National Library of Energy BETA

Sample records for burns michael cole

  1. Cole Edick | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cole Edick About Us Cole Edick - Intern, Office of Public Affairs Most Recent NHL Scores Big with Sustainability June 10

  2. Michael Strayer

    Broader source: Energy.gov [DOE]

    Michael Strayer is the Associate Director of Advanced Scientific Computing in the Office of Science.

  3. Michael Urashka

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Urashka Michael Urashka murashka_2.jpg Michael Urashka Computer Systems Engineer Infrastructure Services National Energy Research Scientific Computing Center meurashka@lbl.gov Phone: (510) 486-5256 Fax: (510) 486-6459 Lawrence Berkeley National Laboratory 1 Cyclotron Road Mailstop 59R4010A Berkeley, CA 94720 US Biographical Sketch Michael Urashka has been at LBNL since 2003. Computer Systems Engineer. Webops and scalable infrastructure for application deployments. Web operations for the

  4. Michael Sinatra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sinatra Engineering Services The Network OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Michael Sinatra Michael Sinatra Network Engineer Network Engineering Services Group Sinatra@es.net Michael Sinatra is engaged in assisting Department of

  5. Michael Rencheck

    Broader source: Energy.gov [DOE]

    Michael Rencheck was appointed the president and chief executive officer of AREVA Inc. in March 2012.  In January 2010, Mike was named the Chief Operating Officer of AREVA Inc., as part of...

  6. Michael Colbert

    Broader source: Energy.gov [DOE]

    Michael Colbert is the Deputy Director of the Office of Diversity and Inclusion at the Department of Energy, where he is working to create and sustain an organizational culture that values...

  7. Michael Milner

    Broader source: Energy.gov [DOE]

    Michael S. Milner became the Assistant Inspector General for Investigation in July 2012.  Prior to this he was Director of the Computer Crime Investigative Unit with the U.S. Army Criminal...

  8. Michael Titus

    Broader source: Energy.gov [DOE]

    Michael joined the Office of Technology Transitions in January of 2016, where he currently serves as a research analyst for the office's strategic projects and data analysis teams. Prior to his...

  9. Michael Baskin

    Office of Energy Efficiency and Renewable Energy (EERE)

    Michael Baskin is an Oak Ridge Institute for Science and Education (ORISE) Fellow in the Office of Energy Efficiency and Renewable Energy (EERE). In his role with EERE he focuses on common areas of...

  10. Michael Gardipe | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michael Gardipe About Us Michael Gardipe - Deputy Designated Federal Officer

  11. Michael Dopheide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Dopheide About ESnet Our Mission The Network ESnet History Governance & Policies Career Opportunities ESnet Staff & Org Chart ESnet Leadership Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Network Planning Operational Enhancements Office of the CTO Science Engagement Tools Team Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1

  12. Michael Ravnitzky

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    24, 2009 Michael Ravnitzky 1905 August Drive Silver Spring, MD 20902 Re: FOIA-2009-000360 Dear Mr. Ravnitzky: This is in final response to the request for information that you sent to the Department of Energy (DOE) under the Freedom of Information Act (FOIA), 5 U.S.C. § 552. You asked for copies of each Weekly Departmental Report for the Department of Energy produced between January 1, 2009 and May 1, 2009. Your request was assigned to the Office of the Executive Secretariat for responsive

  13. Michael Demkowicz: MIT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Demkowicz: MIT Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Michael Demkowicz: MIT Former postdoc now an Associate Professor at MIT September 3, 2014 Michael Demkowicz Michael Demkowicz Contact Linda Anderman Email Michael Demkowicz Demkowicz now at MIT Michael Demkowicz worked at the Lab from 2005 to 2008 with the Materials Science and Technology division, first as a postdoc and then as a technical staff

  14. Michael Griffin | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Griffin Michael Griffin Research Engineer Michael.Griffin@nrel.gov | 303-384-6205 Research Interests Development of catalytic materials for the conversion of biomass into fuels and ...

  15. Employee Spotlight: Michael Torrez

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Torrez Michael Torrez-Tracing family lineages to colonial New Mexico Michael Torrez, by day a research technologist in the Laboratory's Materials Physics and Applications Division, spends much of his free time researching New Mexico's family histories. August 26, 2014 Michael Torrez Michael Torrez in front of a family tree he is researching. "Tracing one's family history is quite tricky. ...But nowadays we have much greater access to genealogical information than ever before, and

  16. Michael Ratzloff | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Ratzloff Scientist II Mike.Ratzloff@nrel.gov | 303-384-7861 Research Interests Michael Ratzloff received his B.S. in Chemistry from the Colorado School of Mines in 2008, ...

  17. The Honorable Rick.~Cole, ~

    Office of Legacy Management (LM)

    : . Department of Energy, Washington, DC 20585 . DE; 1 3 &g4 " ' The Honorable Rick.~Cole, ~ 100 N. Garfiild'Avenue Pasadena, California 91109. ., . Dear Mayor Cole: / Secretary of'Energy Hazel.O',Leary has announced a new approach to openness in,, the Department of Energy (DOE) and its communications with the'publ'ic. In support of this initiative, we are pleased'to forward the,enclosed information related to the Electric Circuits, Inc. s,ite in your jurisdiction that performed work

  18. Michael McDowell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publicatons Contact Us Ring Status Current Schedule Michael W. McDowell Argonne National Laboratory 9700 S. Cass Ave 431E006 Argonne, IL 60439 Phone: 252-6422 Fax: 252-7392...

  19. Michael H. Schlender- Biography

    Broader source: Energy.gov [DOE]

    Michael Schlender is Chief Operations Officer and Associate Laboratory Director for Operational Systems at Pacific Northwest National Laboratory, a VPP Star Site operated by Battelle for the U.S. Department of Energy.

  20. Michael L. Rodrigue

    Broader source: Energy.gov [DOE]

    Michael L. Rodrigue coordinates and executes the administrative operations that support the mission of the U.S. Department of Energy Office of Indian Energy, including acquisitions, human...

  1. Welcome Michael Pesin

    Broader source: Energy.gov [DOE]

    Michael Pesin has joined the Office of Electricity Delivery and Energy Reliability as Deputy Assistant Secretary for the Power Systems Engineering Research and Development Division. Michael has 30 years of experience in the electric utility industry, much of it directing development and execution of advanced technology programs. His most recent assignment was with Seattle City Light (SCL) where he developed the technology strategy, managed research and development projects and directed strategic programs to management demonstration projects.

  2. Michael J. Banda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael J. Banda Print Deputy Division Director, Operations, Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory. Advanced Light Source Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 80R0114 Berkeley, CA 94720 USA Tel. (510) 495-2837 Fax (510) 486-4960 Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Michael Banda is the Deputy Division Director for Operations of the Advanced Light Source. "Banda,"

  3. Employee Spotlight: Michael Torrez

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Torrez August 26, 2014 Michael (Miguél) Torrez, by day a research technologist in the Laboratory's Materials Physics and Applications Division, spends much of his free time researching New Mexico's family histories and helping interested parties verify or fill in their family tree by complementing any existing document trail with the genetic testing that has become available in recent years. Torrez conducts research at the New Mexico State Library (photo courtesy of the Albuquerque

  4. Isotopic Analysis At Northern Basin & Range Region (Cole, 1983...

    Open Energy Info (EERE)

    Cole, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Northern Basin & Range Region (Cole, 1983) Exploration Activity...

  5. Michael Hess | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michael Hess About Us Michael Hess - Former Digital Communications Specialist, Office of Public Affairs Michael Hess Michael joined the Office of New Media at the Energy Department in August 2011 to write and promote stories about science technology, basic and applied science, technology transfer, commercialization, research and development, and the National Labs. In a previous life, Michael was an enlisted Air Force public affairs representative where he worked as the editor of RAF Lakenheath's

  6. Michael Koentop | Department of Energy

    Energy Savers [EERE]

    Michael Hess About Us Michael Hess - Former Digital Communications Specialist, Office of Public Affairs Michael Hess Michael joined the Office of New Media at the Energy Department in August 2011 to write and promote stories about science technology, basic and applied science, technology transfer, commercialization, research and development, and the National Labs. In a previous life, Michael was an enlisted Air Force public affairs representative where he worked as the editor of RAF Lakenheath's

  7. Michael O'Connor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O'Connor Engineering Services The Network OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Michael O'Connor Michael (Moc) P. O'Connor Network Engineer Network Engineering Services Group MOC@es.net Mike O'Connor goes by his UNIX ID "moc"

  8. ORISE Research Team Experiences: Michael Smith

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Smith Astrophysicist Uses Celestial Knowledge to Cultivate Rising Stars Michael Smith ORNL Nuclear Astrophysicist Michael Smith inspects the framework of what will ...

  9. Michael T. Guarnieri | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael.Guarnieri@nrel.gov | 303-384-7921 Research Interests Dr. Michael Guarnieri is a research scientist in the National Bioenergy Center's Applied Biology group at the National ...

  10. Michael Budney | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michael Budney About Us Michael Budney - Director of Business Operations Photo of Michael Budney. Michael Budney is the Director of Business Operations for the Office of Energy Efficiency and Renewable Energy (EERE). He manages the daily operations of EERE's Project Management Coordination Office, Workforce Management Office and Information Technology Services Office to ensure their efforts are aligned, effective, and responsive to the organization's needs. Before joining EERE in May 2015,

  11. NREL: Energy Analysis - Michael Woodhouse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Woodhouse Photo of Michael Woodhouse Michael Woodhouse is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Solar PV Technologies and Economics Analyst On staff since 2008 Phone number: 303-384-7623 E-mail: Michael.Woodhouse@nrel.gov Areas of expertise Fundamental science of photovoltaics (PV) and solar hydrogen technologies Economics of PV - From manufacturing to levelized cost of energy (LCOE) Primary research interests Manufacturing

  12. Michael Reed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michael Reed About Us Michael Reed - Director, Technical and Project Management Division Mike_Reed.jpg Mr. Michael Reed is the Director of the Technical and Project Management Division (TPMD) for the Department of Energy's Loan Programs Office (LPO). In this role, he provides technical management and performance monitoring of LPO's $30 billion portfolio of clean energy projects. This portfolio includes projects in renewable energy and energy efficiency, advanced technology vehicle manufacturing,

  13. Michael S. Talmadge | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. Talmadge Michael S. Talmadge Senior Process Engineer, Biorefinery Analysis Michael.Talmadge@nrel.gov | 303-275-4632 Areas of Expertise Michael S. Talmadge has 15 years of experience in fuel production technologies with the first 10 years of his career spent in petroleum production and refining process development with ExxonMobil Research and Engineering Company and Valero Energy Corporation. Since joining the National Renewable Energy Laboratory (NREL), Talmadge has supported the development

  14. Michael Levitt and Computational Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Levitt and Computational Biology Resources with Additional Information * Publications Michael Levitt Courtesy of Linda A. Cicero / Stanford News Service Michael Levitt, PhD, professor of structural biology at the Stanford University School of Medicine, has won the 2013 Nobel Prize in Chemistry. ... Levitt ... shares the ... prize with Martin Karplus ... and Arieh Warshel ... "for the development of multiscale models for complex chemical systems." Levitt's work focuses on

  15. NREL: Energy Analysis - Michael Gleason

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Gleason is a member of the Data Analysis and Visualization Group in the Strategic Energy Analysis Center. Scientist III - GIS On staff since April 2014 Phone number: ...

  16. ORISE: Undergraduate Research Experiences - Michael Capozzoli

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Website development effort leads to career opportunity for NETL intern Michael Capozzoli Michael Capozzoli configures the content management system that will power the new website ...

  17. Cole County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cole County, Missouri: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.5052486, -92.2630393 Show Map Loading map... "minzoom":false,"mapping...

  18. National Laboratory]; Chertkov, Michael [Los Alamos National...

    Office of Scientific and Technical Information (OSTI)

    Chertkov, Michael Los Alamos National Laboratory Construction and Facility Engineering; Energy Conservation, Consumption, & Utilization(32); Energy Planning, Policy, &...

  19. ORISE: Undergraduate Research Experiences - Michael Capozzoli

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Capozzoli Website development effort leads to career opportunity for NETL intern Michael Capozzoli Michael Capozzoli configures the content management system that will power the new website at National Energy Technology Laboratory in Pittsburgh, Pa. Photo by Brian Albin/NETL Michael Capozzoli just needed an internship for graduation. What he got was even better. Capozzoli's assignment, offered through a National Energy Technology Laboratory professional internship program and

  20. Michael DeSantis | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael DeSantis Michael DeSantis Michael DeSantis Michael DeSantis Alumnus Website: Washington University in St. Louis Graduated with PhD in 2012. Dr. DeSantis is a former...

  1. Michael Sternberg | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Sternberg Senior Scientific Associate Ph.D., University of Paderborn, Germany Research focus is in the integration of various modeling programs, to enable researchers to combine the strengths of each approach to allow solving more complex problems Responsibility for the high-performance computing systems at the center Telephone 630.252.4631 Fax 630.252.4646 E-mail sternberg@anl.gov CV/Resume PDF icon sternberg

  2. John Michael Yarbrough | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Yarbrough Research Scientist John.Yarbrough@nrel.gov | 303-384-6831 Research Interests John Yarbrough received his Ph.D. in Applied Physics from the Colorado School of Mines (CSM) in 2007 where his research activities primarily involved investigating the electronic and optical properties of advanced polycrystalline semiconductor materials systems and device structures. He spent most of his time at CSM developing and using novel characterization techniques to obtain a fundamental

  3. Michael Stewart! NERSC User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Stewart! NERSC User Services Compilers on NERSC Systems --- 1 --- September 10, 2013 Compilers on NERSC Systems Crays ( Hopper a nd E dison) PrgEnv m odules p rovide l inks t o M PI a nd m ath l ibrary l ibraries a nd includes. Invoke c ompilers w ith w rapper c ommands a nd t he l oaded PrgEnv m odule will i nvoke t he p roper c ompiler: ?n ( Fortran), c c ( C c ompiler), a nd C C ( C+ +). Available c ompiler m odules: pgi ( only o n H opper), i ntel, c ray, a nd g nu (gcc). Default

  4. Michael G. Zimmerman | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    G. Zimmerman About Us Michael G. Zimmerman - Director, Office of Headquarters Security Operations Michael G. Zimmerman Mr. Michael Zimmerman is the Director of the Office of Headquarters Security Operations. The office supports DOE Headquarters through a comprehensive safeguards and security program providing protection for personnel, information and facilities at DOE Headquarters buildings. The protection programs within the Office of Headquarters Security Operations include the Protective

  5. Michael J. Ardaiz | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J. Ardaiz About Us Michael J. Ardaiz - Chief Medical Officer, Office of the Associate Under Secretary for Environment, Health, Safety and Security Michael J. Ardaiz Dr. Michael Ardaiz is the DOE Chief Medical Officer within the office of the Associate Under Secretary for Environment, Health, Safety, and Security. Currently, Dr. Ardaiz serves as the chief Occupational Medicine physician for the Department in support of over 50 occupational health facilities which in turn provide health care to

  6. Michael Pesin, OE-10 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michael Pesin, OE-10 About Us Michael Pesin, OE-10 - Deputy Assistant Secretary, Advanced Grid Research and Development Michael Pesin is Deputy Assistant Secretary for the Advanced Grid Research and Development Division in the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability. Mr. Pesin has 30 years of experience in the electric utility industry, much of it directing development and execution of advanced technology programs. His most recent assignment was with

  7. Michael Seibert - Research Fellow Emeritus | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Seibert - Research Fellow Emeritus Photo of Michael Seibert Research Fellows Dr. Michael Seibert is a Research Fellow Emeritus of the National Renewable Energy Laboratory (NREL) and Research Professor in the Environmental Science and Engineering Department at the Colorado School of Mines, Golden. His current research interests include primary processes of and water-oxidation in oxygenic photosynthesis, structure and function of [Fe]-hydrogenases, molecular engineering of hydrogenases,

  8. Memorial Gathering Pending for NERSC's Michael Welcome

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Memorial Gathering Pending for NERSC's Michael Welcome Memorial Gathering Pending for NERSC's Michael Welcome February 4, 2014 MWelcome.JPG Mike Welcome A celebration of life is pending for Michael Welcome, a member of NERSC's Mass Storage Group, who collapsed at work on Thursday, Jan. 30, and subsequently died. Welcome spent his entire career working for computing organizations at Lawrence Berkeley and Lawrence Livermore national laboratories. He was 56. During his 30-year career, Welcome made

  9. Michael Gross | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Gross Michael Gross Michael Gross Principal Investigator E-mail: mgross@wustl.edu Phone: (314) 935-4814 Website: Washington University in St. Louis Principal Investigator Dr. Gross's research interests include analytical chemistry, biological chemistry, biophysical chemistry, FT-ICR instrument development, MALDI matrix development, mass spectrometry for protein biochemistry and biophysics, modified DNA and cancer, physical organic chemistry, protein and peptide analysis, and proteomics.

  10. Michael Andersen, LLC | Open Energy Information

    Open Energy Info (EERE)

    Zip: 80202 Region: Rockies Area Sector: Services Product: Renewable Energy Artwork Photography Website: www.MichaelAndersenLLC.com Coordinates: 39.7541032, -105.0002242 Show...

  11. Michael R. Maraya (Acting) | Department of Energy

    Office of Environmental Management (EM)

    R. Maraya (Acting) About Us Michael R. Maraya (Acting) - Deputy CIO for Enterprise Policy, Portfolio Management & Governance Mike Maraya is the Acting Deputy CIO for Enterprise...

  12. Method for promoting Michael addition reactions

    DOE Patents [OSTI]

    Shah, Pankaj V.; Vietti, David E.; Whitman, David William

    2010-09-21

    Homogeneously dispersed solid reaction promoters having an average particle size from 0.01 .mu.m to 500 .mu.m are disclosed for preparing curable mixtures of at least one Michael donor and at least one Michael acceptor. The resulting curable mixtures are useful as coatings, adhesives, sealants and elastomers.

  13. WBU-14-0011- In the Matter of Dr. Paul M. Cole, Ph.D

    Broader source: Energy.gov [DOE]

    On November 3, 2014, the Office of Hearings and Appeals (OHA) issued a decision denying a jurisdictional appeal filed by Dr. Paul M. Cole, Ph.D (Dr. Cole), a former Oak Ridge Institute for Science...

  14. TEE-0073 - In the Matter of Cole Distributing, Inc. | Department of Energy

    Energy Savers [EERE]

    3 - In the Matter of Cole Distributing, Inc. TEE-0073 - In the Matter of Cole Distributing, Inc. On December 13, 2010, Cole Distributing, Inc. (Cole) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). The firm requests that it be permanently relieved of the requirement to prepare and file the Energy Information Administration (EIA) Form EIA-782B, entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report." As

  15. Michael Liebreich (Energy All Stars Presentation)

    Broader source: Energy.gov [DOE]

    Michael Liebreich, CEO of Bloomberg New Energy Finance, delivered this presentation on the energy economy at the Energy All Stars event on January 19, 2013, at the US Department of Energy in...

  16. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  17. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  18. Michael C Zarnstorff | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael C Zarnstorff Deputy Director for Research Michael Zarnstorff is the deputy director for research at PPPL, where he oversees research that ranges from test- ing ideas for harnessing fusion to developing rockets for space flight. His job encompasses keeping projects aligned with DOE goals and envision- ing new research opportunities for PPPL. An award-winning physicist and a co-discoverer of the bootstrap current, he joined PPPL in 1984 and has been deputy director for research since 2009.

  19. Michael Papka | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Papka Division Director Michael Papka Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 4134 Argonne, IL 60439 630-252-1556 papka@anl.gov http://papka.alcf.anl.gov Michael E. Papka is the Director of the ALCF. He is also Argonne's Deputy Associate Laboratory Director for Computing, Environment and Life Sciences. Both his laboratory leadership roles and his research interests relate to high-performance computing in support of scientific discovery. Dr. Papka holds a Senior

  20. Michael Vaughn | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Vaughn Graduate student Subtask 1 and 2 project: "Modification of the Turnover Potential of Plastoquinol Terminal Oxidase: Can an Oxygen Reducing Enzyme Operate in Reverse?" Watch Michael's interview at 2012 Bisfuel Retreat

  1. Michael Stone | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Michael Stone Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Current Fellows Alumni Fellows Official AEF Logos Contact WDTS Home Current Fellows Michael Stone Print Text Size: A A A FeedbackShare Page Michael Stone Fellowship Placement: National Science Foundation Hometown: East Ridge, TN Michael Stone has taught at several high schools in Chattanooga,

  2. INVERSIONS H. Michael Mogil, Certified Consulting Meteorologist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEPTEMBER 2008 INVERSIONS H. Michael Mogil, Certified Consulting Meteorologist In the August 2008 issue of Climate Education Update, we looked at the concept of inversions, situations in which the temperature increases with increasing altitude. This is the opposite of what one would expect in the troposphere, the lowest shell of the atmosphere that is in contact with the Earth. Inversions are always present when fog is present. The most commonly observed inversion is the one found near the

  3. Jefferson Lab Leadership Council - Michael Dallas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chief Operating Officer, Michael Dallas Dr. Rolf Ent Associate Director for Experimental Nuclear Physics Rolf Ent came to Jefferson Lab in 1993 as a Hall C scientist and adjunct professor at Hampton University. Rolf served as experimental group leader of the Nuclear and High-Energy Physics (NuHEP) Center at Hampton University from 1996-2001, and served as Hall C Leader from 2002-2006. He then served as the 12 GeV Upgrade Science lead at Jefferson Lab until 2009, and became associate director for

  4. 10 Questions for a Mechanical Engineer: Michael Brambley | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Mechanical Engineer: Michael Brambley 10 Questions for a Mechanical Engineer: Michael Brambley July 17, 2013 - 1:51pm Addthis Pictured here is Michael Brambley in front of equipment that supplies chilled water to PNNL Building Diagnostics Laboratory's air handler. The cooled air from an air handler is distributed to terminal boxes, which are the last point for controlling air temperature and flow before distributing it throughout a building zone. In a new control strategy for

  5. Technical Sessions W. F. Dabberdt, C. ~,1artin, H. L. Cole, J...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. F. Dabberdt, C. ,1artin, H. L. Cole, J. Dudhia, T. Horst, Y. H. Kuo, :3. Oncley, and ... K. S. Gage, W. Ecklund, D. Carter, R. Strauch, and E. R. Westwater National Oceanic and ...

  6. Notices FOR FURTHER INFORMATION CONTACT: Michael Li, Policy Advisor...

    Office of Environmental Management (EM)

    12, 2016 Notices FOR FURTHER INFORMATION CONTACT: Michael Li, Policy Advisor, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, 1000 Independence Ave. ...

  7. "ONE HUNDRED YEARS OF SUPERCONDUCTIVITY", Dr. Michael Norman...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "ONE HUNDRED YEARS OF SUPERCONDUCTIVITY", Dr. Michael Norman, Materials Science Division, Argonne National Laboratory ONE HUNDRED YEARS OF SUPERCONDUCTIVITY PPPL Entrance ...

  8. Summer 2011 Intern Project- Michael Myers | Center for Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHOSPHOR IMPLEMENTATION SCHEMES FOR EFFICIENT LED-BASED WHITE LIGHT Michael Myers Chemical ... Modern day lighting solutions include highly inefficient sources such as incandescent and ...

  9. Michael Tsapatsis | Center for Gas SeparationsRelevant to Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Tsapatsis Professor of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis Email: tsapa001 at umn.edu Phone: 612-626-0920 EFRC research: ...

  10. Michael Allen; Dongarra, Jack. [University of Tennessee, Knoxville...

    Office of Scientific and Technical Information (OSTI)

    Toward a new metric for ranking high performance computing systems. Heroux, Michael Allen; Dongarra, Jack. University of Tennessee, Knoxville, TN The High Performance Linpack...

  11. Michael Kenney | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Principal Investigators Postdoctoral Fellows Center researchers Graduate Students Undergraduate Students All Bisfuel Center Personnel Emily North Michael Kenney Michael Kenney Undergraduate student Related links: 2011 Undergraduate's Goldwater award 2012 Dean's Medal Subtask 1 * Subtask 2 * Subtask 3 * Subtask 4 * Subtask 5

  12. Microsoft PowerPoint - 15.1500_Michael Deane [Compatibility Mode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    00Michael Deane Compatibility Mode Microsoft PowerPoint - 15.1500Michael Deane Compatibility Mode PDF icon Microsoft PowerPoint - 15.1500Michael Deane Compatibility Mode...

  13. Central Park in New York City Myer, Michael; Goettel, Russell...

    Office of Scientific and Technical Information (OSTI)

    (LED) Post-Top Lighting at Central Park in New York City Myer, Michael; Goettel, Russell T.; Kinzey, Bruce R. GATEWAY; Central Park; lighting; LED; light-emitting diode; post-top...

  14. TBU-0118- IN THE MATTER OF GORDON MICHAELS

    Broader source: Energy.gov [DOE]

    Gordon Michaels appeals the dismissal of his whistleblower complaint filed under I 0 C.F .R. Patt 708, the Depattment of Energy (DOE) Contractor Employee Protection Program. Two offices having...

  15. FIA-15-0053- In the Matter of Michael Isikoff

    Office of Energy Efficiency and Renewable Energy (EERE)

    On October 1, 2015, OHA denied a FOIA Appeal filed by Michael Isikoff (Appellant) from an interim response issued to him by the DOE’s Office of Information Resources. In the Appeal, the Appellant...

  16. ANSER Director Michael R. Wasielewski elected to AAAS | ANSER Center |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne-Northwestern National Laboratory Director Michael R. Wasielewski elected to AAAS Home > News & Events > ANSER Director Michael R. Wasielewski elected to AAAS Originally published on Northwestern News Six Northwestern Faculty Elected to the American Academy of Arts and Sciences April 20, 2016 | by Megan Fellman EVANSTON, Ill. --- Six members of the Northwestern University faculty have been elected members of the American Academy of Arts and Sciences, one of the nation's

  17. Michael Hickman receives NNSA Gold Medal, announces retirement | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Michael Hickman receives NNSA Gold Medal, announces retirement Thursday, May 28, 2015 - 9:21am NNSA's Director of the Office of Enterprise Project Management Michael Hickman has announced that he will be retiring effective May 29, 2015 after 34 years distinguished federal service. As a member of the Senior Executive Service, he has spent approximately 25 of those years in senior leadership positions across DOE and NNSA. In his current capacity,

  18. Michael Lempke receives NNSA's Gold Medal of Excellence | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Michael Lempke receives NNSA's Gold Medal of Excellence Monday, June 16, 2014 - 4:25pm DOE Undersecretary for Nuclear Security and NNSA Administrator Frank Klotz recently presented the Gold Medal of Excellence for Distinguished Service to Michael Lempke, former Acting Chief and Associate Administrator for Defense Nuclear Security. The medal is the highest honorary award granted by NNSA and was presented to Lempke in recognition of his outstanding

  19. Secretary of Energy Advisory Board Public Meeting Committee Members: John Deutch, Chair; Carol Browner; Michael Greenstone; Michael McQuade;

    Office of Environmental Management (EM)

    Carol Browner; Michael Greenstone; Michael McQuade; Richard A. Meserve; Ram Shenoy; Dan Reicher; Martha Schlicher; and Linda Stuntz Date and Time: October 15, 2015, 9:00 AM - 12:15 PM EST Location: Department of Energy, Forrestal Building, 1000 Independence Avenue, SW, Washington, DC Purpose: Meeting of the Secretary of Energy Advisory Board (SEAB) SEAB Staff: Karen Gibson, Designated Federal Officer; Corey Williams-Allen, Deputy Designated Federal Officer; Matthew Schaub, Deputy Director DOE

  20. Morgan Stefik > Postdoc - École Polytechnique Fédérale de...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stefik received his PhD in 2009 and continued as a postdoc with the Wiesner Group. He is currently working in the Laboratory of Photonics and Interfaces with the Dr. Michael ...

  1. Science in St. Louis | Dr. Michael Fix | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Science in St. Louis | Dr. Michael Fix March 15, 2016 Science in St. Louis | Dr. Michael Fix Monster in the Hollow - The Story of Missouri's Ozark Dinosaurs Professor Fix has been a member of UMSL's Physics faculty since 1976 and is responsible for teaching all of the Geology classes and labs that are offered through the department. He is a graduate of Washington University's department of Earth and Planetary Sciences with a focus in paleontology and stratigraphy. He was chosen by the

  2. From: Henderson, Michael To: Congestion Study Comments; Meyer, David

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Henderson, Michael To: Congestion Study Comments; Meyer, David Cc: Doe, Stanley; Kowalski, Richard; Paradise, Theodore Subject: DOE Congestion Study Date: Monday, October 20, 2014 10:12:20 AM Attachments: image001.png ISO New England is pleased to provide comments on the public draft of the DOE Congestion Study. The ISO appreciates DOE's consideration of several specific comments shown in red below. Comments: Figure ES-2: It is possible to identify the consistent impacts of a few specific

  3. The Puzzling Boundaries of Topological Quantum Matter Michael Levin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Puzzling Boundaries of Topological Quantum Matter Michael Levin University of Chicago October 14, 2015 4:00 p.m. Insulators, by definition, cannot conduct electric current in their interior. However, some insulators - most famously, the recently discovered "topological insulators" - possess the unusual property that they conduct at their surfaces or edges. This conduction occurs through modes that travel along the boundary of the insulator, like waves moving on the surface of the

  4. IN A FOG H. Michael Mogil, Certified Consulting Meteorologist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUGUST 2008 IN A FOG H. Michael Mogil, Certified Consulting Meteorologist In April 2008, scientists from the Atmospheric Radiation Measurement (ARM) Program conducted an experiment using an airplane that flew over Barrow, Alaska, where the North Slope Alaska ARM Climate Research Facility is located. Throughout the experiment, they were based out of Fairbanks, about 500 miles inland from Barrow. Instruments on the aircraft and at Barrow allowed the scientists to obtain various measurements from

  5. Jason Cole

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transfer affect conclusions from studies using prescribed sea surface temperatures? * SAM v6.5+solar Monte Carlo model * 150 day integrations over prescribed SST variations ...

  6. FIA-16-0039 - In the Matter of Michael Ravnitzky | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 - In the Matter of Michael Ravnitzky FIA-16-0039 - In the Matter of Michael Ravnitzky On July 28, 2016, OHA granted in part a FOIA Appeal filed by Michael Ravinitzky from a determination issued by the Office of Scientific and Technical Information (OSTI) of the Department of Energy. In the Appeal, the Appellant challenged OSTI's decision to withhold responsive records under Exemptions 3 and 4 of the FOIA. Reviewing only the unclassified portion of the responsive records, OHA found that OSTI's

  7. Michael M. May, 1970 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael M. Johnson About Us Michael M. Johnson - Chief Information Officer Mr. Michael Johnson is the Chief Information Officer (CIO) for the U.S. Department of Energy (DOE), where he leads and manages cybersecurity, cyber (information sharing and safeguarding) enterprise integration, enterprise information resources management, cyber supply chain risk management, and DOE-HQ information technology (IT) operations. This includes DOE leadership, management, and oversight serving as DOE's Senior

  8. Dr Michael Pechan | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Dr Michael Pechan Materials Sciences and Engineering (MSE) Division MSE Home About Staff What's New Research Areas Reports and Activities Science Highlights Principal ...

  9. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Michael Brisson

    Office of Energy Efficiency and Renewable Energy (EERE)

    Commenter: Michael Brisson 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  10. Ripple burn control

    SciTech Connect (OSTI)

    Bhadra, D.K.; Petrie, T.W.; Peuron, U.A.; Rawls, J.M.

    1980-05-01

    The ripple contribution to the ion thermal conductivity is ideally suited in magnitude, temperature dependence, and spatial dependence to serve as a burn control mechanism. Furthermore, a considerable measure of automatic burn control results because of the radial shift of the plasma to a region of higher ripple. Unfortunately, the window in ripple values consistent with both ignition and a burn equilibrium is uncomfortably narrow, given the current lack of contact between the theoretical models of ripple transport and experimental observations. A survey is made of the techniques to vary the ripple and thus broaden the design window. One new technique is discussed in some detail: the use of ferromagnetic materials in the shield with magnetic properties which are sensitive functions of the operating temperature.

  11. Michael Lowe > Senior Chemist - Dow Chemical Company > Center Alumni > The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Materials Center at Cornell Michael Lowe Senior Chemist - Dow Chemical Company As part of the Abruña Group, Michael received his PhD in 2012. He has since joined Dow Chemical at their Michigan area facility where he is a Analytical Chemist for Core R&D

  12. Category:Burns, OR | Open Energy Information

    Open Energy Info (EERE)

    72 KB SVSecondarySchool Burns OR PacifiCorp (Oregon).png SVSecondarySchool Burn... 70 KB SVSmallHotel Burns OR PacifiCorp (Oregon).png SVSmallHotel Burns OR ... 69 KB...

  13. SystemBurn

    Energy Science and Technology Software Center (OSTI)

    2012-08-30

    SystemBurn is a tool for creating a synthetic computational load for the purpose of measuring how much power a computer will draw under that type of load. The loads include fundamental library function calls like matrix multiply, memory copies, fourier transforms, bit manipulation, I/O, network packet transfers, and some code contrived to cause the processor to dray more or less power. The code produces some diagnostic and progress output, but the actual measurements would bemore » recorded from the power panels within the computer room.« less

  14. FIA-13-0008- In the Matter of Michael J. Kelly

    Broader source: Energy.gov [DOE]

    On March 13, 2013, the Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) denied a Freedom of Information Act (FOIA) Appeal filed by Michael J. Kelly (Appellant) of a determination...

  15. Biomass Burning Observation Project Specifically,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacific Northwest region and in the vicinity of Memphis, Tennessee, as part of the Biomass Burning Observation Project (BBOP). The aircraft will fly through smoke plumes from...

  16. Dr Michael Markowitz | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Dr. Michael Markowitz Materials Sciences and Engineering (MSE) Division MSE Home About Staff What's New Research Areas Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Staff Dr. Michael Markowitz Print Text Size: A A A FeedbackShare Page Markowitz Program Manager Biomolecular Materials Materials Sciences and Engineering Division Office of Basic Energy Sciences SC-22.2/Germantown Building, Rm F-411 U.S. Department of Energy 1000 Independence Avenue, SW

  17. Dr. Michael Sennett | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Michael Sennett Materials Sciences and Engineering (MSE) Division MSE Home About Staff What's New Research Areas Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Staff Dr. Michael Sennett Print Text Size: A A A FeedbackShare Page Program Manager Materials Chemistry Materials Sciences and Engineering Division Office of Basic Energy Sciences SC-22.2/Germantown Building, Rm F-421 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585-1290

  18. Notices FOR FURTHER INFORMATION CONTACT: Michael Li, Policy Advisor, Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Federal Register / Vol. 81, No. 29 / Friday, February 12, 2016 / Notices FOR FURTHER INFORMATION CONTACT: Michael Li, Policy Advisor, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, 1000 Independence Ave. SW., Washington, DC 20585. Phone number 202-287-5189, and email Michael.li@ ee.doe.gov. SUPPLEMENTARY INFORMATION: Purpose of the Board: To make recommendations to the Assistant Secretary for the Office of Energy Efficiency and Renewable Energy regarding goals and

  19. Speakers: Michael Schaal, EIA Paul Argyropoulos, U.S. Environmental Protection Agency

    U.S. Energy Information Administration (EIA) Indexed Site

    2: "Biofuels: Continuing Shifts in the Industry and Long-Term Outlook" Speakers: Michael Schaal, EIA Paul Argyropoulos, U.S. Environmental Protection Agency R. Brooke Coleman, New Fuels Alliance Peter Gross, EIA Steven Hamburg, Environmental Defense Fund [Note: Recorders did not pick up introduction of panel (see biographies for details on the panelists) or introduction of session.] Michael: To the EIA-SAIS 2010 Energy Conference. This is session 2, "Biofuels: Continuing Shifts in

  20. L3:VUQ.SAUQ.P3.02 Michael Eldred SNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Michael Eldred SNL Completed: 9/30/11 CASL-U-2011-0194-000 SANDIA REPORT SAND2011-xxxx Unlimited Release Printed September 2011 Investigation of Advanced UQ for CRUD Prediction with VIPRE Michael S. Eldred Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of

  1. BLM Burns District Office | Open Energy Information

    Open Energy Info (EERE)

    Burns District Office Jump to: navigation, search Name: BLM Burns District Office Place: Hines, Oregon References: BLM Burns District Office1 This article is a stub. You can help...

  2. ARM - Biomass Burning Observation Project (BBOP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

  3. ESnet's Michael Bennett Recognized by IEEE for Work in Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Bennett Recognized by IEEE for Work in Energy Efficiency News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Media Jon Bashor, jbashor@lbl.gov, +1 510 486 5849 or Media@es.net Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net ESnet's Michael Bennett

  4. Michael E. Phelps, 1983 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael E. Phelps, 1983 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1980's Michael E. Phelps, 1983 Print Text Size: A A A FeedbackShare Page Life Sciences; For

  5. Michael E. Phelps, 1998 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael E. Phelps, 1998 The Enrico Fermi Award Fermi Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's 1950's Ceremony The Life of Enrico Fermi Contact Information The Enrico Fermi Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1990's Michael E. Phelps, 1998 Print Text Size: A A A FeedbackShare Page Citation For his invention of Positron Emission

  6. Clean Burn Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Burn Fuels LLC Jump to: navigation, search Name: Clean Burn Fuels LLC Place: Raleigh, North Carolina Zip: 27603 Sector: Biofuels Product: Biofuels developer planning to build a 60m...

  7. Liquid Fuels Market Model (LFMM) Unveiling LFMM

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Implementation of the Renewable Fuel Standard (RFS) in the Liquid Fuels Market Module (LFMM) of NEMS Michael H. Cole, PhD, PE michael.cole@eia.gov August 1, 2012 | Washington, DC ...

  8. Via E-Mail Michael Li Electricity Policy Specialist U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 1, 2010 Via E-Mail Michael Li Electricity Policy Specialist U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 1000 Independence Avenue, SW Washington, DC 20585 smartgridpolicy@hq.doe.gov Re: Smart Grid RFI: Addressing Policy And Logistical Challenges Dear Mr. Li: On behalf of the Association of Home Appliance Manufacturers (AHAM), I would like to provide our comments on the Smart Grid RFI: Addressing Policy and Logistical Challenges, 75 Fed. Reg. 57,006

  9. Letter to Science from Michael Wang, Center for Transportation Research, Argonne National Laboratory

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Letter to Science (Original version submitted to Science on Feb. 14 th , 2008; revised on March 14 th , 2008) Michael Wang Center for Transportation Research Argonne National Laboratory Zia Haq Office of Biomass Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy The article by Searchinger et al. in Sciencexpress ("Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land Use Change," February 7, 2008) provides a timely

  10. MEMORANDUM FOR THE SECRETARY THROUGH: THE DEPUTY SECRETARY FROM: MICHAEL W. OWEN

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11, 2005 MEMORANDUM FOR THE SECRETARY THROUGH: THE DEPUTY SECRETARY FROM: MICHAEL W. OWEN DIRECTOR OF OFFICE LEGACY MANAGEMENT SUBJECT: Decision Memorandum: Authorize Changes to Contractor Work Force Restructuring Policy under Section 3161 of the National Defense Authorization Act for Fiscal Year 1993. Section 3161 of the National Defense Authorization Act for Fiscal Year 1993 (section 3161) was enacted to address certain work force restructuring issues with respect to employees of defense

  11. LOS ALAMOS, New Mexico, January 22, 2008-Laboratory Director Michael Anastasio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    head of stockpile manufacturing and support January 22, 2008 Organization responsible for production of nuclear weapon components and other national security- related products and services LOS ALAMOS, New Mexico, January 22, 2008-Laboratory Director Michael Anastasio has named Carl Beard as the new associate director for stockpile manufacturing and support. Beard has held this position in an acting capacity since June 2007"The stockpile manufacturing directorate produces for the nation

  12. "Display of Tournament Bracket" Inventors Eliot Feibush, Michael

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Knyszek, Matthew Lotocki, Jared Miller, Andrew Zwicker. | Princeton Plasma Physics Lab Display of Tournament Bracket" Inventors Eliot Feibush, Michael Knyszek, Matthew Lotocki, Jared Miller, Andrew Zwicker. The system creates a diagram of the rounds of a tournament. It is formatted to fit legibly on a one high-definition screen without having to scroll the data. It shows the progression of competitors in a single or double elimination tournament. The score of each match is transmitted

  13. Hr. Michael Esposito Audio-Tex Industries, Incorporated 4555 West Addison Street

    Office of Legacy Management (LM)

    -- Hr. Michael Esposito Audio-Tex Industries, Incorporated 4555 West Addison Street Chicago, Illinois 60641 Dear Mr. Esposito: Enclosed is a copy of the final survey report for your facility in Chicago,. Illinois , which is the site of the former ERA Tool & Engineering Company. The survey report documents the fact that the radiological condition of your facility is in compliance with applicable Department of Energy Guidelines and that no remedial action or further investigaticns are

  14. "ONE HUNDRED YEARS OF SUPERCONDUCTIVITY", Dr. Michael Norman, Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Division, Argonne National Laboratory | Princeton Plasma Physics Lab 10, 2012, 9:30am Science On Saturday "ONE HUNDRED YEARS OF SUPERCONDUCTIVITY", Dr. Michael Norman, Materials Science Division, Argonne National Laboratory ONE HUNDRED YEARS OF SUPERCONDUCTIVITY PPPL Entrance Procedures Visitor Information, Directions, Security at PPPL As a federal facility, the Princeton Plasma Physics Laboratory is operating under heightened security measures because of the events of

  15. Ultrasonic technique for characterizing skin burns

    DOE Patents [OSTI]

    Goans, Ronald E.; Cantrell, Jr., John H.; Meyers, F. Bradford; Stambaugh, Harry D.

    1978-01-01

    This invention, a method for ultrasonically determining the depth of a skin burn, is based on the finding that the acoustical impedance of burned tissue differs sufficiently from that of live tissue to permit ultrasonic detection of the interface between the burn and the underlying unburned tissue. The method is simple, rapid, and accurate. As compared with conventional practice, it provides the important advantage of permitting much earlier determination of whether a burn is of the first, second, or third degree. In the case of severe burns, the usual two - to three-week delay before surgery may be reduced to about 3 days or less.

  16. Surface Modified Particles By Multi-Step Michael-Type Addition And Process For The Preparation Thereof

    DOE Patents [OSTI]

    Cook, Ronald Lee (Lakewood, CO); Elliott, Brian John (Superior, CO); Luebben, Silvia DeVito (Golden, CO); Myers, Andrew William (Arvada, CO); Smith, Bryan Matthew (Boulder, CO)

    2005-05-03

    A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.

  17. Surface Modified Particles By Multi-Step Michael-Type Addition And Process For The Preparation Thereof

    DOE Patents [OSTI]

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2005-05-03

    A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.

  18. Michael Baechler

    Broader source: Energy.gov [DOE]

    Mr. Baechler is a Senior Program Manager in the Electricity Infrastructure and Buildings Division at Pacific Northwest National Laboratory (PNNL). He has been at PNNL since 1984 and currently...

  19. Michael Urashka

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controls Engineer. He has B.S. degrees from University of Massachusetts - Amherst (Microbiology and in Cellular & Molecular Biology) and an M.S. in Systems Management from Golden...

  20. Michael Sinatra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities ESnet Staff & Org Chart Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Office of the CTO...

  1. Michael Sinatra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sinatra About ESnet Our Mission The Network ESnet History Governance & Policies Career Opportunities ESnet Staff & Org Chart ESnet Leadership Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Dale Carder Paul Wefel Network Planning Operational Enhancements Office of the CTO Science Engagement Tools Team Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600

  2. The hybrid rich-burn/lean burn engine. Part 2

    SciTech Connect (OSTI)

    Smith, J.A.; Podnar, D.; Meyers, D.P.

    1996-12-31

    Southwest Research Institute (SwRI) has developed a unique engine technology called Hybrid Rich-Burn/Lean-Burn (HRBLB) that capitalizes on the low production of oxides of nitrogen (NO{sub x}) during extremely rich and lean combustion. The HRBLB concept is predicated on simultaneous combustion of extremely rich and lean natural gas-air mixtures in separate cylinders. Rich exhaust products undergo a catalytic water-gas shift reaction to form an intermediate combustible fuel composed of carbon monoxide, water vapor, hydrogen, and carbon dioxide. All of the intermediate fuel is added to lean natural gas-air mixtures in other cylinders to enhance ignitability that would otherwise result in misfire. This paper presents results obtained during the development of a stationary, turbocharged, and intercooled, 18-liter HRBLB engine. Results show that NO{sub x} can be reduced by a factor of 2.5 to 3.5 relative to stock engine emissions at equivalent efficiency. The HRBLB engine has demonstrated corrected NO{sub x} (15% O{sub 2}) levels of 23 ppm at rated load with thermal efficiencies of 35%.

  3. Actinide Burning in CANDU Reactors

    SciTech Connect (OSTI)

    Hyland, B.; Dyck, G.R.

    2007-07-01

    Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

  4. Burn site groundwater interim measures work plan.

    SciTech Connect (OSTI)

    Witt, Jonathan L.; Hall, Kevin A.

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  5. Uniform-burning matrix burner

    DOE Patents [OSTI]

    Bohn, Mark S.; Anselmo, Mark

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  6. Michael Li Electricity Policy Specialist U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6-390 Village Blvd. Princeton, NJ 08540 609.452.8060 | www.nerc.com November 1, 2010 Michael Li Electricity Policy Specialist U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 1000 Independence Avenue, SW Room 8H033 Washington, DC 20585 RE: "Smart Grid RFI: Addressing Policy and Logistical Challenges" Dear Mr. Li: I am writing in response to the Department of Energy's ("DOE") Request for Information (RFI) regarding the "Smart Grid RFI:

  7. Convection in X-ray Bursts Michael Zingale Stony Brook University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convection in X-ray Bursts Michael Zingale Stony Brook University in collaboration with Ann Almgren, John Bell, Andy Nonaka (LBL); Chris Malone (LANL), Stan Woosley (UCSC) Supported by DOE/Office of Nuclear Physics, DE-FG02-06ER41448 and DE-FG02-87ER40317 to Stony Brook, and NSF award AST-1211563. Computer time: National Energy Research Scientific Computing Center (Office of Science, DOE DE-AC02-05CH11231) Convection in Astrophysics â—Ź Evolution of many stellar systems dominated by convective

  8. Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with...

    Office of Scientific and Technical Information (OSTI)

    Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal Blankets Citation Details In-Document Search Title: Transient Safety Analysis of Fast Spectrum TRU Burning ...

  9. Biomass Burning Observation Project (BBOP) Final Campaign Report...

    Office of Scientific and Technical Information (OSTI)

    Biomass Burning Observation Project (BBOP) Final Campaign Report Citation Details In-Document Search Title: Biomass Burning Observation Project (BBOP) Final Campaign Report The Biomass ...

  10. Voluntary Protection Program Onsite Review, Burns & McDonnell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Burns & McDonnell - Facility Engineering Services, LLC - September 2015 Voluntary Protection Program Onsite Review, Burns & McDonnell - Facility Engineering Services, LLC - ...

  11. Aerosol Properties Downwind of Biomass Burns Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    Science Aerosol Properties Downwind of Biomass Burns Field Campaign Report PR Buseck ... DOESC-ARM-15-076 Aerosol Properties Downwind of Biomass Burns Field Campaign Report PR ...

  12. Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Characterized particulate emissions from U.S.-legal ...

  13. Biomass Burning Observation Project Science Plan (Program Document...

    Office of Scientific and Technical Information (OSTI)

    Science Plan Citation Details In-Document Search Title: Biomass Burning Observation Project Science Plan Aerosols from biomass burning perturb Earth's climate through the direct ...

  14. Instrumented tube burns: theoretical and experimental observations

    SciTech Connect (OSTI)

    Yarrington, Cole Davis; Obrey, Stephen J; Foley, Timothy J; Son, Steven F

    2009-01-01

    The advent of widely available nanoscale energetic composites has resulted in a flurry of novel applications. One of these applications is the use of nanomaterials in energetic compositions. In compositions that exhibit high sensitivity to stimulus, these materials are often termed metastable intermolecular composites (MIC). More generally, these compositions are simply called nanoenergetics. Researchers have used many different experimental techniques to analyze the various properties of nanoenergetic systems. Among these various techniques, the confined tube burn is a simple experiment that is capable of obtaining much data related to the combustion of these materials. The purpose of this report is to review the current state of the confined tube burn experiment, including the drawbacks of the technique and possible remedies. As this report is intended to focus on the specific experimental technique, data from many different energetic materials, and experimental configurations will be presented. The qualitative and quantitative data that can be gathered using confined tube burn experiments include burning rates, total impulse, pressure rise rate, and burning rate differences between different detector types. All of these measurements lend insight into the combustion properties and mechanisms of specific nanoenergetics. Finally, certain data indicates a more complicated flow scenario which may need to be considered when developing burn tube models.

  15. Michael A. Mikolanis is a General Engineer with nearly 31 years of engineering a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    531 2.490 2.473 2.446 2.474 2.547 2003-2016 All Grades - Conventional Areas 2.531 2.490 2.473 2.446 2.474 2.547 2003-2016 Regular 2.361 2.324 2.310 2.277 2.308 2.380 2003-2016 Conventional Areas 2.361 2.324 2.310 2.277 2.308 2.380 2003-2016 Midgrade 2.685 2.631 2.608 2.581 2.597 2.668 2003-2016 Conventional Areas 2.685 2.631 2.608 2.581 2.597 2.668 2003-2016 Premium 2.975 2.927 2.907 2.895 2.923 3.001 2003-2016 Conventional Areas 2.975 2.927 2.907 2.895 2.923 3.001 2003

    Michael A. Mikolanis

  16. Biomass Burning Observation Project Science Plan

    SciTech Connect (OSTI)

    Kleinman, KI; Sedlacek, AJ

    2013-09-01

    Aerosols from biomass burning perturb Earth’s climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  17. Uranium hydrogeochemical and stream sediment reconnaissance of the St. Michael NTMS Quadrangle, Alaska

    SciTech Connect (OSTI)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the St. Michael NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of steam-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  18. Raymond Burns > Product Research Technologist - Exxon Mobile > Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni > The Energy Materials Center at Cornell Raymond Burns Product Research Technologist - Exxon Mobile raymond.burns@gmail.com Formerly a member of the DiSalvo Group, Ray earned his PhD in August 2013

  19. Emission and transport of cesium-137 from boreal biomass burning...

    Office of Scientific and Technical Information (OSTI)

    from boreal biomass burning in the summer of 2010 Citation Details In-Document Search Title: Emission and transport of cesium-137 from boreal biomass burning in the summer ...

  20. DOE - Fossil Energy: A Bed for Burning Coal?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-Bed for Burning Coal An Energy Lesson Cleaning Up Coal A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with ...

  1. Investigation of NO2 Oxidation Kinetics and Burning Mode for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NO2 Oxidation Kinetics and Burning Mode for Medium Duty Diesel Particulate: Contrasting O2 and NO2 Oxidation Investigation of NO2 Oxidation Kinetics and Burning Mode for Medium ...

  2. Burn to Learn | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burn to Learn Burn to Learn The mp4 video format is not supported by this browser. Download video Captions: On Time: 3:06 min. CNS fire protection engineers recently visited Oak Ridge Fire Department to "Burn to Learn." During this event, they were able to burn materials that would be found at Y-12 (e.g,. personal protective equipment, a shredder) and analyze the results. Watch a video about the event here

  3. Open air refuse burning video: Proton Dan the science man explores open air refuse burning

    SciTech Connect (OSTI)

    Eastburn, M.D.; Sipple, J.L.; Deramo, A.R.

    1999-07-01

    The goal of this video is to educate school children to the potential hazards of open air trash burning; to demonstrate alternative ways to dispose of trash; and to motivate students to take action to change the behavior of their parents with regard to trash burning. The burning of household trash, although illegal, is still a common practice in rural areas of Delaware. Enforcement has been difficult because the practice is often performed at night and is done across a wide rural area that is difficult to patrol on a continuing basis. The prohibition on trash burning (revised Regulation 13 of The Delaware Code of Regulations Governing The Control of Air Pollution) has been in effect since 1968, but the public has been slow to comply because trash burning has been practiced for many generations and because much of the public is unaware of the environmental impacts and/or the human health risks. This video may be valuable for other States to use as a public outreach tool regarding their problems with open air refuse burning. The focus of the video is a 7th grade science class is given various assignments relating to Earth Day and preservation of natural resources. Two children in particular are given the assignment to research and report on the hazards of open air trash burning and are asked to investigate alternative ways to dispose of refuse. Upon brainstorming how to find information on the topic, the kids decide to contact the host of a popular children's science show on broadcast television named Proton Dan the Science Man (a fictitious character and show based on Bill Nye the Science Guy). The host then invites the kids to the studio where he films his show and takes them through the topic. The TV host character takes the children to several external locations like a landfill, recycling centers, etc..

  4. Apparatus for burning bales of trash

    SciTech Connect (OSTI)

    Pazar, C. A.

    1985-08-13

    Bales of combustible trash made to specific specifications are burned in a furnace having two parallel upright sidewalls between which the bales pass during burning. A horizontal grate extends between the sidewalls. The bales, if remotely made from the furnace, are bound by an easily meltable strap. The length of the bale is measurably smaller than the distance between said sidewalls to accurately accommodate springback. A ram, after compacting the waste in segmental fashion, pushes each bale to a position between said sidewalls; with the length of the bale being perpendicular to the sidewalls, so that a bale enters the furnace. Springback following the melting of straps allows the bale to expand to fill the gap between the sidewalls. This facilitates ignition and/or burning of the bales and provides a seal against furnace sidewalls. When the ram feeds a fresh bale, previously charged bales (consumed proportional to time in the furnace) are advanced toward the ash discharge port. Before the bales are formed, the trash may be optionally dried by using heated air in the classification into ''light'' sort and ''heavy'' sort. The ''light'' sort is baled and burned as described above. The ''heavy'' sort or a part of the light sort may be premixed with noxious liquid or solid wastes before charging to the furnace. Temperatures consistent with economical use of refractory (1500/sup 0/ F. to 1700/sup 0/ F.) are maintained, for a limited area adjacent the inner wall of the furnace, by addition of liquid water, while interior temperatures of the furnace of about 3000/sup 0/ F. prevail in the central portion of the furnace necessary for the incineration of noxious wastes.

  5. U.S. BURNING PLASMA ORGANIZATION ACTIVITIES

    SciTech Connect (OSTI)

    Raymond J. Fonck

    2009-08-11

    The national U.S. Burning Plasma Organization (USBPO) was formed to provide an umbrella structure in the U.S. fusion science research community. Its main purpose is the coordination of research activities in the U.S. program relevant to burning plasma science and preparations for participation in the international ITER experiment. This grant provided support for the continuing development and operations of the USBPO in its first years of existence. A central feature of the USBPO is the requirement for broad community participation in and governance of this effort. We concentrated on five central areas of activity of the USBPO during this grant period. These included: 1) activities of the Director and support staff in continuing management and development of the USBPO activity; 2) activation of the advisory Council; 3) formation and initial research activities of the research community Topical Groups; 4) formation of Task Groups to perform specific burning plasma related research and development activities; 5) integration of the USBPO community with the ITER Project Office as needed to support ITER development in the U.S.

  6. Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray

    SciTech Connect (OSTI)

    Vigil-Holterman, Luciana R.

    2012-05-07

    This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

  7. R&D Energy Recovery Linac at Brookhaven National Laboratory ...

    Office of Scientific and Technical Information (OSTI)

    ; Reich, J. ; Roser, Thomas ; Russo, T. ; Smith, K. ; Tuozzolo, Joseph ; Weiss, D. ; Williams, N.W.W. ; Yip, Kin ; Zaltsman, A. ; Bluem, Hans ; Cole, Michael ; Favale, Anthony ; ...

  8. The Role of Energy Storage with Renewable Electricity Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole ...

  9. U.S. Energy Information Administration (EIA)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industry? Lessons Learned, Robert Kozak PDF Brazil Ethanol Outlook, Leticia Phillips PDF Implementation of Renewable Fuels Standard in Liquid Fuels Market Model, Michael Cole

  10. Accelerated UV Test and Evaluation Methods for Encapsulants of...

    Office of Scientific and Technical Information (OSTI)

    Test Methods for Encapsulants of Photovoltaic Modules Michael D. Kempe National Renewable Energy Laboratory, 1617 Cole Blvd. Golden, CO 80401 NRELPR-520-43309 Presented at the...

  11. Mobilizable RDF/d-RDF burning program

    SciTech Connect (OSTI)

    Niemann, K.; Campbell, J.

    1982-03-01

    The Mobilizable RDF/d-RDF Burning Program was conceived to promote the utilization of refuse-derived fuels (RDF) as a supplement to existing fossil fuel sources in industrial-sized boilers. The program explores the design, development, and eventual construction of densified-RDF (d-RDF) for use in boiler combustion testing as a supplement to stoker coal or wood wastes. The equipment would be mounted on trailers and assembled and operated at preselected sites throughout the country where approximately 750 tons of RDF would be produced and test burned in a local boiler. The equipment, to include a transportable RDF boiler metering and feed system, would then be moved and operated at two to three test sites annually. The program is intended to encourage the construction of permanent resource recovery facilities by involving local waste handling groups in operating the equipment and producing fuel, and potential local fuel users in testing the fuel in their boilers. The Mobilizable Program was developed from two separate tasks. The first task developed the concept behind the program and defined its operational and organizational structure. The second task, a follow-up to the first, was intended principally to finalize test locations, develop equipment designs and specifications, and formalize a management program. This report summarizes the principal findings of both tasks. It identifies the criteria used to identify test locations, outlines the program's management structure, presents design and performance specifications for both the fuel production equipment and boiler fuel feed systems, and provides a detailed evaluation of the parameters involved in burning RDF in industrial-sized boilers. Final conclusions and recommendations identify problem areas encountered in the program, and discuss possible future directions for such a program.

  12. Spectral hole burning studies of photosystem II

    SciTech Connect (OSTI)

    Chang, H.C.

    1995-11-01

    Low temperature absorption and hole burning spectroscopies were applied to the D1-D2-cyt b{sub 559} and the CP47 and CP43 antenna protein complexes of Photosystem H from higher plants. Low temperature transient and persistent hole-burning data and theoretical calculations on the kinetics and temperature dependence of the P680 hole profile are presented and provide convincing support for the linker model. Implicit in the linker model is that the 684-nm-absorbing Chl a serve to shuttle energy from the proximal antenna complex to reaction center. The stoichiometry of isolated Photosystem H Reaction Center (PSII RC) in several different preparations is also discussed. The additional Chl a are due to 684-nm-absorbing Chl a, some contamination by the CP47 complex, and non-native Chl a absorbing near 670 nm. In the CP47 protein complex, attention is focused on the lower energy chlorophyll a Q{sub y}-states. High pressure hole-burning studies of PSII RC revealed for the first time a strong pressure effect on the primary electron transfer dynamics. The 4.2 K lifetime of P680*, the primary donor state, increases from 2.0 ps to 7.0 ps as pressure increases from 0.1 to 267 MPa. Importantly, this effect is irreversible (plastic) while the pressure induced effect on the low temperature absorption and non-line narrowed P680 hole spectra are reversible (elastic). Nonadiabatic rate expressions, which take into account the distribution of energy gap values, are used to estimate the linear pressure shift of the acceptor state energy for both the superexchange and two-step mechanisms for primary charge separation. It was found that the pressure dependence could be explained with a linear pressure shift of {approximately} 1 cm{sup -1}/MPa in magnitude for the acceptor state. The results point to the marriage of hole burning and high pressures as having considerable potential for the study of primary transport dynamics in reaction centers and antenna complexes.

  13. Science on the Hill: Burning questions in study of wildfire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burning questions in study of wildfire Burning questions in study of wildfire Understanding what drives big fires and predicting their behavior helps the fire community prepare for the next blaze through appropriate land management, emergency plans and firefighting strategies. July 12, 2016 A helicopter drops fire retardant on wildfire during 2011 Las Conchas fire in New Mexico. A helicopter drops fire retardant on wildfire during 2011 Las Conchas fire in New Mexico. Burning questions in study

  14. Wood-Burning Heating System Deduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Alabama Program Type Rebate Amount 100% Summary This statute allows individual taxpayers a deduction for the purchase and installation of a wood-burning heating system. The...

  15. Arctic Haze: Effect of Anthropogenic and Biomass Burning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Haze: Effect of Anthropogenic and Biomass Burning Aerosols Transported from Europe to the Arctic For original submission and image(s), see ARM Research Highlights http:...

  16. SFR with once-through depleted uranium breed & burn blanket ...

    Office of Scientific and Technical Information (OSTI)

    Title: SFR with once-through depleted uranium breed & burn blanket Authors: Zhang, Guanheng ; Greenspan, Ehud ; Jolodosky, Alejandra ; Vujic, Jasmina Publication Date: 2015-07-01 ...

  17. Modeling Deep Burn TRISO Particle Nuclear Fuel

    SciTech Connect (OSTI)

    Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison

    2012-01-01

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  18. Clean burning solid fuel stove and method

    SciTech Connect (OSTI)

    Smith, R.D.; Grouw, S.J.V.

    1985-10-08

    A stove for burning solid fuels having an insulated primary combustion chamber, uniform distribution of preheated primary air through upward facing holes in a grate, downward flow of combustion gas through the grate, retention of hot coals in the grate structure, preheated secondary air, individually controlled primary and secondary air flows, insulated vortex combustion chambers for secondary combustion, longitudinally finned tubes as a first stage heat exchanger, plate-fin assembly as a second stage heat exchanger, an induced draft fan to draw the air and combustion gases through the combustion chambers as well as the heat exchangers, and a forced air fan to blow cool room air through the two stage heat exchanger.

  19. AmeriFlux US-Me1 Metolius - Eyerly burn

    SciTech Connect (OSTI)

    Law, Bev

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me1 Metolius - Eyerly burn. Site Description - An intermediate aged ponderosa pine forest that was severely burned in the 2002 Eyerly wildfire. All trees were killed (stand replacing event). Irvine et al (2007) GCB 13 (8), 1748–1760.

  20. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    SciTech Connect (OSTI)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and

  1. Turbulent burning rates of methane and methane-hydrogen mixtures

    SciTech Connect (OSTI)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  2. Method and apparatus to measure the depth of skin burns

    DOE Patents [OSTI]

    Dickey, Fred M.; Holswade, Scott C.

    2002-01-01

    A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

  3. Local Burn-Up Effects in the NBSR Fuel Element

    SciTech Connect (OSTI)

    Brown N. R.; Hanson A.; Diamond, D.

    2013-01-31

    This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peaking relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.

  4. NREL: Energy Analysis - Wesley Cole

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G. Porro. 2015. 2015 Standard Scenarios Annual Report: U.S. Electric Sector Scenario Exploration. NRELTP-6A20-64072. National Renewable Energy Laboratory (NREL), Golden, CO (US). ...

  5. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, Carol T.; Bender, Donald A.; Bowman, Barry R.; Burnham, Alan K.; Chesnut, Dwayne A.; Comfort, III, William J.; Guymon, Lloyd G.; Henning, Carl D.; Pedersen, Knud B.; Sefcik, Joseph A.; Smith, Joseph A.; Strauch, Mark S.

    1993-01-01

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  6. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

    1993-03-09

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  7. Alpha heating and burning plasmas in inertial confinement fusion

    SciTech Connect (OSTI)

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  8. Copper is Key in Burning Fat, New Study Finds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Copper is Key in Burning Fat, New Study Finds A new study led by a Berkeley Lab scientist ... Researchers want to explore if a copper deficiency is linked to obesity and obesity ...

  9. Options for Burning LWR SNF in LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J

    2008-09-09

    We have pursued two processes in parallel for the burning of LWR SNF in the LIFE engine: (1) solid fuel option and (2) liquid fuel option. Approaches with both are discussed. The assigned Topical Report on liquid fuels is attached.

  10. Portsmouth Site Achieves Regulatory Milestone after Successful Controlled Burn

    Broader source: Energy.gov [DOE]

    PIKETON, Ohio – Portsmouth Gaseous Diffusion Plant firefighters recently completed a prescribed fire, or controlled burn, of an 18-acre prairie at the site, two weeks ahead of a regulatory deadline.

  11. Aircraft-measured indirect cloud effects from biomass burning...

    Office of Scientific and Technical Information (OSTI)

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 ...

  12. Radiochemical Mix Diagnostic in the Presence of Burn

    SciTech Connect (OSTI)

    Hayes, Anna C.

    2014-01-28

    There is a general interest in radiochemical probes of hydrodamicalmix in burning regions of NIF capsule. Here we provide estimates for the production of 13N from mixing of 10B ablator burning hotspot of a capsule. By comparing the 13N signal with x-ray measurements of the ablator mix into the hotspot it should be possible to estimate the chunkiness of this mix.

  13. Lab scientists Burns, Hay named new AAAS Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burns, Hay named new AAAS Fellows Lab scientists Burns, Hay named new AAAS Fellows The AAAS is the world's largest general scientific society and publisher of the journal Science. February 3, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on

  14. MSFR TRU-burning potential and comparison with an SFR

    SciTech Connect (OSTI)

    Fiorina, C.; Cammi, A.; Franceschini, F.; Krepel, J.

    2013-07-01

    The objective of this work is to evaluate the Molten Salt Fast Reactor (MSFR) potential benefits in terms of transuranics (TRU) burning through a comparative analysis with a sodium-cooled FR. The comparison is based on TRU- and MA-burning rates, as well as on the in-core evolution of radiotoxicity and decay heat. Solubility issues limit the TRU-burning rate to 1/3 that achievable in traditional low-CR FRs (low-Conversion-Ratio Fast Reactors). The softer spectrum also determines notable radiotoxicity and decay heat of the equilibrium actinide inventory. On the other hand, the liquid fuel suggests the possibility of using a Pu-free feed composed only of Th and MA (Minor Actinides), thus maximizing the MA burning rate. This is generally not possible in traditional low-CR FRs due to safety deterioration and decay heat of reprocessed fuel. In addition, the high specific power and the lack of out-of-core cooling times foster a quick transition toward equilibrium, which improves the MSFR capability to burn an initial fissile loading, and makes the MSFR a promising system for a quick (i.e., in a reactor lifetime) transition from the current U-based fuel cycle to a novel closed Th cycle. (authors)

  15. Software Michael Heroux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about producing high-quality, reproducible and verifiable results, it will want to invest in a high-quality SE environment to improve team efficiency. Evidence: Cover letter...

  16. Michael McDowell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publicatons Contact Us Ring Status Current Schedule David Gagliano Argonne National Laboratory 9700 S. Cass Ave 431E020 Argonne, IL 60439 Phone: 252-6422 Fax: 252-7392 E-Mail:...

  17. Containment System Michael F

    Office of Scientific and Technical Information (OSTI)

    to reduce their liability, lower their insurance costs, or ... done on the same concrete pad which saves construction cost. ... Another innovation in rotational molded polyethylene is a ...

  18. Michael O'Connor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities ESnet Staff & Org Chart Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Office of the CTO...

  19. Containment System Michael F

    Office of Scientific and Technical Information (OSTI)

    ... They cannot be raised with a crane and placed inside a containment. Many dealerships lack ... A crane is then used to erect the walls and connect adjoining panels. The bin walls are ...

  20. Dennis Michael Miotla

    Broader source: Energy.gov [DOE]

    Mr. Miotla currently serves as Chief Operating Officer for the Office of Nuclear Energy. Prior to his current position, Mr. Miotla was Deputy Director for Nuclear Facility Operations. In that...

  1. Michael O'Connor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O'Connor About ESnet Our Mission The Network ESnet History Governance & Policies Career Opportunities ESnet Staff & Org Chart ESnet Leadership Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Dale Carder Paul Wefel Network Planning Operational Enhancements Office of the CTO Science Engagement Tools Team Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600

  2. Michael J. Banda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NERSC). His previous work with x-ray science includes an appointment as Professor of Radiology and Director of the Laboratory of Radiological Biology at the University of...

  3. Michael Resch | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and hemicellulase enzyme characterization, working on projects funded by the Department of Energy through the BioEnergy Science Center and the Bioenergy Technologies Office. ...

  4. Iron/potassium perchlorate pellet burn rate measurements

    SciTech Connect (OSTI)

    Reed, J.W.; Walters, R.R.

    1995-01-25

    A burn rate test having several advantages for low gas-producing pyrotechnic compacts has been developed. The technique involves use of a high speed video motion analysis system that allows immediate turnaround and produces all required data for rate computation on magnetic tape and becomes immediately available on the display screen. The test technique provides a quick method for material qualification along with data for improved reliability and function. Burn rate data has been obtained for both UPI and Eagle Pitcher Iron/Potassium Perchlorate blends. The data obtained for the UPI blends cover a range of composition, pellet density, and ambient (before ignition) pellet temperature. Burn rate data for the E-P blends were extended to include surface conditions or particle size as a variable parameter.

  5. ARM - Field Campaign - Biomass Burning Observation Project - BBOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBiomass Burning Observation Project - BBOP Campaign Links BBOP Website Final Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biomass Burning Observation Project - BBOP 2013.07.01 - 2013.10.24 Website : http://www.arm.gov/campaigns/bbop/ Lead Scientist : Larry Kleinman For data sets, see below. Abstract This field campaign will address multiple uncertainties in aerosol intensive

  6. Communication Support for the U. S. Burning Plasma Organization

    SciTech Connect (OSTI)

    Hegna, Chris

    2014-02-05

    The role of this DOE grant was to provide administrative and software support for the U. S. Burning Plasma Organization (USBPO). The USBPO is a grassroots organization of fusion plasma scientists that concentrates broadly on issues of interest in burning plasma physics in general with a particular emphasis on the needs of the ITER program. The particular role of this grant was to provide support of the communication needs of the USBPO primarily through the administration and maintenance of the USBPO server, the public USBPO website, e-mail lists and numerous members-only discussion forums and mail lists.

  7. Completion of the INEEL's WERF Incinerator Trial Burn

    SciTech Connect (OSTI)

    C. K. Branter; D. A. Conley; D. R. Moser; S. J. Corrigan

    1999-05-01

    This paper describes the successes and challenges associated with Resource Conservation and Recovery Act (RCRA) permitting of the Idaho National Engineering and Environmental Laboratory's (INEEL) Waste Experimental Reduction Facility (WERF) hazardous and mixed waste incinerator. Topics to be discussed include facility modifications and problems, trial burn results and lessons learned in each of these areas. In addition, a number of challenges remain including completion and final issue of the RCRA Permit and implementation of all the permit requirements. Results from the trial burn demonstrated that the operating conditions and procedures will result in emissions that are satisfactorily protective of human health, the environment, and are in compliance with Federal and State regulations.

  8. Completion of the INEEL's WERF Incinerator Trial Burn

    SciTech Connect (OSTI)

    Branter, Curtis Keith; Conley, Dennis Allen; Corrigan, Shannon James; Moser, David Roy

    1999-05-01

    This paper describes the successes and challenges associated with Resource Conservation and Recovery Act (RCRA) permitting of the Idaho National Engineering and Environmental Laboratory's (INEEL) Waste Experimental Reduction Facility (WERF) hazardous and mixed waste incinerator. Topics to be discussed include facility modifications and problems, trial burn results and lessons learned in each of these areas. In addition, a number of challenges remain including completion and final issue of RCRA Permit and implementation of all the permit requirements. Results from the trial burn demonstrated that the operating conditions and procedures will result in emissions that are satisfactorily protective of human health, the environment, and are in compliance with Federal and State regulations.

  9. Microsoft Word - Deep-Burn awards news release _2_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELEASE Tim Jackson, DOE-Idaho Operations Office Wednesday, July 23, 2008 (208) 526-8484 U.S. Department of Energy Awards $7.3 million for "Deep-Burn" Gas-Reactor Technology Research & Development WASHINGTON, DC -Today the U.S. Department of Energy announced it has selected teams led by Idaho National Laboratory and Argonne National Laboratory to advance the technology of nuclear fuel "Deep-Burn," in which plutonium and higher transuranics recycled from spent nuclear fuel

  10. Examination of the Entry to Burn and Burn Control for the ITER 15 MA Baseline and Other Scenarios

    SciTech Connect (OSTI)

    Kesse, Charles E.; Kim, S-H.; Koechl, F.

    2014-09-01

    The entry to burn and flattop burn control in ITER will be a critical need from the first DT experiments. Simulations are used to address time-dependent behavior under a range of possible conditions that include injected power level, impurity content (W, Ar, Be), density evolution, H-mode regimes, controlled parameter (Wth, Pnet, Pfusion), and actuator (Paux, fueling, fAr), with a range of transport models. A number of physics issues at the L-H transition require better understanding to project to ITER, however, simulations indicate viable control with sufficient auxiliary power (up to 73 MW), while lower powers become marginal (as low as 43 MW).

  11. Biomass Burning Observation Project (BBOP) Final Campaign Report

    SciTech Connect (OSTI)

    Kleinman, LI; Sedlacek, A. J.

    2016-01-01

    The Biomass Burning Observation Project (BBOP) was conducted to obtain a better understanding of how aerosols generated from biomass fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning—enough to affect regional and global climate. Several biomass-burning studies have focused on tropical climates; however, few campaigns have been conducted within the United States, where millions of acres are burned each year, trending to higher values and greater climate impacts because of droughts in the West. Using the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the BBOP deployed the Gulfstream-1 (G-1) aircraft over smoke plumes from active wildfire and agricultural burns to help identify the impact of these events and how impacts evolve with time. BBOP was one of very few studies that targeted the near-field time evolution of aerosols and aimed to obtain a process-level understanding of the large changes that occur within a few hours of atmospheric processing.

  12. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect (OSTI)

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  13. Effect of inactive impurities on the burning of ICF targets

    SciTech Connect (OSTI)

    Gus'kov, S. Yu.; Il'in, D. V.; Sherman, V. E.

    2011-12-15

    The efficiency of thermonuclear burning of the spherical deuterium-tritium (DT) plasma of inertial confinement fusion (ICF) targets in the presence of low-Z impurities (such as lithium, carbon, or beryllium) with arbitrary concentrations is investigated. The effect of impurities produced due to the mixing of the thermonuclear fuel with the material of the structural elements of the target during its compression on the process of target burning is studied, and the possibility of using solid noncryogenic thermonuclear fuels in ICF targets is analyzed. Analytical dependences of the ignition energy and target thermonuclear gain on the impurity concentration are obtained. The models are constructed for homogeneous and inhomogeneous plasmas for the case in which the burning is initiated in the central heated region of the target and then propagates into the surrounding relatively cold fuel. Two possible configurations of an inhomogeneous plasma, namely, an isobaric configuration formed in the case of spark ignition of the target and an isochoric configuration formed in the case of fast ignition, are considered. The results of numerical simulations of the burning of the DT plasma of ICF targets in a wide range of impurity concentrations are presented. The simulations were performed using the TEPA one-dimensional code, in which the thermonuclear burning kinetics is calculated by the Monte Carlo method. It is shown that the strongest negative effect related to the presence of impurities is an increase in the energy of target ignition. It is substantiated that the most promising solid noncryogenic fuel is DT hydride of beryllium (BeDT). The requirements to the plasma parameters at which BeDT can be used as a fuel in noncryogenic ICF targets are determined. Variants of using noncryogenic targets with a solid thermonuclear fuel are proposed.

  14. Savannah River Site "Live Burn" Training Sharpens Skills | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Site "Live Burn" Training Sharpens Skills Tuesday, June 30, 2015 - 1:47pm Live Burn training As part of the training that equips them to ensure safe operations, Savannah River Site radiological protection (RP) and fire department personnel recently conducted their annual "Live Burn" training exercises that simulate fires in facilities with chemical and radiological contamination. The Live Burn exercise took place at the Martinez-Columbia

  15. Burn propagation in a PBX 9501 thermal explosion

    SciTech Connect (OSTI)

    Henson, B. F.; Smilowitz, L.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-12-12

    We have applied proton radiography to study the conversion of solid density to gaseous combustion products subsequent to ignition of a thermal explosion in PBX 9501. We apply a thermal boundary condition to the cylindrical walls of the case, ending with an induction period at 205 C. We then introduce a laser pulse that accelerates the thermal ignition and synchronizes the explosion with the proton accelerator. We then obtain fast, synchronized images of the evolution of density loss with few microsecond resolution during the approximately 100 microsecond duration of the explosion. We present images of the solid explosive during the explosion and discuss measured rates and assumed mechanisms of burning the role of pressure in this internal burning.

  16. Uniform DT 3T burn: computations and sensitivities

    SciTech Connect (OSTI)

    Vold, Erik; Hryniw, Natalia; Hansen, Jon A; Kesler, Leigh A; Li, Frank

    2011-01-27

    A numerical model was developed in C to integrate the nonlinear deutrium-tritium (DT) burn equations in a three temperature (3T) approximation for spatially uniform test problems relevant to Inertial Confinement Fusion (ICF). Base model results are in excellent agreement with standard 3T results. Data from NDI, SESAME, and TOPS databases is extracted to create fits for the reaction rate parameter, the Planck opacity, and the coupling frequencies of the plasma temperatures. The impact of different fits (e.g., TOPS versus SESAME opacity data, higher order polynomial fits ofNDI data for the reaction rate parameter) were explored, and sensitivity to several model inputs are presented including: opacity data base, Coulomb logarithm, and Bremsstrahlung. Sensitivity to numerical integration time step size, and the relative insensitivity to the discretized numerics and numerical integration method was demonstrated. Variations in the IC for densities and temperatures were explored, showing similar DT burn profiles in most cases once ignition occurs. A coefficient multiplying the Compton coupling term (default, A = 1) can be adjusted to approximate results from more sophisticated models. The coefficient was reset (A = 0.4) to match the maximum temperatures resulting from standard multi-group simulations of the base case test problem. Setting the coefficient to a larger value, (A = 0.6) matches maximum ion temperatures in a kinetic simulation of a high density ICF-like regime. Matching peak temperatures does not match entire temperature-time profiles, indicating the Compton coefficient is density and time dependent as the photon distribution evolves. In the early time burn during the ignition of the DT, the present model with modified Compton coupling provides a very simple method to obtain a much improved match to the more accurate solution from the multi-group radiation model for these DT burn regimes.

  17. ARM - News from the Biomass Burn Observation Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project (BBOP)News from the Biomass Burn Observation Project Related Links BBOP Home Outreach News & Press Backgrounder (PDF, 2.1MB) Images ARM flickr site ARM Data Discovery Browse Data Deployment Operations Airborne Measurements Science Plan (PDF, 2.2MB) BBOP wiki Login Required Data Sets Experiment Planning Proposal Abstract and Related Campaigns BBOP Breakout Session, ASR Science Team Meeting, March 2014 BBOP Breakout Session, ASR Science Team Meeting, March 2013 BNL BBOP Website

  18. Microsoft Word - Deep-Burn awardee team members _2_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEEP-BURN AWARDEES RECIPIENTS RECIPIENT TEAM MEMBERS Advanced Modeling and Simulation Capability R&D for $1 million University of Chicago Argonne Argonne National Laboratory Oak Ridge National Laboratory Lawrence Livermore National Lab University of Michigan Transuranic Management Capabilities R&D for $6.3 million Battelle Energy Alliance, LLC Idaho National Laboratory Oak Ridge National Laboratory Argonne National Laboratory Los Alamos National Laboratory University of California,

  19. Burning tires for fuel and tire pyrolysis: air implications

    SciTech Connect (OSTI)

    Clark, C.; Meardon, K.; Russell, D.

    1991-12-01

    The document was developed in response to increasing inquiries into the environmental impacts of burning waste tires in process equipment. The document provides information on the use of whole, scrap tires and tire-derived-fuel (TDF) as combustion fuel and on the pyrolysis of scrap tires. The use of whole tires and TDF as a primary fuel is discussed for dedicated tire-to-energy facilities. The use of whole tires and TDF as a supplemental fuel is discussed for cement manufacturing plants, electric utilities, pulp and paper mills, and other industrial processes. The focus of the document is on the impact of burning whole tires and TDF on air emissions. Test data are presented and, in most instances, compared with emissions under baseline conditions (no tires or TDF in the fuel). The control devices used in these industries are discussed and, where possible, their effectiveness in controlling emissions from the burning of whole tires or TDF is described. In addition, the report provides information on the processes themselves that use whole tires or TDF, the modifications to the processes that allowed the use of whole tires or TDF, and the operational experiences of several facilities using whole tires or TDF. The economic feasibility of using whole tires and TDF for the surveyed industries is discussed. Finally, contacts for State waste tire programs are presented.

  20. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    SciTech Connect (OSTI)

    Reaugh, J E

    2011-11-22

    HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable

  1. Long-Haul Truck Idling Burns Up Profits

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Long-Haul Truck Idling Burns Up Profits Long-haul truck drivers perform a vitally important service. In the course of their work, they must take rest periods as required by federal law. Most drivers remain in their trucks, which they keep running to provide power for heating, cooling, and other necessities. Such idling, however, comes at a cost; it is an expensive and polluting way to keep drivers safe and comfortable. Increasingly affordable alternatives to idling not only save money and reduce

  2. Boiler efficiency calculation for multiple fuel burning boilers

    SciTech Connect (OSTI)

    Khodabakhsh, F.; Munukutla, S.; Clary, A.T.

    1996-12-31

    A rigorous method based on the output/loss approach is developed for calculating the coal flow rate for multiple fuel burning boilers. It is assumed that the ultimate analyses of all the fuels are known. In addition, it is assumed that the flow rates of all the fuels with the exception of coal are known. The calculations are performed iteratively, with the first iteration taking into consideration coal as the only fuel. The results converge to the correct answer after a few number of iterations, typically four or five.

  3. A Midsize Tokamak As Fast Track To Burning Plasmas

    SciTech Connect (OSTI)

    E. Mazzucato

    2010-07-14

    This paper presents a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain (?10) with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This could be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a more efficient magnetic divertor than those of present tokamaks is discussed.

  4. Development of a trial burn plan for a mixed waste fluidized bed incinerator

    SciTech Connect (OSTI)

    Kabot, F.J.; Ziegler, D.L.

    1988-01-01

    One of the more important elements of the incinerator permitting process under RCRA is the development of the Trial Burn Plan. This document describes the incinerator and defines the incinerator's process envelope within which the trial burns will be conducted. The data obtained during the trial burns will be the basis for the incinerator's operating permit. This paper describes the development of the Trial Burn Plan for a unique fluidized bed incinerator to be used for the incineration of hazardous and mixed wastes at the Department of Energy's Rocky Flats Plant. It describes a review process of the Trial Burn Plan involving a public comment period that actually preceded the trial burns. 2 refs., 1 fig.

  5. Voluntary Protection Program Onsite Review, Burns & McDonnell - Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering Services, LLC - September 2015 | Department of Energy Burns & McDonnell - Facility Engineering Services, LLC - September 2015 Voluntary Protection Program Onsite Review, Burns & McDonnell - Facility Engineering Services, LLC - September 2015 September 2015 Recertification of FES as a Star Participant in the Department of Energy Voluntary Protection Program. This report summarizes the results from the evaluation of Burns & McDonnell - Facility Engineering Services, LLC

  6. NO2 oxidation reactivity and burning mode of diesel particulates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Strzelec, Andrea; Vander Wal, Randy L.; Thompson, Thomas N.; Toops, Todd J.; Daw, C. Stuart

    2016-03-24

    The NO2 oxidation kinetics and burning mode for diesel particulate from light-duty and medium-duty engines fueled with either ultra low sulfur diesel or soy methyl ester biodiesel blends have been investigated and are shown to be significantly different from oxidation by O2. Oxidation kinetics were measured using a flow-through packed bed microreactor for temperature programmed reactions and isothermal differential pulsed oxidation reactions. The burning mode was evaluated using the same reactor system for flowing BET specific surface area measurements and HR-TEM with fringe analysis to evaluate the nanostructure of the nascent and partially oxidized particulates. The low activation energy measured,more » specific surface area progression with extent of oxidation, HR-TEM images and difference plots of fringe length and tortuosity paint a consistent picture of higher reactivity for NO2, which reacts indiscriminately immediately upon contact with the surface, leading to the Zone I or shrinking core type oxidation. In comparison, O2 oxidation is shown to have relatively lower reactivity, preferentially attacking highly curved lamella, which are more reactive due to bond strain, and short lamella, which have a higher proportion of more reactive edge sites. Furthermore, this preferential oxidation leads to Zone II type oxidation, where solid phase diffusion of oxygen via pores contributes significantly to slowing the overall oxidation rate, by comparison.« less

  7. Kinetic calculations of explosives with slow-burning constituents

    SciTech Connect (OSTI)

    Howard, W.M.; Souers, P.C.; Pried, L.E.

    1997-07-01

    The equilibrium thermochemical code CHEETAH V 1.40 has been modified to detonate part of the explosive and binder. An Einstein thermal description of the unreacted constituents is used, and the Einstein temperature may be increased to reduce heat absorption. We study the effect of the reactivity and thermal transport on the detonation velocity. Hydroxy-terminated-polybutadiene binders have low energy and density and would degrade the detonation velocity if they burned. Runs with unburned binder are closer to the measured values. Aluminum and ammonium Perchlorate are also largely unburned within the sonic reaction zone that determines the detonation velocity. All three materials appear not to fully absorb heat as well. The normal assumption of total reaction in a thermochemical code is clearly not true for these special cases, where the detonation velocities have widely different values for different combinations of processes.

  8. Exhaust gas purification system for lean burn engine

    SciTech Connect (OSTI)

    Haines, Leland Milburn

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  9. Trash burns, turns into $120,000 in annual savings

    SciTech Connect (OSTI)

    Smith, W.A.

    1981-09-01

    A plan was developed to generate a major portion of the energy required for heating and air conditioning by burning factory trash instead of using natural gas and electricity. Trash from the Rockwell Int'l. plant, including broken wood pallets, cardboard packing materials and office waste paper, amounted to 1,000 tons per year. Previously, a contractor was being paid to come to the plant several times a week, pick up the trash and haul it to a landfill. To supplement the 1,000 tons of usable waste generated by the plant annually, the additional 500 tons of similar trash needed to operate the system are received from other industries in the vicinity. Besides accepting waste from other plants, the Marysville facility stockpiles and uses refuse corn stalks harvested from 50 acres of Rockwell-owned land adjacent to the plant. The incinerator featuring a pyrolytic heat recovery system is presented and its operation is illustrated.

  10. Microstructural Characterization of High Burn-up Mixed Oxide Fast Reactor Fuel

    SciTech Connect (OSTI)

    Melissa C. Teague; Brian P. Gorman; Steven L. Hayes; Douglas L. Porter; Jeffrey King

    2013-10-01

    High burn-up mixed oxide fuel with local burn-ups of 3.4–23.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 7–9% FIMA. Samples with burn-ups in excess of 7–9% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column were observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 3–5 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements.

  11. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  12. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  13. AmeriFlux US-An2 Anaktuvuk River Moderate Burn

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hobbie, John [Marine Biological Laboratory; Rocha, Adrian [Marine Biological Laboratory; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-An2 Anaktuvuk River Moderate Burn. Site Description - The Anaktuvuk River fire on the North Slope of Alaska started on July 16, 2007 by lightning. It continued until the end of September when nearby lakes had already frozen over and burned >256,000 acres, creating a mosaic of patches that differed in burn severity. The Anaktuvuk River Severe Burn, Moderate Burn, and Unburned sites are 40 km to the west of the nearest road and were selected in late May 2008 to determine the effects of the fire on carbon, water, and energy exchanges during the growing season. Because the fire had burned through September of the previous year, initial deployment of flux towers occurred prior to any significant vegetative regrowth, and our sampling campaign captured the full growing season in 2008. The Moderate Burn site consisted of a large area with small patches of completely and partially burned tundra intermixed across the landscape.

  14. Measurement of adiabatic burning velocity in natural gas-like mixtures

    SciTech Connect (OSTI)

    Ratna Kishore, V.; Duhan, Nipun; Ravi, M.R.; Ray, Anjan

    2008-10-15

    Experimental measurements of the adiabatic burning velocities were carried out for natural gas-like mixtures burning in air over a range of equivalence ratios at atmospheric pressure. Effect of CO{sub 2} dilution up to 60%, N{sub 2} dilution up to 40% and 25% enrichment of ethane on burning velocity of methane-air flames were studied. Heat flux method with setup similar to that of [K.J. Bosschaart, L.P.H. de Goey, Detailed analysis of the heat flux method for measuring burning velocity, Combustion and Flame 132 (2003) 170-180] was used for measurement of burning velocities. Initially experiments were done for methane-air and ethane-air mixtures at various equivalence ratios and the results were in good agreement with published data in the literature. Computations were performed using PREMIX code with GRI 3.0 reaction mechanism for all the mixtures. Predicted flame structures were used to the explain the effect of N{sub 2} and CO{sub 2} dilution on burning velocity of methane-air flames. Peak burning velocity for CH{sub 4}/CO{sub 2}-air mixtures occur near to {phi} = 1.0. (author)

  15. AmeriFlux US-An1 Anaktuvuk River Severe Burn

    SciTech Connect (OSTI)

    Hobbie, John; Rocha, Adrian; Shaver, Gaius

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-An1 Anaktuvuk River Severe Burn. Site Description - The Anaktuvuk River fire on the North Slope of Alaska started on July 16, 2007 by lightning. It continued until the end of September when nearby lakes had already frozen over and burned >256,000 acres, creating a mosaic of patches that differed in burn severity. The Anaktuvuk River Severe Burn, Moderate Burn, and Unburned sites are 40 km to the west of the nearest road and were selected in late May 2008 to determine the effects of the fire on carbon, water, and energy exchanges during the growing season. Because the fire had burned through September of the previous year, initial deployment of flux towers occurred prior to any significant vegetative regrowth, and our sampling campaign captured the full growing season in 2008. The Severe Burn site consisted of a large area in which all of the green vegetation were consumed in the fire and some of the organic matter had burnt to the mineral soil in many places. A bear damaged the tower during the last week of August 2008, and it was repaired shortly after.

  16. Polycyclic aromatic hydrocarbons at selected burning grounds at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Harris, B.W.; Minor, L.K.M.; Flucas, B.J.

    1998-02-01

    A commercial immunoassay field test (IFT) was used to rapidly assess the total concentrations of polycyclic aromatic hydrocarbons (PAHs) in the soil at selected burning grounds within the explosives corridor at Los Alamos National Laboratory (LANL). Results were compared with analyses obtained from LANL Analytical Laboratory and from a commercial laboratory. Both used the Environmental Protection Agency`s (EPA`s) Methods 8270 and 8310. EPA`s Method 8270 employs gas chromatography and mass spectral analyses, whereas EPA`s Method 8310 uses an ultraviolet detector in a high-performance liquid chromatography procedure. One crude oil sample and one diesel fuel sample, analyzed by EPA Method 8270, were included for references. On an average the IFT results were lower for standard samples and lower than the analytical laboratory results for the unknown samples. Sites were selected to determine whether the PAHs came from the material burned or the fuel used to ignite the burn, or whether they are produced by a high-temperature chemical reaction during the burn. Even though the crude oil and diesel fuel samples did contain measurable quantities of PAHs, there were no significant concentrations of PAHs detected in the ashes and soil at the burning grounds. Tests were made on fresh soil and ashes collected after a large burn and on aged soil and ashes known to have been at the site more than three years. Also analyzed were twelve-year-old samples from an inactive open burn cage.

  17. Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment System | Department of Energy Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Lean-burn SIDI engine technology offers improved fuel economy. deer10_viola.pdf (3.46 MB) More Documents & Publications Emissions Control for Lean Gasoline Engines NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps Emissions Control for Lean Gasoline En

  18. Type B Accident Investigation of the Savannah River Site Arc Flash Burn

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injury on September 23, 2009, in the D Area Powerhouse | Department of Energy of the Savannah River Site Arc Flash Burn Injury on September 23, 2009, in the D Area Powerhouse Type B Accident Investigation of the Savannah River Site Arc Flash Burn Injury on September 23, 2009, in the D Area Powerhouse October 1, 2009 This report documents the results of the Type B Accident Investigation Board investigation of the September 23, 2009, employee burn injury at the Department of Energy (DOE)

  19. Emission and transport of cesium-137 from boreal biomass burning in the summer of 2010

    SciTech Connect (OSTI)

    Strode, S.; Ott, Lesley E.; Pawson, Steven; Bowyer, Ted W.

    2012-05-09

    While atmospheric concentrations of cesium-137 have decreased since the nuclear testing era, resuspension of Cs-137 during biomass burning provides an ongoing emission source. The summer of 2010 was an intense biomass burning season in western Russia, with high levels of particulate matter impacting air quality and visibility. A radionuclide monitoring station in western Russia shows enhanced airborne Cs-137 concentrations during the wildfire period. Since Cs-137 binds to aerosols, satellite observations of aerosols and fire occurrences can provide a global-scale context for Cs-137 emissions and transport during biomass burning events.

  20. Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-04-01

    Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

  1. Passive Ammonia SCR for Lean Burn SIDI Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ammonia SCR for Lean Burn SIDI Engines Passive Ammonia SCR for Lean Burn SIDI Engines Passive NH3 SCR has been demonstrated as a high efficiency and low cost alternative lean NOx aftertreatment technology for stratified gasoline engines. deer09_li.pdf (1.57 MB) More Documents & Publications Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control

  2. The Honorable Michael White The Honorable Michael White

    Office of Legacy Management (LM)

    Sincerely, Off-SiteSavannah River,Division Office of Eastern Area Programs Enclosures ' Office of Environmental Restoration iitch; Ihc ., Cleveland; OH' R. Owens, Ohio Bureau ...

  3. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1982-01-01

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  4. Optimization of perigee burns for manned interplanetary missions

    SciTech Connect (OSTI)

    Madsen, W.W.; Olson, T.S.; Siahpush, A.S.

    1991-01-01

    In choosing an engine concept for the rocket vehicle to be used for the initial manned exploration of Mars, the two main factors in the decision should be what can be feasibly built and flight qualified within approximately the next 20 years, and what level of engine performance is required to safely perform these missions. In order to reduce the overall cost in developing this next generation space transportation system, it would be desirable to have a single engine design that could be used for a broad class of missions (for example, cargo and piloted lunar and Mars missions, orbit transfers around the Earth, and robotic missions to the planets). The engine thrust that is needed for manned Mars missions is addressed in this paper. We find that these missions are best served by a thrust level around 75,000 lbf to 100,000 lbf, and a thrust-to-engine weight ratio of about three. This thrust level might best be obtained by clustering five 15,000 lbf or 20,000 lbf engines. It may be better to throttle the engines back from full power between perigee burns, rather than shutting down. 5 refs., 4 figs.

  5. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  6. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1984-01-01

    A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  7. Michael Himmel - Research Fellow | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He has organized or co-organized 15 international conferences on aspects of biotechnology ... in the field of biochemistry and biotechnology, including the 2003 Gordon Research ...

  8. Michael Papka | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Arms control & nonproliferation Biotechnology for national security Decision science Emergency & disaster management Policy analysis Public health preparedness ...

  9. Michael Wang | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Wang is an associate editor of Biotechnology for Biofuels) and on the editorial boards of Frontiers of Energy and Power Engineering in China and Mitigation and Adaptation ...

  10. QER- Comment of Michael Kirkwood

    Broader source: Energy.gov [DOE]

    Please accept the attached comments from Pascoag Utility District regarding the Quadrennial Energy Review process. Out comments focus on the difficulty with our current RTO market structure and its lack of providing appropriate cost-effective solutions to our energy infrastructure needs in New England.

  11. Michael Knotek | Department of Energy

    Energy Savers [EERE]

    During this career, Knotek has led DOE-wide program formulation activities in Synchrotron Science and Facilities, Environmental Science, Fusion Sciences, High Performance ...

  12. Michael Levitt and Computational Biology

    Office of Scientific and Technical Information (OSTI)

    At that time, X-ray crystallography was used to ascertain the location of atoms like hydrogen, carbon and oxygen in larger molecules like proteins or DNA. Researchers then used the ...

  13. Michael Anthony | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anthony Electronics Assistant Telephone (630) 252-5304 E-mail mtanthony

  14. Michael North | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North collaborates with colleagues in the Global Security Sciences division. From right to left: Mike North, Pam Sydelko, Ignacio Martinez-Moyano, and Jessica Trail. Click image to enlarge. North collaborates with colleagues in the Global Security Sciences division. From right to left: Mike North, Pam Sydelko, Ignacio Martinez-Moyano, and Jessica Trail. Click image to enlarge. North maintains a healthy work-life balance by working out regularly at the Argonne Fitness Center. The gym is free,

  15. Michael Levitt and Computational Biology

    Office of Scientific and Technical Information (OSTI)

    ... Additional Web Pages: 3 Scientists Win Chemistry Nobel for Complex Computer Modeling, npr Stanford's Nobel Chemistry Prize Honors Computer Science, San Jose Mercury News Without ...

  16. Michael Contreras | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the technology readiness of innovative aerodynamic decelerator systems funded by NASA. He holds a B.S. and M.S. from the University of California, Los Angeles, and a Ph.D. ...

  17. NREL: Energy Analysis - Michael Bahl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Visualization Group Energy Forecasting and Modeling Group Market and Policy Impact Analysis Group Technology Systems and Sustainability Analysis Group Washington D.C....

  18. Michael Papka | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and analyzing data in the computational pipeline in order to find crucial information ... scientific curiosity Telephone 630-252-1556 E-mail papka@anl.gov Projects Petrel

  19. Michael Berube | Department of Energy

    Energy Savers [EERE]

    Code of Federal Regulations Part 712, Human Reliability Program | Department of Energy Clarification of Requirements for Certification in Title 10 Code of Federal Regulations Part 712, Human Reliability Program Memorandum, Clarification of Requirements for Certification in Title 10 Code of Federal Regulations Part 712, Human Reliability Program August 20, 2013 Clarification of Requirements for Certification in Title 10 Code of Federal Regulations Part 712, Human Reliability Program

  20. Michael F. Crowley | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He is the principal investigator for the U.S. Department of Energy's (DOE's) Bioenergy ... Process Design, Modeling, & Economics BioEnergy Science Center (BESC) Center for Direct ...

  1. NREL: Biomass Research - Michael Resch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resch's NREL career began in 2008 as a postdoctoral researcher working on cellulase and ... The ultimate goal of these studies is to improve the hydrolysis efficiency of cellulase ...

  2. Michael Greenstone | Department of Energy

    Office of Environmental Management (EM)

    This work includes an influential paper that demonstrated that high levels of particulates air pollution from coal combustion are causing the 500 million residents of Northern ...

  3. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont...

    Office of Scientific and Technical Information (OSTI)

    Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, ...

  4. Determination of deuterium–tritium critical burn-up parameter by four temperature theory

    SciTech Connect (OSTI)

    Nazirzadeh, M.; Ghasemizad, A.; Khanbabei, B.

    2015-12-15

    Conditions for thermonuclear burn-up of an equimolar mixture of deuterium-tritium in non-equilibrium plasma have been investigated by four temperature theory. The photon distribution shape significantly affects the nature of thermonuclear burn. In three temperature model, the photon distribution is Planckian but in four temperature theory the photon distribution has a pure Planck form below a certain cut-off energy and then for photon energy above this cut-off energy makes a transition to Bose-Einstein distribution with a finite chemical potential. The objective was to develop four temperature theory in a plasma to calculate the critical burn up parameter which depends upon initial density, the plasma components initial temperatures, and hot spot size. All the obtained results from four temperature theory model are compared with 3 temperature model. It is shown that the values of critical burn-up parameter calculated by four temperature theory are smaller than those of three temperature model.

  5. Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI...

    Broader source: Energy.gov (indexed) [DOE]

    Lean-burn SIDI engine technology offers improved fuel economy. deer10viola.pdf (3.46 MB) More Documents & Publications Emissions Control for Lean Gasoline Engines NH3 generation ...

  6. A Hypothetical Burning-Velocity Formula for Very Lean Hydrogen-Air Mixtures

    SciTech Connect (OSTI)

    Williams, Forman; Williams, Forman A; Grcar, Joseph F

    2008-06-30

    Very lean hydrogen-air mixtures experience strong diffusive-thermal types of cellular instabilities that tend to increase the laminar burning velocity above the value that applies to steady, planar laminar flames that are homogeneous in transverse directions. Flame balls constitute an extreme limit of evolution of cellular flames. To account qualitatively for the ultimate effect of diffusive-thermal instability, a model is proposed in which the flame is a steadily propagating, planar, hexagonal, close-packed array of flame balls, each burning as if it were an isolated, stationary, ideal flame ball in an infinite, quiescent atmosphere. An expression for the laminar burning velocity is derived from this model, which theoretically may provide an upper limit for the experimental burning velocity.

  7. Correlation between cathode properties, burning voltage, and plasma parameters of vacuum arcs

    SciTech Connect (OSTI)

    Anders, Andre; Yotsombat, Banchob; Binder, Robert

    2001-06-15

    Burning voltages of vacuum arcs were measured for 54 cathode materials and compared with literature data. As anticipated, a correlation between the arc burning voltage and the plasma temperature was found. However, more importantly, a correlation between the cohesive energy of the cathode material and the arc burning voltage could be demonstrated. This link between a cathode material property, the cohesive energy, and a discharge property, the arc burning voltage, is essential for the operation of the vacuum arc discharge because is determines the plasma temperature. Energy balance considerations show that this {open_quotes}cohesive energy rule{close_quotes} is responsible for several other secondary relationships, such as the correlation between the mean ion charge state and the boiling temperature of the cathode. {copyright} 2001 American Institute of Physics.

  8. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    U.S. Energy Information Administration (EIA) Indexed Site

    81 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 ...

  9. Vehicle Technologies Office Merit Review 2015: Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced lean-burn...

  10. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    SciTech Connect (OSTI)

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect