National Library of Energy BETA

Sample records for burning hydraulic cement

  1. Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992

    SciTech Connect (OSTI)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-12-01

    This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

  2. Synthesis of belite cement clinker of high hydraulic reactivity

    SciTech Connect (OSTI)

    Kacimi, Larbi Simon-Masseron, Angelique Salem, Souria Ghomari, Abdelhamid Derriche, Zoubir

    2009-07-15

    This study is concerned with the increase of the cooling rate of belite clinker, by using the water quenching for the chemical stabilization of reactive belite, which improves the hydraulic properties of this clinker. The addition of adequate mineralizers, as NaF and Fe{sub 2}O{sub 3}, contributes to the improvement of the clinker properties obtained at low burning temperature. X-ray fluorescence spectroscopy, X-ray diffraction analysis and optical microscopy were used to determine the chemical and mineralogical compositions of this clinker. The samples were analyzed by means of a scanning electronic microscope connected with an energy-dispersive X-ray spectrometer to detect the composition of the belite phase and its morphology. Physical and mechanical properties of this clinker cement were determined. The results show that the belite clinker obtained at 1150 {sup o}C, with lime saturation factor 0.67, is characterized by a great hydraulic reactivity, similar to that of the ordinary alite clinker. The addition of 2% of NaF and the water quenching improved the chemical, mineralogical and structural properties, while improving the cement hydraulic properties.

  3. Investigation of Possible Wellbore Cement Failures During Hydraulic...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations Citation Details In-Document Search Title: Investigation of Possible ...

  4. Map of Cement Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cement

  5. Reproductive and developmental health risk from dioxin-like compounds: Insignificant risk from cement kilns burning waste-derived fuels

    SciTech Connect (OSTI)

    Holcomb, L.C.; Pedelty, J.F.

    1994-12-31

    Cement kilns burning waste-derived fuels emit low levels of dibenzodioxins and dibenzofurans and little or no PCB`s. Concern about possible effects on reproduction and development has prompted an evaluation of the research literature especially with regard to the reproductive and developmental effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In sufficient doses, dioxins, furans, and PCB can cause adverse health effects in some animals or humans. Calculated doses of TCDD-EQ (dioxin equivalents) are dependent on many assumptions, but where human effects have been demonstrated, doses were 100--1,000 times higher than the usual background environmental doses. This would include those environmental doses that would be received by the most-exposed individual living near cement kilns burning WDF. There is evidence to suggest that PCB`s have had an adverse impact on some wildlife although there is no evidence that these PCB`s are associated with cement kiln emissions. There is no evidence to suggest that dioxins, at environmental levels or associated with emissions from WDF-burning cement kilns, have caused adverse effects in either wildlife or humans. 63 refs., 3 tabs.

  6. Trends in characteristics of hazardous waste-derived fuel burned for energy recovery in cement kilns

    SciTech Connect (OSTI)

    Lusk, M.G.; Campbell, C.S.

    1996-12-31

    The Cement Kiln Recycling Coalition (CKRC) is a national trade association representing virtually all the U.S. cement companies involved in the use of waste-derived fuel in the cement manufacturing process as well as those companies involved in the collection, processing, managing, and marketing of such fuel. CKRC, in conjunction with the National Association of Chemical Recyclers (NACR), completed several data collection activities over the past two years to provide the Environmental Protection Agency (EPA) and other interested parties with industry-wide trend analyses. The analyses evaluated the content of specific metals in waste fuels utilized by cement kilns, average Btu value of substitute fuels used by kilns, and provides insight into the trends of these properties. With the exception of the data collected by NACR, the study did not evaluate materials sent to hazardous waste incinerators or materials that are combusted at {open_quotes}on-site{close_quotes} facilities.

  7. Assessment of the percent status of burning refuse-derived fuel as a fuel supplement in the cement kiln industry

    SciTech Connect (OSTI)

    1981-09-01

    The purpose of the project was to solicit information on the use of refuse-derived fuel (RDF) in cement kilns by survey, follow up the mailed survey with telephone calls to the recipients, and assemble collected information into a report. A list of companies that had some experience with RFD was compiled and is presented in Appendix A. The procedure for conducting the survey is explained. A copy of the questionnaire is presented in Appendix B. The letters of response are reproduced in Appendix C. Two completed forms were received and clear conclusions are summarized. The effort was terminated and no final report was assembled.

  8. Method for directional hydraulic fracturing

    DOE Patents [OSTI]

    Swanson, David E.; Daly, Daniel W.

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  9. HYDRAULIC SERVO

    DOE Patents [OSTI]

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  10. Alternative Fuel for Portland Cement Processing

    SciTech Connect (OSTI)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  11. Zinc electrode with cement additive

    DOE Patents [OSTI]

    Charkey, Allen

    1982-06-01

    A zinc electrode having a cement additive, preferably, Portland Cement, distributed in the zinc active material.

  12. Bridge Hydraulics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydraulics Analysis using Computational Fluid Dynamics The flow field around an inundated bridge deck based on the hydraulics experiments conducted at the Turner-Fairbank Highway Research Center TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Overview Bridges are the critical components of our nation's transportation network. Evaluation of bridge stability after flooding events, including the integrity of the bridge itself and the

  13. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect (OSTI)

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  14. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect (OSTI)

    Fred Sabins

    2003-10-31

    The objective of this project is to develop an improved ultra- lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  15. MECS 2006- Cement

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Cement (NAICS 327310) Sector with Total Energy Input, October 2012 (MECS 2006)

  16. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect (OSTI)

    Fred Sabins

    2002-10-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that will be performed for analyzing the alkali-silica reactivity of ULHS in cement slurries, as well as the results of Field Tests 1 and 2.

  17. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect (OSTI)

    Fred Sabins

    2001-07-18

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job.

  18. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect (OSTI)

    Fred Sabins

    2002-04-29

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, and shear bond. Testing to determine the effect of temperature cycling on the shear bond properties of the cement systems was also conducted. In addition, the stress-strain behavior of the cement types was studied. This report discusses a software program that is being developed to help design ULHS cements and foamed cements.

  19. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect (OSTI)

    Fred Sabins

    2001-01-15

    The objective of this project is to develop an improved ultra-lightweigh cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems, Task 2: Review Russian Ultra-Lightweight Cement Literature, and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary surface pipe and intermediate casing cementing conditions historically encountered in the US and establishment of average design conditions for ULHS cements. Russian literature concerning development and use of ultra-lightweight cements employing either nitrogen or ULHS was reviewed, and a summary is presented. Quality control testing of materials used to formulate ULHS cements in the laboratory was conducted to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS. This protocol is presented and discussed. finally, results of initial testing of ULHS cements is presented along with analysis to establish cement performance design criteria to be used during the remainder of the project.

  20. A comparison of normal and worst case cement plant emissions

    SciTech Connect (OSTI)

    Woodford, J.; Gossman, D.; Johnson, N.

    1996-12-31

    Lone Star Industries, Inc. in Cape Girardeau, Missouri conducted a trial burn in October, 1995. Two metals emissions test days were conducted. One of the test days was a worst case metals spiking day and one of the test days was a normal emissions day. This paper examines and compares the emissions from these two test days. Much has been made of metals emissions from hazardous waste burning cement kilns, but for the most part, this has been due to the worst case metals emissions data that became available from the 1992 BIF compliance testing performed and reported by 24 cement plants. By comparison, very little data exists on normal cement kiln emissions. This paper provides one comparison.

  1. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect (OSTI)

    Fred Sabins

    2003-01-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

  2. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect (OSTI)

    Fred Sabins

    2004-01-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  3. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect (OSTI)

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  4. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect (OSTI)

    Fred Sabins

    2003-07-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the eleventh quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. This report provides a progress summary of ASR testing. The original laboratory procedure for measuring set cement expansion resulted in unacceptable erosion of the test specimens. In subsequent tests, a different expansion procedure was implemented and an alternate curing method for cements formulated with TXI Lightweight cement was employed to prevent sample failure caused by thermal shock. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but data for some compositions were still questionable. Additional modification of test procedures for compositions containing TXI Lightweight cement were implemented and testing is ongoing.

  5. Effect of large additions of Cd, Pb, Cr, Zn, to cement raw meal on the composition and the properties of the clinker and the cement

    SciTech Connect (OSTI)

    Murat, M.; Sorrentino, F.

    1996-03-01

    The utilization of hydraulic binders to solidify and to stabilize industrial wastes and municipal garbage is presently recognized as one of the solutions to the problem of environment protection. Te addition of important quantities of Cd, Pb, Cr, Zn to raw meals of Portland and calcium aluminate cement modifies the mineralogical composition and the properties of the final cement. Portland cement can absorb a large amount of Cd and Zn. This absorption leads to an increase of setting time and a decrease of strengths of the cement. It also can trap chromium with a short setting time and high strengths. Calcium aluminate cements easily trap Cd and Cr with a delayed setting and good strength but also Pb with normal setting time and strengths. Large quantities of zinc oxide have a deleterious effect on calcium aluminate strengths.

  6. Thermodynamics and cement science

    SciTech Connect (OSTI)

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  7. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect (OSTI)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  8. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect (OSTI)

    Fred Sabins

    2003-06-16

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the tenth quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. The original laboratory procedure for measuring set cement expansion resulted in test specimen erosion that was unacceptable. A different expansion procedure is being evaluated. This report provides a progress summary of ASR testing. The testing program initiated in November produced questionable initial results so the procedure was modified slightly and the testing was reinitiated. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but questionable data were obtained from several of the compositions. Additional modification of test procedures for compositions containing TXI Lightweight cement are being implemented and testing is ongoing.

  9. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  10. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  11. Cement (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cement (2010 MECS) Cement (2010 MECS) Manufacturing Energy and Carbon Footprint for Cement Sector (NAICS 327310) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Cement (126.44 KB) More Documents & Publications MECS 2006 - Cement Glass and Glass Products (2010 MECS) Textiles

  12. US cement industry

    SciTech Connect (OSTI)

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  13. Downhole hydraulic seismic generator

    DOE Patents [OSTI]

    Gregory, Danny L.; Hardee, Harry C.; Smallwood, David O.

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  14. Cement Bond Log | Open Energy Information

    Open Energy Info (EERE)

    casing and cement and between cement and borehole wall. Most cement-bond logs are a measurement only of the amplitude of the early arriving casing signal. Although a small...

  15. Evaluation of cement kiln laboratories testing hazardous waste derived fuels

    SciTech Connect (OSTI)

    Nichols, R.E.

    1998-12-31

    Cement kiln operators wishing to burn hazardous waste derived fuels in their kilns must submit applications for Resource Conservation Recovery Act permits. One component of each permit application is a site-specific Waste Analysis Plan. These Plans describe the facilities` sampling and analysis procedures for hazardous waste derived fuels prior to receipt and burn. The Environmental Protection Agency has conducted on-site evaluations of several cement kiln facilities that were under consideration for Resource Conservation Recovery Act permits. The purpose of these evaluations was to determine if the on-site sampling and laboratory operations at each facility complied with their site-specific Waste Analysis Plans. These evaluations covered sampling, laboratory, and recordkeeping procedures. Although all the evaluated facilities were generally competent, the results of those evaluations revealed opportunities for improvement at each facility. Many findings were noted for more than one facility. This paper will discuss these findings, particularly those shared by several facilities (specific facilities will not be identified). Among the findings to be discussed are the ways that oxygen bombs were scrubbed and rinsed, the analytical quality control used, Burn Tank sampling, and the analysis of pH in hazardous waste derived fuels.

  16. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-01

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  17. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  18. Gujarat Ambuja Cements Limited | Open Energy Information

    Open Energy Info (EERE)

    Limited Jump to: navigation, search Name: Gujarat Ambuja Cements Limited Place: Mumbai, India Zip: 400 021 Sector: Biomass Product: Indian cement company. the company...

  19. Hydraulic Institute Member Benefits

    Broader source: Energy.gov [DOE]

    As the developer of the universally acclaimed ANSI/HI Pump Standards, a key reference for pump knowledge and end-user specifications, the Hydraulic  nstitute (HI) provides its members with timely...

  20. Ripple burn control

    SciTech Connect (OSTI)

    Bhadra, D.K.; Petrie, T.W.; Peuron, U.A.; Rawls, J.M.

    1980-05-01

    The ripple contribution to the ion thermal conductivity is ideally suited in magnitude, temperature dependence, and spatial dependence to serve as a burn control mechanism. Furthermore, a considerable measure of automatic burn control results because of the radial shift of the plasma to a region of higher ripple. Unfortunately, the window in ripple values consistent with both ignition and a burn equilibrium is uncomfortably narrow, given the current lack of contact between the theoretical models of ripple transport and experimental observations. A survey is made of the techniques to vary the ripple and thus broaden the design window. One new technique is discussed in some detail: the use of ferromagnetic materials in the shield with magnetic properties which are sensitive functions of the operating temperature.

  1. HYDRAULIC AND PHYSICAL PROPERTIES OF MCU SALTSTONE

    SciTech Connect (OSTI)

    Dixon, K; Mark Phifer, M

    2008-03-19

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone., Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement or lime to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of MCU (Modular Caustic Side Solvent Extraction Unit) saltstone relative to two permeating fluids. These fluids included simulated groundwater equilibrated with vault concrete and simulated saltstone pore fluid. Samples of the MCU saltstone were prepared by the Savannah River National Laboratory (SRNL) and allowed to cure for twenty eight days prior to testing. These samples included two three-inch diameter by six inch long mold samples and three one-inch diameter by twelve inch long mold samples.

  2. HYDRAULIC SERVO CONTROL MECHANISM

    DOE Patents [OSTI]

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  3. Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Cement...

  4. Category:Burns, OR | Open Energy Information

    Open Energy Info (EERE)

    72 KB SVSecondarySchool Burns OR PacifiCorp (Oregon).png SVSecondarySchool Burn... 70 KB SVSmallHotel Burns OR PacifiCorp (Oregon).png SVSmallHotel Burns OR ... 69 KB...

  5. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    SciTech Connect (OSTI)

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further

  6. SystemBurn

    Energy Science and Technology Software Center (OSTI)

    2012-08-30

    SystemBurn is a tool for creating a synthetic computational load for the purpose of measuring how much power a computer will draw under that type of load. The loads include fundamental library function calls like matrix multiply, memory copies, fourier transforms, bit manipulation, I/O, network packet transfers, and some code contrived to cause the processor to dray more or less power. The code produces some diagnostic and progress output, but the actual measurements would bemore » recorded from the power panels within the computer room.« less

  7. Method of the cementing of material

    SciTech Connect (OSTI)

    Konovalov, Y.G.; Shutov, G.M.; Khanenya, G.P.; Dyatko, E.K.; Buben, K.K.

    1990-10-30

    Invention relates to woodworking industry and concerns method of cementing of materials of foam plastic with duralumin, glued plywood, etc. Known methods of cementing of materials by effect of electromagnetic field of superhigh frequencies are unproductive and do not make it possible to cement parts on the plane. Target of invention - acceleration of process of cementing of planar, including of complex configuration, parts and assemblies from wood, foam plastic, duralumin, glued plywood and other materials. For this material is cemented under the effect of directed electromagnetic field of superhigh frequency in the range 01-50 GHz, the specific power of 0.5-15 W/cm3.

  8. Process for cementing geothermal wells

    DOE Patents [OSTI]

    Eilers, Louis H.

    1985-01-01

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  9. computational-hydraulics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Aerodynamics using STAR-CCM+ for CFD Analysis March 21-22, 2012 Argonne, Illinois Dr. Steven Lottes This email address is being protected from spambots. You need JavaScript enabled to view it. A training course in the use of computational hydraulics and aerodynamics CFD software using CD-adapco's STAR-CCM+ for analysis will be held at TRACC from March 21-22, 2012. The course assumes a basic knowledge of fluid mechanics and will make extensive use of hands on tutorials. CD-adapco will issue

  10. Hydraulic mining method

    DOE Patents [OSTI]

    Huffman, Lester H.; Knoke, Gerald S.

    1985-08-20

    A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.

  11. Evaluation of cement production using a pressurized fluidized-bed combustor

    SciTech Connect (OSTI)

    DeLallo, M.; Eshbach, R.

    1994-01-01

    There are several primary conclusions which can be reached and used to define research required in establishing the feasibility of using PFBC-derived materials as cement feedstock. 1. With appropriate blending almost any material containing the required cement-making materials can be utilized to manufacture cement. However, extensive blending with multiple materials or the use of ash in relatively small quantities would compromise the worth of this concept. 2. The composition of a potential feedstock must be considered not only with respect to the presence of required materials, but just as significantly, with respect to the presence and concentration of known deleterious materials. 3. The processing costs for rendering the feedstock into an acceptable composition and the energy costs associated with both processing and burning must be considered. It should be noted that the cost of energy to produce cement, expressed as a percentage of the price of the product is higher than for any other major industrial product. Energy consumption is, therefore, a major issue. 4. The need for conformance to environmental regulations has a profound effect on the cement industry since waste materials can neither be discharged to the atmosphere or be shipped to a landfill. 5. Fifth, the need for achieving uniformity in the composition of the cement is critical to controlling its quality. Unfortunately, certain materials in very small concentrations have the capability to affect the rate and extent to which the cementitious compound in portland cement are able to form. Particularly critical are variations in the ash, the sulfur content of the coal or the amount and composition of the stack dust returned to the kiln.

  12. Hydraulic analysis of reciprocating pumps

    SciTech Connect (OSTI)

    Miller, J.D.; Miller, .E. [White Rock Engineering, Inc., Dallas, TX (United States)

    1994-12-31

    A general discussion is given of the factors affecting reciprocating pump hydraulics and methods of reducing the magnitude of the hydraulic pressure disturbances on the pump and the system. Pump type, speed, design, pump valves, suction conditions, and fluid being pumped affect volumetric efficiency and magnitude of hydraulic pressure disturbances. Total Cylinder Pressure (TCP) as a method of specifying minimum suction operating pressure versus Net Positive Suction Head required (NPSHR) is discussed. Diagnostic method of analyzing reciprocating pump performance is presented along with methods of controlling the hydraulic pressure disturbances with pulsation control devices. A review of types of pump pulsation dampeners is presented.

  13. Biomass Burning Observation Project Specifically,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacific Northwest region and in the vicinity of Memphis, Tennessee, as part of the Biomass Burning Observation Project (BBOP). The aircraft will fly through smoke plumes from...

  14. Burning tires for fuel and tire pyrolysis: air implications

    SciTech Connect (OSTI)

    Clark, C.; Meardon, K.; Russell, D.

    1991-12-01

    The document was developed in response to increasing inquiries into the environmental impacts of burning waste tires in process equipment. The document provides information on the use of whole, scrap tires and tire-derived-fuel (TDF) as combustion fuel and on the pyrolysis of scrap tires. The use of whole tires and TDF as a primary fuel is discussed for dedicated tire-to-energy facilities. The use of whole tires and TDF as a supplemental fuel is discussed for cement manufacturing plants, electric utilities, pulp and paper mills, and other industrial processes. The focus of the document is on the impact of burning whole tires and TDF on air emissions. Test data are presented and, in most instances, compared with emissions under baseline conditions (no tires or TDF in the fuel). The control devices used in these industries are discussed and, where possible, their effectiveness in controlling emissions from the burning of whole tires or TDF is described. In addition, the report provides information on the processes themselves that use whole tires or TDF, the modifications to the processes that allowed the use of whole tires or TDF, and the operational experiences of several facilities using whole tires or TDF. The economic feasibility of using whole tires and TDF for the surveyed industries is discussed. Finally, contacts for State waste tire programs are presented.

  15. BLM Burns District Office | Open Energy Information

    Open Energy Info (EERE)

    Burns District Office Jump to: navigation, search Name: BLM Burns District Office Place: Hines, Oregon References: BLM Burns District Office1 This article is a stub. You can help...

  16. Hydraulic Hybrid Systems | Open Energy Information

    Open Energy Info (EERE)

    Hydraulic Hybrid Systems Retrieved from "http:en.openei.orgwindex.php?titleHydraulicHybridSystems&oldid768560" Categories: Organizations Companies Energy...

  17. Tidal Hydraulic Generators Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydraulic Generators Ltd Jump to: navigation, search Name: Tidal Hydraulic Generators Ltd Address: 14 Thislesboon Drive Place: Mumbles Zip: SA3 4HY Region: United Kingdom Sector:...

  18. Numerical evaluation of effective unsaturated hydraulic properties...

    Office of Scientific and Technical Information (OSTI)

    unsaturated hydraulic properties for fractured rocks Citation Details In-Document Search Title: Numerical evaluation of effective unsaturated hydraulic properties for ...

  19. Northwest Hydraulic Consultants | Open Energy Information

    Open Energy Info (EERE)

    Hydraulic Consultants Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Northwest Hydraulic Consultants Address 835 S 192nd, Building C, Suite 1300 Place...

  20. ARM - Biomass Burning Observation Project (BBOP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

  1. Squeeze cement method using coiled tubing

    SciTech Connect (OSTI)

    Underdown, D.R.; Ashford, J.D.; Harrison, T.W.; Eastlack, J.K.; Blount, C.G.; Herring, G.D.

    1986-12-09

    A method is described of squeeze cementing a well wherein the well has a casing throughout the wellbore, casing cement between the casing and the wellbore of the well, perforations through the casing and the casing cement to establish fluid communication between the interior of the casing and a formation adjacent the perforations, channels in the casing cement in fluid communication with at least some of the perforations, a well tubing string in the casing extending from the surface to the proximity of the perforations, and a packer means for sealing between the tubing and the casing above the perforations. The method consists of: isolating the casing adjacent the perforations; lowering a coiled tubing down the well tubing string to a point adjacent the perforations; flowing uncontaminated squeeze cement through the coiled tubing and through the perforations into the channels; flowing a cement contaminating liquid down the coiled tubing to mix with the squeeze cement remaining in the casing; allowing the uncontaminated squeeze cement in the channels to harden; and removing the contaminated squeeze cement from the casing through the coiled tubing.

  2. High Temperature Cements | Open Energy Information

    Open Energy Info (EERE)

    gles":,"locations":"text":"Cement for...

  3. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  4. Permeability of consolidated incinerator facility wastes stabilized with portland cement

    SciTech Connect (OSTI)

    Walker, B.W.

    2000-04-19

    The Consolidated Incinerator Facility (CIF) at the Savannah River Site (SRS) burns low-level radioactive wastes and mixed wastes as a method of treatment and volume reduction. The CIF generates secondary waste, which consists of ash and offgas scrubber solution. Currently the ash is stabilized/solidified in the Ashcrete process. The scrubber solution (blowdown) is sent to the SRS Effluent Treatment Facility (ETF) for treatment as wastewater. In the past, the scrubber solution was also stabilized/solidified in the Ashcrete process as blowcrete, and will continue to be treated this way for listed waste burns and scrubber solutions that do not meet the ETF Waste Acceptance Criteria (WAC). The disposal plan for Ashcrete and special case blowcrete is to bury these containerized waste forms in shallow unlined trenches in E-Area. The WAC for intimately mixed, cement-based wasteforms intended for direct disposal specifies limits on compressive strength and permeability. Simulated waste and actual CIF ash and scrubber solution were mixed in the laboratory and cast into wasteforms for testing. Test results and related waste disposal consequences are given in this report.

  5. BEST-Cement for China | Open Energy Information

    Open Energy Info (EERE)

    BEST-Cement for China Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BEST-Cement AgencyCompany Organization: Lawrence Berkeley National Laboratory Partner: Energy...

  6. Wellbore Integrity Assurance with NETL's Safe Cementing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Wellbore cement integrity is paramount to safe, successful oil and natural gas drilling. Cement acts as the primary barrier between the wellbore and the environment....

  7. INFORMAL REPORT PROPERTIES AND PERFORMANCE OF CEMENT- BASED GROUTS...

    Office of Scientific and Technical Information (OSTI)

    ... Cement Ground Heat Exchanger Grouts, ASHRAE Transactions, Vol. 105, Part 1,446-450, ... Cement Ground Heat Exchanger Grouts, ASHRAE Transactions, Vol. 105, Part 1,446-450, ...

  8. Multifunctional Corrosion-resistant Foamed Well Cement Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well ...

  9. Analysis of Hydraulic Conductivity Calculations

    SciTech Connect (OSTI)

    Green, R.E.

    2003-01-06

    Equations by Marshall and by Millington and Quirk for calculating hydraulic conductivity from pore-size distribution data are dependent on an arbitrary choice of the exponent on the porosity term and a correct estimate of residual water. This study showed that a revised equation, based on the pore-interaction model of Marshall, accurately predicts hydraulic conductivity for glass beads and a loam soil from the pressure-water content relationships of these porous materials.

  10. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  11. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  12. A review of Title V operating permit application requirements caused by the use of waste-derived fuel at cement plants

    SciTech Connect (OSTI)

    Yarmac, R.F.

    1994-12-31

    The Clean Air Act Amendments of 1990 required the USEPA to establish a comprehensive operating permit program which is being administered by the states. Most major air pollution sources will be required to submit operating permit applications by November 15, 1995 or earlier. Portland cement plants that burn waste-derived fuel face some special permitting problems that need to be addressed during the permit application process. This paper presents a brief summary of the Title V application with special emphasis on the permitting requirements incurred by the utilization of waste fuel at cement plants.

  13. Phosphate-bonded calcium aluminate cements

    DOE Patents [OSTI]

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  14. Phosphate-bonded calcium aluminate cements

    DOE Patents [OSTI]

    Sugama, Toshifumi

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  15. Hydraulic Institute Mission and Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HydraulicInstitute.pdf More Documents & Publications Hydraulic Institute Member Benefits Brochure HI Standards Subscription Options Brochure Hydraulic Institute Standards Overview...

  16. Electokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

  17. CONTENTS NETL Boasts State-of-the- Art Capabilities for Cement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Primary Cementing ......17 Nano Impregnated Cement ... 18 CONTACTS Roy ... Nano Impregnated Cement Honolulu-based Oceanit Laboratories Inc., supported by DOE ...

  18. NREL: Transportation Research - Hydraulic Hybrid Fleet Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a ...

  19. Pros and cons of hydraulic drilling

    SciTech Connect (OSTI)

    Not Available

    1984-06-01

    The advantages and disadvantages of using hydraulic drilling are discussed. The low maintenance, energy efficiency, drilling speeds, and operating costs are the main advantages of the hydraulic drills. The economics and maintenance of air drills are also compared.

  20. Hydraulic Fracturing | OpenEI Community

    Open Energy Info (EERE)

    Hydraulic Fracturing Home Wayne31jan's picture Submitted by Wayne31jan(150) Contributor 30 June, 2015 - 03:49 Shale Gas Application in Hydraulic Fracturing Market is likely to grow...

  1. Hydraulic Fracturing Market | OpenEI Community

    Open Energy Info (EERE)

    Hydraulic Fracturing Market Home Wayne31jan's picture Submitted by Wayne31jan(150) Contributor 30 June, 2015 - 03:49 Shale Gas Application in Hydraulic Fracturing Market is likely...

  2. Computational fluid dynamics improves liner cementing operation

    SciTech Connect (OSTI)

    Barton, N.A.; Archer, G.L. ); Seymour, D.A. )

    1994-09-26

    The use of computational fluid dynamics (CFD), an analytical tool for studying fluid mechanics, helped plan the successful cementing of a critical liner in a North Sea extended reach well. The results from CFD analysis increased the confidence in the primary cementing of the liner. CFD modeling was used to quantify the effects of increasing the displacement rate and of rotating the liner on the mud flow distribution in the annulus around the liner.

  3. Clean Burn Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Burn Fuels LLC Jump to: navigation, search Name: Clean Burn Fuels LLC Place: Raleigh, North Carolina Zip: 27603 Sector: Biofuels Product: Biofuels developer planning to build a 60m...

  4. New coiled-tubing cementing techniques at Prudhoe developed to withstand higher differential pressure

    SciTech Connect (OSTI)

    Krause, R.E.; Reem, D.C. )

    1993-11-01

    The successful hydraulic fracturing program at Prudhoe Bay would not have been possible without an effective coiled-tubing-unit (CTU) cement-squeeze program. Many fracture stimulation candidates were wells that have been squeezed previously. Therefore, squeezed perforations were exposed to higher differential pressures during fracturing operations than normally were seen at Prudhoe. At the outset of the fracture stimulation program in 1990, squeeze perforations failed when subjected to fracture job pressures. It quickly became clear that more aggressive CTU squeeze techniques resulting in stronger squeezed perforations would be necessary if the Prudhoe fracture program were to achieve its goals. Arco Alaska Inc. implemented a more aggressive CTU squeeze program in the Eastern Operating Area (EOA) in mid-1990. This paper documents the results of the new squeeze program, in which increased surface coiled-tubing squeeze pressures from 1,500 to 3,500 psi for 1 hour were used. More resilient, acid-resistant latex cement also became the standard in late 1990 for squeeze cementing. Implementation of this program has resulted in a squeeze success rate approaching 90%.

  5. Analysis of CCRL proficiency cements 151 and 152 using the Virtual Cement and Concrete Testing Laboratory

    SciTech Connect (OSTI)

    Bullard, Jeffrey W. . E-mail: jeffrey.bullard@nist.gov; Stutzman, Paul E.

    2006-08-15

    To test the ability of the Virtual Cement and Concrete Testing Laboratory (VCCTL) software to predict cement hydration properties, characterization of mineralogy and phase distribution is necessary. Compositional and textural characteristics of Cement and Concrete Reference Laboratory (CCRL) cements 151 and 152 were determined via scanning electron microscopy (SEM) analysis followed by computer modeling of hydration properties. The general procedure to evaluate a cement is as follows: (1) two-dimensional SEM backscattered electron and X-ray microanalysis images of the cement are obtained, along with a measured particle size distribution (PSD); (2) based on analysis of these images and the measured PSD, three-dimensional microstructures of various water-to-cement ratios are created and hydrated using VCCTL, and (3) the model predictions for degree of hydration under saturated conditions, heat of hydration (ASTM C186), setting time (ASTM C191), and strength development of mortar cubes (ASTM C109) are compared to experimental measurements either performed at NIST or at the participating CCRL proficiency sample evaluation laboratories. For both cements, generally good agreement is observed between the model predictions and the experimental data.

  6. CORE ANALYSIS, DESIGN AND OPTIMIZATION OF A DEEP-BURN PEBBLE BED REACTOR

    SciTech Connect (OSTI)

    B. Boer; A. M. Ougouag

    2010-05-01

    Achieving a high burnup in the Deep-Burn pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. To investigate the aforementioned effects a code system using existing codes has been developed for neutronic, thermal-hydraulic and fuel depletion analysis of Deep-Burn pebble bed reactors. A core analysis of a Deep-Burn Pebble Bed Modular Reactor (400 MWth) design has been performed for two Deep-Burn fuel types and possible improvements of the design with regard to power peaking and temperature reactivity feedback are identified.

  7. Ultrasonic technique for characterizing skin burns

    DOE Patents [OSTI]

    Goans, Ronald E.; Cantrell, Jr., John H.; Meyers, F. Bradford; Stambaugh, Harry D.

    1978-01-01

    This invention, a method for ultrasonically determining the depth of a skin burn, is based on the finding that the acoustical impedance of burned tissue differs sufficiently from that of live tissue to permit ultrasonic detection of the interface between the burn and the underlying unburned tissue. The method is simple, rapid, and accurate. As compared with conventional practice, it provides the important advantage of permitting much earlier determination of whether a burn is of the first, second, or third degree. In the case of severe burns, the usual two - to three-week delay before surgery may be reduced to about 3 days or less.

  8. computational-hydraulics-for-transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Workshop Sept. 23-24, 2009 Argonne TRACC Dr. Steven Lottes This email address is being protected from spambots. You need JavaScript enabled to view it. Announcement pdficon small The Transportation Research and Analysis Computing Center at Argonne National Laboratory will hold a workshop on the use of computational hydraulics for transportation applications. The goals of the workshop are: Bring together people who are using or would benefit from the use of high performance cluster

  9. Hydraulic Institute Mission and Vision:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institute Mission and Vision: Vision: To be a global authority on pumps and pumping systems. Mission: To be a value-adding resource to member companies and pump users worldwide by: * Developing and delivering comprehensive industry standards. * Expanding knowledge by providing education and tools for the effective application, testing, installation, operation and maintenance of pumps and pumping systems. * Serving as a forum for the exchange of industry information. The Hydraulic Institute is a

  10. Hydraulic Conductivity Measurements Barrow 2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller

    2015-02-22

    Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.

  11. Hydraulic Conductivity Measurements Barrow 2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller

    Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.

  12. Development of an Improved Cement for Geothermal Wells

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop a novel, zeolite-containing lightweight, high temperature, high pressure geothermal cement, which will provide operators with an easy to use, flexible cementing system that saves time and simplifies logistics.

  13. High temperature expanding cement composition and use

    DOE Patents [OSTI]

    Nelson, Erik B.; Eilers, Louis H.

    1982-01-01

    A hydratable cement composition useful for preparing a pectolite-containing expanding cement at temperatures above about 150.degree. C. comprising a water soluble sodium salt of a weak acid, a 0.1 molar aqueous solution of which salt has a pH of between about 7.5 and about 11.5, a calcium source, and a silicon source, where the atomic ratio of sodium to calcium to silicon ranges from about 0.3:0.6:1 to about 0.03:1:1; aqueous slurries prepared therefrom and the use of such slurries for plugging subterranean cavities at a temperature of at least about 150.degree. C. The invention composition is useful for preparing a pectolite-containing expansive cement having about 0.2 to about 2 percent expansion, by volume, when cured at at least 150.degree. C.

  14. Wellbore Cement: Research That Begins Where the Sidewalk Ends

    Broader source: Energy.gov [DOE]

    As we meander down the sidewalk, how many of us give more than a passing thought to the cement underfoot? Researchers at the National Energy Technology Laboratory think about deteriorating cement a lot, with an aim to preserving its character and protecting the environment. But they’re not looking at sidewalks. Their focus is wellbore cement, the cement encasing pipes that bring oil and gas up to the surface.

  15. Development of an Improved Cement for Geothermal Wells

    Broader source: Energy.gov [DOE]

    Development of an Improved Cement for Geothermal Wells presentation at the April 2013 peer review meeting held in Denver, Colorado.

  16. Multifunctional Corrosion-resistant Foamed Well Cement Composites

    Broader source: Energy.gov [DOE]

    Multifunctional Corrosion-resistant Foamed Well Cement Composites presentation at the April 2013 peer review meeting held in Denver, Colorado.

  17. The hybrid rich-burn/lean burn engine. Part 2

    SciTech Connect (OSTI)

    Smith, J.A.; Podnar, D.; Meyers, D.P.

    1996-12-31

    Southwest Research Institute (SwRI) has developed a unique engine technology called Hybrid Rich-Burn/Lean-Burn (HRBLB) that capitalizes on the low production of oxides of nitrogen (NO{sub x}) during extremely rich and lean combustion. The HRBLB concept is predicated on simultaneous combustion of extremely rich and lean natural gas-air mixtures in separate cylinders. Rich exhaust products undergo a catalytic water-gas shift reaction to form an intermediate combustible fuel composed of carbon monoxide, water vapor, hydrogen, and carbon dioxide. All of the intermediate fuel is added to lean natural gas-air mixtures in other cylinders to enhance ignitability that would otherwise result in misfire. This paper presents results obtained during the development of a stationary, turbocharged, and intercooled, 18-liter HRBLB engine. Results show that NO{sub x} can be reduced by a factor of 2.5 to 3.5 relative to stock engine emissions at equivalent efficiency. The HRBLB engine has demonstrated corrected NO{sub x} (15% O{sub 2}) levels of 23 ppm at rated load with thermal efficiencies of 35%.

  18. Combined hydraulic and regenerative braking system

    DOE Patents [OSTI]

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  19. Combined hydraulic and regenerative braking system

    DOE Patents [OSTI]

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  20. Actinide Burning in CANDU Reactors

    SciTech Connect (OSTI)

    Hyland, B.; Dyck, G.R.

    2007-07-01

    Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

  1. Hydraulic Fracturing Poster | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydraulic Fracturing Poster Hydraulic Fracturing Poster InDepth Shale Fracking Poster (2016).jpg Educational poster graphically displaying the key components of hydraulic fracturing. Teachers: If you would like hard copies of this poster sent to you, please contact the FE Office of Communications. InDepth Shale Fracking Poster (2016).pdf (651.91 KB) More Documents & Publications Carbon Capture and Storage Poster How is shale gas produced? 90-day Interim Report on Shale Gas Production -

  2. advanced-hydraulic-and-areodynamic-analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Hydraulic and Aerodynamic Analysis Using CFD March 27-28, 2013 Argonne, Illinois And Remote Locations Dr. Steve Lottes Announcement pdficon small This email address is being protected from spambots. You need JavaScript enabled to view it. Free 2 Day Training Course in Advanced Hydraulic and Aerodynamic Analysis Using CFD March 27-28 (Wednesday-Thursday) Learn and practice using STAR-CCM+ CFD software Tutorial based with a variety of hydraulic and aerodynamic problems Instructors guide

  3. Microseismic Tracer Particles for Hydraulic Fracturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    large increase in the use of hydraulic fracture stimulation of these inherently low permeability reservoir rocks. Operators and service companies require data that can be used to...

  4. Advanced Reactor Thermal Hydraulic Modeling | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Thermal Hydraulic Modeling PI Name: Paul Fischer PI Email: fischer@mcs.anl.gov ... Advanced simulation is viewed as critical in bringing fast reactor technology to fruition ...

  5. Development of an Improved Cement for Geothermal Wells

    SciTech Connect (OSTI)

    Trabits, George

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  6. Burn site groundwater interim measures work plan.

    SciTech Connect (OSTI)

    Witt, Jonathan L.; Hall, Kevin A.

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  7. Uniform-burning matrix burner

    DOE Patents [OSTI]

    Bohn, Mark S.; Anselmo, Mark

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  8. Control rod drive hydraulic system

    DOE Patents [OSTI]

    Ose, Richard A.

    1992-01-01

    A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.

  9. How gelation affects oil well cements

    SciTech Connect (OSTI)

    Kieffer, J.; Rae, P.

    1987-05-01

    One of the most common problems seen in the oil industry is that of cement gelation. Gelation can be defined as a premature viscosification or a gel-strength buildup of the cement slurry. This can have important consequences in field operations and may be so severe as to cause job failure. One of the principal difficulties encountered in dealing with cement gelation is the unpredictable nature of the phenomenon and the fact that it may manifest itself under a variety of field conditions. Thus, it may occur immediately after mixing or during the displacement when the slurry has reached circulating temperature; it occasionally is seen only during shutdowns, when the slurry is in static condition, but may appear during pumping when the slurry is under continual shear. The fact that the physico-chemical bases of gelation are complex probably accounts for the broad spectrum of conditions under which gelation can occur. Factors involved include the chemical composition of the cement powder itself, its fineness, its microstructure, the mixwater quality, the types (if any) of additive used, the rate of heat flux into the slurry as well as the final temperature to which the slurry is exposed.

  10. Cementation and solidification of Rocky Flats Plant incinerator ash

    SciTech Connect (OSTI)

    Phillips, J.A.; Semones, G.B.

    1994-04-01

    Cementation studies on various aqueous waste streams at Rocky Flats have shown this technology to be effective for immobilizing the RCRA constituents in the waste. Cementation is also being evaluated for encapsulation of incinerator ash. Experiments will initially evaluate a surrogate ash waste using a Taguchi experimental design to optimize the cement formulation and waste loading levels for this application. Variables of waste loading, fly ash additions, water/cement ratio, and cement type will be tested at three levels each during the course of this work. Tests will finally be conducted on actual waste using the optimized cement formulation developed from this testing. This progression of tests will evaluate the effectiveness of cement encapsulation for this waste stream without generating any additional wastes.

  11. Production of cements from Illinois coal ash. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect (OSTI)

    Wagner, J.C.; Bhatty, J.L.; Mishulovich, A.

    1997-05-01

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. These residues are composed largely of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. Since the residues are used as an integral component of the cement and not just as additives to concrete, larger amounts of the residues can be utilized. The process uses submerged combustion to melt blends of coal combustion residues with lime, clay, and/or sand. The submerged combustion melter utilizes natural gas-oxidant firing directly into a molten bath to provide efficient melting of mineral-like materials. Use of this melter for cement production has many advantages over rotary kilns including very little, if any, grinding of the feed material, very low emissions, and compact size. During the first year of the program, samples of coal combustion residues were blended and mixed, as needed; with lime, clay, and/or sand to adjust the composition. Six mixtures, three with fly ash and three with bottom ash, were melted in a laboratory-scale furnace. The resultant products were used in mortar cubes and bars which were subjected to ASTM standard tests of cementitious properties. In the hydraulic activity test, mortar cubes were found to have a strength comparable to standard mortar cements. In the compressive strength test, mortar cubes were found to have strengths that exceeded ASTM blended cement performance specifications. In the ASR expansion test, mortar bars were subjected to alkali-silica reaction-induced expansion, which is a problem for siliceous aggregate-based concretes that are exposed to moisture. The mortar bars made with the products inhibited 85 to 97% of this expansion. These results show that residue-based products have an excellent potential as ASR-preventing additions in concretes.

  12. Thermal hydraulics development for CASL

    SciTech Connect (OSTI)

    Lowrie, Robert B

    2010-12-07

    This talk will describe the technical direction of the Thermal-Hydraulics (T-H) Project within the Consortium for Advanced Simulation of Light Water Reactors (CASL) Department of Energy Innovation Hub. CASL is focused on developing a 'virtual reactor', that will simulate the physical processes that occur within a light-water reactor. These simulations will address several challenge problems, defined by laboratory, university, and industrial partners that make up CASL. CASL's T-H efforts are encompassed in two sub-projects: (1) Computational Fluid Dynamics (CFD), (2) Interface Treatment Methods (ITM). The CFD subproject will develop non-proprietary, scalable, verified and validated macroscale CFD simulation tools. These tools typically require closures for their turbulence and boiling models, which will be provided by the ITM sub-project, via experiments and microscale (such as DNS) simulation results. The near-term milestones and longer term plans of these two sub-projects will be discussed.

  13. Hydraulically amplified PZT mems actuator

    DOE Patents [OSTI]

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  14. Thermal Hydraulic Computer Code System.

    Energy Science and Technology Software Center (OSTI)

    1999-07-16

    Version 00 RELAP5 was developed to describe the behavior of a light water reactor (LWR) subjected to postulated transients such as loss of coolant from large or small pipe breaks, pump failures, etc. RELAP5 calculates fluid conditions such as velocities, pressures, densities, qualities, temperatures; thermal conditions such as surface temperatures, temperature distributions, heat fluxes; pump conditions; trip conditions; reactor power and reactivity from point reactor kinetics; and control system variables. In addition to reactor applications,more » the program can be applied to transient analysis of other thermal‑hydraulic systems with water as the fluid. This package contains RELAP5/MOD1/029 for CDC computers and RELAP5/MOD1/025 for VAX or IBM mainframe computers.« less

  15. In situ grouting of low-level burial trenches with a cement-based grout at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Francis, C.W.; Spence, R.D.; Tamura, T.; Spalding, B.P.

    1993-01-01

    A technology being evaluated for use in the closure of one of the low-level radwaste burial grounds at ORNL is trench stabilization using a cement-based grout. To demonstrate the applicability and effectiveness of this technology, two interconnecting trenches in SWSA 6 were selected as candidates for in situ grouting with a particulate grout. The primary objective was to demonstrate the increased trench stability (characterized by trench penetration tests) and the decreased potential for leachate migration (characterized by hydraulic conductivity tests) following in situ injection of a particulate grout into the waste trenches. Stability against trench subsidence is a critical issue. For example, construction of impermeable covers to seal the trenches will be ineffectual unless subsequent trench subsidence is permanently suspended. A grout composed of 39% Type 1 Portland cement, 55.5% Class F fly ash, and 5.5% bentonite mixed at 12.5 lb/gal of water was selected. Before the trenches were grouted, the primary characteristics relating to physical stability, hydraulic conductivity, and void volume of the trenches were determined. Their physical stability was evaluated using soil-penetration tests.

  16. Langao County Huiyu Hydraulic Power Generation Co Ltd | Open...

    Open Energy Info (EERE)

    Huiyu Hydraulic Power Generation Co Ltd Jump to: navigation, search Name: Langao County Huiyu Hydraulic Power Generation Co. Ltd. Place: Ankang City, Shaanxi Province, China Zip:...

  17. Hydraulic Performance and Mass Transfer Efficiency of Engineering...

    Office of Scientific and Technical Information (OSTI)

    Hydraulic Performance and Mass Transfer Efficiency of Engineering Scale Centrifugal Contactors Citation Details In-Document Search Title: Hydraulic Performance and Mass Transfer ...

  18. Effect of different water levels on the properties of HSR Class G cement

    SciTech Connect (OSTI)

    Bensted, J. . Sunbury Research Centre)

    1994-01-01

    HSR (high sulfate-resistant) Class G cement is the most widely utilized oilwell cement in the Eastern Hemisphere. Changes in water level corresponding to small changes in slurry density have a substantial effect upon the physical cementing properties of HSR Class G oilwell cement under comparable conditions. The implications of this for practical oilwell cement slurry formulations for downhole usage are discussed.

  19. Cement Kiln Flue Gas Recovery Scrubber Project

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-11-30

    The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

  20. Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with...

    Office of Scientific and Technical Information (OSTI)

    Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal Blankets Citation Details In-Document Search Title: Transient Safety Analysis of Fast Spectrum TRU Burning ...

  1. Biomass Burning Observation Project (BBOP) Final Campaign Report...

    Office of Scientific and Technical Information (OSTI)

    Biomass Burning Observation Project (BBOP) Final Campaign Report Citation Details In-Document Search Title: Biomass Burning Observation Project (BBOP) Final Campaign Report The Biomass ...

  2. Voluntary Protection Program Onsite Review, Burns & McDonnell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Burns & McDonnell - Facility Engineering Services, LLC - September 2015 Voluntary Protection Program Onsite Review, Burns & McDonnell - Facility Engineering Services, LLC - ...

  3. Aerosol Properties Downwind of Biomass Burns Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    Science Aerosol Properties Downwind of Biomass Burns Field Campaign Report PR Buseck ... DOESC-ARM-15-076 Aerosol Properties Downwind of Biomass Burns Field Campaign Report PR ...

  4. Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Characterized particulate emissions from U.S.-legal ...

  5. Biomass Burning Observation Project Science Plan (Program Document...

    Office of Scientific and Technical Information (OSTI)

    Science Plan Citation Details In-Document Search Title: Biomass Burning Observation Project Science Plan Aerosols from biomass burning perturb Earth's climate through the direct ...

  6. Effect of MgO Additive on Volumetric Expansion of Self-Degradable Cements

    SciTech Connect (OSTI)

    Sugama T.; Warren, J.; Butcher, T.

    2011-09-30

    We identified hard-burned magnesium oxide (MgO) as a suitable expansive additive for improving the plugging performance of self-degradable, temporary sodium silicate-activated slag/Class C fly ash (SSASC) blend cement sealers into rock fractures in Enhanced Geothermal Systems (EGSs). MgO extended the volumetric expansion of sealers during their exposure to a hydrothermal environment at 200 C under pressures, ranging from 300 to 1500 psi. A great expansion ratc of 19.3% was observed by adding 3.0 wt% MgO under 300 psi pressure, thus promising to plug thoroughly inner fracture. When the pressure was increased from 300 psi to 1500 psi, the expansion rate of cement markedly reduced, corresponding to the formaLion of crack-free specimens and the improvement of compressive strength. However, with 3.0 wt% MgO, the specimens still engendered the generation of numerous visual cracks, although they were prepared under a high pressure of 1500 psi. The effective content of MgO in minimizing and eliminating the generation of cracks was 2.0 wt%, which provided a moderate expansion of {ge} 0.5%. The compressive strength of 2.0 wt% MgO specimens made under a pressure of 300 psi rose {approx} 1.7-fold to 4816 psi with an increasing pressure to 1500 psi. The in-situ growth of brucite crystal formed by the hydrothermal hydration of MgO was responsive for such an expansion of the SSASC cement; meanwhile. two crystalline hydrothermal reaction products, 1.1 nm tobermorite and calcium silicate hydrated, contributed to the development of the sealer's compressive strength. Thus, the increasing pressure seems to suppress and control a growth rate of brucite crystal in response to a lower extension of expansion. Furthermore, all MgO-conlaining SSASC sealers possessed the water-catalyzed self-degradable properties.

  7. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Z.; Guan, D.; Wei, W.; Davis, S.; Ciais, P.; Bai, J; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, Gregg; et al

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption andmore » clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).« less

  8. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    SciTech Connect (OSTI)

    Liu, Z.; Guan, D.; Wei, W.; Davis, S.; Ciais, P.; Bai, J; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, Gregg; Andres, Robert Joseph; Crawford-Brown, D.; Lin, J.; Zhao, H.; Hong, C.; Boden, Thomas A.; Feng, K.; Peters, Glen P.; Xi, F.; Liu, J.; Li, Y.; Zhao, Y.; Zeng, Ning; He, K.

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).

  9. Compilation of RCRA closure plan conditions applicable to boilers and industrial furnaces at cement plants

    SciTech Connect (OSTI)

    Raymond, A.N.

    1998-12-31

    A prudent approach to closure plan development will assist preparers of closure plans to ensure that a cement kiln BIF unit and associated Resources conservation and Recovery Act (RCRA) units are effectively closed in a manner that minimizes potential threats to human health and the environment, as well as facilitating closure in an economical and timely manner. Cement kilns burning hazardous waste-derived-fuel (HWDF) must comply with the general facility standards of Subpart G Closure and Post-Closure requirements of 40 CFR parts 264 or 265 in addition to the RCRA Part b permitting requirements of 40 CFR parts 270.13 and 270.22 (e) and (f). As a result, approved closure plans for BIF facilities (or individual BIF units) will contain general and site-specific permit conditions that will mandate numerous closure activities be conducted to successfully implement the partial or final closure of a permitted or interim status BIF unit or facility. Currently, a scarce amount of published information is available to the cement industry in the form of agency guidance documents that would assist facilities with BIF unit closures. A review of seven approved or implemented closure plans revealed significant differences between plans approved recently versus a few years ago as well as observed differences in acceptable closure criteria between EPA regions and various states agencies. The intent of this paper is to first familiarize readers with general closure plan requirements, followed by a detailed discussion of closure requirements that are pertinent to BIF unit facilities. Comparisons are presented to provide an overview of typical components of BIF unit closure plans.

  10. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron

  11. HYDRAULIC CONDUCTIVITY OF SALTSTONE FORMULATED USING 1Q11, 2Q11 AND 3Q11 TANK 50 SLURRY SAMPLES

    SciTech Connect (OSTI)

    Reigel, M.; Nichols, R.

    2012-06-27

    As part of the Saltstone formulation work requested by Waste Solidification Engineering (WSE), Savannah River National Laboratory (SRNL) was tasked with preparing Saltstone samples for fresh property analysis and hydraulic conductivity measurements using actual Tank 50 salt solution rather than simulated salt solution. Samples of low level waste salt solution collected from Tank 50H during the first, second, and third quarters of 2011 were used to formulate the Saltstone samples. The salt solution was mixed with premix (45 wt % slag, 45 wt % fly ash, and 10 wt % cement), in a ratio consistent with facility operating conditions during the quarter of interest. The fresh properties (gel, set, bleed) of each mix were evaluated and compared to the recommended acceptance criteria for the Saltstone Production Facility. ASTM D5084-03, Method C was used to measure the hydraulic conductivity of the Saltstone samples. The hydraulic conductivity of Saltstone samples prepared from 1Q11 and 2Q11 samples of Tank 50H is 4.2E-9 cm/sec and 2.6E-9 cm/sec, respectively. Two additional 2Q11 and one 3Q11 sample were not successfully tested due to the inability to achieve stable readings during saturation and testing. The hydraulic conductivity of the samples made from Tank 50H salt solution compare well to samples prepared with simulated salt solution and cured under similar conditions (1.4E-9 - 4.9E-8 cm/sec).

  12. Parker Hybrid Hydraulic Drivetrain Demonstration

    SciTech Connect (OSTI)

    Collett, Raymond; Howland, James; Venkiteswaran, Prasad

    2014-03-31

    This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by third parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.

  13. Lehigh Southwest Cement Company: Compressed Air System Improvement Saves Energy at a Lehigh Southwest Cement Plant

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    In 2001, Lehigh Southwest Cement Company improved the compressed air system at its cement plant in Tehachapi, California. Consequently, the system was able to operate more efficiently with less compressor capacity and at a lower system pressure. The project yielded total annual savings of 895,000 kWh and $199,000. The initial project cost was $417,000, but Southern California Edison provided a $90,000 incentive payment to reduce the cost to $327,000. Simple payback was about 20 months.

  14. Dynamic Evolution of Cement Composition and Transport Properties...

    Office of Scientific and Technical Information (OSTI)

    Carbon Sequestration Citation Details In-Document Search Title: Dynamic Evolution of Cement Composition and Transport Properties under Conditions Relevant to Geological Carbon ...

  15. Corrosion-resistant Foamed Cements for Carbon Steels

    SciTech Connect (OSTI)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  16. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X-ray Computed Microtomography Citation Details In-Document ...

  17. Stabilizing coal-water mixtures with portland cement

    DOE Patents [OSTI]

    Steinberg, Meyer; Krishna, Coimbatore R.

    1986-01-01

    Coal-water mixes stabilized by the addition of portland cement which may additionally contain retarding carbohydrates, or borax are described.

  18. Change in pore structure and composition of hardened cement paste...

    Office of Scientific and Technical Information (OSTI)

    To investigate the alteration associated with dissolution, dissolution tests of ordinary Portland cement (OPC) hydrates were performed. Through observation of the samples after ...

  19. Stabilizing coal-water mixtures with Portland cement

    DOE Patents [OSTI]

    Steinberg, M.; Krishna, C.R.

    1984-10-17

    Coal-water mixes stabilized by the addition of Portland cement which may additionally contain retarding carbohydrates, or borax are described. 1 tab.

  20. The Hydraulic Institute: Who We Are

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydraulic Institute: Who We Are The Global Authority on Pumps and Pumping Systems As the developer of the universally acclaimed ANSI/HI Pump Standards, a key reference for pump knowledge and end-user specifications, the Hydraulic Institute (HI) provides its members with timely and essential resources for the advancement of their pump industry businesses. HI is also an indispensable asset for business intelligence, professional development, and pump industry leadership and advocacy, serving as

  1. Getting to the Root of Grapevine Hydraulics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting to the Root of Grapevine Hydraulics Getting to the Root of Grapevine Hydraulics Print Monday, 11 July 2016 00:00 When plants experience drought, gas bubbles (embolisms) can form that block the vascular tubes (xylem) responsible for carrying water from roots to leaves. These blockages cause a plant to weaken and eventually die. Grapevines are very efficient at repairing these vascular blockages, but the underlying mechanism remains unclear. In the springtime, after being freshly pruned,

  2. Instrumented tube burns: theoretical and experimental observations

    SciTech Connect (OSTI)

    Yarrington, Cole Davis; Obrey, Stephen J; Foley, Timothy J; Son, Steven F

    2009-01-01

    The advent of widely available nanoscale energetic composites has resulted in a flurry of novel applications. One of these applications is the use of nanomaterials in energetic compositions. In compositions that exhibit high sensitivity to stimulus, these materials are often termed metastable intermolecular composites (MIC). More generally, these compositions are simply called nanoenergetics. Researchers have used many different experimental techniques to analyze the various properties of nanoenergetic systems. Among these various techniques, the confined tube burn is a simple experiment that is capable of obtaining much data related to the combustion of these materials. The purpose of this report is to review the current state of the confined tube burn experiment, including the drawbacks of the technique and possible remedies. As this report is intended to focus on the specific experimental technique, data from many different energetic materials, and experimental configurations will be presented. The qualitative and quantitative data that can be gathered using confined tube burn experiments include burning rates, total impulse, pressure rise rate, and burning rate differences between different detector types. All of these measurements lend insight into the combustion properties and mechanisms of specific nanoenergetics. Finally, certain data indicates a more complicated flow scenario which may need to be considered when developing burn tube models.

  3. Microsoft Word - NETL-TRS-X-2015_Field-Generated Foamed Cement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The initial field-generated foamed cement testing revealed the structure of the ... The heterogeneous structure suggests the motion of the foamed cement slurry within the vessels ...

  4. Variation in Hydraulic Conductivity Over Time at the Monticello Permeable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactive Barrier | Department of Energy Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier (13.57 MB) More Documents & Publications Hydraulic Conductivity of the Monticello

  5. Alternative Fuels Data Center: Hydraulic Hybrid Pressed into Service in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Refuse Collection Hydraulic Hybrid Pressed into Service in Refuse Collection to someone by E-mail Share Alternative Fuels Data Center: Hydraulic Hybrid Pressed into Service in Refuse Collection on Facebook Tweet about Alternative Fuels Data Center: Hydraulic Hybrid Pressed into Service in Refuse Collection on Twitter Bookmark Alternative Fuels Data Center: Hydraulic Hybrid Pressed into Service in Refuse Collection on Google Bookmark Alternative Fuels Data Center: Hydraulic Hybrid Pressed

  6. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    SciTech Connect (OSTI)

    Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

    2008-07-30

    The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per year); (5

  7. Magnesium phosphate glass cements with ceramic-type properties

    DOE Patents [OSTI]

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  8. Magnesium-phosphate-glass cements with ceramic-type properties

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  9. Use of hazardous waste in cement kilns backed

    SciTech Connect (OSTI)

    Krieger, J.

    1993-07-19

    Cement kiln operators who are making use of hazardous waste as a partial substitute for fossil fuel now have a better engineering foundation for determining what is going on in the kilns and how to optimize their operations. A just-released study by a scientific advisory board of experts commissioned by the Cement Kiln Recycling Coalition (CKRC) in Washington, DC, has provided an in-depth look, at such operations and finds the practice to be a fundamentally sound' technology. Long residence times and high temperatures in cement kilns maximize the combustion efficiency for waste-derived fuels, according to the study report. The scientific advisory board notes that all organic compounds can be destroyed in a kiln at 99.9999% efficiency. Also, the behavior of metals in cement kilns can be readily measured, predicted, and controlled. Cement kilns are extremely efficient in reducing metals emissions.

  10. Global warming impact on the cement and aggregates industries

    SciTech Connect (OSTI)

    Davidovits, J. . Geopolymer Inst.)

    1994-06-01

    CO[sub 2] related energy taxes are focusing essentially on fuel consumption, not on actual CO[sub 2] emission measured at the chimneys. Ordinary Portland cement, used in the aggregates and industries, results from the calcination of limestone and silica. The production of 1 ton of cement directly generates 0.55 tons of chemical-CO[sub 2] and requires the combustion of carbon-fuel to yield an additional 0.40 tons of CO[sub 2]. The 1987 1 billion metric tons world production of cement accounted for 1 billion metric tons of CO[sub 2], i.e., 5% of the 1987 world CO[sub 2] emission. A world-wide freeze of CO[sub 2] emission at the 1990 level as recommended by international institutions, is incompatible with the extremely high cement development needs of less industrialized countries. Present cement production growth ranges from 5% to 16% and suggests that in 25 years from now, world cement CO[sub 2] emissions could equal 3,500 million tons. Eco-taxes when applied would have a spectacular impact on traditional Portland cement based aggregates industries. Taxation based only on fuel consumption would lead to a cement price increase of 20%, whereas taxation based on actual CO[sub 2] emission would multiply cement price by 1.5 to 2. A 25--30% minor reduction of CO[sub 2] emissions may be achieved through the blending of Portland cement with replacement materials such as coal-fly ash and iron blast furnace slag.

  11. Incinerators and cement kilns face off

    SciTech Connect (OSTI)

    Kim, I.

    1994-04-01

    For the past few years, US incinerators have been at odds with thermal waste processors such as cement kilns. Originally, there was enough room in the industrial waste treatment market for both types of treatment. As waste generators turned to pollution prevention and onsite treatment, however, the volume of waste decreased and its composition changed. Now, each sees the other crowding it out of a tightening market, and the fight between them is growing increasingly bitter. At the center of this battle are the products of alternative thermal processes--for cement kilns, the dust formed after processing, and for other processes, a variety of materials, many of which can be used for construction. Currently, these materials are exempted from regulation under the US Resource Conservation and Recovery Act (RCRA). In addition, the alternative processes offer generators a significant cost advantage over incineration. The question that US regulators are now grappling with is whether these materials are safe enough to justify this preferential treatment. So far, the answer seems to be a qualified yes. The paper discusses these issues.

  12. Odor investigation of a Portland cement plant

    SciTech Connect (OSTI)

    Pleus, R.C. [Intertox, Inc., Seattle, WA (United States)

    1998-12-31

    The main concern expressed by Smithville residents is whether the odors they were smelling during odor events were due to chemicals that could cause adverse health effects. Odors were allegedly emanating from the town`s Portland cement plant. The purpose of the study was to measure the ambient air for 20 reduced sulfur, 50 volatile organic compounds, and air samples for olfactometric analysis. Carbonyl sulfide was found to be at a concentration that could create a sense of odor and irritation. This sense of irritation may be due to a physiological response by the central nervous system, and is not associated with any known adverse effects. This physiological response could account for some or all of the irritation experienced by residents during odor events. Comparing chemical concentrations that were detected in air samples to standard and recognized guidelines for acceptable exposure, all measured concentrations were found to be well below the acceptable criteria. From these data the authors conclude that no acute or chronic adverse health effects are expected at the concentrations of the chemicals detected downwind of the cement plant, either routinely or during odor events.

  13. New proppant for deep hydraulic fracturing

    SciTech Connect (OSTI)

    Underdown, D.R.; Das, K.

    1982-01-01

    Much work has been done in the development and evaluation of various materials for use as proppants for hydraulic fracturing. Sand is most often used as a frac proppant in shallow wells. Deep wells having high closure stresses require a proppant such as sintered bauxite which will not crush under such adverse conditions. Proppants such as ceramic and zirconium oxide beads and resin coated sand have been developed for deep hydraulic fracturing; however, use of these materials has been limited. A new frac proppant has been developed which exhibits the properties necessary for use in deep hydraulic fracturing. This frac proppant is produced by precuring a specially modified phenol-formaldehyde resin onto sand. The new frac proppant maintains conductivity and resists crushing, similar to that of sintered bauxite at high closure stress. 11 references.

  14. New proppant for deep hydraulic fracturing

    SciTech Connect (OSTI)

    Das, K.; Underdown, D.R.

    1985-01-01

    Much work has focused on developing and evaluating various materials for use as proppants for hydraulic fracturing. Sand is used most often as a fracturing proppant in shallow wells. Deep wells with high closure stresses require a proppant, such as sintered bauxite, that will not crush under adverse conditions. Ceramic and zirconium oxide beads and resin-coated sand proppants also have been developed for deep hydraulic fracturing. A new fracturing proppant has been developed that exhibits the properties necessary for use in deep hydraulic fracturing. This proppant is produced by precuring a specially modified phenolformaldehyde resin onto sand. The new proppant maintains conductivity and resists crushing much better than does sand. The new proppant was compared to intermediate-density sintered bauxitic proppants and cured-in-place proppants and the tests were confirmed by an independent laboratory.

  15. Self-potential observations during hydraulic fracturing

    SciTech Connect (OSTI)

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  16. Biomass Burning Observation Project Science Plan

    SciTech Connect (OSTI)

    Kleinman, KI; Sedlacek, AJ

    2013-09-01

    Aerosols from biomass burning perturb Earth’s climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  17. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this

  18. Constructing Hydraulic Barriers in Deep Geologic Formations

    SciTech Connect (OSTI)

    Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

    2008-07-01

    Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

  19. WAC - 220-110 - Hydraulic Code Rules | Open Energy Information

    Open Energy Info (EERE)

    0-110 - Hydraulic Code Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC - 220-110 - Hydraulic Code RulesLegal...

  20. A Self-Consistent Approach for Calculating the Effective Hydraulic...

    Office of Scientific and Technical Information (OSTI)

    conductivity of a 3D medium with a binary distribution of local hydraulic conductivities. ... The method was applied to estimating the effective hydraulic conductivity of a 2D and 3D ...

  1. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOE Patents [OSTI]

    Shafer, Scott F.

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  2. 1112323-danimer-abstract-hydraulic-fractures | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fracturing treatments including: less hydraulic horsepower requirements, decreased footprint, simpler execution, lower water utilization, use of non-damaging biodegradable...

  3. Vehicle hydraulic system that provides heat for passenger compartment

    DOE Patents [OSTI]

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    A vehicle includes a vehicle housing which defines a passenger compartment. Attached to the vehicle housing is a hydraulic system, that includes a hydraulic fluid which flows through at least one passageway within the hydraulic system. Also attached to the vehicle housing is a passenger compartment heating system. The passenger compartment heating system includes a heat exchanger, wherein a portion of the heat exchanger is a segment of the at least one passageway of the hydraulic system.

  4. Raymond Burns > Product Research Technologist - Exxon Mobile > Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni > The Energy Materials Center at Cornell Raymond Burns Product Research Technologist - Exxon Mobile raymond.burns@gmail.com Formerly a member of the DiSalvo Group, Ray earned his PhD in August 2013

  5. Emission and transport of cesium-137 from boreal biomass burning...

    Office of Scientific and Technical Information (OSTI)

    from boreal biomass burning in the summer of 2010 Citation Details In-Document Search Title: Emission and transport of cesium-137 from boreal biomass burning in the summer ...

  6. DOE - Fossil Energy: A Bed for Burning Coal?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-Bed for Burning Coal An Energy Lesson Cleaning Up Coal A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with ...

  7. Investigation of NO2 Oxidation Kinetics and Burning Mode for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NO2 Oxidation Kinetics and Burning Mode for Medium Duty Diesel Particulate: Contrasting O2 and NO2 Oxidation Investigation of NO2 Oxidation Kinetics and Burning Mode for Medium ...

  8. Transcending Portland Cement with 100 percent fly ash concrete

    SciTech Connect (OSTI)

    Cross, D.; Akin, M.; Stephens, J.; Cuelh, E.

    2009-07-01

    The use of concrete, made with 100% fly ash and no Portland cement, in buildings at the Transportation Institute in Bozeman, MT, USA, is described. 3 refs., 7 figs.

  9. Strength recovery of cement composites in steam and carbonate environments

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tom Butcher

    2016-04-28

    The data include compressive strength and Young's Modulus recoveries in steam and carbonate environments at 270degC for four chemically different cement composites after imposed controlled damaged.

  10. Mechanical and acoustic properties of weakly cemented granular rocks

    SciTech Connect (OSTI)

    Nakagawa, S.; Myer, L.R.

    2001-05-09

    This paper presents the results of laboratory measurements on the mechanical and acoustic properties of weakly cemented granular rock. Artificial rock samples were fabricated by cementing sand and glass beads with sodium silicate binder. During uniaxial compression tests, the rock samples showed stress-strain behavior which was more similar to that of soils than competent rocks, exhibiting large permanent deformations with frictional slip. The mechanical behavior of the samples approached that of competent rocks as the amount of binder was increased. For very weak samples, acoustic waves propagating in these rocks showed very low velocities of less than 1000 m/sec for compressional waves. A borehole made within this weakly cemented rock exhibited a unique mode of failure that is called ''anti-KI mode fracture'' in this paper. The effect of cementation, grain type, and boundary conditions on this mode of failure was also examined experimentally.

  11. Burn to Learn | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burn to Learn Burn to Learn The mp4 video format is not supported by this browser. Download video Captions: On Time: 3:06 min. CNS fire protection engineers recently visited Oak Ridge Fire Department to "Burn to Learn." During this event, they were able to burn materials that would be found at Y-12 (e.g,. personal protective equipment, a shredder) and analyze the results. Watch a video about the event here

  12. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnectionmore » of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is

  13. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is much

  14. Multifunctional Corrosion-resistant Foamed Well Cement Composites

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Project Officer: Dan King/Greg Stillman Total budget: $300 K April 24 , 2013 Principal Investigator: Dr. Toshifumi Sugama Co-PI; Dr. Tatiana Pyatina Presenter Name: Dr. Toshifumi Sugama This presentation does not contain any proprietary confidential, or otherwise restricted information. Microstructure developed in conventional foamed (left) and corrosion- resistant foamed cements (right) 2 | US DOE Geothermal Office

  15. Evaluation of steel furnace slags as cement additives

    SciTech Connect (OSTI)

    Tuefekci, M.; Demirbas, A.; Genc, H.

    1997-11-01

    Chemical and physical properties and strength development have been studied for six granulated steel furnace slags from the normal steelmaking process. This paper reports results of research performed to develop cement mixture proportions using these slags. The influence of slag proportions, specific surface, and water demand on compressive strength and bulk density of cement blends are presented in this paper. The different test results, which were compared with the Turkish Standards, in general, were found to be within the limits.

  16. Properties and hydration of blended cements with steelmaking slag

    SciTech Connect (OSTI)

    Kourounis, S.; Tsivilis, S. . E-mail: stsiv@central.ntua.gr; Tsakiridis, P.E.; Papadimitriou, G.D.; Tsibouki, Z.

    2007-06-15

    The present research study investigates the properties and hydration of blended cements with steelmaking slag, a by-product of the conversion process of iron to steel. For this purpose, a reference sample and three cements containing up to 45% w/w steel slag were tested. The steel slag fraction used was the '0-5 mm', due to its high content in calcium silicate phases. Initial and final setting time, standard consistency, flow of normal mortar, autoclave expansion and compressive strength at 2, 7, 28 and 90 days were measured. The hydrated products were identified by X-ray diffraction while the non-evaporable water was determined by TGA. The microstructure of the hardened cement pastes and their morphological characteristics were examined by scanning electron microscopy. It is concluded that slag can be used in the production of composite cements of the strength classes 42.5 and 32.5 of EN 197-1. In addition, the slag cements present satisfactory physical properties. The steel slag slows down the hydration of the blended cements, due to the morphology of contained C{sub 2}S and its low content in calcium silicates.

  17. Waste tires as auxiliary fuel for cement kilns

    SciTech Connect (OSTI)

    Dodds, J.

    1987-01-01

    The subject I have been asked to speak about is the utilization of scrap tires as an auxiliary fuel for cement kilns. My experience with scrap tires began five years ago when we performed a technical and economic evaluation for tire pyrolysis. I work for the Idaho National Engineering Laboratory which is supported by the Department of Energy. My interest in scrap tires continued; in 1984 the Department of Energy and the Portland Cement Association jointly sponsored a conference on the utilization of scrap tires in cement kilns. Most of my remarks today are based upon that conference along with some current information in the US. Mr. Sladek requested that I speak on the combustion process, the progress to date, and the factors that impede or encourage implementation of using scrap tires in cement kilns. For discussion purposes it would help if we had a common understanding of the cement manufacturing process. Cement is made by heating a mixture of finely ground limestone and silica from clay or sand to about 1450/degree/C in a large rotating kiln. The heat causes the limestone to decarbonate and subsequently react with the silica to form calcium silicates. 5 figs.

  18. Cement paste prior to setting: A rheological approach

    SciTech Connect (OSTI)

    Bellotto, Maurizio

    2013-10-15

    The evolution of cement paste during the dormant period is analyzed via small amplitude oscillation rheological measurements. Cement paste, from the very first moments after mixing cement and water, shows the formation of an elastic gel whose strength is rapidly increasing over time. Up to the onset of Portlandite precipitation G?(t) increases by more than 2 orders of magnitude and in the acceleratory period G?(t) continues steadily to increase. A microstructural modification is likely to occur between the dormant and the acceleratory period. At low deformations in the linearity domain the storage modulus G?(?) exhibits a negligible frequency dependence. At higher deformations cement paste shows a yield stress which increases on increasing paste concentration. The presence of superplasticizers decreases the yield stress and increases the gelation threshold of the paste. Above the gelation threshold the evolution of cement paste with superplasticizers follows similar trends to the neat paste. -- Highlights: The gelation of cement paste during the dormant period is analyzed via rheometry. The observed evolution is proposed to be related to the pore structure refinement. Similarities are observed with colloidal gels and colloidal glasses.

  19. Potential for energy conservation in the cement industry

    SciTech Connect (OSTI)

    Garrett-Price, B.A.

    1985-02-01

    This report assesses the potential for energy conservation in the cement industry. Energy consumption per ton of cement decreased 20% between 1972 and 1982. During this same period, the cement industry became heavily dependent on coal and coke as its primary fuel source. Although the energy consumed per ton of cement has declined markedly in the past ten years, the industry still uses more than three and a half times the fuel that is theoretically required to produce a ton of clinker. Improving kiln thermal efficiency offers the greatest opportunity for saving fuel. Improving the efficiency of finish grinding offers the greatest potential for reducing electricity use. Technologies are currently available to the cement industry to reduce its average fuel consumption per ton by product by as much as 40% and its electricity consumption per ton by about 10%. The major impediment to adopting these technologies is the cement industry's lack of capital as a result of low or no profits in recent years.

  20. History and some potentials of oil shale cement

    SciTech Connect (OSTI)

    Knutson, C.F.; Smith, R.P.; Russell, B.F. (Idaho National Engineering Lab., Idaho Falls, ID (USA))

    1989-01-01

    The utilization of oil shale as a cement component is discussed. It was investigated in America and Europe during World War I. Additional development occurred in Western Europe, Russia, and China during the 1920s and 1930s. World War II provided further development incentives and a relatively mature technology was in place in Germany, Russia, and China prior to 1980. The utilization of oil shale in cement has taken a number of different paths. One approach has been to utilize the energy in the oil shale as the principal source for the cement plant and to use the combusted shale as a minor constituent of the plant's cement product. A second approach has been to use the combusted shale as a class C or cementitious fly-ash component in portland cement concrete. Other approaches utilizing eastern oil shale have been to use the combusted oil shale with additives as a specialty cement, or to cocombust the oil shale with coal and utilize the sulfur-rich combustion product.

  1. Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns. Audit Report of Two Cement Plants in Shandong Province, China

    SciTech Connect (OSTI)

    Price, Lynn; Hasanbeigi, Ali; Zhou, Nan; Thekdi, Arvind; Lan, Wang

    2011-07-01

    The study documented in this report was initiated in order to conduct an energy assessment and to identify the relationship between combustion issues and emissions from cement kilns. A new suspension preheater/precalciner (NSP) rotary cement kiln at one cement manufacturing facility (referred to as Shui Ni 1 in this report) and a vertical shaft kiln (VSK) at another cement manufacturing facility (referred to as Shui Ni 2 in this report), which are both in Shandong Province, were selected to conduct the energy and emission assessments through collection of data. Based on analysis of the data collected during this assessment, several actions are suggested that could lead to reduction in coal use and reduction in emission of gaseous pollutants from the system.

  2. Open air refuse burning video: Proton Dan the science man explores open air refuse burning

    SciTech Connect (OSTI)

    Eastburn, M.D.; Sipple, J.L.; Deramo, A.R.

    1999-07-01

    The goal of this video is to educate school children to the potential hazards of open air trash burning; to demonstrate alternative ways to dispose of trash; and to motivate students to take action to change the behavior of their parents with regard to trash burning. The burning of household trash, although illegal, is still a common practice in rural areas of Delaware. Enforcement has been difficult because the practice is often performed at night and is done across a wide rural area that is difficult to patrol on a continuing basis. The prohibition on trash burning (revised Regulation 13 of The Delaware Code of Regulations Governing The Control of Air Pollution) has been in effect since 1968, but the public has been slow to comply because trash burning has been practiced for many generations and because much of the public is unaware of the environmental impacts and/or the human health risks. This video may be valuable for other States to use as a public outreach tool regarding their problems with open air refuse burning. The focus of the video is a 7th grade science class is given various assignments relating to Earth Day and preservation of natural resources. Two children in particular are given the assignment to research and report on the hazards of open air trash burning and are asked to investigate alternative ways to dispose of refuse. Upon brainstorming how to find information on the topic, the kids decide to contact the host of a popular children's science show on broadcast television named Proton Dan the Science Man (a fictitious character and show based on Bill Nye the Science Guy). The host then invites the kids to the studio where he films his show and takes them through the topic. The TV host character takes the children to several external locations like a landfill, recycling centers, etc..

  3. Apparatus for burning bales of trash

    SciTech Connect (OSTI)

    Pazar, C. A.

    1985-08-13

    Bales of combustible trash made to specific specifications are burned in a furnace having two parallel upright sidewalls between which the bales pass during burning. A horizontal grate extends between the sidewalls. The bales, if remotely made from the furnace, are bound by an easily meltable strap. The length of the bale is measurably smaller than the distance between said sidewalls to accurately accommodate springback. A ram, after compacting the waste in segmental fashion, pushes each bale to a position between said sidewalls; with the length of the bale being perpendicular to the sidewalls, so that a bale enters the furnace. Springback following the melting of straps allows the bale to expand to fill the gap between the sidewalls. This facilitates ignition and/or burning of the bales and provides a seal against furnace sidewalls. When the ram feeds a fresh bale, previously charged bales (consumed proportional to time in the furnace) are advanced toward the ash discharge port. Before the bales are formed, the trash may be optionally dried by using heated air in the classification into ''light'' sort and ''heavy'' sort. The ''light'' sort is baled and burned as described above. The ''heavy'' sort or a part of the light sort may be premixed with noxious liquid or solid wastes before charging to the furnace. Temperatures consistent with economical use of refractory (1500/sup 0/ F. to 1700/sup 0/ F.) are maintained, for a limited area adjacent the inner wall of the furnace, by addition of liquid water, while interior temperatures of the furnace of about 3000/sup 0/ F. prevail in the central portion of the furnace necessary for the incineration of noxious wastes.

  4. U.S. BURNING PLASMA ORGANIZATION ACTIVITIES

    SciTech Connect (OSTI)

    Raymond J. Fonck

    2009-08-11

    The national U.S. Burning Plasma Organization (USBPO) was formed to provide an umbrella structure in the U.S. fusion science research community. Its main purpose is the coordination of research activities in the U.S. program relevant to burning plasma science and preparations for participation in the international ITER experiment. This grant provided support for the continuing development and operations of the USBPO in its first years of existence. A central feature of the USBPO is the requirement for broad community participation in and governance of this effort. We concentrated on five central areas of activity of the USBPO during this grant period. These included: 1) activities of the Director and support staff in continuing management and development of the USBPO activity; 2) activation of the advisory Council; 3) formation and initial research activities of the research community Topical Groups; 4) formation of Task Groups to perform specific burning plasma related research and development activities; 5) integration of the USBPO community with the ITER Project Office as needed to support ITER development in the U.S.

  5. Economic Recovery of Oil Trapped at Fan Margins Using Hig Angle Wells Multiple Hydraulic Fractures

    SciTech Connect (OSTI)

    Laue, M.L.

    1997-11-21

    The Yowlumne field is a giant field in the southern San Joaquin basin, Kern County, California. It is a deep (13,000 ft) waterflood operation that produces from the Miocene- aged Stevens Sand. The reservoir is interpreted as a layered, fan-shaped, prograding turbidite complex containing several lobe-shaped sand bodies that represent distinct flow units. A high ultimate recovery factor is expected, yet significant quantities of undrained oil remain at the fan margins. The fan margins are not economic to develop using vertical wells because of thinning pay, deteriorating rock quality, and depth. This project attempts to demonstrate the effectiveness of exploiting the northeast distal fan margin through the use of a high- angle well completed with multiple hydraulic- fracture treatments. A high-angle well offers greater pay exposure than can be achieved with a vertical well. Hydraulic-fracture treatments will establish vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at a cost of approximately two vertical wells. The near-horizontal well penetrated the Yowlumne sand; a Stevens sand equivalent, in the distal fan margin in the northeast area of the field. The well was drilled in a predominately westerly direction towards the interior of the field, in the direction of improving rock quality. Drilling and completion operations proved to be very challenging, leading to a number of adjustments to original plans. Hole conditions resulted in obtaining less core material than desired and setting intermediate casing 1200 ft too high. The 7 in. production liner stuck 1000 ft off bottom, requiring a 5 in. liner to be run the rest of the way. The cement job on the 5 in. liner resulted in a very poor bond, which precluded one of three hydraulic fracture treatments originally planned for the well. Openhole logs confirmed most expectations going into the project about basic

  6. Hydraulic system for a ratio change transmission

    DOE Patents [OSTI]

    Kalns, Ilmars

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  7. Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design

    SciTech Connect (OSTI)

    B. Boer; A. M. Ougouag

    2010-05-01

    High fuel temperatures and resulting fuel particle coating stresses can be expected in a Pu and minor actinide fueled Pebble Bed Modular Reactor (400 MWth) design as compared to the standard UO2 fueled core. The high discharge burnup aimed for in this Deep-Burn design results in increased power and temperature peaking in the pebble bed near the inner and outer reflector. Furthermore, the pebble power in a multi-pass in-core pebble recycling scheme is relatively high for pebbles that make their first core pass. This might result in an increase of the mechanical failure of the coatings, which serve as the containment of radioactive fission products in the PBMR design. To investigate the integrity of the particle fuel coatings as a function of the irradiation time (i.e. burnup), core position and during a Loss Of Forced Cooling (LOFC) incident the PArticle STress Analysis code (PASTA) has been coupled to the PEBBED code for neutronics, thermal-hydraulics and depletion analysis of the core. Two deep burn fuel types (Pu with or without initial MA fuel content) have been investigated with the new code system for normal and transient conditions including the effect of the statistical variation of thickness of the coating layers.

  8. 10 Questions with Well-Bore Cement Researcher Dr. Barbara Kutchko |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy with Well-Bore Cement Researcher Dr. Barbara Kutchko 10 Questions with Well-Bore Cement Researcher Dr. Barbara Kutchko March 31, 2015 - 2:53pm Addthis Barbara Kutchko, a well-bore cement researcher, studies the make-up and properties of cement used in oil and gas drilling. | Photo courtesy of the National Energy Technology Lab (NETL). Barbara Kutchko, a well-bore cement researcher, studies the make-up and properties of cement used in oil and gas drilling. | Photo

  9. Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray

    SciTech Connect (OSTI)

    Vigil-Holterman, Luciana R.

    2012-05-07

    This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

  10. Stromatolites, ooid dunes, hardgrounds, and crusted mud beds, all products of marine cementation and microbial mats in subtidal oceanic mixing zone on eastern margin of Great Bahama Bank

    SciTech Connect (OSTI)

    Dill, R.F.; Kendall, C.S.C.G.; Steinen, R.P.

    1989-03-01

    The interisland channels along the eastern margin of the Great Bahamas Bank contain lithified structures that owe their origin to recent marine cementation. This cementation appears to be commonly associated with a complex microbial community of plants and microorganisms living within a bank-margin oceanographic mixing zone. In this region, reversing tidal and wind-driven currents flow up to 3 knots (150 cm/sec) three hours out of each six-hour tidal period. Here, marine-cement crusted, carbonate mud beds are found interbedded within migrating ooid sand bars and dunes and are associated with growing, lithified stromatolites up to 2 m in height. These laminated mud beds are found with thicknesses of up to 1 m in subtidal depths of 4 to 8 m (12 to 25 ft). The muds appear to be homogeneous, but closer examination by SEM and under a microscope reveals they are composed of pelletoid aggregates of needle-shaped aragonite crystals with diameters of up to 50 ..mu... The size of these soft pellets is similar to the smaller grains of ooid sands that are abundant in the area. This size similarity could explain why both the mud beds are found in similar high-energy hydraulic regimes as the ooid sands, but does not suggest how or why the aggregates of pure aragonite needles form. A high production of ooid sand within this bank margin environment permits the formation of natural levees along the margins of tidal channels. The back sides of these levees are being lithified by marine cements to form hardgrounds. Skeletal and ooid sand dunes stabilized by Thallasia in channel bottoms also are becoming lithified. Grapestones form at the distributaries of flood tidal deltas of ooid sand. All of these features have a common attribute: they are continually in contact with the turbulent mixing-zone waters.

  11. The use of scrap tires in rotary cement kilns

    SciTech Connect (OSTI)

    Blumenthal, M.

    1996-12-31

    The use of scrap tires as a supplemental fuel in the United States Portland cement industry has increased significantly in the past six years. In 1990, there were two kilns using tire-derived fuel (TDF), today 30 kilns use TDF. The outlook for continued and expanded use of TDF in the U.S. cement industry should be considered favorable, with 15 kilns conducting tests to determine TDF`s applicability or in the permitting process. The Council`s estimates are that by the end of 1996, the cement industry could be consuming some 75-100 million of the 253 million annually generated scrap tires in the United States. This level of TDF usage will make the cement industry the largest market segments for scrap tires in the United States. While the long-term outlook is at present positive, there are a series of factors that have, and will likely continue to adversely impact the near-term usage of TDF. These issues, as well as the factors that are likely to positively impact the cement kiln TDF market are the subject of this presentation.

  12. Laboratory evaluation of performance and durability of polymer grouts for subsurface hydraulic/diffusion barriers. Informal report, October 1993--May 1994

    SciTech Connect (OSTI)

    Heiser, J.H.; Milian, L.W.

    1994-05-01

    Contaminated soils, buried waste and leaking underground storage tanks pose a threat to the environment through contaminant transport. One of the options for control of contaminant migration from buried waste sites is the construction of a subsurface barrier. Subsurface barriers increase the performance of waste disposal sites by providing a low permeability layer that can reduce percolation water migration into the waste site, minimize surface transport of contaminants, and reduce migration of volatile species. Also, a barrier can be constructed to envelop the site or plume completely, there by containing the contaminants and the potential leakage. Portland cement grout curtains have been used for barriers around waste sites. However, large castings of hydraulic cements result invariably in cracking due to shrinkage, thermal stresses induced by the hydration reactions, and wet-dry cycling prevalent at and sites. Therefore, improved, low permeability, high integrity materials are under investigation by the Department of Energy`s (DOE) Office of Technology Development, Integrated Demonstrations and Programs. The binders chosen for characterization include: an acrylic, a vinylester styrene, bitumen, a polyester styrene, furfuryl alcohol, and sulfur polymer cement. These materials cover broad ranges of chemical and physical durability, performance, viscosity, and cost. This report details the results of laboratory formulation, testing, and characterization of several innovative polymer grouts. An appendix containing a database of the barrier materials is at the end of this report.

  13. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    SciTech Connect (OSTI)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Gttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  14. Mobilizable RDF/d-RDF burning program

    SciTech Connect (OSTI)

    Niemann, K.; Campbell, J.

    1982-03-01

    The Mobilizable RDF/d-RDF Burning Program was conceived to promote the utilization of refuse-derived fuels (RDF) as a supplement to existing fossil fuel sources in industrial-sized boilers. The program explores the design, development, and eventual construction of densified-RDF (d-RDF) for use in boiler combustion testing as a supplement to stoker coal or wood wastes. The equipment would be mounted on trailers and assembled and operated at preselected sites throughout the country where approximately 750 tons of RDF would be produced and test burned in a local boiler. The equipment, to include a transportable RDF boiler metering and feed system, would then be moved and operated at two to three test sites annually. The program is intended to encourage the construction of permanent resource recovery facilities by involving local waste handling groups in operating the equipment and producing fuel, and potential local fuel users in testing the fuel in their boilers. The Mobilizable Program was developed from two separate tasks. The first task developed the concept behind the program and defined its operational and organizational structure. The second task, a follow-up to the first, was intended principally to finalize test locations, develop equipment designs and specifications, and formalize a management program. This report summarizes the principal findings of both tasks. It identifies the criteria used to identify test locations, outlines the program's management structure, presents design and performance specifications for both the fuel production equipment and boiler fuel feed systems, and provides a detailed evaluation of the parameters involved in burning RDF in industrial-sized boilers. Final conclusions and recommendations identify problem areas encountered in the program, and discuss possible future directions for such a program.

  15. Cement-aggregate compatibility and structure property relationships including modelling

    SciTech Connect (OSTI)

    Jennings, H.M.; Xi, Y.

    1993-07-15

    The role of aggregate, and its interface with cement paste, is discussed with a view toward establishing models that relate structure to properties. Both short (nm) and long (mm) range structure must be considered. The short range structure of the interface depends not only on the physical distribution of the various phases, but also on moisture content and reactivity of aggregate. Changes that occur on drying, i.e. shrinkage, may alter the structure which, in turn, feeds back to alter further drying and shrinkage. The interaction is dynamic, even without further hydration of cement paste, and the dynamic characteristic must be considered in order to fully understand and model its contribution to properties. Microstructure and properties are two subjects which have been pursued somewhat separately. This review discusses both disciplines with a view toward finding common research goals in the future. Finally, comment is made on possible chemical reactions which may occur between aggregate and cement paste.

  16. Recommended guidelines for solid fuel use in cement plants

    SciTech Connect (OSTI)

    Young, G.L.; Jayaraman, H.; Tseng, H.

    2007-07-01

    Pulverized solid fuel use at cement plants in North America is universal and includes bituminous and sub-bituminous coal, petroleum coke, and any combination of these materials. Provided are guidelines for the safe use of pulverized solid fuel systems in cement plants, including discussion of the National Fire Protection Association and FM Global fire and explosion prevention standards. Addressed are fire and explosion hazards related to solid fuel use in the cement industry, fuel handling and fuel system descriptions, engineering design theory, kiln system operations, electrical equipment, instrumentation and safety interlock issues, maintenance and training, and a brief review of code issues. New technology on fire and explosion prevention including deflagration venting is also presented.

  17. Hydration of Portland cement with additions of calcium sulfoaluminates

    SciTech Connect (OSTI)

    Le Saout, Gwenn; Lothenbach, Barbara; Hori, Akihiro; Higuchi, Takayuki; Winnefeld, Frank

    2013-01-15

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  18. Review of computational thermal-hydraulic modeling

    SciTech Connect (OSTI)

    Keefer, R.H.; Keeton, L.W.

    1995-12-31

    Corrosion of heat transfer tubing in nuclear steam generators has been a persistent problem in the power generation industry, assuming many different forms over the years depending on chemistry and operating conditions. Whatever the corrosion mechanism, a fundamental understanding of the process is essential to establish effective management strategies. To gain this fundamental understanding requires an integrated investigative approach that merges technology from many diverse scientific disciplines. An important aspect of an integrated approach is characterization of the corrosive environment at high temperature. This begins with a thorough understanding of local thermal-hydraulic conditions, since they affect deposit formation, chemical concentration, and ultimately corrosion. Computational Fluid Dynamics (CFD) can and should play an important role in characterizing the thermal-hydraulic environment and in predicting the consequences of that environment,. The evolution of CFD technology now allows accurate calculation of steam generator thermal-hydraulic conditions and the resulting sludge deposit profiles. Similar calculations are also possible for model boilers, so that tests can be designed to be prototypic of the heat exchanger environment they are supposed to simulate. This paper illustrates the utility of CFD technology by way of examples in each of these two areas. This technology can be further extended to produce more detailed local calculations of the chemical environment in support plate crevices, beneath thick deposits on tubes, and deep in tubesheet sludge piles. Knowledge of this local chemical environment will provide the foundation for development of mechanistic corrosion models, which can be used to optimize inspection and cleaning schedules and focus the search for a viable fix.

  19. Spectral hole burning studies of photosystem II

    SciTech Connect (OSTI)

    Chang, H.C.

    1995-11-01

    Low temperature absorption and hole burning spectroscopies were applied to the D1-D2-cyt b{sub 559} and the CP47 and CP43 antenna protein complexes of Photosystem H from higher plants. Low temperature transient and persistent hole-burning data and theoretical calculations on the kinetics and temperature dependence of the P680 hole profile are presented and provide convincing support for the linker model. Implicit in the linker model is that the 684-nm-absorbing Chl a serve to shuttle energy from the proximal antenna complex to reaction center. The stoichiometry of isolated Photosystem H Reaction Center (PSII RC) in several different preparations is also discussed. The additional Chl a are due to 684-nm-absorbing Chl a, some contamination by the CP47 complex, and non-native Chl a absorbing near 670 nm. In the CP47 protein complex, attention is focused on the lower energy chlorophyll a Q{sub y}-states. High pressure hole-burning studies of PSII RC revealed for the first time a strong pressure effect on the primary electron transfer dynamics. The 4.2 K lifetime of P680*, the primary donor state, increases from 2.0 ps to 7.0 ps as pressure increases from 0.1 to 267 MPa. Importantly, this effect is irreversible (plastic) while the pressure induced effect on the low temperature absorption and non-line narrowed P680 hole spectra are reversible (elastic). Nonadiabatic rate expressions, which take into account the distribution of energy gap values, are used to estimate the linear pressure shift of the acceptor state energy for both the superexchange and two-step mechanisms for primary charge separation. It was found that the pressure dependence could be explained with a linear pressure shift of {approximately} 1 cm{sup -1}/MPa in magnitude for the acceptor state. The results point to the marriage of hole burning and high pressures as having considerable potential for the study of primary transport dynamics in reaction centers and antenna complexes.

  20. Hydraulic fracturing utilizing a refractory proppant

    SciTech Connect (OSTI)

    Jennings, A.R.; Stowe, L.R.

    1990-01-01

    This patent describes a method for hydraulically fracturing a formation where a fused refractory proppant is used. It comprises: placing into a fracturing fluid a fused refractory proppant consisting essentially of silicon carbide or silicon nitride having a mohs hardness of about 9 and in an amount sufficient to prop a created fracture where the proppant is substantially crush and acid resistant; injecting into the formation the fracturing fluid with the proppant therein under a pressure sufficient to fracture the formation; and fracturing the formation and thereafter causing the pressure to be released thereby propping at least one fracture which proppant provides for increased heat transfer into the formation.

  1. Degree of dispersion of latex particles in cement paste, as assessed by electrical resistivity measurement

    SciTech Connect (OSTI)

    Fu, X.; Chung, D.D.L.

    1996-12-31

    The degree of dispersion of latex particles in latex-modified cement paste was assessed by measurement of the volume electrical resistivity and modeling this resistivity in terms of latex and cement phases that are partly in series and partly in parallel. The assessment was best at low values of the latex-cement ratio; it underestimated the degree of latex dispersion when the latex/cement ratio was high, especially > 0.2.

  2. Brochure Hydraulic Institute Standards Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydraulic Institute Standards Overview Brochure Hydraulic Institute Standards Overview If you specify, select, design, test, install or operate pumps or pumping systems, you will find ANSI/HI Pump Standards to be invaluable tools. I_Brochure_Hydraulic_Institute_Stds_Overview.pdf (1.85 MB) More Documents & Publications Brochure HI Standards Subscription Options Summary of 2011 Accomplishments HI & PSM Summary of HI Standards Relating to Energy Efficency

  3. Temperature influence on water transport in hardened cement pastes

    SciTech Connect (OSTI)

    Drouet, Emeline; Poyet, Stéphane; Torrenti, Jean-Michel

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  4. Lehigh Southwest Cement Company: Compressed Air System Improvement Saves Energy

    SciTech Connect (OSTI)

    2003-10-01

    In 2001, Lehigh Southwest Cement Company improved the compressed air system at its cement plant in Tehachapi, California. Consequently, the system was able to operate more efficiently with less compressor capacity and at a lower system pressure. The project yielded total annual savings of 895,000 kWh and $199,000. The initial project cost was $417,000, but Southern California Edison provided a $90,000 incentive payment to reduce the cost to $327,000. Simple payback was about 20 months.

  5. MHK Technologies/Tidal Hydraulic Generators THG | Open Energy...

    Open Energy Info (EERE)

    Description The concept of generating energy in this way is made unique by our novel design feature. The generator, devised in 1998, is a hydraulic accumulator system,...

  6. Upgrading the HFIR Thermal-Hydraulic Legacy Code Using COMSOL...

    Office of Scientific and Technical Information (OSTI)

    Modernization of the High Flux Isotope Reactor (HFIR) thermal-hydraulic (TH) design and safety analysis capability is an important step in preparation for the conversion of the ...

  7. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type...

    Office of Scientific and Technical Information (OSTI)

    in Plate Type Nuclear Research Reactors Citation Details In-Document Search Title: Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors ...

  8. Hydraulically refueled battery employing a packed bed metal particle electrode

    DOE Patents [OSTI]

    Siu, Stanley C. (Castro Valley, CA); Evans, James W. (Piedmont, CA)

    1998-01-01

    A secondary zinc air cell, or another selected metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically, two embodiments of a cell, one that is capable of being hydraulically recharged, and a second that is capable of being either hydraulically or electrically recharged. Additionally, each cell includes a sloped bottom portion to cause stirring of the electrolyte/metal particulate slurry when the cell is being hydraulically emptied and refilled during hydraulically recharging of the cell.

  9. Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection

    Broader source: Energy.gov [DOE]

    Two data collection tools specifically developed for hydraulic fracturing are available to help regulatory agencies monitor drilling and completion operations and enhance environmental protection.

  10. Compact, electro-hydraulic, variable valve actuation system providing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compact, electro-hydraulic, variable valve actuation system providing variable lift, timing and duration to enable high efficiency engine combustion control Compact, electro-hydrau...

  11. OSTIblog Articles in the hydraulic fracturing Topic | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    noted by Pete Domenici, senior fellow at the Bipartisan Policy... Related Topics: Bureau of Mines, communications, hydraulic fracturing, nasa, nuclear weapons technology, Oil Shale

  12. Application of the directional hydraulic fracturing at Berezovskaya Mine

    SciTech Connect (OSTI)

    Lekontsev, Y.M.; Sazhin, P.V.

    2008-05-15

    The paper analyzes the experimental research of the directional hydraulic fracturing applied for weakening of rocks at Berezovskaya Mine (Kuznetsk Coal Basin) in 2005-2006.

  13. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    Broader source: Energy.gov [DOE]

    Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir presentation at the April 2013 peer review meeting held in Denver, Colorado.

  14. NREL: Transportation Research - Miami-Dade County Hydraulic Hybrid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    one conventional vehicle will undergo chassis dynamometer testing to determine the fuel economy and emissions impact of the hydraulic hybrid technology in a controlled setting....

  15. Alternative Fuels Data Center: Hydraulic Hybrids: A Success in...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    is paying off with fuel savings, lower maintenance costs, and increased productivity. ... The hydraulic regenerative braking system also means huge savings in brake maintenance. ...

  16. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type...

    Office of Scientific and Technical Information (OSTI)

    fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. ...

  17. Development of the helical reaction hydraulic turbine. Final...

    Office of Scientific and Technical Information (OSTI)

    helical reaction hydraulic turbine. Final technical report, July 1, 1996--June 30, 1998 Gorlov, A. 16 TIDAL AND WAVE POWER; 17 WIND ENERGY; 13 HYDRO ENERGY; PROGRESS REPORT;...

  18. Shale Gas Application in Hydraulic Fracturing Market is likely...

    Open Energy Info (EERE)

    on unconventional reservoirs such as coal bed methane, tight gas, tight oil, shale gas, and shale oil. Over the period of time, hydraulic fracturing technique has found...

  19. Creation of an Engineered Geothermal System through Hydraulic...

    Broader source: Energy.gov (indexed) [DOE]

    Project objectives: To create an Enhanced Geothermal System on the margin of the Cosofield through the hydraulic, thermal, andor chemical stimulation of one or more tight ...

  20. Fracture Evolution Following a Hydraulic Stimulation within an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal ...

  1. Numerical simulation of the environmental impact of hydraulic...

    Office of Scientific and Technical Information (OSTI)

    Numerical simulation of the environmental impact of hydraulic fracturing of tightshale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs,...

  2. Hydraulic properties of adsorbed water films in unsaturated porous media

    SciTech Connect (OSTI)

    Tokunaga, Tetsu K.

    2009-03-01

    Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential ({Psi}) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z{sup -1}, z{sup -2}, and z{sup -3}, respectively. In monodisperse granular media, the characteristic grain size ({lambda}) controls film hydraulics through {lambda}{sup -1} scaling of (1) the perimeter length per unit cross sectional area over which films occur, (2) the critical matric potential ({Psi}{sub c}) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when {Psi} < {Psi}{sub c}. While it is recognized that finer textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate {Psi}, the {lambda}{sup -1} scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm y{sup -1}). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to {Psi}).

  3. Science on the Hill: Burning questions in study of wildfire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burning questions in study of wildfire Burning questions in study of wildfire Understanding what drives big fires and predicting their behavior helps the fire community prepare for the next blaze through appropriate land management, emergency plans and firefighting strategies. July 12, 2016 A helicopter drops fire retardant on wildfire during 2011 Las Conchas fire in New Mexico. A helicopter drops fire retardant on wildfire during 2011 Las Conchas fire in New Mexico. Burning questions in study

  4. Chromium stabilization chemistry of paint removal wastes in Portland cement and blast furnace slag

    SciTech Connect (OSTI)

    Boy, J.H.; Race, T.D.; Reinbold, K.A.

    1995-12-31

    The use of cement based systems for solidification and stabilization of hazardous wastes has been proposed. The stabilization of Cr contaminated paint removal wastes in ordinary Portland cement and in a Portland cement and blast furnace slag matrix was investigated. A loading by volume of 75% waste and 25% cement (or cement + slag) was used. The expression of pore solution was utilized to determine the chemical environment encountered by the waste species in the cement matrix. The highly alkaline conditions of ordinary Portland cement determined the stability of the metal species, with Cr being highly soluble. The replacement of 25% of the Portland cement by blast furnace slag was found to decrease the [OH-] of the pore solution resulting in a decrease of the Cr concentration. For cement wastes forms hydrated for 28 days, the Cr concentration decreased in the expressed pore solution. During the TCLP tests the cement waste form and extraction solution were found to react, changing the chemistry of the extraction solution. The expression of pore solution was found to give a direct measure of the chemistry of the waste species in the cement matrix. This avoids the reaction of the TCLP extraction solution with the cement matrix which changes the solubility of the hazardous metals. 15 refs., 4 figs., 6 tabs.

  5. Wood-Burning Heating System Deduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Alabama Program Type Rebate Amount 100% Summary This statute allows individual taxpayers a deduction for the purchase and installation of a wood-burning heating system. The...

  6. Arctic Haze: Effect of Anthropogenic and Biomass Burning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Haze: Effect of Anthropogenic and Biomass Burning Aerosols Transported from Europe to the Arctic For original submission and image(s), see ARM Research Highlights http:...

  7. SFR with once-through depleted uranium breed & burn blanket ...

    Office of Scientific and Technical Information (OSTI)

    Title: SFR with once-through depleted uranium breed & burn blanket Authors: Zhang, Guanheng ; Greenspan, Ehud ; Jolodosky, Alejandra ; Vujic, Jasmina Publication Date: 2015-07-01 ...

  8. Modeling Deep Burn TRISO Particle Nuclear Fuel

    SciTech Connect (OSTI)

    Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison

    2012-01-01

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  9. Formed Core Sampler Hydraulic Conductivity Testing

    SciTech Connect (OSTI)

    Miller, D. H.; Reigel, M. M.

    2012-09-25

    A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposed to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.

  10. New pulsating casing collar to improve cementing quality

    SciTech Connect (OSTI)

    Chen, P.; He, K.; Wu, J.

    1998-12-31

    This paper presents the design and test results of a new pulsating casing collar which improves cementing quality. The new pulsating casing collar (PCC) is designed according to the Helmholtz oscillator to generate a pulsating jet flow by self-excitation in the cementing process. By placing this new pulsating casing collar at the bottom of casing string, the generated pulsating jet flow transmits vibrating pressure waves up through the annulus and helps remove drilling mud in the annulus. It can therefore improve cementing quality, especially when eccentric annulus exists due to casing eccentricity where the mud is difficult to remove. The new pulsating casing collar consists of a top nozzle, a resonant chamber, and a bottom nozzle. It can be manufactured easily and is easy to use in the field. It has been tested in Jianghan oil-field, P.R. China. The field-test results support the theoretical analysis and laboratory test, and the cementing quality is shown greatly improved by using the new pulsating casing collar.

  11. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    SciTech Connect (OSTI)

    Jacobs, Torsten; Aign, Joerg

    2013-07-01

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

  12. Experimental study of the relationship between formation factor, porosity, and cementation

    SciTech Connect (OSTI)

    Harig, M.D.; Chaney, R.C.

    1999-07-01

    Cemented granular soils are classified based on the size and distribution of the individual grains and qualitatively on the basis of cementation. To uniquely classify these types of soils, information about the fabric (pore geometry and/or level of cementation) of the specimen needs to be quantified. Electrical resistivity, or its reciprocal, conductivity, methods have been extensively used both in situ and in the laboratory to provide a means for determining a variety of soil index, structural, erosional, and cyclic properties. The objective of this study was to determine the relationship between formation factor (F), porosity (n), and cementation factor (m) of remolded sand-cement specimens. This relationship is shown to provide a mechanism for estimating the level of cementation in undisturbed specimens. The formation factor is the ratio of the electrical resistivity of the sand-water-cement mixture to that of the interstitial water.

  13. Clean burning solid fuel stove and method

    SciTech Connect (OSTI)

    Smith, R.D.; Grouw, S.J.V.

    1985-10-08

    A stove for burning solid fuels having an insulated primary combustion chamber, uniform distribution of preheated primary air through upward facing holes in a grate, downward flow of combustion gas through the grate, retention of hot coals in the grate structure, preheated secondary air, individually controlled primary and secondary air flows, insulated vortex combustion chambers for secondary combustion, longitudinally finned tubes as a first stage heat exchanger, plate-fin assembly as a second stage heat exchanger, an induced draft fan to draw the air and combustion gases through the combustion chambers as well as the heat exchangers, and a forced air fan to blow cool room air through the two stage heat exchanger.

  14. AmeriFlux US-Me1 Metolius - Eyerly burn

    SciTech Connect (OSTI)

    Law, Bev

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me1 Metolius - Eyerly burn. Site Description - An intermediate aged ponderosa pine forest that was severely burned in the 2002 Eyerly wildfire. All trees were killed (stand replacing event). Irvine et al (2007) GCB 13 (8), 1748–1760.

  15. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    SciTech Connect (OSTI)

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

    2009-09-27

    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  16. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOE Patents [OSTI]

    Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.

    2000-01-01

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  17. Concrete decontamination by electro-hydraulic scabbling

    SciTech Connect (OSTI)

    Goldfarb, V.; Gannon, R.

    1995-10-01

    Textron Defense Systems (TDS) is developing an electro-hydraulic device that has the potential for faster, safer, and less expensive scabbling of contaminated concrete surfaces. In the device, shock waves and cavitating bubbles are produced in water by the electric pulses, and the direct and reflected shock waves impinging on the concrete surface result in the crushing and cracking of the concrete. Pulse energy, frequency, and traverse speed control the depth of the scabbling action. Performance thus far has demonstrated the capability of a prototype unit to process a swath 24 inches wide, up to 3/4 inch deep at a linear velocity of up to 6 feet per hour, i.e., at a scabbling rate of 12 sq. ft. per hour.

  18. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    SciTech Connect (OSTI)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and

  19. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  20. Turbulent burning rates of methane and methane-hydrogen mixtures

    SciTech Connect (OSTI)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  1. Method and apparatus to measure the depth of skin burns

    DOE Patents [OSTI]

    Dickey, Fred M.; Holswade, Scott C.

    2002-01-01

    A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

  2. Local Burn-Up Effects in the NBSR Fuel Element

    SciTech Connect (OSTI)

    Brown N. R.; Hanson A.; Diamond, D.

    2013-01-31

    This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peaking relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.

  3. Method for valve seating control for an electro-hydraulic engine valve

    DOE Patents [OSTI]

    Sun, Zongxuan

    2011-01-11

    Valve lift in an internal combustion engine is controlled by an electro-hydraulic actuation mechanism including a selectively actuable hydraulic feedback circuit.

  4. Performance of the Lead-Alloy Cooled Concept Balanced for Actinide Burning and Electricity Production

    SciTech Connect (OSTI)

    Pavel Hejzlar; Cliff Davis

    2004-09-01

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners.

  5. Performance of the Lead-Alloy-Cooled Reactor Concept Balanced for Actinide Burning and Electricity Production

    SciTech Connect (OSTI)

    Hejzlar, Pavel [Massachusetts Institute of Technology (United States); Davis, Cliff B. [Idaho National Engineering and Environmental Laboratory (United States)

    2004-09-15

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners.

  6. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    SciTech Connect (OSTI)

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs.

  7. Relationship between Anisotropy in Soil Hydraulic Conductivity and Saturation

    SciTech Connect (OSTI)

    Zhang, Z. Fred

    2014-01-01

    Anisotropy in unsaturated hydraulic conductivity is saturation-dependent. Accurate characterization of soil anisotropy is very important in simulating flow and contaminant (e.g., radioactive nuclides in Hanford) transport. A recently developed tensorial connectivity-tortuosity (TCT) concept describes the hydraulic conductivity tensor of the unsaturated anisotropic soils as the product of a scalar variable, the symmetric connectivity tortuosity tensor, and the hydraulic conductivity tensor at saturation. In this study, the TCT model is used to quantify soil anisotropy in unsaturated hydraulic conductivity. The TCT model can describe different types of soil anisotropy; e.g., the anisotropy coefficient, C, can be monotonically increase or decrease with saturation and can vary from greater than unity to less than unity and vice versa. Soil anisotropy is independent of soil water retention properties and can be characterized by the ratio of the saturated hydraulic conductivities and the difference of the tortuosity-connectivity coefficients in two directions. ln(C) is linearly proportional to ln(Se) with Se being the effective saturation. The log-linear relationship between C and Se allows the saturation-dependent anisotropy to be determined using linear regression with the measurements of the directional hydraulic conductivities at a minimum of two water content levels, of which one may be at full saturation. The model was tested using measurements of directional hydraulic conductivities.

  8. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  9. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    SciTech Connect (OSTI)

    Gallo, Jean-Baptiste

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  10. KJRR-FAI Hydraulic Flow Testing Input Package

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; R.B. Nielson; D.B. Chapman

    2013-12-01

    The INL, in cooperation with the KAERI via Cooperative Research And Development Agreement (CRADA), undertook an effort in the latter half of calendar year 2013 to produce a conceptual design for the KJRR-FAI campaign. The outcomes of this effort are documented in further detail elsewhere [5]. The KJRR-FAI was designed to be cooled by the ATRs Primary Coolant System (PCS) with no provision for in-pile measurement or control of the hydraulic conditions in the irradiation assembly. The irradiation assembly was designed to achieve the target hydraulic conditions via engineered hydraulic losses in a throttling orifice at the outlet of the irradiation vehicle.