National Library of Energy BETA

Sample records for burning wood coal

  1. The deposition and burning characteristics during slagging co-firing coal and wood: modeling and numerical simulation

    SciTech Connect (OSTI)

    Wang, X.H.; Zhao, D.Q.; Jiang, L.Q.; Yang, W.B.

    2009-07-01

    Numerical analysis was used to study the deposition and burning characteristics of combining co-combustion with slagging combustion technologies in this paper. The pyrolysis and burning kinetic models of different fuels were implanted into the WBSF-PCC2 (wall burning and slag flow in pulverized co-combustion) computation code, and then the slagging and co-combustion characteristics (especially the wall burning mechanism of different solid fuels and their effects on the whole burning behavior in the cylindrical combustor at different mixing ratios under the condition of keeping the heat input same) were simulated numerically. The results showed that adding wood powder at 25% mass fraction can increase the temperature at the initial stage of combustion, which is helpful to utilize the front space of the combustor. Adding wood powder at a 25% mass fraction can increase the reaction rate at the initial combustion stage; also, the coal ignitability is improved, and the burnout efficiency is enhanced by about 5% of suspension and deposition particles, which is helpful for coal particles to burn entirely and for combustion devices to minimize their dimensions or sizes. The results also showed that adding wood powder at a proper ratio is helpful to keep the combustion stability, not only because of the enhancement for the burning characteristics, but also because the running slag layer structure can be changed more continuously, which is very important for avoiding the abnormal slag accumulation in the slagging combustor. The theoretic analysis in this paper proves that unification of co-combustion and slagging combustion technologies is feasible, though more comprehensive and rigorous research is needed.

  2. Wood-Burning Heating System Deduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Alabama Program Type Rebate Amount 100% Summary This statute allows individual taxpayers a deduction for the purchase and installation of a wood-burning heating system. The...

  3. DOE - Fossil Energy: A Bed for Burning Coal?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-Bed for Burning Coal An Energy Lesson Cleaning Up Coal A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with ...

  4. Demonstration of wood/coal co-firing in a spreader stoker

    SciTech Connect (OSTI)

    Cobb, J.T. Jr.; Elder, W.W.; Geiger, G.E.; Campus, N.J.; Miller, W.F.; Freeman, M.C.; McCreery, L.R.

    1999-07-01

    The Forest Service of the U.S. Department of Agriculture is sponsoring a series of demonstrations of wood/coal co-firing in stoker boilers. The first demonstration was conducted in 1997 in an industrial traveling-grate stoker boiler and the second in May 1999 in a spreader stoker boiler operated by the National Institute of Occupational Safety and Health (NIOSH) at the Bruceton Research Laboratory. The principal wood used in both demonstrations was tub-ground broken pallets. In the first phase of the NIOSH demonstration, four five-ton loads of wood/coal mixtures, varying from 3% to 12% wood (by Btu content), were combusted. The second phase of this demonstration was a 50-hour test using a 10% wood/coal blend delivered in two 20-ton loads. It has been concluded from both demonstrations that (1) a 10% wood/coal blend burns acceptably in the boiler, but (2) tub-ground urban wood is unacceptably difficult to feed through the grill above the delivery pit and through the spreader stokers. A method is being sought to acquire urban waste wood, having a more chip-like nature, to use in further testing and for commercialization.

  5. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILER PLANT

    SciTech Connect (OSTI)

    James T. Cobb Jr.

    2005-02-10

    Phase I of this project began by obtaining R&D variances for permits at the NIOSH boilerplant (NBP), Emery Tree Service (ETS) and the J. A. Rutter Company (JARC) for their portions of the project. Wood for the test burn was obtained from the JARC inventory (pallets), Thompson Properties and Seven D Corporation (construction wood), and the Arlington Heights Housing Project (demolition wood). The wood was ground at ETS and JARC, delivered to the Three Rivers Terminal and blended with coal. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NBP. Blends using hammermilled wood were operationally successful. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and evaluated. During the first year of Phase II the principal work focused upon searching for a replacement boilerplant and developing a commercial supply of demolition wood. The NBP withdrew from the project and a search began for another stoker boilerplant in Pennsylvania to replace it on the project. Three potential commercial demolition wood providers were contacted. Two were not be able to supply wood. At the end of the first year of Phase II, discussions were continuing with the third one, a commercial demolition wood provider from northern New Jersey. During the two-and-a-third years of the contract extension it was determined that the demolition wood from northern New Jersey was impractical for use in Pittsburgh, in another power plant in central New Jersey, and in a new wood gasifier being planned in Philadelphia. However, the project team did identify sufficient wood from other sources for the gasifier project. The Principal Investigator of this project assisted a feasibility study of wood gasification in Clarion County, Pennsylvania. As a result of the study, an independent power producer in the county has initiated a small wood

  6. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1982-01-01

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  7. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1984-01-01

    A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  8. Cofiring Wood and Coal to Stoker Boilers in Pittsburgh

    SciTech Connect (OSTI)

    Cobb, J.T., Jr.; Elder, W.W.

    1997-07-01

    The prime objective of the University of Pittsburgh's overall wood/coal cofiring program is the successful introduction of commercial cofiring of urban wood wastes into the stoker boilers of western Pennsylvania. Central to this objective is the demonstration test at the Pittsburgh Brewing Company. In this test the project team is working to show that two commercially-available clean wood wastes - tub-ground pallet waste and chipped clearance wood - can be included in the fuel fed daily to an industrial stoker boiler. Irrespective of its economic outcome, the technical success of the demonstration at the brewery will allow the local air quality regulation agency to permit a parametric test at the Bellefield Boiler Plant. The objective of this test is to obtain comprehensive data on all key parameters of this operational boiler while firing wood with coal. The data would then be used for thorough generic technical and economic analyses. The technical analysis would be added to the open literature for the general planning and operational guidance for boiler owners and operators. The economic analysis would gage the potential for providing this stoker fuel commercially in an urban setting and for purchasing it regularly for combustion in an urban stoker boiler.

  9. Co-combustion of sludge with coal or wood

    SciTech Connect (OSTI)

    Leckner, B.; Aamand, L.-E.

    2004-07-01

    There are several options for co-combustion of biomass or waste with coal. In all cases the fuel properties are decisive for the success of the arrangement: contents of volatile matter and of potential emission precursors, such as sulphur, nitrogen, chlorine, and heavy metals. The content of alkali in the mineral substance of the fuel is important because of the danger of fouling and corrosion. Research activities at Chalmers University of Technology include several aspects of the related problems areas. An example is given concerning emissions from co-combustion in circulating fluidized beds with coal or wood as base fuels, and with sewage sludge as additional fuel. Two aspects of the properties of sludge are studied: emissions of nitrogen and sulphur oxides as well as of chlorine, because the contents of the precursors to these emissions are high. The possibility of utilizing the phosphorus in sludge as a fertilizer is also discussed. The results show that emissions can be kept below existing emission limits if the fraction of sludge is sufficiently small but the concentration of trace elements in the sludge ash prevents the sludge from being used as a fertilizer. 15 refs., 9 figs., 2 tabs.

  10. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILERPLANT

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III; Thomas Stickle; Jun Wang; Hongming Li; William P. Barry

    2002-06-13

    During the third quarter, the experimental portion of the project was carried out. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NIOSH Boiler Plant (NBP). Blends using hammer-milled wood were operationally successful and can form the basis of Phase II. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and the mathematical modeling of mercury speciation reactions continued, yielding many interesting results. Material and energy balances for the test periods at the NBP, as well as at the Bellefield Boiler Plant, were prepared. Steps were taken to remove severe constraints from the Pennsylvania Switchgrass Energy and Conservation Project and to organize the supplying of landfill gas to the Bruceton federal complex. Two presentations were made to meetings of the Electric Power Research Institute and the National Energy Technology Laboratory.

  11. The gasification of coal-peat and coal-wood chip mixtures in the University of Minnesota, two-stage coal gasifier: Final report

    SciTech Connect (OSTI)

    Lewis, R.P.

    1986-12-01

    The technical feasibility of gasifying coal-peat and coal-wood chip mixtures with the University of Minnesota, Duluth Campus commercially technology two-stage coal gasifier was demonstrated during a series of experimental tests. Three types of processed peat products were mixed with coal and gasified. The three peat products were: peat briquettes, peat pellets and sod peat. The best peat product for gasification and handling was found to be peat pellets with a diameter of 7/8 inch and a length of .75 to 2 inches. A mixture of 65% coal and 35% peat pellets was found to cause no loss in gasifier efficiency and no operational problems. However, there was found to be no economic advantage in using coal-peat mixtures. The very limited testing performed with coal-wood chip mixtures indicated that the wood chips would be difficult to handle with the coal handling-equipment and there would be no economic advantage in using wood chips. 3 refs., 4 figs., 6 tabs.

  12. New Computer Codes Unlock the Secrets of Cleaner Burning Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cleaner Coal through Gasification In a traditional coal-fired power plant, coal undergoes combustion in a boiler to turn water into steam. This steam pressure then drives turbine ...

  13. Process for clean-burning fuel from low-rank coal

    DOE Patents [OSTI]

    Merriam, Norman W.; Sethi, Vijay; Brecher, Lee E.

    1994-01-01

    A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

  14. URBAN WOOD/COAL CO-FIRING IN THE BELLEFIELD BOILERPLANT

    SciTech Connect (OSTI)

    James T. Cobb Jr.; Gene E. Geiger; William W. Elder III; William P. Barry; Jun Wang; Hongming Li

    2004-04-08

    An Environmental Questionnaire for the demonstration at the Bellefield Boiler Plant (BBP) was submitted to the national Energy Technology Laboratory. An R&D variance for the air permit at the BBP was sought from the Allegheny County Health Department (ACHD). R&D variances for the solid waste permits at the J. A. Rutter Company (JARC), and Emery Tree Service (ETS) were sought from the Pennsylvania Department of Environmental Protection (PADEP). Construction wood was acquired from Thompson Properties and Seven D Corporation. Verbal authorizations were received in all cases. Memoranda of understanding were executed by the University of Pittsburgh with BBP, JARC and ETS. Construction wood was collected from Thompson Properties and from Seven D Corporation. Forty tons of pallet and construction wood were ground to produce BioGrind Wood Chips at JARC and delivered to Mon Valley Transportation Company (MVTC). Five tons of construction wood were hammer milled at ETS and half of the product delivered to MVTC. Blends of wood and coal, produced at MVTC by staff of JARC and MVTC, were shipped by rail to BBP. The experimental portion of the project was carried out at BBP in late March and early April 2001. Several preliminary tests were successfully conducted using blends of 20% and 33% wood by volume. Four one-day tests using a blend of 40% wood by volume were then carried out. Problems of feeding and slagging were experienced with the 40% blend. Light-colored fly ash was observed coming from the stack during all four tests. Emissions of SO{sub 2}, NOx and total particulates, measured by Energy Systems Associates, decreased when compared with combusting coal alone. A procedure for calculating material and energy balances on BBP's Boiler No.1 was developed, using the results of an earlier compliance test at the plant. Material and energy balances were then calculated for the four test periods. Boiler efficiency was found to decrease slightly when the fuel was shifted from coal

  15. COMPARISON OF THE POPULATIONS OF COMMON WOOD-NYMPH BUTTERFLIES IN BURNED PRAIRIE, UNBURNED PRAIRIE AND OLD FIELD GRASSES

    SciTech Connect (OSTI)

    Hahn, M.; Walton, R.

    2007-01-01

    Common wood-nymph butterfl ies are found throughout the United States and Canada. However, not much is known about how they overwinter or their preferences for particular grasses and habitats. In this study, the impact of prairie management plans on the abundance of the wood-nymph population was assessed, as well as the preference of these butterfl ies for areas with native or non-native grasses. The abundance of common wood-nymph butterfl ies was determined using Pollard walks; more common wood-nymph butterfl ies were found in the European grasses than were found in the burned and unburned prairie sites. The majority of the vegetation at each of the three sites was identifi ed and documented. Using a 1 X 3 ANOVA analysis, it was determined there were signifi cantly more butterfl ies in the European grasses than in the burned and unburned prairie sites (p < 0.0005). There was no signifi cant difference between the burned and unburned treatments of the prairie on the common wood-nymph population. A multiple variable linear regression model described the effect of temperature and wind speed on the number of observed common wood-nymph butterfl ies per hour (p = 0.026). These preliminary results need to be supplemented with future studies. Quadrat analysis of the vegetation from all three sites should be done to search for a correlation between common wood-nymph butterfl y abundance per hour and the specifi c types or quantity of vegetation at each site. The effect of vegetation height and density on the observer’s visual fi eld should also be assessed.

  16. Economic assessment of coal-burning locomotives: Topical report

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurry as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.

  17. URBAN WOOD/COAL CO-FIRING IN THE BELLEFIELD BOILERPLANT

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III; William P. Barry; Jun Wang; Hongming Li

    2001-08-21

    During the third quarter, important preparatory work was continued so that the experimental activities can begin early in the fourth quarter. Authorization was awaited in response to the letter that was submitted to the Allegheny County Health Department (ACHD) seeking an R&D variance for the air permit at the Bellefield Boiler Plant (BBP). Verbal authorizations were received from the Pennsylvania Department of Environmental Protection (PADEP) for R&D variances for solid waste permits at the J. A. Rutter Company (JARC), and Emery Tree Service (ETS). Construction wood was acquired from Thompson Properties and Seven D Corporation. Forty tons of pallet and construction wood were ground to produce BioGrind Wood Chips at JARC and delivered to Mon Valley Transportation Company (MVTC). Five tons of construction wood were milled at ETS and half of the product delivered to MVTC. Discussions were held with BBP and Energy Systems Associates (ESA) about the test program. Material and energy balances on Boiler No.1 and a plan for data collection were prepared. Presentations describing the University of Pittsburgh Wood/Coal Co-Firing Program were provided to the Pittsburgh Chapter of the Pennsylvania Society of Professional Engineers, and the Upgraded Coal Interest Group and the Biomass Interest Group (BIG) of the Electric Power Research Institute (EPRI). An article describing the program appeared in the Pittsburgh Post-Gazette. An application was submitted for authorization for a Pennsylvania Switchgrass Energy and Conservation Program.

  18. Rehabilitation of an anthracite-burning power plant in Ukraine with introduction of coal preparation

    SciTech Connect (OSTI)

    Ruether, J.; Killmeyer, R.; Schimmoller, B.; Gollakota, S.

    1996-12-31

    A study is being carried out jointly by the United States Department of Energy and the Ukrainian Ministry of Power and Electrification for rehabilitation of an anthracite-burning power station in the Donbass region of eastern Ukraine. The power station, named Luganskaya GRES, is laboring under deteriorating coal quality (the ash level is ranging towards 40% compared to the design value of 18%) and the physical plant is in need of repair. Approaches under consideration for the rehabilitation include upgrading the existing 200-MW{sub e} (gross) wall-fired boilers, repowering with circulating fluidized bed combustors, and the use of coal preparation. Coal washability tests conducted as part of the study indicate the coal is amenable to washing. The paper describes approaches to coal preparation being considered that provide design value coal for wall-fired boilers while minimizing rejection of Btus and generation of solid waste.

  19. Coal keeps the home fires burning, at a price

    SciTech Connect (OSTI)

    O'Connell, J.

    2007-11-15

    The wild ride of 2007 thermal and coking coal and freight prices does not show any signs of abating as 2008 nears, leaving consumers coping with historic high costs, except in the US. 3 figs.

  20. Method of burning lightly loaded coal-water slurries

    DOE Patents [OSTI]

    Krishna, C.R.

    1984-07-27

    In a preferred arrangement of the method of the invention, a lightly loaded coal-water slurry, containing in the range of approximately 40% to 52% + 2% by weight coal, is atomized to strip water from coal particles in the mixture. Primary combustor air is forced around the atomized spray in a combustion chamber of a combustor to swirl the air in a helical path through the combustion chamber. A flame is established within the combustion chamber to ignite the stripped coal particles, and flame temperature regulating means are provided for maintaining the flame temperature within a desired predetermined range of temperatures that is effective to produce dry, essentially slag-free ash from the combustion process.

  1. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    SciTech Connect (OSTI)

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  2. Process for clean-burning fuel from low-rank coal

    DOE Patents [OSTI]

    Merriam, N.W.; Sethi, V.; Brecher, L.E.

    1994-06-21

    A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

  3. Particle and gas emissions from a simulated coal-burning household fire pit

    SciTech Connect (OSTI)

    Linwei Tian; Donald Lucas; Susan L. Fischer; S. C. Lee; S. Katharine Hammond; Catherine P. Koshland

    2008-04-01

    An open fire was assembled with firebricks to simulate the household fire pit used in rural China, and 15 different coals from this area were burned to measure the gaseous and particulate emissions. Particle size distribution was studied with a microorifice uniform-deposit impactor (MOUDI). Over 90% of the particulate mass was attributed to sub-micrometer particles. The carbon balance method was used to calculate the emission factors. Emission factors for four pollutants (particulate matter, CO{sub 2}, total hydrocarbons, and NOx) were 2-4 times higher for bituminous coals than for anthracites. In past inventories of carbonaceous emissions used for climate modeling, these two types of coal were not treated separately. The dramatic emission factor difference between the two types of coal warrants attention in the future development of emission inventories. 25 refs., 8 figs., 1 tab.

  4. Thermal Pretreatment of Wood for Cogasification/cofiring of Biomass and Coal

    SciTech Connect (OSTI)

    Wang, Ping; Howard, Bret; Hedges, Sheila; Morreale, Bryan; Van Essendelft, Dirk; Berry, David

    2013-10-29

    Utilization of biomass as a co-feed in coal and biomass co-firing and co-gasification requires size reduction of the biomass. Reducing biomass to below 0.2 mm without pretreatment is difficult and costly because biomass is fibrous and compressible. Torrefaction is a promising thermal pretreatment process and has the advantages of increasing energy density, improving grindability, producing fuels with more homogenous compositions and hydrophobic behavior. Temperature is the most important factor for the torrefaction process. Biomass grindability is related to cell wall structure, thickness and composition. Thermal treatment such as torrefaction can cause chemical changes that significantly affect the strength of biomass. The objectives of this study are to understand the mechanism by which torrefaction improves the grindability of biomass and discuss suitable temperatures for thermal pretreatment for co-gasification/cofiring of biomass and coal. Wild cherry wood was selected as the model for this study. Samples were prepared by sawing a single tangential section from the heartwood and cutting it into eleven pieces. The samples were consecutively heated at 220, 260, 300, 350, 450 and 550oC for 0.5 hr under flowing nitrogen in a tube furnace. Untreated and treated samples were characterized for physical properties (color, dimensions and weight), microstructural changes by SEM, and cell wall composition changes and thermal behaviors by TGA and DSC. The morphology of the wood remained intact through the treatment range but the cell walls were thinner. Thermal treatments were observed to decompose the cell wall components. Hemicellulose decomposed over the range of ~200 to 300oC and resulted in weakening of the cell walls and subsequently improved grindability. Furthermore, wood samples treated above 300oC lost more than 39% in mass. Therefore, thermal pretreatment above the hemicelluloses decomposition temperature but below 300oC is probably sufficient to improve

  5. Analysis of mass loss of a coal particle during the course of burning in a flow of inert material

    SciTech Connect (OSTI)

    Pelka, Piotr

    2009-08-15

    This paper is an attempt to explain the role of erosion during the process of coal combustion in a circulating fluidized bed. Different kinds of carbon deposits found in Poland, both bituminous as well as lignite with the particle of 10 mm in diameter were the subject of the research. According to many publications it is well known that erosion plays a significant role in coal combustion, by changing its mechanism as well as generating an additional mass loss of the mother particle. The purpose of this research was to determine the influence of an inert material on an erosive mass loss of a single coal particle burning in a two-phase flow. The determination of the influence of a coal type, the rate of flow of inert material and the temperature inside the furnace on the erosive mass loss of burning coal particle was also taken into consideration. The results obtained indicate that the velocity of the erosive mass loss depends on the chemical composition and petrographic structure of burning coal. The mechanical interaction of inert and burning coal particles leads to the shortening of the period of overall mass loss of the coal particle by even two times. The increase in the rate of flow of the inert material intensifies the generation of mass loss by up to 100%. The drop in temperature which slows down the combustion process, decreases the mass loss of the coal particle as the result of mechanical interaction of the inert material. As was observed, the process of percolation plays a significant role by weakening the surface of the burning coal. (author)

  6. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 261 with Illinois No. 6 Burning Star Mine coal

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R & D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  7. Oil-fired cycling station converted to base-loaded, coal-burning operation

    SciTech Connect (OSTI)

    Hunt, J.; Steinbach, P.

    1982-04-01

    The Baltimore Gas and Electric Company has been able to modify its oil-fired Brandon Shores plant while under construction to a base-loaded plant able to burn either oil or coal. Utility planners had the foresight prior to the 1973 embargo to see advantages in a dual-fuel capability. Brandon Shores has experienced the same financing and fluctuating load problems as other projects, but it has evolved into a facility suited for the 1980s and 90s. The original plan included space to handle coal and wastes as well as specifying dual-fuel equipment throughout to minimize future modifications. During one construction delay, the utility initiated a preventative-maintenance program comparable to that of a nuclear plant that has been continued. Extensive environmental planning and interaction with the public have avoided other costly delays. (DCK)

  8. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect (OSTI)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  9. Epoxy-borax-coal tar composition for a radiation protective, burn resistant drum liner and centrifugal casting method

    DOE Patents [OSTI]

    Taylor, Robert S.; Boyer, Norman W.

    1980-01-01

    A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of Borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% Borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  10. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect (OSTI)

    Constance Senior

    2004-12-31

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  11. Prospects for coal briquettes as a substitute fuel for wood and charcoal in US Agency for International Development Assisted countries

    SciTech Connect (OSTI)

    Perlack, R.D.; Stevenson, G.G.; Shelton, R.B.

    1986-02-01

    Fuelwood shortages and potential shortages are widespread throughout the developing world, and are becoming increasingly more prevalent because of the clearing of land for subsistence and plantation agriculture, excessive and inefficient commercial timber harvesting for domestic and export construction, and charcoal production to meet rising urban demands. Further, the environmental and socioeconomic consequences of the resulting deforestation are both pervasive and complex. This report focuses on the substitution of coal briquettes for fuelwood. Although substantial adverse health effects could be expected from burning non-anthracite coal or coal briquettes, a well-developed technique, carbonization, exists to convert coal to a safer form for combustion. The costs associated with briquetting and carbonizing coal indicate that ''smokeless'' coal briquettes can be produced at costs competitive with fuelwood and charcoal. The US Agency for International Development (USAID) is working on implementing this energy option in Haiti and Pakistan by (1) evaluating resources, (2) assessing markets, (3) analyzing technologies, (4) studying government policy and planning, and (5) packaging the idea for the private sector to implement. 26 refs., 2 figs., 12 tabs.

  12. Meteorological measurements in the vicinity of a coal burning power plant

    SciTech Connect (OSTI)

    Crescenti, G.H.; Gaynor, J.E.

    1995-05-01

    High concentrations of sulfur dioxide (SO2) are commonly observed during the cool season in the vicinity of a 2.5 GW coal burning power plant located in the Mae Moh Valley of northern Thailand. The power plant is the source for nearly all of the observed SO2 since there are no other major industrial activities in this region. These high pollution fumigation events occur almost on a daily basis, usually lasting for several hours between late morning and early afternoon. One-hour average SO2 concentrations commonly exceed 1,000 micrograms/cu m. As a result, an increase in the number of respiratory type health complaints have been observed by local clinics during this time of the year. Meteorological data were acquired from a variety of observing platforms during an intensive field study from December 1993 to February 1994. The measurements included horizontal and vertical wind velocity, air temperature, relative humidity, and solar radiation. In addition, turbulent flux measurements were acquired by a sonic anemometer. SO2 measurements were made at seven monitoring sites scattered throughout the valley. These data were used to examine the atmospheric processes which are responsible for these high pollution fumigation events.

  13. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect (OSTI)

    Constance Senior; Temi Linjewile

    2003-10-31

    This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the second set of mercury measurements was made after the catalysts had been exposed to flue gas for about 2,000 hours. There was good agreement between the Ontario Hydro measurements and the SCEM measurements. Carbon trap measurements of total mercury agreed fairly well with the SCEM. There did appear to be some loss of mercury in the sampling system toward the end of the sampling campaign. NO{sub x} reductions across the catalysts ranged from 60% to 88%. Loss of total mercury across the commercial catalysts was not observed, as it had been in the March/April test series. It is not clear whether this was due to aging of the catalyst or to changes in the sampling system made between March/April and August. In the presence of ammonia, the blank monolith showed no oxidation. Two of the commercial catalysts showed mercury oxidation that was comparable to that in the March/April series. The other three commercial catalysts showed a decrease in mercury oxidation relative to the March/April series. Oxidation of mercury increased without ammonia present. Transient experiments showed that when ammonia was turned on, mercury appeared to desorb from the catalyst, suggesting displacement of adsorbed mercury by the ammonia.

  14. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    SciTech Connect (OSTI)

    Smith, P.V.

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  15. Characterization of ashes from co-combustion of refuse-derived fuel with coal, wood and bark in a fluidized bed

    SciTech Connect (OSTI)

    Zevenhoven, R.; Skrifvars, B.J.; Hupa, M.

    1998-12-31

    The technical and environmental feasibility of co-combustion of a recovered fuel (RF) prepared from combustible waste fractions (separated at the source), together with coal, peat, wood or wood-waste in thermal power/electricity generation has been studied in several R and D projects within Finland. The current work focuses on eventual changes in ash characteristics during co-combustion of RF with coal, wood or bark, which could lead to bed agglomeration, slagging, fouling and even corrosion in the boiler. Ashes were produced in a 15 kW bubbling fluidized bed (BFB) combustion reactor, the fly ash captured by the cyclone was further analyzed by XRF. The sintering tendency behavior of these ashes was investigated using a test procedure developed at Aabo Akademi University. Earlier, a screening program involved ashes from RF (from a waste separation scheme in Finland) co-combustion with peat, wood and bark, in which ash pellets were thermally treated in air. This showed significant sintering below 600 C as well as above 800 C for RF/wood and RF/bark, but not for RF/peat. This seemed to correlate with alkali chloride and sulfate concentrations in the ashes. The current work addresses a Danish refuse-derived fuel (RDF), co-combusted with bark, coal, bark+coal, wood, and wood+coal (eight tests). Ash pellets were thermally treated in nitrogen in order to avoid residual carbon combustion. The results obtained show no sintering tendencies below 600 C, significant changes in sintering are seen with pellets treated at 1,000 C. Ash from 100% RDF combustion does not sinter, 25% RDF co-combustion with wood and peat, respectively, gives an insignificant effect. The most severe sintering occurs during co-combustion of RDF with bark. Furthermore, it appears that the presence of a 25% coal fraction (on energy basis) seems to have a negative effect on all fuel blends. Analysis of the sintering results versus ash chemical composition shows that, in general, an increased level of

  16. Selenium And Arsenic Speciation in Fly Ash From Full-Scale Coal-Burning Utility Plants

    SciTech Connect (OSTI)

    Huggins, F.E.; Senior, C.L.; Chu, P.; Ladwig, K.; Huffman, G.P.; /Kentucky U. /Reaction Engin. Int. /Elect. Power Res. Inst., Palo Alto

    2007-07-09

    X-ray absorption fine structure spectroscopy has been used to determine directly the oxidation states and speciation of selenium and arsenic in 10 fly ash samples collected from full-scale utility plants. Such information is needed to assess the health risk posed by these elements in fly ash and to understand their behavior during combustion and in fly ash disposal options, such as sequestration in tailings ponds. Selenium is found predominantly as Se(IV) in selenite (SeO{sub 3}{sup 2-}) species, whereas arsenic is found predominantly as As(V) in arsenate (AsO{sub 4}{sup 3-}) species. Two distinct types of selenite and arsenate spectra were observed depending upon whether the fly ash was derived from eastern U.S. bituminous (Fe-rich) coals or from western subbituminous or lignite (Ca-rich) coals. Similar spectral details were observed for both arsenic and selenium in the two different types of fly ash, suggesting that the post-combustion behavior and capture of both of these elements are likely controlled by the same dominant element or phase in each type of fly ash.

  17. Waterwall corrosion in pulverized coal burning boilers: root causes and wastage predictions

    SciTech Connect (OSTI)

    Bakker, W.; Stanko, G.; Blough, J.; Seitz, W.; Niksa, S.

    2007-07-01

    Waterwall corrosion has become a serious problem in the USA since the introduction of combustion systems, designed to lower NOx emissions. Previous papers have shown that the main cause of the increased corrosion is the deposition of corrodants, iron sulfides and alkali chlorides, which occurs under reducing conditions. In this paper, the contribution of various variables such as the amount of corrodant in the deposit, the flue gas composition and the metal temperature, is further quantified in laboratory tests, using a test furnace allowing thermal gradients across the deposit and the metal tube samples. Approximate deposit compositions were calculated from the coal composition, its associated ash constituents and corrosive impurities. A commercially available thermochemical equilibrium package was used, after modifications to reflect empirical alkali availability data. Predictions from these calculations agreed reasonably well with the alkali chloride and FeS content found in actual boiler deposits. Thus approximate corrosion rates can be predicted from the chemical composition of the coal using corrosion rates from laboratory tests, adjusted to account for the short duration (100 hours) of the laboratory tests. Reasonable agreement was again obtained between actual and predicted results.

  18. Environmentally conscious coal combustion

    SciTech Connect (OSTI)

    Hickmott, D.D.; Brown, L.F.; Currier, R.P.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  19. James F. Wood

    Broader source: Energy.gov [DOE]

    James F. Wood is currently Deputy Assistant Secretary for Clean Coal in the Office of Fossil Energy (FE). In this position, he is responsible for the management and direction of the Office's...

  20. STEO October 2012 - wood

    U.S. Energy Information Administration (EIA) Indexed Site

    More U.S. households burning wood this winter to stay warm, reversing two-decade decline Burning wood as the primary heating source in U.S. households has risen over the last 10 years, reversing the decline seen in the 1980s and 1990s. About 2.6 million households out of 115 million will rely on wood as the main way to warm their homes this winter. That's up 3 percent from last year, according to the U.S. Energy Information Administration's new winter fuels forecast. The West will have the most

  1. Ferns and fires: Experimental charring of ferns compared to wood and implications for paleobiology, paleoecology, coal petrology, and isotope geochemistry

    SciTech Connect (OSTI)

    McParland, L.C.; Collinson, M.E.; Scott, A.C.; Steart, D.C.; Grassineau, N.V.; Gibbons, S.J.

    2007-09-15

    We report the effects of charring on the ferns Osmunda, Pteridium, and Matteucia with coniferous wood (Sequoia) for comparison. Like charred wood, charred ferns shrink, become black and brittle with a silky sheen, and retain three-dimensional cellular structure. Ferns yield recognizable charcoal (up to 800{sup o}C) that could potentially survive in the fossil record enabling reconstruction of ancient fire-prone vegetation containing ferns. Charred fossils of herbaceous ferns would indicate surface fires. Like charred wood, cell-wall layers of charred ferns homogenize, and their reflectance values increase with rising temperature. Charcoalified fragments of thick-walled cells from conifer wood or fern tissues are indistinguishable and so cannot be used to infer the nature of source vegetation. Charred conifer wood and charred fern tissues show a relationship between mean random reflectance and temperature of formation and can be used to determine minimum ancient fire temperatures. Charred fern tissues consistently have significantly more depleted {delta}{sup 13}C values ({le} 4 parts per thousand) than charred wood. Therefore, if an analysis of {delta} {sup 13}C through time included fern charcoal among a succession of wood charcoals, any related shifts in {delta} {sup 13}C could be misinterpreted as atmospheric changes or misused as isotope stratigraphic markers. Thus, charcoals of comparable botanical origin and temperatures of formation should be used in order to avoid misinterpretations of shifts in {delta}{sup 13}C values.

  2. Thermal Pretreatment of Wood for Cogasification/cofiring of Biomass...

    Office of Scientific and Technical Information (OSTI)

    ...cofiring of Biomass and Coal Citation Details In-Document Search Title: Thermal Pretreatment of Wood for Cogasificationcofiring of Biomass and Coal Utilization of biomass as a ...

  3. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect (OSTI)

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  4. Wood and Pellet Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems » Wood and Pellet Heating Wood and Pellet Heating A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie Today you can choose from a new generation of wood- and pellet-burning appliances that are cleaner burning, more efficient, and powerful enough to heat many average-sized, modern homes. Pellet fuel appliances burn small pellets that measure 3/8 to 1

  5. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    SciTech Connect (OSTI)

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  6. Coal

    Broader source: Energy.gov [DOE]

    Coal is the largest domestically produced source of energy in America and is used to generate a significant amount of our nation’s electricity.

  7. Wood and Pellet Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wood and Pellet Heating Basics Wood and Pellet Heating Basics August 16, 2013 - 3:02pm Addthis Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning Appliances The following is a brief overview of the different types of wood and pellet fuel appliances available. High-Efficiency Fireplaces and Fireplace Inserts Designed more for show, traditional open masonry fireplaces should not be considered heating devices.

  8. Overburden characterization and post-burn study of the Hanna IV, underground coal gasification site, Wyoming, and comparison to other Wyoming UCG sites

    SciTech Connect (OSTI)

    Marcouiller, B.A.; Burns, L.K.; Ethridge, F.G.

    1984-11-01

    Analysis of 21 post-burn cores taken from the Hanna IV UCG site allows 96 m (315 ft) of overburden to be subdivided into four local stratigraphic units. The 7.6 m (25 ft) thick Hanna No. 1 coal seam is overlain by a laterally discontinuous, 3.3 m (11 ft) thick shaley mudstone (Unit A') in part of the Hanna IV site. A more widespread, 30 m (90 ft) thick well-indurated sandstone (Unit A) overlies the A' unit. Unit A is the roof rock for both of the Hanna IV cavities. Overlying Unit A is a 33 m (108 ft) thick sequence of mudstone and claystone (Unit B), and the uppermost unit at the Hanna IV site (Unit C) is a coarse-grained sandstone that ranges in thickness from 40 to 67 m (131 to 220 ft). Two elliptical cavities were formed during the two phases of the Hanna IV experiment. The larger cavity, Hanna IVa, is 45 x 15 m in plan and has a maximum height of 18 m (59 ft) from the base of the coal seam to the top of the cavity; the Hanna IVb cavity is 40 x 15 m in plan and has a maximum height of 11 m (36 ft) from the base of the coal seam to the top of the cavity. Geotechnical tests indicated that the Hanna IV overburden rocks were moderately strong to strong, based on the empirical classification of Broch and Franklin (1972), and a positive, linear correlation exists between rock strength and volume percent calcite cement. There is an inverse linear correlation between rock strength and porosity for the Hanna IV overburden rocks. 28 refs., 34 figs., 13 tabs..

  9. Feasibility study of burning waste paper in coal-fired boilers on Air Force installations. Master's thesis

    SciTech Connect (OSTI)

    Smith, K.P.

    1993-09-01

    This thesis examined the feasibility of using waste paper derived fuel in coal-fired boilers on Air Force installations in an attempt to help solve air pollution and solid waste disposal problems. The implementation of waste paper derived fuel was examined from both a technical acceptability and an economic feasibility viewpoint. The majority of data for this study was obtained through literature reviews and personal interviews. Waste paper was found to be technically acceptable for use as fuel. However, waste paper has certain characteristics that may create problems during combustion and therefore further research is required. These problems included the possibility of increased nitrous oxide emissions, increased volatile emissions, dioxin and furan emissions, formation of hydrochloric acid, and the presence of heavy metals in emissions and ash.

  10. Marin County- Wood Stove Replacement Rebate Program

    Broader source: Energy.gov [DOE]

    Homes in the San Geronimo Valley (Forest Knolls, Lagunitas, San Geronimo, and Woodacre) can receive a rebate of $1,500 for the removal and replacement of non-certified wood burning appliances with...

  11. Coal desulfurization in a rotary kiln combustor

    SciTech Connect (OSTI)

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  12. Coal Combustion Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge.

  13. Plant betterment for an anthracite-burning utility in Ukraine: Coal preparation as part of a SO{sub 2}, NO{sub x}, and particulate emission control strategy

    SciTech Connect (OSTI)

    Ruether, J.A.; Freeman, M.C.; Gollakota, S.V.

    1997-12-31

    Workers at the Energy Departments of the US and Ukraine have cooperatively devised a strategy for upgrading performance of a 200 MWe wet bottom pulverized coal boiler in eastern Ukraine at the Lugansk GRES power station. The plant currently burns poor quality anthracite (30% ash versus 18% ash design coal, as-received basis) and is in need of maintenance. Oil or gas support fuel in the amount of 30% (calorific basis) is required to stabilize the flame and supplement the calorific value of the coal feed. No NO{sub x} or SO{sub 2} controls are used at present, and unburned carbon content in the fly ash is high. An experimental program was carried out at the Federal Energy Technology Center (FETC) to estimate the improvement in plant performance that could be expected if the unit is supplied with design coal and is refurbished. High ash Ukrainian anthracite was cleaned to design specifications. Raw and cleaned coal were fed to a 490 MJ/h coal feed combustion unit at a number of conditions of support fuel use and ingress air leakage designed to simulate current and improved operations at the power plant. The results indicate the improvement in performance and reductions in SO{sub 2} and NO{sub x} emissions that can be expected as a result of the planned upgrade and conversion to use of cleaned coal. A detailed engineering and financial analysis indicates that plant rehabilitation combined with the use of cleaned schtib reduces not only pollutant emissions but also cost of electricity (COE). Additional benefits include increased plant life and capacity, and reduced supplementary fuel consumption.

  14. Densified fuels from wood waste

    SciTech Connect (OSTI)

    Pickering, W.H.

    1995-11-01

    Wood compressed to a specific gravity of about 1.2 constitutes an excellent clean burning fuel. {open_quotes}Prestologs{close_quotes} were marketed before 1940, but in the past ten years a much larger and growing market is densified pellet fuel has developed. The market for pellet fuel is about 90% residential, using special pellet burning stoves. Initial sales were almost entirely in the northwest, but sales in other parts of the country are now growing rapidly. Approximately 300,000 stoves are in use. Note that this industry developed from the private sector with little or no support from federal or state governments. Densified fuel is manufactured by drying and compressing sawdust feedstock. Combustion is different than that of normal wood. For example, wood pellets require ample supplies of air. They then burn with a hot flame and very low particulate emissions. Volatile organic compounds are burned almost completely and carbon monoxide can also be kept very low. Stoves burning pellets easily meet EPA standards. This paper discusses technical and economic factors associated with densified fuel and considers the future of the industry.

  15. JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING

    SciTech Connect (OSTI)

    John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

    2003-10-01

    The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite

  16. Daniel Wood

    Broader source: Energy.gov [DOE]

    Daniel Wood is the Data Visualization and Cartographic Specialist in the Office of Public Affairs at the Department of Energy. He develops creative and interactive ways of viewing the Energy...

  17. Mobilizable RDF/d-RDF burning program

    SciTech Connect (OSTI)

    Niemann, K.; Campbell, J.

    1982-03-01

    The Mobilizable RDF/d-RDF Burning Program was conceived to promote the utilization of refuse-derived fuels (RDF) as a supplement to existing fossil fuel sources in industrial-sized boilers. The program explores the design, development, and eventual construction of densified-RDF (d-RDF) for use in boiler combustion testing as a supplement to stoker coal or wood wastes. The equipment would be mounted on trailers and assembled and operated at preselected sites throughout the country where approximately 750 tons of RDF would be produced and test burned in a local boiler. The equipment, to include a transportable RDF boiler metering and feed system, would then be moved and operated at two to three test sites annually. The program is intended to encourage the construction of permanent resource recovery facilities by involving local waste handling groups in operating the equipment and producing fuel, and potential local fuel users in testing the fuel in their boilers. The Mobilizable Program was developed from two separate tasks. The first task developed the concept behind the program and defined its operational and organizational structure. The second task, a follow-up to the first, was intended principally to finalize test locations, develop equipment designs and specifications, and formalize a management program. This report summarizes the principal findings of both tasks. It identifies the criteria used to identify test locations, outlines the program's management structure, presents design and performance specifications for both the fuel production equipment and boiler fuel feed systems, and provides a detailed evaluation of the parameters involved in burning RDF in industrial-sized boilers. Final conclusions and recommendations identify problem areas encountered in the program, and discuss possible future directions for such a program.

  18. Coal combustion products (CCPs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an

  19. Pulverized coal fuel injector

    DOE Patents [OSTI]

    Rini, Michael J.; Towle, David P.

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  20. Clean Coal Power Initiative | Department of Energy

    Office of Environmental Management (EM)

    that sharply reduce air emissions and other pollutants from coal-burning power plants. ... that can help utilities cut sulfur, nitrogen and mercury pollutants from power plants. ...

  1. Wood fuel in fluidized bed boilers

    SciTech Connect (OSTI)

    Virr, M.J.

    1982-01-01

    Development of fluidized bed fire-tube and water-tube boilers for the burning of wood, gas, and refuse-derived fuel will be reviewed. Experience gained in already installed plants will be outlined. Research experiments results on the use of various forms of wood and other biomass fuels, such as wood chips, pellets, peach pits, nut shells and kernels and refuse-derived fuels, will be described for small and medium sized fire-tube boilers, and for larger water-tube boilers for co-generation. (Refs. 4).

  2. Coal desulfurization by chlorinolysis: production and combustion-test evaluation of product coals. Final report

    SciTech Connect (OSTI)

    Kalvinskas, J.; Daly, D.

    1982-04-30

    Laboratory-scale screening tests were carried out on PSOC 276, Pittsburgh Coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, Pittsburgh No. 8 from Greene County, PA, Illinois No. 6 from Jackson County, Illinois and Eagle No. 5 from Moffat County, Colorado were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals (PSOC 276, Pittsburgh Coal from Harrison County, Ohio and 282, Illinois No. 6 Coal from Jefferson County, Illinois) and one subbituminous coal (PSOC 230, Rosebud Coal fom Rosebud County, Montana) were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29 to 69%, reductions in volatiles (12 to 37%) and hydrogen (6 to 31%). Hydrodesulfurization provided a much greater desulfurization (56 to 86%), reductions in volatiles (77 to 84%) and hydrogen (56 to 64%). The three coals were combustion tested in the Penn State plane flame furance to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning. 4 figures, 2 tables.

  3. Kinetics and mechanisms of hydroliquefaction and hydrogasification of lignite. [Cellulose, wood, manure, municipal waste, coal of various ranks, fuel oil and natural gas

    SciTech Connect (OSTI)

    Weiss, A.H.; Kranich, W.L.; Geureuz, K.

    1981-01-01

    A high pressure, continuous, stirred-tank reactor system has been constructed for the study of the catalytic liquefaction of North Dakota lignite slurried in anthracene oil. The conversion of lignite using a cobalt-molybdenum on alumina catalyst and the distribution of products as preasphaltenes, asphaltenes, oils and gases has been studied at the following conditions: temperature, 375 to 440/sup 0/C; pressure, 1000 to 1600 psig; agitator speed, 800 to 1500 rpm; catalyst concentration, 0 to 10% (based on lignite); initial lignite concentration, 5 to 30%; and space time, 16 to 52 minutes. At reactor pressures above 1500 psig and agitator speeds above 1000 rpm, reaction rate was essentially independent of pressure. At catalyst concentrations above 1% (based on lignite), the conversion of lignite was essentially independent of catalyst concentration. Experiments were conducted above these limits to find the effect on lignite conversion rate, of initial lignite concentration, and space time, or degree of conversion. The results at constant temperature were correlated by an equation which is given in the report. The relationship between the rate constant, K, and temperature, and between the maximum conversion and temperature was established. The effect of reaction conditions on the distribution of products was studied. In the presence of catalyst, the oil yield was increased, even under conditions where the catalyst did not affect overall lignite conversion. Under the most favorable conditions the oil yield was a little better than that obtained by Cronauer in the uncatalyzed hydroliquefaction of subbituminous coal at similar temperature and pressure.

  4. Role of coal in the world and Asia

    SciTech Connect (OSTI)

    Johnson, C.J.; Li, B.

    1994-10-01

    This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning.

  5. Wood and Pellet Heating

    Broader source: Energy.gov [DOE]

    Looking for an efficient, renewable way to heat your home? Wood or pellets are renewable fuel sources, and modern wood and pellet stoves are efficient heaters.

  6. A clean-burning biofuel as a response to adverse impacts of woodsmoke and coalsmoke on Navajo health

    SciTech Connect (OSTI)

    Shultz, E.B. Jr.; Bragg, W.G.; Whittier, J.

    1994-12-31

    Because over 60% of Navajo households are heated with woodfuel and coal, and indoor air pollution from woodsmoke and coalsmoke is problematic, most Navajos are probably at risk of respiratory and other smoke-induced illnesses. A previous study has shown that Navajo children living in homes heated by a wood/coal stove are nearly five times more likely to contract acute lower respiratory tract infections than children from homes that do not use those fuels. Stove and flue improvements to reduce leakage of smoke into the home would help. So would clean-burning solid fuels in replacement of woodfuel and coal. The authors describe a clean-burning fast-growing carbohydrate biofuel, prepared by sun-drying the roots of a wild southwestern gourd plant, Cucurbita foetidissima. They call it {open_quotes}rootfuel.{close_quotes} A test plot is growing during the 1994 season at the NMSU Agricultural Science Center on the Navajo Nation, near Farmington, New Mexico. Irrigation requirements are being measured. In the Fall, a preliminary needs assessment will be conducted to learn more about how fuel usage impacts Navajo health. The acceptability of rootfuel in selected homes will be tested during the upcoming heating season.

  7. Coal desulfurization in a rotary kiln combustor. Final report, March 15, 1990--July 31, 1991

    SciTech Connect (OSTI)

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  8. Underground gasification of coal

    DOE Patents [OSTI]

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  9. PRB Coal Users' Group grapples with supply chain challenges

    SciTech Connect (OSTI)

    Pettier, R.

    2007-06-15

    An account is given of issues addressed at the Powder River Basin Coal Users' Group annual meeting, held in conjunction with the Electric Power 2007 conference. Transportation, buying equipment for switching plants burn PRB coal, finding and fighting fires in a coal silo, and coal handling were amongst the topics discussed. 1 fig., 4 photos.

  10. Materials challenges in advanced coal conversion technologies

    SciTech Connect (OSTI)

    Powem, C.A.; Morreale, B.D.

    2008-04-15

    Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

  11. Coal combustion system

    DOE Patents [OSTI]

    Wilkes, Colin; Mongia, Hukam C.; Tramm, Peter C.

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  12. National Coal Quality Inventory (NACQI)

    SciTech Connect (OSTI)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  13. Wood pellet production

    SciTech Connect (OSTI)

    Moore, J.W.

    1983-08-01

    Southern Energy Limited's wood pellet refinery, Bristol, Florida, produces wood pellets for fuel from scrap wood from a nearby sawmill and other hog fuel delivered to the plant from nearby forest lands. The refinery will provide 50,000 tons of pellets per year to the Florida State Hospital at Chattahoochee to fire recently converted boilers in the central power plant. The pellets are densified wood, having a moisture content of about 10% and a heating value of 8000 Btu/lb. They are 0.5 inches in diameter and 2 to 3 inches in length.

  14. In the OSTI Collections: Clean Coal | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    of coal that can be burned to release energy from portions that don't burn and from ... Removing the carbon dioxide from this gas mixture consumes a lot of energy. On the other ...

  15. Wood energy system design

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This handbook, Wood Energy System Design, was prepared with the support of the Council of Great Lakes Governors and the US Department of Energy. It contains: wood fuel properties; procurement; receiving, handling, and storage; combustion; gasification; emission control; electric power generation and cogeneration; and case studies. (JF)

  16. Particulate emissions from residential wood combustion: Final report: Norteast regional Biomass Program

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The objective of this study was to provide a resource document for the Northeastern states when pursuing the analysis of localized problems resulting from residential wood combustion. Specific tasks performed include assigning emission rates for total suspended particulates (TSP) and benzo(a)pyrene (BaP) from wood burning stoves, estimating the impact on ambient air quality from residential wood combustion and elucidating the policy options available to Northeastern states in their effort to limit any detrimental effects resulting from residential wood combustion. Ancillary tasks included providing a comprehensive review on the relevant health effects, indoor air pollution and toxic air pollutant studies. 77 refs., 11 figs., 25 tabs.

  17. STEO December 2012 - coal demand

    U.S. Energy Information Administration (EIA) Indexed Site

    coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in 2012 for the fourth year in a row. Domestic coal consumption is on track to total 829 million tons this year. That's the lowest level since 1992, according to the U.S. Energy Information Administration's new monthly energy forecast. Utilities and power plant operators are choosing to burn more lower-priced natural gas

  18. Assessment of the radiological impact of coal utilization. II. Radionuclides in western coal ash

    SciTech Connect (OSTI)

    Styron, C.E.; Bishop, C.T.; Casella, V.R.; Jenkins, P.H.; Yanko, W.H.

    1981-04-03

    A project has been initiated at Mound Facility specifically to evaluate the potential radiological impact of coal utilization. Phase I of the project included a survey of western US coal mines and an assessment of emissions from a power plant burning Western coal. Concentrations of uranium in coal from operating Western mines were slightly below the national average and roughly comparable to Eastern coal. Environmental deposition of radionuclides from stack emissions over a 20-year accumulation at a power plant burning Western coal was estimated to be 0.1 to 1.0% of measured background. Phase II of the project, the subject of the present report, has involved an interlaboratory comparison of results of radioanalytical procedures, determining partitioning coefficients for radionuclides in bottom ash and fly ash, and an assessment of the potential for migration of radionuclides from ash disposal sites. Results from the various laboratories for uranium-238, uranium-234, thorium-230, radium-226, polonium-210, thorium-232, thorium-228, and uranium-235 were generally in very good agreement. However, values for lead-210 in coal varied widely. Essentially all the nonvolatile radionuclides (uranium, radium, and thorium) from feed coal were accounted for in fly ash and bottom ash. However, 20 to 50% of the volatile radionuclides (lead and polonium) from subbituminous and lignitic coals could not be accounted for in ash, and it is assumed that this fraction exits via the stack. At the power plant burning bituminous coal, essentially all the lead and most of the polonium remained with the ash.

  19. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Glossary FAQS Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports ...

  20. Cord Wood Testing in a Non-Catalytic Wood Stove

    SciTech Connect (OSTI)

    Butcher, T.; Trojanowski, R.; Wei, G.

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  1. Generating power with waste wood

    SciTech Connect (OSTI)

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  2. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  3. Clean Coal Power Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants. In the late 1980s and early 1990s, the U.S. Department of Energy conducted a joint program with industry and State agencies to demonstrate the best of these new technologies at scales large enough for companies to make commercial decisions. More than 20 of the technologies

  4. Wood energy in Georgia: a five-year progress report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    An increasing number of industrial plants and public and residential facilities in Georgia are using wood, Georgia's greatest renewable energy source, to replace gas, oil, coal, and electricity. All wood systems described in this report are or will soon be in operation in schools, prisons, hospitals, and other state facilities, and are producing substantial financial savings. The economic values from increased markets and jobs are important in all areas of the state, with total benefits projected at $2.9 million a year for state taxpayers. 2 figures.

  5. Evaluation of processes for producing gasoline from wood. Final report

    SciTech Connect (OSTI)

    1980-05-01

    Three processes for producing gasoline from wood by pyrolysis have been investigated. Technical and economic comparisons among the processes have been made, based on a hypothetical common plant size of 2000 tons per day green wood chip feedstock. In order to consider the entire fuel production process, the energy and cost inputs for producing and delivering the feedstock were included in the analysis. In addition, perspective has been provided by comparisons of the wood-to-gasoline technologies with other similar systems, including coal-to-methanol and various biomass-to-alcohol systems. Based on several assumptions that were required because of the candidate processes' information gaps, comparisons of energy efficiency were made. Several descriptors of energy efficiency were used, but all showed that methanol production from wood, with or without subsequent processing by the Mobil route to gasoline, appears most promising. It must be emphasized, however, that the critical wood-to-methanol system remains conceptual. Another observation was that the ethanol production systems appear inferior to the wood-to-gasoline processes. Each of the processes investigated requires further research and development to answer the questions about their potential contributions confidently. The processes each have so many unknowns that it appears unwise to pursue any one while abandoning the others.

  6. Precision wood particle feedstocks

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2013-07-30

    Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

  7. Method for control of subsurface coal gasification

    DOE Patents [OSTI]

    Komar, Charles A.

    1976-12-14

    The burn front in an in situ underground coal gasification operation is controlled by utilizing at least two parallel groups of vertical bore holes disposed in the coalbed at spaced-apart locations in planes orthogonal to the plane of maximum permeability in the coalbed. The combustion of the coal is initiated in the coalbed adjacent to one group of the bore holes to establish a combustion zone extending across the group while the pressure of the combustion supporting gas mixture and/or the combustion products is regulated at each well head by valving to control the burn rate and maintain a uniform propagation of the burn front between the spaced-apart hole groups to gasify virtually all the coal lying therebetween.

  8. Boiler efficiency calculation for multiple fuel burning boilers

    SciTech Connect (OSTI)

    Khodabakhsh, F.; Munukutla, S.; Clary, A.T.

    1996-12-31

    A rigorous method based on the output/loss approach is developed for calculating the coal flow rate for multiple fuel burning boilers. It is assumed that the ultimate analyses of all the fuels are known. In addition, it is assumed that the flow rates of all the fuels with the exception of coal are known. The calculations are performed iteratively, with the first iteration taking into consideration coal as the only fuel. The results converge to the correct answer after a few number of iterations, typically four or five.

  9. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  10. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  11. Coal pump

    DOE Patents [OSTI]

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  12. Engineering methods for the design and employment of wood cribs

    SciTech Connect (OSTI)

    Barczak, T.M. ); Gearhart, D.F. )

    1993-01-01

    Wood cribs are used extensively by the mining industry to stabilize mine openings. While the cost per crib is relatively low, their extensive use can result in annual mine costs of over $1 million. In an effort to improve the utilization of these supports and to reduce ground control hazards, the US Bureau of Mines has developed engineering methods to assist mine operators in wood-crib design and employment. Design and employment criteria are established based on the strength, stiffness, and stability of the crib structure in relation to the load conditions imposed by the mine environment. Models have been developed based on full-scale tests in the USBM's Mine Roof Simulator that compute the capacity of wood cribs of various configurations and material constructions as a function of displacement of the crib structure due to roof-and-floor convergence. These models permit the comparison of the loading characteristics and cost of employment of different crib designs, and in conjunction with roof behavior models, provide a means to determine the optimum design and employment strategy. In eastern coal mines, wood cribs generally are constructed from hardwood timbers, while softwood timbers generally are used in western coal mines. 11 refs., 27 figs., 2 tabs.

  13. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Markets | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago change Central Appalachia 12,500 Btu, 1.2 SO2 Northern Appalachia 13,000 Btu, < 3.0 SO2 Illinois Basin 11,800 Btu, 5.0 SO2 Powder River Basin 8,800 Btu, 0.8 SO2 Uinta Basin 11,700 Btu, 0.8 SO2 Source: With permission, SNL Energy Note: Coal prices shown reflect those of relatively high-Btu coal selected in each region

  14. Radionuclides in Western coal. Final report

    SciTech Connect (OSTI)

    Abbott, D.T.; Styron, C.E.; Casella, V.R.

    1983-09-23

    The increase in domestic energy production coupled with the switch from oil and natural gas to coal as a boiler-fuel source have prompted various federal agencies to assess the potential environmental and health risks associated with coal-fired power plants. Because it has been suggested that Western coals contain more uranium than Eastern coals, particular concern has been expressed about radioactive emissions from the increasing number of power plants that burn low-sulfur Western coal. As a result, the radionuclides in coal program was established to analyze low-sulfur coal reserves in Western coal fields for radioactivity. Samples from seams of obvious commercial value were taken from 19 operating mines that represented 65% of Western coal production. Although the present study did not delve deeply into underlying causative factors, the following general conclusions were reached. Commercially exploited Western coals do not show any alarming pattern of radionuclide content and probably have lower radioactivity levels than Eastern coals. The materials that were present appeared to be in secular equilibrium in coal, and a detailed dose assessment failed to show a significant hazard associated with the combustion of Western coal. Flue gas desulfurization technology apparently has no significant impact on radionuclide availability, nor does it pose any significant radiologic health risks. This study has also shown that Western coals are not more radioactive than most soils and that most solid combustion products have emanation powers <1%, which greatly reduce dose estimates from this pathway. In summary, the current use of mined, Western coals in fossil-fueled power plants does not present any significant radiological hazard.

  15. EIA - Coal Distribution

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal ...

  16. Coal combustion aerothermochemistry research. Final report

    SciTech Connect (OSTI)

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  17. Feasibility for Wood Heat - Collaborative Integrated Wood Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Wood Heat * Non-Profit Consortium of Ten Tribal ... Forestry, Fire Management, Self- Governance, ... coordination's across organizations 2 boilers and one ...

  18. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Broader source: Energy.gov (indexed) [DOE]

    1.4 M - Cord Wood 275 - 300 per cord - Kwh 0.51 (rate increase coming) - Propane 193 per 100 lbs tank - Funder reassurance - Consultant accountability - Harvest ...

  19. An update on blast furnace granular coal injection

    SciTech Connect (OSTI)

    Hill, D.G.; Strayer, T.J.; Bouman, R.W.

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  20. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal In response to concerns of climate change, the United States is contemplating a complete and rapid transformation of the way it both produces and consumes energy to significantly reduce its carbon emissions. The integrated Coal Program focuses on retaining the benefits of continuing to use coal to produce electric power. This strategy can help us depend less on foreign sources of energy, respond to the world's growing climate concerns, and compete economically. It also will ensure that our

  1. THE ROLE OF DEAD WOOD IN MAINTAINING ARTHROPOD DIVERSITY ON THE FOREST FLOOR.

    SciTech Connect (OSTI)

    Hanula, James L.; Horn, Scott; Wade, Dale D.

    2006-08-01

    Abstract—Dead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food resource, or whether woody debris influences prey available to generalist predators. One group likely to be affected by dead wood is ground-dwelling arthropods. We studied the effect of adding large dead wood to unburned and frequently burned pine stands to determine if dead wood was used more when the litter and understory plant community are removed. We also studied the effect of annual removal of dead wood from large (10-ha) plots over a 5-year period on ground-dwelling arthropods. In related studies, we examined the relationships among an endangered woodpecker that forages for prey on live trees, its prey, and dead wood in the forest. The results of these and other studies show that dead wood can influence the abundance and diversity of the ground-dwelling arthropod community and of prey available to generalist predators not foraging directly on dead trees.

  2. Fly ash and concrete: a study determines whether biomass, or coal co-firing fly ash, can be used in concrete

    SciTech Connect (OSTI)

    Wang, Shuangzhen; Baxter, Larry

    2006-08-01

    Current US national standards for using fly ash in concrete (ASTM C618) state that fly ash must come from coal combustion, thus precluding biomass-coal co-firing fly ash. The co-fired ash comes from a large and increasing fraction of US power plants due to rapid increases in co-firing opportunity fuels with coal. The fly ashes include coal fly ash, wood fly ash from pure wood combustion, biomass and coal co-fired fly ash SW1 and SW2. Also wood fly ash is blended with Class C or Class F to produce Wood C and Wood E. Concrete samples were prepared with fly ash replacing cement by 25%. All fly ash mixes except wood have a lower water demand than the pure cement mix. Fly ashes, either from coal or non coal combustion, increase the required air entraining agent (AEA) to meet the design specification of the mixes. If AEA is added arbitrarily without considering the amount or existence of fly ash results could lead to air content in concrete that is either too low or too high. Biomass fly ash does not impact concrete setting behaviour disproportionately. Switch grass-coal co-fired fly ash and blended wood fly ash generally lie within the range of pure coal fly ash strength. The 56 day flexure strength of all the fly ash mixes is comparable to that of the pure cement mix. The flexure strength from the coal-biomass co-fired fly ash does not differ much from pure coal fly ash. All fly ash concrete mixes exhibit lower chloride permeability than the pure cement mixes. In conclusion biomass coal co-fired fly ash perform similarly to coal fly ash in fresh and hardened concrete. As a result, there is no reason to exclude biomass-coal co-fired fly ash in concrete.

  3. Wood3 Resources | Open Energy Information

    Open Energy Info (EERE)

    Wood3 Resources Jump to: navigation, search Name: Wood3 Resources Place: Houston, Texas Zip: 77056-2409 Product: Wood3 Resources is an energy project development firm run by former...

  4. Plasma-supported coal combustion in boiler furnace

    SciTech Connect (OSTI)

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B.

    2007-12-15

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  5. Wanda Woods | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wanda Woods Budget & Resource Administrator Wanda Woods Argonne National Laboratory 9700 South Cass Avenue Building 240 - Wkstn. 1C9 Argonne, IL 60439 630-252-1353...

  6. Ripple burn control

    SciTech Connect (OSTI)

    Bhadra, D.K.; Petrie, T.W.; Peuron, U.A.; Rawls, J.M.

    1980-05-01

    The ripple contribution to the ion thermal conductivity is ideally suited in magnitude, temperature dependence, and spatial dependence to serve as a burn control mechanism. Furthermore, a considerable measure of automatic burn control results because of the radial shift of the plasma to a region of higher ripple. Unfortunately, the window in ripple values consistent with both ignition and a burn equilibrium is uncomfortably narrow, given the current lack of contact between the theoretical models of ripple transport and experimental observations. A survey is made of the techniques to vary the ripple and thus broaden the design window. One new technique is discussed in some detail: the use of ferromagnetic materials in the shield with magnetic properties which are sensitive functions of the operating temperature.

  7. Wood pellet market and trade: a global perspective

    SciTech Connect (OSTI)

    Chun Sheng Goh; Martin Junginger; Maurizio Cocchi; Didier Marchal; Daniela Thran; Christiane Hennig; Jussi Heinimo; Lars Nikolaisen; Peter-Paul Schouwenberg; Douglas Bradley; J. Richard Hess; Jacob J. Jacobson; Leslie Ovard; Michael Deutmeyer

    2001-01-01

    This perspective provides an overview of wood pellet markets in a number of countries of high significance, together with an inventory of market factors and relevant past or existing policies. In 2010, the estimated global wood pellet production and consumption were close to 14.3 Mt (million metric tonnes) and 13.5 Mt, respectively, while the global installed production capacity had reached over 28 Mt. Two types of pellets are mainly traded (i) for residential heating and (ii) for large-scale district heating or co-fi ring installations. The EU was the primary market, responsible for nearly 61% and 85% of global production and consumption, respectively in 2010. EU markets were divided according to end use: (i) residential and district heating, (ii) power plants driven market, (iii) mixed market, and (iv) export-driven countries. North America basically serves as an exporter, but also with signifi cant domestic consumption in USA. East Asia is predicted to become the second-largest consumer after the EU in the near future. The development perspective in Latin America remains unclear. Five factors that determine the market characteristics are: (i) the existence of coal-based power plants, (ii) the development of heating systems, (iii) feedstock availability, (iv) interactions with wood industry, and (v) logistics factor. Furthermore, intervention policies play a pivotal role in market development. The perspective of wood pellets industry was also analyzed from four major aspects: (i) supply potential, (ii) logistics issues, (iii) sustainability considerations, and (iv) technology development.

  8. Cofiring waste biofuels and coal for emissions reduction

    SciTech Connect (OSTI)

    Brouwer, J.; Owens, W.D.; Harding, N.S.

    1995-12-31

    Combustion tests have been performed in two pilot-scale combustion facilities to evaluate the emissions reduction possible while firing coal blended with several different biofuels. Two different boiler simulations, pulverized coal fired boilers and stoker coal fired boilers, were simulated. The pc-fired studies investigated the use of waste hardwood, softwood and sludge as potential reburning fuels and compared the results with coal and natural gas. The use of these wood wastes is attractive because: wood contains little nitrogen and virtually no sulfur; wood is a regenerable biofuel; wood utilization results in a net reduction in CO{sub 2} emissions; and, since reburning accounts for 10-20% of the total heat input, large quantities of wood are not necessary. The results of this program showed that a reduction of 50-60% NO was obtained with approximately 10% wood heat input. Reburn stoichiometry was the most important variable. The reduction was strongly dependent upon initial NO and only slightly dependent upon temperature. The stoker program investigated barriers for the successful blending of coal with waste railroad ties. Parameters evaluated included blending firing rate, chip size, optimum feed location, overfire/underfire air ratio, and natural gas addition. The results of this study demonstrated that NO emissions can be reduced by more than 50% without any significant increase in CO or THC emissions by the proper use of zoned reburning. Both programs demonstrated several benefits of biofuel blends, including: (1) lower operating costs due to reduced fuel prices; (2) reduced waste disposal; (3) reduced maintenance costs; (4) reduced environmental costs; and (5) extension of the useful life of existing equipment.

  9. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    SciTech Connect (OSTI)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  10. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    SciTech Connect (OSTI)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  11. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    Processing Coal Plants and Commercial and Institutional Coal Users" and Form EIA-7A, "Coal Production and Preparation Report." Appendix A Assigning Missing Data to EIA-923...

  12. Coal industry annual 1994

    SciTech Connect (OSTI)

    1995-10-01

    This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

  13. Coal Market Module

    Gasoline and Diesel Fuel Update (EIA)

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  14. Co-firing high sulfur coal with refuse derived fuels. Progress report No. 3, [April--June 1995

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1995-05-31

    The Thermogravimetric Analyzer-Fourier Transform Infrared Spectrometer-Mass Spectrometer (TG-FTIR-MS) system was used to identify molecular chlorine, along with HCl, CO, CO{sub 2}, H{sub 2}O, and various hydrocarbons in the gaseous products of the combustion of PVC resin in air. This is a significant finding that will lead us to examine this combustion step further to look for the formation of chlorinated organic compounds. The combination of TG-FTIR and TG-MS offers complementary techniques for the detection and identification of combustion products from coals PVC, cellulose, shredded newspaper, and various blends of these materials. The pilot atmospheric fluidized bed combustor (AFBC) at Western Kentucky University has been tested. The main purpose of these preliminary AFBC runs were to determine the compatibility of coal and pelletized wood in blends and to explore the effects of flue/air ratio. Our objective is to conduct AFBC burns with 90 percent sulfur capture and more then 96% combustion efficiency.

  15. Annotated bibliography of coal in the Caribbean region. [Lignite

    SciTech Connect (OSTI)

    Orndorff, R.C.

    1985-01-01

    The purpose of preparing this annotated bibliography was to compile information on coal localities for the Caribbean region used for preparation of a coal map of the region. Also, it serves as a brief reference list of publications for future coal studies in the Caribbean region. It is in no way an exhaustive study or complete listing of coal literature for the Caribbean. All the material was gathered from published literature with the exception of information from Cuba which was supplied from a study by Gordon Wood of the US Geological Survey, Branch of Coal Resources. Following the classification system of the US Geological Survey (Wood and others, 1983), the term coal resources has been used in this report for reference to general estimates of coal quantities even though authors of the material being annotated may have used the term coal reserves in a similar denotation. The literature ranges from 1857 to 1981. The countries listed include Colombia, Mexico, Venezuela, Cuba, the Dominican Republic, Haiti, Jamaica, Puerto Rico, and the countries of Central America.

  16. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Broader source: Energy.gov (indexed) [DOE]

    Oil cost per year for school 210,000 Fuel cost for electrical generation 1.4 M Cord Wood 275 - 300 per cord Kwh 0.77 (rate increase coming) Propane 203.89 per 100 ...

  17. KINETIC STUDY OF COAL AND BIOMASS CO-PYROLYSIS USING THERMOGRAVIMETRY

    SciTech Connect (OSTI)

    Wang, Ping; Hedges, Sheila; Chaudharib, Kiran; Turtonb, Richard

    2013-10-29

    The objectives of this study are to investigate thermal behavior of coal and biomass blends in inert gas environment at low heating rates and to develop a simplified kinetic model using model fitting techniques based on TGA experimental data. Differences in thermal behavior and reactivity in co-pyrolysis of Powder River Basin (PRB) sub-bituminous coal and pelletized southern yellow pine wood sawdust blends at low heating rates are observed. Coal/wood blends have higher reactivity compared to coal alone in the lower temperature due to the high volatile matter content of wood. As heating rates increase, weight loss rates increase. The experiment data obtained from TGA has a better fit with proposed two step first order reactions model compared single first order reaction model.

  18. Reducing the moisture content of clean coals

    SciTech Connect (OSTI)

    Kehoe, D. )

    1992-12-01

    Coal moisture content can profoundly effect the cost of burning coal in utility boilers. Because of the large effect of coal moisture, the Empire State Electric Energy Research Corporation (ESEERCO) contracted with the Electric Power Research Institute to investigate advanced coal dewatering methods at its Coal Quality Development Center. This report contains the test result on the high-G solid-bowl centrifuge, the second of four devices to be tested. The high-G solid-bowl centrifuge removes water for coal by spinning the coal/water mixture rapidly in a rotating bowl. This causes the coal to cling to the sides of the bowl where it can be removed, leaving the water behind. Testing was performed at the CQDC to evaluate the effect of four operating variables (G-ratio, feed solids concentration, dry solids feed rate, and differential RPM) on the performance of the high-G solid-bowl centrifuge. Two centrifuges of different bowl diameter were tested to establish the effect of scale-up of centrifuge performance. Testing of the two centrifuges occurred from 1985 through 1987. CQDC engineers performed 32 tests on the smaller of the two centrifuges, and 47 tests on the larger. Equations that predict the performance of the two centrifuges for solids recovery, moisture content of the produced coal, and motor torque were obtained. The equations predict the observed data well. Traditional techniques of establishing the performance of centrifuge of different scale did not work well with the two centrifuges, probably because of the large range of G-ratios used in the testing. Cost of operating a commercial size bank of centrifuges is approximately $1.72 per ton of clean coal. This compares well with thermal drying, which costs $1.82 per ton of clean coal.

  19. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  20. Coal and Coal-Biomass to Liquids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Coal-Biomass to Liquids Turning coal into liquid fuels like gasoline, diesel and jet fuel, with biomass to reduce carbon dioxide emissions, is the main goal of the Coal and ...

  1. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ...

  2. Category:Burns, OR | Open Energy Information

    Open Energy Info (EERE)

    72 KB SVSecondarySchool Burns OR PacifiCorp (Oregon).png SVSecondarySchool Burn... 70 KB SVSmallHotel Burns OR PacifiCorp (Oregon).png SVSmallHotel Burns OR ... 69 KB...

  3. The NOXSO clean coal project

    SciTech Connect (OSTI)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.; Browning, J.P.

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).

  4. Fire in the hole - Paging in mines from Pennsylvania to China, coal fires threaten towns, poison air and water, and add to global warming

    SciTech Connect (OSTI)

    Krajick, K.

    2005-05-01

    China has the most coal fires, but India has the largest concentration of them. The effect of coal fires on the once thriving town of Centralia, Pennsylvania is described. There have been eight attempts to put the fire out using different methods (it has been burning for 43 years), but has now been left to burn. It could burn for another 205 years. The population of the town have mostly been relocated.

  5. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    SciTech Connect (OSTI)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was

  6. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, Muthu S.; Steinberg, Meyer

    1987-01-01

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

  7. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, M.S.; Steinberg, M.

    1985-06-19

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

  8. Clean burning solid fuel stove and method

    SciTech Connect (OSTI)

    Smith, R.D.; Grouw, S.J.V.

    1985-10-08

    A stove for burning solid fuels having an insulated primary combustion chamber, uniform distribution of preheated primary air through upward facing holes in a grate, downward flow of combustion gas through the grate, retention of hot coals in the grate structure, preheated secondary air, individually controlled primary and secondary air flows, insulated vortex combustion chambers for secondary combustion, longitudinally finned tubes as a first stage heat exchanger, plate-fin assembly as a second stage heat exchanger, an induced draft fan to draw the air and combustion gases through the combustion chambers as well as the heat exchangers, and a forced air fan to blow cool room air through the two stage heat exchanger.

  9. Coal combustion products 2007 production and use report

    SciTech Connect (OSTI)

    2009-07-01

    The American Coal Ash Association's 2007 Annual Coal Combustion Products (CCP) are derived from data from more than 170 power plants. The amount of CCPs used was 40.55%, a decrease of 2.88% from 2006, attributed to reduced fuel burn and a decrease in demand in the building industry. Figures are given for the production of fly ash, flue gas desulfurization gypsum, bottom ash, FBC ash and boiler slag. The article summarises results of the survey. 1 ref., 1 tab.

  10. Current trends in coal combustion product (CCPs) production and use

    SciTech Connect (OSTI)

    Stewart, B.

    1998-12-31

    CCPs (Coal Combustion Products) are engineering materials that are similar in use to virgin, processed and manufactured materials. CCPs are produced when coal is burned in a boiler to generate electricity. The four types of CCPs produced by electric utility boilers are fly ash, bottom ash, boiler slag and FGD (Flue Gas Desulfurization) material. CCPs rank behind only sand and gravel, and crushed stone as a produced mineral commodity, and rank ahead of Portland cement and iron ore. In 1997, 55% of the electricity was produced by coal fired electric utilities. This number is projected to remain fairly constant to the year 2015. Almost 90% of the coal used in the United States, is burned to generate electricity. During 1997, 898.5 million metric tons (870 million short tons) of coal were burned by electric utilities to generate electricity. As a result, over 95 million tons (105 million short tons) of CCPs were generated by the electric utilities. This figure promises to increase in the future, owing mostly to the anticipated rise in FGD material generation. The American Coal Ash Association, Inc. (ACAA) is a trade association representing the CCP Industry. ACAA promotes the use in CCPs in numerous applications that are technically sound, commercially competitive and environmentally safe. The data presented in this paper has been taken from the Annual Survey of CCP production and use by ACAA. ACAA conducts an annual voluntary, confidential, survey of US coal fired electric utilities to gather data about the production and use of CCPs. In 1997, the survey data collected accounts for approximately 80% of the coal burned by electric utilities. Information from previous ACAA surveys or US Department of Energy (DOE) Energy Information Administration (EIA) data were used to estimate CCP production and use for utilities that did not respond to the survey. None of the data used was older than 1995.

  11. Stanford - Woods Institute for the Environment | Open Energy...

    Open Energy Info (EERE)

    Stanford - Woods Institute for the Environment Jump to: navigation, search Logo: Stanford- Woods Institute for the Environment Name: Stanford- Woods Institute for the Environment...

  12. Influence of corn steep liquor and glucose on colonization of control and CCB (Cu/Cr/B)-treated wood by brown rot fungi

    SciTech Connect (OSTI)

    Humar, Miha; Pohleven, Franc

    2006-07-01

    There are increasing problems with regard to the disposal of treated wood waste. Due to heavy metals or arsenic in impregnated wood waste, burning and landfill disposal options are not considered to be environmentally friendly solutions for dealing with this problem. Extraction of the heavy metals and recycling of the preservatives from the wood waste is a much more promising and environmentally friendly solution. In order to study the scale up of this process, copper/chromium/boron-treated wood specimens were exposed to copper tolerant (Antrodia vaillantii and Leucogyrophana pinastri) and copper sensitive wood decay fungi (Gloeophyllum trabeum and Poria monticola). Afterwards, the ability of fungal hyphae to penetrate and overgrow the wood specimens was investigated. The fungal growths were stimulated by immersing the specimens into aqueous solution of glucose or corn steep liquor prior to exposure to the fungi. The fastest colonization of the impregnated wood was by the copper tolerant A. vaillantii. Addition of glucose onto the surface of the wood specimens increased the fungi colonization of the specimens; however, immersion of the specimens into the solution of corn steep liquor did not have the same positive influence. These results are important in elucidating copper toxicity in wood decay fungi and for using these fungi for bioremediation of treated wood wastes.

  13. EIA -Quarterly Coal Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    - Coal Distribution Quarterly Coal Distribution Archives Release Date: August 17, 2016 Next Release Date: December 22, 2016 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009

  14. Florida CFB demo plant yields low emissions on variety of coals

    SciTech Connect (OSTI)

    2005-07-01

    The US Department of Energy (DOE) has reported results of tests conducted at Jacksonville Electric Authority (JEA)'s Northside power plant using mid-to-low-sulfur coal, which indicate the facility is one of the cleanest burning coal-fired power plants in the world. A part of DOE's Clean Coal Technology Demonstration Program, the JEA project is a repowering demonstration of the operating and environmental performance of Foster Wheeler's utility-scale circulating fluidized bed combustion (CFB) technology on a range of high-sulfur coals and blends of coal and high-sulfur petroleum coke. The 300 MW demonstration unit has a non-demonstration 300 MW twin unit.

  15. SystemBurn

    Energy Science and Technology Software Center (OSTI)

    2012-08-30

    SystemBurn is a tool for creating a synthetic computational load for the purpose of measuring how much power a computer will draw under that type of load. The loads include fundamental library function calls like matrix multiply, memory copies, fourier transforms, bit manipulation, I/O, network packet transfers, and some code contrived to cause the processor to dray more or less power. The code produces some diagnostic and progress output, but the actual measurements would bemore » recorded from the power panels within the computer room.« less

  16. Electric co-generation units equipped with wood gasifier and Stirling engine

    SciTech Connect (OSTI)

    Bartolini, C.M.; Caresana, F.; Pelagalli, L.

    1998-07-01

    The disposal of industrial waste such as oil sludges, waste plastic, lubricant oils, paper and wood poses serious problems due to the ever increasing amount of material to be disposed of and to the difficulty in finding new dumping sites. The interest in energy recovery technologies is accordingly on the increase. In particular, large amounts of waste wood are simply burned or thrown away causing considerable environmental damage. In this context the co-generation technique represents one of the possible solutions for efficient energy conversion. The present paper proposes the employment of a Stirling engine as prime mover in a co-generation set equipped with a wood gasifier. A Stirling engine prototype previously developed in a joint project with Mase Generators, an Italian manufacturer of fixed and portable electrogenerators, is illustrated and its design is described.

  17. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  18. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  19. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  20. Biomass Burning Observation Project Specifically,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacific Northwest region and in the vicinity of Memphis, Tennessee, as part of the Biomass Burning Observation Project (BBOP). The aircraft will fly through smoke plumes from...

  1. Low-sulfur coal usage alters transportation strategies

    SciTech Connect (OSTI)

    Stein, H.

    1995-07-01

    As electricity production has grown, so has the amount of coal burned by US utilities. In order to comply with the 1990 Clean Air Act Amendments (CAAA), many utilities have changed from high-sulfur coal to lower-sulfur coal to reduce sulfur dioxide emissions. The primary mode of transporting coal to utilities remains the railroad, and coal represents the largest freight tonnage shipped - two out of every five tons. Since coal is so important to the railroads, it is logical that as utilities have changed their coal-buying strategies, the railroads` strategies have also changed. The increased demand for Western coal has caused rail lines some capacity problems which they are attempting to meet head-on by buying new railcars and locomotives and expanding track capacities. The new railcars typically have aluminum bodies to reduce empty weight, enabling them to carry larger loads of coal. Train locomotives are also undergoing upgrade changes. Most new locomotives have as motors to drive the wheels which deliver more motive power (traction) to the wheel trucks. In fact the motors are up to 30% more efficient at getting the traction to the trucks. Trackage is also being expanded to alleviate serious congestion on the tracks when moving Western coal.

  2. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  3. Wood To Fuel LLC | Open Energy Information

    Open Energy Info (EERE)

    To Fuel LLC Jump to: navigation, search Name: Wood To Fuel LLC Place: Lackawana, New York Zip: 14208 Product: Wood fuelproduct supplier. Coordinates: 41.401932, -75.637848...

  4. Processes change the look of wood fuel

    SciTech Connect (OSTI)

    Zerbe, J.I.

    1980-06-01

    The various forms of wood-derived fuels are reviewed, these include briquetted and pelleted wood products. Charcoal, obtained by pyrolysis has a heating value one and a half times the equivalent weight of the dry wood from which it was made. By process modifications, more oil and gas may be produced instead of charcoal. At Albany, Oregon two barrels of oil are produced daily by hydrogenation of one ton of dry wood chips. It is stated that methanol can be synthesized from solid wood - by wood gasification - with a 38% energy efficiency while ethanol can also be made from wood. The use of wood fuels for electric power generation and cogeneration are also mentioned.

  5. Processes change the look of wood fuel

    SciTech Connect (OSTI)

    Zerbe, J.I.

    1980-06-01

    The various forms of wood-derived fuels are reviewed; these include briquetted and pelleted wood products. Charcoal, obtained by pyrolysis has a heating value one and a half times the equivalent weight of the dry wood from which it was made. By process modifications, more oil and gas may be produced instead of charcoal. At Albany, Oregon two barrels of oil are produced daily by hydrogenation of one ton of dry wood chips. It is stated that methanol can be synthesized from solid wood - by wood gasification - with a 38% energy efficiency while ethanol can also be made from wood. The use of wood fuels for electric power generation and cogeneration are also mentioned.

  6. Marcia A. Wood | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marcia A. Wood Group Leader, Information Solutions and Technology Assurance B.S. Computer Science, University of St. Francis Telephone 630.252.4656 Fax 630.252.6866 E-mail wood@anl.gov

  7. Duffield Wood Pellets | Open Energy Information

    Open Energy Info (EERE)

    Duffield Wood Pellets Jump to: navigation, search Name: Duffield Wood Pellets Place: North Yorkshire, United Kingdom Zip: HG4 5JB Product: A Yorkshire-based, family-run producer of...

  8. Kenneth L. Wood | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kenneth L. Wood Senior Engineering Specialist Telephone (630) 252-3971 E-mail klw@hep.anl

  9. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  10. Assessment of potential wood supply for intermediate scale thermoconversion facilities, Tasks I, II, III

    SciTech Connect (OSTI)

    Not Available

    1985-11-01

    The Department of Energy's Biomass Thermochemical Conversion Program has been concerned with the potential of wood biomass to contribute to the Nation's energy supply. One of the factors inhibiting the selection of wood biomass for energy by non-forest industries, especially by those requiring large quantities (500 to 2000 green tons per day), is concern with adequate fuel supply in terms of both a supply system and an adequate resource base. With respect to the latter, this report looks at the gross resource base as has been historically reported and also examines factors other than traditional product removals that could reduce to some degree the amount of resource that is available. The study also examined the conversion of a New England utility from coal to wood chips.

  11. Small boiler uses waste coal

    SciTech Connect (OSTI)

    Virr, M.J.

    2009-07-15

    Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

  12. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal

  13. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal

  14. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  15. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D.; Chen, James M.

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  16. New coal technology to flourish at Kentucky plant

    SciTech Connect (OSTI)

    Blankinship, S.

    2007-08-15

    Within four years a 76 MW (net) advanced supercritical coal unit, TC2, will go into service at the Trimble County power plant on the Ohio River near Louiseville, KY, USA. The unit is designed to burn a blend of eastern bituminous and western sub-bituminous Powder River Basin coals. TC2 is one of four US power plants to receive a $125 m tax credit under the 2005 EPACT Qualifying Advanced Coal Program for high efficiency and low emission generating units. Trimble County is owned and operated by E.ON US subsidiaries Kentucky Utilities and Louiseville Gas & Electric. It was originally designed to accommodate four 500 MW coal-fired units fired by bituminous coal from the Illinois Basin. 1 photo.

  17. Renewed interest in prop supports as a replacement for wood cribs

    SciTech Connect (OSTI)

    Barczak, T.M.; Gearhart, D.F.

    1995-11-01

    Wood cribs have been the dominant form of supplemental support in coal mining for many years. Recently, there has been a renewed interest in prop supports as a replacement for wood cribbing due to the increasing cost of mine timber and engineering advancements in prop design to improve their stability and yield capability. Prop supports generally consume less material, can be installed in less time with less labor, and provide less restriction to mine ventilation than wood crib supports. Several prop supports are now available or under development. These include: (1) Strata Products Propsetter{trademark} Support System, (2) Heintzmann ACS and Super Prop; (3) MBK-Hydraulik MEGA prop; (4) Advanced Mining Technology Inc. (AMTI) BTS Mortar prop; (5) Dywidag Coal Post; (6) Western Support Systems YIPPI support; and (7) ``The Can`` support by Burrell Mining Products. A comparison of the performance and cost of these support systems to wood cribs is made to provide mine operators with information needed to underground installations are discussed. Included in this assessment are full scale tests of these supports conducted in the US Bureau of Mines` Mine Roof Stimulator.

  18. Annual Coal Distribution Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report Release Date: April 16, 2015 | Next Release Date: March 2016 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report ...

  19. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  20. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  1. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  2. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  3. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  4. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  5. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  6. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  7. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  8. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  9. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  10. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables...

  11. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  12. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  13. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  14. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  15. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  16. NETL: Coal Gasification Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasification Systems Coal Gasification is a process that can turn coal into clean power, chemicals, hydrogen and transportation fuels, and can be used to capture the carbon from ...

  17. BLM Burns District Office | Open Energy Information

    Open Energy Info (EERE)

    Burns District Office Jump to: navigation, search Name: BLM Burns District Office Place: Hines, Oregon References: BLM Burns District Office1 This article is a stub. You can help...

  18. Coal liquefaction

    DOE Patents [OSTI]

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  19. ARM - Biomass Burning Observation Project (BBOP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

  20. Desulfurization of coal with hydroperoxides of vegetable oils. [Quarterly] report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Smith, G.V.; Gaston, R.D.; Song, Ruozhi; Cheng, Jianjun

    1994-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. Preliminary experiments showed that EBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During this first quarter the requirement of an added photosensitizer has been eliminated, the catalytic effect of coal has been confirmed, and the existence of a complex set of reactions revealed. These reactions between the oxygen, oil, hydroperoxides, and coal are hydroperoxide formation, which is catalyzed by the coal surface and by heat, an unknown coal-hydroperoxide reaction, and oil polymerization. Additionally, diffusion phenomena must be playing a role because oil polymerization occurs, but the importance of diffusion is difficult to assess because less polymerization occurs when coal is present. The first task has been completed and we are now ready to determine the ability of linseed oil hydroperoxides to oxidize organic sulfur in EBC 108 coal.

  1. ACC forum looks at 'burning' questions

    SciTech Connect (OSTI)

    Carter, R.

    2005-06-01

    The American Coal Council's (ACC) Spring Coal Forum had as its theme: Coal's renaissance: prospects for regenerating coal generation'. It explored US coal demand, supply, end-user technology and market trends. The article gives an overview of the conference, highlighting several presentations. 2 figs., 1 tab.

  2. Coal production 1988

    SciTech Connect (OSTI)

    Not Available

    1989-11-22

    Coal Production 1988 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1989. 5 figs., 45 tabs.

  3. Annual Coal Distribution

    Reports and Publications (EIA)

    2016-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  4. Annual Coal Distribution

    Reports and Publications (EIA)

    2015-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  5. Successful so far, coal lobby's campaign may run out of steam

    SciTech Connect (OSTI)

    2009-05-15

    The anti-coal lobby has mounted a highly successful campaign that has brought the permitting, financing, and construction of new conventional coal-fired plants to a virtual halt. But the coal lobby is not yet ready to concede defeat. With powerful constituents in coal-mining and coal-burning states and influential utilities, mining companies, and railroads, it continues to fight for its survival using any and all gimmicks and scare tactics in the book. The battle is being waged in courtrooms, public forums, media campaigns, and especially in Congress. The problem with the coal lobby is that it refuses to admit that coal combustion to generate electricity is among the chief sources of U.S. greenhouse gas emissions; unless they address this issue honestly, effectively, and immediately, their efforts are going to win few converts in the courts of law or public opinion.

  6. EIS-0282: McIntosh Unit 4 TCFB Demonstration Project, Clean Coal Technology Program, Lakeland, Florida (also see EIS-0304)

    Broader source: Energy.gov [DOE]

    The proposed project, selected under DOE’s Clean Coal Technology Program, would demonstrate both Pressurized Circulating Fluidized Bed (PCFB) and Topped PCFB technologies. The proposed project would involve the construction and operation of a nominal 238 MWe (megawatts of electric power) combined-cycle power plant designed to burn a range of low- to high-sulfur coals.

  7. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  8. Clean coal: Global opportunities for small businesses

    SciTech Connect (OSTI)

    1998-01-01

    The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world`s most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market.

  9. Coal waste materials applications in Europe

    SciTech Connect (OSTI)

    Niel, E.M.M.G.

    1997-12-31

    European countries have built up a tradition of coal burning activities. It is a well known fact that in the past twenty five years economic and technological growth was accompanied by more awareness for the protection of the environment. Therefore, increasing attention was paid to emission of hazardous gases, dust disposal and the proper reuse of coal residues. Both government and industry were searching for reasonable solutions to fight the rising environmental threats. It is noticed that the utilization situation in the different European countries varies considerably due to different historical, geographic and economic conditions. Nevertheless about 45% of the nearly 60 million tonnes of coal combustion by-products produced in European power plants are utilized, mainly in construction, civil engineering and the mining industry. In all European countries where electric energy is provided by coal fired power plants three parties are involved: (1) the power plants, as producers and owners of the coal fly ashes; (2) the consumers, which use the ashes in building products and construction; and (3) the government, mainly in watching over environmental and health aspects. This paper describes the use of fly ash in cements and concretes in European countries and the regulations on the use of fly ash.

  10. Process for stabilization of coal liquid fractions

    DOE Patents [OSTI]

    Davies, Geoffrey; El-Toukhy, Ahmed

    1987-01-01

    Coal liquid fractions to be used as fuels are stabilized against gum formation and viscosity increases during storage, permitting the fuel to be burned as is, without further expensive treatments to remove gums or gum-forming materials. Stabilization is accomplished by addition of cyclohexanol or other simple inexpensive secondary and tertiary alcohols, secondary and tertiary amines, and ketones to such coal liquids at levels of 5-25% by weight with respect to the coal liquid being treated. Cyclohexanol is a particularly effective and cost-efficient stabilizer. Other stabilizers are isopropanol, diphenylmethanol, tertiary butanol, dipropylamine, triethylamine, diphenylamine, ethylmethylketone, cyclohexanone, methylphenylketone, and benzophenone. Experimental data indicate that stabilization is achieved by breaking hydrogen bonds between phenols in the coal liquid, thereby preventing or retarding oxidative coupling. In addition, it has been found that coal liquid fractions stabilized according to the invention can be mixed with petroleum-derived liquid fuels to produce mixtures in which gum deposition is prevented or reduced relative to similar mixtures not containing stabilizer.

  11. Kinetics of coal combustion: Part 2, Mechanisms and kinetics of coal volatiles combustion

    SciTech Connect (OSTI)

    Essenhigh, R.H.; Bailey, E.G.; Shaw, D.W. )

    1988-12-01

    Values of global kinetic constants for the combustion of coal volatiles have been determined for the first time for volatiles from three coals (two bituminous coals and a Texas lignite). Global kinetic constants for methane and propane were also measured in the same apparatus to allow comparison with reference gases. Comparisons have also been made with values of global kinetics for pure hydrocarbons from a range of experiments as found in the literature. The volatiles were pyrolyzed from crushed coal drawn on weighed trays through a gas-fired muffle furnace, and they were burned at the top of a tube in an intense back-mix volume treated theoretically as a stirred reactor. Two types of experiment were carried out: partial combustion measurements near the stoichiometric for all coals from which the global kinetics were determined; and extinction limits for the Pittsburgh {number sign}8 coal volatiles to determine the extinction loop. The near stoichiometric generated kinetic data were used to predict the extinction limits with substantial agreement. Extinction loops for methane, propane and carbon monoxide were also measured for comparison.

  12. NO reduction in decoupling combustion of biomass and biomass-coal blend

    SciTech Connect (OSTI)

    Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu

    2009-01-15

    Biomass is a form of energy that is CO{sub 2}-neutral. However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. In this study, a technology called decoupling combustion was investigated to demonstrate how it reduces NO emissions in biomass and biomass-coal blend combustion. The decoupling combustion refers to a two-step combustion method, in which fuel pyrolysis and the burning of char and pyrolysis gas are separated and the gas burns out during its passage through the burning-char bed. Tests in a quartz dual-bed reactor demonstrated that, in decoupling combustion, NO emissions from biomass and biomass-coal blends were both less than those in traditional combustion and that NO emission from combustion of blends of biomass and coal decreased with increasing biomass percentage in the blend. Co-firing rice husk and coal in a 10 kW stove manufactured according to the decoupling combustion technology further confirmed that the decoupling combustion technology allows for truly low NO emission as well as high efficiency for burning biomass and biomass-coal blends, even in small-scale stoves and boilers. 22 refs., 6 figs., 1 tab.

  13. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  14. Eastern coal spray dryer evaluation. Final report

    SciTech Connect (OSTI)

    Sawyers, L.E.; Smith, P.V.; Caravano, C.; Jankura, B.J.

    1984-11-01

    Development efforts for dry scrubbing technology for flue gas desulfurization (FGD) have been geared toward utility boilers burning low-sulfur western coals rather than eastern high-sulfur coals. This has been due to the low quantity of reagent and lower SO/sub 2/ removal required with the use of western coals and has contributed to the economic attractiveness of the dry scrubber system. To evaluate the use of the dry scrubber for flue gas desulfurization of eastern high-sulfur coals, the US Department of Energy contracted with the Babcock and Wilcox Company to perform a study to determine the technical and economical feasibility of such systems. The program was organized into the following tasks: (1) configuration specification and system preparation; (2) performance evaluation; (3) load-following and reliability evaluation; (4) commercial unit economic evaluation; and (5) report. The general conclusions of the program are: Effective dry scrubber operation for an eastern high-sulfur coal would include a higher stoichiometric ratio, low spray dryer approach temperature, and the optimized use of recycle material. A dry scrubber system designed for an eastern high-sulfur coal using a high-calcium lime reagent would not be economically competitive with a limestone wet scrubber system due to reagent costs. Use of an optimized furnace limestone injection system and recycle material would substantially reduce reagent costs and increase economic attractiveness of dry scrubber systems for eastern high-sulfur coals. This is in comparison to dry scrubber systems with nonlimestone injection. 10 references, 87 figures, 26 tables.

  15. Table N5.2. Selected Wood and Wood-Related Products in Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for any table cell, multiply the cell's" "corresponding RSE column and RSE row factors. ... "Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" " Level: ...

  16. Resinous binders for coal and chars

    SciTech Connect (OSTI)

    Olson, E.S.; Sharma, R.K.; Young, B.C.

    1995-12-31

    Binder development and application to the briquetting or pelleting of coal fines has been extensive. The search for low-cost, effective binders for making strong and durable briquettes or pellets continues unabated. Strong, durable compacts are required, not only for handling, transport, and storage of the product but also to withstand the rigors of application such as flue gas treatment sorbents and catalytic supports. Many kinds of binders, organic and inorganic, have been used to gain the desired strength. Synthetic polymers have been investigated because they promote good strength and water insolubility, but these features are generally outweighed by the polymer cost. Promising earlier developments of biomass-derived binders have received slow market acceptance, mainly because of the cost resulting from the high concentrations required. However, recent advances in processing lignocellulosic materials have generated potentially low-cost polymeric binding agents for making coal briquettes. Phenol novolaks were previously used with lignites to make activated carbons. Recently, binders were prepared from mixtures of phenol, lignin, and formaldehyde and used for wood flour molding and friction materials. The goal of our work was to investigate the characteristics of resinous binders from lignocellulosic as well as coal-derived materials when used with dried or beneficiated coals and chars.

  17. Arbuthnott Wood Pellets Ltd | Open Energy Information

    Open Energy Info (EERE)

    Scotland, United Kingdom Zip: AB30 1PA Product: Wood pellet producer. Coordinates: 56.932781, -2.42531 Show Map Loading map... "minzoom":false,"mappingservice":"googlema...

  18. Grant F. Wood | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grant F. Wood Consultant - Project Management 9700 S. Cass Avenue Building 240 Wkstn. 3D18 Argonne, IL 60439 630-252-5315 gfwood

  19. Qualifying Wood Stove Deduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total cost, exclusive of taxes, interest and other finance charges Summary This incentive allows Arizona taxpayers to deduct the cost of converting an existing wood fireplace to a ...

  20. Wood, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wood, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.568752, -90.330887 Show Map Loading map... "minzoom":false,"mappingservice"...

  1. Coal production 1985

    SciTech Connect (OSTI)

    Not Available

    1986-11-07

    Coal Production 1985 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. All data presented in this report, except the total production table presented in the Highlights section, and the demonstrated reserve base data presented in Appendix A, were obtained from form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1985. The data cover 4105 of the 5477 US coal mining operations active in 1985. These mining operations accounted for 99.4% of total US coal production and represented 74.9% of all US coal mining operations in 1985. This report also includes data for the demonstrated reserve vase of coal in the US on January 1, 1985.

  2. Coal-oil-mixture technology: a status report

    SciTech Connect (OSTI)

    Lecky, J.A.

    1980-10-01

    Papers and discussions presented at the Second International Symposium on Coal-Oil-Mixture Combustion (November 27 to 29, 1979) are reviewed to assess the state of technology in this field. Environmental problems receive little attention; most appear soluble by current methods used to control emissions from coal burning. Economic studies indicate that converting oil-burning plants to COM burning would be profitable, even with retrofit costs. Experience with coal-oil mixtures (COM) has been encouraging in bench-scale tests, small boilers, and short-term plant tests, but extended, large-scale tests are needed prior to commercialization of COM. Major problems needing more investigation or plant experience are: lack of a definition of COM stability and a quick way to measure it; uncertainties as to COM structure and the mechanisms of how additives promote stability; heterogeneity of coals and oils; inadequate experience in COM storage and transportation; uncertainty about long-term effects of corrosion and erosion of components by COM, and existence of other possible operating problems. The US Department of Energy announced an expanded program for COM demonstration plants, and industrial firms are selling COM and offering to build plants to prepare it.

  3. Profiles in Renewable Energy: Case Studies of Successful Utility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wood-Burning Plant Reduces Air Pollution Kettle Falls Wood-Fired Plant Washington Power ... operation and maintenance, and 1.75 centskWh for energy (based on the price of coal). ...

  4. The South Canon Number 1 Coal Mine fire: Glenwood Springs, Colorado

    SciTech Connect (OSTI)

    Glenn B. Stracher; Steven Renner; Gary Colaizzi; Tammy P. Taylor

    2004-07-01

    The South Canon Number 1 Coal Mine fire, in South Canyon west of Glenwood Springs, Colorado, is a subsurface fire of unknown origin, burning since 1910. Subsidence features, gas vents, ash, condensates, and red oxidized shales are surface manifestations of the fire. The likely success of conventional fire-containment methodologies in South Canyon is questionable, although drilling data may eventually suggest a useful control procedure. Drill casings in voids in the D coal seam on the western slope trail are useful for collecting gas samples, monitoring the temperature of subsurface burning, and measuring the concentration of gases such as carbon monoxide and carbon dioxide in the field. Coal fire gas and mineral condensates may contribute to the destruction of floral and faunal habitats and be responsible for a variety of human diseases; hence, the study of coal gas and its condensation products may prove useful in understanding environmental pollution created by coal mine fires. The 2002 Coal Seam Fire, which burned over 12,000 acres and destroyed numerous buildings in and around Glenwood Springs, exemplifies the potential danger an underground coal fire poses for igniting a surface fire.

  5. Trace elements in coal by glow discharge mass spectrometry

    SciTech Connect (OSTI)

    Jacobs, M.L.; Wilson, C.R.; Pestovich, J. Jr.

    1995-08-01

    A need and a demand exist for determining trace elements in coal and coal related by-products, especially those elements which may potentially be a health hazard. The provisions of the 1990 clean air act require that the EPA evaluate the emissions of electric utilities for trace elements and other potentially hazardous organic compounds. The coal fired electric utility industry supplies roughly 60% of the total generating capacity of 2,882,525 million kilowatt hours (nearly 3 trillion kilowatt hours) generated in the U.S. This is accomplished by 414 power plants scattered across the country that burned 813,508,000 short tons of coal in 1993. The relative volatility of some inorganic constituents in coal makes them more prone to be emitted to the atmosphere following combustion. The production of analytical data for trace elements is known to be a difficult task in coal and by-products of coal combustion (fly ash, bottom ash, gas streams, etc.), in terms of both sample collection and analytical determinations. There are several common analytical methods available to the analyst to determine trace elements in coal and coal by-products. In general analytical germs, the material to be analyzed can be totally solubilized (or extracted), or the elements analytes can be determined in the material as a solid. A relatively new elemental technique, Glow Discharge Mass Spectrometry (GDMS) can be used with solids as well. This new analytical technique had never before been applied directly to coal. The radio frequency-glow discharge quadropole mass spectrometer was used to analyze coal directly for the first time ever by rf-GDMS. The rf-GDMS technique is described.

  6. Coal feed lock

    DOE Patents [OSTI]

    Pinkel, I. Irving

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  7. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  8. Trash burns, turns into $120,000 in annual savings

    SciTech Connect (OSTI)

    Smith, W.A.

    1981-09-01

    A plan was developed to generate a major portion of the energy required for heating and air conditioning by burning factory trash instead of using natural gas and electricity. Trash from the Rockwell Int'l. plant, including broken wood pallets, cardboard packing materials and office waste paper, amounted to 1,000 tons per year. Previously, a contractor was being paid to come to the plant several times a week, pick up the trash and haul it to a landfill. To supplement the 1,000 tons of usable waste generated by the plant annually, the additional 500 tons of similar trash needed to operate the system are received from other industries in the vicinity. Besides accepting waste from other plants, the Marysville facility stockpiles and uses refuse corn stalks harvested from 50 acres of Rockwell-owned land adjacent to the plant. The incinerator featuring a pyrolytic heat recovery system is presented and its operation is illustrated.

  9. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0

  10. Pelletization of fine coals

    SciTech Connect (OSTI)

    Sastry, K.V.S.

    1991-09-01

    The present research project attempts to provide a basis to determine the pelletizability of fine coals, to ascertain the role of additives and binders and to establish a basis for binder selection. Currently, there are no established techniques for determining the quality of coal pellets. Our research is intended to develop a series of tests on coal pellets to measure their storage characteristics, transportability, ease of gasification and rate of combustion. Information developed from this research should be valuable for making knowledgeable decisions for on-time plant design, occasional binder selection and frequent process control during the pelletization of coal fines. During the last quarter, we continued the batch pelletization studies on Upper Freeport coal. The results as presented in that last quarterly report (April 1991) indicated that the surface conditions on the coal particle influenced the pelletizing growth rates. For example, a fresh (run of mine) sample of coal will display different pelletizing growth kinetics than a weathered sample of the same coal. Since coal is a heterogeneous material, the oxidized product of coal is equally variable. We found it to be logistically difficult to consistently produce large quantities of artificially oxidized coal for experimental purposes and as such we have used a naturally weathered coal. We have plans to oxidize coals under controlled oxidizing conditions and be able to establish their pelletizing behavior. The next phase of experiments were directed to study the effect of surface modification, introduced during the coal cleaning steps, on pelletizing kinetics. Accordingly, we initiated studies with two additives commonly used during the flotation of coal: dextrin (coal depressant) and dodecane (coal collector).

  11. Rachel Woods-Robinson | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rachel Woods-Robinson About Us Rachel Woods-Robinson - Guest Blogger, Cycle for Science Most Recent Rain or Shine: We Cycle for Science July 2 Mountains, and Teachers, and a Bear, Oh My! June 2 Sol-Cycle: Biking Across America for Science Education May 1

  12. Flash pyrolysis products from beech wood

    SciTech Connect (OSTI)

    Beaumont, O.

    1985-04-01

    Flash pyrolysis products from beech wood obtained in an original pyrolysis apparatus were analyzed. The analytical procedure is described, and the composition of pyrolytic oil presented with more than 50 compounds. Comparison of pyrolytic products of cellulose, hemicellulose, and wood indicates the origin of each product. 19 references.

  13. International perspectives on coal preparation

    SciTech Connect (OSTI)

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  14. Slag-Refractory Interaction in Coal Gasifiers

    SciTech Connect (OSTI)

    Sundaram, S. K.; Johnson, Kenneth I.; Williford, Ralph E.; Pilli, Siva Prasad; Matyas, Josef; Fluegel, Alexander; Cooley, Scott K.; Crum, Jarrod V.; Edmondson, Autumn B.

    2007-10-13

    Pacific Northwest National Laboratory (PNNL) has taken an integrated approach to address major technical issues in conversion of coal into clean-burning liquid fuel. The approach includes: 1) modeling of gasifier and slag flow, 2) experimental characterization of slag viscoelastic behavior as a function of temperature for representative slags and refractory-slag interactions, and 3) interplay of the modeling and experimental measurements to identify critical conditions beyond which refractory corrosion tends to increase sharply. Basic heat and mass balances were considered in the gasifier and flow models. Two new refractory spalling models were developed. An experimental design that encompassed the broad range of slag chemistries that were of interest to coal gasification was developed and implemented. Selected gasifier refractories were tested in a simulated gasifier environment in our laboratory to identify refractory degradation mechanisms. Preliminary results of the effort are summarized.

  15. Executive roundtable on coal-fired generation

    SciTech Connect (OSTI)

    2009-09-15

    Power Engineering magazine invited six industry executives from the coal-fired sector to discuss issues affecting current and future prospects of coal-fired generation. The executives are Tim Curran, head of Alstom Power for the USA and Senior Vice President and General Manager of Boilers North America; Ray Kowalik, President and General Manager of Burns and McDonnell Energy Group; Jeff Holmstead, head of Environmental Strategies for the Bracewell Giuliani law firm; Jim Mackey, Vice President, Fluor Power Group's Solid Fuel business line; Tom Shelby, President Kiewit Power Inc., and David Wilks, President of Energy Supply for Excel Energy Group. Steve Blankinship, the magazine's Associate Editor, was the moderator. 6 photos.

  16. Council of Athabascan Tribal Governments - Wood Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 November 2008 Gwitchyaa Zhee Corporation CATG - AWEA For-Profit Wood Energy Business Model Fort Yukon * Forest Management Service - CATG * For-Profit Wood Utility Company -...

  17. Lake of the Woods County, Minnesota: Energy Resources | Open...

    Open Energy Info (EERE)

    in Lake of the Woods County, Minnesota Baudette, Minnesota Roosevelt, Minnesota Williams, Minnesota Retrieved from "http:en.openei.orgwindex.php?titleLakeoftheWoodsC...

  18. Woods Hole Research Center Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Hole Research Center Wind Turbine Jump to: navigation, search Name Woods Hole Research Center Wind Turbine Facility Woods Hole Research Center Wind Turbine Sector Wind energy...

  19. Compound and Elemental Analysis At Little Valley Area (Wood,...

    Open Energy Info (EERE)

    Little Valley Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Little Valley Area (Wood,...

  20. Alaska Wood Biomass Energy Project Final Report

    SciTech Connect (OSTI)

    Jonathan Bolling

    2009-03-02

    The purpose of the Craig Wood Fired Boiler Project is to use waste wood from local sawmilling operations to provide heat to local public buildings, in an effort to reduce the cost of operating those buildings, and put to productive use a byproduct from the wood milling process that otherwise presents an expense to local mills. The scope of the project included the acquisition of a wood boiler and the delivery systems to feed wood fuel to it, the construction of a building to house the boiler and delivery systems, and connection of the boiler facility to three buildings that will benefit from heat generated by the boiler: the Craig Aquatic Center, the Craig Elementary School, and the Craig Middle School buildings.

  1. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  2. Indonesian coal mining

    SciTech Connect (OSTI)

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  3. Chemicals from coal

    SciTech Connect (OSTI)

    Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

    2004-12-01

    This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

  4. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, Gerald W.; Lewis, Susan N.

    1990-01-01

    This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

  5. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  6. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  7. "Annual Coal Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Coal Report Data Released: January 20, 2015 Data for: 2013 Re-Release Date: April 23, 2015 (CORRECTION) Annual Coal Report 2013 CorrectionUpdate April 23, 2015 The Annual ...

  8. Coal gasification apparatus

    DOE Patents [OSTI]

    Nagy, Charles K.

    1982-01-01

    Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

  9. Coal Fleet Aging Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2016 MEMORANDUM TO: Dr. Ian Mead Assistant Administrator for Energy Analysis Jim Diefenderfer Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Coal and Uranium Analysis Team SUBJECT: Notes from the Coal Fleet Aging Meeting held on June 14, 2016 Attendees (36) *Indicates attendance via WebEx. 2 Framing the question This adjunct meeting of the AEO Coal Working Group (CWG) was held as a follow up to the previous Future Operating and Maintenance Considerations for the

  10. Method for fluorinating coal

    DOE Patents [OSTI]

    Huston, John L.; Scott, Robert G.; Studier, Martin H.

    1978-01-01

    Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

  11. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  12. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  13. Flash hydrogenation of coal

    DOE Patents [OSTI]

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  14. COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal

    SciTech Connect (OSTI)

    Smith, V.E.; Merriam, N.W.

    1994-10-01

    Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

  15. #AskEnergySaver: Home Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    via email IW: It's not the fuel, it's how you burn it. Any fossil fuel -- gas, oil or propane -- or even wood or coal needs to be completely burned and its energy extracted as...

  16. Coal Study Guide for Elementary School

    Office of Energy Efficiency and Renewable Energy (EERE)

    Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

  17. Clean Burn Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Burn Fuels LLC Jump to: navigation, search Name: Clean Burn Fuels LLC Place: Raleigh, North Carolina Zip: 27603 Sector: Biofuels Product: Biofuels developer planning to build a 60m...

  18. Development of a Coal Quality Expert

    SciTech Connect (OSTI)

    1998-06-20

    ABB Power Plant Laboratories Combustion Engineering, Inc., (ABB CE) and CQ Inc. completed a broad, comprehensive program to demonstrate the economic and environmental benefits of using higher quality U.S. coals for electrical power generation and developed state-of-the-art user-friendly software--Coal Quality Expert (CQE)-to reliably predict/estimate these benefits in a consistent manner. The program was an essential extension and integration of R and D projects performed in the past under U.S. DOE and EPRI sponsorship and it expanded the available database of coal quality and power plant performance information. This software will permit utilities to purchase the lowest cost clean coals tailored to their specific requirements. Based on common interest and mutual benefit, the subject program was cosponsored by the U.S. DOE, EPRI, and eight U.S. coal-burning utilities. In addition to cosponsoring this program, EPN contributed its background research, data, and computer models, and managed some other supporting contracts under the terms of a project agreement established between CQ Inc. and EPRI. The essential work of the proposed project was performed under separate contracts to CQ Inc. by Electric Power Technologies (El?'T), Black and Veatch (B and V), ABB Combustion Engineering, Babcock and Wilcox (B and W), and Decision Focus, Inc. Although a significant quantity of the coals tied in the United States are now cleaned to some degree before firing, for many of these coals the residual sulfur content requires users to install expensive sulfur removal systems and the residual ash causes boilers to operate inefficiently and to require frequent maintenance. Disposal of the large quantities of slag and ash at utility plant sites can also be problematic and expensive. Improved and advanced coal cleaning processes can reduce the sulfur content of many coals to levels conforming to environmental standards without requiring post-combustion desulfurization systems. Also

  19. Solvolytic liquefaction of wood under mild conditions

    SciTech Connect (OSTI)

    Yu, S.M.

    1982-04-01

    Conversion of wood to liquid products requires cleavage of bonds which crosslink the wood structure. This study examines a low-severity wood solubilization process utilizing a solvent medium consisting of a small amount of sulfuric acid and a potentially wood-derivable alcohol. In one half hour of reaction time at 250/sup 0/C under 15 psia starting nitrogen pressure, over 95% of the wood (maf) was rendered acetone-soluble. The product is a soft, black, bitumen-like solid at room temperature but readily softens at 140/sup 0/C. Between 25 and 50% of the original wood oxygen, depending on alcohol used, was removed as water. Approximately 2 to 17% of the alcohols were retained in the product. Gel permeation chromatography showed that the product's median molecular weight is around 300. Based on experimental and literature results, a mechanism for wood solubilization is proposed. This involves protonation of the etheric oxygen atoms, leading to subsequent bond scission to form carbonium ions which are stabilized by solvent alkoxylation. At severe conditions, polymerization and condensation reactions result in acetone-insoluble materials.

  20. Coal Data: A reference

    SciTech Connect (OSTI)

    Not Available

    1991-11-26

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  1. Coal recovery process

    DOE Patents [OSTI]

    Good, Robert J.; Badgujar, Mohan

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  2. Hydroprocessing catalysts for heavy oil and coal

    SciTech Connect (OSTI)

    Satriana, M.J.

    1982-01-01

    Hydroprocessing catalysts, as described in over 230 processes covered in this book, are hydrogenation catalysts used in the upgrading of heavy crudes and coal to products expected to be in great demand as the world's primary oil supplies gradually dwindle. The techniques employed in hydroprocessing result in the removal of contaminants, the transformation of lower grade materials such as heavy crudes to valuable fuels, or the conversion of hydrocarbonaceous solids into gaseous or liquid fuel products. All of these techniques are, of course, carried out in the presence of hydrogen. Some of the brightest energy prospects for the future lie in heavy oil reservoirs and coal reserves. Heavy oils, defined in this book as having gravities of < 20/sup 0/API, are crudes so thick that they are not readily extracted from their reservoirs. However, processing of these crudes is of great importance, because the US resource alone is enormous. The main types of processing catalysts covered in the book are hydrorefining catalysts plus some combinations of the two. Catalysts for the conversion of hydrocarbonaceous materials to gaseous or liquid fuels are also covered. The primary starting material for these conversions is coal, but wood, lignin, oil shale, tar sands, and peat are other possibilities. The final chapter describes the preparation of various catalyst support systems.

  3. Process for hydrogenating coal and coal solvents

    DOE Patents [OSTI]

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  4. From the Woods to the Refinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Woods to the Refinery CORRIM Life Cycle Analyses of Woody Feedstocks Dr. Steve Kelley ... composition, sugar types, residue fuel value * TC models are sensitive to MC, much less ...

  5. Wood Fuel LP | Open Energy Information

    Open Energy Info (EERE)

    77034 Region: Texas Area Sector: Biomass Product: Wood by-products consulting and marketing Website: www.woodfuel.com Coordinates: 29.6221328, -95.1872605 Show Map Loading...

  6. From the Woods to the Refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels From the Woods to the Refinery Stephen S. Kelley, Principal and Department Head, Department of Forest Biomaterials, North Carolina State University

  7. Logs Wood Chips Straw Corn Switchgrass

    Broader source: Energy.gov (indexed) [DOE]

    Clean energy can come from the sun. The energy in wind can make electricity. Bioenergy comes from plants we can turn into fuel. Logs Wood Chips Straw Corn Switchgrass We can use ...

  8. Wood Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Ltd Jump to: navigation, search Name: Wood Energy Ltd Place: Devon, United Kingdom Zip: EX16 9EU Product: Specialises in the design, installation and service of automatic...

  9. Ultrasonic technique for characterizing skin burns

    DOE Patents [OSTI]

    Goans, Ronald E.; Cantrell, Jr., John H.; Meyers, F. Bradford; Stambaugh, Harry D.

    1978-01-01

    This invention, a method for ultrasonically determining the depth of a skin burn, is based on the finding that the acoustical impedance of burned tissue differs sufficiently from that of live tissue to permit ultrasonic detection of the interface between the burn and the underlying unburned tissue. The method is simple, rapid, and accurate. As compared with conventional practice, it provides the important advantage of permitting much earlier determination of whether a burn is of the first, second, or third degree. In the case of severe burns, the usual two - to three-week delay before surgery may be reduced to about 3 days or less.

  10. Microbial solubilization of coals

    SciTech Connect (OSTI)

    Campbell, J.A.; Fredrickson, J.K.; Stewart, D.L.; Thomas, B.L.; McCulloch, M.; Wilson, B.W.; Bean, R.M.

    1988-11-01

    Microbial solubilization of coal may serve as a first step in a process to convert low-rank coals or coal-derived products to other fuels or products. For solubilization of coal to be an economically viable technology, a mechanistic understanding of the process is essential. Leonardite, a highly oxidized, low-rank coal, has been solubilized by the intact microorganism, cell-free filtrate, and cell-free enzyme of /ital Coriolus versicolor/. A spectrophotometric conversion assay was developed to quantify the amount of biosolubilized coal. In addition, a bituminous coal, Illinois No. 6, was solubilized by a species of /ital Penicillium/, but only after the coal had been preoxidized in air. Model compounds containing coal-related functionalities have been incubated with the leonardite-degrading fungus, its cell-free filtrate, and purified enzyme. The amount of degradation was determined by gas chromatography and the degradation products were identified by gas chromatography/mass spectrometry. We have also separated the cell-free filtrate of /ital C. versicolor/ into a <10,000 MW and >10,000 MW fraction by ultrafiltration techniques. Most of the coal biosolubilization activity is contained in the <10,000 MW fraction while the model compound degradation occurs in the >10,000 MW fraction. The >10,000 MW fraction appears to contain an enzyme with laccase-like activity. 10 refs., 8 figs., 5 tabs.