National Library of Energy BETA

Sample records for burner operability issues

  1. Front Burner- Issue 15

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 15 addresses the DOE eSCRM Program and Secure Online Shopping.

  2. Front Burner- Issue 14

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Cybersecurity Front Burner Issue No. 14 highlights the 2013 National Cybersecurity Awareness Month (NCSAM) Campaign and Phishing Scams.

  3. Front Burner- Issue 13

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 13 contained a message from the Associate Chief Information Officer (ACIO) for Cybersecurity as well as a listing of recommended cybersecurity practices.

  4. Front Burner- Issue 16

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 16 addresses Malware, the Worst Passwords of 2013, and the Flat Stanley and Stop.Think.Connect. Campaign.

  5. Front Burner- Issue 18

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Cybersecurity Front Burner Issue No. 18 addresses keeping kids safe on the Internet, cyber crime, and DOE Cyber awareness and training initiatives.

  6. FRONT BURNER- ISSUE 19

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Cybersecurity Front Burner Issue No. 19 examines Securing the Internet of Things, Facebook Messenger Application, and implementation of the Contractor Training Site.

  7. FRONT BURNER- Issue 20

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 20 examines Phishing to include defining Phishing and related terms and how to protect yourself from this very common and clever security threat. The newsletter also addresses wireless networks, supply chains, training events, and readily available cybersecurity resources. Stay cyber informed and check it out!

  8. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    SciTech Connect (OSTI)

    Choudhuri, Ahsan

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  9. Low No{sub x}/SO{sub x} burner retrofit for utility cyclone boilers. Baseline test report: Issue A

    SciTech Connect (OSTI)

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative`s (SIPC`s) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC`s Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner`s SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  10. COMPUTATIONAL FLUID DYNAMICS BASED INVESTIGATION OF SENSITIVITY OF FURNACE OPERATIONAL CONDITIONS TO BURNER FLOW CONTROLS

    SciTech Connect (OSTI)

    Marc Cremer; Zumao Chen; Dave Wang; Paul Wolff

    2004-06-01

    This is the extended second Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts.

  11. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    SciTech Connect (OSTI)

    Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff

    2005-07-01

    This is the Final Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project was to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. The focus of this project was to quantify the potential impacts of ''fine level'' controls rather than that of ''coarse level'' controls (i.e. combustion tuning). Although it is well accepted that combustion tuning will generally improve efficiency and emissions of an ''out of tune'' boiler, it is not as well understood what benefits can be derived through active multiburner measurement and control systems in boiler that has coarse level controls. The approach used here was to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner air and fuel flow rates. The Electric Power Research Institute (EPRI) provided co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center have been active participants in this project. CFD simulations were completed for five coal fired boilers as planned: (1) 150 MW wall fired, (2) 500 MW opposed wall fired, (3) 600 MW T-Fired, (4) 330 MW cyclone-fired, and (5) 200 MW T-Fired Twin Furnace. In all cases, the unit selections were made in order to represent units that were descriptive of the utility industry as a whole. For each unit, between 25 and 44 furnace simulations were completed in order to evaluate impacts of burner to burner variations in: (1) coal and primary air flow rate, and (2) secondary air flow rate. The parametric matrices of cases that were completed were

  12. Variable capacity gasification burner

    SciTech Connect (OSTI)

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  13. Startup burner

    DOE Patents [OSTI]

    Zhao, Jian Lian; Northrop, William F.; Bosco, Timothy; Rizzo, Vincent; Kim, Changsik

    2009-08-18

    A startup burner for rapidly heating a catalyst in a reformer, as well as related methods and modules, is disclosed.

  14. Cybersecurity Front Burner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Training » Cybersecurity Training Warehouse » DOE Cybersecurity Awareness Program » Cybersecurity Front Burner Cybersecurity Front Burner Documents Available for Download January 15, 2015 FRONT BURNER - Issue 20 The Cybersecurity Front Burner Issue No. 20 examines Phishing to include defining Phishing and related terms and how to protect yourself from this very common and clever security threat. The newsletter also addresses wireless networks, supply chains, training events, and

  15. Burner balancing Salem Harbor Station

    SciTech Connect (OSTI)

    Sload, A.W.; Dube, R.J.

    1995-12-31

    The traditional method of burner balancing is first to determine the fuel distribution, then to measure the economizer outlet excess oxygen distribution and to adjust the burners accordingly. Fuel distribution is typically measured by clean and dirty air probing. Coal pipe flow can then be adjusted, if necessary, through the use of coal pipe orificing or by other means. Primary air flow must be adjusted to meet the design criteria of the burner. Once coal pipe flow is balanced to within the desired criteria, secondary air flow to individual burners can be changed by adjusting windbox dampers, burner registers, shrouds or other devices in the secondary air stream. This paper discusses problems encountered in measuring excess O{sub 2} at the economizer outlet. It is important to recognize that O{sub 2} measurements at the economizer outlet, by themselves, can be very misleading. If measurement problems are suspected or encountered, an alternate approach similar to that described should be considered. The alternate method is not only useful for burner balancing but also can be used to help in calibrating the plant excess O{sub 2} instruments and provide an on line means of cross-checking excess air measurements. Balanced burners operate closer to their design stoichiometry, providing better NO{sub x} reduction. For Salem Harbor Station, this means a significant saving in urea consumption.

  16. Burners and combustion apparatus for carbon nanomaterial production

    DOE Patents [OSTI]

    Alford, J. Michael; Diener, Michael D.; Nabity, James; Karpuk, Michael

    2007-10-09

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  17. Burners and combustion apparatus for carbon nanomaterial production

    DOE Patents [OSTI]

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  18. Burner systems

    DOE Patents [OSTI]

    Doherty, Brian J.

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  19. Operational Issues at the Environmental Restoration Disposal Facility at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford | Department of Energy Operational Issues at the Environmental Restoration Disposal Facility at Hanford Operational Issues at the Environmental Restoration Disposal Facility at Hanford Full Document and Summary Versions are available for download Operational Issues at the Environmental Restoration Disposal Facility at Hanford (238.34 KB) Summary - Operational Issues at the Environmental Restoration Disposal Facility (ERDF) at Hanford (56.27 KB) More Documents & Publications Idaho

  20. Rotary Burner Demonstration

    SciTech Connect (OSTI)

    Paul Flanagan

    2003-04-30

    The subject technology, the Calcpos Rotary Burner (CRB), is a burner that is proposed to reduce energy consumption and emission levels in comparison to currently available technology. burners are used throughout industry to produce the heat that is required during the refining process. Refineries seek to minimize the use of energy in refining while still meeting EPA regulations for emissions.

  1. Challenge # 3 … Operational Issues | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 … Operational Issues Challenge # 3 … Operational Issues Fernando Preto presentation on May 9, 2012, at the Pyrolysis Oil Workshop on Challenge #3 Operational Issues. pyrolysis_challenge3.pdf (1.15 MB) More Documents & Publications U.S., Canada, and Finland Pyrolysis Collaborations Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England 2013 Peer Review Presentations-Bio-oil

  2. DOE Issues Request for Information for Richland Operations Office...

    Office of Environmental Management (EM)

    Contract Acquisition Planning- Occupational Medical Services (OccMed) DOE Issues Request for Information for Richland Operations Office Richland Acquisitions - Post Fiscal Year ...

  3. Fundamental Issues in Subzero PEMFC Startup and Operation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fundamental issues in subzero PEMFC startup and operation Jeremy P. Meyers February 1, 2005 DOE Freeze Workshop Outline of presentation * Motivation * Stack performance * ...

  4. Fuel burner having a intermittent pilot with pre-ignition testing

    SciTech Connect (OSTI)

    Peterson, S.M.

    1991-07-30

    This patent describes improvement in a fuel burner having a main burner and a pilot burner for lighting the main burner, an electrically-powered igniter for lighting the pilot burner, a source of electric energy, an igniter power supply receiving a demand signal and supplying power to the igniter responsive to the demand signal, a pilot sensor adjacent to the pilot burner and supplying a pilot signal responsive to presence of a pilot flame, and a main burner valve controlling flow of fuel to the main burner and opening responsive to the pilot signal. The improvement comprises: a pilot burner valve controlling flow of fuel to the pilot burner and opening responsive to a pilot valve control signal; igniter sensing means in sensing relation to the igniter for providing an igniter signal responsive to operation of the igniter; and pilot valve control means receiving the igniter signal, for providing the pilot valve control signal responsive to the igniter signal.

  5. Reverberatory screen for a radiant burner

    DOE Patents [OSTI]

    Gray, Paul E.

    1999-01-01

    The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

  6. Combustor burner vanelets

    DOE Patents [OSTI]

    Lacy, Benjamin (Greer, SC); Varatharajan, Balachandar (Loveland, OH); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Zuo, Baifang (Simpsonville, SC)

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  7. Catalyzed Ceramic Burner Material

    SciTech Connect (OSTI)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  8. Study of oil combustion in the TGMP-314 boiler with hearth burners

    SciTech Connect (OSTI)

    Usman, Yu.M.; Shtal'man, S.G.; Enyakin, Yu.P.; Abryutin, A.A.; Levin, M.M.; Taran, O.E.; Chuprov, V.V.; Antonov, A.Yu.

    1983-01-01

    Studies of the TGMP-314 boiler with hearth configured burners included the gas mixture in the boiler, the degree of fuel combustion at various heights in the boiler, hydrogen sulfide content in the near-wall zones of the boiler, and temperature distribution fields. Experimental data showed that the hearth burners, in conjunction with steam-mechanical atomizing burners, operate with the least possible excess air over a wide range of load changes. The operation and performance of the hearth burners are discussed.

  9. Pulverized coal burner

    SciTech Connect (OSTI)

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  10. Pulverized coal burner

    DOE Patents [OSTI]

    Sivy, Jennifer L.; Rodgers, Larry W.; Koslosy, John V.; LaRue, Albert D.; Kaufman, Keith C.; Sarv, Hamid

    1998-01-01

    A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

  11. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial

  12. Burner ignition system

    DOE Patents [OSTI]

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  13. Residential oil burners with low input and two stages firing

    SciTech Connect (OSTI)

    Butcher, T.; Krajewski, R.; Leigh, R.

    1997-12-31

    The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

  14. Ultralean low swirl burner

    DOE Patents [OSTI]

    Cheng, Robert K.

    1998-01-01

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame.

  15. Ultralean low swirl burner

    DOE Patents [OSTI]

    Cheng, R.K.

    1998-04-07

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame. 11 figs.

  16. High efficiency gas burner

    DOE Patents [OSTI]

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  17. Rotary Burner Demonstration Fact Sheet

    SciTech Connect (OSTI)

    2003-07-01

    A new Calcpos rotary burner (CRB), eliminates electric motors, providing a simple, cost effective means of retrofitting existing fired heaters for energy and environmental reasons.

  18. High capacity oil burner

    SciTech Connect (OSTI)

    Pedrosa, O.A. Jr.; Couto, N.C.; Fanqueiro, R.C.C.

    1983-11-01

    The present invention relates to a high capacity oil burner comprising a cylindrical atomizer completely surrounded by a protective cylindrical housing having a diameter from 2 to 3 times greater than the diameter of said atomizer; liquid fuels being injected under pressure into said atomizer and accumulating within said atomizer in a chamber for the accumulation of liquid fuels, and compressed air being injected into a chamber for the accumulation of air; cylindrical holes communicating said chamber for the accumulation of liquid fuels with the outside and cylindrical holes communicating said chamber for the accumulation of air with said cylindrical holes communicating the chamber for the accumulation of liquids with the outside so that the injection of compressed air into said liquid fuel discharge holes atomizes said fuel which is expelled to the outside through the end portions of said discharge holes which are circumferentially positioned to be burnt by a pilot flame; said protecting cylindrical housing having at its ends perforated circular rings into which water is injected under pressure to form a protecting fan-like water curtain at the rear end of the housing and a fan-like water curtain at the flame to reduce the formation of soot; the burning efficiency of said burner being superior to 30 barrels of liquid fuel per day/kg of the apparatus.

  19. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  20. GNEP Element:Develop Advanced Burner Reactors | Department of...

    Office of Environmental Management (EM)

    Develop Advanced Burner Reactors GNEP Element:Develop Advanced Burner Reactors An article describing burner reactors and the role in GNEP. PDF icon GNEP Element:Develop Advanced...

  1. Coal-water mixture fuel burner

    DOE Patents [OSTI]

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  2. Operational Issues at the Environmental Restoration Disposal Facility at Hanford

    Office of Environmental Management (EM)

    Operating Guidelines Appendix C D.DOC� Operating Guidelines Appendix C D.DOC� Operating Guidelines Appendix C D.DOC� (41.73 KB) More Documents & Publications Operating Guidelines Appendix A B.DOC� DOE HR Guidebook 12_15_05.DOC� Questions and Answers 202-05-03 | Department of Energy

    Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03

  3. Fundamental Issues in Subzero PEMFC Startup and Operation

    Broader source: Energy.gov [DOE]

    Presentation by Jeremy Meyers to DOE's Fuel Cell Operations at Sub-Freezing Temperatures Workshop held February 1-5, 2005 in Phoenix, Arizona.

  4. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  5. DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate its Ames Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued its Request for Proposals (RFP) for the competitive selection of a management and operating (M&O) contractor to operate Ames...

  6. Slurry burner for mixture of carbonaceous material and water

    DOE Patents [OSTI]

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  7. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    SciTech Connect (OSTI)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  8. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30

    For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing

  9. Optimization of burners for firing solid fuel and natural gas for boilers with impact pulverizers

    SciTech Connect (OSTI)

    G.T. Levit; V.Ya. Itskovich; A.K. Solov'ev (and others) [ORGRES Company (Russian Federation)

    2003-01-15

    The design of a burner with preliminary mixing of fuel and air for alternate or joint firing of coal and natural gas on a boiler is described. The burner provides steady ignition and economical combustion of coal, low emission of NOx in both operating modes, and possesses an ejecting effect sufficient for operation of pulverizing systems with a shaft mill under pressure. The downward inclination of the burners makes it possible to control the position of the flame in the furnace and the temperature of the superheated steam.

  10. Uniform-burning matrix burner

    DOE Patents [OSTI]

    Bohn, Mark S.; Anselmo, Mark

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  11. DOE Issues Final Request for Proposal for the Operation of Depleted Uranium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hexafluoride (DUF6) Conversion Facilities | Department of Energy the Operation of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities DOE Issues Final Request for Proposal for the Operation of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities September 8, 2015 - 3:00pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati -- The U.S. Department of Energy (DOE) today issued a Final Request for Proposal (RFP), for the Operation of Depleted

  12. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    1998-09-01

    % reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

  13. DOE Issues Safety Assessments for Diesel-Operated Equipment Underground at WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 5, 2015 DOE Issues Safety Assessments for Diesel-Operated Equipment Underground at WIPP The Office of Nuclear Safety and Environmental Assessments, within the U.S. Department of Energy's independent Office of Enterprise Assessments (EA), recently issued reports following reviews conducted on the WIPP Recovery Plan for Operating Diesel Equipment with available underground airflows and the Conduct of Maintenance and associated planned program enhancements. The onsite portions of the

  14. DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    its Princeton Plasma Physics Laboratory | Department of Energy Princeton Plasma Physics Laboratory DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate its Princeton Plasma Physics Laboratory July 3, 2008 - 2:15pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued its Request for Proposals (RFP) for the competitive selection of a contractor to manage and operate Princeton Plasma Physics Laboratory (PPPL), a DOE Office of Science research facility

  15. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect (OSTI)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this

  16. Low-Emissions Burner Technology using Biomass-Derived Liquid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels This factsheet describes a project that ...

  17. Computational fluid dynamics in oil burner design

    SciTech Connect (OSTI)

    Butcher, T.A.

    1997-09-01

    In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.

  18. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W.; Sathe, Sanjeev B.; Peck, Robert E.

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  19. Issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issue One of the challenges at Sandia National Laboratories is addressing the issue of predictively connecting the macroscopic properties of metals to their micro- and nanostructure. While this issue may seem straightforward, it is anything but trivial. Materials are intrinsically inhomogeneous, but the relationship between microstructural variability and resulting properties is often unknown. Approach PPM is comprised of a group of multidisciplinary staff, post-docs, and university

  20. Low No sub x /SO sub x burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative's (SIPC's) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC's Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner's SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  1. DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory | Department of Energy Argonne National Laboratory DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate Argonne National Laboratory April 19, 2006 - 10:23am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the issuance of a final Request for Proposals (RFP) for the competitive selection of an approximated $2.54 billion, five-year management and operating contract for Argonne National Laboratory (ANL), a DOE Office

  2. DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fermi National Accelerator Laboratory | Department of Energy Fermi National Accelerator Laboratory DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate Fermi National Accelerator Laboratory July 10, 2006 - 2:57pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the issuance of a final Request for Proposals (RFP) for the competitive selection of an approximately $1.58 billion, five-year management and operating contract for Fermi National

  3. Diesel fuel burner for diesel emissions control system

    DOE Patents [OSTI]

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  4. DOE Issues Draft Request for Proposals Seeking Contractor to Manage, Operate Waste Isolation Pilot Plant

    Broader source: Energy.gov [DOE]

    Cincinnati -- The U.S. Department of Energy (DOE) issued a Draft Request for Proposal (RFP) seeking a management and operations contractor to maintain the Waste Isolation Pilot Plan (WIPP) and manage the DOE National Transuranic Waste (TRU) Program in Carlsbad, New Mexico.

  5. Catalytic reactor with improved burner

    DOE Patents [OSTI]

    Faitani, Joseph J.; Austin, George W.; Chase, Terry J.; Suljak, George T.; Misage, Robert J.

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  6. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  7. ISSUED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revision 14 Job Hazard Analysis Performance and Development Management Control Procedure EFFECTIVE DATE: 03/30/16 Tom Ferguson APPROVED FOR USE WP 12-IS3002 ISSUED WP 12-IS3002 Rev. 14 Page 2 of 22 TABLE OF CONTENTS CHANGE HISTORY SUMMARY ..................................................................................... 3 INTRODUCTION ............................................................................................................. 4 REFERENCES

  8. ISSUED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    02/09/16 WP 15-HS.02 Revision 9 Occupational Health Program Cognizant Department: Safety and Health Approved by: Tom Ferguson ISSUED WIPP Occupational Health Program WP 15-HS.02, Rev. 9 2 TABLE OF CONTENTS CHANGE HISTORY SUMMARY ..................................................................................... 4 ABBREVIATIONS AND ACRONYMS ............................................................................. 5 PREFACE

  9. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, Richard W.; Skinner, Dewey F.; Thorsness, Charles B.

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  10. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  11. ISSUED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effective Date: 10/01/15 WP 15-GM.02 Revision 10 Worker Safety and Health Program Description Cognizant Section: Industrial Safety & Health Approved by: Signature on File Phil Breidenbach, President & Project Manager, NWP Approved by: Signature on File Dana Bryson, Acting Manager, CBFO ISSUED Worker Safety and Health Program Description WP 15-GM.02, Rev. 10 2 TABLE OF CONTENTS CHANGE HISTORY SUMMARY ..................................................................................... 4

  12. ISSUED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12/01/15 WP 15-GM.03 Revision 9 Integrated Safety Management System Description Cognizant Section: Environmental, Safety and Health Approved by: Signature on File / 11/16/15 Phil Breidenbach, President & Project Manager, NWP Date Approved by: Signature on File / 11/30/15 Todd Shrader Manager, CBFO Date ISSUED Integrated Safety Management System Description WP 15-GM.03, Rev. 9 2 TABLE OF CONTENTS CHANGE HISTORY SUMMARY

  13. Development of a wood pellet fired burner for space heating applications in the range 5 kW--300 kW

    SciTech Connect (OSTI)

    Whitfield, J.

    1999-07-01

    A compact burner has been developed, fired by wood pellets, which can compete with fossil fuel burners for space heating applications in terms of efficiency, emissions, load following capability, economics, and physical size. Greenhouse gas emissions (CO{sub 2}) are reduced by 80% or more when used to displace fossil fuel fired appliances. This includes consideration of energy use in the pelleting process. The pellet fired burner is a stand-alone hot gas generator that can be externally mounted on an existing hot water boiler, directly replacing an oil or gas fired burner. The boiler thermostat directly controls the burner. Alternatively, the burner can be integrated into a forced air furnace or a dedicated boiler for OEM applications. The burner has been scaled from 20 kW for residential use up to more than 300 kw for commercial applications. The burner incorporates a fuel metering and delivery system, an insulated refractory firebox, an agitated grate system, preheated forced air combustion, and an open loop electronic control. Pellets are delivered from a separate storage bin, and the burner exhausts not gases in excess of 1,000 C from the burner tube. Excess air for combustion is controlled below 30% and emissions, CO and NO, are less than 100 ppm. the burner can be operated at these conditions as low as 30% rated power output. Upon heat demand from the thermostat control, pellets are fed to the grate, they ignite within 2--3 minutes using an electric resistance cartridge heater, and 90% rated power output is reached within 6--8 minutes of ignition. The burner can cycle 2--3 times per hour following the load demand.

  14. Advanced burner test reactor preconceptual design report.

    SciTech Connect (OSTI)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  15. Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues

    SciTech Connect (OSTI)

    Wang, Liping; Hong, Tianzhen

    2013-01-01

    Almost half of the total energy used in the U.S. buildings is consumed by heating, ventilation and air conditionings (HVAC) according to EIA statistics. Among various driving factors to energy performance of building, operations and maintenance play a significant role. Many researches have been done to look at design efficiencies and operational controls for improving energy performance of buildings, but very few study the impacts of HVAC systems maintenance. Different practices of HVAC system maintenance can result in substantial differences in building energy use. If a piece of HVAC equipment is not well maintained, its performance will degrade. If sensors used for control purpose are not calibrated, not only building energy usage could be dramatically increased, but also mechanical systems may not be able to satisfy indoor thermal comfort. Properly maintained HVAC systems can operate efficiently, improve occupant comfort, and prolong equipment service life. In the paper, maintenance practices for HVAC systems are presented based on literature reviews and discussions with HVAC engineers, building operators, facility managers, and commissioning agents. We categorize the maintenance practices into three levels depending on the maintenance effort and coverage: 1) proactive, performance-monitored maintenance; 2) preventive, scheduled maintenance; and 3) reactive, unplanned or no maintenance. A sampled list of maintenance issues, including cooling tower fouling, boiler/chiller fouling, refrigerant over or under charge, temperature sensor offset, outdoor air damper leakage, outdoor air screen blockage, outdoor air damper stuck at fully open position, and dirty filters are investigated in this study using field survey data and detailed simulation models. The energy impacts of both individual maintenance issue and combined scenarios for an office building with central VAV systems and central plant were evaluated by EnergyPlus simulations using three approaches: 1) direct

  16. J.R. Simplot: Burner Upgrade Project Improves Performance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant J.R. Simplot: Burner Upgrade Project Improves Performance and Saves ...

  17. Sealed, nozzle-mix burners for silica deposition

    DOE Patents [OSTI]

    Adler, Meryle D. M.; Brown, John T.; Misra, Mahendra K.

    2003-07-08

    Burners (40) for producing fused silica boules are provided. The burners employ a tube-in-tube (301-306) design with flats (56, 50) on some of the tubes (305, 301) being used to limit the cross-sectional area of certain passages (206, 202) within the burner and/or to atomize a silicon-containing, liquid source material, such as OMCTS. To avoid the possibility of flashback, the burner has separate passages for fuel (205) and oxygen (204, 206), i.e., the burner employs nozzle mixing, rather than premixing, of the fuel and oxygen. The burners are installed in burner holes (26) formed in the crown (20) of a furnace and form a seal with those holes so that ambient air cannot be entrained into the furnace through the holes. An external air cooled jacket (60) can be used to hold the temperature of the burner below a prescribed upper limit, e.g., 400.degree. C.

  18. Summary - Operational Issues at the Environmental Restoration Disposal Facility (ERDF) at Hanford

    Office of Environmental Management (EM)

    ERDF ETR Report Date: June 2007 ETR-6 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Operational Issues at the Environmental Restoration Disposal Facility(ERDF) at Hanford Why DOE-EM Did This Review The ERDF is a large- scale disposal facility authorized to receive waste from Hanford cleanup activities. It contains double-lined cells with a RCRA Subtitle C- type liner and leachate collection system. By 2007, 6.8 million tons of

  19. Check Burner Air to Fuel Ratios | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Burner Air to Fuel Ratios Check Burner Air to Fuel Ratios This tip sheet discusses when to check and reset burner air to fuel ratios as well as why it's a simply way to maximize the efficiency of process heating equipment. PROCESS HEATING TIP SHEET #2 Check Burner Air to Fuel Ratios (November 2007) (260.29 KB) More Documents & Publications Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical

  20. Low NO.sub.x burner system

    DOE Patents [OSTI]

    Kitto, Jr., John B.; Kleisley, Roger J.; LaRue, Albert D.; Latham, Chris E.; Laursen, Thomas A.

    1993-01-01

    A low NO.sub.x burner system for a furnace having spaced apart front and rear walls, comprises a double row of cell burners on each of the front and rear walls. Each cell burner is either of the inverted type with a secondary air nozzle spaced vertically below a coal nozzle, or the non-inverted type where the coal nozzle is below the secondary air port. The inverted and non-inverted cells alternate or are provided in other specified patterns at least in the lower row of cells. A small percentage of the total air can be also provided through the hopper or hopper throat forming the bottom of the furnace, or through the boiler hopper side walls. A shallow angle impeller design also advances the purpose of the invention which is to reduce CO and H.sub.2 S admissions while maintaining low NO.sub.x generation.

  1. Modernizing furnaces with recuperative burners in the metal industry

    SciTech Connect (OSTI)

    Berdoulay, F.; Drewery, P.

    1982-01-01

    Industrial burners equipped with means of preheating the combustion air with the hot combustion products offer significant savings in heat-processing energy consumption. As evidence in some forging furnaces recently outfitted with recuperative burners, reductions in energy consumption range from 30 to 60%. Such burners are particularly well-suited for high-temperature, direct-heating furnaces.

  2. Pollutant emissions reduction and performance optimization of an industrial radiant tube burner

    SciTech Connect (OSTI)

    Scribano, Gianfranco; Solero, Giulio; Coghe, Aldo

    2006-07-15

    This paper presents the results of an experimental investigation performed upon a single-ended self-recuperative radiant tube burner fuelled by natural gas in the non-premixed mode, which is used in the steel industry for surface treatment. The main goal of the research activity was a systematic investigation of the burner aimed to find the best operating conditions in terms of optimum equivalence ratio, thermal power and lower pollutant emissions. The analysis, which focused on the main parameters influencing the thermal efficiency and pollutant emissions at the exhaust (NO{sub x} and CO), has been carried out for different operating conditions of the burner: input thermal powers from 12.8 up to 18kW and equivalence ratio from 0.5 (very lean flame) to 0.95 (quasi-stoichiometric condition). To significantly reduce pollutant emissions ensuring at the same time the thermal requirements of the heating process, it has been developed a new burner configuration, in which a fraction of the exhaust gases recirculates in the main combustion region through a variable gap between the burner efflux and the inner flame tube. This internal recirculation mechanism (exhaust gases recirculation, EGR) has been favoured through the addition of a pre-combustion chamber terminated by a converging nozzle acting as a mixing/ejector to promote exhaust gas entrainment into the flame tube. The most important result of this solution was a decrease of NO{sub x} emissions at the exhaust of the order of 50% with respect to the original burner geometry, for a wide range of thermal power and equivalence ratio. (author)

  3. Advanced Burner Reactor Preliminary NEPA Data Study.

    SciTech Connect (OSTI)

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  4. Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler

    SciTech Connect (OSTI)

    Li, Z.Q.; Jing, J.P.; Chen, Z.C.; Ren, F.; Xu, B.; Wei, H.D.; Ge, Z.H.

    2008-07-01

    Measurements were performed in a 300-MWe wall-fired pulverized-coal utility boiler. Enhanced ignition-dual register (EI-DR) burners and centrally fuel rich (CFR) swirl coal combustion burners were installed in the bottom row of the furnace during experiments. Local mean concentrations of O{sub 2}, CO, CO{sub 2} and NOx gas species, gas temperatures, and char burnout were determined in the region of the two types of burners. For centrally fuel rich swirl coal combustion burners, local mean CO concentrations, gas temperatures and the temperature gradient are higher and mean concentrations of O{sub 2} and NOx along the jet flow direction in the burner region are lower than for the enhanced ignition-dual register burners. Moreover, the mean O{sub 2} concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. For centrally fuel rich swirl coal combustion burners in the bottom row, the combustion efficiency of the boiler increases from 96.73% to 97.09%, and NOx emission decreases from 411.5 to 355 ppm at 6% O{sub 2} compared to enhanced ignition-dual register burners and the boiler operates stably at 110 MWe without auxiliary fuel oil.

  5. Slurry burner for mixture of carbonaceous material and water

    DOE Patents [OSTI]

    Nodd, Dennis G.; Walker, Richard J.

    1987-01-01

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  6. Full-scale demonstration of low-NO{sub x} cell{trademark} burner retrofit. Final report

    SciTech Connect (OSTI)

    Eckhart, C.F.; Kitto, J.B.; Kleisley, R.J.

    1994-07-01

    The objective of the Low-NO{sub x} Cell{trademark}Burner (LNCB{trademark}) demonstration is to evaluate the applicability of this technology for reducing NO{sub x} emissions in full-scale, cell burner-equipped boilers. More precisely, the program objectives are to: (1) Achieve at least a 50% reduction in NO{sub x} emissions. (2) Reduce NO{sub x} with no degradation to boiler performance or life of the unit. (3) Demonstrate a technically and economically feasible retrofit technology. Cell burner equipped boilers comprise 13% of the Pre-New Source Performance Standards (NSPS) coal-fired generating capacity. This relates to 34 operating units generating 23,639 MWe, 29 of which are opposed wall fired with two rows of two-nozzle cell burners on each wall. The host site was one of these 29. Dayton Power & Light offered use of J.M. Stuart Station`s Unit No. 4 as the host site. It was equipped with 24, two-nozzle cell burners arranged in an opposed wall configuration. To reduce NO{sub x} emissions, the LNCB{trademark} has been designed to delay the mixing of the fuel and combustion air. The delayed mixing, or staged combustion, reduces the high temperatures normally generated in the flame of a standard cell burner. A key design criterion for the burner was accomplishing delayed fuel-air mixing with no pressure part modifications to facilitate a {open_quotes}plug-in{close_quotes} design. The plug-in design reduces material costs and outage time required to complete the retrofit, compared to installing conventional, internally staged low-NO{sub x} burners.

  7. Issue Paper Potential Water Availability Problems Associated with Geothermal Energy Operations

    SciTech Connect (OSTI)

    1982-02-19

    The report is the first to study and discuss the effect of water supply problems of geothermal development. Geothermal energy resources have the potential of making a significant contribution to the U.S. energy supply situation, especially at the regional and local levels where the resources are located. A significant issue of concern is the availability and cost of water for use in a geothermal power operation primarily because geothermal power plants require large quantities of water for cooling, sludge handling and the operation of environmental control systems. On a per unit basis, geothermal power plants, because of their inherent high heat rejection rates, have cooling requirements several times greater than the conventional fossil fuel plants and therefore the supply of water is a critical factor in the planning, designing, and siting of geothermal power plants. However, no studies have been specifically performed to identify the water requirements of geothermal power plants, the underlying causes of water availability problems, and available techniques to alleviate some of these problems. There is no cost data included in the report. The report includes some descriptions of known geothermal areas. [DJE-2005

  8. Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues

    SciTech Connect (OSTI)

    Eto, Joseph; Budhraja, Vikram; Ballance, John; Dyer, Jim; Mobasheri, Fred; Eto, Joseph

    2008-07-01

    California is on a path to increase utilization of renewable resources. California will need to integrate approximately 30,000 megawatts (MW) of new renewable generation in the next 20 years. Renewable resources are typically located in remote locations, not near the load centers. Nearly two/thirds or 20,000 MW of new renewable resources needed are likely to be delivered to Los Angeles Basin transmission gateways. Integration of renewable resources requires interconnection to the power grid, expansion of the transmission system capability between the backbone power grid and transmission gateways, and increase in delivery capacity from transmission gateways to the local load centers. To scope the transmission, operations, and reliability issues for renewables integration, this research focused on the Los Angeles Basin Area transmission gateways where most of new renewables are likely. Necessary actions for successful renewables integration include: (1) Expand Los Angeles Basin Area transmission gateway and nomogram limits by 10,000 to 20,000 MW; (2) Upgrade local transmission network for deliverability to load centers; (3) Secure additional storage, demand management, automatic load control, dynamic pricing, and other resources that meet regulation and ramping needed in real time operations; (4) Enhance local voltage support; and (5) Expand deliverability from Los Angeles to San Diego and Northern California.

  9. Fuel burner and combustor assembly for a gas turbine engine

    DOE Patents [OSTI]

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  10. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    SciTech Connect (OSTI)

    Cygan, David

    2006-12-28

    -catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million

  11. Refinery burner simulation design architecture summary.

    SciTech Connect (OSTI)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  12. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect (OSTI)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  13. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  14. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Cyclone furnaces operate with high excess air and at high temperature. The heat release during combustion is very high and as a result the boiler volume is much smaller than would be found in a conventional pc-fired system. The Marion Unit 1 boiler, at the level of the cyclone entry, has a small cross-section; about 5-feet in depth and about 20-feet in width. A boiler schematic showing the LNS Burner and relative location of the superheater region and overfire air ports is shown in Figure 1. The LNS Burner's combustion process is fundamentally different from that of the cyclone, and the combustion products are also different. The LNS Burner products enter the boiler as hot, fuel-rich gases. Additional overfire air must be added to complete this combustion step with care taken to avoid the formation of thermal NO{sub x}. If done correctly, S0{sub 2} is controlled and significant NO{sub x} reductions are achieved. Because of the small boiler volume, flow modelling was found to be necessary to insure that adequate mixing of LNS Burner combustion products with air can be accomplished to achieve NO{sub x} emissions goals. Design requirements for the air injection system for the Marion boiler were developed using FLUENT, a commercially available computational fluid dynamics (CFD) code. A series of runs were made to obtain a design for final air injection that met the process design goals as closely as possible.

  15. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactors | Department of Energy Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that consume transuranic elements (plutonium and other long-lived radioactive material) while extracting their energy. The development of ABRs will allow us to build an improved nuclear fuel cycle that recycles used fuel. Accordingly, the U.S. will work with participating

  16. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1995-10-01

    The objective of this investigation is to characterize the operation of fan powered infrared burner (PIR) at various gas compositions and ambient conditions and develop design guidelines for appliances in containing PIR burners for satisfactory performance. During this period, experimental setup with optical and electronic instrumentation that is necessary for measuring the radiant heat output and the emission gas output of the burner has been established. The radiation measurement instrument, an FTIR, has been purchased and installed in the porous burner experimental system. The radiation measurement capability of the FTIR was tested and found to be satisfactory. A standard blackbody source, made by Graseby Infrared, was employed to calibrate the FTIR. A collection duct for emission gas measurement was fabricated and connected to the existing Horiba gas analyzer. Test runs are being conducted for flue gas analysis. A number of published research papers on modeling of porous burners were reviewed. The physical mechanism and theoretical analysis of the combustion process of the PIR burner was formulated. The numerical modeling, and implementation of a PIR burner code at CAU`s computing facility is in progress.

  17. Shielded flashback-resistant diffusion flame burner for combustion diagnostics

    SciTech Connect (OSTI)

    Krupa, R.J.; Zizak, G.; Winefordner, J.D.

    1986-10-15

    A burner design is presented which is of general utility for combustion diagnostics of high temperature, high burning velocity flames. (AIP)

  18. Scalable, Efficient Solid Waste Burner System - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A system that effectively burns solid human waste where traditional waste management ... is a semi-gasifier, burner device to process solid waste, particularly solid human waste. ...

  19. Combined Heat and Power Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    2010-10-01

    This factsheet describes a project that will seamlessly integrate a gas-fired simple-cycle 100 kWe microturbine with a new ultra-low NOx gas-fired burner to develop a CHP assembly called the Boiler Burner Energy System Technology.

  20. Hot repair of ceramic burner on hot blast stoves at USS/Kobe`s {number_sign}3 blast furnace

    SciTech Connect (OSTI)

    Bernarding, T.F.; Chemorov, M.; Shimono, S.; Phillips, G.R.

    1997-12-31

    During the 1992 reline of the No. 3 blast furnace, three new stoves were constructed. The design of the stoves, equipped with internal ceramic burners, was for providing a hot blast temperature of 2,000 F at a wind rate of 140,000 SCFM. After 3 years the performance had deteriorated so the burners were cleaned. When a second cleaning did not improve the performance of No. 3 blast furnace, it was decided to repair the refractory while still hot. The paper describes the hot repair procedures, taking a stove off for repairs, maintenance heat up during repairs, two stove operation, stove commissioning, repair of a ceramic burner, and wet gas prevention.

  1. Exposure Based Health Issues Project Report: Phase I of High Level Tank Operations, Retrieval, Pretreatment, and Vitrification Exposure Based Health Issues Analysis

    SciTech Connect (OSTI)

    Stenner, Robert D.; Bowers, Harold N.; Kenoyer, Judson L.; Strenge, Dennis L.; Brady, William H.; Ladue, Buffi; Samuels, Joseph K.

    2001-11-30

    The Department of Energy (DOE) has the responsibility to understand the ''big picture'' of worker health and safety which includes fully recognizing the vulnerabilities and associated programs necessary to protect workers at the various DOE sites across the complex. Exposure analysis and medical surveillance are key aspects for understanding this big picture, as is understanding current health and safety practices and how they may need to change to relate to future health and safety management needs. The exposure-based health issues project was initiated to assemble the components necessary to understand potential exposure situations and their medical surveillance and clinical aspects. Phase I focused only on current Hanford tank farm operations and serves as a starting point for the overall project. It is also anticipated that once the pilot is fully developed for Hanford HLW (i.e., current operations, retrieval, pretreatment, vitrification, and disposal), the process and analysis methods developed will be available and applicable for other DOE operations and sites. The purpose of this Phase I project report is to present the health impact information collected regarding ongoing tank waste maintenance operations, show the various aspects of health and safety involved in protecting workers, introduce the reader to the kinds of information that will need to be analyzed in order to effectively manage worker safety.

  2. DOE Issues Final Request for Proposal for the Operation of Depleted...

    Broader source: Energy.gov (indexed) [DOE]

    Operation of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities at Paducah, Kentucky and Portsmouth, Ohio. A cost-plus award fee and firm-fixed-price contract line item ...

  3. Large eddy simulation of forced ignition of an annular bluff-body burner

    SciTech Connect (OSTI)

    Subramanian, V.; Domingo, P.; Vervisch, L.

    2010-03-15

    The optimization of the ignition process is a crucial issue in the design of many combustion systems. Large eddy simulation (LES) of a conical shaped bluff-body turbulent nonpremixed burner has been performed to study the impact of spark location on ignition success. This burner was experimentally investigated by Ahmed et al. [Combust. Flame 151 (2007) 366-385]. The present work focuses on the case without swirl, for which detailed measurements are available. First, cold-flow measurements of velocities and mixture fractions are compared with their LES counterparts, to assess the prediction capabilities of simulations in terms of flow and turbulent mixing. Time histories of velocities and mixture fractions are recorded at selected spots, to probe the resolved probability density function (pdf) of flow variables, in an attempt to reproduce, from the knowledge of LES-resolved instantaneous flow conditions, the experimentally observed reasons for success or failure of spark ignition. A flammability map is also constructed from the resolved mixture fraction pdf and compared with its experimental counterpart. LES of forced ignition is then performed using flamelet fully detailed tabulated chemistry combined with presumed pdfs. Various scenarios of flame kernel development are analyzed and correlated with typical flow conditions observed in this burner. The correlations between, velocities and mixture fraction values at the sparking time and the success or failure of ignition, are then further discussed and analyzed. (author)

  4. Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners

    SciTech Connect (OSTI)

    Jennifer Sinclair Curtis

    2005-08-01

    This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

  5. Task 23 - background report on subsurface environmental issues relating to natural gas sweetening and dehydration operations. Topical report, February 1, 1994--February 28, 1996

    SciTech Connect (OSTI)

    Sorensen, J.A.

    1998-12-31

    This report describes information pertaining to environmental issues, toxicity, environmental transport, and fate of alkanolamines and glycols associated with natural gas sweetening and dehydration operations. Waste management associated with the operations is also discussed.

  6. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65

  7. Reconsideration of natural-gas immersion burners to melt recycled aluminum

    SciTech Connect (OSTI)

    Clark, John A., III; Thekdi, Arvind; Ningileri, S.; Han, Q.

    2005-09-01

    The best open flame reverberatory aluminum melting furnaces are approximately 45% efficient. Furnace efficiency can be increased by using immersed tube burners. Currently, recuperated tube burners with capacities to remelt aluminum are available. Tube burners would allow remelt furnaces to operate at lower temperatures, reduce dross formation, reduce particulate emissions, and provide clean flue gas to other energy intensive processes. Babcock and Wilcox, under GRI (now GTI – Gas Technology Institute) contract in the late-1980’s, demonstrated the technically feasibility of immersion melting of aluminum. However, tube reliability was problematic due to metal penetration, dross build-up, thermal shock, and mechanical failure. Also, the concept of “cold start” melting was not addressed. The Albany Research Center (U.S. DOE) is cooperating with Secat, E3M Inc., the University of Kentucky, and Oak Ridge National Laboratory in an ITP-sponsored program to combine emerging technologies in a retrofitable furnace package targeting improved remelt efficiency ranging from 55% to 75%.

  8. Upgrade Boilers with Energy-Efficient Burners | Department of...

    Energy Savers [EERE]

    STEAM TIP SHEET 24 Upgrade Boilers with Energy-Efficient Burners (January 2012) (416.98 ... Improve Your Boiler's Combustion Efficiency Minimize Boiler Short Cycling Losses J.R. ...

  9. Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Burner Cogenerates Jobs and Electricity from Lumber Mill Waste Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 3:57pm Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of Washington DNR.

  10. SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lumber Mill Waste | Department of Energy Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 11:20am Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S.

  11. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  12. Development of the Radiation Stabilized Distributed Flux Burner, Phase II Final Report

    SciTech Connect (OSTI)

    Webb, A.; Sullivan, J.D.

    1997-06-01

    This report covers progress made during Phase 2 of a three-phase DOE-sponsored project to develop and demonstrate the Radiation Stabilized Distributed Flux burner (also referred to as the Radiation Stabilized Burner, or RSB) for use in industrial watertube boilers and process heaters. The goal of the DOE-sponsored work is to demonstrate an industrial boiler burner with NOx emissions below 9 ppm and CO emissions below 50 ppm (corrected to 3% stack oxygen). To be commercially successful, these very low levels of NOx and CO must be achievable without significantly affecting other measures of burner performance such as reliability, turndown, and thermal efficiency. Phase 1 of the project demonstrated that sub-9 ppm NOx emissions and sub-50 ppm CO emissions (corrected to 3% oxygen) could be achieved with the RSB in a 3 million Btu/Hr laboratory boiler using several methods of NOx reduction. The RSB was also tested in a 60 million Btu/hr steam generator used by Chevron for Thermally Enhanced Oil Recovery (TEOR). In the larger scale tests, fuel staging was demonstrated, with the RSB consistently achieving sub-20 ppm NOx and as low as 10 ppm NOx. Large-scale steam generator tests also demonstrated that flue gas recirculation (FGR) provided a more predictable and reliable method of achieving sub-9 ppm NOx levels. Based on the results of tests at San Francisco Thermal and Chevron, the near-term approach selected by Alzeta for achieving low NOx is to use FGR. This decision was based on a number of factors, with the most important being that FGR has proved to be an easier approach to transfer to different facilities and boiler designs. In addition, staging has proved difficult to implement in a way that allows good combustion and emissions performance in a fully modulating system. In Phase 3 of the project, the RSB will be demonstrated as a very low emissions burner product suitable for continuous operation in a commercial installation. As such, the Phase 3 field demonstration

  13. Dual-water mixture fuel burner

    DOE Patents [OSTI]

    Brown, Thomas D.; Reehl, Douglas P.; Walbert, Gary F.

    1986-08-05

    A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.

  14. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic

  15. Flame quality monitor system for fixed firing rate oil burners

    DOE Patents [OSTI]

    Butcher, Thomas A.; Cerniglia, Philip

    1992-01-01

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  16. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, October--December 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    Cyclone furnaces operate with high excess air and at high temperature. The heat release during combustion is very high and as a result the boiler volume is much smaller than would be found in a conventional pc-fired system. The Marion Unit 1 boiler, at the level of the cyclone entry, has a small cross-section; about 5-feet in depth and about 20-feet in width. A boiler schematic showing the LNS Burner and relative location of the superheater region and overfire air ports is shown in Figure 1. The LNS Burner`s combustion process is fundamentally different from that of the cyclone, and the combustion products are also different. The LNS Burner products enter the boiler as hot, fuel-rich gases. Additional overfire air must be added to complete this combustion step with care taken to avoid the formation of thermal NO{sub x}. If done correctly, S0{sub 2} is controlled and significant NO{sub x} reductions are achieved. Because of the small boiler volume, flow modelling was found to be necessary to insure that adequate mixing of LNS Burner combustion products with air can be accomplished to achieve NO{sub x} emissions goals. Design requirements for the air injection system for the Marion boiler were developed using FLUENT, a commercially available computational fluid dynamics (CFD) code. A series of runs were made to obtain a design for final air injection that met the process design goals as closely as possible.

  17. Putting into practice the theory of atmospheric air induction: bench tests on industrial burners

    SciTech Connect (OSTI)

    Douspis, M.

    1982-01-01

    In order to demonstrate certain air-entrainment principles established earlier, tests were conducted on atmospheric industrial burners, relating burner performance to these principles. The study confirmed that (1) the performance of a burner can be predicted by examining its design in terms of air entrainment and (2) the performance limits of air induction burners depend upon air-entrainment laws rather than combustion-stability principles.

  18. CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 CMCE, Inc., in collaboration with Altex Technologies Corporation, developed the Boiler Burner Energy System Technology (BBEST), a CHP assembly of a gas-fired simple-cycle 100 kilowatt (kW) microturbine and a new ultra-low NOx gas-fired burner, to increase acceptance of small CHP systems.

  19. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    Broader source: Energy.gov [DOE]

    Factsheet summarizing Univ. of Alabama project to save energy and reduce emissions with fuel-flexible burners

  20. Development of quick repairing technique for ceramic burner in hot stove of blast furnace

    SciTech Connect (OSTI)

    Kondo, Atsushi; Doura, Kouji; Nakamura, Hirofumi

    1997-12-31

    Refractories of ceramic burner in hot stoves at Wakayama No. 4 blast furnace were damaged. There are only three hot stoves, so repairing must be done in a short. Therefore, a quick repairing technique for ceramic burners has been developed, and two ceramic burners were repaired in just 48 hours.

  1. Analysis of environmental issues related to small-scale hydroelectric development. VI. Dissolved oxygen concentrations below operating dams

    SciTech Connect (OSTI)

    Cada, G.F.; Kumar, K.D.; Solomon, J.A.; Hildebrand, S.G.

    1982-01-01

    Results are presented of an effort aimed at determining whether or not water quality degradation, as exemplified by dissolved oxygen concentrations, is a potentially significant issue affecting small-scale hydropower development in the US. The approach was to pair operating hydroelectric sites of all sizes with dissolved oxygen measurements from nearby downstream US Geological Survey water quality stations (acquired from the WATSTORE data base). The USGS data were used to calculate probabilities of non-compliance (PNCs), i.e., the probabilities that dissolved oxygen concentrations in the discharge waters of operating hydroelectric dams will drop below 5 mg/l. PNCs were estimated for each site, season (summer vs remaining months), and capacity category (less than or equal to 30 MW vs >30 MW). Because of the low numbers of usable sites in many states, much of the subsequent analysis was conducted on a regional basis. During the winter months (November through June) all regions had low mean PNCs regardless of capacity. Most regions had higher mean PNCs in summer than in winter, and summer PNCs were greater for large-scale than for small-scale sites. Among regions, the highest mean summer PNCs were found in the Great Basin, the Southeast, and the Ohio Valley. To obtain a more comprehensive picture of the effects of season and capacity on potential dissolved oxygen problems, cumulative probability distributions of PNC were developed for selected regions. This analysis indicates that low dissolved oxygen concentrations in the tailwaters below operating hydroelectric projects are a problem largely confined to large-scale facilities.

  2. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect (OSTI)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a

  3. The zero age main sequence of WIMP burners

    SciTech Connect (OSTI)

    Fairbairn, Malcolm; Scott, Pat; Edsjoe, Joakim

    2008-02-15

    We modify a stellar structure code to estimate the effect upon the main sequence of the accretion of weakly-interacting dark matter onto stars and its subsequent annihilation. The effect upon the stars depends upon whether the energy generation rate from dark matter annihilation is large enough to shut off the nuclear burning in the star. Main sequence weakly-interacting massive particles (WIMP) burners look much like proto-stars moving on the Hayashi track, although they are in principle completely stable. We make some brief comments about where such stars could be found, how they might be observed and more detailed simulations which are currently in progress. Finally we comment on whether or not it is possible to link the paradoxically hot, young stars found at the galactic center with WIMP burners.

  4. Downhole burner systems and methods for heating subsurface formations

    DOE Patents [OSTI]

    Farmayan, Walter Farman; Giles, Steven Paul; Brignac, Jr., Joseph Phillip; Munshi, Abdul Wahid; Abbasi, Faraz; Clomburg, Lloyd Anthony; Anderson, Karl Gregory; Tsai, Kuochen; Siddoway, Mark Alan

    2011-05-31

    A gas burner assembly for heating a subsurface formation includes an oxidant conduit, a fuel conduit, and a plurality of oxidizers coupled to the oxidant conduit. At least one of the oxidizers includes a mix chamber for mixing fuel from the fuel conduit with oxidant from the oxidant conduit, an igniter, and a shield. The shield includes a plurality of openings in communication with the oxidant conduit. At least one flame stabilizer is coupled to the shield.

  5. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  6. Energy Department Issues Draft Request for Proposals for Operation of its Pacific Northwest National Laboratory in Washington

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued a draft Request for Proposals (RFP) for prospective contractors who are interested in competing on a full and open basis to manage...

  7. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

  8. 01-12-1998 - Bench Top FIre Involving Use of Alcohol and Burner...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1998 - Bench Top FIre Involving Use of Alcohol and Burner Document Number: NA Effective Date: 011998 File (public): PDF icon 01-12-1998...

  9. Operational and environmental benefits of oxy-fuel combustion in the steel industry

    SciTech Connect (OSTI)

    Farrell, L.M.; Pavlack, T.T.; Rich, L.

    1995-03-01

    Due to the high flame temperature of conventional oxygen-fuel burners, these burners have typically not been used in reheat furnaces where temperature uniformity is critical. Praxair has developed a number of burners and associated control systems that have been successfully operated in a variety of reheat furnaces beginning in 1980. The burners have also recently been used for ladle preheating. All burners have been operated with 100% oxygen. The patented burners have designs that result in flame temperatures equivalent to conventional air-fuel burners. Flexible flame patterns are possible, resulting in uniform temperature distribution. In addition, the low flame temperature combined with minimal nitrogen in the furnace results in very low NO{sub x} emissions. The design of the control systems insure safe and reliable operation. In the following sections, oxygen-fuel combustion will be described, with a discussion of fuel savings and other benefits. Unique designs will be discussed along with the features which make them applicable to reheat applications and which result in lower emissions. Other equipment provided with the burners to complete the oxy-fuel combustion system will be described briefly. There will also be a short discussion of how both the fuel and oxygen price can affect the economics of fuel saving. Results from the commercial retrofit installations in continuous and batch reheat furnaces, soaking pits and ladle preheaters will be described. Finally, NO{sub x} emissions data will be discussed.

  10. A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility

    SciTech Connect (OSTI)

    S. Khericha

    2010-12-01

    The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.

  11. DOE Issues Request for Information for Richland Operations Office Richland Acquisitions – Post Fiscal Year 2018 Contract(s) Acquisition Planning

    Broader source: Energy.gov [DOE]

    Cincinnati -- The U.S. Department of Energy (DOE) Environmental Management Consolidated Business Center today issued a Sources Sought/Request for Information (RFI) seeking interested parties with specialized capabilities necessary to successfully perform all or a portion of the elements of scope for a potential upcoming competitive Environmental Management (EM) procurement(s) for the environmental cleanup projects and Hanford Site infrastructure and services at the Richland Operations Office (RL), hereafter referred to as “Richland Acquisitions – Post Fiscal Year 2018 Contract(s)” and to further determine whether or not all or a portion of the work can be set-aside for small and disadvantaged businesses.

  12. Process and apparatus for igniting a burner in an inert atmosphere

    DOE Patents [OSTI]

    Coolidge, Dennis W. (Katy, TX); Rinker, Franklin G. (Perrysburg, OH)

    1994-01-01

    According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.

  13. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at a Large Food Processing Plant | Department of Energy J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant This case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho. J.R. Simplot: Burner Upgrade Project Improves

  14. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    SciTech Connect (OSTI)

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was

  15. Low NO{sub x} combustion system with DSVS{trademark} rotating classifier retrofit for a 630 MW{sub e} cell burner unit

    SciTech Connect (OSTI)

    Bryk, S.A.; Maringo, G.J.; Shah, A.I.; Madden, V.F.

    1996-12-31

    New England Power Company`s (NEP) 630 MW{sub e} Brayton Point Unit 3 is a universal pressure (UP) type supercritical boiler originally equipped with pulverized coal (PC) fired cell burners. In order to comply with the Phase 1 NO{sub x} emissions requirements under Title I of the 1990 Clean Air Act Amendments, the unit has been retrofitted with a low NO{sub x} staged combustion system during the spring 1995 outage. The unit was restarted in early May 1995 and was operating under the State Compliance emission levels by the end of the month. Additional optimization testing was performed in August, 1995. The retrofit scope consisted of replacing the cell burners with low NO{sub x} DRB-XCL{reg_sign} type PC/oil burners and overfire air ports within the existing open windbox, with no change in the firing pattern. A 70% NO{sub x} reduction from baseline levels was achieved while maintaining acceptable unburned carbon (UBC) and carbon monoxide (CO) emission levels. To maintain low UBC levels, the scope included modifying the MPS-89 pulverizers by replacing the existing stationary classifiers with the B and W DSVS{trademark} (Dynamically Staged Variable Speed) two stage rotating classifiers. The DSVS{trademark} classifiers provide higher fineness for UBC control without derating the mill capacity. This paper will describe the project and discuss the retrofit emissions data. The paper will conclude with recommendations for retrofitting other similarly designed units.

  16. Co-firing coal-water slurry in low-NOx burners: Experience at...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Co-firing coal-water slurry in low-NOx burners: Experience at Penelecs Seward Station Citation Details In-Document Search Title: Co-firing coal-water slurry in ...

  17. 01-12-1998 - Bench Top FIre Involving Use of Alcohol and Burner | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory 1998 - Bench Top FIre Involving Use of Alcohol and Burner Document Number: NA Effective Date: 01/1998 File (public): PDF icon 01-12-1998

  18. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Work on process design and LNS Burner design was deferred during this period, pending a reassessment of the project by TransAlta prior to commencement of Budget Period II, and only limited Balance of Plant engineering work was done.

  19. Issue: K

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issue: K Author: Mark D. Ivey Page 1 of 24 DR 6 / 30 / 2010 ES&H STANDARD OPERATING PROCEDURE (ES&H SOP) Title: ATMOSPHERIC RADIATION MEASUREMENT CLIMATE RESEARCH FACILITY/NORTH SLOPE OF ALASKA/ADJACENT ARCTIC OCEAN (ACRF/NSA/AAO) PROJECT OPERATING PLAN (U) Location: North Slope of Alaska and Adjacent Arctic Ocean Owners: Mark D Ivey, Department 6383, Manager Mark D Ivey, Department 6383, ACRF/NSA/AAO Site Project Manager and Site ES&H Coordinator Document Release or Change History:

  20. Safety Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Safety Orientation April, 2015 Atmospheric Radiation Measurement Climate Research Facility/ North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Site Safety Orientation Purpose This document provides an overview and summary of safety issues and safe work practices associated with operations at the Atmospheric Radiation Measurement Climate Research Facility/North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Sites. It is intended for site visitors as well as routine site

  1. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect (OSTI)

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  2. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved

    Office of Scientific and Technical Information (OSTI)

    Economics and Resource Utilization (Technical Report) | SciTech Connect Technical Report: Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization Citation Details In-Document Search Title: Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction

  3. Challenge # 3 … Operational Issues

    Broader source: Energy.gov (indexed) [DOE]

    knowledge gaps that need to be closed order for industry to establish the ... Kgh 697.6 715.2 669.7 690.1 684.1 652.1 421.1 Combustion Air Temperature C 116.7 45.5 ...

  4. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    SciTech Connect (OSTI)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  5. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect (OSTI)

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  6. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    SciTech Connect (OSTI)

    Wayne Penrod

    2006-12-31

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  7. Development and certification of the innovative pioneer oil burner for residential heating appliances

    SciTech Connect (OSTI)

    Kamath, B.

    1997-09-01

    The Pioneer burner represents another important milestone for the oil heat industry. It is the first practical burner design that is designated for use in small capacity heating appliances matching the needs of modern energy efficient home designs. Firing in the range of 0.3 GPH to 0.65 GPH (40,000-90,000 Btu/hr) it allows for new oil heating appliance designs to compete with the other major fuel choices in the small design load residential market. This market includes energy efficient single family houses, town-houses, condominiums, modular units, and mobile homes. The firing range also is wide enough to cover a large percentage of more conventional heating equipment and home designs as well. Having recently passed Underwriters Laboratory certification tests the burner in now being field tested in several homes and samples are being made available to interested boiler and furnace manufacturers for product development and application testing.

  8. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  9. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    SciTech Connect (OSTI)

    Selle, L.; Ferret, B. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); Poinsot, T. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); CERFACS, Toulouse (France)

    2011-01-15

    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

  10. Alternative solutions for reducing NO{sub x} emissions from cell burner boilers

    SciTech Connect (OSTI)

    Mali, E.; Laursen, T.; Piepho, J.

    1996-01-01

    Standard, tightly-spaced cell burners were developed by Babcock & Wilcox during the 1960s in response to economic demands for highly efficient burner designs. However, the downside of this 1960s design is the production of elevated levels of nitrogen oxides (NO{sub x}) emissions which negatively impact the environment. Cell-fired units have been designated as Phase II, Group II boilers under Title IV, Acid Rain Control, of the Clean Air Act Amendments of 1990 for NO{sub x} control. This paper will discuss one technology developed under the auspices of the U.S. Department of Energy`s Clean Coal Technology program for pulverized coal, cell-fired units - namely, the Low NO{sub x} Cell burner (LNCB{reg_sign}) technology. The body of this paper will describe the development of Low NO{sub x} Cell burner technology and examine six follow-on commercial contracts. The purpose of the paper is to identify similarities and differences in design, fuels, costs and performance results when compared against the Clean Coal Technology prototype.

  11. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    DOE Patents [OSTI]

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  12. J.R. Simplot: Burner Upgrade Project Improves Performance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... air results in lost heat-indicating lower boiler fuel-to-steam efficiency. Natural- gas-fired boilers that operate ... 50% and to take the plant's fve condensate pumps off-line. ...

  13. Use of freeze-casting in advanced burner reactor fuel design

    SciTech Connect (OSTI)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary

  14. Evaluation of Fluid Conduction and Mixing within a Subassembly of the Actinide Burner Test Reactor

    SciTech Connect (OSTI)

    Cliff B. Davis

    2007-09-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of the Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid, including axial and radial heat conduction and subchannel mixing, that are not currently represented with internal code models. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor.

  15. Method for reducing NOx during combustion of coal in a burner

    DOE Patents [OSTI]

    Zhou, Bing; Parasher, Sukesh; Hare, Jeffrey J.; Harding, N. Stanley; Black, Stephanie E.; Johnson, Kenneth R.

    2008-04-15

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  16. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health

  17. Optimization of Coal Particle Flow Patterns in Low N0x Burners

    SciTech Connect (OSTI)

    Caner Yurteri; Gregory E. Ogden; Jennifer Sinclair; Jost O.L. Wendt

    1998-03-06

    The proposed research is directed at evaluating the effect of flame aerodynamics on NOX emissions tlom coal fired burners in a systematic manner. This fimdamental research includes both experimental and modeling efforts being petiormed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NOX burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow fhrnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The fhrnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NOX burner geometry's.

  18. DOE Issues Request for Information for Richland Operations Office Richland Acquisitions – Post Fiscal Year 2018 Contract Acquisition Planning- Occupational Medical Services (OccMed)

    Broader source: Energy.gov [DOE]

    Cincinnati -- The U.S. Department of Energy (DOE) Environmental Management Consolidated Business Center today issued a Sources Sought/Request for Information (RFI) seeking interested parties with specialized capabilities necessary to successfully perform all or a portion of the elements of scope for the upcoming competitive Environmental Management (EM) procurement for the Hanford Site occupational medical services, hereafter referred to as “Richland Acquisitions – Post Fiscal Year 2018 OccMed Contract” and to further determine whether or not all or a portion of the work can be set-aside for small and disadvantaged businesses.

  19. Operational and environmental benefits of oxy-fuel combustion in the steel industry

    SciTech Connect (OSTI)

    Farrell, L.M. ); Pavlack, T.T. . Linde Division); Rich, L. )

    1993-07-01

    A number of patented, field-tested 100% oxy-fuel burner systems have been developed which provide fuel savings, reduced emissions (CO[sub 2] and NO[sub x]) and improved operational performances. These systems can be applied to high-temperature continuous and batch reheat furnaces, soaking pits and ladle preheaters. Fuel consumption and carbon dioxide and NO[sub x] emissions can be reduced by 40 to 60%. Burner design (including nonwater cooled models), commercial experience, measured and projected emissions reductions, and additional operating benefits associated with new and retrofitted applications are described.

  20. All Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlumniLink » All Issues All Issues Bi-monthly publication connecting our alumni with news, information and former colleagues from the Lab. Archive - 2015 September July May March January Archive - 2014 November September June Publications 1663 Actinide Research Quarterly (ARQ) AlumniLink Publications Archive Connections National Security Science VISTAS

  1. Full-scale demonstration of low-NO{sub x} cell{trademark} burner retrofit: Addendum to long-term testing report, September 1994 outage: Examination of corrosion test panel and UT survey in DP&L Unit {number_sign}4

    SciTech Connect (OSTI)

    Kung, S.C.; Kleisley, R.J.

    1995-06-01

    As part of this DOE`s demonstration program, a corrosion test panel was installed on the west sidewall of Dayton Power & Light Unit no.4 at the J. M. Stuart Station (JMSS4) during the burner retrofit outage in November 1991. The test panel consisted of four sections of commercial coatings separated by bare SA213-T2 tubing. During the retrofit outage, a UT survey was performed to document the baseline wall thicknesses of the test panel, as well as several furnace wall areas outside the test panel. The purpose of the UT survey was to generate the baseline data so that the corrosion wastage associated with the operation of Low NO{sub x} Cell Burners (LNCB{trademark} burner) could be quantitatively determined. The corrosion test panel in JMSS4 was examined in April 1993 after the first 15-month operation of the LNCB{trademark} burners. Details of the corrosion analysis and UT data were documented in the Long-Term Testing Report. The second JMSS4 outage following the LNCB{trademark} burner retrofit took place in September 1944. Up to this point, the test panel in JMSS4 had been exposed to the corrosive combustion environment for approximately 31 months under normal boiler operation of JMSS4. This test period excluded the down time for the April 1993 outage. During the September 1994 outage, 70 tube samples of approximately one-foot length were cut from the bottom of the test panel. These samples were evaluated by the Alliance Research Center of B&W using the same metallurgical techniques as those employed for the previous outage. In addition, UT measurements were taken on the same locations of the lower furnace walls in JMSS4 as those during the prior outages. Results of the metallurgical analyses and UT surveys from different exposure times were compared, and the long-term performance of waterwall materials was analyzed. The corrosion data obtained from the long-term field study at JMSS4 after 32 months of LNCB{trademark} burner operation are summarized in this report.

  2. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using house July 6, 2012 Description There have been a lot of issues recently with NFS hangs on the gpint machines. The origin of the gpint hanging has been determined to be...

  3. COAL PARTICLE FLOW PATTERNS FOR O2 ENRICHED, LOW NOx BURNERS

    SciTech Connect (OSTI)

    Jennifer L. Sinclair

    2001-09-30

    Over the past year, the hot flow studies have focused on the validation of a novel 2M near-flame combustion furnace. The 2M furnace was specifically designed to investigate burner aerodynamics and flame stability phenomena. Key accomplishments include completion of coal & oxygen mass balance calculations and derivation of emission conversion equations, upgrade of furnace equipment and flame safety systems, shakedown testing and partial completion of a parametric flame stability study. These activities are described in detail below along with a description of the 2M furnace and support systems.

  4. Environmental issues affecting clean coal technology deployment

    SciTech Connect (OSTI)

    Miller, M.J.

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  5. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Issues Open Issues The /scratc3 performance degradation after GridRaid upgrade April 7, 2016 The Edison /scratch3 file system was upgraded to Grid Raid from MDRaid during the move to the CRT building (Dec, 2015). This upgrade was recommended by the vendors because it greatly enhances the drive rebuild time and write performance when compared to the traditional MDRaid that was deployed on Edison /scratch3 file system before the move (The /scratch1 and /scratch2 file systems are still in

  6. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Issues Open Issues runtime error message: "readControlMsg: System returned error Connection timed out on TCP socket fd" June 30, 2015 Symptom User jobs with sinlge or multiple apruns in a batch script may get this run time error: "readControlMsg: System returned error Connection timed out on TCP socket fd". This problem is intermittent, sometimes resubmit works. This error message started to appear after the Hopper OS upgrade to CLE52UP02 on March 11, 2015. Read the full

  7. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2012 Resolved: Reports of Hanging Jobs on Hopper March 1, 2012 by Katie Antypas Issue: A number of users have reported intermittent large jobs hanging on Hopper. A job appears to start and then hangs shortly after producing no output. The job stops when the wall clock limit has been reached

  8. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    SciTech Connect (OSTI)

    Lobscheid, Agnes; Singer, Brett C.; Klepeis, Neil E.

    2011-06-01

    We developed a physics-based data-supported model to investigate indoor pollutant exposure distributions resulting from use of natural gas cooking appliances across households in California. The model was applied to calculate time-resolved indoor concentrations of CO, NO2 and formaldehyde resulting from cooking burners and entry with outdoor air. Exposure metrics include 1-week average concentrations and frequency of exceeding ambient air quality standards. We present model results for Southern California (SoCal) using two air-exchange scenarios in winter: (1) infiltration-only, and (2) air exchange rate (AER) sampled from lognormal distributions derived from measurements. In roughly 40percent of homes in the SoCal cohort (N=6634) the 1-hour USEPA NO2 standard (190 ?g/m3) was exceeded at least once. The frequency of exceeding this standard was largely independent of AER assumption, and related primarily to building volume, emission rate and amount of burner use. As expected, AER had a more substantial impact on one-week average concentrations.

  9. A Metal Fuel Core Concept for 1000 MWt Advanced Burner Reactor

    SciTech Connect (OSTI)

    Yang, W.S.; Kim, T.K.; Grandy, C.

    2007-07-01

    This paper describes the core design and performance characteristics of a metal fuel core concept for a 1000 MWt Advanced Burner Reactor. A ternary metal fuel form of U-TRU-Zr was assumed with weapons grade plutonium feed for the startup core and TRU recovered from LWR spent fuel for the recycled equilibrium core. A compact burner core was developed by trade-off between the burnup reactivity loss and TRU conversion ratio, with a fixed cycle length of one-year. In the startup core, the average TRU enrichment is 15.5%, the TRU conversion ratio is 0.81, and the burnup reactivity loss over a cycle is 3.6% {delta}k. The heavy metal and TRU inventories are 13.1 and 2.0 metric tons, respectively. The average discharge burnup is 93 MWd/kg, and the TRU consumption rate is 55.5 kg/year. For the recycled equilibrium core, the average TRU enrichment is 22.1 %, the TRU conversion ratio is 0.73, and the burnup reactivity loss is 2.2% {delta}k. The TRU inventory and consumption rate are 2.9 metric tons and 81.6 kg/year, respectively. The evaluated reactivity coefficients provide sufficient negative feedbacks. The control systems provide shutdown margins that are more than adequate. The integral reactivity parameters for quasi-static reactivity balance analysis indicate favorable passive safety features, although detailed safety analyses are required to verify passive safety behavior. (authors)

  10. Multi-ported, internally recuperated burners for direct flame impingement heating applications

    DOE Patents [OSTI]

    Abbasi, Hamid A.; Kurek, Harry; Chudnovsky, Yaroslav; Lisienko, Vladimir G.; Malikov, German K.

    2010-08-03

    A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

  11. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOE Patents [OSTI]

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  12. President Issues

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    President Issues Executive Order on Alternative Fuels On December 13, 1996, President Clinton signed Exec- utive Order 13031, which calls on each Federal agency to develop and implement ways to meet the alternative fuel vehicle (AFV) acquisition requirements of the Energy Policy Act (EPAct) of 1992. The executive order requires each agency to submit detailed reports within 60 days of the signing of the order to the Office of Management and Budget detailing its compliance with the EPAct sections

  13. Operational Issues at the Environmental Restoration Disposal...

    Office of Environmental Management (EM)

    of Engineering and Technology (EM-20) 17 June 2007 ... with real-time remote output. Similar systems are commonly used in ... 1-21. Refereed Conference Papers Benson, C. ...

  14. Summary - Operational Issues at the Environmental Restoration...

    Office of Environmental Management (EM)

    Restoration Disposal Facility(ERDF) at Hanford Why DOE-EM Did This Review The ERDF is a large- scale disposal facility authorized to receive waste from Hanford cleanup...

  15. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2011 "Unable to open kgni version file /sys/class/gemini/kgni0/version" error April 13, 2011 by Helen He Symptom: Dynamic executables built with compiler wrappers running directly on the external login nodes are getting the following error message: Read the full post Resolved -- Default version not shown in "module avail module_name" command April 13, 2011 by Helen He Symptom: The default software version is not shown when "module avail module_name" is issued.

  16. Known Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNSA's national security missions | National Nuclear Security Administration | (NNSA) Klotz visits Y-12 to see progress on new projects and ongoing work on NNSA's national security missions Tuesday, June 7, 2016 - 11:48am Last week, NNSA Administrator Lt. Gen. Frank Klotz (Ret.) visited the Y-12 National Security Complex to check on the status of ongoing projects like the Uranium Processing Facility as well as the site's continuing uranium operations. He also met with the Region 2 volunteers

  17. Pollutant exposures from unvented gas cooking burners: A Simulation-based Assessment for Southern California

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-01-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. In this study, LBNL researchers quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes.The simulation model estimated thatin homes using NGCBs without coincident use of venting range hoods -- 62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. The study recommends that reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  18. Mechanical swirler for a low-NO{sub x}, weak-swirl burner

    DOE Patents [OSTI]

    Cheng, R.K.; Yegian, D.T.

    1999-03-09

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen. 16 figs.

  19. Mechanical swirler for a low-NO.sub.x, weak-swirl burner

    DOE Patents [OSTI]

    Cheng, Robert K.; Yegian, Derek T.

    1999-01-01

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen.

  20. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect (OSTI)

    Jon Carmack; Kemal O. Pasamehmetoglu; David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  1. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect (OSTI)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  2. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    SciTech Connect (OSTI)

    Greenspan, Ehud

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  3. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, July--September 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    Work on process design and LNS Burner design was deferred during this period, pending a reassessment of the project by TransAlta prior to commencement of Budget Period II, and only limited Balance of Plant engineering work was done.

  4. DOE Issues Request for Proposals Seeking a Contractor to Manage...

    Energy Savers [EERE]

    ... Issues Request for Proposals Seeking a Contractor to Manage and Operate its Princeton Plasma Physics Laboratory DOE Issues Request for Proposals Seeking a Contractor to Manage and ...

  5. The Role of the Engineered Barrier System in Safety Cases for Geological Radioactive Waste Repoitories: An NEA Initiaive in Co-Operations with the EC, Process Issues and Modeling

    SciTech Connect (OSTI)

    D.G. Bennett; A.J. Hooper; S. Voinis; H. Umeki; A.V. Luik; J. Alonso

    2006-02-07

    The Integration Group for the Safety Case (IGSC) of the Nuclear Energy Agency (NEA) Radioactive Waste Management Committee in co-operation with the European Commission (EC) is conducting a project to develop a greater understanding of how to achieve the necessary integration for successful design, construction, testing, modeling, and assessment of engineered barrier systems. The project also seeks to clarify the role that the EBS plays in assuring the overall safety of a repository. A framework for the EBS Project is provided by a series of workshops that allow discussion of the wide range of activities necessary for the design, assessment and optimization of the EBS, and the integration of this information into the safety case. The topics of this series of workshops have been planned so that the EBS project will work progressively through the main aspects comprising one cycle of the design and optimization process. This paper seeks to communicate key results from the EBS project to a wider audience. The paper focuses on two topics discussed at the workshops: process issues and the role of modeling.

  6. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOE Patents [OSTI]

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  7. Experimental study on NOx emission and unburnt carbon of a radial biased swirl burner for coal combustion

    SciTech Connect (OSTI)

    Shan Xue; Shi'en Hui; Qulan Zhou; Tongmo Xu

    2009-07-15

    Pilot tests were carried out on a 1 MW thermal pulverized coal fired testing furnace. Symmetrical combustion was implemented by use of two whirl burners with dual air adjustment. The burnout air device was installed in various places at the top of the main burner, which consists of a primary air pipe with a varying cross-section and an impact ring. In the primary air pipe, the air pulverized coal (PC) stream was separated into a whirling stream that was thick inside and thin outside, thus realizing the thin-thick distribution at the burner nozzle in the radial direction. From the comparative combustion tests of three coals with relatively great characteristic differences, Shaanbei Shenhua high rank bituminous coal (SH coal), Shanxi Hejin low rank bituminous coal (HJ coal), and Shanxi Changzhi meager coal (CZ coal), were obtained such test results as the primary air ratio, inner secondary air ratio, outer secondary air ratio, impact of the change of outer secondary air, change of the relative position for the layout of burnout air, change of the swirling intensity of the primary air and secondary air, etc., on the NOx emission, and unburnt carbon content in fly ash (CFA). At the same time, the relationship between the NOx emission and burnout ratio and affecting factors of the corresponding test items on the combustion stability and economic results were also acquired. The results may provide a vital guiding significance to engineering designs and practical applications. According to the experimental results, the influence of each individual parameter on NOx formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased swirl burner, the configuration of the furnace, and the distribution of the air. 23 refs., 14 figs., 2 tabs.

  8. Integrating low-NO{sub x} burners, overfire air, and selective non-catalytic reduction on a utility coal-fired boiler

    SciTech Connect (OSTI)

    Hunt, T.; Muzio, L.; Smith, R.

    1995-05-01

    Public Service Company of Colorado (PSCo), in cooperation with the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI), is testing the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control system. This system combines low-NO{sub x} burners, overfire air, selective non-catalytic reduction (SNCR), and dry sorbent injection with humidification to reduce by up to 70% both NO{sub x} and SO{sub 2} emissions from a 100 MW coal-fired utility boiler. The project is being conducted at PSCo`s Arapahoe Unit 4 located in Denver, Colorado as part of the DOE`s Clean Coal Technology Round 3 program. The urea-based SNCR system, supplied by Noell, Inc., was installed in late 1991 and was tested with the unmodified boiler in 1992. At full load, it reduced NO{sub x} emissions by about 35% with an associated ammonia slip limit of 10 ppm. Babcock & Wilcox XLS{reg_sign} burners and a dual-zone overfire air system were retrofit to the top-fired boiler in mid-1992 and demonstrated a NO{sub x} reduction of nearly 70% across the load range. Integrated testing of the combustion modifications and the SNCR system were conducted in 1993 and showed that the SNCR system could reduce NO{sub x} emissions by an additional 45% while maintaining 10 ppm of ammonia slip limit at full load. Lower than expect4ed flue-gas temperatures caused low-load operation to be less effective than at high loads. NO{sub x} reduction decreased to as low as 11% at 60 MWe at an ammonia slip limit of 10 ppm. An ammonia conversion system was installed to improve performance at low loads. Other improvements to increase NO{sub x} removal at low-loads are planned. The combined system of combustion modifications and SNCR reduced NO{sub x} emissions by over 80% from the original full-load baseline. 11 figs.

  9. Laminar burn rates of gun propellants measured in the high-pressure strand burner

    SciTech Connect (OSTI)

    Reaugh, J. E., LLNL

    1997-10-01

    The pressure dependence of the laminar burn rate of gun propellants plays a role in the design and behavior of high-performance guns. We have begun a program to investigate the effects of processing variables on the laminar burn rates, using our high-pressure strand burner to measure these rates at pressures exceeding 700 MPa. We have burned JA2 and M43 propellant samples, provided by Dr. Arpad Juhasz, ARL, from propellant lots previously used in round-robin tests. Our results at room temperature are in accord with other measurements. In addition, we present results measured for propellant that has been preheated to 50 C before burning. We used our thermochemical equilibrium code, CHEETAH, to help interpret the simultaneous pressure and temperature measurements taken during the testing, and show examples of its use. It has been modified to provide performance measures and equations of state for the products that are familiar to the gun-propellant community users of BLAKE.

  10. Department of Energy Issues Draft Request for Proposals for Argonne...

    Energy Savers [EERE]

    ... Seeking a Contractor to Manage and Operate its Ames Laboratory DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate its Princeton Plasma Physics Laboratory

  11. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    SciTech Connect (OSTI)

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to Data Call for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

  12. Bi-gas pilot plant operation. Technical progress report, 1 November-30 November 1980

    SciTech Connect (OSTI)

    1980-01-01

    Test G-14A was completed; Test G-15 was initiated and also completed. During the latter part of G-14A, solids feed and pressure control remained stable but problems in the slag removal and spray drying areas limited further completion of objectives. Test G-15 also had very stable solids feed but problems with the gas washer and slag tap burner interrupted testing. Accomplishments during operation were: control of Stage I temperature with fuel gas flow; operation at reduced fuel gas rates to the A and C char burners; operation with three char burners of the new design; and collection of material balance data. The BI-GAS staged concept of gasification was developed by Bituminous Coal Research primarily to maximize the yield of methane as the coal is devolitized by the hot, hydrogen rich gas in Stage II. At present, the major developmental effort is concentrated on gasification. Current goals are to assess the viability of the process from an operating and cost standpoint, determine possible improvements, and obtain design data for a full scale plant.

  13. Research, development, and testing of a prototype two-stage low-input rate oil burner for variable output heating system applications

    SciTech Connect (OSTI)

    Krajewski, R.F.; Butcher, T.A.

    1997-09-01

    The use of a Two-Stage Fan Atomized Oil Burner (TSFAB) in space and water heating applications will have dramatic advantages in terms of it`s potential for a high Annual Fuel Utilization Efficiency (AFUE) and/or Energy Factor (EF) rating for the equipment. While demonstrations of a single rate burner in an actual application have already yielded sufficient confidence that space and domestic heating loads can be met at a single low firing rate, this represents only a narrow solution to the diverse nature of building space heating and domestic water loads that the industry must address. The mechanical development, proposed control, and testing of the Two-Stage burner is discussed in terms of near term and long term goals.

  14. No Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Problems » No Open Issues No Open Issues There are currently no open issues with Euclid. Subscribe via RSS Subscribe Browse by Date January 2016 Last edited: 2011-03-15 10:01:46

  15. Evaluation of the Use of Existing RELAP5-3D Models to Represent the Actinide Burner Test Reactor

    SciTech Connect (OSTI)

    C. B. Davis

    2007-02-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid that are not currently represented with internal code models, including axial and radial heat conduction in the fluid and subchannel mixing. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor. An evaluation was also performed to determine if the existing centrifugal pump model could be used to simulate the performance of electromagnetic pumps.

  16. Project Analysis Standard Operating Procedure

    Office of Environmental Management (EM)

    Standard Operating Procedure (EPASOP) Issued by Office of Acquisition and Project Management MA-63 March 12, 2014 DEPARTMENT OF ENERGY Office of Acquisition and Project...

  17. Issues evaluation process at Rocky Flats Plant

    SciTech Connect (OSTI)

    Smith, L.C.

    1992-04-16

    This report describes the issues evaluation process for Rocky Flats Plant as established in July 1990. The issues evaluation process was initiated February 27, 1990 with a Charter and Process Overview for short-term implementation. The purpose of the process was to determine the projects required for completion before the Phased Resumption of Plutonium Operations. To determine which projects were required, the issues evaluation process and emphasized risk mitigation, based on a ranking system. The purpose of this report is to document the early design of the issues evaluation process to record the methodologies used that continue as the basis for the ongoing Issues Management Program at Rocky Flats Plant.

  18. Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios.

    SciTech Connect (OSTI)

    Hoffman, E. A.; Yang, W. S.; Hill, R. N.; Nuclear Engineering Division

    2008-05-05

    A consistent set of designs for 1000 MWt commercial-scale sodium-cooled Advance Burner Reactors (ABR) have been developed for both metal and oxide-fueled cores with conversion ratios from breakeven (CR=1.0) to fertile-free (CR=0.0). These designs are expected to satisfy thermal and irradiation damage limits based on the currently available data. The very low conversion ratio designs require fuel that is beyond the current fuel database, which is anticipated to be qualified by and for the Advanced Burned Test Reactor. Safety and kinetic parameters were calculated, but a safety analysis was not performed. Development of these designs was required to achieve the primary goal of this study, which was to generate representative fuel cycle mass flows for system studies of ABRs as part of the Global Nuclear Energy Partnership (GNEP). There are slight variations with conversion ratio but the basic ABR configuration consists of 144 fuel assemblies and between 9 and 22 primary control assemblies for both the metal and oxide-fueled cores. Preliminary design studies indicated that it is feasible to design the ABR to accommodate a wide range of conversion ratio by employing different assembly designs and including sufficient control assemblies to accommodate the large reactivity swing at low conversion ratios. The assemblies are designed to fit within the same geometry, but the size and number of fuel pins within each assembly are significantly different in order to achieve the target conversion ratio while still satisfying thermal limits. Current irradiation experience would allow for a conversion ratio of somewhat below 0.75. The fuel qualification for the first ABR should expand this experience to allow for much lower conversion ratios and higher bunrups. The current designs were based on assumptions about the performance of high and very high enrichment fuel, which results in significant uncertainty about the details of the designs. However, the basic fuel cycle performance

  19. Welcome to this Issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Welcome National Security Science Latest Issue:April 2016 past issues All Issues » submit Welcome to this Issue Los Alamos National Laboratory has been at the forefront of high explosives research since the Manhattan Project, says Bob Webster, Principal Associate Director, Weapons Programs. March 22, 2016 Welcome to this Issue Bob Webster (Photo: Los Alamos) Contact Managing Editor Clay Dillingham Email Here's to another year of noteworthy accomplishments and continued excellence in 2016.

  20. Past Issues | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inquiry Magazine Past Issues To view past issues of Inquiry magazine, click on the links below. Inquiry 2015, Issue 1 Inquiry 2014, Issue 2 Inquiry 2014, Issue 1 Image Inquiry 2013, Issue 2 Image Inquiry 2013, Issue 1 Image Inquiry 2012. Issue 2 Image Inquiry 2012, Issue 1 Image Inquiry 2011, Issue 2 Image Inquiry 2011, Issue 1 Image Inquiry 2010, Issue 2 Image Inquiry 2010, Issue 1 Inq10-1cover.jpg

  1. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion for Sodium-Cooled Fast Reactors/Advanced Burner Reactors

    SciTech Connect (OSTI)

    Sienicki, James J.; Moisseytsev, Anton; Cho, Dae H.; Momozaki, Yoichi; Kilsdonk, Dennis J.; Haglund, Robert C.; Reed, Claude B.; Farmer, Mitchell T.

    2007-07-01

    An optimized supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle power converter has been developed for the 100 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) eliminating the potential for sodium-water reactions and achieving a small power converter and turbine generator building. Cycle and plant efficiencies of 39.1 and 38.3 %, respectively, are calculated for the ABTR core outlet temperature of 510 deg. C. The ABTR S-CO{sub 2} Brayton cycle will incorporate Printed Circuit Heat Exchanger{sup TM} units in the Na-to-CO{sub 2} heat exchangers, high and low temperature recuperators, and cooler. A new sodium test facility is being completed to investigate the potential for transient plugging of narrow sodium channels typical of a Na-to-CO{sub 2} heat exchanger under postulated off-normal or accident conditions. (authors)

  2. Connections: All Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connections Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Community Connections Monthly news and opportunities for the Laboratory's neighbors and friends, with a primary focus on economic development, education and community giving. All Issues Connections Newsletter September 2016 September 2016 Great opportunity for Native American-owned businesses; 900 backpacks donated to local

  3. Enforcement Guidance Supplement 00-03: Specific Issues on Applicabilit...

    Office of Environmental Management (EM)

    00-03: Specific Issues on Applicability of 10 CFR 830 Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of 10 CFR 830 Section 1.3 of the Operational Procedure...

  4. DOE Issues Request for Proposals Seeking a Contractor to Manage...

    Office of Environmental Management (EM)

    Princeton Plasma Physics Laboratory DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate its Princeton Plasma Physics Laboratory July 3, 2008 - 2:15pm ...

  5. ISSUES MANAGEMENT PROGRAM MANUAL

    SciTech Connect (OSTI)

    Gravois, Melanie

    2007-06-27

    The Lawrence Berkeley National Laboratory (LBNL) Issues Management Program encompasses the continuous monitoring of work programs, performance and safety to promptly identify issues to determine their risk and significance, their causes, and to identify and effectively implement corrective actions to ensure successful resolution and prevent the same or similar problems from occurring. This document describes the LBNL Issues Management Program and prescribes the process for issues identification, tracking, resolution, closure, validation, and effectiveness of corrective actions. Issues that are governed by this program include program and performance deficiencies or nonconformances that may be identified through employee discovery, internal or external oversight assessment findings, suggested process improvements and associated actions that require formal corrective action. Issues may also be identified in and/or may result in Root Cause Analysis (RCA) reports, Price Anderson Amendment Act (PAAA) reports, Occurrence Reporting and Processing System (ORPS) reports, Accident Investigation reports, assessment reports, and External Oversight reports. The scope of these issues may include issues of both high and low significance as well as adverse conditions that meet the reporting requirements of the University of California (UC) Assurance Plan for LBNL or other reporting entities (e.g., U.S. Environmental Protection Agency, U.S. Department of Energy). Issues that are found as a result of a walk-around or workspace inspection that can be immediately corrected or fixed are exempt from the requirements of this document.

  6. Tribal Utility Policy Issues

    Broader source: Energy.gov (indexed) [DOE]

    ... Coal Combustion Residuals Regulation Act of 2015 (H.R. 1734) FCC's Connect America Funding to provide broadband to rural communities Gas Utility Issues Pipeline Safety & ...

  7. Issues in recycling galvanized scrap

    SciTech Connect (OSTI)

    Koros, P.J.; Hellickson, D.A.; Dudek, F.J.

    1995-02-10

    The quality of the steel used for most galvanizing (and tinplate) applications makes scrap derived from their production and use a premier solid charge material for steelmaking. In 1989 the AISI created a Task Force to define the issues and to recommend technologically and economically sound approaches to assure continued, unhindered recyclability of the growing volume of galvanized scrap. The AISI program addressed the treatment of full-sized industrial bales of scrap. The current, on-going MRI (US)--Argonne National Laboratory program is focused on ``loose`` scrap from industrial and post-consumer sources. Results from these programs, issues of scrap management from source to steel melting, the choices for handling zinc in iron and steelmaking and the benefits/costs for removal of zinc (and lead) from scrap prior to melting in BOF and foundry operations are reviewed in this paper.

  8. DOE Issues Guidance on Electric Vehicle Recharging Stations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy recently issued guidance to its national laboratory management and operating (M&O) contractors on the installation and operation of electric vehicle recharging...

  9. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect (OSTI)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high

  10. Flame-synthesis limits and self-catalytic behavior of carbon nanotubes using a double-faced wall stagnation flow burner

    SciTech Connect (OSTI)

    Woo, S.K.; Hong, Y.T.; Kwon, O.C.

    2009-10-15

    Flame-synthesis limits of carbon nanotubes (CNTs) are measured using a double-faced wall stagnation flow (DWSF) burner that shows potential in mass production of CNTs. With nitrogen-diluted premixed ethylene-air flames established on the nickel-coated stainless steel double-faced plate wall, the limits of CNT formation are determined using field-emission scanning and transmission electron microscopies and Raman spectroscopy. Also, self-catalytic behavior of the synthesized CNTs is evaluated using the DWSF burner with a CNT-deposited stainless steel double-faced plate wall. Results show narrow fuel-equivalence ratio limits of multi-walled CNT (MWCNT)-synthesis at high flame stretch rates and substantially extended limits at low flame stretch rates. This implies that the synthesis limits are very sensitive to the fuel-equivalence ratio variation for the high stretch rate conditions, yielding a lot of impurities and soot rather than MWCNTs. The enhanced ratio of tube inner diameter to wall thickness of the MWCNTs synthesized using a CNT self-catalytic flame-synthesis process is observed, indicating that the quality of metal-catalytic, flame-synthesized MWCNTs can be much improved via the process. Thus, using a DWSF burner with the CNT self-catalytic process has potential in mass production of MWCNTs with improved quality. (author)

  11. Hydrogen Delivery Options and Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Options and Issues Mark Paster DOE August, 2006 Scope * From the end point of central or distributed production (300 psi H2) to and including the dispenser at a refueling station or stationary power site - GH2 Pipelines and Trucks, LH2 Trucks, Carriers <$1.00/kg of Hydrogen by 2017 Hydrogen Delivery H2 Delivery Current Status * Technology - GH2 Tube Trailers: ~340 kg, ~2600 psi - LH2 Trucks: ~3900 kg - Pipelines: up to 1500 psi (~630 miles in the U.S.) - Refueling Site Operations

  12. Open Discussion of Freeze Related Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Operations at Sub- Freezing Temperatures Open Discussion of Freeze Related Issues Moderator, Doug Wheeler 1. "Using Computational Fluid Dynamics to Understand Freezing in PEMFCs", John Van Zee, University of South Carolina 2. "Freeze Issues & Landscape of Fuel Cell Freeze Patents", Ahmad Pesaran, National Renewable Energy Laboratory 3. "A Study on Performance Degradation of PEMFC by Water Freezing", EunAe Cho, Fuel Cell Research Center, Korea Institute

  13. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    SciTech Connect (OSTI)

    Wayne Hill; Roger Demler; Robert G. Mudry

    2004-10-01

    Instrumentation difficulties encountered in the previous reporting period were addressed early in this reporting period, resulting in a new instrumentation configuration that appears to be free of the noise issues found previously. This permitted the collection of flow calibration data to begin. The first issues in question are the effects of the type and location of the transducer mount. Data were collected for 15 different transducer positions (upstream and downstream of an elbow in the pipe), with both a stud mount and a magnetic transducer mount, for each of seven combinations of air and coal flow. Analysis of these data shows that the effects of the transducer mount type and location on the resulting dynamics are complicated, and not easily captured in a single analysis. To maximize the practical value of the calibration data, further detailed calibration data will be collected with both the magnetic and stud mounts, but at a single mounting location just downstream of a pipe elbow. This testing will be performed in the Coal Flow Test Facility in the next reporting period. The program progress in this reporting period was sufficient to put us essentially back on schedule.

  14. FTCP Issue Papers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issue Papers FTCP Issue Papers Document Number Subject Disposition FTCP-12-003 Supplemental Competencies Approved by FTCP Chair, December 19, 2012 FTCP-12-001 Use of "Expert Level" in Qualification Path Forward Approved by vote at May 15, 2012 meeting; to delete all reference to expert-level knowledge requirements in FAQS FTCP-10-003 Expert Competencies Pertaining to DOE Orders & Technical Standards Issue transitioned to FY 2011 FTCP Operational Plan Goal #2 FTCP-10-002

  15. Natural gas 1998: Issues and trends

    SciTech Connect (OSTI)

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  16. DOE Issues Noncompliance Notices

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Office of Enforcement issued a Notice of Noncompliance Determination to Haier America Trading, L.L.C., regarding Haier compact chest freezer model number HNCM070,...

  17. DOE Issues Noncompliance Notices

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Office of Enforcement issued Notices of Noncompliance Determinations to Midea America Corporation and Felix Storch, Inc. for a compact freezer that, as determined by...

  18. Community Issues - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In recent months, significant SRS-related community issues have included the Department of Energy's decision to abandon its long-standing commitment to Yucca Mountain in Nevada as ...

  19. Operating Experience Summaries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 19, 2014 Operating Experience Summary - 2014-03 - June 19, 2014 Inside this issue: Wilson Construction Company Crew Foreman Receives Fatal Shock during Transmission Line ...

  20. Operating Experience Summary, 2015-01

    Energy Savers [EERE]

    1 September 16, 2015 Inside This Issue * Explosion at the Nonproliferation Test and Evaluation Complex ... 1 Page 1 of 8 Operating Experience Summary Office of Environment,...

  1. Preliminary Notice of Violation, URS Global Management & Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    URS Global Management & Operations Services - NEA-2011-04 Preliminary Notice of Violation, URS Global Management & Operations Services - NEA-2011-04 September 1, 2011 Issued to ...

  2. Final Report, Materials for Industrial Heat Recovery Systems, Task 1 Improved Materials and Operation of Recuperators for Aluminum Melting Furnaces

    SciTech Connect (OSTI)

    Keiser, James R.; Sarma, Gorti B.; Thekdi, Arvind; Meisner Roberta A.; Phelps, Tony; Willoughby, Adam W.; Gorog, J. Peter; Zeh, John; Ningileri, Shridas; Liu, Yansheng; Xiao, Chenghe

    2007-09-30

    Production of aluminum is a very energy intensive process which is increasingly more important in the USA. This project concentrated on the materials issues associated with recovery of energy from the flue gas stream in the secondary industry where scrap and recycled metal are melted in large furnaces using gas fired burners. Recuperators are one method used to transfer heat from the flue gas to the air intended for use in the gas burners. By preheating this combustion air, less fuel has to be used to raise the gas temperature to the desired level. Recuperators have been successfully used to preheat the air, however, in many cases the metallic recuperator tubes have a relatively limited lifetime – 6 to 9 months. The intent of this project was to determine the cause of the rapid tube degradation and then to recommend alternative materials or operating conditions to prolong life of the recuperator tubes. The first step to understanding degradation of the tubes was to examine exposed tubes to identify the corrosion products. Analyses of the surface scales showed primarily iron oxides rather than chromium oxide suggesting the tubes were probably cycled to relatively high temperatures to the extent that cycling and subsequent oxide spalling reduced the surface concentration of chromium below a critical level. To characterize the temperatures reached by the tubes, thermocouples were mounted on selected tubes and the temperatures measured. During the several hour furnace cycle, tube temperatures well above 1000°C were regularly recorded and, on some occasions, temperatures of more than 1100°C were measured. Further temperature characterization was done with an infrared camera, and this camera clearly showed the variations in temperature across the first row of tubes in the four recuperator modules. Computational fluid dynamics was used to model the flow of combustion air in the tubes and the flue gas around the outside of the tubes. This modeling showed the

  3. DOE Issues Request for Information for Richland Operations Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contract(s) Acquisition Planning October 15, 2015 - 2:00pm ... specialized capabilities necessary to successfully perform ... the environmental cleanup projects and Hanford Site ...

  4. Energy Department Issues Draft Request for Proposals for Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The draft RFP will be available on DOE's Industry Interactive Procurement System andor FedBizOpps. Media contact(s): Jeff Sherwood, (202) 586-4940 Walter Perry, (865) 576-0885 ...

  5. DOE?s Idaho Operations Office Issues 2011-Beyond Strategic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support DOE's missions in energy, science and national security, through excellence in management. The DOE-ID Strategic Plan sets out objectives for ID and its contractors that...

  6. Issued by Sandia National Laboratories, operated for the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of average annual power using 2 and 42 bending moment (BM) deendencies. Figure 3.2. PROP output for the AWT-26 model. 33 Figure 3.3. Power to Average Power Conversion. 33...

  7. Natural Gas Transportation - Infrastructure Issues and Operational Trends

    Reports and Publications (EIA)

    2001-01-01

    This report examines how well the current national natural gas pipeline network has been able to handle today's market demand for natural gas. In addition, it identifies those areas of the country where pipeline utilization is continuing to grow rapidly and where new pipeline capacity is needed or is planned over the next several years.

  8. JPRS report proliferation issues

    SciTech Connect (OSTI)

    1991-11-18

    This report contains foreign media information on issues related to worldwide proliferation and transfer activities in nuclear, chemical, and biological weapons, including delivery systems and the transfer of weapons relevant technologies. The following locations are included: (1) China; (2) Indonesia; (3) Bulgaria; (4) Brazil, Cuba; (5) Egypt, India, Iran, Iraq, Israel, Pakistan; (6) Soviet Union; and (7) France, Germany, United Kingdom, Italy, Norway.

  9. Environmental Compliance Issue Coordination

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-07

    To establish the Department of Energy (DOE) requirements for coordination of significant environmental compliance issues to ensure timely development and consistent application of Departmental environmental policy and guidance. Cancels DOE O 5400.2. Para. 5a(2) and 5a(7) canceled by DOE O 231.1.

  10. Advanced wall-fired boiler combustion techniques for the reduction of nitrogen oxides (NO[sub x]): Low NO[sub x] burner test phase results

    SciTech Connect (OSTI)

    Sorge, J.N. ); Baldwin, A.L. ); Smith, L.L. )

    1992-06-02

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide(NO[sub x]) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the performance of two low NO[sub x] combustion technologies applied in a stepwise fashion to a 500 MW boiler. A target of achieving 50 percent NO[sub x] reductions has been established for the project. The main focus of this paper is the presentation of the low NO[sub x] burner (LNB) short and long-term tests results.

  11. Advanced wall-fired boiler combustion techniques for the reduction of nitrogen oxides (NO{sub x}): Low NO{sub x} burner test phase results

    SciTech Connect (OSTI)

    Sorge, J.N.; Baldwin, A.L.; Smith, L.L.

    1992-06-02

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide(NO{sub x}) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the performance of two low NO{sub x} combustion technologies applied in a stepwise fashion to a 500 MW boiler. A target of achieving 50 percent NO{sub x} reductions has been established for the project. The main focus of this paper is the presentation of the low NO{sub x} burner (LNB) short and long-term tests results.

  12. Issue Development sheet Blank

    Broader source: Energy.gov [DOE]

    ISSUE DEVELOPMENT SHEET INFORMATION ONLY The information provided below indicates that a potential concern for finding has been identified. Please provide any objective evidence you may have that could either alleviate the concern or eliminate the finding. If no objective evidence is available/can be provided by the end of this audit (at the scheduled end of field work), this information will be included in the audit report and reported as a concern or an audit finding as appropriate.

  13. Issues Management Tool

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    IMTool performs the following: • The IMTool can manage issues, actions, and activities from one screen. • Provides enhanced and intuitive searching, sorting, and filtering capabilities. Grids allow for filtering any column instantly by any data heading. • IMTool uses drop-down menus to ensure date is entered accurately with consistency. • User-friendly system – highly utilized commitment tracking screen functions. Information is viewed on the left side of the screen and managed on the right.

  14. JPRS report proliferation issues

    SciTech Connect (OSTI)

    1991-12-02

    This report contains foreign media information on issues related to worldwide proliferation and transfer activities in nuclear, chemical, and biological weapons, including delivery systems and the transfer of weapons relevant technologies. The following locations are included: (1) South Africa; (2) China; (3) North and South Korea, Taiwan; (4) Hungary, Yugoslavia; (5) Brazil, Argentina; (6) Afghanistan, India, Iran, Iraq, Israel, Pakistan; (7) Soviet Union; and (8) France, Germany, Italy, Switzerland.

  15. JPRS report proliferation issues

    SciTech Connect (OSTI)

    1991-12-13

    This report contains foreign media information on issues related to worldwide proliferation and transfer activities in nuclear, chemical, and biological weapons, including delivery systems and the transfer of weapons relevant technologies. The following locations are included: (1) South Africa; (2) China; (3) North and South Korea, Taiwan; (4) Hungary; (5) Brazil; (6) India, Iran, Israel, Pakistan; (7) Soviet Union; and (8) Austria, Germany, United Kingdom.

  16. Issue Development sheet Example

    Broader source: Energy.gov [DOE]

    ISSUE DEVELOPMENT SHEET INFORMATION ONLY The information provided below indicates that a potential concern for finding has been identified. Please provide any objective evidence you may have that could either alleviate the concern or eliminate the finding. If no objective evidence is available/can be provided by the end of this audit (at the scheduled end of field work), this information will be included in the audit report and reported as a concern or an audit finding as appropriate.

  17. PARTICULATE CHARACTERIZATION AND ULTRA LOW-NOx BURNER FOR THE CONTROL OF NO{sub x} AND PM{sub 2.5} FOR COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Ralph Bailey; Hamid Sarv; Jim Warchol; Debi Yurchison

    2001-09-30

    In response to the serious challenge facing coal-fired electric utilities with regards to curbing their NO{sub x} and fine particulate emissions, Babcock and Wilcox and McDermott Technology, Inc. conducted a project entitled, ''Particulate Characterization and Ultra Low-NO{sub x} Burner for the Control of NO{sub x} and PM{sub 2.5} for Coal Fired Boilers.'' The project included pilot-scale demonstration and characterization of technologies for removal of NO{sub x} and primary PM{sub 2.5} emissions. Burner development and PM{sub 2.5} characterization efforts were based on utilizing innovative concepts in combination with sound scientific and fundamental engineering principles and a state-of-the-art test facility. Approximately 1540 metric tonnes (1700 tons) of high-volatile Ohio bituminous coal were fired. Particulate sampling for PM{sub 2.5} emissions characterization was conducted in conjunction with burner testing. Based on modeling recommendations, a prototype ultra low-NO{sub x} burner was fabricated and tested at 100 million Btu/hr in the Babcock and Wilcox Clean Environment Development Facility. Firing the unstaged burner with a high-volatile bituminous Pittsburgh 8 coal at 100 million Btu/hr and 17% excess air achieved a NO{sub x} goal of 0.20 lb NO{sub 2}/million Btu with a fly ash loss on ignition (LOI) of 3.19% and burner pressure drop of 4.7 in H{sub 2}O for staged combustion. With the burner stoichiometry set at 0.88 and the overall combustion stoichiometry at 1.17, average NO{sub x} and LOI values were 0.14 lb NO{sub 2}/million Btu and 4.64% respectively. The burner was also tested with a high-volatile Mahoning 7 coal. Based on the results of this work, commercial demonstration is being pursued. Size classified fly ash samples representative of commercial low-NO{sub x} and ultra low-NO{sub x} combustion of Pittsburgh 8 coal were collected at the inlet and outlet of an ESP. The mass of size classified fly ash at the ESP outlet was sufficient to evaluate

  18. Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner

    SciTech Connect (OSTI)

    Hancock, R.D.; Bertagnolli, K.E.; Lucht, R.P.

    1997-05-01

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy of diatomic nitrogen and hydrogen was used to measure flame temperatures in hydrogen/air flames produced using a nonpremixed, near-adiabatic, flat-flame Hencken burner. The CARS temperature measurements are compared with adiabatic flame temperatures calculated by the NASA-Lewis equilibrium code for equivalence ratios from 0.5--2.5. The nitrogen CARS temperatures are in excellent agreement with the equilibrium code calculations. Comparison of nitrogen CARS data and the equilibrium code calculations confirms that for sufficiently high flow rates the Hencken burner produces nearly adiabatic flames. Hydrogen CARS temperature measurements are compared to both nitrogen CARS temperature measurements and equilibrium code predictions in order to evaluate and improve the accuracy of hydrogen CARS as a temperature diagnostic tool. Hydrogen CARS temperatures for fuel-rich flames are on average 70 K ({approximately}3%) above the equilibrium code predictions and nitrogen CARS temperatures. The difference between temperatures measured using hydrogen and nitrogen CARS is probably due primarily to uncertainties in hydrogen linewidths and line-broadening mechanisms at these conditions.

  19. Operational Excellence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operational Excellence Operational Excellence The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. aeiral shot of los alamos, new mexico What Los Alamos gets done as a premier national security science laboratory depends on how we do it The Laboratory's operations and business systems ensure the safe, secure, and

  20. Operations Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Research Analysts The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Operations Research Analyst, whose work is associated with the development and main- tenance of energy modeling systems. Responsibilities: Operations Research Analysts perform or participate in one or

  1. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations Laboratory Operations Latest announcements from the Lab on its operations. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets The Laboratory began the Hazmat Challenge in 1996 to hone the skills of its own hazmat team members. 20th Hazmat Challenge tests skills of hazardous materials response teams Ten hazardous materials response teams from New Mexico, Missouri, Oklahoma and Nebraska test their skills in a series of graded,

  2. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Hockaday is the associate director of the Experimental Physical Sciences Directorate and Cabbil is associate director for Nuclear and High Hazard Operations. - 12513 Norris ...

  3. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  4. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  5. <...

  6. SPEAR Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interface 1113 N. Kurita J. Langton Vacuum TSP's 1120 J. Corbett A. Terebilo MATLAB Applications - Basics 1121 F. Rafael Booster Kicker Upgrade, Operation Manual 1121...

  7. Also In This Issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In This Issue ■ Annual review assesses the state of science and technology in NMT Division ■ Technology transfer between Savannah River and the national labs ■ Plutonium Futures conference speakers set ■ Mary Neu is intrigued by actinides ■ "Eye of the Beholder" N u c l e a r M a t e r i a l s R e s e a r c h a n d T e c h n o l o g y Quarterly Actinide Research Researchers cast first "spiked" plutonium alloy 2nd quarter 2002 Nuclear Materials Technology Division

  8. Tribal Utility Policy Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Policy Issues New Mexico July 27, 2015 Margaret Schaff Kanim Associates, LLC (An Indian Owned Consulting Firm) 303-443-0182 mschaff@att.net *US Energy Information Administration New Mexico Energy Stats  Sixth in crude oil production in the nation in 2013.  5% of U.S. marketed natural gas production in 2012  Largest coal-fired electric power plants in NM both on Navajo Nation  2,100-megawatt Four Corners (Navajo Mine) (APS)  1,643-megawatt San Juan (San Juan Mines) (Public

  9. Sensor system scaling issues

    SciTech Connect (OSTI)

    Canavan, G.H.

    1996-07-01

    A model for IR sensor performance is used to compare estimates of sensor cost effectiveness. Although data from aircraft sensors indicate a weaker scaling, their agreement is adequate to support the assessment of the benefits of operating up to the maximum altitude of most current UAVs.

  10. Environmental issues in China

    SciTech Connect (OSTI)

    Travis, P.S.

    1991-10-01

    Global concern about the environment is increasing, and the People's Republic of China (PRC) is not immune from such concerns. The Chinese face issues similar to those of many other developing nations. The US Department of Energy is particularly interested in national and world pollution issues, especially those that may infringe on other countries' economic growth and development. The DOE is also interested in any opportunities that might exist for US technical assistance and equipment in combating environmental problems. Our studies of articles in the China Daily, and English-language daily newspaper published by the Chinese government, show that population, pollution, and energy are major concerns of the Chinese Communist Party. Thus this report emphasizes the official Chinese government view. Supporting data were also obtained from other sources. Regardless of the severity of their various environmental problems, the Chinese will only try to remedy those problems with the greatest negative effects on its developing economy. They will be looking for foreign assistance, financial and informational, to help implement solutions. With the Chinese government seeking assistance, the United States has an opportunity to export basic technical information, especially in the areas of pollution control and monitoring, oil exploration methods, oil drilling technology, water and sewage treatment procedures, hazardous waste and nuclear waste handling techniques, and nuclear power plant safety procedures. In those areas the US has expertise and extensive technical experience, and by exporting the technologies the US would benefit both economically and politically. 59 refs., 3 figs.

  11. Reformulated gasoline quality issues

    SciTech Connect (OSTI)

    Gonzalez, R.G.; Felch, D.E.; Edgar, M.D.

    1995-11-01

    One year ago, a panel of industry experts were interviewed in the November/December 1994 issue of Fuel Reformulation (Vol. 4, No. 6). With the focus then and now on refinery investments, the panelists were asked to forecast which refining processes would grow in importance. It is apparent from their response, and from other articles and discussions throughout the year, that hydroprocessing and catalytic conversion processes are synergistic in the overall refinery design, with flexibility and process objectives varying on a unit-by-unit case. To an extent, future refinery investments in downstream petrochemicals, such as for paraxylene production, are based on available catalytic reforming feedstock. Just a importantly, hydroprocessing units (hydrotreating, hydrocracking) needed for clean fuel production (gasoline, diesel, aviation fuel), are heavily dependent on hydrogen production from the catalytic reformer. Catalytic reforming`s significant influence in the refinery hydrogen balance, as well as its status as a significant naphtha conversion route to higher-quality fuels, make this unit a high-priority issue for engineers and planners striving for flexibility.

  12. NREL: Wind Research - NREL and Partners Review Key Issues, Lessons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Partners Review Key Issues, Lessons Learned from U.S. Wind Integration Studies and Operating Practices April 17, 2015 As a complement to DOE's recently released Wind...

  13. Steam Pressure Reduction: Opportunities and Issues | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pressure Reduction: Opportunities and Issues Steam Pressure Reduction: Opportunities and Issues This brief details industrial steam generation systems best practices and opportunities for reducing steam system operating pressure. Steam Pressure Reduction: Opportunities and Issues (November 2005) (1.18 MB) More Documents & Publications Steam System Survey Guide Improving Steam System Performance: A Sourcebook for Industry, Second Edition Install an Automatic Blowdown-Control System

  14. Advocate - Issue 57 - January 2015 | Department of Energy

    Office of Environmental Management (EM)

    7 - January 2015 Advocate - Issue 57 - January 2015 Here are the topics in this issue: ORSSAB Has Open Discussion About Board Operations EM & Stewardship Committee Members Take Field Trip to ETTP DOE Continues to Work With TRU Waste During WIPP Shutdown Public Has Several Ways to Learn About 25 Years of EM Sucesses Eight Boards Comprise the National EM Site Specific Advisory Board January 2015 Advocate Newsletter (1.19 MB) More Documents & Publications Advocate - Issue 58 - April 2015

  15. Issues for reuse of gloveboxes at LANL TA-55

    SciTech Connect (OSTI)

    Cadwallader, L.C.; Pinson, P.A.; Miller, C.F.

    1998-08-01

    This report is a summary of issues that face plutonium glovebox designers and users at the Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55). Characterizing the issues is a step in the task of enhancing the next generation glovebox design to minimize waste streams while providing the other design functions. This report gives an initial assessment of eight important design and operation issues that can benefit from waste minimization.

  16. EFRT M-12 Issue Resolution: Solids Washing

    SciTech Connect (OSTI)

    Baldwin, David L.; Schonewill, Philip P.; Toth, James J.; Huckaby, James L.; Eslinger, Paul W.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2010-01-01

    Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, Undemonstrated Leaching Processes of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  17. Small Business Issues for Environmental Restoration Acquisitions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues for Environmental Restoration Acquisitions Small Business Issues for Environmental Restoration Acquisitions Small Business Issues for Environmental Restoration Acquisitions ...

  18. Pyrolysis with cyclone burner

    DOE Patents [OSTI]

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.

    1978-07-25

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue and separating out the fines.

  19. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  20. Advocate- Issue 47- July 2012

    Broader source: Energy.gov [DOE]

    Here are some of the topics from this issue: Wild West Tour, EM SSAB Chairs’ Meeting, and Reservation Updates.

  21. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  22. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    SciTech Connect (OSTI)

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  1. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    SciTech Connect (OSTI)

    Cooper, Marcia A.; Oliver, Michael S.

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  2. Rich land Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TG Department of Energy Rich land Operations Office P.O. Box 550 AES Richland, Washington 99352 CERTIFIED MAIL NOV~ 2 10 2009 Mr. Gerald Pollet Heart of America Northwest 1314 N.E. 5 6 th Street Suite 100 Seattle, Washington 98105 Dear Mr. Pollet: FREEDOM OF INFORMATION ACT REQUEST (FOI 2009-0054) The purpose of this letter is to inform you that we have withdrawn our response dated September 14, 2009, and have issued the following determination regarding item 8 of your request. In response to

  3. Personnel supply and demand issues in the nuclear power industry. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    Information is presented concerning engineering, personnel, reactor operators, health physics personnel, competing demands on technical manpower, personnel management issues, and emerging technology.

  4. CTBT technical issues handbook

    SciTech Connect (OSTI)

    Zucca, J.J.

    1994-05-01

    The purpose of this handbook is to give the nonspecialist in nuclear explosion physics and nuclear test monitoring an introduction to the topic as it pertains to a Comprehensive Test Ban Treaty (CTBT). The authors have tried to make the handbook visually oriented, with figures paired to short discussions. As such, the handbook may be read straight through or in sections. The handbook covers four main areas and ends with a glossary, which includes both scientific terms and acronyms likely to be encountered during CTBT negotiations. The following topics are covered: (1) Physics of nuclear explosion experiments. This is a description of basic nuclear physics and elementary nuclear weapon design. Also discussed are testing practices. (2) Other nuclear experiments. This section discusses experiments that produce small amounts of nuclear energy but differ from explosion experiments discussed in the first chapter. This includes the type of activities, such as laser fusion, that would continue after a CTBT is in force. (3) Monitoring tests in various environments. This section describes the different physical environments in which a test could be conducted (underground, in the atmosphere, in space, underwater, and in the laboratory); the sources of non-nuclear events (such as earthquakes and mining operations); and the opportunities for evasion. (4) On-site inspections. A CTBT is likely to include these inspections as an element of the verification provisions, in order to resolve the nature of ambiguous events. This chapter describes some technical considerations and technologies that are likely to be useful. (5) Selecting verification measures. This chapter discusses the uncertain nature of the evidence from monitoring systems and how compliance judgments could be made, taking the uncertainties into account. It also discusses how to allocate monitoring resources, given the likelihood of testing by various countries in various environments.

  5. Operating Strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operating Strategies and Design Recommendations for Mitigating Local Damage Effects in Offshore Turbine Blades Phillip W. Richards phillip@gatech.edu Graduate Research Assistant Daniel Guggenheim School of Aerospace Engineering Atlanta, Georgia, USA D. Todd Griffith dgriffi@sandia.gov Principal Member of the Technical Staff Sandia National Laboratories Albuquerque, New Mexico, USA Dewey H. Hodges dhodges@gatech.edu Professor Daniel Guggenheim School of Aerospace Engineering Atlanta, Georgia, USA

  6. Advocate- Issue 44- October 2011

    Broader source: Energy.gov [DOE]

    Here are some of the topics in this issue: UCOR Starts on K-25, Annual Planning Meeting, Recovery Act Update, and Results of the PublicvEnvironmental Survey.

  7. Advocate- Issue 61- Jan. 2016

    Broader source: Energy.gov [DOE]

    Here are some of the topics in this issue: DOE Launches K-25 Virtual Museum, Manhattan Project National Park Established, ORSSAB Celebrates 20 Years.

  8. Advocate- Issue 61- Jan. 2016

    Broader source: Energy.gov [DOE]

    Here are some topics in this issue: DOE Launches K-25 Virtual Museum, Manhattan Project National Park Established, ORSSAB Celebrates 20 Years.

  9. Advocate- Issue 52- October 2013

    Broader source: Energy.gov [DOE]

    Here are just some of the stories featured in this issue: Agency Suggestions for FY 2014, Historic Preservation of K-25, and Member Profile - Jimmy Bell

  10. Advocate- Issue 45- January 2012

    Broader source: Energy.gov [DOE]

    Here are some of the topics in this issue: Member Profile: Chuck Jensen, Chairs Videoconference, DOE/NNSA Appeal Y-12 Pollutant Discharge Permit.

  11. Advocate- Issue 48- October 2012

    Broader source: Energy.gov [DOE]

    Here are some of the topics from this issue: K-25 Historic Preservation Agreement, the Board Says Farewell to Maggie Owen, and Groundwater Study Proposed.

  12. Advocate- Issue 42- April 2011

    Broader source: Energy.gov [DOE]

    Here are some of the topics in this issue: Membership Drive, Member Profile: Betty Jones, Chuck Jenkins Recognized, DOE Rethinks U-233 Project, and Membership Changes.

  13. Smart-Grid Security Issues

    SciTech Connect (OSTI)

    Khurana, Himanshu; Hadley, Mark D.; Lu, Ning; Frincke, Deborah A.

    2010-01-29

    TITLE: Smart-Grid Security Issues (Editorial Material, English) IEEE SECURITY & PRIVACY 8 (1). JAN-FEB 2010. p.81-85 IEEE COMPUTER SOC, LOS ALAMITOS

  14. Coiled tubing; Operations and services

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II )

    1991-12-01

    This article outlines the minimum safety requirements that should be considered for onshore and offshore oil well service operations with coiled tubing equipment. These guidelines comply with Minerals Management Service (MMS) regulations issued on May 31, 1988, for offshore work. Where specific MMS regulations are sited, the regulation reference, Incident of Non-Compliance (INC), number is provided. These guidelines can be used by operators and contractors, and although U.S. offshore operations are emphasized, they are applicable wherever coiled tubing services are used.

  15. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect (OSTI)

    Greg F. Weber; Christopher J. Zygarlicke

    2001-05-01

    In summary, stoker-fired boilers that cofire or switch to biomass fuel may potentially have to deal with ash behavior issues such as production of different concentrations and quantities of fine particulate or aerosols and ash-fouling deposition. Stoker boiler operators that are considering switching to biomass and adding potential infrastructure to accommodate the switch may also at the same time be looking into upgrades that will allow for generating additional power for sale on the grid. This is the case for the feasibility study being done currently for a small (<1-MW) stoker facility at the North Dakota State Penitentiary, which is considering not only the incorporation of a lower-cost biomass fuel but also a refurbishing of the stoker boiler to burn slightly hotter with the ability to generate more power and sell excess energy on the grid. These types of fuel and boiler changes can greatly affect ash behavior issues.

  16. Categorical Exclusion Determinations: Idaho Operations Office | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Idaho Operations Office Categorical Exclusion Determinations: Idaho Operations Office Categorical Exclusion Determinations issued by Idaho Operations Office. DOCUMENTS AVAILABLE FOR DOWNLOAD May 26, 2015 CX-013669: Categorical Exclusion Determination Advanced Test Reactor 2A Loop Chemistry Control CX(s) Applied: B3.6 Date: 05/26/2015 Location(s): Idaho Offices(s): Idaho Operations Office May 20, 2015 CX-013673: Categorical Exclusion Determination Advanced Test Reactor Complex

  17. Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (~ii~,Richland Operations Office ~Z4TESO~Richland, Washington 99352 SEP 2 2009 CERTIFIED MAIL Ms. Sarah Washburn Heart of America Northwest 1314 N.E. 5 6 th Street Suite 100 Seattle, Washington 98105 Dear Ms. Washburn: FREEDOM OF INFORMATION ACT REQUEST (FOI 2009-0067) You requested, pursuant to the Freedom of Information Act (FOJA), the following documents relating to: 1 . "The authorization, decision to use, and actual use of any and all pesticides and herbicides anywhere within the

  18. Global strategies for environmental issues

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This is the 19th Annual NAEP conference proceedings, containing abstracts of oral presentations and poster sessions. Broad areas covered include the following: Environmental Management; Biodiversity/sustainable development; Gulf Regional Issues; Environmental ethics/equity; NEPA workshop and symposium; International environmental issues; global Environmental Effects; Risk Assessment; and Environmental effects of nuclear waste management.

  19. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    SciTech Connect (OSTI)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  20. Operating Experience Summary- 2012-03 – August 14, 2012

    Broader source: Energy.gov [DOE]

    Inside this issue: Operating Experience from Cerro Grande and Las Conchas Fires Improves Los Alamos National Laboratory Emergency Preparedness and Response to Wildfire Events - Page 1

  1. Air cleaning issues with contaminated sites

    SciTech Connect (OSTI)

    Bellamy, R.R.

    1997-08-01

    The US Nuclear Regulatory Commission has developed a list of contaminated sites that warrant special USNRC attention because they pose unique or complex decommissioning issues. This list of radiologically contaminated sites is termed the Site Decommissioning Management Plan (SDMP), and was first issued in 1990. A site is placed on the SDMP list if it has; (1) Problems with the viability of the responsible organization (e.g., the licensee for the site is unable or unwilling to pay for the decommissioning); (2) Large amounts of soil contamination or unused settling ponds or burial grounds that may make the waste difficult to dispose of; (3) The long-term presence of contaminated, unused buildings; (4) A previously terminated license; or (5) Contaminated or potential contamination of the ground water from on-site wastes. In deciding whether to add a site to the SDMP list, the NRC also considers the projected length of time for decommissioning and the willingness of the responsible organization to complete the decommissioning in a timely manner. Since the list was established, 9 sites have been removed from the list, and the current SDMP list contains 47 sites in 11 states. The USNRC annually publishes NUREG-1444, {open_quotes}Site Decommissioning Management Plan{close_quotes}, which updates the status of each site. This paper will discuss the philosophical goals of the SDMP, then will concentrate on the regulatory requirements associated with air cleaning issues at the SDMP sites during characterization and remediation. Both effluent and worker protection issues will be discussed. For effluents, the source terms at sites will be characterized, and measurement techniques will be presented. Off-site dose impacts will be included. For worker protection issues, air sampling analyses will be presented in order to show how the workers are adequately protected and their doses measured to satisfy regulatory criteria during decontamination operations. 1 tab.

  2. PETC Review, Issue 4, Fall 1991

    SciTech Connect (OSTI)

    Blaustein, B.D.; Reiss, J.; Tarquinio, M.A.; Brown, J.; Evans, E.

    1991-12-31

    In this issue of PETC Review, short discussion is given on the following topics: (1) ``Combustion 2000``--a low-emission boiler system coupled to a high-performance power system; (2) ``Liquid Transportation Fuels from Coal, Part 2: Indirect Liquefaction``--outline research program; (3) ``A Computer Expert System to Reduce Power Plant Emissions``--a system being developed to predict the economic, operational, and environmental benefits of using commercially achievable cleaned coals; (4) ``PETC`s Flow Analysis Laboratory Assists Artificial Heart Research``--PETC equipment used to study the flow of blood in artificial hearts. Supplemental sections on events, special focuses, calendars, publication lists, etc. are also included.

  3. PETC Review, Issue 4, Fall 1991

    SciTech Connect (OSTI)

    Blaustein, B D; Reiss, J; Tarquinio, M A; Brown, J; Evans, E

    1991-10-01

    In this issue of PETC Review, short discussion is given on the following topics: (1) Combustion 2000''--a low-emission boiler system coupled to a high-performance power system; (2) Liquid Transportation Fuels from Coal, Part 2: Indirect Liquefaction''--outline research program; (3) A Computer Expert System to Reduce Power Plant Emissions''--a system being developed to predict the economic, operational, and environmental benefits of using commercially achievable cleaned coals; (4) PETC's Flow Analysis Laboratory Assists Artificial Heart Research''--PETC equipment used to study the flow of blood in artificial hearts. Supplemental sections on events, special focuses, calendars, publication lists, etc. are also included.

  4. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower’s Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  5. Open Discussion of Freeze Related Issues | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Discussion of Freeze Related Issues Open Discussion of Freeze Related Issues Presentation by Doug Wheeler to DOE's Fuel Cell Operations at Sub-Freezing Temperatures Workshop held February 1-5, 2005 in Phoenix, Arizona. 10_wheeler_discussion.pdf (223.65 KB) More Documents & Publications A Study on Performance Degradation of PEMFC by Water Freezing Fuel Cell Freeze Workshop Agenda WA_02_036_DE_NORA_NORTH_AMERICA_Waiver_of_Domestic_and_Foreg.pdf

  6. DOE Issues RFP for Waste Treatment Services | Department of Energy

    Office of Environmental Management (EM)

    Greater-Than-Class C Waste | Department of Energy Final Environmental Impact Statement for Disposal of Greater-Than-Class C Waste DOE Issues Final Environmental Impact Statement for Disposal of Greater-Than-Class C Waste February 25, 2016 - 3:30pm Addthis WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today issued a Final Environmental Impact Statement (EIS) that evaluates the potential environmental impacts associated with the proposed development, operation, and long-term

  7. Issues in workforce composition analysis

    SciTech Connect (OSTI)

    Koeck, D.C.; Rogers, J.D.

    1996-05-01

    An issue of paramount interest to US industry is the supply and quality of human resources available for this country`s scientific and technological activities. The changing composition of the workforce and the responsibility that an organization has to assure equal opportunity, give rise to various issues. This paper discusses some of the issues associated with the scientific and technical workforce. Specifically, it explores some of the questions pertaining to workforce composition and measures of workforce composition. This paper should be useful to those responsible for personnel policies.

  8. Calutron Operations | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Calutron Operations

  9. Advocate- Issue 43- July 2011

    Broader source: Energy.gov [DOE]

    Here are some of the topics in this issue: Retiring Members Honored, Member Profile: David Martin, EM SSAB Chairs Meeting, Board Member’s Company Assists with Japanese Nuclear Plant.

  10. Workers' Spotlight Newsletter- Issue 3

    Office of Energy Efficiency and Renewable Energy (EERE)

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. January 2013 issue covers National Supplemental Screening Program and What's going on around the Complex.

  11. Workers' Spotlight Newsletter- Issue 4

    Broader source: Energy.gov [DOE]

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. February 2013 issue covers John Hopkins University Former Worker Program.

  12. Advocate- Issue 50- April 2013

    Broader source: Energy.gov [DOE]

    Here are some stories from this issue: Legacy Waste on the Oak Ridge Reservation, K-25's North Tower Demolished, Agency for Toxic Substances and Disease Registry Meets in Oak Ridge, and a Profile on Dave Hemelright.

  13. Automotive Thermoelectric Generator Design Issues

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mechanical, electrical, thermal engineering, and durability issues related to use of TEGs in the challenging automotive environment need to be resolved as they affect warranty cost and customer acceptance.

  14. Advocate- Issue 63- July 2016

    Office of Energy Efficiency and Renewable Energy (EERE)

    Special topics in this issue include DOE's alternatives for increased waste disposal capacity, ORSSAB's recommendation to DOE on the FY 2018 budget request, and progress on the K-27 demolition.

  15. Workers' Spotlight Newsletter- Issue 7

    Broader source: Energy.gov [DOE]

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. May 2013 issue covers WHPP and BTMed Roster Updates and WHPP Video Acknowledgement.

  16. Advocate- Issue 60- October 2015

    Broader source: Energy.gov [DOE]

    Here are some of the topics in this issue: ORSSAB has annual meeting; EM SSAB Chairs meet in Santa Fe; ORSSAB member participates in EPA Community Involvement Conference; ORSSAB members go into the field.

  17. Petroleum 1996: Issues and Trends

    Reports and Publications (EIA)

    1997-01-01

    Examines historical trends and focuses on major petroleum issues and the events they represent. It analyzes different dimensions of the petroleum industry and related markets in terms of how they relate to the volatility in petroleum markets.

  18. Regulatory issues for deep borehole plutonium disposition

    SciTech Connect (OSTI)

    Halsey, W.G.

    1995-03-01

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. Issues of concern include the regulatory, statutory and policy status of such a facility, the availability of sites with desirable characteristics and the technologies required for drilling deep holes, characterizing them, emplacing excess plutonium and sealing the holes. This white paper discusses the regulatory issues. Regulatory issues concerning construction, operation and decommissioning of the surface facility do not appear to be controversial, with existing regulations providing adequate coverage. It is in the areas of siting, licensing and long term environmental protection that current regulations may be inappropriate. This is because many current regulations are by intent or by default specific to waste forms, facilities or missions significantly different from deep borehole disposition of excess weapons usable fissile material. It is expected that custom regulations can be evolved in the context of this mission.

  19. ISSUED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... recognize and respond to a variety of problems and anomalies; to understand complex ... a basis for hazard surveys used for safety analysis, emergency planning, and work planning. ...

  20. ISSUED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Assistance » ISO 50001 Energy Management Standard ISO 50001 Energy Management Standard The ISO 50001 energy management standard is a proven framework for industrial facilities, commercial facilities, or entire organizations to manage energy-including all aspects of energy procurement and use. An energy management system establishes the structure and discipline to implement technical and management strategies that significantly cut energy costs and greenhouse gas emissions-and sustain

  1. Issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01 October 2004 Remembering the B-Complex Piece by piece it was decommissioned through the summer of 2004. August, when the bulldozers arrived to tear down all that remained of buildings B-1 and B-2. 650 NNSA/NSO contractor employees lay in the parking lot, a heap of rubble and debris. The demolition of buildings B-1 and B-2 in the NNSA/NSO Nevada Support Facility complex surprised no one. The buildings were the subject of a lengthy investigation after it was revealed, in March 2002, that a

  2. Issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 November 2006 A publication for all members of the NNSA/NSO family ear Admiral Gerald L. Talbot, Jr. has been named as the new manager of the National Nuclear Security Administration's Nevada Site Office. Upon his retirement, after serving 35-years in the United States Navy, Rear Admiral Talbot will assume his new position in January, 2007. He succeeds Kathy A. Carlson, who retired in May 2006. Rear Admiral Talbot currently serves as the Director, Military Personnel Plans and Policy Division.

  3. Issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 December 06/January 2007 H a p p y H o l i d a y s t o o u r N S O f a m i l y n November, the National Nuclear Security Administration (NNSA) conducted two public meetings in Nevada as part of the preparation of the Supplement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement - Complex 2030. The first meeting on Nov. 28 at Cashman Center in Las Vegas observed an "open-house" format, allowing the public to view information displays, ask questions

  4. Key Issues | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Issues Key Issues The following presentations offer information about other key topics related to high performance homes. wall_system_innovations_kochkin.pdf (1.48 MB) removing_codes_barriers_cole.pdf (479.86 KB) testing_residential_ariconditioners_booten_winkler.pdf (5.21 MB) code_gaps_combustion_safety.pdf (1.34 MB) automated_utility_bill_calibration_polly.pdf (1.64 MB) predicting_envelope_leakage_griffiths.pdf (1.63 MB) More Documents & Publications Code Gaps and Future Research Needs

  5. Tritium Issues in Next Step Devices

    SciTech Connect (OSTI)

    C.H. Skinner; G. Federici

    2001-09-05

    Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning plasma tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma-facing components will scale up with the pulse length from being barely measurable on existing machines to centimeter scale. Magnetic Fusion Energy (MFE) devices with carbon plasma-facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove co-deposited tritium from carbon plasma-facing components in tokamaks. A major fraction of the tritium trapped in a co-deposited layer during the deuterium-tritium (DT) campaign on the Tokamak Fusion Test Reactor (TFTR) was released by heating with a scanning laser beam. This technique offers the potential for tritium removal in a next-step DT device without the use of oxidation and the associated deconditioning of the plasma-facing surfaces and expense of processing large quantities of tritium oxide. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the

  6. EM Issues Amended Decision to Expand Use of Nuclear Facility

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – EM issued an amended Record of Decision (ROD) to the Savannah River Site (SRS) Spent Nuclear Fuel Environmental Impact Statement to expand the operations of the H-Canyon Facility at SRS to support a major nuclear non-proliferation goal and save taxpayer dollars.

  7. DOE Issues Draft RFP for Hanford Site Lab Services

    Broader source: Energy.gov [DOE]

    Cincinnati -- The U.S. Department of Energy (DOE) today issued a Draft Request for Proposal (RFP), 100 percent set-aside for small businesses, for the operation and performance of analytical and testing services at the DOE Hanford 222-S Lab.

  8. DOE Issues Final RFP for Hanford Site Lab Services

    Broader source: Energy.gov [DOE]

    Cincinnati -- The U.S. Department of Energy (DOE) today issued the final Request for Proposal (RFP), 100 percent set-aside for small businesses, for the operation and performance of analytical and testing services at the DOE Hanford 222-S Lab. A Draft RFP was previously released on February 28, 2014, requesting comments from industry.

  9. Workers' Spotlight Newsletter- Issue 13

    Broader source: Energy.gov [DOE]

    Worker's Spotlight Newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. May/June 2014 issue covers the Director's Note, the Cold War Patriots' Remembrance Quilt, Staff, the National Museum of Nuclear Science and History, Chest X-ray B-reading, and Calendar of Events.

  10. Workers' Spotlight Newsletter- Issue 5

    Office of Energy Efficiency and Renewable Energy (EERE)

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. March 2013 issue covers Former Worker Medical Screening Program 2012 Annual Report and University of Iowa - Former Worker Program.

  11. Workers' Spotlight Newsletter- Issue 2

    Office of Energy Efficiency and Renewable Energy (EERE)

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. December 2012 issue covers Updating the Site Exposure Matrices (SEM) and the summary of the 2012 Advanced Ethical Research Conference.

  12. Workers' Spotlight Newsletter- Issue 9

    Broader source: Energy.gov [DOE]

    Workers’ Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. September/October 2013 issue covers Former Worker Medical Screening Program Milestone, United States Preventive Services Task Force (USPSTF) and John Hopkins Former Worker Program in New Mexico.

  13. Workers' Spotlight Newsletter- Issue 12

    Broader source: Energy.gov [DOE]

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. March/April 2014 issue covers Joint Outreach Task Group town hall meeting video, the Bradbury Science Museum, and spirometry.

  14. Workers' Spotlight Newsletter- Issue 8

    Broader source: Energy.gov [DOE]

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Screening Program. July/August issue covers Site Information Sessions, Joint Outreach Task Group Meeting, and National Supplemental Screening Program Low-Dose CT Program.

  15. Workers' Spotlight Newsletter- Issue 14

    Office of Energy Efficiency and Renewable Energy (EERE)

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. July/August/September issue covers Director's Note, 2014 Sylvia Kieding Award, National Atomic Testing Museum, and Calendar of Events.

  16. Advocate- Issue 56- October 2014

    Broader source: Energy.gov [DOE]

    Here are some of the stories in this issue: ORSSAB held its annual meeting and learned about a number of decisions that will be made in 2015, EM SSAB Chairs meet in Idaho, DOE Responds to recommendations, ORSSAB is recruiting new members, ORSSAB elects officers for FY 2015.

  17. Advocate- Issue 55-July 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    Here are some of the stories in this issue: TWPC Continues Processing Transuranic Waste During Suspension of Repository Activities, DOE Develops a Mercury Remediation Strategic Plan for Y-12, EM SSAB Representatives Gather for Semiannual Meeting, Report on Environmental Justice Conference, New Students, ORSSAB Member Honored.

  18. Advocate- Issue 54- April 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    Here are some of the stories in this issue: DOE Encourages ORSSAB Input on Second Waste Disposal Facility, ORSSAB/Public Were Involved in Siting EMWMF, Board Member Reports on Waste Management Symposia, and Public Environmental Survey Gathers Input on Cleanup Strategy.

  19. Workers' Spotlight Newsletter- Issue 11

    Office of Energy Efficiency and Renewable Energy (EERE)

    Worker's Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. January/February 2014 issue covers audiogram, the American Museum of Science and Energy, and trivia.

  20. Workers' Spotlight Newsletter- Issue 10

    Office of Energy Efficiency and Renewable Energy (EERE)

    Workers' Spotlight newsletter is a monthly publication that provides information regarding the Energy Employees Occupational Illness Compensation Program and the Former Worker Medical Screening Program. November / December 2013 issue covers Remembrance, Beryllium, Secure Electronic Records Transfer (SERT), and Commemorating DOE Former Workers.

  1. Tritium Ground Water Issues | Department of Energy

    Office of Environmental Management (EM)

    Ground Water Issues Tritium Ground Water Issues Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015. Tritium Ground Water Issues ...

  2. Outage management and health physics issue, 2009

    SciTech Connect (OSTI)

    Agnihotri, Newal

    2009-05-15

    The focus of the May-June issue is on outage management and health physics. Major articles include the following: Planning and scheduling to minimize refueling outage, by Pat McKenna, AmerenUE; Prioritizing safety, quality and schedule, by Tom Sharkey, Dominion; Benchmarking to high standards, by Margie Jepson, Energy Nuclear; Benchmarking against U.S. standards, by Magnox North, United Kingdom; Enabling suppliers for new build activity, by Marcus Harrington, GE Hitachi Nuclear Energy; Identifying, cultivating and qualifying suppliers, by Thomas E. Silva, AREVA NP; Creating new U.S. jobs, by Francois Martineau, Areva NP. Industry innovation articles include: MSL Acoustic source load reduction, by Amir Shahkarami, Exelon Nuclear; Dual Methodology NDE of CRDM nozzles, by Michael Stark, Dominion Nuclear; and Electronic circuit board testing, by James Amundsen, FirstEnergy Nuclear Operating Company. The plant profile article is titled The future is now, by Julia Milstead, Progress Energy Service Company, LLC.

  3. Plant maintenance and advanced reactors issue, 2008

    SciTech Connect (OSTI)

    Agnihotri, Newal

    2009-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada; Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.

  4. Department of Energy Issues Funding Opportunity Announcement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Media contact(s): (202) 586-4940 Addthis Related Articles Department of Energy Issues ... of Energy Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education

  5. Energy Department Issues Green Building Certification System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green...

  6. ARM - AMF2 Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Contacts Management and Operations Operations Overview ARM Links BCR | ECR ECO, EWO Extraview PIF, CAR, DQR & DQPR Operations Status System i.arm.gov AMF2 Deployment...

  7. Line Equipment Operator

    Broader source: Energy.gov [DOE]

    There are several Line Equipment Operator positions located in Washington and Oregon. A successful candidate in this position will perform Line Equipment Operator work operating trucks and all...

  8. Earned Value Management System (EVMS) Corrective Action Standard Operating Procedure

    Office of Environmental Management (EM)

    Corrective Action Standard Operating Procedure (ECASOP) Issued by Office of Project Management, Oversight, and Assessments (PMOA) PM-1 September 21, 2015 DEPARTMENT OF ENERGY EVMS CORRECTIVE ACTION SOP SEPTEMBER 21, 2015 ii Earned Value Management System (EVMS) Corrective Action (CA) Standard Operating Procedure (ECASOP) OPR: PM-30 Issue Date: September 21, 2015 1. PURPOSE. This EVMS Corrective Action Standard Operating Procedure (ECASOP) serves as a primary reference for PMOA PM-1 for

  9. Operating Experience Committee Charter

    Broader source: Energy.gov [DOE]

    The Operating Experience Committee (OEC) charter provides a description of the OEC's purpose, background, membership, functions, and operations.

  10. DOE Issues Final Environmental Impact Statement for Disposal of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greater-Than-Class C Waste | Department of Energy Environmental Impact Statement for Disposal of Greater-Than-Class C Waste DOE Issues Final Environmental Impact Statement for Disposal of Greater-Than-Class C Waste February 25, 2016 - 3:30pm Addthis WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today issued a Final Environmental Impact Statement (EIS) that evaluates the potential environmental impacts associated with the proposed development, operation, and long-term management of

  11. and Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and Operations

  12. issue_no_9.pgm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winter 1997 Los Alamos National Laboratory o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly In This Issue 1 Scientists Study the Use of Fullerenes to Trap Actinides 3 High-Level Policies Impact Stewardship of Excess Plutonium 5 On the Disposal of Plutonium 6 Fabrication of Zircon Leads to a Pu Stabilization Alternative 9 Ph.D. Thesis Explores Sodium Zirconium Phosphate (NZP) Waste Forms for Actinide Disposal 11 Recent Publications, Presentations, and

  13. Operating Experience Level 1, 2, and 3 Documents

    Broader source: Energy.gov [DOE]

    Operating Experience Level 1, 2, and 3 documents communicate required actions, information on safety issues or trends of concern, and lessons learned on operating experience to the DOE Complex to prevent adverse operating incidents and to expand the sharing of good work practices.

  14. EFRT M-12 Issue Resolution: Solids Washing

    SciTech Connect (OSTI)

    Baldwin, David L.; Schonewill, Philip P.; Toth, James J.; Huckaby, James L.; Eslinger, Paul W.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2009-08-14

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. Two operating scenarios were evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-VSL-T01A/B ultrafiltration feed vessels, identified as Integrated Test A. The second scenario has caustic leaching conducted in the UFP-VSL-T02A ultrafiltration feed preparation vessel, identified as Integrated Test B. Washing operations in PEP Integrated Tests A and B were conducted successfully as per the approved run sheets. However, various minor instrumental problems occurred, and some of the process conditions specified in the run sheet were not met during the wash operations, such as filter-loop flow-rate targets not being met. Five analytes were selected based on full solubility and monitored in the post-caustic-leach wash as successful indicators of washing efficiency. These were aluminum, sulfate, nitrate, nitrite, and free hydroxide. Other analytes, including sodium, oxalate, phosphate, and total dissolved solids, showed indications of changing solubility; therefore, they were unsuitable for monitoring washing efficiency. In the post-oxidative-leach wash, two analytes with full solubility were selected as suitable indicators of washing

  15. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues

    Broader source: Energy.gov [DOE]

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying...

  16. Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of

    Office of Environmental Management (EM)

    10 CFR 830 | Department of Energy 00-03: Specific Issues on Applicability of 10 CFR 830 Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of 10 CFR 830 Section 1.3 of the Operational Procedure entitled Enforcement of DOE Nuclear Safety Requirements under Price-Anderson Amendments Act of 1988, published in June 1998, provides the opportunity for the Office of Enforcement and Investigation (EHEnforcement) to issue clarifying guidance in a timely manner with respect to the

  17. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues

    Broader source: Energy.gov [DOE]

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues.

  18. Issued by Sandia National Laboratories,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or

  19. Petroleum 1996 - issues and trends

    SciTech Connect (OSTI)

    1997-09-01

    Increasingly, users of the Energy Information Administration`s petroleum data and analytical reports have expressed an interest in a recurring report that takes a broad view of the petroleum sector. What is sought is some perspective on the complex interrelationships that comprise an industry and markets accounting for 40 percent of the energy consumed in the United States and ranging from the drilling rig in the oil field to the pump at the local gasoline station. This report comprehensively examines historical trends, and selectively focuses on major issues and the events they represent. It analyzes different dimensions of the industry and related markets in terms of how they relate to a common theme, in this case, the volatility in petroleum markets.

  20. Richland Operations Office - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Richland Operations Office Richland Operations Office Richland Operations Office River Corridor Central Plateau Groundwater Mission Support Newsroom Richland Operations Office...

  1. Idaho National Laboratory Annual Site Environmental Report Issued

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    doe logo U.S. Department of Energy Idaho Operations Office Media Contact: Brad Bugger (208) 526-0833 September 20, 2011 Idaho National Laboratory Annual Site Environmental Report Issued The annual report that informs stakeholders about the Idaho National Laboratory�s environmental performance for the year 2010 is now available to the public. To access the report contact Gonzales-Stoller Surveillance at (208) 525-8250, to request a CD containing the report. The report includes data generated by

  2. Department of Energy Issues Draft Request for Proposals for Argonne

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Contractor | Department of Energy Request for Proposals for Argonne National Laboratory Contractor Department of Energy Issues Draft Request for Proposals for Argonne National Laboratory Contractor January 3, 2006 - 9:06am Addthis WASHINGTON, DC -- The Department of Energy (DOE) is seeking comments on a draft Request for Proposals (RFP) for the competitive selection of a management and operating (M&O) contractor for Argonne National Laboratory (ANL), a major DOE

  3. Interagency mechanical operations group numerical systems group

    SciTech Connect (OSTI)

    1997-09-01

    This report consists of the minutes of the May 20-21, 1971 meeting of the Interagency Mechanical Operations Group (IMOG) Numerical Systems Group. This group looks at issues related to numerical control in the machining industry. Items discussed related to the use of CAD and CAM, EIA standards, data links, and numerical control.

  4. Issues in Midterm Analysis and Forecasting

    Reports and Publications (EIA)

    1999-01-01

    Final issue of this report. Presents a series of eight papers, which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1999, as well as other significant issues in midterm energy markets.

  5. UAV sensor and survivability issues

    SciTech Connect (OSTI)

    Canavan, G.H.

    1996-07-01

    This report discusses the most significant tradeoffs between the operating altitude and the complexity and cost of UAVs and sensors. Low altitudes allow less complex, smaller sensors and platforms, but are vulnerable to ground fire. High altitudes require more numerous and capable sensors, but provide wider swaths for more rapid coverage and reduced vulnerability to ground fire. It is shown that for mission requirements and air defenses that higher is not necessarily better and that optimal flight altitudes exist that can be determined analytically.

  6. FEMP Federal Fleet Files - May 2009 Issue

    SciTech Connect (OSTI)

    2009-06-04

    May 2009 issue of the monthly FEMP newsletter highlighting the latest news and developments impacting Federal fleets.

  7. Labor Standards for DOE Management and Operating Contracts

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Flash is issued to provide you an Acquisition Letter containing information and guidance regarding application of labor standards at the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) management and operating (M&O) contract facilities.

  8. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect (OSTI)

    Jay R. Gunderson; Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-05-01

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience damaging fouling when switched to higher-volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early with biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the boiler, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides in combination with different flue gas temperatures because of changes in fuel heating value, which can adversely affect ash deposition behavior.

  9. PETC Review, Issue 6, Summer 1992

    SciTech Connect (OSTI)

    Santore, R.R.; Blaustein, B.D.; Reiss, J.; Brown, J.

    1992-10-01

    This issue of the PETC Review focuses on the Clean Coal Technology Demonstration Program. Several projects were completed recently and many more are beginning to generate data from operations, making this an ideal time to highlight this program. The program, which was initiated in 1986, now has 42 projects that represent a remarkable scope of activities ranging from the demonstration of improved retrofit components to the repowering of coal-fired electrical power plants with advanced systems. In 1986, when Congress committed the nation to this multi-billion dollar, multi-year demonstration program, the policy goals were clearly set forth and the funding was completely committed. I believe that defining and sticking to these goals and commitments has been critical to establishing substantial industry interest and investment, thereby enhancing the prospects for success. Both the public and private sectors were better able to establish priorities and to allocate resources to projects that best meet our nation`s energy and environmental needs. I believe that the Clean Coal Technology program will help fulfill the goals for coal that were recently reaffirmed in the National Energy Strategy: One Year Later-to maintain coal`s competitiveness and to create a favorable export market for US coal and coal technology.

  10. PETC Review, Issue 6, Summer 1992

    SciTech Connect (OSTI)

    Santore, R.R.; Blaustein, B.D.; Reiss, J.; Brown, J.

    1992-01-01

    This issue of the PETC Review focuses on the Clean Coal Technology Demonstration Program. Several projects were completed recently and many more are beginning to generate data from operations, making this an ideal time to highlight this program. The program, which was initiated in 1986, now has 42 projects that represent a remarkable scope of activities ranging from the demonstration of improved retrofit components to the repowering of coal-fired electrical power plants with advanced systems. In 1986, when Congress committed the nation to this multi-billion dollar, multi-year demonstration program, the policy goals were clearly set forth and the funding was completely committed. I believe that defining and sticking to these goals and commitments has been critical to establishing substantial industry interest and investment, thereby enhancing the prospects for success. Both the public and private sectors were better able to establish priorities and to allocate resources to projects that best meet our nation's energy and environmental needs. I believe that the Clean Coal Technology program will help fulfill the goals for coal that were recently reaffirmed in the National Energy Strategy: One Year Later-to maintain coal's competitiveness and to create a favorable export market for US coal and coal technology.

  11. Assessment of Materials Issues for Light-Water Small Modular Reactors

    SciTech Connect (OSTI)

    Sandusky, David; Lunceford, Wayne; Bruemmer, Stephen M.; Catalan, Michael A.

    2013-02-01

    The primary objective of this report is to evaluate materials degradation issue unique to the operational environments of LWSMR. Concerns for specific primary system components and materials are identified based on the review of design information shared by mPower and NuScale. Direct comparisons are made to materials issues recognized for advanced large PWRs and research activities are recommended as needed. The issues identified are intended to improve the capability of industry to evaluate the significance of any degradation that might occur during long-term LWSMR operation and by extension affect the importance of future supporting R&D.

  12. Hot Leg Piping Materials Issues

    SciTech Connect (OSTI)

    V. Munne

    2006-07-19

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

  13. Operating Experience Committee Charter

    Broader source: Energy.gov [DOE]

    The Operating Experience Committe Charter explains the purpose of the Department of Energy (DOE) Operating Experience Committee (OEC), which is to support line management within DOE and the DOE community in developing and sustaining effective oeprating experience programs so that lessons from inernal and external operating experience lead to improvement in future operational and safety performance.

  14. Operation Warfighter Internship Fair

    Broader source: Energy.gov [DOE]

    Attendees: Participants of Operation Warfighter Program Cost: Free Supports: Veteran and Disability Employment Programs

  15. Project plan for resolution of the organic waste tank safety issues at the Hanford Site

    SciTech Connect (OSTI)

    Meacham, J.E.

    1996-10-03

    A multi-year project plan for the Organic Safety Project has been developed with the objective of resolving the organic safety issues associated with the High Level Waste (HLW) in Hanford`s single-shell tanks (SSTS) and double-shell tanks (DSTs). The objective of the Organic Safety Project is to ensure safe interim storage until retrieval for pretreatment and disposal operations begins, and to resolve the organic safety issues by September 2001. Since the initial identification of organics as a tank waste safety issue, progress has been made in understanding the specific aspects of organic waste combustibility, and in developing and implementing activities to resolve the organic safety issues.

  16. Issue #3: HVAC Proper Installation Energy Savings: Over-Promising or

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Under-Delivering? | Department of Energy 3: HVAC Proper Installation Energy Savings: Over-Promising or Under-Delivering? Issue #3: HVAC Proper Installation Energy Savings: Over-Promising or Under-Delivering? What energy savings are realistically achievable by following quality installation standards for installation, operation, and maintenance of residential HVAC? issue3_airflow_charge.pdf (804.56 KB) issue3_hvac_installed.pdf (89.79 KB) issue3_pdi_hvacsys.pdf (325.73 KB) More Documents

  17. EXA-13-0001 - In the Matter of Washington State Fleet Operations...

    Broader source: Energy.gov (indexed) [DOE]

    State Fleet Operations (Washington) Appeal of a determination issued on September ... requirements under the AFTP. Washington's appeal was based upon its claims that: (1) it ...

  18. EDITORIAL HPJ SPECIAL ISSUE INTRODUCTION

    SciTech Connect (OSTI)

    Farfan, E.

    2011-10-01

    international scientific community to support ICC and join its activities (Chernobyl Center 2006). In December 1995, a memorandum of understanding (MOU) on the ChNPP closure was signed by the government of Ukraine, all of the G7 governments, and the European Commission. The ICC foundation was considered critical to ensure the safe decommissioning of the ChNPP reactor units and improvement of the safety of the Chernobyl Containment Shelter. On the 10th anniversary of the Chernobyl accident (26 April 1996), Mr. Viktor Yushchenko, the President of Ukraine, issued a decree to establish the Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology (Chernobyl Center). On the same day, a MOU involving the US participation in Chernobyl Center activities was signed by the US and Ukraine (Chernobyl Center 2006). In July 1998, the US and Ukraine signed an agreement to establish the International Radioecology Laboratory (IRL) as part of the Chernobyl Center. The creation of IRL was a logical continuation of previous programs to conduct scientific research in radioecology and provide Ukraine and the rest of the world with the necessary infrastructure and scientific basis to conduct research in radioecology, radiobiology, dosimetry, and environmental protection in the ChEZ (Chernobyl Center 2006). A recent collaborative effort with IRL has been implemented through a project titled 'Long-term impacts from radiation/contamination within the Chernobyl Exclusion Zone' (Farfan et al. 2008; Gerdes et al. 2009; Marra et al. 2010). This collaboration had the following objectives: (1) Assess the long-term impacts to the environment from radiation exposure within the ChEZ; (2) Provide information on remediation guidelines and ecological risk assessment within radioactively contaminated territories based on the results of long-term field monitoring, analytical measurements, and numerical modeling of soils and groundwater radioactive contamination; and (3) Recommend the development and

  19. Field testing the Raman gas composition sensor for gas turbine operation

    SciTech Connect (OSTI)

    Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

  20. DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services

    Broader source: Energy.gov [DOE]

    Cincinnati – The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH.

  1. PARC Periodical | Vol. 6, Issue 2 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vol. 6, Issue 2 December 1, 2014 PARC Periodical | Vol. 6, Issue 2 View Periodical Here

  2. PARC Periodical | Vol. 6, Issue 3 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vol. 6, Issue 3 February 9, 2015 PARC Periodical | Vol. 6, Issue 3 View Periodical Here

  3. PARC Periodical | Volume 6, Issue 6 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center 6, Issue 6 August 20, 2015 PARC Periodical | Volume 6, Issue 6

  4. PARC Periodical | Volume 7, Issue 1 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center 7, Issue 1 October 12, 2015 PARC Periodical | Volume 7, Issue 1

  5. Generic Issue 87: Flexible wedge gate valve test program

    SciTech Connect (OSTI)

    Steele, R. Jr.; DeWall, K.G.; Watkins, J.C. )

    1991-01-01

    Qualification and flow isolation tests were conducted to analyze the ability of selected boiling water reactor process valves to perform their containment isolation functions at high energy pipe break conditions and other more normal flow conditions. Numerous parameters were measured to assess valve and motor-operator performance at various valve loadings and to assess industry practices for predicting valve and motor operator requirements. The valves tested were representative of those used in reactor water cleanup systems in boiling water reactors and those used in boiling water reactor high-pressure coolant injection (HPCI) steam lines. These tests will provide further information for the US Nuclear Regulatory Commission Generic Issue-87, Failure of the HPCI Steam Line Without Isolation,'' and Generic Letter 89--10, Safety-related Motor Operated Valve Testing and Surveillance.'' 6 refs., 54 figs., 4 tabs.

  6. LANL continuity of operations plan

    SciTech Connect (OSTI)

    Senutovitch, Diane M

    2010-12-22

    The Los Alamos National Laboratory (LANL) is a premier national security research institution, delivering scientific and engineering solutions for the nation's most crucial and complex problems. Our primary responsibility is to ensure the safety, security, and reliability of the nation's nuclear stockpile. LANL emphasizes worker safety, effective operational safeguards and security, and environmental stewardship, outstanding science remains the foundation of work at the Laboratory. In addition to supporting the Laboratory's core national security mission, our work advances bioscience, chemistry, computer science, earth and environmental sciences, materials science, and physics disciplines. To accomplish LANL's mission, we must ensure that the Laboratory EFs continue to be performed during a continuity event, including localized acts of nature, accidents, technological or attack-related emergencies, and pandemic or epidemic events. The LANL Continuity of Operations (COOP) Plan documents the overall LANL COOP Program and provides the operational framework to implement continuity policies, requirements, and responsibilities at LANL, as required by DOE 0 150.1, Continuity Programs, May 2008. LANL must maintain its ability to perform the nation's PMEFs, which are: (1) maintain the safety and security of nuclear materials in the DOE Complex at fixed sites and in transit; (2) respond to a nuclear incident, both domestically and internationally, caused by terrorist activity, natural disaster, or accident, including mobilizing the resources to support these efforts; and (3) support the nation's energy infrastructure. This plan supports Continuity of Operations for Los Alamos National Laboratory (LANL). This plan issues LANL policy as directed by the DOE 0 150.1, Continuity Programs, and provides direction for the orderly continuation of LANL EFs for 30 days of closure or 60 days for a pandemic/epidemic event. Initiation of COOP operations may be required to support an

  7. Overview of mixed waste issues

    SciTech Connect (OSTI)

    Piciulo, P.L.; Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.

    1986-01-01

    Based on BNL's study it was concluded that there are LLWs which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November, 1985 no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA an EPA permitted site. Currently generators of LSC wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes will also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed wasted unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. It is believed that there are management options for handling potential mixed wastes but there is no regulatory guidance. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concern can, at the same time, address stabilization and volume reduction concerns of NRC.

  8. Recent NRC research activities addressing valve and pump issues

    SciTech Connect (OSTI)

    Morrison, D.L.

    1996-12-01

    The mission of the U.S. Nuclear Regulatory Commission (NRC) is to ensure the safe design, construction, and operation of commercial nuclear power plants and other facilities in the U.S.A. One of the main roles that the Office of Nuclear Regulatory Research (RES) plays in achieving the NRC mission is to plan, recommend, and implement research programs that address safety and technical issues deemed important by the NRC. The results of the research activities provide the bases for developing NRC positions or decisions on these issues. Also, RES performs confirmatory research for developing the basis to evaluate industry responses and positions on various regulatory requirements. This presentation summarizes some recent RES supported research activities that have addressed safety and technical issues related to valves and pumps. These activities include the efforts on determining valve and motor-operator responses under dynamic loads and pressure locking events, evaluation of monitoring equipment, and methods for detecting and trending aging of check valves and pumps. The role that RES is expected to play in future years to fulfill the NRC mission is also discussed.

  9. Smart Grid - Transforming Power System Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Kirkham, Harold

    2010-04-28

    AbstractElectric power systems are entering a new realm of operations. Large amounts of variable generation tax our ability to reliably operate the system. Couple this with a greater reliance on the electricity network to serve consumer demand that is likely to rise significantly even as we drive for greater efficiency. Trade-offs between energy and environmental needs will be constantly negotiated, while a reliable supply of electricity needs even greater assurance in a world where threats of disruption have risen. Smart grid capabilities are being proposed to help address the challenges confronting system operations. This paper reviews the impact of smart grid functionality on transforming power system operations. It explores models for distributed energy resources (DER generation, storage, and load) that are appearing on the system. It reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be addressed as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  10. DOE SSL Postings: November 10, 2015, issue

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Parking Garage combined 252 metal halide (MH) luminaires that operated after dark with fluorescent luminaires that operated during daylight hours. In early 2013, the...

  11. The geologist and public policy issues, opportunities and obligations

    SciTech Connect (OSTI)

    Schmidt, W. )

    1993-03-01

    Historically, geologists have been perceived by the public as solely involved in resource exploration and production or geologic hazards mitigation. This generally included mining, oil drilling, landslide or earthquake (after the fact) comments, and rock or mineral collecting. These operations have come to be associated with land exploitation involving extraction of non-renewable resources, and often, in consequence, pollution. These generic activities may not currently be considered environmentally sound or politically correct. Because of the high visibility of environmental issues in recent years, geologists now have an opportunity to offer necessary input contributing to solutions for many of these problems. Indeed, geologists must be thought of as part of the solution, and thus alter public perception that geologists are facilitators of environmental damage. After all, who may better protect and conserve the earth and its environments than people trained in the Earth Sciences Governmental and industry or consulting geologists are now involved in a wide range of interpretative geologic decisions regarding a cross-section of activities aimed at development and conservation of lands and natural resources. These can be grouped in generalized categories including: waste disposal issues, water resources issues, land-use planning and zoning issues, and resource conservation or regulation requirements.

  12. Technical issues in licensing low-level radioactive waste facilities

    SciTech Connect (OSTI)

    Junkert, R.

    1993-03-01

    The California Department of Health Service spent two years in the review of an application for a low-level radioactive waste disposal facility in California. During this review period a variety of technical issues had to be evaluated and resolved. One of the first issues was the applicability and use of NRC guidance documents for the development of LLW disposal facilities. Other technical issues that required intensive evaluations included surface water hydrology, seismic investigation, field and numerical analysis of the unsaturated zone, including a water infiltration test. Source term verification became an issue because of one specific isotope that comprised more than 90% of the curies projected for disposal during the operational period. The use of trench liners and the proposed monitoring of the unsaturated zone were reviewed by a highly select panel of experts to provide guidance on the need for liners and to ensure that the monitoring system was capable of monitoring sufficient representative areas for radionuclides in the soil, soil gas, and soil moisture. Finally, concerns about the quality of the preoperational environmental monitoring program, including data, sample collection procedures, laboratory analysis, data review and interpretation and duration of monitoring caused a significant delay in completing the licensing review.

  13. Inquiry 2012, Issue 1 | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, Issue 1 Image Welcome to Inquiry 2012, Issue 1 Materials and Manufacturing This issue of Inquiry focuses on the vital link between materials and manufacturing. The Ames Laboratory is among the research centers that are the most consistently successful in the world at bringing advanced basic science together with manufacturing applications in the realm of materials. This kind of success in technology transfer requires many skills and capabilities, but the first of these is world-leading

  14. Inquiry 2014, Issue 1 | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, Issue 1 Welcome to Inquiry 2014, Issue 1 Behind the Science at The Ames Laboratory Image For every discovery, big or small, there are countless hours spent in the lab developing experiments, analyzing data and then trying to replicate the results. It takes experimentalists, characterization experts, and theorists all working together. Research at the Ames Laboratory exemplifies just this type of teamwork, as you'll see in the stories presented in this issue. While projects must have

  15. Key Issues in Tribal Energy Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Issues in Tribal Energy Development Common Issues, Causes and Solutions Douglas C. MacCourt, Ater Wynne LLP Chair Chair, Executive Committee Indian Law Practice Group Indian Law Section Ater Wynne LLP Oregon State Bar Association dcm@aterwynne.com www.aterwynne.com US DOE Tribal Energy Program/NREL Denver, Colorado October 25-28, 2010 Overview of Presentation * Overview of Handbook * A note on Alaska * Common development issues and solutions 1. Finding Early Stage Risk Capital * Necessary

  16. Abandoning pipelines working group regulatory issues

    SciTech Connect (OSTI)

    1997-03-01

    The history of hydrocarbon development in Louisiana and off its coast is one of the interdependence of technological innovation, entrepreneurial risk-taking, resource management, judicial decisions, legislation, marketing, employee good will, infrastructure and support services, coupled with favorable geologic structures that made early exploration and development relatively easy. Mariners sailing off the coast of Louisiana and Texas in the 1600`s recorded one of the earliest known natural oil seeps. They shrugged it off as unimportant, as there was no market for the substance they witnessed. The seepage, however, provided a tiny clue to the vast storehouse of hydrocarbons trapped in the earth`s crust extending from the uplands, through Louisiana`s swamps and marshes, and into the subaqueous habitats of the Gulf of Mexico-the world`s ninth largest body of water. In all cases, each move into a new geographic province required considerable change in operation philosophy and in the science supporting the exploration and development activity. As technology changed, or was developed to meet the industry`s needs, new frontiers were explored. However, with time-as is the case with any nonrenewable resource-fields and wells lost their productive life. They had to be abandoned. In fact, the Minerals Management Service suggests that within the next 10 years the offshore industry will remove 150 platforms per year, or nearly half of the current number of production units. The industry will be asked to dispose of nearly one unit every 2.4 days. If this is the case, abandonment issues are going to continue to surface.

  17. Climate Data Operators (CDO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Data Operators (CDO) Climate Data Operators (CDO) Description and Overview CDO is a large tool set for working on climate data. NetCDF 34, GRIB including SZIP compression, ...

  18. Relicensing and Environmental Issues Affecting Hydropower

    Reports and Publications (EIA)

    1998-01-01

    This article presents an overview of the hydropower industry and summarizes two recent events that have greatly influenced relicensing and environmental issues.

  19. Department of Energy Issues Funding Opportunity Announcements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    website. Media contact(s): (202) 586-4940 Addthis Related Articles Department of Energy Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education Department ...

  20. UESC Contracting Officer Issues Round-Up

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses issues contracting officers often face with utility energy service contracts (UESCs).

  1. Inquiry 2010, Issue 2 | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, Issue 2 Welcome to Inquiry 2010, Issue 2 "The Rare Earth Issue" This issue of Inquiry highlights rare-earth elements which play a vital role in just about every new technology from consumer electronics and cell phones to hybrid car batteries and generator motors in wind turbines. We discuss the Ames Laboratory's role as an international leader in rare-earth research and look at the current crisis caused by China's monopoly as the source of rare-earth oxides, on-going research

  2. Inquiry 2012, Issue 2 | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, Issue 2 Welcome to Inquiry 2012, Issue 2 Faces of the Ames Laboratory Image This issue of Inquiry focuses on some of the many faces that make up the Ames Laboratory. In fact, it is the people -- the researchers, support staff and students -- who make the Laboratory what it is. In this issue, we introduce nine of our researchers. You get to learn about their research but also find out a little about them personally. What motivates them, how they view their work and the Ames Laboratory. We also

  3. Reactor Materials Newsletter, Issue 2, May 2016

    Broader source: Energy.gov [DOE]

    Reactor Materials Newsletter - Issue 2 The Reactor Materials (RM) newsletter includes information about key nuclear materials programs and results from ongoing projects across the Office of Nuclear Energy.

  4. Technical Assessment Team Issues Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2015 Technical Assessment Team Issues Final Report This week the Department of Energy's Technical Assessment Team (TAT) visited Carlsbad and met with federal and contractor staff ...

  5. Emerging critical issues and technology needs

    SciTech Connect (OSTI)

    Arvizu, D.E.; Baker, A.B.

    1997-08-01

    In April 1997, a panel of experts representing private sector electricity companies met to identify emerging critical issues in the electricity sector and to ascertain how technology can help with these issues. Sandia National laboratories sponsored and conducted the meeting. The panel determined the top eight issues that will be critically important over the next five to ten years, when the electricity sector is expected to undergo a major transition in its market and the regulations that govern it. This report presents a discussion of the selection and ranking of critical issues identified by the panel and the research priorities that were identified.

  6. Department of Energy Issues Funding Opportunity Announcement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science and Engineering Fellowships and Scholarships Department of Energy Issues Funding Opportunity Announcement to U.S. Universities for Nuclear Science and Engineering ...

  7. Failure analysis issues in microelectromechanical systems (MEMS...

    Office of Scientific and Technical Information (OSTI)

    Title: Failure analysis issues in microelectromechanical systems (MEMS). Failure analysis and device characterization of MEMS components are critical steps in understanding the ...

  8. Energy Department Issues Green Building Certification System...

    Energy Savers [EERE]

    Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building Certification System ...

  9. Calutron Operators | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operators Calutron Operators Young women recruited to operate the calutrons

  10. Paducah Operations Timeline | Department of Energy

    Energy Savers [EERE]

    Operations Timeline Paducah Operations Timeline Paducah Operations Timeline

  11. ARM - NSA Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlaskaNSA Operations NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts NSA Operations Barrow Facility Instrumentation at the Barrow facility operates 7 days a week, 24 hours a day, year around. The instrumentation is routinely maintained using an extensive "daily rounds" checklist 5 days a week,

  12. SWPF Crane Lift Operation

    SciTech Connect (OSTI)

    2010-01-01

    A multiple vview shot of the SWPF crane lift operation at the Savannah River Site. Funded by the Recovery Act.

  13. Identification and Evaluation of Human Factors Issues Associated with Emerging Nuclear Plant Technology

    SciTech Connect (OSTI)

    O'Hara,J.M.; Higgins,J.; Brown, William S.

    2009-04-01

    This study has identified human performance research issues associated with the implementation of new technology in nuclear power plants (NPPs). To identify the research issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were prioritized into four categories based on evaluations provided by 14 independent subject matter experts representing vendors, utilities, research organizations and regulators. Twenty issues were categorized into the top priority category. The study also identifies the priority of each issue and the rationale for those in the top priority category. The top priority issues were then organized into research program areas of: New Concepts of Operation using Multi-agent Teams, Human-system Interface Design, Complexity Issues in Advanced Systems, Operating Experience of New and Modernized Plants, and HFE Methods and Tools. The results can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas to support the safe operation of new NPPs.

  14. Richland Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unique in that it was issued by RL in 1996, and has been maintained and interpreted by a Focus Group with invited membership by technical experts from the Office of River...

  15. Safety Issues with Hydrogen as a Vehicle Fuel

    SciTech Connect (OSTI)

    Cadwallader, Lee Charles; Herring, James Stephen

    1999-10-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  16. Safety Issues with Hydrogen as a Vehicle Fuel

    SciTech Connect (OSTI)

    L. C. Cadwallader; J. S. Herring

    1999-09-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  17. Product and Service Directory 2004 Issue

    SciTech Connect (OSTI)

    Agnihotri, N.K.

    2003-12-01

    This annual November-December issue of the Nuclear Plant Journal serves as directory of information resources on products and services related to the nuclear power industry. The directory consists of over 3,000 products and services submitted by over 300 suppliers worldwide during October and November 2003. The issue is divided into 4 main areas: Products and Services, Corporate Capabilities, and Suppliers.

  18. IEEE 1547 Series of Standards: Interconnection Issues; Preprint

    SciTech Connect (OSTI)

    Basso, T.; DeBlasio, R.

    2003-09-01

    IEEE 1547TM 2003 Standard for Interconnecting Distributed Resources With Electric Power Systems is the first in the 1547 series of planned interconnection standards. Major issues and a wealth of constructive dialogue arose during 1547 development. There was also a perceived increased vitality in updating complementary IEEE standards and developing additional standards to accommodate modern electrical and electronics systems and improved grid communications and operations. Power engineers and other stakeholders looking to the future are poised to incorporate 1547 into their knowledge base to help transform our nation's aging distribution systems while alleviating some of the burden on existing transmission systems.

  19. Joint Operations - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser Development

  20. DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances December 20, 2005 - 11:44am Addthis DOE finds emergency; determines plant will help electric reliability WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide

  1. DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances Docket No. EO-05-01. Order No. 202-05-3: Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest

  2. Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1991-01-01

    Collectively, the organizations participating in the Site Operator Program have over forty years of EV experience and have operated electric vehicles (EVs) for over 600,000 miles, providing the most extensive EV operating and knowledge base in the country. The Site Operator Program is intended to provide financial and technical support and organizational resources to organizations active in the advancement of electric vehicles. Support is provided for the demonstration of vehicles and the test and evaluation of vehicles, components, and batteries. Support is also provided for the management and support of the program for the participating organizations. The Program provides a forum for participants to exchange information among the group, as well as with vehicle and equipment manufacturers and suppliers, and the public. A central data base at the Idaho National Engineering Laboratory provides a repository for-data on the vehicles being operated by the Program participants. Data collection emphasis is in the areas of operations, maintenance, and life cycle costs.

  3. Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1991-12-31

    Collectively, the organizations participating in the Site Operator Program have over forty years of EV experience and have operated electric vehicles (EVs) for over 600,000 miles, providing the most extensive EV operating and knowledge base in the country. The Site Operator Program is intended to provide financial and technical support and organizational resources to organizations active in the advancement of electric vehicles. Support is provided for the demonstration of vehicles and the test and evaluation of vehicles, components, and batteries. Support is also provided for the management and support of the program for the participating organizations. The Program provides a forum for participants to exchange information among the group, as well as with vehicle and equipment manufacturers and suppliers, and the public. A central data base at the Idaho National Engineering Laboratory provides a repository for-data on the vehicles being operated by the Program participants. Data collection emphasis is in the areas of operations, maintenance, and life cycle costs.

  4. Cask fleet operations study

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The Nuclear Waste Policy Act of 1982 assigned to the Department of Energy's (DOE) Office of Civilian Waste Management the responsibility for disposing of high-level waste and spent fuel. A significant part of that responsibility involves transporting nuclear waste materials within the federal waste management system; that is, from the waste generator to the repository. The lead responsibility for transportation operations has been assigned to Oak Ridge Operations, with Oak Ridge National Laboratory (ORNL) providing technical support through the Transportation Operations Support Task Group. One of the ORNL support activities involves assessing what facilities, equipment and services are required to assure that an acceptable, cost-effective and safe transportation operations system can be designed, operated and maintained. This study reviews, surveys and assesses the experience of Nuclear Assurance Corporation (NAC) in operating a fleet of spent-fuel shipping casks to aid in developing the spent-fuel transportation system.

  5. Operations Research Analysts

    U.S. Energy Information Administration (EIA) Indexed Site

    Operations Research Analysts The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Operations Research Analyst, whose work is associated with the development and main- tenance of energy modeling systems. Responsibilities: Operations Research Analysts perform or participate in one or

  6. NNSA Issues Final Request for Proposals for Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contractor | National Nuclear Security Administration | (NNSA) Issues Final Request for Proposals for Los Alamos National Laboratory Contractor May 19, 2005 WASHINGTON, DC -- The Department of Energy's (DOE) National Nuclear Security Administration (NNSA) has issued a final Request for Proposals (RFP) for the competitive selection of a management and operating contractor for Los Alamos National Laboratory located in Los Alamos, NM. In April, 2003 former Secretary of Energy Spencer Abraham

  7. Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of 10 CFR 830

    Office of Energy Efficiency and Renewable Energy (EERE)

    Section 1.3 of the Operational Procedure entitled Enforcement of DOE Nuclear Safety Requirements under Price-Anderson Amendments Act of 1988, published in June 1998, provides the opportunity for the Office of Enforcement and Investigation (EH-Enforcement) to issue clarifying guidance in a timely manner with respect to the processes used in enforcement activities. This enforcement guidance focuses on several issues related to applicability of 10 CFR 830 that have been observed in enforcement and investigation activities.

  8. H2 Safety Snapshot - Vol. 2, Issue 2, July 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2, July 2011 H2 Safety Snapshot - Vol. 2, Issue 2, July 2011 This third issue describes hazard analysis in H2 facility design and operations. h2_snapshot_v2i2.pdf (761.1 KB) More Documents & Publications DOE-HDBK-1100-2004 Safety Planning Guidance for Hydrogen and Fuel Cell Projects Safety Planning Guidance for Hydrogen and Fuel Cell Projects

  9. DOE Issues Request for Information on Medium- and Heavy-Duty Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Truck Targets | Department of Energy Medium- and Heavy-Duty Fuel Cell Electric Truck Targets DOE Issues Request for Information on Medium- and Heavy-Duty Fuel Cell Electric Truck Targets June 10, 2016 - 3:45pm Addthis The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office (FCTO) has issued a request for information (RFI) to obtain feedback and opinions from truck operators, truck and storage tank manufacturers, fuel cell manufacturers, station equipment designers, and

  10. Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply 1. Summary 2. Electricity Reliability Issues in California 3. Petroleum Refineries 4. Constraints Outside the Refinery Gate 5. Petroleum Product Prices and Supply Disruptions 6. Natural Gas 7. End Notes 8. Contacts 1. Summary Industry electric reliability organizations, the California Energy Commission, and the California Independent System Operator, expect California to be subject to rotating electricity outages in

  11. DOE General Counsel Issues Arbitration Guidance for Management and Operations Contractors

    Broader source: Energy.gov [DOE]

    Washington, DC - The Office of the General Counsel, in conjunction with the Office of General Counsel of the NNSA, has reviewed the question of whether Department of Energy contractors can include...

  12. Energy Department Issues Draft Request for Proposals for Operation of its

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During Emergencies and Cost-Effective Energy Efficiency Standards | Department of Energy Employees Recognized for Power Restoration Assistance During Emergencies and Cost-Effective Energy Efficiency Standards Energy Department Employees Recognized for Power Restoration Assistance During Emergencies and Cost-Effective Energy Efficiency Standards May 7, 2014 - 11:02am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department is pleased to announce that four employees have

  13. Plutonium solution storage in plastic bottles: Operational experience and safety issues

    SciTech Connect (OSTI)

    Conner, W.V.

    1995-03-15

    Computer spread sheet models were developed to gain a better understanding of the factors that lead to pressurization and failure of plastic bottles containing plutonium solutions. These models were developed using data obtained from the literature on gas generation rates for plutonium solutions. Leak rates from sealed plastic bottles were obtained from bottle leak tests conducted at Rocky Flats. Results from these bottle leak tests showed that narrow mouth four liter bottles will seal much better than wide mouth four liter bottles. The gas generation rate and leak rate data were used to develop models for predicting the rate of pressurization and maximum pressures expected in sealed bottles of plutonium solution containing various plutonium and acid concentrations. The computer models were used to develop proposed time limits for storing or transporting plutonium solutions in sealed plastic bottles. For plutonium solutions containing < 1.5 g/l, maximum safe storage times from 4 weeks to 12 months are proposed. The maximum safe storage times vary depending upon the plutonium concentration in the solution. Low concentration plutonium solutions can be stored safely for longer periods of time than high concentration plutonium solutions. For solutions containing > 1.5 g/l plutonium, storage in sealed bottles should not be allowed. However, transportation of higher concentration plutonium solution in sealed bottles is required, and safe transportation times of 1 shift to 6 days are proposed.

  14. Seismic issues at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Fricke, K.E. )

    1989-11-01

    A seismic expert workshop was held at the Paducah Gaseous Diffusion Plant (PGDP) on March 13--15, 1989. the PGDP is operated by Martin Marietta Energy Systems, Inc. for the United States Department of Energy (DOE). During the last twenty years the design criteria for natural phenomenon hazards has steadily become more demanding at all of the DOE Oak Ridge Operations (ORO) sites. The purpose of the two-day workshop was to review the seismic vulnerability issues of the PGDP facilities. Participants to the workshop included recognized experts in the fields of seismic engineering, seismology and geosciences, and probabilistic analysis, along with engineers and other personnel from Energy Systems. A complete list of the workshop participants is included in the front of this report. 29 refs.

  15. APS Operational Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Downtime Log Yearly Operation Statistics 2016 Statistics 2015 Statistics 2014 Statistics 2013 Statistics 2012 Statistics 2011 Statistics 2010 Statistics 2009 Statistics 2008...

  16. Operator interface for vehicles

    DOE Patents [OSTI]

    Bissontz, Jay E

    2015-03-10

    A control interface for drivetrain braking provided by a regenerative brake and a non-regenerative brake is implemented using a combination of switches and graphic interface elements. The control interface comprises a control system for allocating drivetrain braking effort between the regenerative brake and the non-regenerative brake, a first operator actuated control for enabling operation of the drivetrain braking, and a second operator actuated control for selecting a target braking effort for drivetrain braking. A graphic display displays to an operator the selected target braking effort and can be used to further display actual braking effort achieved by drivetrain braking.

  17. TYPE OF OPERATION

    Office of Legacy Management (LM)

    & RESIDUE 0 AECMED INVOLVEME?JT AT SITE ...----------- Control a Health Physics Protection 0 AECfMED managed operations G Little or None 0 AEUMED respansible far C ...

  18. TYPE OF OPERATION

    Office of Legacy Management (LM)

    . .' .,Ec-itkED I' NVULVEFY l- AT SITE '---------... .Control c Health Physics Protection 0 AECMED managed operations G Little or None :kf AECMED responsible for ...

  19. ARM - Historical Operational Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For a complete description of hours for each site, please refer to the current ARM Climate Research Facility Operations Quarterly Report. The tables below provide the...

  20. Transmission and Storage Operations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission and Storage Operations Natural Gas Infrastructure R&D and Methane Mitigation Workshop Mary Savalle, PMP, LSSGB Compression Reliability Engineer November 12, 2014 ...

  1. APS User Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schedules APS Schedule Useful Links Beamline Design Library (former Design Exchange) Machine Status Link Bunch Clock Information APS Systems Status Storage Ring Operating Status...

  2. ARM - AMF Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 AMF Operations Members of the AMF1 installation team prepare the...

  3. Operating Experience Summaries

    Broader source: Energy.gov [DOE]

    The Office of Environment, Health, Safety and Security (AU) Office of Analysis publishes the Operating Experience Summary to exchange lessons-learned information between DOE facilities.

  4. Operations Committee Report

    Broader source: Energy.gov (indexed) [DOE]

    Presented to the Commission to Review Effectiveness of National Energy Laboratories Jeff Smith Deputy for Operations Oak Ridge National Laboratory February 24, 2015 The Importance ...

  5. Status of safety issues at licensed power plants: TMI Action Plan requirements; unresolved safety issues; generic safety issues; other multiplant action issues. Supplement 3

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, the NRC established a program for publishing an annual report on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was initially compiled and reported in three NUREG-series volumes. Volume 1, published in March 1991, addressed the status of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). The first annual supplement, which combined these volumes into a single report and presented updated information as of September 30, 1991, was published in December 1991. The second annual supplement, which provided updated information as of September 30, 1992, was published in December 1992. Supplement 2 also provided the status of licensee implementation and NRC verification of other multiplant action (MPA) issues not related to TMI Action Plan requirements, USIs, or GSIs. This third annual NUREG report, Supplement 3, presents updated information as of September 30, 1993. This report gives a comprehensive description of the implementation and verification status of TMI Action Plan requirements, safety issues designated as USIs, GSIs, and other MPAs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. Additionally, this report serves as a follow-on to NUREG-0933, ``A Prioritization of Generic Safety Issues,`` which tracks safety issues until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees.

  6. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-09-01

    The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to

  7. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2001-10-01

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash

  8. Enforcement Guidance Supplement 98-02: DOE Enforcement Activities where Off-site Transportation Issues are also Present

    Broader source: Energy.gov [DOE]

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity to the Office of Enforcement and Investigation to issue clarifying guidance from time to...

  9. Current Status of Health and Safety Issues of Sodium/Metal Chloride (Zebra) Batteries

    SciTech Connect (OSTI)

    Trickett, D.

    1998-12-15

    This report addresses environmental, health, and safety (EH&S) issues associated with sodium/ metal chloride batteries, in general, although most references to specific cell or battery types refer to units developed or being developed under the Zebra trademark. The report focuses on issues pertinent to sodium/metal chloride batteries and their constituent components; however, the fact that some ''issues'' arise from interaction between electric vehicle (EV) and battery design compels occasional discussion amid the context of EV vehicle design and operation. This approach has been chosen to provide a reasonably comprehensive account of the topic from a cell technology perspective and an applications perspective.

  10. PARC Periodical | Vol. 6, Issue 4 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARC Periodical | Vol. 6, Issue 4 April 6, 2015 PARC Periodical | Vol. 6, Issue 4 VIEW PERIODICAL HERE

  11. PARC Periodical | Volume 6, Issue 5 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Volume 6, Issue 5 June 3, 2015 PARC Periodical | Volume 6, Issue 5 VIEW ARTICLE HERE

  12. Business Operations Organization Chart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Business Operations Organization Chart Office of Business Operations Michael Budney, Director Project Management Coordination Office Scott Hine, Director Information and Technology Services Office Steve VonVital, Director (Acting) Workforce Management Office Jennifer Blankenheim, Director Golden Field Office Timothy Meeks, Director

  13. California Water Rights Issues | Open Energy Information

    Open Energy Info (EERE)

    Water Rights IssuesLegal Published NA Year Signed or Took Effect 2104 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  14. UESC Contracting Officer Issues Round-Up

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers issues and questions contracting officers may have about utility energy service contracts (UESCs).

  15. Energy Department Issues Tribal Energy System Vulnerabilities...

    Broader source: Energy.gov (indexed) [DOE]

    202-586-4940 DOENews@hq.doe.gov The U.S. Department of Energy issued a report today showing that threats to tribal energy infrastructure are expected to increase as climate change ...

  16. Stirling machine operating experience

    SciTech Connect (OSTI)

    Ross, B.; Dudenhoefer, J.E.

    1991-01-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that Stirling machines are capable of reliable and lengthy lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and were not expected to operate for any lengthy period of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered.

  17. Research News January 2015, Issue 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments and Models Help Predict CO2 Solubility in Brines page 2 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY From NETL's Office of Research & Development Researchnews June 2015, Issue 9 2 Contents June 2015, Issue 9 2 Feature Story: Experiments and Models Help Predict CO2 Solubility in Brines 4 Novel Techniques for Field Measurement of CO2 in Groundwater 5 New Tool Predicts Behavior of Materials Used in CO2 Capture Processes 6 New Capability Takes Sensor Fabrication to a New

  18. Research News July 2015, Issue 10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centrifugal Force Improves Chemical Looping Reactor Performance page 2 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY From NETL's Office of Research & Development Researchnews October 2015, Issue 13 Contents October 2015, Issue 13 2 Feature Story: Centrifugal Force Improves Chemical Looping Reactor Performance 4 Medical Alloy Nets Another National Award 5 Tapping the Earth's Heat- Regional Workshop Explores Geothermal Possibilities 6 Imagination and Persistence: Words to Live by and

  19. Research News July 2015, Issue 10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Equation Bolsters Modeling Code page 5 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY From NETL's Office of Research & Development Researchnews September 2015, Issue 12 Contents September 2015, Issue 12 2 Focus Story: Multiphase Flow Science Solves a Nuclear Site Cleanup Challenge 4 Going Airborne to Find Old Well Sites and Detect Greenhouse Gas Leaks 5 New Equation Bolsters Modeling Code 6 Research Sheds Light on Sensor Material Behavior in Harsh Environments 7 West Virginia

  20. Permeation, Diffusion, Solubility Measurements: Results and Issues |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Permeation, Diffusion, Solubility Measurements: Results and Issues Permeation, Diffusion, Solubility Measurements: Results and Issues Research Objectives: To understand the hydrogen transport behavior Under conditions relevant to hydrogen delivery infrastructure pipeline_group_feng_ms.pdf (1.93 MB) More Documents & Publications Hydrogen Embrittlement Fundamentals, Modeling, and Experiment From Cleanup to Stewardship Results...National Institute of Standards and

  1. Los Alamos identifies internal material control issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internal material control issue Los Alamos identifies internal material control issue The error relates to internal inventory and accounting that documents movement of sensitive materials within a small portion of Technical Area 55. February 26, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  2. Inquiry 2011, Issue 1 | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Welcome to Inquiry 2011, Issue 1 "Materials Discovery, Design and Synthesis" This issue of Inquiry highlights the process of systematically developing new materials. The process involves theoretical modeling, informed experimentation and precise characterization to predict what properties a material will have, actually create the material and then measure the properties to determine the success of the synthesis. This new approach to materials development relies on close integration

  3. Inquiry 2011, Issue 2 | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Welcome to Inquiry 2011, Issue 2 Materials Characterization This issue of Inquiry focuses on materials characterization, the vast array of techniques that Ames Laboratory scientists use to identify the various characteristics of materials that in turn give those materials specific properties. As you can see by the cover, we are celebrating Ames Laboratory researcher Dan Shechtman's selection as the winner of the 2011 Nobel Prize in Chemistry for the discovery of quasicrystals. But it was while

  4. Inquiry 2013, Issue 2 | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, Issue 2 Welcome to Inquiry 2013, Issue 2 The Cutting-Edge Technology at The Ames Laboratory Image Materials characterization has always been a hallmark of the Ames Laboratory. Determining a material's specific properties - its crystal structure, electrical and magnetic properties, how it moves through various phases - gives scientists a better understanding of why it performs or behaves in a certain way and allows them to predict how other materials may behave in similar or different manners.

  5. DOE Issues Energy Sector Cyber Organization NOI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues National Energy Sector Cyber Organization Notice of Intent February 11, 2010 The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector Cyber Organization, envisioned as a partnership between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security

  6. Call issued for Proton Radiography Facility proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call issued for Proton Radiography Facility proposals Call issued for Proton Radiography Facility proposals The proposal deadline is Feb. 6 for experiments to be carried out during Fiscal Year 2016 (Oct. 1, 2015 to Sept. 30, 2016), with consideration for extensions into FY17. January 5, 2015 Amy Clarke and Seth Imhoff of Materials Technology-Metallurgy (MST-6) align a copper density calibration object for a proton radiography experiment. Amy Clarke and Seth Imhoff of Materials

  7. Stirling machine operating experience

    SciTech Connect (OSTI)

    Ross, B.; Dudenhoefer, J.E.

    1994-09-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that stirling machines are capable of reliable and lengthy operating lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and are not expected to operate for lengthy periods of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered. The record in this paper is not complete, due to the reluctance of some organizations to release operational data and because several organizations were not contacted. The authors intend to repeat this assessment in three years, hoping for even greater participation.

  8. CX-000458: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel CombustionCX(s) Applied: B3.6Date: 12/07/2009Location(s): El Paso, TexasOffice(s): Fossil Energy, National Energy Technology Laboratory

  9. Environmental concerns gaining importance in industry operations

    SciTech Connect (OSTI)

    Not Available

    1992-07-06

    This paper reports that environmental concerns have leapt to the forefront of industry's concerns in operating in Latin America. The United Nations Conference on Environment and Development in Rio de Janeiro June 3-14 focused a strong world spotlight on the region's environmental and commercial resources. Protection of the region's rain forests, which accounts for a huge share of the world's total, is emerging as an especially contentious issue. Ecuador's Oriente region may well prove the litmus test of how or whether oil and gas companies are able to operate in Latin American rain forests. Controversy over industry operations in the Oriente have heated to the point that environmentalist and native groups have routinely picketed company offices in Quito and used mass fundraiser mailings in North America.

  10. Operations managers conference: summary of proceedings

    SciTech Connect (OSTI)

    None,

    1982-02-01

    The Association for Energy Systems, Operations, and Programming (AESOP) was created to provide Department of Energy (DOE) and DOE-contractor management personnel with a means for acquiring and exchanging information concerning effective management of ADP resources and personnel as well as a variety of computer applications. AESOP serves as a forum for the data processing management of more than 50 DOE offices and private corporations under contract to DOE. AESOP Operations Managers Conferences are held approximately every 18 months. Conference topics include personnel problems, training situations, reorganization plans, and work scheduling. Security and other issues affecting ADP procedures and personnel are also often addressed. Papers published in this volume of the proceedings have been summarized from speeches and discussions that were presented at the seventh AESOP Operations Managers Conference.

  11. Operations & Administration - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat & Cool » Heat Pump Systems » Operating and Maintaining Your Heat Pump Operating and Maintaining Your Heat Pump Changing filters regularly is an important part of maintaining a heat pump system. | Photo courtesy of ©iStockphoto/BanksPhotos Changing filters regularly is an important part of maintaining a heat pump system. | Photo courtesy of ©iStockphoto/BanksPhotos Proper operation of your heat pump will save energy. Do not set back the heat pump's thermostat if it causes the

  12. FIA-16-0036 - In the Matter of International Union of Operating Engineers,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local 370 | Department of Energy 6 - In the Matter of International Union of Operating Engineers, Local 370 FIA-16-0036 - In the Matter of International Union of Operating Engineers, Local 370 On July 7, 2016, OHA issued a decision denying an Appeal from a FOIA determination issued by the Richland Operations Office (ROO). In its determination, the ROO released one document, a spreadsheet containing badge information for employees of a subcontractor at the Hanford Site. However, the ROO also

  13. Reduction/Transformation Operators

    Energy Science and Technology Software Center (OSTI)

    2006-09-01

    RTOp (reduction/transformation operators) is a collection of C++ software that provides the basic mechanism for implementinig vector operations in a flexible and efficient manner. This is the main interface utilized by Thyra to allow for the specification of specific vector reduction and/or transformation operations. The RTOp package contains three different types of software. (a) a small number of interoperability interfaces. (b) support software including code for the parallel SPMD mode based on only Teuchos::Comm(and notmore » MPl directly(, and (c) a library of pre-implemented RTOp subclasses for everything from simple AXPYs and norms, to more specialized vector operations. RTOp allows an algorithm developer to implement their own RTOp subclasses in a way that is independent from any specific serial, parallel, out-of-core or other type of vector implementation. RTOp is a required package by Thyra and MOOCHO. (c)« less

  14. TYPE OF OPERATION

    Office of Legacy Management (LM)

    b RESIDUE q GOUT LECISED CONTReCTOR CONTRCICTOR -EEL ---LEeSED Control Health Physics 0 AEWMED managed operations q Little or No 0 AECMED responsible for AEWMED resp ...

  15. TYPE OF OPERATION

    Office of Legacy Management (LM)

    181 WASTE & RESIDUE q ,r . ,, A&MED I NVOLVEMENI-AT SITE I - . : Control 1 Health Physics Protection ' I, 0 AEWHED managed operations 0 Little or None 13 AEWHED responsible for ...

  16. TYPE OF OPERATION

    Office of Legacy Management (LM)

    WASTE G RESIDUE a i-CtlED INVOLVE"ENT-AT SITE -'---... Control ci Health Physics Protection 0 AECtlED managed operations c Little or None G AECMED rea' poneible for ...

  17. Operations Security Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-04-30

    To establish policies, responsibilities and authorities for implementing and sustaining the Department of Energy (DOE) Operations Security (OPSEC) Program. Cancels DOE O 5632.3B. Canceled by DOE O 471.2 of 9-28-1995.

  18. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Admin Chg 2, dated 12-3-14, supersedes Admin Chg 1.

  19. Deputy Chief Operating Officer

    Broader source: Energy.gov [DOE]

    This position will be filled at either Morgantown, WV or Pittsburgh, PA. A successful candidate in this position will serve as the Deputy Chief Operating Officer assigned to the Laboratory...

  20. Corporate Operating Experience Program

    Broader source: Energy.gov [DOE]

    The DOE Corporate Operating Experience Program helps to prevent the recurrence of significant adverse events/trends by sharing performance information, lessons learned and good practices across the DOE complex.

  1. Operating plan FY 1998

    SciTech Connect (OSTI)

    1997-10-01

    This document is the first edition of Argonne`s new Operating Plan. The Operating Plan complements the strategic planning in the Laboratory`s Institutional Plan by focusing on activities that are being pursued in the immediate fiscal year, FY 1998. It reflects planning that has been done to date, and it will serve in the future as a resource and a benchmark for understanding the Laboratory`s performance. The heart of the Institutional Plan is the set of major research initiatives that the Laboratory is proposing to implement in future years. In contrast, this Operating Plan focuses on Argonne`s ongoing R&D programs, along with cost-saving measures and other improvements being implemented in Laboratory support operations.

  2. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, 6-25-13

  3. Protection Program Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-14

    This Order establishes requirements for the management and operation of the Department of Energy (DOE) Federal Protective Forces (FPF), Contractor Protective Forces (CPF), and the Physical Security of property and personnel under the cognizance of DOE.

  4. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-06-13

    This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

  5. Continuity of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-14

    The notice defines requirements and responsibilities for continuity of operations planning within the DOE to ensure the capability to continue essential Departmental functions across a wide range of all hazard emergencies. Does not cancel other directives.

  6. Advances in coiled-tubing operating systems

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II

    1997-06-01

    The expansion of coiled tubing (CT) applications into spooled flowlines, spooled completions, and CT drilling continues to grow at an accelerated rate. For many users within the oil and gas industry, the CT industry appears to be poised on the threshold of the next logical step in its evolution, the creation of a fully integrated operating system. However, for CT to evolve into such an operating system, the associated services must be robust and sufficiently reliable to support the needs of exploration, development drilling, completion, production management, and wellbore-retirement operations both technically and economically. The most critical hurdle to overcome in creating a CT-based operating system is a fundamental understanding of the operating scope and physical limitations of CT technology. The complete list of mechanisms required to advance CT into an operating system is large and complex. However, a few key issues (such as formal education, training, standardization, and increased levels of experience) can accelerate the transition. These factors are discussed.

  7. Identification of issues relevant to the first recertification of WIPP

    SciTech Connect (OSTI)

    Allen, Lawrence E.; Silva, Matthew K.; Channell, James K.

    2002-09-30

    One goal of the WIPP Land Withdrawal Act was to assure the safe disposal of the nation’s defense transuranic waste into a deep repository in southeast New Mexico. The governing legislation required the U.S. Department of Energy (DOE) to provide to the U.S. Environmental Protection Agency (EPA) analyses of the anticipated performance of the repository. Disposal operations could not begin until the EPA determined that the project demonstrated compliance with EPA Standards (40 CFR 191) and EPA Criteria (40 CFR 194) for such disposal. The Land Withdrawal Act inherently recognized that the EPA Certification would have to rely on best available knowledge at the time when the application was submitted. The Act also recognized that after the initial certification of WIPP and start of disposal operations, operating experience and ongoing research would result in new technical and scientific information. Thus, the legislation requires recertification of the WIPP every five years, following the first receipt of waste. This report updates issues that the Environmental Evaluation Group (EEG) considers important as the Department of Energy (DOE) works towards the first recertification. These issues encompass a variety of technical areas including actinide solubility, fluid injection scenarios, solution mining, Culebra flow and transport, spallings modeling, and non-random waste emplacement. Given the 24,000-year half life of 239Pu, understanding the characteristics of plutonium in the WIPP environment is obviously important to the validity of long-term performance assessment of the repository. Some uncertainty remains in the understanding of the persistence of higher oxidation states because of reliance on modeling (with its associated assumptions) and limited experimental results. The EEG recommends additional experimental work towards parameters for a proposed conceptual kinetic model of plutonium solubility. In addition, the EEG recommends an intrusion scenario

  8. Richland Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    /: -. !~t. Department of Energy Richland Operations Office P.O. Box 550 Richland, Washington 99352 Nav 0 4 ?nn~ 05-AMCP-OO46 Mr. Todd Martin, Chair Hanford Advisory Board 1933 Jadwin, Suite 135 Richland, Washington 99352 Dear Mr. Martin: HANFORD ADVISORY BOARD (HAB) ADVICE #166 -FUND U PLANT AREA REMEDIATION ACTIVITIES In response to your letter dated September 10, 2004, the U.S. Department of Energy, Richland Operations Office (RL), appreciates your recommendations contained in HAB Consensus

  9. Operations | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Welcome to the Ames Laboratory and the operations pages of our website. Our website has recently been revised starting with the front page, the science division pages and a few pages needed for public interface. If you find that the pages you need are not available please contact the Manager in charge (i.e., Purchasing, Sponsored Programs, etc.) and we will get you the information you need.

  10. Crane Operation Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crane Operational Training Crane Operational Safety Test NOTE: All Training and Testing Material is for LSU CAMD Users ONLY! Crane Training - Information Reduces Risk Crane training is required for all individuals who wish to use the crane at CAMD. This manual is presented as a guide and may be used for retraining/re-certification only. Initial training in crane safety requires an appointment made through CAMD safety and a minimum of a two hour time commitment to learn about general crane safety

  11. Issues in midterm analysis and forecasting 1998

    SciTech Connect (OSTI)

    1998-07-01

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

  12. EM_newsletter_IssueNo10.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... where he was a nuclear power plant mechanical operator for ... facility with two steam boilers and will be ... new equipment better matched to SRS's load requirements. ...

  13. Outage management and health physics issue, 2007

    SciTech Connect (OSTI)

    Agnihotri, Newal

    2007-05-15

    The focus of the May-June issue is on outage management and health physics. Major articles/reports in this issue include: India: a potential commercial opportunity, a U.S. Department of Commerce Report, by Joe Neuhoff and Justin Rathke; The changing climate for nuclear energy, by Skip Bowman, Nuclear Energy Insitute; Selecting protective clothing, by J. Mark Price, Southern California Edison; and Succssful refurbishment outage, by Sudesh K. Gambhir, Omaha Public Power District. Industry innovation articles in this issue are: Containment radiation monitoring spiking, by Michael W. Lantz and Robert Routolo, Arizona Public Service Company; Improved outage performance, by Michael Powell and Troy Wilfong, Arizona Public Service Company, Palo Verde Nuclear Generating Station; Stop repacking valves and achieve leak-free performance, by Kenneth Hart, PPL Susquehanna LLC; and Head assembly upgrade package, by Timothy Petit, Dominion Nuclear.

  14. Weapons dismantlement issues in independent Ukraine

    SciTech Connect (OSTI)

    Zack, N.R. . Safeguards Systems Group); Kirk, E.J. )

    1995-02-01

    The American Association for the Advancement of Science sponsored a seminar during September 1993 in Kiev, Ukraine, titled, Toward a Nuclear-Free Future--Barriers and Problems.'' It brought together Ukrainians, Belarusians and Americans to discuss the legal, political, economic, technical, and safeguards and security dimensions of nuclear weapons dismantlement and destruction. US representatives initiated discussions on legal and treaty requirements and constraints, safeguards and security issues surrounding dismantlement, storage and disposition of nuclear materials, warhead transportation, and economic considerations. Ukrainians gave presentations on arguments for and against the Ukraine keeping nuclear weapons, the Ukrainian Parliament's nonapproval of START 1, alternative strategies for dismantling silos and launchers, and economic and security implications of nuclear weapons removal from the Ukraine. Participants from Belarus discussed proliferation and control regime issues. This paper will highlight and detail the issues, concerns and possible impacts of the Ukraine's dismantlement of its nuclear weapons.

  15. Plant maintenance and outage management issue, 2005

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2005-01-15

    The focus of the January-February issue is on plant maintenance and outage managment. Major articles/reports in this issue include: Dawn of a new era, by Joe Colvin, Nuclear Energy Institute (NEI); Plant profile: Beloyarsk NPP, Russia, by Nikolai Oshkanov, Beloyarsk NPP, Russia; Improving economic performance, by R. Spiegelberg-Planner, John De Mella, and Marius Condu, IAEA; A model for improving performance, by Pet Karns, MRO Software; ASME codes and standards, by Shannon Burke, ASME International; and, Refurbishment programs, by Craig S. Irish, Nuclear Logistics, Inc.

  16. Decontamination, decommissioning, and vendor advertorial issue, 2006

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2006-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: NPP Krsko revised decommissioning program, by Vladimir Lokner and Ivica Levanat, APO d.o.o., Croatia, and Nadja Zeleznik and Irena Mele, ARAO, Slovenia; Supporting the renaissance, by Marilyn C. Kray, Exelon Nuclear; Outage world an engineer's delight, by Tom Chrisopher, Areva, NP Inc.; Optimizing refueling outages with R and D, by Ross Marcoot, GE Energy; and, A successful project, by Jim Lash, FirstEnergy.

  17. DOE Issues Request for Proposals for Hanford Site Occupational Medical Services

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – The Department of Energy (DOE) today issued a Request for Proposals (RFP) for an Occupational Medical Services contract at the Hanford Site. The solicitation is for a small-business contractor to perform occupational medical services for the DOE Richland Operations Office and Office of River Protection.

  18. Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues

    SciTech Connect (OSTI)

    Kruger, A.A.

    1995-01-01

    This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

  19. Chapter 10: FTU Operation

    SciTech Connect (OSTI)

    Angelini, B.M.; Apicella, M.L.; Buceti, G.; Centioli, C.; Crisanti, F.; Iannone, F.; Mazza, G.; Mazzitelli, G.; Panella, M.; Vitale, V.

    2004-05-15

    Some specific points of the Frascati Tokamak Upgrade (FTU) operation are presented for plasma performance as well as for the machine availability and the development of new tools needed to operate in a complex scenario needed for tokamak research. The different techniques adopted for wall conditioning of the FTU are reviewed. Plasmas with low Z{sub eff} have been achieved including those at low density and high additional heating power. The obtained experimental results are discussed in terms of better operation and plasma performance achieved. As with any other large - and thus long-lasting - experiments, a mixture of old and new technological solutions inserted in an open source framework characterizes the FTU data control and acquisition systems. We give some information on the original architecture and try to detail its current state. The high level of reliability presently achieved is discussed.

  20. About APPLE II Operation

    SciTech Connect (OSTI)

    Schmidt, T.; Zimoch, D.

    2007-01-19

    The operation of an APPLE II based undulator beamline with all its polarization states (linear horizontal and vertical, circular and elliptical, and continous variation of the linear vector) requires an effective description allowing an automated calculation of gap and shift parameter as function of energy and operation mode. The extension of the linear polarization range from 0 to 180 deg. requires 4 shiftable magnet arrrays, permitting use of the APU (adjustable phase undulator) concept. Studies for a pure fixed gap APPLE II for the SLS revealed surprising symmetries between circular and linear polarization modes allowing for simplified operation. A semi-analytical model covering all types of APPLE II and its implementation will be presented.

  1. Renewable energy 1998: Issues and trends

    SciTech Connect (OSTI)

    1999-03-01

    This report presents the following five papers: Renewable electricity purchases: History and recent developments; Transmission pricing issues for electricity generation from renewable resources; Analysis of geothermal heat pump manufacturers survey data; A view of the forest products industry from a wood energy perspective; and Wind energy developments: Incentives in selected countries. A glossary is included. 19 figs., 27 tabs.

  2. PETC Review, Issue 5, Spring 1992

    SciTech Connect (OSTI)

    Blaustein, B D; Reiss, J; Tarquinio, M A; Brown, J; Evans, E

    1992-04-01

    This issue of PETC Review contains short discussion on the following topics: advanced coal preparation processes, new scrubbers for flue gas desulfurization, PETC's Coal Preparation Process Research Facility, and PETC's Science Outreach Program. Supplemental sections on publications, highlights, calendars, etc. are also included. (VC)

  3. PETC Review, Issue 5, Spring 1992

    SciTech Connect (OSTI)

    Blaustein, B.D.; Reiss, J.; Tarquinio, M.A.; Brown, J.; Evans, E.

    1992-07-01

    This issue of PETC Review contains short discussion on the following topics: advanced coal preparation processes, new scrubbers for flue gas desulfurization, PETC`s Coal Preparation Process Research Facility, and PETC`s Science Outreach Program. Supplemental sections on publications, highlights, calendars, etc. are also included. (VC)

  4. Operational Area Monitoring Plan

    Office of Legacy Management (LM)

    ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan

  5. NREL Document Profiles Natural Gas Fueling, Fleet Operation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Profiles Natural Gas Fueling, Fleet Operation Media may contact: George Douglas, 303-275-4096 email: George Douglas Steve Ginter, Mack, 610-709-3259 Golden, Colo., June 7, 2000 - A unique and successful natural gas fueling and fleet operation involving trash haulers is discussed in a recent document issued by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). The NREL document, Waste Management's LNG Truck Fleet Start-Up Experience, offers solid evidence that

  6. Across the Pond Newsletter Issue 7 | Department of Energy

    Energy Savers [EERE]

    Across the Pond Newsletter Issue 7 A Quarterly Update on Joint UK NDAUS DOE Activities and Initiatives Issue 7: Spring 2012. In this issue: DOE and UK NDA Renew Information ...

  7. Concept of Operations: Essence

    SciTech Connect (OSTI)

    Hutton, William J.

    2014-04-01

    This concept of operations is designed to give the reader a brief overview of the National Rural Electric Cooperative Association’s Essence project and a description of the Essence device design. The data collected by the device, how the data are used, and how the data are protected are also discussed in this document.

  8. LCLS Operating Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Operating Schedule August - December 2009 Ver: 2 103009 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 S Su M T W Th F S Su M T W Th F S...

  9. Protection Program Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-03-23

    The Order establishes requirements for the management and operation of the DOE Federal Protective Forces (FPF), Contractor Protective Forces (CPF), and the Physical Security of property and personnel under the cognizance of DOE. Supersedes DOE O 473.3. NOTE: Safeguards and Security Alarm Management and Control Systems, of DOE O 473.3, is retained as Attachment 3, Annex 1.

  10. Manually operated coded switch

    DOE Patents [OSTI]

    Barnette, Jon H.

    1978-01-01

    The disclosure relates to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made.

  11. Office of Business Operations

    Broader source: Energy.gov [DOE]

    The Office of Business Operations manages financial and acquisition management programs throughout the Associate Under Secretary for the Office of Environment, Health, Safety and Security (AU), including the formulation and execution of the AU budget; funding control and accounting activities; preparation of management studies; and provision of acquisition management support.

  12. Guiding drilling operations

    SciTech Connect (OSTI)

    Not Available

    1985-06-01

    Artificial intelligence (AI) was the overriding theme at this year's Offshore Technology Conference (OTC) exhibition and conference, with the emphasis more on drilling rather than production methods. A wide range of electronic aids to improve accuracy and speed in drilling operations - from calculators to computers - is described.

  13. Intelligent Potroom Operation

    SciTech Connect (OSTI)

    Jan Berkow; Larry Banta

    2003-07-29

    The Intelligent Potroom Operation project focuses on maximizing the performance of an aluminum smelter by innovating components for an intelligent manufacturing system. The Intelligent Potroom Advisor (IPA) monitors process data to identify reduction cells exhibiting behaviors that require immediate attention. It then advises operational personnel on those heuristic-based actions to bring the cell back to an optimal operating state in order to reduce the duration and frequency of substandard reduction cell performance referred to as ''Off-Peak Modes'' (OPMs). Techniques developed to identify cells exhibiting OPMs include the use of a finite element model-based cell state estimator for defining the cell's current operating state via advanced cell noise analyses. In addition, rule induction was also employed to identify statistically significant complex behaviors that occur prior to OPMs. The intelligent manufacturing system design, concepts and formalisms developed in this project w ere used as a basis for an intelligent manufacturing system design. Future research will incorporate an adaptive component to automate continuous process improvement, a technology platform with the potential to improve process performance in many of the other Industries of the Future applications as well.

  14. Electromagnetically Operated Counter

    DOE Patents [OSTI]

    Goldberg, H.D.; Goldberg, M.I.

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  15. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, dated 6-25-13, cancels DOE O 422.1. Certified 12-3-14.

  16. Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment

    Broader source: Energy.gov [DOE]

    DOE has issued the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (ULP PEIS)(DOE/EIS-0472D) for public review and comment. The public comment period ends May 16, 2013. Under the Uranium Leasing Program, the DOE Office of Legacy Management administers 31 tracts of land in Mesa, Montrose, and San Miguel counties that are leased to private entities to mine uranium and vanadium. The program covers an area of approximately 25,000 acres. No mining operations are active on the ULP lands at this time. DOE is preparing the ULP PEIS to analyze the reasonably foreseeable potential environmental impacts, including the site-specific and cumulative impacts, of the range of selected alternatives for managing the program.

  17. Western Wind Strategy: Addressing Critical Issues for Wind Deployment

    SciTech Connect (OSTI)

    Douglas Larson; Thomas Carr

    2012-03-30

    The goal of the Western Wind Strategy project was to help remove critical barriers to wind development in the Western Interconnection. The four stated objectives of this project were to: (1) identify the barriers, particularly barriers to the operational integration of renewables and barriers identified by load-serving entities (LSEs) that will be buying wind generation, (2) communicate the barriers to state officials, (3) create a collaborative process to address those barriers with the Western states, utilities and the renewable industry, and (4) provide a role model for other regions. The project has been on the forefront of identifying and informing state policy makers and utility regulators of critical issues related to wind energy and the integration of variable generation. The project has been a critical component in the efforts of states to push forward important reforms and innovations that will enable states to meet their renewable energy goals and lower the cost to consumers of integrating variable generation.

  18. Particulate hot gas stream cleanup technical issues

    SciTech Connect (OSTI)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  19. OPERATIONS ELECTRONIC LOGBOOK EXPERIENCE AT BNL.

    SciTech Connect (OSTI)

    SATOGATA,T.; CAMPBELL,I.; MARR,G.; SAMPSON,P.

    2002-06-02

    A web-based system for electronic logbooks, ''elog'', developed at Fermilab (FNAL), has been adopted for use by AGS and RHIC operations and physicists at BNL for the 2001-2 fixed target and collider runs. This paper describes the main functional and technical issues encountered in the first year of electronic logbook use, including security, search and indexing, sequencer integration, archival, and graphics management. We also comment on organizational experience and planned changes for the next facility run starting in September 2002.

  20. Human factors issues in qualitative and quantitative safety analyses

    SciTech Connect (OSTI)

    Hahn, H.A.

    1993-10-01

    Humans are a critical and integral part of any operational system, be it a nuclear reactor, a facility for assembly or disassembling hazardous components, or a transportation network. In our concern over the safety of these systems, we often focus our attention on the hardware engineering components of such systems. However, experience has repeatedly demonstrated that it is often the human component that is the primary determinant of overall system safety. Both the nuclear reactor accidents at Chernobyl and Three Mile Island and shipping disasters such as the Exxon Valdez and the Herald of Free Enterprise accidents are attributable to human error. Concern over human contributions to system safety prompts us to include reviews of human factors issues in our safety analyses. In the conduct of Probabilistic Risk Assessments (PRAs), human factors issues are addressed using a quantitative method called Human Reliability Analysis (HRA). HRAs typically begin with the identification of potential sources of human error in accident sequences of interest. Human error analysis often employs plant and/or procedures walk-downs in which the analyst considers the ``goodness`` of procedures, training, and human-machine interfaces concerning their potential contribution to human error. Interviews with expert task performers may also be conducted. In the application of HRA, once candidate sources of human error have been identified, error probabilities are developed.