows Alumni Fellows Official AEF Logos Contact WDTS Home Current Fellows Michael Stone Print Text Size: A A A FeedbackShare Page Michael Stone Fellowship Placement: National Science Foundation Hometown: East Ridge, TN Michael Stone has taught at several high schools in Chattanooga,

  2. INVERSIONS H. Michael Mogil, Certified Consulting Meteorologist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEPTEMBER 2008 INVERSIONS H. Michael Mogil, Certified Consulting Meteorologist In the August 2008 issue of Climate Education Update, we looked at the concept of inversions, situations in which the temperature increases with increasing altitude. This is the opposite of what one would expect in the troposphere, the lowest shell of the atmosphere that is in contact with the Earth. Inversions are always present when fog is present. The most commonly observed inversion is the one found near the

  3. Jefferson Lab Leadership Council - Michael Dallas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chief Operating Officer, Michael Dallas Dr. Rolf Ent Associate Director for Experimental Nuclear Physics Rolf Ent came to Jefferson Lab in 1993 as a Hall C scientist and adjunct professor at Hampton University. Rolf served as experimental group leader of the Nuclear and High-Energy Physics (NuHEP) Center at Hampton University from 1996-2001, and served as Hall C Leader from 2002-2006. He then served as the 12 GeV Upgrade Science lead at Jefferson Lab until 2009, and became associate director for

  4. 10 Questions for a Mechanical Engineer: Michael Brambley | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Mechanical Engineer: Michael Brambley 10 Questions for a Mechanical Engineer: Michael Brambley July 17, 2013 - 1:51pm Addthis Pictured here is Michael Brambley in front of equipment that supplies chilled water to PNNL Building Diagnostics Laboratory's air handler. The cooled air from an air handler is distributed to terminal boxes, which are the last point for controlling air temperature and flow before distributing it throughout a building zone. In a new control strategy for

  5. Notices FOR FURTHER INFORMATION CONTACT: Michael Li, Policy Advisor...

    Office of Environmental Management (EM)

    12, 2016 Notices FOR FURTHER INFORMATION CONTACT: Michael Li, Policy Advisor, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, 1000 Independence Ave. ...

  6. Michael Allen; Dongarra, Jack. [University of Tennessee, Knoxville...

    Office of Scientific and Technical Information (OSTI)

    Toward a new metric for ranking high performance computing systems. Heroux, Michael Allen; Dongarra, Jack. University of Tennessee, Knoxville, TN The High Performance Linpack...

  7. "ONE HUNDRED YEARS OF SUPERCONDUCTIVITY", Dr. Michael Norman...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "ONE HUNDRED YEARS OF SUPERCONDUCTIVITY", Dr. Michael Norman, Materials Science Division, Argonne National Laboratory ONE HUNDRED YEARS OF SUPERCONDUCTIVITY PPPL Entrance ...

  8. Michael Tsapatsis | Center for Gas SeparationsRelevant to Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Tsapatsis Professor of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis Email: tsapa001 at umn.edu Phone: 612-626-0920 EFRC research: ...

  9. Summer 2011 Intern Project- Michael Myers | Center for Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHOSPHOR IMPLEMENTATION SCHEMES FOR EFFICIENT LED-BASED WHITE LIGHT Michael Myers Chemical ... Modern day lighting solutions include highly inefficient sources such as incandescent and ...

  10. Technical Sessions W. F. Dabberdt, C. ~,1artin, H. L. Cole, J...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. F. Dabberdt, C. ,1artin, H. L. Cole, J. Dudhia, T. Horst, Y. H. Kuo, :3. Oncley, and ... K. S. Gage, W. Ecklund, D. Carter, R. Strauch, and E. R. Westwater National Oceanic and ...

  11. Michael Kenney | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Principal Investigators Postdoctoral Fellows Center researchers Graduate Students Undergraduate Students All Bisfuel Center Personnel Emily North Michael Kenney Michael Kenney Undergraduate student Related links: 2011 Undergraduate's Goldwater award 2012 Dean's Medal Subtask 1 * Subtask 2 * Subtask 3 * Subtask 4 * Subtask 5

  12. Microsoft PowerPoint - 15.1500_Michael Deane [Compatibility Mode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    00Michael Deane Compatibility Mode Microsoft PowerPoint - 15.1500Michael Deane Compatibility Mode PDF icon Microsoft PowerPoint - 15.1500Michael Deane Compatibility Mode...

  13. TBU-0118- IN THE MATTER OF GORDON MICHAELS

    Broader source: Energy.gov [DOE]

    Gordon Michaels appeals the dismissal of his whistleblower complaint filed under I 0 C.F .R. Patt 708, the Depattment of Energy (DOE) Contractor Employee Protection Program. Two offices having...

  14. Central Park in New York City Myer, Michael; Goettel, Russell...

    Office of Scientific and Technical Information (OSTI)

    (LED) Post-Top Lighting at Central Park in New York City Myer, Michael; Goettel, Russell T.; Kinzey, Bruce R. GATEWAY; Central Park; lighting; LED; light-emitting diode; post-top...

  15. FIA-15-0053- In the Matter of Michael Isikoff

    Office of Energy Efficiency and Renewable Energy (EERE)

    On October 1, 2015, OHA denied a FOIA Appeal filed by Michael Isikoff (Appellant) from an interim response issued to him by the DOE’s Office of Information Resources. In the Appeal, the Appellant...

  16. Michael Hickman receives NNSA Gold Medal, announces retirement | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Michael Hickman receives NNSA Gold Medal, announces retirement Thursday, May 28, 2015 - 9:21am NNSA's Director of the Office of Enterprise Project Management Michael Hickman has announced that he will be retiring effective May 29, 2015 after 34 years distinguished federal service. As a member of the Senior Executive Service, he has spent approximately 25 of those years in senior leadership positions across DOE and NNSA. In his current capacity,

  17. Michael Lempke receives NNSA's Gold Medal of Excellence | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Michael Lempke receives NNSA's Gold Medal of Excellence Monday, June 16, 2014 - 4:25pm DOE Undersecretary for Nuclear Security and NNSA Administrator Frank Klotz recently presented the Gold Medal of Excellence for Distinguished Service to Michael Lempke, former Acting Chief and Associate Administrator for Defense Nuclear Security. The medal is the highest honorary award granted by NNSA and was presented to Lempke in recognition of his outstanding

  18. ANSER Director Michael R. Wasielewski elected to AAAS | ANSER Center |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne-Northwestern National Laboratory Director Michael R. Wasielewski elected to AAAS Home > News & Events > ANSER Director Michael R. Wasielewski elected to AAAS Originally published on Northwestern News Six Northwestern Faculty Elected to the American Academy of Arts and Sciences April 20, 2016 | by Megan Fellman EVANSTON, Ill. --- Six members of the Northwestern University faculty have been elected members of the American Academy of Arts and Sciences, one of the nation's

  19. Secretary of Energy Advisory Board Public Meeting Committee Members: John Deutch, Chair; Carol Browner; Michael Greenstone; Michael McQuade;

    Office of Environmental Management (EM)

    Carol Browner; Michael Greenstone; Michael McQuade; Richard A. Meserve; Ram Shenoy; Dan Reicher; Martha Schlicher; and Linda Stuntz Date and Time: October 15, 2015, 9:00 AM - 12:15 PM EST Location: Department of Energy, Forrestal Building, 1000 Independence Avenue, SW, Washington, DC Purpose: Meeting of the Secretary of Energy Advisory Board (SEAB) SEAB Staff: Karen Gibson, Designated Federal Officer; Corey Williams-Allen, Deputy Designated Federal Officer; Matthew Schaub, Deputy Director DOE

  20. Morgan Stefik > Postdoc - École Polytechnique Fédérale de...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stefik received his PhD in 2009 and continued as a postdoc with the Wiesner Group. He is currently working in the Laboratory of Photonics and Interfaces with the Dr. Michael ...

  1. Science in St. Louis | Dr. Michael Fix | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Science in St. Louis | Dr. Michael Fix March 15, 2016 Science in St. Louis | Dr. Michael Fix Monster in the Hollow - The Story of Missouri's Ozark Dinosaurs Professor Fix has been a member of UMSL's Physics faculty since 1976 and is responsible for teaching all of the Geology classes and labs that are offered through the department. He is a graduate of Washington University's department of Earth and Planetary Sciences with a focus in paleontology and stratigraphy. He was chosen by the

  2. From: Henderson, Michael To: Congestion Study Comments; Meyer, David

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Henderson, Michael To: Congestion Study Comments; Meyer, David Cc: Doe, Stanley; Kowalski, Richard; Paradise, Theodore Subject: DOE Congestion Study Date: Monday, October 20, 2014 10:12:20 AM Attachments: image001.png ISO New England is pleased to provide comments on the public draft of the DOE Congestion Study. The ISO appreciates DOE's consideration of several specific comments shown in red below. Comments: Figure ES-2: It is possible to identify the consistent impacts of a few specific

  3. IN A FOG H. Michael Mogil, Certified Consulting Meteorologist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUGUST 2008 IN A FOG H. Michael Mogil, Certified Consulting Meteorologist In April 2008, scientists from the Atmospheric Radiation Measurement (ARM) Program conducted an experiment using an airplane that flew over Barrow, Alaska, where the North Slope Alaska ARM Climate Research Facility is located. Throughout the experiment, they were based out of Fairbanks, about 500 miles inland from Barrow. Instruments on the aircraft and at Barrow allowed the scientists to obtain various measurements from

  4. The Puzzling Boundaries of Topological Quantum Matter Michael Levin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Puzzling Boundaries of Topological Quantum Matter Michael Levin University of Chicago October 14, 2015 4:00 p.m. Insulators, by definition, cannot conduct electric current in their interior. However, some insulators - most famously, the recently discovered "topological insulators" - possess the unusual property that they conduct at their surfaces or edges. This conduction occurs through modes that travel along the boundary of the insulator, like waves moving on the surface of the

  5. Jason Cole

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transfer affect conclusions from studies using prescribed sea surface temperatures? * SAM v6.5+solar Monte Carlo model * 150 day integrations over prescribed SST variations ...

  6. FIA-16-0039 - In the Matter of Michael Ravnitzky | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 - In the Matter of Michael Ravnitzky FIA-16-0039 - In the Matter of Michael Ravnitzky On July 28, 2016, OHA granted in part a FOIA Appeal filed by Michael Ravinitzky from a determination issued by the Office of Scientific and Technical Information (OSTI) of the Department of Energy. In the Appeal, the Appellant challenged OSTI's decision to withhold responsive records under Exemptions 3 and 4 of the FOIA. Reviewing only the unclassified portion of the responsive records, OHA found that OSTI's

  7. Michael M. May, 1970 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael M. Johnson About Us Michael M. Johnson - Chief Information Officer Mr. Michael Johnson is the Chief Information Officer (CIO) for the U.S. Department of Energy (DOE), where he leads and manages cybersecurity, cyber (information sharing and safeguarding) enterprise integration, enterprise information resources management, cyber supply chain risk management, and DOE-HQ information technology (IT) operations. This includes DOE leadership, management, and oversight serving as DOE's Senior

  8. Dr Michael Pechan | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Dr Michael Pechan Materials Sciences and Engineering (MSE) Division MSE Home About Staff What's New Research Areas Reports and Activities Science Highlights Principal ...

  9. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Michael Brisson

    Office of Energy Efficiency and Renewable Energy (EERE)

    Commenter: Michael Brisson 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  10. Ripple burn control

    SciTech Connect (OSTI)

    Bhadra, D.K.; Petrie, T.W.; Peuron, U.A.; Rawls, J.M.

    1980-05-01

    The ripple contribution to the ion thermal conductivity is ideally suited in magnitude, temperature dependence, and spatial dependence to serve as a burn control mechanism. Furthermore, a considerable measure of automatic burn control results because of the radial shift of the plasma to a region of higher ripple. Unfortunately, the window in ripple values consistent with both ignition and a burn equilibrium is uncomfortably narrow, given the current lack of contact between the theoretical models of ripple transport and experimental observations. A survey is made of the techniques to vary the ripple and thus broaden the design window. One new technique is discussed in some detail: the use of ferromagnetic materials in the shield with magnetic properties which are sensitive functions of the operating temperature.

  11. Michael Lowe > Senior Chemist - Dow Chemical Company > Center Alumni > The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Materials Center at Cornell Michael Lowe Senior Chemist - Dow Chemical Company As part of the Abruña Group, Michael received his PhD in 2012. He has since joined Dow Chemical at their Michigan area facility where he is a Analytical Chemist for Core R&D

  12. Category:Burns, OR | Open Energy Information

    Open Energy Info (EERE)

    72 KB SVSecondarySchool Burns OR PacifiCorp (Oregon).png SVSecondarySchool Burn... 70 KB SVSmallHotel Burns OR PacifiCorp (Oregon).png SVSmallHotel Burns OR ... 69 KB...

  13. FIA-13-0008- In the Matter of Michael J. Kelly

    Broader source: Energy.gov [DOE]

    On March 13, 2013, the Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) denied a Freedom of Information Act (FOIA) Appeal filed by Michael J. Kelly (Appellant) of a determination...

  14. SystemBurn

    Energy Science and Technology Software Center (OSTI)

    2012-08-30

    SystemBurn is a tool for creating a synthetic computational load for the purpose of measuring how much power a computer will draw under that type of load. The loads include fundamental library function calls like matrix multiply, memory copies, fourier transforms, bit manipulation, I/O, network packet transfers, and some code contrived to cause the processor to dray more or less power. The code produces some diagnostic and progress output, but the actual measurements would bemore » recorded from the power panels within the computer room.« less

  15. Dr Michael Markowitz | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Dr. Michael Markowitz Materials Sciences and Engineering (MSE) Division MSE Home About Staff What's New Research Areas Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Staff Dr. Michael Markowitz Print Text Size: A A A FeedbackShare Page Markowitz Program Manager Biomolecular Materials Materials Sciences and Engineering Division Office of Basic Energy Sciences SC-22.2/Germantown Building, Rm F-411 U.S. Department of Energy 1000 Independence Avenue, SW

  16. Dr. Michael Sennett | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Michael Sennett Materials Sciences and Engineering (MSE) Division MSE Home About Staff What's New Research Areas Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Staff Dr. Michael Sennett Print Text Size: A A A FeedbackShare Page Program Manager Materials Chemistry Materials Sciences and Engineering Division Office of Basic Energy Sciences SC-22.2/Germantown Building, Rm F-421 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585-1290

  17. Notices FOR FURTHER INFORMATION CONTACT: Michael Li, Policy Advisor, Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Federal Register / Vol. 81, No. 29 / Friday, February 12, 2016 / Notices FOR FURTHER INFORMATION CONTACT: Michael Li, Policy Advisor, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, 1000 Independence Ave. SW., Washington, DC 20585. Phone number 202-287-5189, and email Michael.li@ ee.doe.gov. SUPPLEMENTARY INFORMATION: Purpose of the Board: To make recommendations to the Assistant Secretary for the Office of Energy Efficiency and Renewable Energy regarding goals and

  18. L3:VUQ.SAUQ.P3.02 Michael Eldred SNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Michael Eldred SNL Completed: 9/30/11 CASL-U-2011-0194-000 SANDIA REPORT SAND2011-xxxx Unlimited Release Printed September 2011 Investigation of Advanced UQ for CRUD Prediction with VIPRE Michael S. Eldred Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of

  19. Speakers: Michael Schaal, EIA Paul Argyropoulos, U.S. Environmental Protection Agency

    U.S. Energy Information Administration (EIA) Indexed Site

    2: "Biofuels: Continuing Shifts in the Industry and Long-Term Outlook" Speakers: Michael Schaal, EIA Paul Argyropoulos, U.S. Environmental Protection Agency R. Brooke Coleman, New Fuels Alliance Peter Gross, EIA Steven Hamburg, Environmental Defense Fund [Note: Recorders did not pick up introduction of panel (see biographies for details on the panelists) or introduction of session.] Michael: To the EIA-SAIS 2010 Energy Conference. This is session 2, "Biofuels: Continuing Shifts in

  20. Biomass Burning Observation Project Specifically,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacific Northwest region and in the vicinity of Memphis, Tennessee, as part of the Biomass Burning Observation Project (BBOP). The aircraft will fly through smoke plumes from...

  1. BLM Burns District Office | Open Energy Information

    Open Energy Info (EERE)

    Burns District Office Jump to: navigation, search Name: BLM Burns District Office Place: Hines, Oregon References: BLM Burns District Office1 This article is a stub. You can help...

  2. ARM - Biomass Burning Observation Project (BBOP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

  3. Michael E. Phelps, 1983 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael E. Phelps, 1983 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1980's Michael E. Phelps, 1983 Print Text Size: A A A FeedbackShare Page Life Sciences; For

  4. Michael E. Phelps, 1998 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael E. Phelps, 1998 The Enrico Fermi Award Fermi Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's 1950's Ceremony The Life of Enrico Fermi Contact Information The Enrico Fermi Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1990's Michael E. Phelps, 1998 Print Text Size: A A A FeedbackShare Page Citation For his invention of Positron Emission

  5. ESnet's Michael Bennett Recognized by IEEE for Work in Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Bennett Recognized by IEEE for Work in Energy Efficiency News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Media Jon Bashor, jbashor@lbl.gov, +1 510 486 5849 or Media@es.net Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net ESnet's Michael Bennett

  6. Liquid Fuels Market Model (LFMM) Unveiling LFMM

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Implementation of the Renewable Fuel Standard (RFS) in the Liquid Fuels Market Module (LFMM) of NEMS Michael H. Cole, PhD, PE michael.cole@eia.gov August 1, 2012 | Washington, DC ...

  7. Clean Burn Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Burn Fuels LLC Jump to: navigation, search Name: Clean Burn Fuels LLC Place: Raleigh, North Carolina Zip: 27603 Sector: Biofuels Product: Biofuels developer planning to build a 60m...

  8. Letter to Science from Michael Wang, Center for Transportation Research, Argonne National Laboratory

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Letter to Science (Original version submitted to Science on Feb. 14 th , 2008; revised on March 14 th , 2008) Michael Wang Center for Transportation Research Argonne National Laboratory Zia Haq Office of Biomass Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy The article by Searchinger et al. in Sciencexpress ("Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land Use Change," February 7, 2008) provides a timely

  9. MEMORANDUM FOR THE SECRETARY THROUGH: THE DEPUTY SECRETARY FROM: MICHAEL W. OWEN

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11, 2005 MEMORANDUM FOR THE SECRETARY THROUGH: THE DEPUTY SECRETARY FROM: MICHAEL W. OWEN DIRECTOR OF OFFICE LEGACY MANAGEMENT SUBJECT: Decision Memorandum: Authorize Changes to Contractor Work Force Restructuring Policy under Section 3161 of the National Defense Authorization Act for Fiscal Year 1993. Section 3161 of the National Defense Authorization Act for Fiscal Year 1993 (section 3161) was enacted to address certain work force restructuring issues with respect to employees of defense

  10. LOS ALAMOS, New Mexico, January 22, 2008-Laboratory Director Michael Anastasio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    head of stockpile manufacturing and support January 22, 2008 Organization responsible for production of nuclear weapon components and other national security- related products and services LOS ALAMOS, New Mexico, January 22, 2008-Laboratory Director Michael Anastasio has named Carl Beard as the new associate director for stockpile manufacturing and support. Beard has held this position in an acting capacity since June 2007"The stockpile manufacturing directorate produces for the nation

  11. "Display of Tournament Bracket" Inventors Eliot Feibush, Michael

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Knyszek, Matthew Lotocki, Jared Miller, Andrew Zwicker. | Princeton Plasma Physics Lab Display of Tournament Bracket" Inventors Eliot Feibush, Michael Knyszek, Matthew Lotocki, Jared Miller, Andrew Zwicker. The system creates a diagram of the rounds of a tournament. It is formatted to fit legibly on a one high-definition screen without having to scroll the data. It shows the progression of competitors in a single or double elimination tournament. The score of each match is transmitted

  12. "ONE HUNDRED YEARS OF SUPERCONDUCTIVITY", Dr. Michael Norman, Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Division, Argonne National Laboratory | Princeton Plasma Physics Lab 10, 2012, 9:30am Science On Saturday "ONE HUNDRED YEARS OF SUPERCONDUCTIVITY", Dr. Michael Norman, Materials Science Division, Argonne National Laboratory ONE HUNDRED YEARS OF SUPERCONDUCTIVITY PPPL Entrance Procedures Visitor Information, Directions, Security at PPPL As a federal facility, the Princeton Plasma Physics Laboratory is operating under heightened security measures because of the events of

  13. Via E-Mail Michael Li Electricity Policy Specialist U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 1, 2010 Via E-Mail Michael Li Electricity Policy Specialist U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 1000 Independence Avenue, SW Washington, DC 20585 smartgridpolicy@hq.doe.gov Re: Smart Grid RFI: Addressing Policy And Logistical Challenges Dear Mr. Li: On behalf of the Association of Home Appliance Manufacturers (AHAM), I would like to provide our comments on the Smart Grid RFI: Addressing Policy and Logistical Challenges, 75 Fed. Reg. 57,006

  14. Hr. Michael Esposito Audio-Tex Industries, Incorporated 4555 West Addison Street

    Office of Legacy Management (LM)

    -- Hr. Michael Esposito Audio-Tex Industries, Incorporated 4555 West Addison Street Chicago, Illinois 60641 Dear Mr. Esposito: Enclosed is a copy of the final survey report for your facility in Chicago,. Illinois , which is the site of the former ERA Tool & Engineering Company. The survey report documents the fact that the radiological condition of your facility is in compliance with applicable Department of Energy Guidelines and that no remedial action or further investigaticns are

  15. Surface Modified Particles By Multi-Step Michael-Type Addition And Process For The Preparation Thereof

    DOE Patents [OSTI]

    Cook, Ronald Lee (Lakewood, CO); Elliott, Brian John (Superior, CO); Luebben, Silvia DeVito (Golden, CO); Myers, Andrew William (Arvada, CO); Smith, Bryan Matthew (Boulder, CO)

    2005-05-03

    A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carboncarbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.

  16. Surface Modified Particles By Multi-Step Michael-Type Addition And Process For The Preparation Thereof

    DOE Patents [OSTI]

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2005-05-03

    A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.

  17. Ultrasonic technique for characterizing skin burns

    DOE Patents [OSTI]

    Goans, Ronald E.; Cantrell, Jr., John H.; Meyers, F. Bradford; Stambaugh, Harry D.

    1978-01-01

    This invention, a method for ultrasonically determining the depth of a skin burn, is based on the finding that the acoustical impedance of burned tissue differs sufficiently from that of live tissue to permit ultrasonic detection of the interface between the burn and the underlying unburned tissue. The method is simple, rapid, and accurate. As compared with conventional practice, it provides the important advantage of permitting much earlier determination of whether a burn is of the first, second, or third degree. In the case of severe burns, the usual two - to three-week delay before surgery may be reduced to about 3 days or less.

  18. Michael Baechler

    Broader source: Energy.gov [DOE]

    Mr. Baechler is a Senior Program Manager in the Electricity Infrastructure and Buildings Division at Pacific Northwest National Laboratory (PNNL). He has been at PNNL since 1984 and currently...

  19. Michael Urashka

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controls Engineer. He has B.S. degrees from University of Massachusetts - Amherst (Microbiology and in Cellular & Molecular Biology) and an M.S. in Systems Management from Golden...

  20. Michael Sinatra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sinatra About ESnet Our Mission The Network ESnet History Governance & Policies Career Opportunities ESnet Staff & Org Chart ESnet Leadership Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Dale Carder Paul Wefel Network Planning Operational Enhancements Office of the CTO Science Engagement Tools Team Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600

  1. Michael Sinatra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities ESnet Staff & Org Chart Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Office of the CTO...

  2. The hybrid rich-burn/lean burn engine. Part 2

    SciTech Connect (OSTI)

    Smith, J.A.; Podnar, D.; Meyers, D.P.

    1996-12-31

    Southwest Research Institute (SwRI) has developed a unique engine technology called Hybrid Rich-Burn/Lean-Burn (HRBLB) that capitalizes on the low production of oxides of nitrogen (NO{sub x}) during extremely rich and lean combustion. The HRBLB concept is predicated on simultaneous combustion of extremely rich and lean natural gas-air mixtures in separate cylinders. Rich exhaust products undergo a catalytic water-gas shift reaction to form an intermediate combustible fuel composed of carbon monoxide, water vapor, hydrogen, and carbon dioxide. All of the intermediate fuel is added to lean natural gas-air mixtures in other cylinders to enhance ignitability that would otherwise result in misfire. This paper presents results obtained during the development of a stationary, turbocharged, and intercooled, 18-liter HRBLB engine. Results show that NO{sub x} can be reduced by a factor of 2.5 to 3.5 relative to stock engine emissions at equivalent efficiency. The HRBLB engine has demonstrated corrected NO{sub x} (15% O{sub 2}) levels of 23 ppm at rated load with thermal efficiencies of 35%.

  3. Michael Li Electricity Policy Specialist U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6-390 Village Blvd. Princeton, NJ 08540 609.452.8060 | www.nerc.com November 1, 2010 Michael Li Electricity Policy Specialist U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 1000 Independence Avenue, SW Room 8H033 Washington, DC 20585 RE: "Smart Grid RFI: Addressing Policy and Logistical Challenges" Dear Mr. Li: I am writing in response to the Department of Energy's ("DOE") Request for Information (RFI) regarding the "Smart Grid RFI:

  4. Convection in X-ray Bursts Michael Zingale Stony Brook University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convection in X-ray Bursts Michael Zingale Stony Brook University in collaboration with Ann Almgren, John Bell, Andy Nonaka (LBL); Chris Malone (LANL), Stan Woosley (UCSC) Supported by DOE/Office of Nuclear Physics, DE-FG02-06ER41448 and DE-FG02-87ER40317 to Stony Brook, and NSF award AST-1211563. Computer time: National Energy Research Scientific Computing Center (Office of Science, DOE DE-AC02-05CH11231) Convection in Astrophysics ● Evolution of many stellar systems dominated by convective

  5. Actinide Burning in CANDU Reactors

    SciTech Connect (OSTI)

    Hyland, B.; Dyck, G.R.

    2007-07-01

    Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

  6. Burn site groundwater interim measures work plan.

    SciTech Connect (OSTI)

    Witt, Jonathan L.; Hall, Kevin A.

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  7. Uniform-burning matrix burner

    DOE Patents [OSTI]

    Bohn, Mark S.; Anselmo, Mark

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  8. Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Characterized particulate emissions from U.S.-legal ...

  9. Aerosol Properties Downwind of Biomass Burns Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    Science Aerosol Properties Downwind of Biomass Burns Field Campaign Report PR Buseck ... DOESC-ARM-15-076 Aerosol Properties Downwind of Biomass Burns Field Campaign Report PR ...

  10. Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with...

    Office of Scientific and Technical Information (OSTI)

    Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal Blankets Citation Details In-Document Search Title: Transient Safety Analysis of Fast Spectrum TRU Burning ...

  11. Biomass Burning Observation Project (BBOP) Final Campaign Report...

    Office of Scientific and Technical Information (OSTI)

    Biomass Burning Observation Project (BBOP) Final Campaign Report Citation Details In-Document Search Title: Biomass Burning Observation Project (BBOP) Final Campaign Report The Biomass ...

  12. Voluntary Protection Program Onsite Review, Burns & McDonnell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Burns & McDonnell - Facility Engineering Services, LLC - September 2015 Voluntary Protection Program Onsite Review, Burns & McDonnell - Facility Engineering Services, LLC - ...

  13. Biomass Burning Observation Project Science Plan (Program Document...

    Office of Scientific and Technical Information (OSTI)

    Science Plan Citation Details In-Document Search Title: Biomass Burning Observation Project Science Plan Aerosols from biomass burning perturb Earth's climate through the direct ...

  14. Instrumented tube burns: theoretical and experimental observations

    SciTech Connect (OSTI)

    Yarrington, Cole Davis; Obrey, Stephen J; Foley, Timothy J; Son, Steven F

    2009-01-01

    The advent of widely available nanoscale energetic composites has resulted in a flurry of novel applications. One of these applications is the use of nanomaterials in energetic compositions. In compositions that exhibit high sensitivity to stimulus, these materials are often termed metastable intermolecular composites (MIC). More generally, these compositions are simply called nanoenergetics. Researchers have used many different experimental techniques to analyze the various properties of nanoenergetic systems. Among these various techniques, the confined tube burn is a simple experiment that is capable of obtaining much data related to the combustion of these materials. The purpose of this report is to review the current state of the confined tube burn experiment, including the drawbacks of the technique and possible remedies. As this report is intended to focus on the specific experimental technique, data from many different energetic materials, and experimental configurations will be presented. The qualitative and quantitative data that can be gathered using confined tube burn experiments include burning rates, total impulse, pressure rise rate, and burning rate differences between different detector types. All of these measurements lend insight into the combustion properties and mechanisms of specific nanoenergetics. Finally, certain data indicates a more complicated flow scenario which may need to be considered when developing burn tube models.

  15. Michael A. Mikolanis is a General Engineer with nearly 31 years of engineering a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    531 2.490 2.473 2.446 2.474 2.547 2003-2016 All Grades - Conventional Areas 2.531 2.490 2.473 2.446 2.474 2.547 2003-2016 Regular 2.361 2.324 2.310 2.277 2.308 2.380 2003-2016 Conventional Areas 2.361 2.324 2.310 2.277 2.308 2.380 2003-2016 Midgrade 2.685 2.631 2.608 2.581 2.597 2.668 2003-2016 Conventional Areas 2.685 2.631 2.608 2.581 2.597 2.668 2003-2016 Premium 2.975 2.927 2.907 2.895 2.923 3.001 2003-2016 Conventional Areas 2.975 2.927 2.907 2.895 2.923 3.001 2003

    Michael A. Mikolanis

  16. Biomass Burning Observation Project Science Plan

    SciTech Connect (OSTI)

    Kleinman, KI; Sedlacek, AJ

    2013-09-01

    Aerosols from biomass burning perturb Earth’s climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  17. Uranium hydrogeochemical and stream sediment reconnaissance of the St. Michael NTMS Quadrangle, Alaska

    SciTech Connect (OSTI)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the St. Michael NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of steam-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  18. DOE - Fossil Energy: A Bed for Burning Coal?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-Bed for Burning Coal An Energy Lesson Cleaning Up Coal A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with ...

  19. Raymond Burns > Product Research Technologist - Exxon Mobile > Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni > The Energy Materials Center at Cornell Raymond Burns Product Research Technologist - Exxon Mobile raymond.burns@gmail.com Formerly a member of the DiSalvo Group, Ray earned his PhD in August 2013

  20. Emission and transport of cesium-137 from boreal biomass burning...

    Office of Scientific and Technical Information (OSTI)

    from boreal biomass burning in the summer of 2010 Citation Details In-Document Search Title: Emission and transport of cesium-137 from boreal biomass burning in the summer ...

  1. Investigation of NO2 Oxidation Kinetics and Burning Mode for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NO2 Oxidation Kinetics and Burning Mode for Medium Duty Diesel Particulate: Contrasting O2 and NO2 Oxidation Investigation of NO2 Oxidation Kinetics and Burning Mode for Medium ...

  2. Burn to Learn | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burn to Learn Burn to Learn The mp4 video format is not supported by this browser. Download video Captions: On Time: 3:06 min. CNS fire protection engineers recently visited Oak Ridge Fire Department to "Burn to Learn." During this event, they were able to burn materials that would be found at Y-12 (e.g,. personal protective equipment, a shredder) and analyze the results. Watch a video about the event here

  3. Open air refuse burning video: Proton Dan the science man explores open air refuse burning

    SciTech Connect (OSTI)

    Eastburn, M.D.; Sipple, J.L.; Deramo, A.R.

    1999-07-01

    The goal of this video is to educate school children to the potential hazards of open air trash burning; to demonstrate alternative ways to dispose of trash; and to motivate students to take action to change the behavior of their parents with regard to trash burning. The burning of household trash, although illegal, is still a common practice in rural areas of Delaware. Enforcement has been difficult because the practice is often performed at night and is done across a wide rural area that is difficult to patrol on a continuing basis. The prohibition on trash burning (revised Regulation 13 of The Delaware Code of Regulations Governing The Control of Air Pollution) has been in effect since 1968, but the public has been slow to comply because trash burning has been practiced for many generations and because much of the public is unaware of the environmental impacts and/or the human health risks. This video may be valuable for other States to use as a public outreach tool regarding their problems with open air refuse burning. The focus of the video is a 7th grade science class is given various assignments relating to Earth Day and preservation of natural resources. Two children in particular are given the assignment to research and report on the hazards of open air trash burning and are asked to investigate alternative ways to dispose of refuse. Upon brainstorming how to find information on the topic, the kids decide to contact the host of a popular children's science show on broadcast television named Proton Dan the Science Man (a fictitious character and show based on Bill Nye the Science Guy). The host then invites the kids to the studio where he films his show and takes them through the topic. The TV host character takes the children to several external locations like a landfill, recycling centers, etc..

  4. Apparatus for burning bales of trash

    SciTech Connect (OSTI)

    Pazar, C. A.

    1985-08-13

    Bales of combustible trash made to specific specifications are burned in a furnace having two parallel upright sidewalls between which the bales pass during burning. A horizontal grate extends between the sidewalls. The bales, if remotely made from the furnace, are bound by an easily meltable strap. The length of the bale is measurably smaller than the distance between said sidewalls to accurately accommodate springback. A ram, after compacting the waste in segmental fashion, pushes each bale to a position between said sidewalls; with the length of the bale being perpendicular to the sidewalls, so that a bale enters the furnace. Springback following the melting of straps allows the bale to expand to fill the gap between the sidewalls. This facilitates ignition and/or burning of the bales and provides a seal against furnace sidewalls. When the ram feeds a fresh bale, previously charged bales (consumed proportional to time in the furnace) are advanced toward the ash discharge port. Before the bales are formed, the trash may be optionally dried by using heated air in the classification into ''light'' sort and ''heavy'' sort. The ''light'' sort is baled and burned as described above. The ''heavy'' sort or a part of the light sort may be premixed with noxious liquid or solid wastes before charging to the furnace. Temperatures consistent with economical use of refractory (1500/sup 0/ F. to 1700/sup 0/ F.) are maintained, for a limited area adjacent the inner wall of the furnace, by addition of liquid water, while interior temperatures of the furnace of about 3000/sup 0/ F. prevail in the central portion of the furnace necessary for the incineration of noxious wastes.

  5. U.S. BURNING PLASMA ORGANIZATION ACTIVITIES

    SciTech Connect (OSTI)

    Raymond J. Fonck

    2009-08-11

    The national U.S. Burning Plasma Organization (USBPO) was formed to provide an umbrella structure in the U.S. fusion science research community. Its main purpose is the coordination of research activities in the U.S. program relevant to burning plasma science and preparations for participation in the international ITER experiment. This grant provided support for the continuing development and operations of the USBPO in its first years of existence. A central feature of the USBPO is the requirement for broad community participation in and governance of this effort. We concentrated on five central areas of activity of the USBPO during this grant period. These included: 1) activities of the Director and support staff in continuing management and development of the USBPO activity; 2) activation of the advisory Council; 3) formation and initial research activities of the research community Topical Groups; 4) formation of Task Groups to perform specific burning plasma related research and development activities; 5) integration of the USBPO community with the ITER Project Office as needed to support ITER development in the U.S.

  6. Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray

    SciTech Connect (OSTI)

    Vigil-Holterman, Luciana R.

    2012-05-07

    This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

  7. R&D Energy Recovery Linac at Brookhaven National Laboratory ...

    Office of Scientific and Technical Information (OSTI)

    ; Reich, J. ; Roser, Thomas ; Russo, T. ; Smith, K. ; Tuozzolo, Joseph ; Weiss, D. ; Williams, N.W.W. ; Yip, Kin ; Zaltsman, A. ; Bluem, Hans ; Cole, Michael ; Favale, Anthony ; ...

  8. Accelerated UV Test and Evaluation Methods for Encapsulants of...

    Office of Scientific and Technical Information (OSTI)

    Test Methods for Encapsulants of Photovoltaic Modules Michael D. Kempe National Renewable Energy Laboratory, 1617 Cole Blvd. Golden, CO 80401 NRELPR-520-43309 Presented at the...

  9. The Role of Energy Storage with Renewable Electricity Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole ...

  10. U.S. Energy Information Administration (EIA)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industry? Lessons Learned, Robert Kozak PDF Brazil Ethanol Outlook, Leticia Phillips PDF Implementation of Renewable Fuels Standard in Liquid Fuels Market Model, Michael Cole

  11. Mobilizable RDF/d-RDF burning program

    SciTech Connect (OSTI)

    Niemann, K.; Campbell, J.

    1982-03-01

    The Mobilizable RDF/d-RDF Burning Program was conceived to promote the utilization of refuse-derived fuels (RDF) as a supplement to existing fossil fuel sources in industrial-sized boilers. The program explores the design, development, and eventual construction of densified-RDF (d-RDF) for use in boiler combustion testing as a supplement to stoker coal or wood wastes. The equipment would be mounted on trailers and assembled and operated at preselected sites throughout the country where approximately 750 tons of RDF would be produced and test burned in a local boiler. The equipment, to include a transportable RDF boiler metering and feed system, would then be moved and operated at two to three test sites annually. The program is intended to encourage the construction of permanent resource recovery facilities by involving local waste handling groups in operating the equipment and producing fuel, and potential local fuel users in testing the fuel in their boilers. The Mobilizable Program was developed from two separate tasks. The first task developed the concept behind the program and defined its operational and organizational structure. The second task, a follow-up to the first, was intended principally to finalize test locations, develop equipment designs and specifications, and formalize a management program. This report summarizes the principal findings of both tasks. It identifies the criteria used to identify test locations, outlines the program's management structure, presents design and performance specifications for both the fuel production equipment and boiler fuel feed systems, and provides a detailed evaluation of the parameters involved in burning RDF in industrial-sized boilers. Final conclusions and recommendations identify problem areas encountered in the program, and discuss possible future directions for such a program.

  12. Spectral hole burning studies of photosystem II

    SciTech Connect (OSTI)

    Chang, H.C.

    1995-11-01

    Low temperature absorption and hole burning spectroscopies were applied to the D1-D2-cyt b{sub 559} and the CP47 and CP43 antenna protein complexes of Photosystem H from higher plants. Low temperature transient and persistent hole-burning data and theoretical calculations on the kinetics and temperature dependence of the P680 hole profile are presented and provide convincing support for the linker model. Implicit in the linker model is that the 684-nm-absorbing Chl a serve to shuttle energy from the proximal antenna complex to reaction center. The stoichiometry of isolated Photosystem H Reaction Center (PSII RC) in several different preparations is also discussed. The additional Chl a are due to 684-nm-absorbing Chl a, some contamination by the CP47 complex, and non-native Chl a absorbing near 670 nm. In the CP47 protein complex, attention is focused on the lower energy chlorophyll a Q{sub y}-states. High pressure hole-burning studies of PSII RC revealed for the first time a strong pressure effect on the primary electron transfer dynamics. The 4.2 K lifetime of P680*, the primary donor state, increases from 2.0 ps to 7.0 ps as pressure increases from 0.1 to 267 MPa. Importantly, this effect is irreversible (plastic) while the pressure induced effect on the low temperature absorption and non-line narrowed P680 hole spectra are reversible (elastic). Nonadiabatic rate expressions, which take into account the distribution of energy gap values, are used to estimate the linear pressure shift of the acceptor state energy for both the superexchange and two-step mechanisms for primary charge separation. It was found that the pressure dependence could be explained with a linear pressure shift of {approximately} 1 cm{sup -1}/MPa in magnitude for the acceptor state. The results point to the marriage of hole burning and high pressures as having considerable potential for the study of primary transport dynamics in reaction centers and antenna complexes.

  13. Science on the Hill: Burning questions in study of wildfire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burning questions in study of wildfire Burning questions in study of wildfire Understanding what drives big fires and predicting their behavior helps the fire community prepare for the next blaze through appropriate land management, emergency plans and firefighting strategies. July 12, 2016 A helicopter drops fire retardant on wildfire during 2011 Las Conchas fire in New Mexico. A helicopter drops fire retardant on wildfire during 2011 Las Conchas fire in New Mexico. Burning questions in study

  14. Wood-Burning Heating System Deduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Alabama Program Type Rebate Amount 100% Summary This statute allows individual taxpayers a deduction for the purchase and installation of a wood-burning heating system. The...

  15. Arctic Haze: Effect of Anthropogenic and Biomass Burning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Haze: Effect of Anthropogenic and Biomass Burning Aerosols Transported from Europe to the Arctic For original submission and image(s), see ARM Research Highlights http:...

  16. SFR with once-through depleted uranium breed & burn blanket ...

    Office of Scientific and Technical Information (OSTI)

    Title: SFR with once-through depleted uranium breed & burn blanket Authors: Zhang, Guanheng ; Greenspan, Ehud ; Jolodosky, Alejandra ; Vujic, Jasmina Publication Date: 2015-07-01 ...

  17. Modeling Deep Burn TRISO Particle Nuclear Fuel

    SciTech Connect (OSTI)

    Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison

    2012-01-01

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  18. Clean burning solid fuel stove and method

    SciTech Connect (OSTI)

    Smith, R.D.; Grouw, S.J.V.

    1985-10-08

    A stove for burning solid fuels having an insulated primary combustion chamber, uniform distribution of preheated primary air through upward facing holes in a grate, downward flow of combustion gas through the grate, retention of hot coals in the grate structure, preheated secondary air, individually controlled primary and secondary air flows, insulated vortex combustion chambers for secondary combustion, longitudinally finned tubes as a first stage heat exchanger, plate-fin assembly as a second stage heat exchanger, an induced draft fan to draw the air and combustion gases through the combustion chambers as well as the heat exchangers, and a forced air fan to blow cool room air through the two stage heat exchanger.

  19. AmeriFlux US-Me1 Metolius - Eyerly burn

    SciTech Connect (OSTI)

    Law, Bev

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me1 Metolius - Eyerly burn. Site Description - An intermediate aged ponderosa pine forest that was severely burned in the 2002 Eyerly wildfire. All trees were killed (stand replacing event). Irvine et al (2007) GCB 13 (8), 1748–1760.

  20. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    SciTech Connect (OSTI)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and

  1. Turbulent burning rates of methane and methane-hydrogen mixtures

    SciTech Connect (OSTI)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  2. Method and apparatus to measure the depth of skin burns

    DOE Patents [OSTI]

    Dickey, Fred M.; Holswade, Scott C.

    2002-01-01

    A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

  3. NREL: Energy Analysis - Wesley Cole

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G. Porro. 2015. 2015 Standard Scenarios Annual Report: U.S. Electric Sector Scenario Exploration. NRELTP-6A20-64072. National Renewable Energy Laboratory (NREL), Golden, CO (US). ...

  4. Local Burn-Up Effects in the NBSR Fuel Element

    SciTech Connect (OSTI)

    Brown N. R.; Hanson A.; Diamond, D.

    2013-01-31

    This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peaking relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.

  5. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, Carol T.; Bender, Donald A.; Bowman, Barry R.; Burnham, Alan K.; Chesnut, Dwayne A.; Comfort, III, William J.; Guymon, Lloyd G.; Henning, Carl D.; Pedersen, Knud B.; Sefcik, Joseph A.; Smith, Joseph A.; Strauch, Mark S.

    1993-01-01

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  6. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

    1993-03-09

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  7. Options for Burning LWR SNF in LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J

    2008-09-09

    We have pursued two processes in parallel for the burning of LWR SNF in the LIFE engine: (1) solid fuel option and (2) liquid fuel option. Approaches with both are discussed. The assigned Topical Report on liquid fuels is attached.

  8. Alpha heating and burning plasmas in inertial confinement fusion

    SciTech Connect (OSTI)

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  9. Copper is Key in Burning Fat, New Study Finds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Copper is Key in Burning Fat, New Study Finds A new study led by a Berkeley Lab scientist ... Researchers want to explore if a copper deficiency is linked to obesity and obesity ...

  10. Portsmouth Site Achieves Regulatory Milestone after Successful Controlled Burn

    Broader source: Energy.gov [DOE]

    PIKETON, Ohio – Portsmouth Gaseous Diffusion Plant firefighters recently completed a prescribed fire, or controlled burn, of an 18-acre prairie at the site, two weeks ahead of a regulatory deadline.

  11. Aircraft-measured indirect cloud effects from biomass burning...

    Office of Scientific and Technical Information (OSTI)

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 ...

  12. Radiochemical Mix Diagnostic in the Presence of Burn

    SciTech Connect (OSTI)

    Hayes, Anna C.

    2014-01-28

    There is a general interest in radiochemical probes of hydrodamicalmix in burning regions of NIF capsule. Here we provide estimates for the production of 13N from mixing of 10B ablator burning hotspot of a capsule. By comparing the 13N signal with x-ray measurements of the ablator mix into the hotspot it should be possible to estimate the chunkiness of this mix.

  13. Lab scientists Burns, Hay named new AAAS Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burns, Hay named new AAAS Fellows Lab scientists Burns, Hay named new AAAS Fellows The AAAS is the world's largest general scientific society and publisher of the journal Science. February 3, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on

  14. Software Michael Heroux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about producing high-quality, reproducible and verifiable results, it will want to invest in a high-quality SE environment to improve team efficiency. Evidence: Cover letter...

  15. Michael McDowell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publicatons Contact Us Ring Status Current Schedule David Gagliano Argonne National Laboratory 9700 S. Cass Ave 431E020 Argonne, IL 60439 Phone: 252-6422 Fax: 252-7392 E-Mail:...

  16. Containment System Michael F

    Office of Scientific and Technical Information (OSTI)

    to reduce their liability, lower their insurance costs, or ... done on the same concrete pad which saves construction cost. ... Another innovation in rotational molded polyethylene is a ...

  17. Michael O'Connor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O'Connor About ESnet Our Mission The Network ESnet History Governance & Policies Career Opportunities ESnet Staff & Org Chart ESnet Leadership Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Dale Carder Paul Wefel Network Planning Operational Enhancements Office of the CTO Science Engagement Tools Team Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600

  18. Michael J. Banda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NERSC). His previous work with x-ray science includes an appointment as Professor of Radiology and Director of the Laboratory of Radiological Biology at the University of...

  19. Containment System Michael F

    Office of Scientific and Technical Information (OSTI)

    ... They cannot be raised with a crane and placed inside a containment. Many dealerships lack ... A crane is then used to erect the walls and connect adjoining panels. The bin walls are ...

  20. Dennis Michael Miotla

    Broader source: Energy.gov [DOE]

    Mr. Miotla currently serves as Chief Operating Officer for the Office of Nuclear Energy. Prior to his current position, Mr. Miotla was Deputy Director for Nuclear Facility Operations. In that...

  1. Michael Resch | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and hemicellulase enzyme characterization, working on projects funded by the Department of Energy through the BioEnergy Science Center and the Bioenergy Technologies Office. ...

  2. Michael O'Connor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities ESnet Staff & Org Chart Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Office of the CTO...

  3. MSFR TRU-burning potential and comparison with an SFR

    SciTech Connect (OSTI)

    Fiorina, C.; Cammi, A.; Franceschini, F.; Krepel, J.

    2013-07-01

    The objective of this work is to evaluate the Molten Salt Fast Reactor (MSFR) potential benefits in terms of transuranics (TRU) burning through a comparative analysis with a sodium-cooled FR. The comparison is based on TRU- and MA-burning rates, as well as on the in-core evolution of radiotoxicity and decay heat. Solubility issues limit the TRU-burning rate to 1/3 that achievable in traditional low-CR FRs (low-Conversion-Ratio Fast Reactors). The softer spectrum also determines notable radiotoxicity and decay heat of the equilibrium actinide inventory. On the other hand, the liquid fuel suggests the possibility of using a Pu-free feed composed only of Th and MA (Minor Actinides), thus maximizing the MA burning rate. This is generally not possible in traditional low-CR FRs due to safety deterioration and decay heat of reprocessed fuel. In addition, the high specific power and the lack of out-of-core cooling times foster a quick transition toward equilibrium, which improves the MSFR capability to burn an initial fissile loading, and makes the MSFR a promising system for a quick (i.e., in a reactor lifetime) transition from the current U-based fuel cycle to a novel closed Th cycle. (authors)

  4. Iron/potassium perchlorate pellet burn rate measurements

    SciTech Connect (OSTI)

    Reed, J.W.; Walters, R.R.

    1995-01-25

    A burn rate test having several advantages for low gas-producing pyrotechnic compacts has been developed. The technique involves use of a high speed video motion analysis system that allows immediate turnaround and produces all required data for rate computation on magnetic tape and becomes immediately available on the display screen. The test technique provides a quick method for material qualification along with data for improved reliability and function. Burn rate data has been obtained for both UPI and Eagle Pitcher Iron/Potassium Perchlorate blends. The data obtained for the UPI blends cover a range of composition, pellet density, and ambient (before ignition) pellet temperature. Burn rate data for the E-P blends were extended to include surface conditions or particle size as a variable parameter.

  5. Communication Support for the U. S. Burning Plasma Organization

    SciTech Connect (OSTI)

    Hegna, Chris

    2014-02-05

    The role of this DOE grant was to provide administrative and software support for the U. S. Burning Plasma Organization (USBPO). The USBPO is a grassroots organization of fusion plasma scientists that concentrates broadly on issues of interest in burning plasma physics in general with a particular emphasis on the needs of the ITER program. The particular role of this grant was to provide support of the communication needs of the USBPO primarily through the administration and maintenance of the USBPO server, the public USBPO website, e-mail lists and numerous members-only discussion forums and mail lists.

  6. Completion of the INEEL's WERF Incinerator Trial Burn

    SciTech Connect (OSTI)

    C. K. Branter; D. A. Conley; D. R. Moser; S. J. Corrigan

    1999-05-01

    This paper describes the successes and challenges associated with Resource Conservation and Recovery Act (RCRA) permitting of the Idaho National Engineering and Environmental Laboratory's (INEEL) Waste Experimental Reduction Facility (WERF) hazardous and mixed waste incinerator. Topics to be discussed include facility modifications and problems, trial burn results and lessons learned in each of these areas. In addition, a number of challenges remain including completion and final issue of the RCRA Permit and implementation of all the permit requirements. Results from the trial burn demonstrated that the operating conditions and procedures will result in emissions that are satisfactorily protective of human health, the environment, and are in compliance with Federal and State regulations.

  7. Completion of the INEEL's WERF Incinerator Trial Burn

    SciTech Connect (OSTI)

    Branter, Curtis Keith; Conley, Dennis Allen; Corrigan, Shannon James; Moser, David Roy

    1999-05-01

    This paper describes the successes and challenges associated with Resource Conservation and Recovery Act (RCRA) permitting of the Idaho National Engineering and Environmental Laboratory's (INEEL) Waste Experimental Reduction Facility (WERF) hazardous and mixed waste incinerator. Topics to be discussed include facility modifications and problems, trial burn results and lessons learned in each of these areas. In addition, a number of challenges remain including completion and final issue of RCRA Permit and implementation of all the permit requirements. Results from the trial burn demonstrated that the operating conditions and procedures will result in emissions that are satisfactorily protective of human health, the environment, and are in compliance with Federal and State regulations.

  8. ARM - Field Campaign - Biomass Burning Observation Project - BBOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBiomass Burning Observation Project - BBOP Campaign Links BBOP Website Final Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biomass Burning Observation Project - BBOP 2013.07.01 - 2013.10.24 Website : http://www.arm.gov/campaigns/bbop/ Lead Scientist : Larry Kleinman For data sets, see below. Abstract This field campaign will address multiple uncertainties in aerosol intensive

  9. Microsoft Word - Deep-Burn awards news release _2_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELEASE Tim Jackson, DOE-Idaho Operations Office Wednesday, July 23, 2008 (208) 526-8484 U.S. Department of Energy Awards $7.3 million for "Deep-Burn" Gas-Reactor Technology Research & Development WASHINGTON, DC -Today the U.S. Department of Energy announced it has selected teams led by Idaho National Laboratory and Argonne National Laboratory to advance the technology of nuclear fuel "Deep-Burn," in which plutonium and higher transuranics recycled from spent nuclear fuel

  10. Examination of the Entry to Burn and Burn Control for the ITER 15 MA Baseline and Other Scenarios

    SciTech Connect (OSTI)

    Kesse, Charles E.; Kim, S-H.; Koechl, F.

    2014-09-01

    The entry to burn and flattop burn control in ITER will be a critical need from the first DT experiments. Simulations are used to address time-dependent behavior under a range of possible conditions that include injected power level, impurity content (W, Ar, Be), density evolution, H-mode regimes, controlled parameter (Wth, Pnet, Pfusion), and actuator (Paux, fueling, fAr), with a range of transport models. A number of physics issues at the L-H transition require better understanding to project to ITER, however, simulations indicate viable control with sufficient auxiliary power (up to 73 MW), while lower powers become marginal (as low as 43 MW).

  11. Biomass Burning Observation Project (BBOP) Final Campaign Report

    SciTech Connect (OSTI)

    Kleinman, LI; Sedlacek, A. J.

    2016-01-01

    The Biomass Burning Observation Project (BBOP) was conducted to obtain a better understanding of how aerosols generated from biomass fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning—enough to affect regional and global climate. Several biomass-burning studies have focused on tropical climates; however, few campaigns have been conducted within the United States, where millions of acres are burned each year, trending to higher values and greater climate impacts because of droughts in the West. Using the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the BBOP deployed the Gulfstream-1 (G-1) aircraft over smoke plumes from active wildfire and agricultural burns to help identify the impact of these events and how impacts evolve with time. BBOP was one of very few studies that targeted the near-field time evolution of aerosols and aimed to obtain a process-level understanding of the large changes that occur within a few hours of atmospheric processing.

  12. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect (OSTI)

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  13. Effect of inactive impurities on the burning of ICF targets

    SciTech Connect (OSTI)

    Gus'kov, S. Yu.; Il'in, D. V.; Sherman, V. E.

    2011-12-15

    The efficiency of thermonuclear burning of the spherical deuterium-tritium (DT) plasma of inertial confinement fusion (ICF) targets in the presence of low-Z impurities (such as lithium, carbon, or beryllium) with arbitrary concentrations is investigated. The effect of impurities produced due to the mixing of the thermonuclear fuel with the material of the structural elements of the target during its compression on the process of target burning is studied, and the possibility of using solid noncryogenic thermonuclear fuels in ICF targets is analyzed. Analytical dependences of the ignition energy and target thermonuclear gain on the impurity concentration are obtained. The models are constructed for homogeneous and inhomogeneous plasmas for the case in which the burning is initiated in the central heated region of the target and then propagates into the surrounding relatively cold fuel. Two possible configurations of an inhomogeneous plasma, namely, an isobaric configuration formed in the case of spark ignition of the target and an isochoric configuration formed in the case of fast ignition, are considered. The results of numerical simulations of the burning of the DT plasma of ICF targets in a wide range of impurity concentrations are presented. The simulations were performed using the TEPA one-dimensional code, in which the thermonuclear burning kinetics is calculated by the Monte Carlo method. It is shown that the strongest negative effect related to the presence of impurities is an increase in the energy of target ignition. It is substantiated that the most promising solid noncryogenic fuel is DT hydride of beryllium (BeDT). The requirements to the plasma parameters at which BeDT can be used as a fuel in noncryogenic ICF targets are determined. Variants of using noncryogenic targets with a solid thermonuclear fuel are proposed.

  14. Savannah River Site "Live Burn" Training Sharpens Skills | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Site "Live Burn" Training Sharpens Skills Tuesday, June 30, 2015 - 1:47pm Live Burn training As part of the training that equips them to ensure safe operations, Savannah River Site radiological protection (RP) and fire department personnel recently conducted their annual "Live Burn" training exercises that simulate fires in facilities with chemical and radiological contamination. The Live Burn exercise took place at the Martinez-Columbia

  15. Burn propagation in a PBX 9501 thermal explosion

    SciTech Connect (OSTI)

    Henson, B. F.; Smilowitz, L.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-12-12

    We have applied proton radiography to study the conversion of solid density to gaseous combustion products subsequent to ignition of a thermal explosion in PBX 9501. We apply a thermal boundary condition to the cylindrical walls of the case, ending with an induction period at 205 C. We then introduce a laser pulse that accelerates the thermal ignition and synchronizes the explosion with the proton accelerator. We then obtain fast, synchronized images of the evolution of density loss with few microsecond resolution during the approximately 100 microsecond duration of the explosion. We present images of the solid explosive during the explosion and discuss measured rates and assumed mechanisms of burning the role of pressure in this internal burning.

  16. ARM - News from the Biomass Burn Observation Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project (BBOP)News from the Biomass Burn Observation Project Related Links BBOP Home Outreach News & Press Backgrounder (PDF, 2.1MB) Images ARM flickr site ARM Data Discovery Browse Data Deployment Operations Airborne Measurements Science Plan (PDF, 2.2MB) BBOP wiki Login Required Data Sets Experiment Planning Proposal Abstract and Related Campaigns BBOP Breakout Session, ASR Science Team Meeting, March 2014 BBOP Breakout Session, ASR Science Team Meeting, March 2013 BNL BBOP Website

  17. Uniform DT 3T burn: computations and sensitivities

    SciTech Connect (OSTI)

    Vold, Erik; Hryniw, Natalia; Hansen, Jon A; Kesler, Leigh A; Li, Frank

    2011-01-27

    A numerical model was developed in C to integrate the nonlinear deutrium-tritium (DT) burn equations in a three temperature (3T) approximation for spatially uniform test problems relevant to Inertial Confinement Fusion (ICF). Base model results are in excellent agreement with standard 3T results. Data from NDI, SESAME, and TOPS databases is extracted to create fits for the reaction rate parameter, the Planck opacity, and the coupling frequencies of the plasma temperatures. The impact of different fits (e.g., TOPS versus SESAME opacity data, higher order polynomial fits ofNDI data for the reaction rate parameter) were explored, and sensitivity to several model inputs are presented including: opacity data base, Coulomb logarithm, and Bremsstrahlung. Sensitivity to numerical integration time step size, and the relative insensitivity to the discretized numerics and numerical integration method was demonstrated. Variations in the IC for densities and temperatures were explored, showing similar DT burn profiles in most cases once ignition occurs. A coefficient multiplying the Compton coupling term (default, A = 1) can be adjusted to approximate results from more sophisticated models. The coefficient was reset (A = 0.4) to match the maximum temperatures resulting from standard multi-group simulations of the base case test problem. Setting the coefficient to a larger value, (A = 0.6) matches maximum ion temperatures in a kinetic simulation of a high density ICF-like regime. Matching peak temperatures does not match entire temperature-time profiles, indicating the Compton coefficient is density and time dependent as the photon distribution evolves. In the early time burn during the ignition of the DT, the present model with modified Compton coupling provides a very simple method to obtain a much improved match to the more accurate solution from the multi-group radiation model for these DT burn regimes.

  18. Microsoft Word - Deep-Burn awardee team members _2_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEEP-BURN AWARDEES RECIPIENTS RECIPIENT TEAM MEMBERS Advanced Modeling and Simulation Capability R&D for $1 million University of Chicago Argonne Argonne National Laboratory Oak Ridge National Laboratory Lawrence Livermore National Lab University of Michigan Transuranic Management Capabilities R&D for $6.3 million Battelle Energy Alliance, LLC Idaho National Laboratory Oak Ridge National Laboratory Argonne National Laboratory Los Alamos National Laboratory University of California,

  19. Burning tires for fuel and tire pyrolysis: air implications

    SciTech Connect (OSTI)

    Clark, C.; Meardon, K.; Russell, D.

    1991-12-01

    The document was developed in response to increasing inquiries into the environmental impacts of burning waste tires in process equipment. The document provides information on the use of whole, scrap tires and tire-derived-fuel (TDF) as combustion fuel and on the pyrolysis of scrap tires. The use of whole tires and TDF as a primary fuel is discussed for dedicated tire-to-energy facilities. The use of whole tires and TDF as a supplemental fuel is discussed for cement manufacturing plants, electric utilities, pulp and paper mills, and other industrial processes. The focus of the document is on the impact of burning whole tires and TDF on air emissions. Test data are presented and, in most instances, compared with emissions under baseline conditions (no tires or TDF in the fuel). The control devices used in these industries are discussed and, where possible, their effectiveness in controlling emissions from the burning of whole tires or TDF is described. In addition, the report provides information on the processes themselves that use whole tires or TDF, the modifications to the processes that allowed the use of whole tires or TDF, and the operational experiences of several facilities using whole tires or TDF. The economic feasibility of using whole tires and TDF for the surveyed industries is discussed. Finally, contacts for State waste tire programs are presented.

  20. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    SciTech Connect (OSTI)

    Reaugh, J E

    2011-11-22

    HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable

  1. Long-Haul Truck Idling Burns Up Profits

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Long-Haul Truck Idling Burns Up Profits Long-haul truck drivers perform a vitally important service. In the course of their work, they must take rest periods as required by federal law. Most drivers remain in their trucks, which they keep running to provide power for heating, cooling, and other necessities. Such idling, however, comes at a cost; it is an expensive and polluting way to keep drivers safe and comfortable. Increasingly affordable alternatives to idling not only save money and reduce

  2. Boiler efficiency calculation for multiple fuel burning boilers

    SciTech Connect (OSTI)

    Khodabakhsh, F.; Munukutla, S.; Clary, A.T.

    1996-12-31

    A rigorous method based on the output/loss approach is developed for calculating the coal flow rate for multiple fuel burning boilers. It is assumed that the ultimate analyses of all the fuels are known. In addition, it is assumed that the flow rates of all the fuels with the exception of coal are known. The calculations are performed iteratively, with the first iteration taking into consideration coal as the only fuel. The results converge to the correct answer after a few number of iterations, typically four or five.

  3. A Midsize Tokamak As Fast Track To Burning Plasmas

    SciTech Connect (OSTI)

    E. Mazzucato

    2010-07-14

    This paper presents a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain (?10) with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This could be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a more efficient magnetic divertor than those of present tokamaks is discussed.

  4. Development of a trial burn plan for a mixed waste fluidized bed incinerator

    SciTech Connect (OSTI)

    Kabot, F.J.; Ziegler, D.L.

    1988-01-01

    One of the more important elements of the incinerator permitting process under RCRA is the development of the Trial Burn Plan. This document describes the incinerator and defines the incinerator's process envelope within which the trial burns will be conducted. The data obtained during the trial burns will be the basis for the incinerator's operating permit. This paper describes the development of the Trial Burn Plan for a unique fluidized bed incinerator to be used for the incineration of hazardous and mixed wastes at the Department of Energy's Rocky Flats Plant. It describes a review process of the Trial Burn Plan involving a public comment period that actually preceded the trial burns. 2 refs., 1 fig.

  5. Voluntary Protection Program Onsite Review, Burns & McDonnell - Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering Services, LLC - September 2015 | Department of Energy Burns & McDonnell - Facility Engineering Services, LLC - September 2015 Voluntary Protection Program Onsite Review, Burns & McDonnell - Facility Engineering Services, LLC - September 2015 September 2015 Recertification of FES as a Star Participant in the Department of Energy Voluntary Protection Program. This report summarizes the results from the evaluation of Burns & McDonnell - Facility Engineering Services, LLC

  6. NO2 oxidation reactivity and burning mode of diesel particulates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Strzelec, Andrea; Vander Wal, Randy L.; Thompson, Thomas N.; Toops, Todd J.; Daw, C. Stuart

    2016-03-24

    The NO2 oxidation kinetics and burning mode for diesel particulate from light-duty and medium-duty engines fueled with either ultra low sulfur diesel or soy methyl ester biodiesel blends have been investigated and are shown to be significantly different from oxidation by O2. Oxidation kinetics were measured using a flow-through packed bed microreactor for temperature programmed reactions and isothermal differential pulsed oxidation reactions. The burning mode was evaluated using the same reactor system for flowing BET specific surface area measurements and HR-TEM with fringe analysis to evaluate the nanostructure of the nascent and partially oxidized particulates. The low activation energy measured,more » specific surface area progression with extent of oxidation, HR-TEM images and difference plots of fringe length and tortuosity paint a consistent picture of higher reactivity for NO2, which reacts indiscriminately immediately upon contact with the surface, leading to the Zone I or shrinking core type oxidation. In comparison, O2 oxidation is shown to have relatively lower reactivity, preferentially attacking highly curved lamella, which are more reactive due to bond strain, and short lamella, which have a higher proportion of more reactive edge sites. Furthermore, this preferential oxidation leads to Zone II type oxidation, where solid phase diffusion of oxygen via pores contributes significantly to slowing the overall oxidation rate, by comparison.« less

  7. Kinetic calculations of explosives with slow-burning constituents

    SciTech Connect (OSTI)

    Howard, W.M.; Souers, P.C.; Pried, L.E.

    1997-07-01

    The equilibrium thermochemical code CHEETAH V 1.40 has been modified to detonate part of the explosive and binder. An Einstein thermal description of the unreacted constituents is used, and the Einstein temperature may be increased to reduce heat absorption. We study the effect of the reactivity and thermal transport on the detonation velocity. Hydroxy-terminated-polybutadiene binders have low energy and density and would degrade the detonation velocity if they burned. Runs with unburned binder are closer to the measured values. Aluminum and ammonium Perchlorate are also largely unburned within the sonic reaction zone that determines the detonation velocity. All three materials appear not to fully absorb heat as well. The normal assumption of total reaction in a thermochemical code is clearly not true for these special cases, where the detonation velocities have widely different values for different combinations of processes.

  8. Exhaust gas purification system for lean burn engine

    SciTech Connect (OSTI)

    Haines, Leland Milburn

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  9. Trash burns, turns into $120,000 in annual savings

    SciTech Connect (OSTI)

    Smith, W.A.

    1981-09-01

    A plan was developed to generate a major portion of the energy required for heating and air conditioning by burning factory trash instead of using natural gas and electricity. Trash from the Rockwell Int'l. plant, including broken wood pallets, cardboard packing materials and office waste paper, amounted to 1,000 tons per year. Previously, a contractor was being paid to come to the plant several times a week, pick up the trash and haul it to a landfill. To supplement the 1,000 tons of usable waste generated by the plant annually, the additional 500 tons of similar trash needed to operate the system are received from other industries in the vicinity. Besides accepting waste from other plants, the Marysville facility stockpiles and uses refuse corn stalks harvested from 50 acres of Rockwell-owned land adjacent to the plant. The incinerator featuring a pyrolytic heat recovery system is presented and its operation is illustrated.

  10. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  11. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  12. AmeriFlux US-An2 Anaktuvuk River Moderate Burn

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hobbie, John [Marine Biological Laboratory; Rocha, Adrian [Marine Biological Laboratory; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-An2 Anaktuvuk River Moderate Burn. Site Description - The Anaktuvuk River fire on the North Slope of Alaska started on July 16, 2007 by lightning. It continued until the end of September when nearby lakes had already frozen over and burned >256,000 acres, creating a mosaic of patches that differed in burn severity. The Anaktuvuk River Severe Burn, Moderate Burn, and Unburned sites are 40 km to the west of the nearest road and were selected in late May 2008 to determine the effects of the fire on carbon, water, and energy exchanges during the growing season. Because the fire had burned through September of the previous year, initial deployment of flux towers occurred prior to any significant vegetative regrowth, and our sampling campaign captured the full growing season in 2008. The Moderate Burn site consisted of a large area with small patches of completely and partially burned tundra intermixed across the landscape.

  13. Microstructural Characterization of High Burn-up Mixed Oxide Fast Reactor Fuel

    SciTech Connect (OSTI)

    Melissa C. Teague; Brian P. Gorman; Steven L. Hayes; Douglas L. Porter; Jeffrey King

    2013-10-01

    High burn-up mixed oxide fuel with local burn-ups of 3.423.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 79% FIMA. Samples with burn-ups in excess of 79% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column were observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 35 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements.

  14. The Honorable Michael White The Honorable Michael White

    Office of Legacy Management (LM)

    Sincerely, Off-SiteSavannah River,Division Office of Eastern Area Programs Enclosures ' Office of Environmental Restoration iitch; Ihc ., Cleveland; OH' R. Owens, Ohio Bureau ...

  15. AmeriFlux US-An1 Anaktuvuk River Severe Burn

    SciTech Connect (OSTI)

    Hobbie, John; Rocha, Adrian; Shaver, Gaius

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-An1 Anaktuvuk River Severe Burn. Site Description - The Anaktuvuk River fire on the North Slope of Alaska started on July 16, 2007 by lightning. It continued until the end of September when nearby lakes had already frozen over and burned >256,000 acres, creating a mosaic of patches that differed in burn severity. The Anaktuvuk River Severe Burn, Moderate Burn, and Unburned sites are 40 km to the west of the nearest road and were selected in late May 2008 to determine the effects of the fire on carbon, water, and energy exchanges during the growing season. Because the fire had burned through September of the previous year, initial deployment of flux towers occurred prior to any significant vegetative regrowth, and our sampling campaign captured the full growing season in 2008. The Severe Burn site consisted of a large area in which all of the green vegetation were consumed in the fire and some of the organic matter had burnt to the mineral soil in many places. A bear damaged the tower during the last week of August 2008, and it was repaired shortly after.

  16. Measurement of adiabatic burning velocity in natural gas-like mixtures

    SciTech Connect (OSTI)

    Ratna Kishore, V.; Duhan, Nipun; Ravi, M.R.; Ray, Anjan

    2008-10-15

    Experimental measurements of the adiabatic burning velocities were carried out for natural gas-like mixtures burning in air over a range of equivalence ratios at atmospheric pressure. Effect of CO{sub 2} dilution up to 60%, N{sub 2} dilution up to 40% and 25% enrichment of ethane on burning velocity of methane-air flames were studied. Heat flux method with setup similar to that of [K.J. Bosschaart, L.P.H. de Goey, Detailed analysis of the heat flux method for measuring burning velocity, Combustion and Flame 132 (2003) 170-180] was used for measurement of burning velocities. Initially experiments were done for methane-air and ethane-air mixtures at various equivalence ratios and the results were in good agreement with published data in the literature. Computations were performed using PREMIX code with GRI 3.0 reaction mechanism for all the mixtures. Predicted flame structures were used to the explain the effect of N{sub 2} and CO{sub 2} dilution on burning velocity of methane-air flames. Peak burning velocity for CH{sub 4}/CO{sub 2}-air mixtures occur near to {phi} = 1.0. (author)

  17. Polycyclic aromatic hydrocarbons at selected burning grounds at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Harris, B.W.; Minor, L.K.M.; Flucas, B.J.

    1998-02-01

    A commercial immunoassay field test (IFT) was used to rapidly assess the total concentrations of polycyclic aromatic hydrocarbons (PAHs) in the soil at selected burning grounds within the explosives corridor at Los Alamos National Laboratory (LANL). Results were compared with analyses obtained from LANL Analytical Laboratory and from a commercial laboratory. Both used the Environmental Protection Agency`s (EPA`s) Methods 8270 and 8310. EPA`s Method 8270 employs gas chromatography and mass spectral analyses, whereas EPA`s Method 8310 uses an ultraviolet detector in a high-performance liquid chromatography procedure. One crude oil sample and one diesel fuel sample, analyzed by EPA Method 8270, were included for references. On an average the IFT results were lower for standard samples and lower than the analytical laboratory results for the unknown samples. Sites were selected to determine whether the PAHs came from the material burned or the fuel used to ignite the burn, or whether they are produced by a high-temperature chemical reaction during the burn. Even though the crude oil and diesel fuel samples did contain measurable quantities of PAHs, there were no significant concentrations of PAHs detected in the ashes and soil at the burning grounds. Tests were made on fresh soil and ashes collected after a large burn and on aged soil and ashes known to have been at the site more than three years. Also analyzed were twelve-year-old samples from an inactive open burn cage.

  18. Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-04-01

    Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

  19. Emission and transport of cesium-137 from boreal biomass burning in the summer of 2010

    SciTech Connect (OSTI)

    Strode, S.; Ott, Lesley E.; Pawson, Steven; Bowyer, Ted W.

    2012-05-09

    While atmospheric concentrations of cesium-137 have decreased since the nuclear testing era, resuspension of Cs-137 during biomass burning provides an ongoing emission source. The summer of 2010 was an intense biomass burning season in western Russia, with high levels of particulate matter impacting air quality and visibility. A radionuclide monitoring station in western Russia shows enhanced airborne Cs-137 concentrations during the wildfire period. Since Cs-137 binds to aerosols, satellite observations of aerosols and fire occurrences can provide a global-scale context for Cs-137 emissions and transport during biomass burning events.

  20. Passive Ammonia SCR for Lean Burn SIDI Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ammonia SCR for Lean Burn SIDI Engines Passive Ammonia SCR for Lean Burn SIDI Engines Passive NH3 SCR has been demonstrated as a high efficiency and low cost alternative lean NOx aftertreatment technology for stratified gasoline engines. deer09_li.pdf (1.57 MB) More Documents & Publications Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control

  1. Type B Accident Investigation of the Savannah River Site Arc Flash Burn

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injury on September 23, 2009, in the D Area Powerhouse | Department of Energy of the Savannah River Site Arc Flash Burn Injury on September 23, 2009, in the D Area Powerhouse Type B Accident Investigation of the Savannah River Site Arc Flash Burn Injury on September 23, 2009, in the D Area Powerhouse October 1, 2009 This report documents the results of the Type B Accident Investigation Board investigation of the September 23, 2009, employee burn injury at the Department of Energy (DOE)

  2. Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment System | Department of Energy Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Lean-burn SIDI engine technology offers improved fuel economy. deer10_viola.pdf (3.46 MB) More Documents & Publications Emissions Control for Lean Gasoline Engines NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps Emissions Control for Lean Gasoline En

  3. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  4. Optimization of perigee burns for manned interplanetary missions

    SciTech Connect (OSTI)

    Madsen, W.W.; Olson, T.S.; Siahpush, A.S.

    1991-01-01

    In choosing an engine concept for the rocket vehicle to be used for the initial manned exploration of Mars, the two main factors in the decision should be what can be feasibly built and flight qualified within approximately the next 20 years, and what level of engine performance is required to safely perform these missions. In order to reduce the overall cost in developing this next generation space transportation system, it would be desirable to have a single engine design that could be used for a broad class of missions (for example, cargo and piloted lunar and Mars missions, orbit transfers around the Earth, and robotic missions to the planets). The engine thrust that is needed for manned Mars missions is addressed in this paper. We find that these missions are best served by a thrust level around 75,000 lbf to 100,000 lbf, and a thrust-to-engine weight ratio of about three. This thrust level might best be obtained by clustering five 15,000 lbf or 20,000 lbf engines. It may be better to throttle the engines back from full power between perigee burns, rather than shutting down. 5 refs., 4 figs.

  5. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1984-01-01

    A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  6. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1982-01-01

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  7. Michael Levitt and Computational Biology

    Office of Scientific and Technical Information (OSTI)

    At that time, X-ray crystallography was used to ascertain the location of atoms like hydrogen, carbon and oxygen in larger molecules like proteins or DNA. Researchers then used the ...

  8. Michael Anthony | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anthony Electronics Assistant Telephone (630) 252-5304 E-mail mtanthony

  9. Michael North | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North collaborates with colleagues in the Global Security Sciences division. From right to left: Mike North, Pam Sydelko, Ignacio Martinez-Moyano, and Jessica Trail. Click image to enlarge. North collaborates with colleagues in the Global Security Sciences division. From right to left: Mike North, Pam Sydelko, Ignacio Martinez-Moyano, and Jessica Trail. Click image to enlarge. North maintains a healthy work-life balance by working out regularly at the Argonne Fitness Center. The gym is free,

  10. QER- Comment of Michael Kirkwood

    Broader source: Energy.gov [DOE]

    Please accept the attached comments from Pascoag Utility District regarding the Quadrennial Energy Review process. Out comments focus on the difficulty with our current RTO market structure and its lack of providing appropriate cost-effective solutions to our energy infrastructure needs in New England.

  11. Michael Knotek | Department of Energy

    Energy Savers [EERE]

    During this career, Knotek has led DOE-wide program formulation activities in Synchrotron Science and Facilities, Environmental Science, Fusion Sciences, High Performance ...

  12. Michael Berube | Department of Energy

    Energy Savers [EERE]

    Code of Federal Regulations Part 712, Human Reliability Program | Department of Energy Clarification of Requirements for Certification in Title 10 Code of Federal Regulations Part 712, Human Reliability Program Memorandum, Clarification of Requirements for Certification in Title 10 Code of Federal Regulations Part 712, Human Reliability Program August 20, 2013 Clarification of Requirements for Certification in Title 10 Code of Federal Regulations Part 712, Human Reliability Program

  13. NREL: Biomass Research - Michael Resch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resch's NREL career began in 2008 as a postdoctoral researcher working on cellulase and ... The ultimate goal of these studies is to improve the hydrolysis efficiency of cellulase ...

  14. Michael Contreras | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the technology readiness of innovative aerodynamic decelerator systems funded by NASA. He holds a B.S. and M.S. from the University of California, Los Angeles, and a Ph.D. ...

  15. NREL: Energy Analysis - Michael Bahl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Visualization Group Energy Forecasting and Modeling Group Market and Policy Impact Analysis Group Technology Systems and Sustainability Analysis Group Washington D.C....

  16. Michael Papka | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and analyzing data in the computational pipeline in order to find crucial information ... scientific curiosity Telephone 630-252-1556 E-mail papka@anl.gov Projects Petrel

  17. Michael Himmel - Research Fellow | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He has organized or co-organized 15 international conferences on aspects of biotechnology ... in the field of biochemistry and biotechnology, including the 2003 Gordon Research ...

  18. Michael Papka | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Arms control & nonproliferation Biotechnology for national security Decision science Emergency & disaster management Policy analysis Public health preparedness ...

  19. Michael Wang | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Wang is an associate editor of Biotechnology for Biofuels) and on the editorial boards of Frontiers of Energy and Power Engineering in China and Mitigation and Adaptation ...

  20. Michael F. Crowley | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He is the principal investigator for the U.S. Department of Energy's (DOE's) Bioenergy ... Process Design, Modeling, & Economics BioEnergy Science Center (BESC) Center for Direct ...

  1. Michael Levitt and Computational Biology

    Office of Scientific and Technical Information (OSTI)

    ... Additional Web Pages: 3 Scientists Win Chemistry Nobel for Complex Computer Modeling, npr Stanford's Nobel Chemistry Prize Honors Computer Science, San Jose Mercury News Without ...

  2. Michael Greenstone | Department of Energy

    Office of Environmental Management (EM)

    This work includes an influential paper that demonstrated that high levels of particulates air pollution from coal combustion are causing the 500 million residents of Northern ...

  3. Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI...

    Broader source: Energy.gov (indexed) [DOE]

    Lean-burn SIDI engine technology offers improved fuel economy. deer10viola.pdf (3.46 MB) More Documents & Publications Emissions Control for Lean Gasoline Engines NH3 generation ...

  4. A Hypothetical Burning-Velocity Formula for Very Lean Hydrogen-Air Mixtures

    SciTech Connect (OSTI)

    Williams, Forman; Williams, Forman A; Grcar, Joseph F

    2008-06-30

    Very lean hydrogen-air mixtures experience strong diffusive-thermal types of cellular instabilities that tend to increase the laminar burning velocity above the value that applies to steady, planar laminar flames that are homogeneous in transverse directions. Flame balls constitute an extreme limit of evolution of cellular flames. To account qualitatively for the ultimate effect of diffusive-thermal instability, a model is proposed in which the flame is a steadily propagating, planar, hexagonal, close-packed array of flame balls, each burning as if it were an isolated, stationary, ideal flame ball in an infinite, quiescent atmosphere. An expression for the laminar burning velocity is derived from this model, which theoretically may provide an upper limit for the experimental burning velocity.

  5. Correlation between cathode properties, burning voltage, and plasma parameters of vacuum arcs

    SciTech Connect (OSTI)

    Anders, Andre; Yotsombat, Banchob; Binder, Robert

    2001-06-15

    Burning voltages of vacuum arcs were measured for 54 cathode materials and compared with literature data. As anticipated, a correlation between the arc burning voltage and the plasma temperature was found. However, more importantly, a correlation between the cohesive energy of the cathode material and the arc burning voltage could be demonstrated. This link between a cathode material property, the cohesive energy, and a discharge property, the arc burning voltage, is essential for the operation of the vacuum arc discharge because is determines the plasma temperature. Energy balance considerations show that this {open_quotes}cohesive energy rule{close_quotes} is responsible for several other secondary relationships, such as the correlation between the mean ion charge state and the boiling temperature of the cathode. {copyright} 2001 American Institute of Physics.

  6. Determination of deuterium–tritium critical burn-up parameter by four temperature theory

    SciTech Connect (OSTI)

    Nazirzadeh, M.; Ghasemizad, A.; Khanbabei, B.

    2015-12-15

    Conditions for thermonuclear burn-up of an equimolar mixture of deuterium-tritium in non-equilibrium plasma have been investigated by four temperature theory. The photon distribution shape significantly affects the nature of thermonuclear burn. In three temperature model, the photon distribution is Planckian but in four temperature theory the photon distribution has a pure Planck form below a certain cut-off energy and then for photon energy above this cut-off energy makes a transition to Bose-Einstein distribution with a finite chemical potential. The objective was to develop four temperature theory in a plasma to calculate the critical burn up parameter which depends upon initial density, the plasma components initial temperatures, and hot spot size. All the obtained results from four temperature theory model are compared with 3 temperature model. It is shown that the values of critical burn-up parameter calculated by four temperature theory are smaller than those of three temperature model.

  7. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    U.S. Energy Information Administration (EIA) Indexed Site

    81 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 ...

  8. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont...

    Office of Scientific and Technical Information (OSTI)

    Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, ...

  9. Vehicle Technologies Office Merit Review 2015: Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced lean-burn...

  10. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    SciTech Connect (OSTI)

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect

  11. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved

    Office of Scientific and Technical Information (OSTI)

    Economics and Resource Utilization (Technical Report) | SciTech Connect Technical Report: Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization Citation Details In-Document Search Title: Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction

  12. Type B Accident Investigation Report of the October 28, 2004, Burn Injuries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustained During an Office of Secure Transportation Joint Training Exercise at Fort Hunter-Liggett, CA | Department of Energy of the October 28, 2004, Burn Injuries Sustained During an Office of Secure Transportation Joint Training Exercise at Fort Hunter-Liggett, CA Type B Accident Investigation Report of the October 28, 2004, Burn Injuries Sustained During an Office of Secure Transportation Joint Training Exercise at Fort Hunter-Liggett, CA February 1, 2005 TYPE B Accident Investigation

  13. Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Traps | Department of Energy Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate Traps Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate Traps Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_vanderwal.pdf (5.41 MB) More Documents &

  14. Investigation of NO2 Oxidation Kinetics and Burning Mode for Medium Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Particulate: Contrasting O2 and NO2 Oxidation | Department of Energy NO2 Oxidation Kinetics and Burning Mode for Medium Duty Diesel Particulate: Contrasting O2 and NO2 Oxidation Investigation of NO2 Oxidation Kinetics and Burning Mode for Medium Duty Diesel Particulate: Contrasting O2 and NO2 Oxidation Reports on preliminary measurements of particulate reactivity and changes in microstructure upon exposure to NO2, which is often present at significant levels in diesel engine exhaust.

  15. Systematic approach to verification and validation: High explosive burn models

    SciTech Connect (OSTI)

    Menikoff, Ralph; Scovel, Christina A.

    2012-04-16

    , run a simulation, and generate a comparison plot showing simulated and experimental velocity gauge data. These scripts are then applied to several series of experiments and to several HE burn models. The same systematic approach is applicable to other types of material models; for example, equations of state models and material strength models.

  16. Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from the open burning of household waste in barrels

    SciTech Connect (OSTI)

    Lemieux, P.M.; Lutes, C.C.; Abbott, J.A.; Aldous, K.M.

    2000-02-01

    Backyard burning of household waste in barrels is a common waste disposal practice for which pollutant emissions have not been well characterized. This study measured the emissions of several pollutants, including polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), from burning mixtures designed to simulate waste generated by a recycling and a nonrecycling family in a 208-L (55-gal) burn barrel at the EPA's Open Burning Test Facility. This paper focuses on the PCDD/PCDF emissions and discusses the factors influencing PCDD/PCDF formation for different test burns. Four test burns were made in which the amount of waste placed in the barrel varied from 6.4 to 13.6 kg and the amount actually burned varied from 46.6% to 68.1%. Emissions of total PCDDs/PCDFs ranged between 0.0046 and 0.48 mg/kg of waste burned. Emissions are also presented in terms of 2,3,7,8-TCDD toxic equivalents. Emissions of PCDDs/PCDFs appear to correlate with both copper and hydrochloric acid emissions. The results of this study indicate that backyard burning emits more PCDDs/PCDFs on a mass of refuse burned basis than various types of municipal waste combustors (MWCs). Comparison of burn barrel emissions to emissions from a hypothetical modern MWC equipped with high-efficiency flue gas cleaning technology indicates that about 2--40 households burning their trash daily in barrels can produce average PCDD/PCDF emissions comparable to a 182,000 kg/day (200 ton/day) MWC facility. This study provides important data on a potentially significant source of emissions of PCDDs/PCDFs.

  17. Method and apparatus for controlling fuel/air mixture in a lean burn engine

    DOE Patents [OSTI]

    Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James

    1998-04-07

    The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

  18. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M. )

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ignition-type'' steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that triggers'' the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  19. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M.

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ``ignition-type`` steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that ``triggers`` the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  20. CORE ANALYSIS, DESIGN AND OPTIMIZATION OF A DEEP-BURN PEBBLE BED REACTOR

    SciTech Connect (OSTI)

    B. Boer; A. M. Ougouag

    2010-05-01

    Achieving a high burnup in the Deep-Burn pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. To investigate the aforementioned effects a code system using existing codes has been developed for neutronic, thermal-hydraulic and fuel depletion analysis of Deep-Burn pebble bed reactors. A core analysis of a Deep-Burn Pebble Bed Modular Reactor (400 MWth) design has been performed for two Deep-Burn fuel types and possible improvements of the design with regard to power peaking and temperature reactivity feedback are identified.

  1. Deep-Burn Modular Helium Reactor Fuel Development Plan

    SciTech Connect (OSTI)

    McEachern, D

    2002-12-02

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes

  2. AmeriFlux US-Bn2 Bonanza Creek, 1987 Burn site near Delta Junction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Randerson, James [University of California, Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn2 Bonanza Creek, 1987 Burn site near Delta Junction. Site Description - The Delta Junction 1987 Burn site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. The Granite Creek fire burned ~20,000 ha of black spruce (Picea mariana) during 1987. Approximately half of the dead boles remained upright in 2004, while the other half had fallen over or had become entangled with other boles.

  3. AmeriFlux US-Bn3 Bonanza Creek, 1999 Burn site near Delta Junction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Randerson, James [University of California, Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn3 Bonanza Creek, 1999 Burn site near Delta Junction. Site Description - The Delta Junction 1999 Burn site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. The Donnelly Flats fire burned ~7,600 ha of black spruce (Picea mariana) during June 1999. The boles of the black spruce remained standing 3 years after the fire. 70% of the surface was not covered by vascular plants.

  4. AmeriFlux CA-SF3 Saskatchewan - Western Boreal, forest burned in 1998.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Amiro, Brian [University of Manitoba; Canadian Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-SF3 Saskatchewan - Western Boreal, forest burned in 1998.. Site Description - The 1998 burn site (F98) was in the east part of Prince Albert National Park, Saskatchewan, in the Waskesiu Fire, ignited by lightning that burned about 1700 ha in July 1998. The pre-fire forest consisted of jack pine and black spruce stands, with some intermixed aspen. The fire was severe, consuming much of the top layer of organic soil and killing all trees. In 2001, much of the regenerating vegetation consisted of aspen saplings about 1 m tall and shorter jack pine and black spruce seedlings. An overstory of dead, leafless jack pine trees dominated at a height of 18 m. Sparse grass and herbs, such as fireweed (Epilobium angustifolium L.) covered the ground. There were a large number of fallen dead trees, mostly perched above the ground and not decomposing quickly.

  5. Technical Development on Burn-up Credit for Spent LWR Fuel

    SciTech Connect (OSTI)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  6. Greenhouse gas emissions from forest, land use and biomass burning in Tanzania

    SciTech Connect (OSTI)

    Matitu, M.R.

    1994-12-31

    Carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) gases are the main contributors to the greenhouse effect that consequently results in global warming. This paper examines the sources and sinks of these gases from/to forest, land use and biomass burning and their likely contribution to climate change using IPCC/OECD methodology. Emissions have been calculated in mass units of carbon and nitrogen Emissions and uptake have been summed for each gas and the emissions converted to full molecular weights. Mismanagement of forests and land misuse have contributed much to greenhouse gas emissions in Tanzania. For example, cultivation methods, forest clearing, burning of savannah grass and indiscriminate logging (non-sustainable logging) have contributed significantly to greenhouse gas emissions. These categories contribute more than 90% of total CO{sub 2} emissions. However, the study shows that shifting cultivation, savannah burning and forest clearing for conversion to permanent crop land and pasture are the main contributors.

  7. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    SciTech Connect (OSTI)

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; Svard, Staffan Jacobsson; Jansson, Peter; Swinhoe, Martyn T.; Tobin, Stephen J.

    2015-03-04

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetrically burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.

  8. Fabrication of contacts for silicon solar cells including printing burn through layers

    SciTech Connect (OSTI)

    Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

    2014-06-24

    A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

  9. Laminar burn rates of gun propellants measured in the high-pressure strand burner

    SciTech Connect (OSTI)

    Reaugh, J. E., LLNL

    1997-10-01

    The pressure dependence of the laminar burn rate of gun propellants plays a role in the design and behavior of high-performance guns. We have begun a program to investigate the effects of processing variables on the laminar burn rates, using our high-pressure strand burner to measure these rates at pressures exceeding 700 MPa. We have burned JA2 and M43 propellant samples, provided by Dr. Arpad Juhasz, ARL, from propellant lots previously used in round-robin tests. Our results at room temperature are in accord with other measurements. In addition, we present results measured for propellant that has been preheated to 50 C before burning. We used our thermochemical equilibrium code, CHEETAH, to help interpret the simultaneous pressure and temperature measurements taken during the testing, and show examples of its use. It has been modified to provide performance measures and equations of state for the products that are familiar to the gun-propellant community users of BLAKE.

  10. Baseline Risk Assessment for the F-Area Burning/Rubble Pits and Rubble Pit

    SciTech Connect (OSTI)

    Palmer, E.

    1996-03-01

    This document provides an overview of the Savannah River Site (SRS) and a description of the F-Area Burning/Rubble Pits (BRPs) and Rubble Pit (RP) unit. It also describes the objectives and scope of the baseline risk assessment (BRA).

  11. Revisiting impacts of nuclear burning for reviving weak shocks in neutrino-driven supernovae

    SciTech Connect (OSTI)

    Nakamura, Ko; Kotake, Kei; Takiwaki, Tomoya; Nishimura, Nobuya

    2014-02-20

    We revisit potential impacts of nuclear burning on the onset of the neutrino-driven explosions of core-collapse supernovae. By changing the neutrino luminosity and its decay time to obtain parametric explosions in one- and two-dimensional (1D and 2D, respectively) models with or without a 13 isotope ? network, we study how the inclusion of nuclear burning could affect the postbounce dynamics for 4 progenitor models; 3 for 15.0 M {sub ?} stars and 1 for an 11.2 M {sub ?} star. We find that the energy supply due to the nuclear burning of infalling material behind the shock can energize the shock expansion, especially for models that produce only marginal explosions in the absence of nuclear burning. These models are energized by nuclear energy deposition when the shock front passes through the silicon-rich layer and/or later as it touches the oxygen-rich layer. Depending on the neutrino luminosity and its decay time, the diagnostic energy of the explosion increases up to a few times 10{sup 50} erg for models with nuclear burning compared to the corresponding models without. We point out that these features are most remarkable for the Limongi-Chieffi progenitor in both 1D and 2D because the progenitor model possesses a massive oxygen layer, with an inner-edge radius that is smallest among the employed progenitors, which means that the shock can touch the rich fuel on a shorter timescale after bounce. The energy difference is generally smaller (?0.1-0.2 10{sup 51} erg) in 2D than in 1D (at most ?0.6 10{sup 51} erg). This is because neutrino-driven convection and the shock instability in 2D models enhance the neutrino heating efficiency, which makes the contribution of nuclear burning relatively smaller compared to 1D models. Considering uncertainties in progenitor models, our results indicate that nuclear burning should remain one of the important ingredients to foster the onset of neutrino-driven explosions.

  12. Application of spectral hole burning to the study of in vitro cellular systems

    SciTech Connect (OSTI)

    Milanovich, Nebojsa

    1999-11-08

    Chapter 1 of this thesis describes the various stages of tumor development and a multitude of diagnostic techniques used to detect cancer. Chapter 2 gives an overview of the aspects of hole burning spectroscopy important for its application to the study of cellular systems. Chapter 3 gives general descriptions of cellular organelles, structures, and physical properties that can serve as possible markers for the differentiation of normal and cancerous cells. Also described in Chapter 3 are the principles of cryobiology important for low temperature spectroscopy of cells, characterization of MCF-10F (normal) and MCF-7 (cancer) cells lines which will serve as model systems, and cellular characteristics of aluminum phthalocyanine tetrasulfonate (APT), which was used as the test probe. Chapters 4 and 5 are previously published papers by the author pertaining to the results obtained from the application of hole burning to the study of cellular systems. Chapter 4 presents the first results obtained by spectral hole burning of cellular systems and Chapter 5 gives results for the differentiation of MCF-10F and MCF-7 cells stained with APT by an external applied electric (Stark) field. A general conclusion is presented in Chapter 6. Appendices A and B provide additional characterization of the cell/probe model systems. Appendix A describes the uptake and subcellular distribution of APT in MCF-10F and MCF-7 cells and Appendix B compares the hole burning characteristics of APT in cells when the cells are in suspension and when they are examined while adhering to a glass coverslip. Appendix C presents preliminary results for a novel probe molecule, referred to as a molecular thumbtack, designed by the authors for use in future hole burning applications to cellular systems.

  13. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies

    SciTech Connect (OSTI)

    1992-10-01

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

  14. K Basins floor sludge retrieval system knockout pot basket fuel burn accident

    SciTech Connect (OSTI)

    HUNT, J.W.

    1998-11-11

    The K Basins Sludge Retrieval System Preliminary Hazard Analysis Report (HNF-2676) identified and categorized a series of potential accidents associated with K Basins Sludge Retrieval System design and operation. The fuel burn accident was of concern with respect to the potential release of contamination resulting from a runaway chemical reaction of the uranium fuel in a knockout pot basket suspended in the air. The unmitigated radiological dose to an offsite receptor from this fuel burn accident is calculated to be much less than the offsite risk evaluation guidelines for anticipated events. However, because of potential radiation exposure to the facility worker, this accident is precluded with a safety significant lifting device that will prevent the monorail hoist from lifting the knockout pot basket out of the K Basin water pool.

  15. Preliminary design of ultra-long cycle fast reactor employing breed-and-burn strategy

    SciTech Connect (OSTI)

    Tak, T. W.; Yu, H.; Kim, J. H.; Lee, D.; Kim, T. K.

    2012-07-01

    A new design of ultra-long cycle fast reactor with power rate of 1000 MWe (UCFR) has been developed based on the strategy of breed-and burn. The bottom region of the core with low enriched uranium (LEU) plays a role of igniter of the core burning and the upper natural uranium (NU) region acts as blanket for breeding. Fissile materials are bred in the blanket and the active core moves upward at a speed of 5.4 cm/year. Through the core depletion calculation using Monte Carlo code, McCARD, it is confirmed that a full power operation of 60 years without refueling is feasible. Core performance characteristics have been evaluated in terms of axial/radial power shapes, reactivity feedback coefficients, etc. This design will serve as a base model for further design study of UCFRs using LWR spent fuels in the blanket region. (authors)

  16. 2012 ARPA-E Energy Innovation Summit Keynote Presentation (Ursula Burns, Xerox Corporation)

    SciTech Connect (OSTI)

    Burns, Ursula

    2012-02-29

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. Ursula Burns, Chairman and CEO of the Xerox Corporation, gave the second keynote address of the third day's sessions on February 29.

  17. Evaluation and Parameter Analysis of Burn up Calculations for the Assessment of Radioactive Waste - 13187

    SciTech Connect (OSTI)

    Fast, Ivan; Aksyutina, Yuliya; Tietze-Jaensch, Holger

    2013-07-01

    Burn up calculations facilitate a determination of the composition and nuclear inventory of spent nuclear fuel, if operational history is known. In case this information is not available, the total nuclear inventory can be determined by means of destructive or, even on industrial scale, nondestructive measurement methods. For non-destructive measurements however only a few easy-to-measure, so-called key nuclides, are determined due to their characteristic gamma lines or neutron emission. From these measured activities the fuel burn up and cooling time are derived to facilitate the numerical inventory determination of spent fuel elements. Most regulatory bodies require an independent assessment of nuclear waste properties and their documentation. Prominent part of this assessment is a consistency check of inventory declaration. The waste packages often contain wastes from different types of spent fuels of different history and information about the secondary reactor parameters may not be available. In this case the so-called characteristic fuel burn up and cooling time are determined. These values are obtained from a correlations involving key-nuclides with a certain bandwidth, thus with upper and lower limits. The bandwidth is strongly dependent on secondary reactor parameter such as initial enrichment, temperature and density of the fuel and moderator, hence the reactor type, fuel element geometry and plant operation history. The purpose of our investigation is to look into the scaling and correlation limitations, to define and verify the range of validity and to scrutinize the dependencies and propagation of uncertainties that affect the waste inventory declarations and their independent verification. This is accomplished by numerical assessment and simulation of waste production using well accepted codes SCALE 6.0 and 6.1 to simulate the cooling time and burn up of a spent fuel element. The simulations are benchmarked against spent fuel from the real reactor

  18. 2012 ARPA-E Energy Innovation Summit Keynote Presentation (Ursula Burns, Xerox Corporation)

    ScienceCinema (OSTI)

    Burns, Ursula (Xerox Corporation, Chairman and CEO)

    2014-04-11

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. Ursula Burns, Chairman and CEO of the Xerox Corporation, gave the second keynote address of the third day's sessions on February 29.

  19. "Plasma stability and burn control" Inventor...--.. Richard J.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hawryluk, Wayne Solomon | Princeton Plasma Physics Lab Plasma stability and burn control" Inventor...--.. Richard J. Hawryluk, Wayne Solomon Power released in a fusion power plant is approximately proportional to the square of the stored energy in conditions relevant to power plant operation. To decrease the fatigue in a key components in a power plant associated with thermal cycling, it would be advantageous to independently control the stored energy. The invention described herein

  20. ADVANCED BURNING STAGES AND FATE OF 8-10 M{sub Sun} STARS

    SciTech Connect (OSTI)

    Jones, S.; Hirschi, R.; Nomoto, K.; Fischer, T.; Martinez-Pinedo, G.; Timmes, F. X.; Herwig, F.; Paxton, B.; Toki, H.; Suzuki, T.; Lam, Y. H.; Bertolli, M. G.

    2013-08-01

    The stellar mass range 8 {approx}< M/M{sub Sun} {approx}< 12 corresponds to the most massive asymptotic giant branch (AGB) stars and the most numerous massive stars. It is host to a variety of supernova (SN) progenitors and is therefore very important for galactic chemical evolution and stellar population studies. In this paper, we study the transition from super-AGB (SAGB) star to massive star and find that a propagating neon-oxygen-burning shell is common to both the most massive electron capture supernova (EC-SN) progenitors and the lowest mass iron-core-collapse supernova (FeCCSN) progenitors. Of the models that ignite neon-burning off-center, the 9.5 M{sub Sun} star would evolve to an FeCCSN after the neon-burning shell propagates to the center, as in previous studies. The neon-burning shell in the 8.8 M{sub Sun} model, however, fails to reach the center as the URCA process and an extended (0.6 M{sub Sun }) region of low Y{sub e} (0.48) in the outer part of the core begin to dominate the late evolution; the model evolves to an EC-SN. This is the first study to follow the most massive EC-SN progenitors to collapse, representing an evolutionary path to EC-SN in addition to that from SAGB stars undergoing thermal pulses (TPs). We also present models of an 8.75 M{sub Sun} SAGB star through its entire TP phase until electron captures on {sup 20}Ne begin at its center and of a 12 M{sub Sun} star up to the iron core collapse. We discuss key uncertainties and how the different pathways to collapse affect the pre-SN structure. Finally, we compare our results to the observed neutron star mass distribution.

  1. DOE/SC-ARM-13-014 Biomass Burning Observation Project Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Biomass Burning Observation Project Science Plan LI Kleinman AJ Sedlacek September 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  2. Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Office of Science (SC) Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301)

  3. Rice straw burning in Southeast Asia as a source of CO and COS to the atmosphere

    SciTech Connect (OSTI)

    Nguyen, B.C.; Mihalopoulos, N.; Putaud, J.P. [Centre des Faibles Radioactivites, Gif-sur-Yvette (France)

    1994-08-20

    This paper discusses the results of aerosol monitoring field tests conducted in four locations in Viet Nam during 1992 and 1993. Atmospheric samples were collected during the dry and wet seasons during the time when rice straw burning was taking place in the agricultural rangelands. The samples were analyzed for carbon monoxide, carbon dioxide, and carbonyl sulfide. Experimental methods and implications of the analytical results are described. 21 refs., 2 figs., 3 tabs.

  4. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    SciTech Connect (OSTI)

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  5. Study of Buoyancy-Driven Turbulent Nuclear Burning and Validation of Type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ia Supernova Models | Argonne Leadership Computing Facility Study of Buoyancy-Driven Turbulent Nuclear Burning and Validation of Type Ia Supernova Models PI Name: Don Lamb PI Email: lamb@oddjob.uchicago.edu Institution: ASC/Alliance Flash Center, University of Chicago Allocation Program: INCITE Allocation Hours at ALCF: 80,000,000 Year: 2011 Research Domain: Physics We will study important aspects of Type Ia supernovae which are among the brightest and most powerful explosions in the

  6. Process for clean-burning fuel from low-rank coal

    DOE Patents [OSTI]

    Merriam, Norman W.; Sethi, Vijay; Brecher, Lee E.

    1994-01-01

    A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

  7. Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation

    SciTech Connect (OSTI)

    Jerzembeck, S.; Peters, N. [RWTH, Aachen (Germany); Pepiot-Desjardins, P.; Pitsch, H. [Department of Mechanical Engineering, Stanford University, CA (United States)

    2009-02-15

    Spherical flames of n-heptane, iso-octane, PRF 87 and gasoline/air mixtures are experimentally investigated to determine laminar burning velocities and Markstein lengths under engine-relevant conditions by using the constant volume bomb method. Data are obtained for an initial temperature of 373 K, equivalence ratios varying from {phi}=0.7 to {phi}=1.2, and initial pressures from 10 to 25 bar. To track the flame front in the vessel a dark field He-Ne laser Schlieren measurement technique and digital image processing were used. The propagating speed with respect to the burned gases and the stretch rate are determined from the rate of change of the flame radius. The laminar burning velocities are obtained through a linear extrapolation to zero stretch. The experimentally determined Markstein numbers are compared to theoretical predictions. A reduced chemical kinetic mechanism for n-heptane and iso-octane was derived from the Lawrence Livermore comprehensive mechanisms. This mechanism was validated for ignition delay times and flame propagation at low and high pressures. In summary an overall good agreement with the various experimental data sets used in the validation was obtained. (author)

  8. The smoke-fireplume model : tool for eventual application to prescribed burns and wildland fires.

    SciTech Connect (OSTI)

    Brown, D. F.; Dunn, W. E.; Lazaro, M. A.; Policastro, A. J.

    1999-08-17

    Land managers are increasingly implementing strategies that employ the use of fire in prescribed burns to sustain ecosystems and plan to sustain the rate of increase in its use over the next five years. In planning and executing expanded use of fire in wildland treatment it is important to estimate the human health and safety consequences, property damage, and the extent of visibility degradation from the resulting conflagration-pyrolysis gases, soot and smoke generated during flaming, smoldering and/or glowing fires. Traditional approaches have often employed the analysis of weather observations and forecasts to determine whether a prescribed burn will affect populations, property, or protected Class I areas. However, the complexity of the problem lends itself to advanced PC-based models that are simple to use for both calculating the emissions from the burning of wildland fuels and the downwind dispersion of smoke and other products of pyrolysis, distillation, and/or fuels combustion. These models will need to address the effects of residual smoldering combustion, including plume dynamics and optical effects. In this paper, we discuss a suite of tools that can be applied for analyzing dispersion. These tools include the dispersion models FIREPLUME and SMOKE, together with the meteorological preprocessor SEBMET.

  9. Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission

    DOE Patents [OSTI]

    Kostiuk, Larry W.; Cheng, Robert K.

    1996-01-01

    An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

  10. Void effect analysis of Pb-208 of fast reactors with modified CANDLE burn-up scheme

    SciTech Connect (OSTI)

    Widiawati, Nina Su’ud, Zaki

    2015-09-30

    Void effect analysis of Pb-208 as coolant of fast reactors with modified candle burn-up scheme has been conducted. Lead cooled fast reactor (LFR) is one of the fourth-generation reactor designs. The reactor is designed with a thermal power output of 500 MWt. Modified CANDLE burn-up scheme allows the reactor to have long life operation by supplying only natural uranium as fuel cycle input. This scheme introducing discrete region, the fuel is initially put in region 1, after one cycle of 10 years of burn up it is shifted to region 2 and region 1 is filled by fresh natural uranium fuel. The reactor is designed for 100 years with 10 regions arranged axially. The results of neutronic calculation showed that the void coefficients ranged from −0.6695443 % at BOC to −0.5273626 % at EOC for 500 MWt reactor. The void coefficients of Pb-208 more negative than Pb-nat. The results showed that the reactors with Pb-208 coolant have better level of safety than Pb-nat.

  11. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; Svard, Staffan Jacobsson; Jansson, Peter; Swinhoe, Martyn T.; Tobin, Stephen J.

    2015-03-04

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetricallymore » burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.« less

  12. Quantitative IR Spectrum and Vibrational Assignments for Glycolaldehyde Vapor: Glycolaldehyde Measurements in Biomass Burning Plumes

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sams, Robert L.; Profeta, Luisa T.; Akagi, Sheryl; Burling, Ian R.; Yokelson, Robert J.; Williams, Stephen D.

    2013-04-15

    Glycolaldehyde (GA, 2-hydroxyethanal, C2H4O2) is a semi-volatile molecule of atmospheric importance, recently proposed as a precursor in the formation of aqueous-phase secondary organic aerosol (SOA). There are few methods to measure glycolaldehyde vapor, but infrared spectroscopy has been used successfully. Using vetted protocols we have completed the first assignment of all fundamental vibrational modes and derived quantitative IR absorption band strengths using both neat and pressure-broadened GA vapor. Even though GA is problematic due to its propensity to both dimerize and condense, our intensities agree well with the few previously published values. Using the reference ?10 band Q-branch at 860.51 cm-1, we have also determined GA mixing ratios in biomass burning plumes generated by field and laboratory burns of fuels from the southeastern and southwestern United States, including the first field measurements of glycolaldehyde in smoke. The GA emission factors were anti-correlated with modified combustion efficiency confirming release of GA from smoldering combustion. The GA emission factors (g of GA emitted per kg dry biomass burned on a dry mass basis) had a low dependence on fuel type consistent with the production mechanism being pyrolysis of cellulose. GA was emitted at 0.23 0.13% of CO from field fires and we calculate that it accounts for ~18% of the aqueous-phase SOA precursors that we were able to measure.

  13. Central Shops Burning/Rubble Pit 631-6G Additonal Sampling and Monitor Well Installation Report

    SciTech Connect (OSTI)

    Palmer, E.

    1995-02-01

    The Central Shops Burning/Rubble Pit 631-6G was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal and incineration of potentially hazardous substances, such as metals and organic solvents.

  14. Linkages from DOE's Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines

    Broader source: Energy.gov [DOE]

    Linkages from DOE’s Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines, a report from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

  15. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    SciTech Connect (OSTI)

    Rahman, Fariz Abdul; Lee, John C. [University of Michigan, Ann Arbor, MI (United States); Franceschini, Fausto; Wenner, Michael [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    As described in companion papers, Westinghouse is proposing the adoption of a thorium-based fuel cycle to burn the transuranics (TRU) contained in the current Used Nuclear Fuel (UNF) and transition towards a less radio-toxic high level waste. A combination of both light water reactors (LWR) and fast reactors (FR) is envisaged for the task, with the emphasis initially posed on their TRU burning capability and eventually to their self-sufficiency. Given the many technical challenges and development times related to the deployment of TRU burners fast reactors, an interim solution making best use of the current resources to initiate burning the legacy TRU inventory while developing and testing some technologies of later use is desirable. In this perspective, a portion of the LWR fleet can be used to start burning the legacy TRUs using Th-based fuels compatible with the current plants and operational features. This analysis focuses on a typical 4-loop PWR, with 17x17 fuel assembly design and TRUs (or Pu) admixed with Th (similar to U-MOX fuel, but with Th instead of U). Global calculations of the core were represented with unit assembly simulations using the Linear Reactivity Model (LRM). Several assembly configurations have been developed to offer two options that can be attractive during the TRU transmutation campaign: maximization of the TRU transmutation rate and capability for TRU multi-recycling, to extend the option of TRU recycling in LWR until the FR is available. Homogeneous as well as heterogeneous assembly configurations have been developed with various recycling schemes (Pu recycle, TRU recycle, TRU and in-bred U recycle etc.). Oxide as well as nitride fuels have been examined. This enabled an assessment of the potential for burning and multi-recycling TRU in a Th-based fuel PWR to compare against other more typical alternatives (U-MOX and variations thereof). Results will be shown indicating that Th-based PWR fuel is a promising option to multi-recycle and

  16. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  17. The deposition and burning characteristics during slagging co-firing coal and wood: modeling and numerical simulation

    SciTech Connect (OSTI)

    Wang, X.H.; Zhao, D.Q.; Jiang, L.Q.; Yang, W.B.

    2009-07-01

    Numerical analysis was used to study the deposition and burning characteristics of combining co-combustion with slagging combustion technologies in this paper. The pyrolysis and burning kinetic models of different fuels were implanted into the WBSF-PCC2 (wall burning and slag flow in pulverized co-combustion) computation code, and then the slagging and co-combustion characteristics (especially the wall burning mechanism of different solid fuels and their effects on the whole burning behavior in the cylindrical combustor at different mixing ratios under the condition of keeping the heat input same) were simulated numerically. The results showed that adding wood powder at 25% mass fraction can increase the temperature at the initial stage of combustion, which is helpful to utilize the front space of the combustor. Adding wood powder at a 25% mass fraction can increase the reaction rate at the initial combustion stage; also, the coal ignitability is improved, and the burnout efficiency is enhanced by about 5% of suspension and deposition particles, which is helpful for coal particles to burn entirely and for combustion devices to minimize their dimensions or sizes. The results also showed that adding wood powder at a proper ratio is helpful to keep the combustion stability, not only because of the enhancement for the burning characteristics, but also because the running slag layer structure can be changed more continuously, which is very important for avoiding the abnormal slag accumulation in the slagging combustor. The theoretic analysis in this paper proves that unification of co-combustion and slagging combustion technologies is feasible, though more comprehensive and rigorous research is needed.

  18. Method for correcting for isotope burn-in effects in fission neutron dosimeters

    DOE Patents [OSTI]

    Gold, Raymond; McElroy, William N.

    1988-01-01

    A method is described for correcting for effect of isotope burn-in in fission neutron dosimeters. Two quantities are measured in order to quantify the "burn-in" contribution, namely P.sub.Z',A', the amount of (Z', A') isotope that is burned-in, and F.sub.Z', A', the fissions per unit volume produced in the (Z', A') isotope. To measure P.sub.Z', A', two solid state track recorder fission deposits are prepared from the very same material that comprises the fission neutron dosimeter, and the mass and mass density are measured. One of these deposits is exposed along with the fission neutron dosimeter, whereas the second deposit is subsequently used for observation of background. P.sub.Z', A' is then determined by conducting a second irradiation, wherein both the irradiated and unirradiated fission deposits are used in solid state track recorder dosimeters for observation of the absolute number of fissions per unit volume. The difference between the latter determines P.sub.Z', A' since the thermal neutron cross section is known. F.sub.Z', A' is obtained by using a fission neutron dosimeter for this specific isotope, which is exposed along with the original threshold fission neutron dosimeter to experience the same neutron flux-time history at the same location. In order to determine the fissions per unit volume produced in the isotope (Z', A') as it ingrows during the irradiation, B.sub.Z', A', from these observations, the neutron field must generally be either time independent or a separable function of time t and neutron energy E.

  19. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423

    SciTech Connect (OSTI)

    Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo; Sartori, Alberto; Ricotti, Marco

    2012-07-01

    Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can be accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized

  20. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C.

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  1. AmeriFlux US-Bn1 Bonanza Creek, 1920 Burn site near Delta Junction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Randerson, James [University of California, Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn1 Bonanza Creek, 1920 Burn site near Delta Junction. Site Description - The Delta Junction 1920 Control site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. In 2001, total aboveground biomass consisted almost entirely of black spruce (Picea mariana).

  2. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    U.S. Energy Information Administration (EIA) Indexed Site

    81 § ¨ ¦ 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 GLENWOOD PU LASKI PAVILION CON CORD COL LINS N ELM A ORC HARD PARK-H AMBU RG DANLEY CORNERS ST ILLWAT ER CHAFF EE-ARCAD E FAYETT E-WATERLOO LAKEVIEW JAVA SEN EC A W ELLER Y AU RORA E ZOAR BU FFALO TIOGA SILVER LAKE AKR ON ROM E RAT HBON E ALM A BET HANY WYOMING ULYSSES BR ANCH W SAN DY CREEK COL LINS BLOOMFIELD E LEBANON

  3. Process for clean-burning fuel from low-rank coal

    DOE Patents [OSTI]

    Merriam, N.W.; Sethi, V.; Brecher, L.E.

    1994-06-21

    A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

  4. Extrapolating Accelerated UV Weathering Data: Perspective from...

    Office of Scientific and Technical Information (OSTI)

    Amal ; Bokria, Jayesh G. ; Bruckman, Laura S. ; Burns, David M. ; Elliott, Lamont ; French, Roger H. ; Fowler, Sean ; Gu, Xiaohong ; Honeker, Christian C. ; Kempe, Michael D. ;...

  5. Degradation in PV Encapsulation Transmittance: An Interlaboratory...

    Office of Scientific and Technical Information (OSTI)

    Fanny ; Ballion, Amal ; Kohl, Michael ; Bokria, Jayesh G. ; Bruckman, Laura S. ; French, Roger H. ; Burns, David ; Phillips, Nancy H. ; Feng ; Jiangtao ; Elliott, Lamont ;...

  6. Personal PM2.5 exposure among wildland firefighters working at prescribed forest burns in southeastern United States.

    SciTech Connect (OSTI)

    Adetona, Olorunfemi; Dunn, Kevin; Hall, Daniel, B.; Achtemeier, Gary; Stock, Allison; Naeher, Luke, P.

    2011-07-15

    This study investigated occupational exposure to wood and vegetative smoke in a group of 28 forest firefighters at prescribed forest burns in a southeastern U.S. forest during the winters of 2003-2005. During burn activities, 203 individual person-day PM{sub 2.5} and 149 individual person-day CO samples were collected; during non-burn activities, 37 person-day PM{sub 2.5} samples were collected as controls. Time-activity diaries and post-work shift questionnaires were administered to identify factors influencing smoke exposure and to determine how accurately the firefighters qualitative assessment estimated their personal level of smoke exposure with discrete responses: 'none' or 'very little,' 'low,' 'moderate,' 'high,' and 'very high.' An average of 6.7 firefighters were monitored per burn, with samples collected on 30 burn days and 7 non-burn days. Size of burn plots ranged from 1-2745 acres (avg = 687.8). Duration of work shift ranged from 6.8-19.4 hr (avg = 10.3 hr) on burn days. Concentration of PM{sub 2.5} ranged from 5.9-2673 {mu}g/m{sup 3} on burn days. Geometric mean PM{sub 2.5} exposure was 280 {mu}g/m{sup 3} (95% CL = 140, 557 {mu}g/m{sup 3}, n = 177) for burn day samples, and 16 {mu}g/m{sup 3} (95% CL = 10, 26 {mu}g/m{sup 3}, n = 35) on non-burn days. Average measured PM{sub 2.5} differed across levels of the firefighters categorical self-assessments of exposure (p < 0.0001): none to very little = 120 {mu}g/m{sup 3} (95% CL = 71, 203 {mu}g/m{sup 3}) and high to very high = 664 {mu}g/m{sup 3} (95% CL = 373, 1185 {mu}g/m{sup 3}); p < 0.0001 on burn days. Time-weighted average PM{sub 2.5} and personal CO averaged over the run times of PM{sub 2.5} pumps were correlated (correlation coefficient estimate, r = 0.79; CLs: 0.72, 0.85). Overall occupational exposures to particulate matter were low, but results indicate that exposure could exceed the ACGIH{reg_sign}-recommended threshold limit value of 3 mg/m{sup 3} for respirable particulate matter in a few

  7. Measurement of laminar burning speeds and Markstein lengths using a novel methodology

    SciTech Connect (OSTI)

    Tahtouh, Toni; Halter, Fabien; Mounaim-Rousselle, Christine [Institut PRISME, Universite d'Orleans, 8 rue Leonard de Vinci-45072, Orleans Cedex 2 (France)

    2009-09-15

    Three different methodologies used for the extraction of laminar information are compared and discussed. Starting from an asymptotic analysis assuming a linear relation between the propagation speed and the stretch acting on the flame front, temporal radius evolutions of spherically expanding laminar flames are postprocessed to obtain laminar burning velocities and Markstein lengths. The first methodology fits the temporal radius evolution with a polynomial function, while the new methodology proposed uses the exact solution of the linear relation linking the flame speed and the stretch as a fit. The last methodology consists in an analytical resolution of the problem. To test the different methodologies, experiments were carried out in a stainless steel combustion chamber with methane/air mixtures at atmospheric pressure and ambient temperature. The equivalence ratio was varied from 0.55 to 1.3. The classical shadowgraph technique was used to detect the reaction zone. The new methodology has proven to be the most robust and provides the most accurate results, while the polynomial methodology induces some errors due to the differentiation process. As original radii are used in the analytical methodology, it is more affected by the experimental radius determination. Finally, laminar burning velocity and Markstein length values determined with the new methodology are compared with results reported in the literature. (author)

  8. Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design

    SciTech Connect (OSTI)

    B. Boer; A. M. Ougouag

    2010-05-01

    High fuel temperatures and resulting fuel particle coating stresses can be expected in a Pu and minor actinide fueled Pebble Bed Modular Reactor (400 MWth) design as compared to the standard UO2 fueled core. The high discharge burnup aimed for in this Deep-Burn design results in increased power and temperature peaking in the pebble bed near the inner and outer reflector. Furthermore, the pebble power in a multi-pass in-core pebble recycling scheme is relatively high for pebbles that make their first core pass. This might result in an increase of the mechanical failure of the coatings, which serve as the containment of radioactive fission products in the PBMR design. To investigate the integrity of the particle fuel coatings as a function of the irradiation time (i.e. burnup), core position and during a Loss Of Forced Cooling (LOFC) incident the PArticle STress Analysis code (PASTA) has been coupled to the PEBBED code for neutronics, thermal-hydraulics and depletion analysis of the core. Two deep burn fuel types (Pu with or without initial MA fuel content) have been investigated with the new code system for normal and transient conditions including the effect of the statistical variation of thickness of the coating layers.

  9. Results of emissions testing while burning densified refuse derived fuel, Dordt College, Sioux Center, Iowa

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    Pacific Environmental Services, Inc. provided engineering and source testing services to the Council of Great Lake Governors to support their efforts in promoting the development and utilization of densified refuse derived fuels (d-RDF) and pelletized wastepaper fuels in small steam generating facilities. The emissions monitoring program was designed to provide a complete air emissions profile while burning various refuse derived fuels. The specific goal of this test program was to conduct air emissions tests at Dordt College located in Sioux Center, Iowa and to identify a relationship between fuel types and emission characteristics. The sampling protocol was carried out June 12 through June 20, 1989 on boiler {number sign}4. This unit had been previously modified to burn d-RDF. The boiler was not equipped with any type of air pollution control device so the emissions samples were collected from the boiler exhaust stack on the roof of the boilerhouse. The emissions that were sampled included: particulates; PM{sub 10} particulates; hydrochloric acid; dioxins; furans; polychlorinated biphenyls (PCB); metals and continuous monitors for CO, CO{sub 2}O{sub 2}SO{sub x}NO{sub x} and total hydrocarbons. Grab samples of the fuels were collected, composited and analyzed for heating value, moisture content, proximate and ultimate analysis, ash fusion temperature, bulk density and elemental ash analysis. Grab samples of the boiler ash were also collected and analyzed for total hydrocarbons total dioxins, total furans, total PCBs and heavy metals. 77 figs., 20 tabs.

  10. Long-term tradeoffs between nuclear- and fossil-fuel burning

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1996-12-31

    A global energy/economics/environmental (E{sup 3}) model has been adapted with a nuclear energy/materials model to understand better {open_quotes}top-level{close_quotes}, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a {open_quotes}business-as-usual{close_quotes} (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year {approximately}2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations).

  11. Performance Comparison of Metallic, Actinide Burning Fuel in Lead-Bismuth and Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Weaver, Kevan Dean; Herring, James Stephen; Mac Donald, Philip Elsworth

    2001-04-01

    Various methods have been proposed to incinerate or transmutate the current inventory of trans-uranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non-fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years.

  12. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Satoshi Matsuzaki

    2002-08-01

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Qy-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll a (BChl a) molecules are provided. General conclusions are given in Chapter 5.

  13. SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

    2005-01-01

    The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus

  14. ON THE EFFECT OF EXPLOSIVE THERMONUCLEAR BURNING ON THE ACCRETED ENVELOPES OF WHITE DWARFS IN CATACLYSMIC VARIABLES

    SciTech Connect (OSTI)

    Sion, Edward M.; Sparks, Warren E-mail: warrensparks@comcast.net

    2014-11-20

    The detection of heavy elements at suprasolar abundances in the atmospheres of some accreting white dwarfs in cataclysmic variables (CVs), coupled with the high temperatures needed to produce these elements, requires explosive thermonuclear burning. The central temperatures of any formerly more massive secondary stars in CVs undergoing hydrostatic CNO burning are far too low to produce these elements. Evidence is presented that at least some CVs contain donor secondaries that have been contaminated by white dwarf remnant burning during the common envelope phase and are transferring this material back to the white dwarf. This scenario does not exclude the channel in which formerly more massive donor stars underwent CNO processing in systems with thermal timescale mass transfer. Implications for the progenitors of CVs are discussed and a new scenario for the white dwarf's accretion-nova-outburst is given.

  15. Epoxy-borax-coal tar composition for a radiation protective, burn resistant drum liner and centrifugal casting method

    DOE Patents [OSTI]

    Taylor, Robert S.; Boyer, Norman W.

    1980-01-01

    A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of Borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% Borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  16. Geothermometry At Northern Basin & Range Region (Cole, 1983)...

    Open Energy Info (EERE)

    Fish (Wilson), Twin Peak, Cudahy, Laverkin, Grantsville, Crystal Prison, Arrowhead, Red Hill, Monroe, Joseph, Castilla, Saratoga, Thermo, Crater, Wasatch, Beck, Deseret, Big...

  17. Michael B. Oberling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B. Oberling Engineering Assistant, Electronics Telephone (630) 252-6181 E-mail moberling

  18. The Honorable Michael'R. White :

    Office of Legacy Management (LM)

    W. Alexander Williams (301-427-1719) of my staff. , I James W. Wagoner Ii Director. - Off-SiteSavannah. River' Division Enclosures " Office of Eastern'Area.Programs Office of ...

  19. Michael Starke, Oak Ridge National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Starke, Oak Ridge National Laboratory starkemr@ornl.gov Team: Sachin Nimbalkar, Brandon Johnson Oak Ridge National Laboratory Prashant More, Carlos Silva ENBALA Power Networks Anna Shipley SRA September 17, 2014 Berkeley, CA DOE/OE Transmission Reliability R&D Load as a Resource (LaaR) Objectives * ORNL is examining potential for manufacturing processes to provide regulation service. This includes: ▪ Conducting modeling analysis (more detailed understanding on impact of industrial

  20. Michael Blasnick & Associates | Open Energy Information

    Open Energy Info (EERE)

    About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems...

  1. Michael A. McGuire* and Orlando ...

    Office of Scientific and Technical Information (OSTI)

    ... process we could produce either amor- phous, magnetically soft material or ... mag- netic field on the microstructural evolution of the amor- phous precursor material. ...

  2. Michael Skelly President Clean Line Energy Partners

    Broader source: Energy.gov (indexed) [DOE]

    ... Solar PV-Rooftop Residential Solar PV-Rooftop C&I Solar PV-Crystalline Utility Scale Solar PV-Thin Film Utility Scale Solar Thermal with Storage Fuel Cell Microturbine Geothermal ...

  3. Michael Zhang | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zhang Software Developer Argonne National Laboratory 9700 S. Cass Avenue Building 240 - Wkstn. 3C6 Argonne, IL 60439 630-252-6027 zhangm@anl.gov

  4. Michael E. Dorcas | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as coauthors. He is involved in numerous research projects including studies of invasive Burmese pythons in Florida and the ecology and conservation of diamondback terrapins...

  5. ORISE: Undergraduate Research Experiences - Michael Capozzoli

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and measure dimensions, tolerances and deviations in parts produced by additive manufacturing. Click image to enlarge. Paris Cornwell's participation in the Laboratory...

  6. Michael M. Johnson | Department of Energy

    Office of Environmental Management (EM)

    ... Mr. Johnson has a B.S. in Computer Engineering and an M.S. in Computer Science, with specialization in parallel and distributed simulation, embedded systems, and network protocol ...

  7. Memorial Gathering Pending for NERSC's Michael Welcome

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contributions in the areas of applied mathematics, system administration and improving ... was hired at LLNL to create a new Applied Mathematics Group. His first hire was Welcome. ...

  8. Deep Burn Fuel Cycle Integration: Evaluation of Two-Tier Scenarios

    SciTech Connect (OSTI)

    S. Bays; H. Zhang; M. Pope

    2009-05-01

    The use of a deep burn strategy using VHTRs (or DB-MHR), as a means of burning transuranics produced by LWRs, was compared to performing this task with LWR MOX. The spent DB-MHR fuel was recycled for ultimate final recycle in fast reactors (ARRs). This report summarizes the preliminary findings of the support ratio (in terms of MWth installed) between LWRs, DB-MHRs and ARRs in an equilibrium two-tier fuel cycle scenario. Values from literature were used to represent the LWR and DB-MHR isotopic compositions. A reactor physics simulation of the ARR was analyzed to determine the effect that the DB-MHR spent fuel cooling time on the ARR transuranic consumption rate. These results suggest that the cooling time has some but not a significant impact on the ARRs conversion ratio and transuranic consumption rate. This is attributed to fissile worth being derived from non-fissile or threshold-fissioning isotopes in the ARRs fast spectrum. The fraction of installed thermal capacity of each reactor in the DB-MHR 2-tier fuel cycle was compared with that of an equivalent MOX 2-tier fuel cycle, assuming fuel supply and demand are in equilibrium. The use of DB-MHRs in the 1st-tier allows for a 10% increase in the fraction of fleet installed capacity of UO2-fueled LWRs compared to using a MOX 1st-tier. Also, it was found that because the DB-MHR derives more power per unit mass of transuranics charged to the fresh fuel, the front-end reprocessing demand is less than MOX. Therefore, more fleet installed capacity of DB-MHR would be required to support a given fleet of UO2 LWRs than would be required of MOX plants. However, the transuranic deep burn achieved by DB-MHRs reduces the number of fast reactors in the 2nd-tier to support the DB-MHRs back-end transuranic output than if MOX plants were used. Further analysis of the relative costs of these various types of reactors is required before a comparative study of these options could be considered complete.

  9. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; et al

    2016-01-21

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smallermore » than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × dln(Nliq)/dln(BBt)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm–3) and very high aerosol concentrations (2000–3000 cm–3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm–2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that

  10. Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia

    SciTech Connect (OSTI)

    Zhang, Y.; Fu, Rong; Yu, Hongbin; Qian, Yun; Dickinson, Robert; Silva Dias, Maria Assuncao F.; da Silva Dias, Pedro L.; Fernandes, Katia

    2009-05-30

    Ensemble simulations of a regional climate model (RegCM3) forced by aerosol radiative forcing suggest that biomass burning aerosols can work against the seasonal monsoon circulation transition, thus re-enforce the dry season rainfall pattern for Southern Amazonia. Strongly absorbing smoke aerosols warm and stabilize the lower troposphere within the smoke center in southern Amazonia (where aerosol optical depth > 0.3). These changes increase the surface pressure in the smoke center, weaken the southward surface pressure gradient between northern and southern Amazonia, and consequently induce an anomalous moisture divergence in the smoke center and an anomalous convergence occurs in northwestern Amazonia (5S-5N, 60W-40 70W). The increased atmospheric thermodynamic stability, surface pressure, and divergent flow in Southern Amazonia may inhibit synoptic cyclonic activities propagated from extratropical South America, and re-enforce winter-like synoptic cyclonic activities and rainfall in southeastern Brazil, Paraguay and northeastern Argentina.

  11. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  12. Particle and gas emissions from a simulated coal-burning household fire pit

    SciTech Connect (OSTI)

    Linwei Tian; Donald Lucas; Susan L. Fischer; S. C. Lee; S. Katharine Hammond; Catherine P. Koshland

    2008-04-01

    An open fire was assembled with firebricks to simulate the household fire pit used in rural China, and 15 different coals from this area were burned to measure the gaseous and particulate emissions. Particle size distribution was studied with a microorifice uniform-deposit impactor (MOUDI). Over 90% of the particulate mass was attributed to sub-micrometer particles. The carbon balance method was used to calculate the emission factors. Emission factors for four pollutants (particulate matter, CO{sub 2}, total hydrocarbons, and NOx) were 2-4 times higher for bituminous coals than for anthracites. In past inventories of carbonaceous emissions used for climate modeling, these two types of coal were not treated separately. The dramatic emission factor difference between the two types of coal warrants attention in the future development of emission inventories. 25 refs., 8 figs., 1 tab.

  13. AmeriFlux CA-NS4 UCI-1964 burn site wet

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS4 UCI-1964 burn site wet. Site Description - The UCI-1964 wet site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  14. AmeriFlux CA-NS3 UCI-1964 burn site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS3 UCI-1964 burn site. Site Description - The UCI-1964 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  15. AmeriFlux CA-NS7 UCI-1998 burn site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS7 UCI-1998 burn site. Site Description - The UCI-1998 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  16. AmeriFlux CA-NS8 UCI-2003 burn site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS8 UCI-2003 burn site. Site Description - The UCI-2003 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  17. AmeriFlux CA-NS1 UCI-1850 burn site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS1 UCI-1850 burn site. Site Description - The UCI-1850 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  18. AmeriFlux CA-NS5 UCI-1981 burn site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS5 UCI-1981 burn site. Site Description - The UCI-1981 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  19. AmeriFlux CA-NS6 UCI-1989 burn site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS6 UCI-1989 burn site. Site Description - The UCI-1989 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  20. AmeriFlux CA-NS2 UCI-1930 burn site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS2 UCI-1930 burn site. Site Description - The UCI-1930 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  1. Oil-fired cycling station converted to base-loaded, coal-burning operation

    SciTech Connect (OSTI)

    Hunt, J.; Steinbach, P.

    1982-04-01

    The Baltimore Gas and Electric Company has been able to modify its oil-fired Brandon Shores plant while under construction to a base-loaded plant able to burn either oil or coal. Utility planners had the foresight prior to the 1973 embargo to see advantages in a dual-fuel capability. Brandon Shores has experienced the same financing and fluctuating load problems as other projects, but it has evolved into a facility suited for the 1980s and 90s. The original plan included space to handle coal and wastes as well as specifying dual-fuel equipment throughout to minimize future modifications. During one construction delay, the utility initiated a preventative-maintenance program comparable to that of a nuclear plant that has been continued. Extensive environmental planning and interaction with the public have avoided other costly delays. (DCK)

  2. Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C.; Edmonds, Ryan G.; Williams, Joseph T.; Baldwin, Stephen P.

    2009-10-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  3. Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes

    SciTech Connect (OSTI)

    Satoshi Matsuzaki

    2004-12-19

    Presented in this dissertation is the successful demonstration that nonphotochemical hole burning (NPWB) imaging can be used to study in vitro tissue cellular systems for discerning differences in cellular ultrastructures due to cancer development. This has been accomplished with the surgically removed cancerous ovarian and analogous normal peritoneal tissues from the same patient and the application of a fluorescent mitochondrion specific dye, Molecular Probe MitoFluor Far Red 680 (MF680), commonly known as rhodamine 800, that has been proven to exhibit efficient NPHB. From the results presented in Chapters 4 and 5 , and Appendix B, the following conclusions were made: (1) fluorescence excitation spectra of MF680 and confocal microscopy images of thin sliced tissues incubated with MF680 confirm the site-specificity of the probe molecules in the cellular systems. (2) Tunneling parameters, {lambda}{sub 0} and {sigma}{sub {lambda}}, as well as the standard hole burning parameters (namely, {gamma} and S), have been determined for the tissue samples by hole growth kinetics (HGK) analyses. Unlike the preliminary cultured cell studies, these parameters have not shown the ability to distinguish tissue cellular matrices surrounding the chromophores. (3) Effects of an external electric (Stark) field on the nonphotochemical holes have been used to determine the changes in permanent dipole moment (f{Delta}{mu}) for MF680 in tissue samples when burn laser polarization is parallel to the Stark field. Differences are detected between f{Delta}{mu}s in the two tissue samples, with the cancerous tissue exhibiting a more pronounced change (1.35-fold increase) in permanent dipole moment change relative to the normal analogs. It is speculated that the difference may be related to differences in mitochondrial membrane potentials in these tissue samples. (4) In the HGK mode, hole burning imaging (HBI) of cells adhered to coverslips and cooled to liquid helium temperatures in the

  4. Automatic coke oven heating control system at Burns Harbor for normal and repair operation

    SciTech Connect (OSTI)

    Battle, E.T.; Chen, K.L.

    1997-12-31

    An automatic heating control system for coke oven batteries was developed in 1985 for the Burns Harbor No. 1 battery and reported in the 1989 Ironmaking Conference Proceedings. The original system was designed to maintain a target coke temperature at a given production level under normal operating conditions. Since 1989, enhancements have been made to this control system so that it can also control the battery heating when the battery is under repair. The new control system has improved heating control capability because it adjusts the heat input to the battery in response to anticipated changes in the production schedule. During a recent repair of this 82 oven battery, the pushing schedule changed from 102 ovens/day to 88 ovens/day, then back to 102 ovens/day, then to 107 ovens/day. During this repair, the control system was able to maintain the coke temperature average standard deviation at 44 F, with a maximum 75 F.

  5. Rehabilitation of an anthracite-burning power plant in Ukraine with introduction of coal preparation

    SciTech Connect (OSTI)

    Ruether, J.; Killmeyer, R.; Schimmoller, B.; Gollakota, S.

    1996-12-31

    A study is being carried out jointly by the United States Department of Energy and the Ukrainian Ministry of Power and Electrification for rehabilitation of an anthracite-burning power station in the Donbass region of eastern Ukraine. The power station, named Luganskaya GRES, is laboring under deteriorating coal quality (the ash level is ranging towards 40% compared to the design value of 18%) and the physical plant is in need of repair. Approaches under consideration for the rehabilitation include upgrading the existing 200-MW{sub e} (gross) wall-fired boilers, repowering with circulating fluidized bed combustors, and the use of coal preparation. Coal washability tests conducted as part of the study indicate the coal is amenable to washing. The paper describes approaches to coal preparation being considered that provide design value coal for wall-fired boilers while minimizing rejection of Btus and generation of solid waste.

  6. SystemBurn: Principles of Design and Operation, Release 2.0

    SciTech Connect (OSTI)

    Kuehn, Jeffery A; Poole, Stephen W; Hodson, Stephen W; Lothian, Josh; Dobson, Jonathan D; Reister, David B; Lewkow, Nicholas R; Glandon, Steven R; Peek, Jacob T

    2012-01-01

    As high performance computing technology progresses toward the progressively more extreme scales required to address critical computational problems of both national and global interest, power and cooling for these extreme scale systems is becoming a growing concern. A standardized methodology for testing system requirements under maximal system load and validating system environmental capability to meet those requirements is critical to maintaining system stability and minimizing power and cooling risks for high end data centers. Moreover, accurate testing permits the high end data center to avoid issues of under- or over-provisioning power and cooling capacity saving resources and mitigating hazards. Previous approaches to such testing have employed an ad hoc collection of tools, which have been anecdotally perceived to produce a heavy system load. In this report, we present SystemBurn, a software tool engineered to allow a system user to methodically create a maximal system load on large scale systems for the purposes of testing and validation.

  7. SystemBurn: Principles of Design and Operation Release 3.0

    SciTech Connect (OSTI)

    Dobson, Jonathan D; Kuehn, Jeffery A; Poole, Stephen W; Hodson, Stephen W; Glandon, Steven R; Reister, David B; Lewkow, Nicholas R; Peek, Jacob T

    2012-09-01

    As high performance computing technology progresses toward the progressively more extreme scales required to address critical computational problems of both national and global interest, power and cooling for these extreme scale systems is becoming a growing concern. A standardized methodology for testing system requirements under maximal system load and validating system environmental capability to meet those requirements is critical to maintaining system stability and minimizing power and cooling risks for high end data centers. Moreover, accurate testing permits the high end data center to avoid issues of under- or over-provisioning power and cooling capacity saving resources and mitigating hazards. Previous approaches to such testing have employed an ad hoc collection of tools, which have been anecdotally perceived to produce a heavy system load. In this report, we present SystemBurn, a software tool engineered to allow a system user to methodically create a maximal system load on large scale systems for the purposes of testing and validation.

  8. AmeriFlux US-Me6 Metolius Young Pine Burn

    SciTech Connect (OSTI)

    Law, Bev

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me6 Metolius Young Pine Burn. Site Description - The study site is located east of the Cascade mountains, near Sisters, Central Oregon and is part of the Metolius cluster sites with different age and disturbance classes within the AmeriFlux network. After a severe fire in 1979, the site was salvage logged, was acquired by the US Forest Service land and re-forested in 1990. The dominant overstory vegetation are 20-year old ponderosa pine trees with an average height of 5.2 +/- 1.1 m. The season maximum overstory half-sided LAI was 0.6 m2 m-2 in 2010. Tree density is low, with ca. 162 trees ha-1.

  9. Transmutation Analysis of Enriched Uranium and Deep Burn High Temperature Reactors

    SciTech Connect (OSTI)

    Michael A. Pope

    2012-07-01

    High temperature reactors (HTRs) have been under consideration for production of electricity, process heat, and for destruction of transuranics for decades. As part of the transmutation analysis efforts within the Fuel Cycle Research and Development (FCR&D) campaign, a need was identified for detailed discharge isotopics from HTRs for use in the VISION code. A conventional HTR using enriched uranium in UCO fuel was modeled having discharge burnup of 120 GWd/MTiHM. Also, a deep burn HTR (DB-HTR) was modeled burning transuranic (TRU)-only TRU-O2 fuel to a discharge burnup of 648 GWd/MTiHM. For each of these cases, unit cell depletion calculations were performed with SCALE/TRITON. Unit cells were used to perform this analysis using SCALE 6.1. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were first set by using Serpent calculations to match a spectral index between unit cell and whole core domains. In the case of the DB-HTR, the unit cell which was arrived at in this way conserved the ratio of fuel to moderator found in a single block of fuel. In the conventional HTR case, a larger moderator-to-fuel ratio than that of a single block was needed to simulate the whole core spectrum. Discharge isotopics (for 500 nuclides) and one-group cross-sections (for 1022 nuclides) were delivered to the transmutation analysis team. This report provides documentation for these calculations. In addition to the discharge isotopics, one-group cross-sections were provided for the full list of 1022 nuclides tracked in the transmutation library.

  10. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    SciTech Connect (OSTI)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E.

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  11. Performance of the Lead-Alloy Cooled Concept Balanced for Actinide Burning and Electricity Production

    SciTech Connect (OSTI)

    Pavel Hejzlar; Cliff Davis

    2004-09-01

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners.

  12. Performance of the Lead-Alloy-Cooled Reactor Concept Balanced for Actinide Burning and Electricity Production

    SciTech Connect (OSTI)

    Hejzlar, Pavel [Massachusetts Institute of Technology (United States); Davis, Cliff B. [Idaho National Engineering and Environmental Laboratory (United States)

    2004-09-15

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners.

  13. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Satoshi Matsuzaki

    2002-06-27

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Q{sub y}-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll{sub a} (BChl{sub a}) molecules are provided. General conclusions are given in Chapter 5. A version of the hole spectrum simulation program written by the candidate for the FMO complex study (Chapter 3) is included as an appendix. The references for each chapter are given at the end of each chapter.

  14. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    SciTech Connect (OSTI)

    Cooper, Marcia A.; Oliver, Michael S.

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  15. Vehicle Technologies Office 2013 Merit Review: A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines

    Broader source: Energy.gov [DOE]

    A presentation given by the University of Michigan at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a university consortium to research efficient and clean high-pressure lean burn engines.

  16. Analysis of mass loss of a coal particle during the course of burning in a flow of inert material

    SciTech Connect (OSTI)

    Pelka, Piotr

    2009-08-15

    This paper is an attempt to explain the role of erosion during the process of coal combustion in a circulating fluidized bed. Different kinds of carbon deposits found in Poland, both bituminous as well as lignite with the particle of 10 mm in diameter were the subject of the research. According to many publications it is well known that erosion plays a significant role in coal combustion, by changing its mechanism as well as generating an additional mass loss of the mother particle. The purpose of this research was to determine the influence of an inert material on an erosive mass loss of a single coal particle burning in a two-phase flow. The determination of the influence of a coal type, the rate of flow of inert material and the temperature inside the furnace on the erosive mass loss of burning coal particle was also taken into consideration. The results obtained indicate that the velocity of the erosive mass loss depends on the chemical composition and petrographic structure of burning coal. The mechanical interaction of inert and burning coal particles leads to the shortening of the period of overall mass loss of the coal particle by even two times. The increase in the rate of flow of the inert material intensifies the generation of mass loss by up to 100%. The drop in temperature which slows down the combustion process, decreases the mass loss of the coal particle as the result of mechanical interaction of the inert material. As was observed, the process of percolation plays a significant role by weakening the surface of the burning coal. (author)

  17. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer

  18. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    SciTech Connect (OSTI)

    Marelle, L.; Raut, Jean-Christophe; Thomas, J. L.; Law, K. S.; Quennehen, Boris; Ancellet, G.; Pelon, J.; Schwarzenboeck, A.; Fast, Jerome D.

    2015-04-10

    During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using European Monitoring and Evaluation Programme (EMEP) measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic. Total PM2.5 agrees well with the measurements, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that during the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had undergone significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne lidar measurements. Model results show that the pollution event transported aerosols into the Arctic (> 66.6° N) for a 4-day period. During this 4-day period, biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~ 1.5 km) and higher altitudes (~ 4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface in anthropogenic plumes. The European plumes sampled during the POLARCAT-France campaign were transported over the region of springtime snow cover in northern Scandinavia, where they had a significant

  19. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect (OSTI)

    Constance Senior

    2004-12-31

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  20. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marelle, L.; Raut, Jean-Christophe; Thomas, J. L.; Law, K. S.; Quennehen, Boris; Ancellet, G.; Pelon, J.; Schwarzenboeck, A.; Fast, Jerome D.

    2015-04-10

    During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using European Monitoring and Evaluation Programme (EMEP) measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic. Total PM2.5 agrees well with the measurements, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that duringmore » the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had undergone significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne lidar measurements. Model results show that the pollution event transported aerosols into the Arctic (> 66.6° N) for a 4-day period. During this 4-day period, biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~ 1.5 km) and higher altitudes (~ 4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface in anthropogenic plumes. The European plumes sampled during the POLARCAT-France campaign were transported over the region of springtime snow cover in northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this

  1. Investigation of Head Burns in Adult Salmonids : Phase 1 : Examination of Fish at Lower Granite Dam, July 2, 1996. Final Report.

    SciTech Connect (OSTI)

    Elston, Ralph

    1996-08-01

    Head burn is a descriptive clinical term used by fishery biologists to describe exfoliation of skin and underlying connective tissue of the jaw and cranial region of salmonids, observed at fish passage facilities on the Columbia and Snake Rivers. The observations are usually made on upstream migrant adult salmon or steelhead. An expert panel, convened in 1996, to evaluate the risk and severity of gas bubble disease (GBD) in the Snake and Columbia River system believed that, while head burns appeared to be distinct from GBD, the relationship between dissolved gas saturation in the rivers and head burns was uncertain.

  2. Plasma-assisted heterogeneous catalysis for NOx reduction in lean-burn engine exhaust

    SciTech Connect (OSTI)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E.; Wan, C.Z.; Rice, G.W.; Voss, K.E.

    1997-12-31

    This paper discusses the combination of a plasma with a catalyst to improve the reduction of NO{sub x} under lean-burn conditions. The authors have been investigating the effects of a plasma on the NO{sub x} reduction activity and temperature operating window of various catalytic materials. One of the goals is to develop a fundamental understanding of the interaction between the gas-phase plasma chemistry and the heterogeneous chemistry on the catalyst surface. The authors have observed that plasma assisted heterogeneous catalysis can facilitate NO{sub x} reduction under conditions that normally make it difficult for either the plasma or the catalyst to function by itself. By systematically varying the plasma electrode and catalyst configuration, they have been able to elucidate the process by which the plasma chemistry affects the chemical reduction of NO{sub x} on the catalyst surface. They have discovered that the main effect of the plasma is to induce the gas-phase oxidation of NO to NO{sub 21}. The reduction of NO{sub x} to N{sub 2} is then accomplished by heterogeneous reaction of O with activated hydrocarbons on the catalyst surface. The use of a plasma opens the opportunity for a new class of catalysts that are potentially more durable, more active, more selective and more sulfur-tolerant compared to conventional lean-NO{sub x} catalysts.

  3. Fast-regenerable sulfur dioxide absorbents for lean-burn diesel engine emission control

    SciTech Connect (OSTI)

    Li, Liyu; King, David L.

    2010-01-23

    It is known that sulfur oxides contribute significantly and deleteriously to the overall performance of lean-burn diesel engine aftertreatment systems, especially in the case of NOx traps. A Ag-based, fast regenerable SO2 absorbent has been developed and will be described. Over a temperature range of 300oC to 550oC, it absorbs almost all of the SO2 in the simulated exhaust gases during the lean cycles and can be fully regenerated by the short rich cycles at the same temperature. Its composition has been optimized as 1 wt% Pt-5wt%Ag-SiO2, and the preferred silica source for the supporting material has been identified as inert Cabosil fumed silica. The thermal instability of Ag2O under fuel-lean conditions at 230oC and above makes it possible to fast regenerate the sulfur-loaded absorbent during the following fuel-rich cycles. Pt catalyst helps reducing Ag2SO4 during rich cycles at low temperatures. And the chemically inert fumed SiO2 support gives the absorbent long term stability. This absorbent shows great potential to work under the same lean-rich cycling conditions as those imposed on the NOx traps, and thus, can protect the downstream particulate filter and the NOx trap from sulfur poisoning.

  4. Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX

    SciTech Connect (OSTI)

    Van den Akker, B.P.; Ahn, J.

    2013-07-01

    The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

  5. A compact breed and burn fast reactor using spent nuclear fuel blanket

    SciTech Connect (OSTI)

    Hartanto, D.; Kim, Y.

    2012-07-01

    A long-life breed-and-burn (B and B) type fast reactor has been investigated from the neutronics points of view. The B and B reactor has the capability to breed the fissile fuels and use the bred fuel in situ in the same reactor. In this work, feasibility of a compact sodium-cooled B and B fast reactor using spent nuclear fuel as blanket material has been studied. In order to derive a compact B and B fast reactor, a tight fuel lattice and relatively large fuel pin are used to achieve high fuel volume fraction. The core is initially loaded with an LEU (Low Enriched Uranium) fuel and a metallic fuel is used in the core. The Monte Carlo depletion has been performed for the core to see the long-term behavior of the B and B reactor. Several important parameters such as reactivity coefficients, delayed neutron fraction, prompt neutron generation lifetime, fission power, and fast neutron fluence, are analyzed through Monte Carlo reactor analysis. Evolution of the core fuel composition is also analyzed as a function of burnup. Although the long-life small B and B fast reactor is found to be feasible from the neutronics point of view, it is characterized to have several challenging technical issues including a very high fast neutron fluence of the structural materials. (authors)

  6. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    SciTech Connect (OSTI)

    Gorelenkov, Nikolai N

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  7. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    SciTech Connect (OSTI)

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  8. Meteorological measurements in the vicinity of a coal burning power plant

    SciTech Connect (OSTI)

    Crescenti, G.H.; Gaynor, J.E.

    1995-05-01

    High concentrations of sulfur dioxide (SO2) are commonly observed during the cool season in the vicinity of a 2.5 GW coal burning power plant located in the Mae Moh Valley of northern Thailand. The power plant is the source for nearly all of the observed SO2 since there are no other major industrial activities in this region. These high pollution fumigation events occur almost on a daily basis, usually lasting for several hours between late morning and early afternoon. One-hour average SO2 concentrations commonly exceed 1,000 micrograms/cu m. As a result, an increase in the number of respiratory type health complaints have been observed by local clinics during this time of the year. Meteorological data were acquired from a variety of observing platforms during an intensive field study from December 1993 to February 1994. The measurements included horizontal and vertical wind velocity, air temperature, relative humidity, and solar radiation. In addition, turbulent flux measurements were acquired by a sonic anemometer. SO2 measurements were made at seven monitoring sites scattered throughout the valley. These data were used to examine the atmospheric processes which are responsible for these high pollution fumigation events.

  9. Diffusion-flame burning of fuel-vapor pockets in air

    SciTech Connect (OSTI)

    Fendell, F.E.; Bush, W.B.; Mitchell, J.A.; Fink, S.F. IV . Center for Propulsion Technology and Fluid Mechanics)

    1994-08-01

    The authors examine analytically, with numerical assistance, the unsteady, diffusively limited burnup of initially unmixed fuel vapor and gaseous oxidizer. They study three simple spherical geometries: (1) an initially uniform sphere of fuel vapor immersed in an unbounded expanse of oxidizer; (2) a variant on case 1 in which only a finite concentric annulus of enveloping oxidizer is available for the burning of the initially uniform sphere of fuel vapor; and (3) an impervious sphere, consisting initially of one uniform hemisphere of fuel vapor and one uniform hemisphere of oxidizer. Of particular interest is the time interval for the exhaustion of the lean reactant, as a function of the fuel-to-oxidizer stoichiometry and the sphere radius. The motivation for these studies is to ascertain the fate of inhomogeneous blobs that arise as a consequence of imperfect fuel/air mixing, e.g., in the context of a supersonic combustor. In such a context, an inhomogeneous blob of gaseous mixture, idealized to have the geometry of a sphere, is examined as a Lagrangian element, as it is convected downstream, without slip, by the surrounding gaseous flow. The longest time for diffusional burnup, for the spherically enclosed geometries, arises for the case in which the fuel vapor and oxidizer are present in stoichiometric proportion.

  10. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect (OSTI)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  11. Method for detecting and correcting for isotope burn-in during long-term neutron dosimetry exposure

    DOE Patents [OSTI]

    Ruddy, Francis H.

    1988-01-01

    A method is described for detecting and correcting for isotope burn-in during-long term neutron dosimetry exposure. In one embodiment, duplicate pairs of solid state track recorder fissionable deposits are used, including a first, fissionable deposit of lower mass to quantify the number of fissions occuring during the exposure, and a second deposit of higher mass to quantify the number of atoms of for instance .sup.239 Pu by alpha counting. In a second embodiment, only one solid state track recorder fissionable deposit is used and the resulting higher track densities are counted with a scanning electron microscope. This method is also applicable to other burn-in interferences, e.g., .sup.233 U in .sup.232 Th or .sup.238 Pu in .sup.237 Np.

  12. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

    SciTech Connect (OSTI)

    Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J.

    2013-07-15

    We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20100 T (potentially attainable using present experimental methods) that compress to greater than 4 10{sup 4} T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ?50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.

  13. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; et al

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurementsmore » of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  14. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    SciTech Connect (OSTI)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Wilks, S. C.; Pino, J.; Kagan, G.; Molvig, K.; Nikroo, A.

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  15. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    SciTech Connect (OSTI)

    Rosenberg, M. J. Séguin, F. H.; Rinderknecht, H. G.; Zylstra, A. B.; Li, C. K.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D.; Amendt, P. A.; Wilks, S. C.; Pino, J.; Atzeni, S.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; and others

    2015-06-15

    The significance and nature of ion kinetic effects in D{sup 3}He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N{sub K}) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N{sub K} ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  16. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (IFC) implosions using fusion burn imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Sguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; et al

    2015-06-02

    The significance and nature of ion kinetic effects in DHe-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurementsmoreof the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.less

  17. Emissions of dioxins and furans from garbage-burning incinerators can be minimized by good combustion practices

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    The American Society of Mechanical Engineers (ASME) have stated that emissions of dioxin and furan from garbage-burning incinerators can be minimized by good combustion practices. They have found that maintaining the heat of combustion above 815 degrees centigrade and reducing the carbon monoxide level to below 100 ppm will reduce the emissions of furan and dioxin. The combustion research that lead to these conclusions was sponsored by ASME and the New York energy authority

  18. Reproductive and developmental health risk from dioxin-like compounds: Insignificant risk from cement kilns burning waste-derived fuels

    SciTech Connect (OSTI)

    Holcomb, L.C.; Pedelty, J.F.

    1994-12-31

    Cement kilns burning waste-derived fuels emit low levels of dibenzodioxins and dibenzofurans and little or no PCB`s. Concern about possible effects on reproduction and development has prompted an evaluation of the research literature especially with regard to the reproductive and developmental effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In sufficient doses, dioxins, furans, and PCB can cause adverse health effects in some animals or humans. Calculated doses of TCDD-EQ (dioxin equivalents) are dependent on many assumptions, but where human effects have been demonstrated, doses were 100--1,000 times higher than the usual background environmental doses. This would include those environmental doses that would be received by the most-exposed individual living near cement kilns burning WDF. There is evidence to suggest that PCB`s have had an adverse impact on some wildlife although there is no evidence that these PCB`s are associated with cement kiln emissions. There is no evidence to suggest that dioxins, at environmental levels or associated with emissions from WDF-burning cement kilns, have caused adverse effects in either wildlife or humans. 63 refs., 3 tabs.

  19. SHORT-PERIOD g-MODE PULSATIONS IN LOW-MASS WHITE DWARFS TRIGGERED BY H-SHELL BURNING

    SciTech Connect (OSTI)

    Crsico, A. H.; Althaus, L. G.

    2014-09-20

    The detection of pulsations in white dwarfs with low mass offers the possibility of probing their internal structures through asteroseismology and placing constraints on the binary evolutionary processes involved in their formation. In this Letter, we assess the impact of stable H burning on the pulsational stability properties of low-mass He-core white dwarf models resulting from binary star evolutionary calculations. We found that besides a dense spectrum of unstable radial modes and nonradial g and p modes driven by the ? mechanism due to the partial ionization of H in the stellar envelope, some unstable g modes with short pulsation periods are also powered by H burning via the ? mechanism of mode driving. This is the first time that ? destabilized modes are found in models representative of cool white dwarf stars. The short periods recently detected in the pulsating low-mass white dwarf SDSS J111215.82+111745.0 could constitute the first evidence of the existence of stable H burning in these stars, in particular in the so-called extremely low-mass white dwarfs.

  20. Addendum 2 to CSER 94-007 and CSER 94-008 Title: Burning one whole Pu button in muffle furnace in the HC-21C hood

    SciTech Connect (OSTI)

    Chiao, T., Westinghouse Hanford

    1996-09-24

    This addendum reviews the current CPS` and their supporting CSERs for HC-21A and HC-21C Hoods and provides the criticality safety analysis for burning a whole Pu button in HC-21C.

  1. Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition

    SciTech Connect (OSTI)

    Prathap, C.; Ray, Anjan; Ravi, M.R. [Department of Mechanical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016 (India)

    2008-10-15

    The objective of this investigation was to study the effect of dilution with nitrogen on the laminar burning velocity and flame stability of syngas fuel (50% H{sub 2}-50% CO by volume)-air (21% O{sub 2}-79% N{sub 2} by volume) mixtures. The syngas fuel composition considered in this work comprised x% N{sub 2} by volume and (100-x)% an equimolar mixture of CO and H{sub 2}. The proportion x (i.e., %N{sub 2}) was varied from 0 to 60% while the H{sub 2}/CO ratio was always kept as unity. Spherically expanding flames were generated by centrally igniting homogeneous fuel-air gas mixtures in a 40-L cylindrical combustion chamber fitted with optical windows. Shadowgraphy technique with a high-speed imaging camera was used to record the propagating spherical flames. Unstretched burning velocity was calculated following the Karlovitz theory for weakly stretched flames. Also, Markstein length was calculated to investigate the flame stability conditions for the fuel-air mixtures under consideration. Experiments were conducted for syngas fuel with different nitrogen proportions (0-60%) at 0.1 MPa (absolute), 302{+-}3K, and equivalence ratios ranging from 0.6 to 3.5. All the measurements were compared with the numerical predictions obtained using RUN-1DL and PREMIX with a contemporary chemical kinetic scheme. Dilution with nitrogen in different proportions in syngas resulted in (a) decrease in laminar burning velocity due to reduction in heat release and increase in heat capacity of unburned gas mixture and hence the flame temperature, (b) shift in occurrence of peak laminar burning velocity from {phi}=2.0 for 0% N{sub 2} dilution to {phi}=1.4 for 60% N{sub 2} dilution, (c) augmentation of the coupled effect of flame stretch and preferential diffusion on laminar burning velocity, and (d) shift in the equivalence ratio for transition from stable to unstable flames from {phi}=0.6 for 0% N{sub 2} dilution to {phi}=1.0 for 60% N{sub 2} dilution. The present work also indicated that

  2. Lean-burn hydrogen spark-ignited engines: the mechanical equivalent to the fuel cell

    SciTech Connect (OSTI)

    Aceves, S.M.; Smith, J.R.

    1996-10-01

    Fuel cells are considered as the ideal power source for future vehicles, due to their high efficiency and low emissions. However, extensive use of fuel cells in light-duty vehicles is likely to be years away, due to their high manufacturing cost. Hydrogen-fueled, spark-ignited, homogeneous-charge engines offer a near-term alternative to fuel cells. Hydrogen in a spark-ignited engine can be burned at very low equivalence ratios, so that NO[sub x] emissions can be reduced to less than 10 ppm without catalyst. HC and CO emissions may result from oxidation of engine oil, but by proper design are negligible (a few ppm). Lean operation also results in increased indicated efficiency due to the thermodynamic properties of the gaseous mixture contained in the cylinder. The high effective octane number of hydrogen allows the use of a high compression ratio, further increasing engine efficiency. In this paper, a simplified engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many 1345 experimental points obtained in a recent evaluation of a hydrogen research engine. The experimental data are used to adjust the empirical constants in the heat release rate and heat transfer correlation. The adjusted engine model predicts pressure traces, indicated efficiency and NO,, emissions with good accuracy over the range of speed, equivalence ratio and manifold pressure experimentally covered.

  3. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect (OSTI)

    Constance Senior; Temi Linjewile

    2003-10-31

    This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the second set of mercury measurements was made after the catalysts had been exposed to flue gas for about 2,000 hours. There was good agreement between the Ontario Hydro measurements and the SCEM measurements. Carbon trap measurements of total mercury agreed fairly well with the SCEM. There did appear to be some loss of mercury in the sampling system toward the end of the sampling campaign. NO{sub x} reductions across the catalysts ranged from 60% to 88%. Loss of total mercury across the commercial catalysts was not observed, as it had been in the March/April test series. It is not clear whether this was due to aging of the catalyst or to changes in the sampling system made between March/April and August. In the presence of ammonia, the blank monolith showed no oxidation. Two of the commercial catalysts showed mercury oxidation that was comparable to that in the March/April series. The other three commercial catalysts showed a decrease in mercury oxidation relative to the March/April series. Oxidation of mercury increased without ammonia present. Transient experiments showed that when ammonia was turned on, mercury appeared to desorb from the catalyst, suggesting displacement of adsorbed mercury by the ammonia.

  4. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion

  5. Study of Thermonuclear Alfven Instabilities in Next Step Burning Plasma Experiments

    SciTech Connect (OSTI)

    N.N. Gorelenkov; H.L. Berk; R. Budny; C.Z. Cheng; G.-Y. Fu; W.W. Heidbrink; G. Kramer; D. Meade; and R. Nazikian

    2002-07-02

    A study is presented for the stability of alpha-particle driven shear Alfven Eigenmodes (AE) for the normal parameters of the three major burning plasma proposals, ITER (International Thermonuclear Experimental Reactor), FIRE (Fusion Ignition Research Experiment), and IGNITOR (Ignited Torus). A study of the JET (Joint European Torus) plasma, where fusion alphas were generated in tritium experiments, is also included to attempt experimental validation of the numerical predictions. An analytic assessment of Toroidal AE (TAE) stability is first presented, where the alpha particle beta due to the fusion reaction rate and electron drag is simply and accurately estimated in 7-20 keV plasma temperature regime. In this assessment the hot particle drive is balanced against ion-Landau damping of the background deuterons and electron collision effects and stability boundaries are determined. Then two numerical studies of AE instability are presented. In one the High-n stability code HINST is used . This code is capable of predicting instabilities of low and moderately high frequency Alfven modes. HINST computes the non-perturbative solution of the Alfven eigenmodes including effects of ion finite Larmor radius, orbit width, trapped electrons etc. The stability calculations are repeated using the global code NOVAK. We show that for these tokamaks the spectrum of the least stable AE modes are TAE that appear at medium-/high-n numbers. In HINST TAEs are locally unstable due to the alphas pressure gradient in all the devices under the consideration except IGNITOR. However, NOVAK calculations show that the global mode structure enhances the damping mechanisms and produces stability in all configurations considered here. A serious question remains whether the perturbation theory used in NOVAK overestimates the stability predictions, so that it is premature to conclude that the nominal operation of all three proposals are stable to AEs. In addition NBI ions produce a strong

  6. High-nitrogen-metal complexes as burning-rate modifiers for the aluminum-water propellant system

    SciTech Connect (OSTI)

    Tappan, Bryce C; Mason, Benjamin A

    2009-01-01

    The reactions of electropositive metals, such as aluminum, with water have long been utilized in explosive and propellant formulations, but until recently this has mostly been limited to the water formed as a product gas from the decomposition of another energetic system . Recently, however, with the increased availability of nano-particulate materials, the direct reaction of nano-aluminum (nAl) with water as an oxidizer has been investigated as a propellant system due to high reaction temperatures and the production of hydrogen as the primary gaseous species. This system could be useful for intra-planetary travel where non-terrestrial water is harvested for the oxidizer. Here we present the study of nAl, mixed at a stoichiometric ratio with water ({Phi} = 1) with the highly water soluble metal complexes of bis(tetrazolato)amine (BTA) added at 5, 15,30 and 50 wt% in the case of FeBTA and 5 and 15 wt% in the case of NiBTA and CoBTA. The basic structure of the BTA complexes is shown below where M = Fe, Ni or Co, and x = 3 for Fe and Co and x = 2 for Ni. The particle size of nAl studied was primarily 38 nm with various studies with the particle size of 80 nm. The FeBT A at a loading of 15 wt% gave the highest burning rate enhancement (4.6x at {approx}6.8 MPa), while retaining a low pressure exponent (0.21 compared to 0.24 for nA/H{sub 2}O). At 15 wt% the Ni and Co increased the burning rate, but also increased the pressure exponents. The burning rate of the FeBTA modified material with 80 nm Al decreased as the weight percent of FeBTA was increased, which also tracked decrease in the calculated specific impulse of the mixtures.

  7. COMPARISON OF THE POPULATIONS OF COMMON WOOD-NYMPH BUTTERFLIES IN BURNED PRAIRIE, UNBURNED PRAIRIE AND OLD FIELD GRASSES

    SciTech Connect (OSTI)

    Hahn, M.; Walton, R.

    2007-01-01

    Common wood-nymph butterfl ies are found throughout the United States and Canada. However, not much is known about how they overwinter or their preferences for particular grasses and habitats. In this study, the impact of prairie management plans on the abundance of the wood-nymph population was assessed, as well as the preference of these butterfl ies for areas with native or non-native grasses. The abundance of common wood-nymph butterfl ies was determined using Pollard walks; more common wood-nymph butterfl ies were found in the European grasses than were found in the burned and unburned prairie sites. The majority of the vegetation at each of the three sites was identifi ed and documented. Using a 1 X 3 ANOVA analysis, it was determined there were signifi cantly more butterfl ies in the European grasses than in the burned and unburned prairie sites (p < 0.0005). There was no signifi cant difference between the burned and unburned treatments of the prairie on the common wood-nymph population. A multiple variable linear regression model described the effect of temperature and wind speed on the number of observed common wood-nymph butterfl ies per hour (p = 0.026). These preliminary results need to be supplemented with future studies. Quadrat analysis of the vegetation from all three sites should be done to search for a correlation between common wood-nymph butterfl y abundance per hour and the specifi c types or quantity of vegetation at each site. The effect of vegetation height and density on the observers visual fi eld should also be assessed.

  8. Containment pressurization and burning of combustible gases in a large, dry PWR containment during a station blackout sequence

    SciTech Connect (OSTI)

    Lee, M.; Fan, C.T. (National Tsing-Hua Univ., Dept. of Nuclear Engineering, Hsinchu (TW))

    1992-07-01

    In this paper, responses of a large, dry pressurized water reactor (PWR) containment in a station blackout sequence are analyzed with the CONTAIN, MARCH3, and MAAP codes. Results show that the predicted containment responses in a station blackout sequence of these three codes are substantially different. Among these predictions, the MAAP code predicts the highest containment pressure because of the large amount of water made available to quench the debris upon vessel failure. The gradual water boiloff by debris pressurizes the containment. The combustible gas burning models in these codes are briefly described and compared.

  9. High-value use of weapons-plutonium by burning in molten salt accelerator-driven subcritical systems or reactors

    SciTech Connect (OSTI)

    Bowman, C.D.; Venneri, F.

    1993-11-01

    The application of thermal-spectrum molten-salt reactors and accelerator-driven subcritical systems to the destruction of weapons-return plutonium is considered from the perspective of deriving the maximum societal benefit. The enhancement of electric power production from burning the fertile fuel {sup 232}Th with the plutonium is evaluated. Also the enhancement of destruction of the accumulated waste from commercial nuclear reactors is considered using the neutron-rich weapons plutonium. Most cases examined include the concurrent transmutation of the long-lived actinide and fission product waste ({sup 99}Tc, {sup 129}I, {sup 135}Cs, {sup 126}Sn and {sup 79}Se).

  10. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    SciTech Connect (OSTI)

    McDeavitt, Sean M

    2011-04-29

    outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A—MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled “Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled “Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors” Appendix B—External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, “Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, “Uranium Powder Production Using a Hydride-Dehydride Process,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C—Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys” presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis

  11. Monitoring Soil Erosion of a Burn Site in the Central Basin and Range Ecoregion: Final Report on Measurements at the Gleason Fire Site, Nevada

    SciTech Connect (OSTI)

    Miller, Julianne; Etyemezian, Vicken; Shillito, Rose; Cablk, Mary; Fenstermaker, Lynn; Shafer, David

    2013-10-01

    The increase in wildfires in arid and semi-arid parts of Nevada and elsewhere in the southwestern United States has implications for post-closure management and long-term stewardship for Soil Corrective Action Units (CAUs) on the Nevada National Security Site (NNSS) for which the Nevada Field Office of the United States Department of Energy, National Nuclear Security Administration has responsibility. For many CAUs and Corrective Action Sites, where closure-in-place alternatives are now being implemented or considered, there is a chance that these sites could burn over at some time while they still pose a risk to the environment or human health, given the long half lives of some of the radionuclide contaminants. This study was initiated to examine the effects and duration of wildfire on wind and water erodibility on sites analogous to those that exist on the NNSS. The data analyzed herein were gathered at the prescribed Gleason Fire site near Ely, Nevada, a site comparable to the northern portion of the NNSS. Quantification of wind erosion was conducted with a Portable In-Situ Wind ERosion Lab (PI-SWERL) on unburned soils, and on interspace and plant understory soils within the burned area. The PI-SWERL was used to estimate emissions of suspendible particles (particulate matter with aerodynamic diameters less than or equal to 10 micrometers) at different wind speeds. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Based on nearly three years of data, the Gleason Fire site does not appear to have returned to pre burn wind erosion levels. Chemical composition data of suspendible particles are variable and show a trend toward pre-burn levels, but provide little insight into how the composition has been changing over time since the fire. Soil, runoff, and sediment data were collected from the Gleason Fire site to monitor the water erosion potential over the nearly three-year period. Soil

  12. Laser Transmission Measurements and Plume Particle Size Distributions for Propellant Burn Tests at ATK Elkton in May 2012

    SciTech Connect (OSTI)

    Willitsford, Adam H.; Brown, David M.; Brown, Andrea M.; Airola, Marc B.; Dinello-Fass, Ryan P.; Thomas, Michael E.; Siegrist, Karen M.

    2014-08-28

    Multi-wavelength laser transmittance was measured during a series of open-air propellant burn tests at Alliant Techsystems, Inc., in Elkton, MD, in May 2012. A Mie scattering model was combined with an alumina optical properties model in a simple single-scatter approach to fitting plume transmittance. Wavelength-dependent plume transmission curves were fit to the measured multi-wave- length transmittance data to infer plume particle size distributions at several heights in the plume. Tri-modal lognormal distributions described transmittance data well at all heights. Overall distributions included a mode with nanometer-scale diameter, a second mode at a diameter of ~0.5 µm, and a third, larger particle mode. Larger parti- cles measured 2.5 µm in diameter at 34 cm (14 in.) above the burning propellant surface, but grew to 4 µm in diameter at a height of 57 cm (22 in.), indicative of particle agglomeration in progress as the plume rises. This report presents data, analysis, and results from the study.

  13. A clean-burning biofuel as a response to adverse impacts of woodsmoke and coalsmoke on Navajo health

    SciTech Connect (OSTI)

    Shultz, E.B. Jr.; Bragg, W.G.; Whittier, J.

    1994-12-31

    Because over 60% of Navajo households are heated with woodfuel and coal, and indoor air pollution from woodsmoke and coalsmoke is problematic, most Navajos are probably at risk of respiratory and other smoke-induced illnesses. A previous study has shown that Navajo children living in homes heated by a wood/coal stove are nearly five times more likely to contract acute lower respiratory tract infections than children from homes that do not use those fuels. Stove and flue improvements to reduce leakage of smoke into the home would help. So would clean-burning solid fuels in replacement of woodfuel and coal. The authors describe a clean-burning fast-growing carbohydrate biofuel, prepared by sun-drying the roots of a wild southwestern gourd plant, Cucurbita foetidissima. They call it {open_quotes}rootfuel.{close_quotes} A test plot is growing during the 1994 season at the NMSU Agricultural Science Center on the Navajo Nation, near Farmington, New Mexico. Irrigation requirements are being measured. In the Fall, a preliminary needs assessment will be conducted to learn more about how fuel usage impacts Navajo health. The acceptability of rootfuel in selected homes will be tested during the upcoming heating season.

  14. Resolution of Unresolved Safety Issue A-48, Hydrogen control measures and effects of hydrogen burns on safety equipment

    SciTech Connect (OSTI)

    Ferrell, C.M.; Soffer, L.

    1989-09-01

    Unresolved Safety Issue (USI) A-48 arose as a result of the large amount of hydrogen generated and burned within containment during the Three Mile Island accident. This issue covers hydrogen control measures for recoverable degraded-core accidents for all boiling-water reactors (BWRs) and those pressurized-water reactors (PWRs) with ice-condenser containments. The Commission and the nuclear industry have sponsored extensive research in this area, which has led to significant revision of the Commission's hydrogen control regulations, given in Title 10, Code of Federal Regulations, Part 50 (10 CFR 50), Section 50.44. BWRs having Mark I and II containments are presently required to operate with inerted containment atmospheres that effectively prevent hydrogen combustion. BWRs with Mark III containments and PWRs with ice-condenser containments are now required to be equipped with hydrogen control systems to protect containment integrity and safety systems inside containment. Industry has chosen to use hydrogen igniter systems to burn hydrogen produced in a controlled fashion to prevent damage. An independent review by a Committee of the National Research Council concluded that, for most accident scenarios, current regulatory requirements make it highly unlikely that hydrogen detonation would be the cause of containment failure. On the basis of the extensive research effort conducted and current regulatory requirements, including their implementation, the staff concludes that no new regulatory guidance on hydrogen control for recoverable degraded-core accidents for these types of plants is necessary and that USI A-48 is resolved.

  15. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    SciTech Connect (OSTI)

    Akagi, Sheryl; Yokelson, Robert J.; Burling, Ian R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, Gavin; Sullivan, Amy; Lee, Taehyoung; Kredenweis, Sonia; Urbanski, Shawn; Reardon, James; Griffith, David WT; Johnson, Timothy J.; Weise, David

    2013-02-01

    In October-November 2011 we measured the trace gas emission factors from 7 prescribed fires in South Carolina, U.S. using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analyses. The fires were intended to emulate high-intensity burns as they were lit during the dry season and in most cases represented stands that had not been treated with prescribed burns in 10+ years, if at all. A total of 97 trace gas species are reported here from both airborne and ground-based platforms making this one of the most detailed field studies of fire emissions to date. The measurements included the first data for a suite of monoterpene compounds emitted via distillation of plant tissues during real fires. The known chemistry of the monoterpenes and their measured abundance of ~0.40% of CO (molar basis), ~3.9% of NMOC (molar basis), and ~21% of organic aerosol (mass basis), suggests that they impacted post-emission formation of ozone, aerosol, and small organic trace gases such as methanol and formaldehyde in the sampled plumes. The variability in the terpene emissions in South Carolina (SC) fire plumes was high and, in general, the speciation of the emitted gas-phase non-methane organic compounds was surprisingly different from that observed in a similar study in nominally similar pine forests in North Carolina ~20 months earlier. It is likely that the slightly different ecosystems, time of year and the precursor variability all contributed to the variability in plume chemistry observed in this study and in the literature. The ?HCN/?CO emission ratio, however, is fairly consistent at 0.9 0.06 % for airborne fire measurements in coniferous-dominated ecosystems further confirming the value of HCN as a good biomass burning indicator/tracer. The SC results also support an earlier finding that C3-C4 alkynes may be of use as biomass burning indicators on the time-scale of hours to a day. It was

  16. Progress in the development of the MARBLE platform for studying thermonuclear burn in the presence of heterogeneous mix on OMEGA and the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Murphy, T. J.; Douglas, M. R.; Fincke, J. R.; Olson, R. E.; Cobble, J. A.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Parra-Vasquez, N. A. G.; et al

    2016-05-01

    Mix of ablator material into fuel of an ICF capsule adds non-burning material, diluting the fuel and reducing burn. The amount of the reduction is dependent in part on the morphology of the mix. A probability distribution function (PDF) burn model has been developed [6] that utilizes the average concentration of mixed materials as well as the variance in this quantity across cells provided by the BHR turbulent transport model [3] and its revisions [4] to describe the mix in terms of a PDF of concentrations of fuel and ablator material, and provides the burn rate in mixed material. Workmore » is underway to develop the MARBLE ICF platform for use on the National Ignition Facility in experiments to quantify the influence of heterogeneous mix on fusion burn. This platform consists of a plastic (CH) capsule filled with a deuterated plastic foam (CD) with a density of a few tens of milligrams per cubic centimeter, with tritium gas filling the voids in the foam. This capsule will be driven using x-ray drive on NIF, and the resulting shocks will induce turbulent mix that will result in the mixing of deuterium from the foam with the tritium gas. In order to affect the morphology of the mix, engineered foams with voids of diameter up to 100 microns will be utilized. The degree of mix will be determined from the ratio of DT to DD neutron yield. As the mix increases, the yield from reactions between the deuterium of the CD foam with tritium from the gas will increase. Lastly, the ratio of DT to DD neutrons will be compared to a variation of the PDF burn model that quantifies reactions from initially separated reactants.« less

  17. Large-Scale Evaluation of Nickel Aluminide Rools In A Heat-Treat Furnace at Bethlehem Steel's (now ISG) Burns Harbor Plate Mill

    SciTech Connect (OSTI)

    John Mengel; Anthony Martocci; Larry Fabina; RObert Petrusha; Ronald Chango

    2003-09-01

    At Bethlehem Steel Burns Harbor Plate Division (now ISG Burns Harbor Plate Inc.)'s annealing furnace, new nickel aluminide intermetallic alloy rolls provide greater high-temperature strength and wear resistance compared to the conventional H series cast austenitic alloys currently used in the industry, Oak Ridge National Laboratory and Bethlehem (ISG) partnered under a U.S. Department of Energy, Office of Industrial Technology's Emerging Technology Deployment Program to demonstrate and evaluate the nickel aluminide intermetallic alloy rolls as part of an updated energy efficient large commercial annealing furnace system.

  18. Monitoring Soil Erosion on a Burned Site in the Mojave-Great Basin Transition Zone: Final Report for the Jacob Fire Site

    SciTech Connect (OSTI)

    Miller, Julianne; Etyemezian, Vic; Cablk, Mary E.; Shillito, Rose; Shafer, David

    2013-06-01

    A historic return interval of 100 years for large fires in the U.S. southwestern deserts is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. The shortened return interval, which translates to an increase in fires, has implications for management of Soil Corrective Action Units (CAUs) and Corrective Action Sites (CASs) for which the Department of Energy, National Nuclear Security Administration Nevada Field Office has responsibility. A series of studies was initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn. The first of these studies was undertaken at the Jacob Fire site approximately 12 kilometers (7.5 miles) north of Hiko, Nevada. A lightning-caused fire burned approximately 200 hectares during August 6-8, 2008. The site is representative of a transition between Mojave and Great Basin desert ecoregions on the Nevada National Security Site (NNSS), where the largest number of Soil CAUs/CASs are located. The area that burned at the Jacob Fire site was primarily a Coleogyne ramosissima (blackbrush) and Ephedra nevadensis (Mormon tea) community, also an abundant shrub assemblage in the similar transition zone on the NNSS. This report summarizes three years of measurements after the fire. Seven measurement campaigns at the Jacob Fire site were completed. Measurements were made on burned ridge (upland) and drainage sites, and on burned and unburned sites beneath and between vegetation. A Portable In-Situ Wind Erosion Lab (PI-SWERL) was used to estimate emissions of suspended particles at different wind speeds. Context for these measurements was provided through a meteorological tower that was installed at the Jacob Fire site to obtain local, relevant environmental parameters. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Runoff and water erosion were

  19. Microsoft Word - Fire_Safety_Committee_Membership.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cole, Matt Office Of Science (SC 31.1) (301) 903-8388 Matt.Cole@science.doe.gov Boyll, David Savannah River Operations Office (803) 952-8000 David.Boyll@srs.gov West, Dale Name Organization Work Phone E-mail Co-Chairs Christenson, Craig EM-Office Of River Protection (509) 376-5367 craig_p_christenson@orp.doe.gov Bisker, James Office Of Health Safety & Security (HS-21) (301) 903-6542 Jim.Bisker@hq.doe.gov Emergency Services Committee Chair Masters, Michael UT-Battelle (865) 241-3323

  20. Final Report for SERDP Project RC-1649: Advanced Chemical Measurements of Smoke from DoD-prescribed Burns

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Weise, David; Lincoln, E. N.; Sams, Robert L.; Cameron, Melanie; Veres, Patrick; Yokelson, Robert J.; Urbanski, Shawn; Profeta, Luisa T.; Williams, S.; Gilman, Jessica; Kuster, W. C.; Akagi, Sheryl; Stockwell, Chelsea E.; Mendoza, Albert; Wold, Cyle E.; Warneke, Carsten; de Gouw, Joost A.; Burling, Ian R.; Reardon, James; Schneider, Matthew D.; Griffith, David WT; Roberts, James M.

    2013-12-17

    Objectives: Project RC-1649, “Advanced Chemical Measurement of Smoke from DoD-prescribed Burns” was undertaken to use advanced instrumental techniques to study in detail the particulate and vapor-phase chemical composition of the smoke that results from prescribed fires used as a land management tool on DoD bases, particularly bases in the southeastern U.S. The statement of need (SON) called for “(1) improving characterization of fuel consumption” and “(2) improving characterization of air emissions under both flaming and smoldering conditions with respect to volatile organic compounds, heavy metals, and reactive gases.” The measurements and fuels were from several bases throughout the southeast (Camp Lejeune, Ft. Benning, and Ft. Jackson) and were carried out in collaboration and conjunction with projects 1647 (models) and 1648 (particulates, SW bases). Technical Approach: We used an approach that featured developing techniques for measuring biomass burning emission species in both the laboratory and field and developing infrared (IR) spectroscopy in particular. Using IR spectroscopy and other methods, we developed emission factors (EF, g of effluent per kg of fuel burned) for dozens of chemical species for several common southeastern fuel types. The major measurement campaigns were laboratory studies at the Missoula Fire Sciences Laboratory (FSL) as well as field campaigns at Camp Lejeune, NC, Ft. Jackson, SC, and in conjunction with 1648 at Vandenberg AFB, and Ft. Huachuca. Comparisons and fusions of laboratory and field data were also carried out, using laboratory fuels from the same bases. Results: The project enabled new technologies and furthered basic science, mostly in the area of infrared spectroscopy, a broadband method well suited to biomass burn studies. Advances in hardware, software and supporting reference data realized a nearly 20x improvement in sensitivity and now provide quantitative IR spectra for potential detection of ~60 new

  1. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    SciTech Connect (OSTI)

    Greenspan, Ehud

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  2. Peculiarities of highly burned-up NPP SNF reprocessing and new approach to simulation of solvent extraction processes

    SciTech Connect (OSTI)

    Fedorov, Y.S.; Zilberman, B.Y.; Goletskiy, N.D.; Puzikov, E.A.; Ryabkov, D.V.; Rodionov, S.A.; Beznosyuk, V.I.; Petrov, Y.Y.; Saprykin, V.F.; Murzin, A.A.; Bibichev, B.A.; Aloy, A.S.; Kudinov, A.S.; Blazheva, I.V.; Kurenkov, N.V.

    2013-07-01

    Substantiation, general description and performance characteristics of a reprocessing flowsheet for WWER-1000 spent fuel with burn-up >60 GW*day/t U is given. Pu and U losses were <0.1%, separation factor > 10{sup 4}; their decontamination factor from γ-emitting fission products was 4*10{sup 4} and 3*10{sup 7}, respectively. Zr, Tc, Np removal was >98% at U and Pu losses <0.05%. A new approach to simulation of extraction equilibrium has been developed. It is based on a set of simultaneous chemical reactions characterized by apparent concentration constants. A software package was created for simulation of spent fuel component distribution in multistage countercurrent extraction processes in the presence of salting out agents. (authors)

  3. Control of Plasma-Stored Energy for Burn Control using DIII-D In-Vessel Coils

    SciTech Connect (OSTI)

    Hawryluk, R. J.; Eidietis, N. W.; Grierson, B. A.; Hyatt, A. W.; Koleman, E.; Logan, N. C.; Nazikian, R.; Paz-Soldan, C.; Wolf, S.

    2014-09-01

    A new approach has been experimentally demonstrated to control the stored energy by applying a non-axisymmetric magnetic field using the DIII-D in-vessel coils to modify the energy confinement time. In future burning plasma experiments as well as magnetic fusion energy power plants, various concepts have been proposed to control the fusion power. The fusion power in a power plant operating at high gain can be related to the plasma-stored energy and hence, is a strong function of the energy confinement time. Thus, an actuator, that modifies the confinement time, can be used to adjust the fusion power. In relatively low collisionality DIII-D discharges, the application of non-axisymmetric magnetic fields results in a decrease in confinement time and density pumpout. Gas puffing was used to compensate the density pumpout in the pedestal while control of the stored energy was demonstrated by the application of non-axisymmetric fields.

  4. Fusion in the Era of Burning Plasma Studies: Workforce Planning for 2004 to 2014. Final report to FESA C

    SciTech Connect (OSTI)

    none,

    2004-03-29

    This report has been prepared in response to Dr. R. Orbach’s request of the Fusion Energy Sciences Advisory Committee (FESAC) to “address the issue of workforce development in the U.S. fusion program.” The report addresses three key questions: what is the current status of the fusion science, technology, and engineering workforce; what is the workforce that will be needed and when it will be needed to ensure that the U.S. is an effective partner in ITER and to enable the U.S. to successfully carry out the fusion program; and, what can be done to ensure a qualified, diversified, and sufficiently large workforce and a pipeline to maintain that workforce? In addressing the charge, the Panel considers a workforce that allows for a vigorous national program of fusion energy research that includes participation in magnetic fusion (ITER) and inertial fusion (NIF) burning plasma experiments.

  5. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    SciTech Connect (OSTI)

    Su'ud, Zaki; Sekimoto, H.

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  6. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    SciTech Connect (OSTI)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  7. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    SciTech Connect (OSTI)

    Kaupp, A.

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  8. Application of charge stratification, lean burn combustion systems and anti-knock control devices in small two-stroke cycle gasoline engines

    SciTech Connect (OSTI)

    Kuentscher, V.

    1986-01-01

    For essentially reducing the specific fuel consumption in two-stroke cycle engines and the concentration of hydrocarbons (HC) in the exhaust gas, the normal engine was equipped with a new ram tuned fuel injection system. By the application of charge stratification, lean burn combustion, different ignition systems and a special anti-knock device, considerable fuel consumption and HC emission reductions were obtained.

  9. Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: evolution to the end of core helium burning

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jones, S.; Hirschi, R.; Pignatari, M.; Heger, A.; Georgy, C.; Nishimura, N.; Fryer, C.; Herwig, F.

    2015-01-15

    We present a comparison of 15M⊙ , 20M⊙ and 25M⊙ stellar models from three different codes|GENEC, KEPLER and MESA|and their nucleosynthetic yields. The models are calculated from the main sequence up to the pre-supernova (pre-SN) stage and do not include rotation. The GENEC and KEPLER models hold physics assumptions that are characteristic of the two codes. The MESA code is generally more flexible; overshooting of the convective core during the hydrogen and helium burning phases in MESA is chosen such that the CO core masses are consistent with those in the GENEC models. Full nucleosynthesis calculations are performed for allmore » models using the NuGrid post-processing tool MPPNP and the key energy-generating nuclear reaction rates are the same for all codes. We are thus able to highlight the key diferences between the models that are caused by the contrasting physics assumptions and numerical implementations of the three codes. A reasonable agreement is found between the surface abundances predicted by the models computed using the different codes, with GENEC exhibiting the strongest enrichment of H-burning products and KEPLER exhibiting the weakest. There are large variations in both the structure and composition of the models—the 15M⊙ and 20M⊙ in particular—at the pre-SN stage from code to code caused primarily by convective shell merging during the advanced stages. For example the C-shell abundances of O, Ne and Mg predicted by the three codes span one order of magnitude in the 15M⊙ models. For the alpha elements between Si and Fe the differences are even larger. The s-process abundances in the C shell are modified by the merging of convective shells; the modification is strongest in the 15M⊙ model in which the C-shell material is exposed to O-burning temperatures and the γ -process is activated. The variation in the s-process abundances across the codes is smallest in the 25M⊙ models, where it is comparable to the impact of nuclear

  10. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    SciTech Connect (OSTI)

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup

  11. Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    2000-06-09

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the

  12. Ion kinetic effects on the ignition and burn of inertial confinement fusion targets: A multi-scale approach

    SciTech Connect (OSTI)

    Peigney, B. E.; Larroche, O.

    2014-12-15

    In this article, we study the hydrodynamics and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level. The analysis is based on a two-velocity-scale Vlasov-Fokker-Planck kinetic model that is specially tailored to treat fusion products (suprathermal α-particles) in a self-consistent manner with the thermal bulk. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A typical hot-spot ignition design is considered. Compared with fluid simulations where a multi-group diffusion scheme is applied to model α transport, the full ion-kinetic approach reveals significant non-local effects on the transport of energetic α-particles. This has a direct impact on hydrodynamic spatial profiles during combustion: the hot spot reactivity is reduced, while the inner dense fuel layers are pre-heated by the escaping α-suprathermal particles, which are transported farther out of the hot spot. We show how the kinetic transport enhancement of fusion products leads to a significant reduction of the fusion yield.

  13. Comparison of emissions and efficiency of a turbocharged lean-burn natural gas and Hythane-fueled engine

    SciTech Connect (OSTI)

    Larsen, J.F.; Wallace, J.S.

    1997-01-01

    An experiment was conducted to evaluate the potential for reduced exhaust emissions and improved efficiency, by way of lean-burn engine fueling with hydrogen supplemented natural gas (Hythane). The emissions and efficiency of the Hythane fuel (15% hydrogen, 85% natural gas by volume), were compared to the emissions and efficiency of pure natural gas using a turbocharged, spark ignition, 3.1 L, V-6 engine. The feasibility of heavy duty engine fueling with Hythane was assessed through testing conducted at engine speed and load combinations typical of heavy-duty engine operation. Comparison of the efficiency and emissions at MBT spark timing revealed that Hythane fueling of the test engine resulted in consistently lower brake specific energy consumption and emissions of total hydrocarbons (THC), carbon monoxide (CO), and carbon dioxide (CO{sub 2}), at a given equivalence ratio. There was no clear trend with respect to MBT oxides of nitrogen (NO{sub x}) emissions. It was also discovered that an improved NO{sub x}-THC tradeoff resulted when Hythane was used to fuel the test engine. Consequently, Hythane engine operating parameters can be adjusted to achieve a concurrent reduction in NO{sub x} and THC emissions relative to natural gas fueling.

  14. SRC burn test in 700-hp oil-designed boiler. Volume 1. Integrated report. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1983-09-01

    This burn test program was conducted during the period of August 1982 to February 1983 to demonstrate that Solvent Refined Coal (SRC) products can displace petroleum as a boiler fuel in oil- and gas-designed boilers. The test program was performed at the U.S. Department of Energy's Pittsburgh Energy Technology Center (PETC). Three forms of SRC (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) and No. 6 Fuel Oil were evaluated in the 700-hp (30 x 10/sup 6/ Btu/hour) watertube, oil-designed boiler facility at PETC. The test program was managed by the International Coal Refining Company (ICRC) and sponsored by the Department of Energy. Other organizations were involved as necessary to provide the expertise required to execute the test program. This final report represents an integrated overview of the test program conducted at PETC. More detailed information with preliminary data can be obtained from separate reports prepared by PETC, Southern Research Institute, Wheelabrator-Frye, Babcock and Wilcox, and Combustion Engineering. These are presented as Annex Volumes A-F. 25 references, 41 figures, 15 tables.

  15. Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography

    SciTech Connect (OSTI)

    Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P.; Cofer, W.R. III; Levine, J.S.; Winstead, E.L.

    1995-06-01

    In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

  16. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 261 with Illinois No. 6 Burning Star Mine coal

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R & D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  17. Focused feasibility study for surface soil at the main pits and pushout area, J-field toxic burning pits area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Patton, T.; Benioff, P.; Biang, C.; Butler, J.

    1996-06-01

    The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). J-Field is located within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning/open detonation. Portions of J-Field continue to be used for the detonation and disposal of unexploded ordnance (UXO) by open burning/open detonation under authority of the Resource Conservation and Recovery Act.

  18. AEO 2013 Liquid Fuels Markets Working Group 2

    U.S. Energy Information Administration (EIA) Indexed Site

    2 October 4, 2012 Attendance (In Person) Beth May, Mike Cole, Arup Mallik, Vish Mantri, Irene Olson, Julie Harris, Michael Schaal, Andy Kydes, Tom White, Adrian Geagla, Jennifer Li. Attendance (WebEx) Mac Statton, Dave Schmalzer, Jarrod Brown, John Prydol, Russ Smith, Rodney Geisbrecht, Dallas Burkholder, Kristen King Notes by Slide Slide 2 The reference case in 2013 has a lower oil price compared to last year's AEO out to 2040. Slide 10 - Includes modeling of pyrolysis oils Slide 11 - This

  19. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications Michael Ulsh National Renewable Energy Laboratory Douglas Wheeler DJW Technology Peter Protopappas Sentech Technical Report NREL/TP-5600-52125 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole

  20. Second AEO2014 Liquids Fuels Markets Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS JOHN POWELL TEAM LEADER LIQUID FUELS MARKET TEAM MICHAEL SCHAAL DIRECTOR OFFICE OF ENERGY ANALYSIS FROM: LIQUID FUELS MARKET TEAM SUBJECT: Second AEO2014 Liquid Fuels Markets Working Group Meeting Summary (presented on 09-19-2013) Attendees: (EIA) John Powell, Mindi Farber-DeAnda, Mike Cole, Beth May, Adrian Geagla, Vishakh Mantri, Tony Radich, Irene Olson, Julie Harris, Arup Mallik, Mike Bredehoeft Seth Meyer (USDA)

  1. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Central Shops Burning/Rubble Pit (631-6G), Volume 1 Final

    SciTech Connect (OSTI)

    1996-04-01

    The Burning/Rubble Pits at the Savannah River Site were usually shallow excavations approximately 3 to 4 meters in depth. Operations at the pits consisted of collecting waste on a continuous basis and burning on a monthly basis. The Central Shops Burning/Rubble Pit 631- 6G (BRP6G) was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal of paper, lumber, cans and empty galvanized steel drums. The unit may have received other materials such as plastics, rubber, rags, cardboard, oil, degreasers, or drummed solvents. The BRP6G was operated from 1951 until 1955. After disposal activities ceased, the area was covered with soil. Hazardous substances, if present, may have migrated into the surrounding soil and/or groundwater. Because of this possibility, the United States Environmental Protection Agency (EPA) has designated the BRP6G as a Solid Waste Management Unit (SWMU) subject to the Resource Conservation Recovery Act/Comprehensive Environmental Response, Compensation and Liability Act (RCRA/CERCLA) process.

  2. Corrective Action Decision Document for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (Rev. No.: 0, February 2001)

    SciTech Connect (OSTI)

    DOE /NV

    2001-02-23

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended Corrective Action Alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 490, Station 44 Burn Area, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 490 is located on the Nellis Air Force Range and the Tonopah Test Range and is approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (located southwest of Area 3); RG-56-001-RGBA, Station 44 Burn Area (located west of Main Lake); 03-58-001-03FN, Sandia Service Yard (located north of the northwest corner of Area 3); and 09-54-001-09L2, Gun Propellant Burn Area (located south of the Area 9 Compound on the TTR). A Corrective Action Investigation was performed in July and August 2000, and analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine contaminants of concern (COCs). There were no COCs identified in soil at the Gun Propellant Burn Area or the Station 44 Burn Area; therefore, there is no need for corrective actions at these two sites. Five soil samples at the Fire Training Area and seven at the Sandia Service Yard exceeded PALs for total petroleum hydrocarbons-diesel. Upon the identification of COCs specific to CAU 490, Corrective Action Objectives were developed based on a review of existing data, future use, and current operations at the TTR, with the following three CAAs under consideration: Alternative 1 - No Further Action, Alternative 2 - Closure In Place - No Further Action With Administrative Controls, and Alternative 3 - Clean Closure by Excavation and Disposal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on

  3. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    SciTech Connect (OSTI)

    Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto

    2013-07-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  4. Methyl Formate Oxidation: Speciation Data, Laminar Burning Velocities, Ignition Delay Times and a Validated Chemical Kinetic Model

    SciTech Connect (OSTI)

    Dooley, S.; Burke, M. P.; Chaos, M.; Stein, Y.; Dryer, F. L.; Zhukov, V. P.; Finch, O.; Simmie, J. M.; Curran, H. J.

    2010-07-16

    The oxidation of methyl formate (CH{sub 3}OCHO) has been studied in three experimental environments over a range of applied combustion relevant conditions: 1. A variable-pressure flow reactor has been used to quantify reactant, major intermediate and product species as a function of residence time at 3 atm and 0.5% fuel concentration for oxygen/fuel stoichiometries of 0.5, 1.0, and 1.5 at 900 K, and for pyrolysis at 975 K. 2. Shock tube ignition delays have been determined for CH{sub 3}OCHO/O{sub 2}/Ar mixtures at pressures of ? 2.7, 5.4, and 9.2 atm and temperatures of 12751935 K for mixture compositions of 0.5% fuel (at equivalence ratios of 1.0, 2.0, and 0.5) and 2.5% fuel (at an equivalence ratio of 1.0). 3. Laminar burning velocities of outwardly propagating spherical CH{sub 3}OCHO/air flames have been determined for stoichiometries ranging from 0.81.6, at atmospheric pressure using a pressure-release-type high-pressure chamber. A detailed chemical kinetic model has been constructed, validated against, and used to interpret these experimental data. The kinetic model shows that methyl formate oxidation proceeds through concerted elimination reactions, principally forming methanol and carbon monoxide as well as through bimolecular hydrogen abstraction reactions. The relative importance of elimination versus abstraction was found to depend on the particular environment. In general, methyl formate is consumed exclusively through molecular decomposition in shock tube environments, while at flow reactor and freely propagating premixed flame conditions, there is significant competition between hydrogen abstraction and concerted elimination channels. It is suspected that in diffusion flame configurations the elimination channels contribute more significantly than in premixed environments.

  5. Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

    SciTech Connect (OSTI)

    Reppert, Mike; Kell, Adam; Pruitt, Thomas; Jankowiak, Ryszard

    2015-03-07

    The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω{sub sp}, for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers.

  6. Michael W. Hancock, P.E., President Secretary, Kentucky Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...ial.transportation.org Statement of Chris Smith Senior Program Manager for Freight ... you have additional questions. Sincerely, Chris Smith Senior Program Manager for Freight

  7. From: Michael McCabe [mailto:michaeljmccabe@verizon.net

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Also, on the business side, I have been giving the new LCC calculation some more thought. I don't like it and I don't believe the Department satisfies section 325(o) by using it. ...

  8. ESnet's Michael Bennett Recognized by IEEE for Work in Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The standards are expected to help save terawatts of otherwise-wasted electricity by automatically switching networked components to energy-saving modes when not in use. The award ...

  9. Theoretical Summary Lecture for Higgs Hunting 2012 Peskin, Michael...

    Office of Scientific and Technical Information (OSTI)

    HEPPH, HEPTH In this lecture, I review some of the perspectives on the Higgs boson discussed at the Higgs Hunting 2012 Worshop and discuss the short- and...

  10. Recognizing Innovation at Berkeley National Lab: Michael Stadler...

    Broader source: Energy.gov (indexed) [DOE]

    CO2 emissions at a given site, while also considering strategies such as load-shifting and demand-response. DER-CAM is now being used by more than 350 registered users worldwide. ...

  11. Dr. Michael MacCracken, Climate Institute, Washington, DC

    ScienceCinema (OSTI)

    Dr. Michael MacCracken

    2010-01-08

    Achieving International Agreement and Climate Protection by Coordinated Mitigation of Short- and Long-Lived Greenhouse Gases. Presented at the China-US Workshop on the "Climate-Energy Nexus" at Oak Ridge National Laboratory on November 11, 2009.

  12. St. Michael Indian School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  13. G-protein-coupled receptor Bokoch, Michael P.; Zou, Yaozhong...

    Office of Scientific and Technical Information (OSTI)

    W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan Jos; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R....

  14. LOS ALAMOS, New Mexico, March 18, 2011-Laboratory Director Michael...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and construction projects in the People's Republic of China, development efforts in Egypt, and industrial projects across the United States. His association with Bechtel began...

  15. Statement of Dr. Michael Knotek, Deputy Under Secretary for Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permitting of cross-border electrical transmission lines, and in licensing of natural gas imports and exports under the Natural Gas Act. The draft legislation being considered...

  16. SBOT DIST OF COLUMBIA HEADQUARTERS PROCUREMENT POC Michael Raizen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction 236220 Water and Sewer Line and Related ... Other Heavy and Civil Engineering Construction 237990 ... Deep Sea Freight Transportation 483111 Inland Water Freight ...

  17. Jeremy Allen; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell...

    Office of Scientific and Technical Information (OSTI)

    Shock waves-Measurement. This report summarizes design and modeling activities for the MEMS passive shock sensor. It provides a description of past design revisions, including the...

  18. Prepared Statement for Mr. Michael P. Mertz Director, NERC Regulatory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    significant traditional risk landscape such as extreme weather and aging infrastructure, but also with existing and emerging risks in both the physical and cyber security arenas. ...

  19. Recognizing Innovation at Berkeley National Lab: Michael Stadler, PECASE Winner

    Broader source: Energy.gov [DOE]

    I had the pleasure of participating in a ceremony this week honoring this year’s 13 Presidential Early Career Awards for Scientists and Engineers (PECASE) winners funded by the Energy Department....

  20. J. Michael McQuade | Department of Energy

    Energy Savers [EERE]

    Time-Based Rates from the Consumer Behavior Studies (June 2015) | Department of Energy Interim Report on Customer Acceptance, Retention, and Response to Time-Based Rates from the Consumer Behavior Studies (June 2015) Interim Report on Customer Acceptance, Retention, and Response to Time-Based Rates from the Consumer Behavior Studies (June 2015) Since 2009, the U.S. Department of Energy, using funds from the American Recovery and Reinvestment Act, and the electric power industry have jointly

  1. Illinois at Urbana-Champaign, Professor Michael J.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illinois Natural Gas Gross Withdrawals (Million Cubic Feet) Illinois Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 41 38 40 39 38 37 37 38 37 40 40 41 1992 31 28 30 29 28 27 28 28 28 30 30 31 1993 30 29 29 27 27 27 27 28 28 29 27 30 1994 30 29 29 27 27 27 26 28 27 28 26 29 1995 30 29 29 27 27 27 27 28 27 28 26 29 1996 29 28 28 26 27 27 21 22 22 23 21 24 1997 23 22 22 20 21 21 17 17 17 18 16 18 1998 21 20 20 18 19 19 15 16 15 16 15 17

  2. Alexander Heinecke, Alexander Breuer, Michael Bader, Pradeep Dubey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel Computing Lab, Intel Labs, USA 2016-06-22 International Supercomputing Conference (ISC) Frankfurt, Germany Legal Disclaimer & Optimization Notice INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES

  3. Alexander Heinecke, Alexander Breuer, Michael Bader, Pradeep Dubey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Maxwell Hutchinson, Alexander Heinecke, Hans Pabst, Greg Henry, Matteo Parsani, and David Keyes Parallel Computing Lab, Intel Labs, USA 2 3 Current & Next Generation Intel® Xeon and Xeon Phi(tm) Platforms Xeon* Latest released - Broadwell (14nm process) * Intel's Foundation of HPC Performance * Up to 22 cores, Hyperthreading * ~66 GB/s stream memory BW (4 ch. DDR4 2400) * AVX2 - 256-bit (4 DP, 8 SP flops) -> >0.7 TFLOPS * 20 PCIe lanes Xeon Phi* Knights Landing (14nm process) *

  4. NREL: Photovoltaics Research - Michael Deceglie, Ph.D.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    near junction defects in silicon heterojunction solar cells," IEEE Journal of Photovoltaics, 4, pp. 154-159, 2014. T.J. Silverman, M.G. Deceglie, B. Marion, S. Cowley, B....

  5. 10 Questions for a Senior Scientist: Michael Wang

    Broader source: Energy.gov [DOE]

    Dr. Wang's work spans a wide range -- from transportation fuels to advanced vehicles technologies. His team also developed GREET (Greenhouse gases, Regulated Emissions and Energy use in Transportation), a computer model for analyzing energy and the environmental effects of these technologies and fuels.

  6. 084 Michael Wismer_Los Alamos County.pdf

    National Nuclear Security Administration (NNSA)

  7. PPPL Answers Burning Question

    ScienceCinema (OSTI)

    Zwicker, Andrew; Merali, Aliya

    2013-08-23

    The Science Education Department at the Princeton Plasma Physics Laboratory answers Alan Alda's challenge to explain what is a flame to an audience of 11-year old children.

  8. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: implications for cloud condensation nucleus activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-03-06

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O3 can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore » O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH/O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical

  9. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-09-14

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particles exposed tomore » OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions

  10. Chemopreventive activity of compounds extracted from Casearia sylvestris (Salicaceae) Sw against DNA damage induced by particulate matter emitted by sugarcane burning near Araraquara, Brazil

    SciTech Connect (OSTI)

    Prieto, A.M.; Santos, A.G.; Csipak, A.R.; Caliri, C.M.; Silva, I.C.; Arbex, M.A.; Silva, F.S.; Marchi, M.R.R.

    2012-12-15

    Ethanolic extract of Casearia sylvestris is thought to be antimutagenic. In this study, we attempted to determine whether this extract and casearin X (a clerodane diterpene from C. sylvestris) are protective against the harmful effects of airborne pollutants from sugarcane burning. To that end, we used the Tradescantia micronucleus test in meiotic pollen cells of Tradescantia pallida, the micronucleus test in mouse bone marrow cells, and the comet assay in mouse blood cells. The mutagenic compound was total suspended particulate (TSP) from air. For the Tradescantia micronucleus test, T. pallida cuttings were treated with the extract at 0.13, 0.25, or 0.50 mg/ml. Subsequently, TSP was added at 0.3 mg/ml, and tetrads from the inflorescences were examined for micronuclei. For the micronucleus test in mouse bone marrow cells and the comet assay in mouse blood cells, Balb/c mice were treated for 15 days with the extract3.9, 7.5, or 15.0 mg/kg body weight (BW)or with casearin X0.3, 0.25, or 1.2 mg/kg BWafter which they received TSP (3.75 mg/kg BW). In T. pallida and mouse bone marrow cells, the extract was antimutagenic at all concentrations tested. In mouse blood cells, the extract was antigenotoxic at all concentrations, whereas casearin X was not antimutagenic but was antigenotoxic at all concentrations. We conclude that C. sylvestris ethanolic extract and casearin X protect DNA from damage induced by airborne pollutants from sugarcane burning. -- Highlights: ? We assessed DNA protection of C. sylvestris ethanolic extract. ? We assessed DNA protection of casearin X. ? We used Tradescantia pallida micronucleus test as screening. ? We used comet assay and micronucleus test in mice. ? The compounds protected DNA against sugar cane burning pollutants.

  11. Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-switched Laser Spark Plug

    SciTech Connect (OSTI)

    McIntyre, D.L.; Woodruff, S.D.; McMillian, M.H.; Richardson, S.W.; Gautam, Mridul

    2008-04-01

    To meet the ignition system needs of large bore lean burn stationary natural gas engines a laser diode side pumped passively Q-switched laser igniter was developed and used to ignite lean mixtures in a single cylinder research engine. The laser design was produced from previous work. The in-cylinder conditions and exhaust emissions produced by the miniaturized laser were compared to that produced by a laboratory scale commercial laser system used in prior engine testing. The miniaturized laser design as well as the combustion and emissions data for both laser systems was compared and discussed. It was determined that the two laser systems produced virtually identical combustion and emissions data.

  12. Remaining Sites Verification Package for the 128-B-2, 100-B Burn Pit #2 Waste Site, Waste Site Reclassification Form 2005-038

    SciTech Connect (OSTI)

    R. A. Carlson

    2005-12-21

    The 128-B-2 waste site was a burn pit historically used for the disposal of combustible and noncombustible wastes, including paint and solvents, office waste, concrete debris, and metallic debris. This site has been remediated by removing approximately 5,627 bank cubic meters of debris, ash, and contaminated soil to the Environmental Restoration Disposal Facility. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  13. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    SciTech Connect (OSTI)

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  14. PLANETS AROUND LOW-MASS STARS. III. A YOUNG DUSTY L DWARF COMPANION AT THE DEUTERIUM-BURNING LIMIT ,

    SciTech Connect (OSTI)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Dupuy, Trent J.

    2013-09-01

    We report the discovery of an L-type companion to the young M3.5V star 2MASS J01225093-2439505 at a projected separation of 1.''45 ( Almost-Equal-To 52 AU) as part of our adaptive optics imaging search for extrasolar giant planets around young low-mass stars. 2MASS 0122-2439 B has very red near-infrared colors similar to the HR 8799 planets and the reddest known young/dusty L dwarfs in the field. Moderate-resolution (R Almost-Equal-To 3800) 1.5-2.4 {mu}m spectroscopy reveals a near-infrared spectral type of L4-L6 and an angular H-band shape, confirming its cool temperature and young age. The kinematics of 2MASS 0122-2439 AB are marginally consistent with members of the {approx}120 Myr AB Dor young moving group based on the photometric distance to the primary (36 {+-} 4 pc) and our radial velocity measurement of 2MASS 0122-2439 A from Keck/HIRES. We adopt the AB Dor group age for the system, but the high energy emission, lack of Li I {lambda}6707 absorption, and spectral shape of 2MASS 0122-2439 B suggest a range of {approx}10-120 Myr is possible. The age and luminosity of 2MASS 0122-2439 B fall in a strip where ''hot-start'' evolutionary model mass tracks overlap as a result of deuterium burning. Several known substellar companions also fall in this region (2MASS J0103-5515 ABb, AB Pic b, {kappa} And b, G196-3 B, SDSS 2249+0044 B, LP 261-75 B, HD 203030 B, and HN Peg B), but their dual-valued mass predictions have largely been unrecognized. The implied mass of 2MASS 0122-2439 B is Almost-Equal-To 12-13 M{sub Jup} or Almost-Equal-To 22-27 M{sub Jup} if it is an AB Dor member, or possibly as low as 11 M{sub Jup} if the wider age range is adopted. Evolutionary models predict an effective temperature for 2MASS 0122-2439 B that corresponds to spectral types near the L/T transition ( Almost-Equal-To 1300-1500 K) for field objects. However, we find a mid-L near-infrared spectral type, indicating that 2MASS 0122-2439 B represents another case of photospheric dust being

  15. Nonequilibrium phenomena and determination of plasma parameters in the hot core of the cathode region in free-burning arc discharges

    SciTech Connect (OSTI)

    Kuehn, Gerrit; Kock, Manfred

    2007-01-15

    We present spectroscopic measurements of plasma parameters (electron density n{sub e}, electron temperature T{sub e}, gas temperature T{sub g}, underpopulation factor b) in the hot-core region in front of the cathode of a low-current, free-burning arc discharge in argon under atmospheric pressure. The discharge is operated in the hot-core mode, creating a hot cathode region with plasma parameters similar to high-current arcs in spite of the fact that we use comparatively low currents (less than 20 A). We use continuum emission and (optically thin) line emission to determine n{sub e} and T{sub e}. We apply relaxation measurements based on a power-interruption technique to investigate deviations from local thermodynamic equilibrium (LTE). These measurements let us determine the gas temperature T{sub g}. All measurements are performed side-on with charge-coupled-device cameras as detectors, so that all measured plasma parameters are spatially resolved after an Abel inversion. This yields the first ever spatially resolved observation of the non-LTE phenomena of the hot core in the near-cathode region of free-burning arcs. The results only partly coincide with previously published predictions and measurements in the literature.

  16. Erosion Potential of a Burn Site in the Mojave-Great Basin Transition Zone: Interim Summary of One Year of Measurements

    SciTech Connect (OSTI)

    Etyemezian, V.; Shafer, D.; Miller, J.; Kavouras, I.; Campbell, S.; DuBois, D.; King, J.; Nikolich, G.; Zitzer, S.

    2010-05-18

    A historic return interval of 100 years for large fires in deserts in the Southwest U.S. is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. This increase in fires has implications for management of Soil Sub-Project Corrective Action Units (CAUs) for which the Department of Energy, National Nuclear Security Administration Nevada Site office (NNSA/NSO) has responsibility. A series of studies has been initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn over to understand technical and perceived risk they might pose to site workers and public receptors in communities around the NTS, TTR, and NTTR; and to develop recommendations for stabilization and restoration after a fire. The first of these studies was undertaken at the Jacob fire, a lightning-caused fire approximately 12 kilometers north of Hiko, Nevada, that burned approximately 200 ha between August 6-8, 2008, and is representative of a transition zone on the NTS between the Mojave and Great Basin Deserts, where the largest number of Soil Sub-Project CAUs/CASs are located.

  17. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  18. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    Bechel Nevada

    2004-05-01

    This Streamlined Approach for Environmental Restoration plan details the activities necessary to close Corrective Action Unit (CAU) 484: Surface Debris, Waste Sites, and Burn Area (Tonopah Test Range). CAU 484 consists of sites located at the Tonopah Test Range, Nevada, and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. CAU 484 consists of the following six Corrective Action Sites: (1) CAS RG-52-007-TAML, Davis Gun Penetrator Test; (2) CAS TA-52-001-TANL, NEDS Detonation Area; (3) CAS TA-52-004-TAAL, Metal Particle Dispersion Test; (4) CAS TA-52-005-TAAL, Joint Test Assembly DU Sites; (5) CAS TA-52-006-TAPL, Depleted Uranium Site; and (6) CAS TA-54-001-TANL, Containment Tank and Steel Structure

  19. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    SciTech Connect (OSTI)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  20. Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992

    SciTech Connect (OSTI)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-12-01

    This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

  1. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  2. Evaluation of hoop creep behaviors in long-term dry storage condition of pre-hydrided and high burn-up nuclear fuel cladding

    SciTech Connect (OSTI)

    Kim, Sun-Ki; Bang, J.G.; Kim, D.H.; Yang, Y.S.

    2007-07-01

    Related to the degradation of the mechanical properties of Zr-based nuclear fuel cladding tubes under long term dry storage condition, the mechanical tests which can simulate the degradation of the mechanical properties properly are needed. Especially, the degradation of the mechanical properties by creep mechanism seems to be dominant under long term dry storage condition. Accordingly, in this paper, ring creep tests were performed in order to evaluate the creep behaviors of high burn-up fuel cladding under a hoop loading condition in a hot cell. The tests are performed with Zircaloy-4 fuel cladding whose burn-up is approximately {approx}60,000 MWd/tU in the temperature range from 350 deg. to 550 deg.. The tests are also performed with pre-hydrided Zircaloy-4 and ZIRLO up to 1,000 ppm. First of all, the hoop loading grip for the ring creep test was designed in order that a constant curvature of the specimen was maintained during the creep deformation, and the graphite lubricant was used to minimize the friction between the outer surface of the die insert and the inner surface of the ring specimen. The specimen for the ring creep test was designed to limit the deformation within the gauge section and to maximize the uniformity of the strain distribution. It was confirmed that the mechanical properties under a hoop loading condition can be correctly evaluated by using this test technique. In this paper, secondary creep rate with increasing hydrogen content are drawn, and then kinetic data such as pre-exponential factor and activation energy for creep process are also drawn. In addition, creep life are predicted by obtaining LMP (Larson-Miller parameter) correlation in the function of hydrogen content and applied stress to yield stress ratio. (authors)

  3. Large-scale Evaluation of Nickel Aluminide Rolls in a Heat-Treat Furnace at Bethelehem Steel's (Now ISG) Burns Harbor Plate Mill

    SciTech Connect (OSTI)

    Mengel, J.

    2003-12-16

    At Bethlehem Steel Burns Harbor Plate Division (now ISG Burns Harbor Plate Inc.)'s annealing furnace, new nickel aluminide intermetallic alloy rolls provide greater high-temperature strength and wear resistance compared to the conventional H series cast austenitic alloys currently used in the industry. Oak Ridge National Laboratory and Bethlehem (ISG) partnered under a U.S. Department of Energy, Office of Industrial Technology's Emerging Technology Deployment Program to demonstrate and evaluate the nickel aluminide intermetallic alloy rolls as part of an updated energy efficient large commercial annealing furnace system. Many challenges were involved in this project, including developing welding procedures for joining nickel aluminide intermetallic alloys with H-series austenitic alloys, developing commercial cast roll manufacturing specifications, working with several commercial suppliers to produce a quantity of high quality, reproducible nickel aluminide rolls for a large steel industrial annealing furnace, installing and demonstrating the capability of the rolls in this furnace, performing processing trials to evaluate the benefits of new equipment and processes, and documenting the findings. Updated furnace equipment including twenty-five new automated furnace control dampers have been installed replacing older design, less effective units. These dampers, along with upgraded flame-safety control equipment and new AC motors and roll-speed control equipment, are providing improved furnace control and additional energy efficiency. Energy data shows up to a 34% energy reduction from baseline after the installation of upgraded furnace damper controls along with up to a 34% reduction in greenhouse gases, potential for an additional 3 to 6% energy reduction per campaign of light-up and shutdown, and a 46% energy reduction from baseline for limited trials of a combination of improved damper control and straight-through plate processing. The straight-through processing

  4. Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods

    SciTech Connect (OSTI)

    Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

    2011-06-03

    Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and

  5. Corrective Action Decision Document for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada: Revision No. 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-10-17

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative appropriate to facilitate the closure of Corrective Action Unit (CAU) 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 5, 22, and 23 of the NTS, CAU 140 consists of nine corrective action sites (CASs). Investigation activities were performed from November 13 through December 11, 2002, with additional sampling to delineate the extent of contaminants of concern (COCs) conducted on February 4 and March 18 and 19, 2003. Results obtained from the investigation activities and sampling indicated that only 3 of the 9 CASs at CAU 140 had COCs identified. Following a review of existing data, future land use, and current operations at the NTS, the following preferred alternatives were developed for consideration: (1) No Further Action - six CASs (05-08-02, 05-17-01, 05-19-01, 05-35-01, 05-99-04, and 22-99-04); (2) Clean Closure - one CAS (05-08-01), and (3) Closure-in-Place - two CASs (05-23-01 and 23-17-01). These alternatives were judged to meet all requirements for the technical components evaluated. Additionally, the alternatives meet all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the contaminated media at CAU 140.

  6. Direct Measurement of Initial Enrichment and Burn-up of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument

    SciTech Connect (OSTI)

    Henzl, Vladimir; Swinhoe, Martyn T.; Tobin, Stephen J.

    2012-07-16

    A key objective of the Next Generation Safeguards Initiative (NGSI) is to utilize non-destructive assay (NDA) techniques to determine the elemental plutonium (Pu) content in a commercial-grade nuclear spent fuel assembly (SFA). In the third year of the NGSI Spent Fuel NDA project, the research focus is on the integration of a few NDA techniques. One of the reoccurring challenges to the accurate determination of Pu content has been the explicit dependence of the measured signal on the presence of neutron absorbers which build up in the assembly in accordance with its operating and irradiation history. The history of any SFA is often summarized by the parameters of burn-up (BU), initial enrichment (IE) and cooling time (CT). While such parameters can typically be provided by the operator, the ability to directly measure and verify them would significantly enhance the autonomy of the IAEA inspectorate. Within this paper, we demonstrate that an instrument based on a Differential Die-Away technique is in principle capable of direct measurement of IE and, should the CT be known, also the BU.

  7. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  8. Impact of operating parameters changing on energy, environment and economic efficiencies of a lean burn gas engine used in a cogeneration plant

    SciTech Connect (OSTI)

    Lemoult, B.; Tazerout, M.; Rousseau, S.

    1998-07-01

    The facts that national electrical company Electricite de France (EDF) has a monopoly on electrical power production in France and an extensive installed base of nuclear power plants, explain the difficulty encountered in developing cogeneration technology in France. Cogeneration only really first appeared in this country in the early 1990's, with the liberalization of energy markets and the government's encouragement. Since then, the number of cogeneration plants has continuously increased and electrical generating capacity is now approximately 1,200 MWe. Turbine and reciprocating engines (most of which are natural gas fired) account respectively for about 55% and 45% of the installed power. Unlike other countries, such as Germany--which has about two thousand 500 kWe and smaller units--the future of low-power cogeneration in France is far from assured, and there are currently less than 10 such plants. To help develop this efficient technology for producing electrical power and hot water, the Ecole des Mines de Nantes purchased a 210 kWe cogeneration generator set in 1996. This facility provides all or part of the school's electrical and heat requirements during five months between November and March. This cogeneration facility is also used during the rest of the year to perform research experiments in the field of lean-burn natural gas combustion. Lastly, it is also used to provide training for industry in cogeneration technology. Within this context, work was undertaken to study the set's energy and emissions performance, in relation to such parameters as spark advance and air factor, and at various loads.

  9. Overburden characterization and post-burn study of the Hanna IV, underground coal gasification site, Wyoming, and comparison to other Wyoming UCG sites

    SciTech Connect (OSTI)

    Marcouiller, B.A.; Burns, L.K.; Ethridge, F.G.

    1984-11-01

    Analysis of 21 post-burn cores taken from the Hanna IV UCG site allows 96 m (315 ft) of overburden to be subdivided into four local stratigraphic units. The 7.6 m (25 ft) thick Hanna No. 1 coal seam is overlain by a laterally discontinuous, 3.3 m (11 ft) thick shaley mudstone (Unit A') in part of the Hanna IV site. A more widespread, 30 m (90 ft) thick well-indurated sandstone (Unit A) overlies the A' unit. Unit A is the roof rock for both of the Hanna IV cavities. Overlying Unit A is a 33 m (108 ft) thick sequence of mudstone and claystone (Unit B), and the uppermost unit at the Hanna IV site (Unit C) is a coarse-grained sandstone that ranges in thickness from 40 to 67 m (131 to 220 ft). Two elliptical cavities were formed during the two phases of the Hanna IV experiment. The larger cavity, Hanna IVa, is 45 x 15 m in plan and has a maximum height of 18 m (59 ft) from the base of the coal seam to the top of the cavity; the Hanna IVb cavity is 40 x 15 m in plan and has a maximum height of 11 m (36 ft) from the base of the coal seam to the top of the cavity. Geotechnical tests indicated that the Hanna IV overburden rocks were moderately strong to strong, based on the empirical classification of Broch and Franklin (1972), and a positive, linear correlation exists between rock strength and volume percent calcite cement. There is an inverse linear correlation between rock strength and porosity for the Hanna IV overburden rocks. 28 refs., 34 figs., 13 tabs..

  10. An investigation into the reactivity, deactivation, and in situ regeneration of Pt-based catalysts for the selective reduction of NO{sub x} under lean burn conditions

    SciTech Connect (OSTI)

    Burch, R.; Fornasiero, P.; Southward, B.W.L.

    1999-02-15

    The activity and deactivation characteristics of Pt-based lean burn De-NO{sub x} catalysts have been investigated and the relationships between temperature, nature of reductant (n-octane) and NO{sub 2} concentrations, and the mechanism(s) of deactivation have been examined. The effects of Pt loading and particle size on the activity and deactivation have also been studied. The results show that deactivation of the catalyst is due to site blocking via an unidentified carbonaceous deposit and that the initial surface state of the Pt is crucial. In all cases clean Pt surfaces were found to display an initial period of surprisingly high activity prior to deactivation, the rate of which was inversely related to reaction temperature. Deactivation is proposed to arise from a combination of factors which inhibit adsorption and reaction of n-octane, due to encroachment onto the Pt surface of hydrocarbonaceous species accumulating initially on the support in the vicinity of the Pt/support interface. It is possible that these carbon-containing deposits comprise some form of organonitrogen species. The loss of activity due to this gradual encroachment results in a reduction in the temperature of the Pt particles, leading to a further decrease in reaction and/or desorption rates, and rapid deactivation then ensues. The use of higher Pt loadings leads to enhanced activity at lower temperatures and increased tolerance to the deactivating effects of surface deposition. Catalyst activity and tolerance to deactivation were further enhanced by controlled sintering, which, within certain limits, resulted in excellent, stable low-temperature De-NO{sub x} activity.

  11. Market Characteristics for Efficient Integration of Variable Generation in the Western Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8192 August 2010 Market Characteristics for Efficient Integration of Variable Generation in the Western Interconnection Michael Milligan and Brendan Kirby National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-550-48192

  12. Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Technical Report NREL/TP-5500-52251 July 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 The

  13. Keeping the home fires burning

    SciTech Connect (OSTI)

    Valenti, M.

    1993-07-01

    Some utilities and thermal researchers are devising thermoelectric and thermophotovoltaic technologies to convert furnace heat to electricity and keep home heating systems functioning during extended power failures. Storms that damage power lines often leave homes without heat, since the electricity supplied to furnace blowers is cut along with all other electricity. One case in points is the March 1991 ice storm that left nearly 200,000 Rochester Gas and Electric Corp. customers without electrical power, some for up to two weeks. This led the Rochester, N.Y., utility, RG and E, to search for an independent power source that could provide homes with heat during prolonged outages. RG and E funded development of a continuous gas furnace by the GE Research and Development Center in Schenectady, N.Y., that would keep its customers' homes heated and provide some electricity during power outages. Since natural gas lines are rarely interrupted during a power outage, the furnace is still a potential source of heat, but only if there is some way to supply electricity that is independent of the grid, said Bruce Snow, manager and chief engineer of the technical services division at RG and E. The electricity would power the furnace blower, which blows hot air through air ducts, or run the motor that pumps water through a piping system to keep the house warm. Such a thermoelectrical system involves heating the two junctions of thermocouples, which are made of dissimilar wires, at two different temperatures in order to create electricity. A newer technology, thermophoto-voltaics, also converts heat to electricity. In this process described here, the heat causes an emitter to radiate a wavelength of light, which is converted into electricity by a photovoltaic unit.

  14. Sandia National Laboratories: Burning Rubber

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The tip of the machine is so fine it can sample spots that are one-third the diameter of a ... Signals from distinguishing chemical structures can fade or disappear during aging. This ...

  15. CARS diagnostics of the burning of H{sub 2} - O{sub 2} and CH{sub 4} - O{sub 2} mixtures at high temperatures and pressures

    SciTech Connect (OSTI)

    Vereshchagin, K A; Smirnov, Valery V; Stel'makh, O M; Fabelinskii, V I

    2012-01-31

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to determine the parameters of gaseous combustion products of hydrogen and hydrocarbon fuels with oxygen at high temperatures and pressures. The methodical aspects of CARS thermometry, which are related to the optimal choice of molecules (diagnostic references) and specific features of their spectra, dependent on temperature and pressure, are analysed. Burning is modelled under the conditions similar to those of real spacecraft propulsion systems using a specially designed laboratory combustion chamber, operating in the pulse-periodic regime at high temperatures (to 3500 K) and pressures (to 20 MPa) of combustion products. (nonlinear optical phenomena)

  16. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition

    SciTech Connect (OSTI)

    Shimaoka, T. Kaneko, J. H.; Tsubota, M.; Arikawa, Y.; Nagai, T.; Kojima, S.; Abe, Y.; Sakata, S.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Isobe, M.; Sato, Y.; Chayahara, A.; Umezawa, H.; Shikata, S.

    2015-05-15

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% 0.8% and 97.1% 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 0.4 10{sup 7} cm/s and 1.0 0.3 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.51 keV and neutron yield of more than 10{sup 9} neutrons/shot.

  17. JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING

    SciTech Connect (OSTI)

    John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

    2003-10-01

    The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite

  18. STATEMENT OF MICHAEL JOHNSON CHIEF INFORMATION OFFICER U.S. DEPARTMENT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cyber strategy for the DOE enterprise. The enterprise comprises 97 entities-spread across 27 states-divided among 10 Program Offices, 19 Staff Offices, 4 Power Marketing ...

  19. Groundwater Update K. Michael Thompson Soil and Groundwater Division Richland Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Update Jon Peschong Richland Operations Office May 2015 2 billion gallons of contaminated groundwater treated tons of contaminants removed in all pump and treat systems since the facilities began operating 12 171 HANFORD SITE GROUNDWATER NUMBERS billion of gallons of groundwater treated in 2014 1.95 tons of contaminants removed in 2014 62 3 Groundwater Key Focus Areas * Expand pump and treat systems - Continue pump and treat operations - Install and connect new and existing wells to maximize

  20. Gulf Stream Locale P. Michael and M. L. Daum Brookhaven National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment Recommendations | Department of Energy Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations This implementation guide provides key principles and activities that will lead to the successful implementation of recommendations during energy assessments. Implementation Guidebook (April 2011) (7.11 MB) More Documents & Publications Unveiling the

  1. PCR Bartsch, Michael S. [Sandia National Lab. (SNL-CA), Livermore...

    Office of Scientific and Technical Information (OSTI)

    short tandem repeat (STR) amplification, and second strand cDNA synthesis. Public Library of Science Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA...

  2. Advanced Fuel Cycle Technology: Special Session in Honor of Dr. Michael Lineberry

    SciTech Connect (OSTI)

    D.M. Wachs; N. Woolstenhulme

    2014-06-01

    The US DOE recently initiated an effort to develop accident tolerant fuel designs for potential use in commercial power reactors. Evaluation of various fuel design concepts will require a broad array of testing that will include performance attributes at both steady state and transient irradiation conditions. The first stage of the transient testing program is intended to establish the relative performance limits of each proposed concept and to support development of first-draft fuel performance models. It is anticipated that this data can subsequently be used as the basis for larger scale qualification testing. This initial stage of the testing program is outlined in this paper.

  3. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    ScienceCinema (OSTI)

    Michael Wang

    2013-06-05

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.

  4. System Software: A Necessary but Ill-prepared Hero Michael A...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coming, but slowly. * Performance models coming too. * Happy to be a C++ developer. - Fortran support always lags. - Fortran features arrive a decade late. * Missing piece: Higher...

  5. E. Michael Campbell, 1994 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    National Security: For his distinguished experimental contributions and for his leadership in inertial confinement fusion and laser-plasma physics. Together they have been ...

  6. Recognizing Innovation at Lawrence Berkeley National Laboratory: Michael Stadler, PECASE Winner

    Office of Energy Efficiency and Renewable Energy (EERE)

    I had the pleasure of participating in a ceremony this week honoring this year’s 13 Presidential Early Career Awards for Scientists and Engineers (PECASE) winners funded by the Energy Department....

  7. Michael Anastasio to retire in June as Director of Los Alamos...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Anastasio has taught at Brooklyn College of City University of New York and performed research in theoretical nuclear physics at the Center for Nuclear Studies in Saclay, France, ...

  8. Joint Statement from Los Alamos Director Michael Anastasio, Lawrence Livermore Director George

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summit | National Nuclear Security Administration | (NNSA) Joint Statement by the United States and Italy on the 2014 Nuclear Security Summit March 24, 2014 See a fact sheet here. The White House Office of the Press Secretary Italy and the United States of America are pleased to announce that they have jointly completed the removal of approximately 20 kilograms of excess highly enriched uranium (HEU) and separated plutonium from Italy. At the 2012 Nuclear Security Summit, Italy and the

  9. Michael J. Lineberry, 1982 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Reactors: For unique and innovative contributions to the design analysis and interpretation of fast reactor critical experiments and their applications to fast reactor core design ...

  10. Michael J. Cates- 2014 Walter W. Maybee Award for Fire Protection

    Broader source: Energy.gov [DOE]

    The DOE Fire Safety Committee recognizes Mr. Cates’ direct and indirect actions towards the protection of life and property both within and beyond the realm of DOE by presenting him the 2014 Walter W. Maybee Award.

  11. TBU-0117 - In the Matter of Gordon Michaels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Security Administration Service Center (NNSASC) and the DOE's Oak Ridge Office (ORO), dismissed the complaint, on Aprill2, 20 II, and May I 0, 20 II, respectively. As...

  12. Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and fourier-transform sum-frequency vibrational spectroscopy

    SciTech Connect (OSTI)

    McGuire, John Andrew

    2004-11-24

    The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of {approx} 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm{sup -1} occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach.

  13. Plant betterment for an anthracite-burning utility in Ukraine: Coal preparation as part of a SO{sub 2}, NO{sub x}, and particulate emission control strategy

    SciTech Connect (OSTI)

    Ruether, J.A.; Freeman, M.C.; Gollakota, S.V.

    1997-12-31

    Workers at the Energy Departments of the US and Ukraine have cooperatively devised a strategy for upgrading performance of a 200 MWe wet bottom pulverized coal boiler in eastern Ukraine at the Lugansk GRES power station. The plant currently burns poor quality anthracite (30% ash versus 18% ash design coal, as-received basis) and is in need of maintenance. Oil or gas support fuel in the amount of 30% (calorific basis) is required to stabilize the flame and supplement the calorific value of the coal feed. No NO{sub x} or SO{sub 2} controls are used at present, and unburned carbon content in the fly ash is high. An experimental program was carried out at the Federal Energy Technology Center (FETC) to estimate the improvement in plant performance that could be expected if the unit is supplied with design coal and is refurbished. High ash Ukrainian anthracite was cleaned to design specifications. Raw and cleaned coal were fed to a 490 MJ/h coal feed combustion unit at a number of conditions of support fuel use and ingress air leakage designed to simulate current and improved operations at the power plant. The results indicate the improvement in performance and reductions in SO{sub 2} and NO{sub x} emissions that can be expected as a result of the planned upgrade and conversion to use of cleaned coal. A detailed engineering and financial analysis indicates that plant rehabilitation combined with the use of cleaned schtib reduces not only pollutant emissions but also cost of electricity (COE). Additional benefits include increased plant life and capacity, and reduced supplementary fuel consumption.

  14. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Blanton, Michael R. (2) Blomqvist, Michael (2) Bolton, Adam S. (2) Bovy, Jo (2) Brinkmann, ... ; Blanton, Michael ; Blomqvist, Michael ; Bolton, Adam S. ; Bovy, Jo ; et al December 2015 ...

  15. ACC forum looks at 'burning' questions

    SciTech Connect (OSTI)

    Carter, R.

    2005-06-01

    The American Coal Council's (ACC) Spring Coal Forum had as its theme: Coal's renaissance: prospects for regenerating coal generation'. It explored US coal demand, supply, end-user technology and market trends. The article gives an overview of the conference, highlighting several presentations. 2 figs., 1 tab.

  16. Thermomagnetic burn control for magnetic fusion reactor

    DOE Patents [OSTI]

    Rawls, John M.; Peuron, Unto A.

    1982-01-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  17. Thermomagnetic burn control for magnetic fusion reactor

    DOE Patents [OSTI]

    Rawls, J.M.; Peuron, A.U.

    1980-07-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  18. Fluidized bed paint stripping and sludge burning

    SciTech Connect (OSTI)

    Bhatia, J.; Staffin, H.K.

    1986-01-01

    High volume automated painting, as encountered in the painting of automobiles and appliances, requires that the item being painted be positioned in a conveying frame or fixture so that the painting machine or robot achieves a reproducible, high quality paint job. These conveying frames or fixtures are extensive fabrications carefully designed to position and support the item being painted. In the case of automotive painting, they are rather large and involve substantial weights, because they must be capable of supporting and positioning auto bodies and large sub-assemblies.

  19. CX-00035 _Prescribed_burning.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  20. Prescribed_Burn_2010-cx-00021.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)