Powered by Deep Web Technologies
Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Startup burner  

DOE Patents [OSTI]

A startup burner for rapidly heating a catalyst in a reformer, as well as related methods and modules, is disclosed.

Zhao, Jian Lian (Belmont, MA); Northrop, William F. (Ann Arbor, MI); Bosco, Timothy (Dallas, TX); Rizzo, Vincent (Norfolk, MA); Kim, Changsik (Lexington, MA)

2009-08-18T23:59:59.000Z

2

Gas phase hydrodynamics inside a circulating fluidized bed  

E-Print Network [OSTI]

Circulating Fluidized Beds (CFB's) offer many advantages over traditional pulverized coal burners in the power generation industry. They operate at lower temperatures, have better environmental emissions and better fuel ...

Moran, James C. (James Christopher)

2001-01-01T23:59:59.000Z

3

Front Burner- Issue 15  

Broader source: Energy.gov [DOE]

The Cybersecurity Front Burner Issue No. 15 addresses the DOE eSCRM Program and Secure Online Shopping.

4

Rotary Burner Demonstration  

SciTech Connect (OSTI)

The subject technology, the Calcpos Rotary Burner (CRB), is a burner that is proposed to reduce energy consumption and emission levels in comparison to currently available technology. burners are used throughout industry to produce the heat that is required during the refining process. Refineries seek to minimize the use of energy in refining while still meeting EPA regulations for emissions.

Paul Flanagan

2003-04-30T23:59:59.000Z

5

Combustor burner vanelets  

DOE Patents [OSTI]

The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

Lacy, Benjamin (Greer, SC); Varatharajan, Balachandar (Loveland, OH); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Zuo, Baifang (Simpsonville, SC)

2012-02-14T23:59:59.000Z

6

Pulverized coal burner  

DOE Patents [OSTI]

A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

1998-11-03T23:59:59.000Z

7

Pulverized coal burner  

DOE Patents [OSTI]

A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

Sivy, Jennifer L. (Alliance, OH); Rodgers, Larry W. (Canton, OH); Koslosy, John V. (Akron, OH); LaRue, Albert D. (Uniontown, OH); Kaufman, Keith C. (Canton, OH); Sarv, Hamid (Canton, OH)

1998-01-01T23:59:59.000Z

8

Burner control system  

SciTech Connect (OSTI)

A burner control apparatus for use with a furnace installation that has an operating control to produce a request for burner operation, a flame sensor to produce a signal when flame is present in the monitored combustion chamber, and one or more devices for control of ignition and/or fuel flow. The burner control apparatus comprises lockout apparatus for de-energizing the control apparatus, a control device for actuating the ignition and/or fuel control devices, and a timing circuit that provides four successive and partially overlapping timing intervals of precise relation, including a purge timing interval, a pilot ignition interval, and a main fuel ignition interval. The present invention further includes a burner control system which verifies the proper operation of certain sensors in a burner or furnace including particularly the air flow sensor. Additionally, the present system also prevents an attempt to ignite a burner if a condition is detected which indicates that the air flow sensor has been bypassed or wedged in the actuated position.

Cade, P.J.

1981-01-06T23:59:59.000Z

9

Fluidization quality analyzer for fluidized beds  

DOE Patents [OSTI]

A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

Daw, C. Stuart (Knoxville, TN); Hawk, James A. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

10

Front Burner - Issue 18 | Department of Energy  

Energy Savers [EERE]

Front Burner - Issue 18 Front Burner - Issue 18 The Cybersecurity Front Burner Issue No. 18 addresses keeping kids safe on the Internet, cyber crime, and DOE Cyber awareness and...

11

Front Burner - Issue 13 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3 Front Burner - Issue 13 The Cybersecurity Front Burner Issue No. 13 contained a message from the Associate Chief Information Officer (ACIO) for Cybersecurity informing readers...

12

Front Burner - Issue 14 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4 Front Burner - Issue 14 The Cybersecurity Front Burner Issue No. 14 addresses the 2013 National Cybersecurity Awareness Month (NCSAM) Campaign and Phishing Scams. Cybersecurity...

13

Oil burner nozzle  

DOE Patents [OSTI]

An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

Wright, Donald G. (Rockville Center, NY)

1982-01-01T23:59:59.000Z

14

Radial lean direct injection burner  

DOE Patents [OSTI]

A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

2012-09-04T23:59:59.000Z

15

Catalyzed Ceramic Burner Material  

SciTech Connect (OSTI)

Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

Barnes, Amy S., Dr.

2012-06-29T23:59:59.000Z

16

Burner ignition system  

DOE Patents [OSTI]

An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

Carignan, Forest J. (Bedford, MA)

1986-01-21T23:59:59.000Z

17

Criterion for burner design in thermal weed control  

E-Print Network [OSTI]

A covered infrared burner was designed and constructed so that it could be compared to an open-flame burner. Two covered burners, a high configuration and a low configuration, were constructed. A low configuration covered infrared burner, high...

Gonzalez, Telca Marisa

2001-01-01T23:59:59.000Z

18

Solids fluidizer-injector  

DOE Patents [OSTI]

An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.

Bulicz, Tytus R. (Hickory Hills, IL)

1990-01-01T23:59:59.000Z

19

Staged fluidized bed  

DOE Patents [OSTI]

The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

Mallon, R.G.

1983-05-13T23:59:59.000Z

20

RENEWABLES RESEARCH Boiler Burner Energy System Technology  

E-Print Network [OSTI]

RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER Renewables Research September 2010 The Issue Researchers at Altex Technologies Corporation in Sunnyvale, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Front Burner - Issue 16 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6 Front Burner - Issue 16 The Cybersecurity Front Burner Issue No. 16 addresses Malware, the Worst Passwords of 2013, and the Flat Stanley and Stop.Think.Connect. Campaign....

22

Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions  

SciTech Connect (OSTI)

A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450{degree}, over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

1993-03-01T23:59:59.000Z

23

Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions  

SciTech Connect (OSTI)

A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450[degree], over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

1993-01-01T23:59:59.000Z

24

Fluidized bed calciner apparatus  

DOE Patents [OSTI]

An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

Owen, Thomas J. (West Richland, WA); Klem, Jr., Michael J. (Richland, WA); Cash, Robert J. (Richland, WA)

1988-01-01T23:59:59.000Z

25

Uniform-burning matrix burner  

DOE Patents [OSTI]

Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

Bohn, Mark S. (Golden, CO); Anselmo, Mark (Arvada, CO)

2001-01-01T23:59:59.000Z

26

Solids fluidizer-injector  

DOE Patents [OSTI]

An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

Bulicz, T.R.

1990-04-17T23:59:59.000Z

27

Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed for outdoor  

E-Print Network [OSTI]

Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed-burner propane stove has a high-pressure regulator that ensures a constant flame regardless of weather propane stove has a removable nickel-chrome-plated grate that makes for easy cleaning. The aluminized

Walker, Lawrence R.

28

Low-Emissions Burner Technology using Biomass-Derived Liquid...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Burner Technology using Biomass-Derived Liquid Fuels Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels This factsheet describes a project that developed...

29

Combined Heat and Power (CHP) Integrated with Burners for Packaged...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost,...

30

SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity...  

Office of Environmental Management (EM)

SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste...

31

Porous radiant burners having increased radiant output  

DOE Patents [OSTI]

Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

Tong, Timothy W. (Tempe, AZ); Sathe, Sanjeev B. (Tempe, AZ); Peck, Robert E. (Tempe, AZ)

1990-01-01T23:59:59.000Z

32

Apparatus for controlling fluidized beds  

DOE Patents [OSTI]

An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

Rehmat, A.G.; Patel, J.G.

1987-05-12T23:59:59.000Z

33

Biparticle fluidized bed reactor  

DOE Patents [OSTI]

A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

Scott, C.D.

1993-12-14T23:59:59.000Z

34

Biparticle fluidized bed reactor  

DOE Patents [OSTI]

A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1995-04-25T23:59:59.000Z

35

Diesel fuel burner for diesel emissions control system  

DOE Patents [OSTI]

A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

Webb, Cynthia C.; Mathis, Jeffrey A.

2006-04-25T23:59:59.000Z

36

Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels  

SciTech Connect (OSTI)

This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

Agrawal, Ajay; Taylor, Robert

2013-09-30T23:59:59.000Z

37

Reverberatory screen for a radiant burner  

DOE Patents [OSTI]

The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

Gray, Paul E. (North East, MD)

1999-01-01T23:59:59.000Z

38

Fluidized bed boiler feed system  

DOE Patents [OSTI]

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

39

Silane-propane ignitor/burner  

DOE Patents [OSTI]

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, Richard W. (Livermore, CA); Skinner, Dewey F. (Livermore, CA); Thorsness, Charles B. (Livermore, CA)

1985-01-01T23:59:59.000Z

40

Silane-propane ignitor/burner  

DOE Patents [OSTI]

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

1983-05-26T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Syngas combustor for fluidized bed applications  

SciTech Connect (OSTI)

The Siemens Westinghouse Multi-Annular Swirl Burner (MASB) is a rich-quench-lean gas turbine combustor for use primarily on synthetic fuel gases made by gasifying solid fuels (coal or biomass). These fuels contain high amounts of fuel bound nitrogen, primarily as ammonia, which are converted to molecular nitrogen rather than to nitrogen oxides in the rich zone of this combustor. The combustor can operate in many modes. In second-generation pressurized fluidized bed combustion (PFBC) applications, the fuel gas is burned in a hot, depleted oxygen air stream generated in a fluid bed coal combustor. In 1-1/2 generation PFBC applications, natural gas is burned in this vitiated air stream. In an integrated gasification combined cycle (IGCC) application, the synthetic fuel gas is burned in turbine compressor air. In this paper, the MASB technology is described. Recent results of tests at the University of Tennessee Space Institute (UTSI) for these various operation modes on a full scale basket are summarized. The start-up and simple cycle operating experience on propane at the Wilsonville Power Systems Development Facility (PSDF) are also described. In addition, the design issues related to the integration of the MASB in the City of Lakeland PCFB Clean Coal Demonstration Project is summarized.

Brushwood, J.

1999-07-01T23:59:59.000Z

42

Burners and combustion apparatus for carbon nanomaterial production  

DOE Patents [OSTI]

The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

Alford, J. Michael (Lakewood, CO); Diener, Michael D. (Denver, CO); Nabity, James (Arvada, CO); Karpuk, Michael (Boulder, CO)

2007-10-09T23:59:59.000Z

43

Burners and combustion apparatus for carbon nanomaterial production  

DOE Patents [OSTI]

The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

2013-02-05T23:59:59.000Z

44

CHP Integrated with Burners for Packaged Boilers  

SciTech Connect (OSTI)

The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

Castaldini, Carlo; Darby, Eric

2013-09-30T23:59:59.000Z

45

Fluidized-bed sorbents  

SciTech Connect (OSTI)

The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. In this program, regenerable ZnO-based mixed metal-oxide sorbents are being developed and tested. These include zinc ferrite, zinc titanate, and Z-SORB sorbents. The Z-SORB sorbent is a proprietary sorbent developed by Phillips Petroleum Company (PPCo).

Gangwal, S.K.; Gupta, R.P.

1994-10-01T23:59:59.000Z

46

Low NO.sub.x burner system  

DOE Patents [OSTI]

A low NO.sub.x burner system for a furnace having spaced apart front and rear walls, comprises a double row of cell burners on each of the front and rear walls. Each cell burner is either of the inverted type with a secondary air nozzle spaced vertically below a coal nozzle, or the non-inverted type where the coal nozzle is below the secondary air port. The inverted and non-inverted cells alternate or are provided in other specified patterns at least in the lower row of cells. A small percentage of the total air can be also provided through the hopper or hopper throat forming the bottom of the furnace, or through the boiler hopper side walls. A shallow angle impeller design also advances the purpose of the invention which is to reduce CO and H.sub.2 S admissions while maintaining low NO.sub.x generation.

Kitto, Jr., John B. (North Canton, OH); Kleisley, Roger J. (Plain Twp., Stark County, OH); LaRue, Albert D. (Summit, OH); Latham, Chris E. (Knox Twp., Columbiana County, OH); Laursen, Thomas A. (Canton, OH)

1993-01-01T23:59:59.000Z

47

Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors  

SciTech Connect (OSTI)

Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section, monovariate population balance, bivariate population balance, aggregation and breakage equation and DQMOM-Multi-Fluid model are described. In the last section of Chapter 3, numerical methods involved in the multi-fluid model and time-splitting method are presented. Chapter 4 is based on a paper about application of DQMOM to polydisperse gas-solid fluidized beds. Results for a constant aggregation and breakage kernel and a kernel developed from kinetic theory are shown. The effect of the aggregation success factor and the fragment distribution function are investigated. Chapter 5 shows the work on validation of mixing and segregation phenomena in gas-solid fluidized beds with a binary mixture or a continuous size distribution. The simulation results are compared with available experiment data and discrete-particle simulation. Chapter 6 presents the project with Univation Technologies on CFD simulation of a Polyethylene pilot-scale FB reactor, The fluid dynamics, mass/heat transfer and particle size distribution are investigated through CFD simulation and validated with available experimental data. The conclusions of this study and future work are discussed in Chapter 7.

Rong Fan

2006-08-09T23:59:59.000Z

48

Fluidized bed controls refinery emissions  

SciTech Connect (OSTI)

In early 1983, two fluidized bed, waste heat boilers entered into service at the Ashland Petroleum Company refinery site in Ashland, Kentucky. These fluidized bed units are coupled to the regeneration end of a newly developed reduced crude conversion (RCC) process and served the purpose of reducing CO, SO/sub 2/ and NO/sub x/ emissions while recuperating waste heat from the regenerator process off gases.

Abdulally, I.F.; Kersey, B.R.

1986-05-01T23:59:59.000Z

49

An experimental study of temperature of burning coal particle in fluidized bed  

SciTech Connect (OSTI)

The purpose of this study was to investigate the temperature of coal particle during combustion in fluidized bed (FB). It is necessary to know the coal particle temperature in order to predict kinetics of chemical reactions within and at the surface of coal particle, accurate NOx and SO{sub 2} emission, fragmentation, attrition, the possibility of ash melting, etc. The experimental investigations were conducted in order to obtain the reliable data on the temperature of particle burning in the FB. A method using thermocouple was developed and applied for measurements. Thermocouple was inserted in the center of the particle shaped into spherical form with various diameters: 5, 7, 8, and 10 mm. Two characteristic types of low-rank Serbian coals were investigated. Experiments were done at the FB temperature in the range of 590-710{sup o}C. Two types of experiments were performed: (I) combustion using air as fluidization gas and (ii) devolatilization with N{sub 2} followed by combustion of obtained char in air. The temperature histories of particles during all stages after introducing in the FB were analyzed. Temperature difference between the burning particle and the FB was defined as a criterion, for comparison. It was shown that the temperature profile depends on the type of the coal and the particle size. The higher temperature difference between the burning particle and the FB was obtained for smaller particles and for lignite (130-180{sup o}C) in comparison to the brown coal (70-130{sup o}C). The obtained results indicated that a primary role in the temperature history of coal particle have the mass and heat transfer through combusting particle. 24 refs., 6 figs., 3 tabs.

Mirko Komatina; Vasilije Manovic; Dragoljub Dakic [University of Belgrade, Belgrade (Serbia and Montenegro). Faculty of Mechanical Engineering

2006-02-01T23:59:59.000Z

50

Fuel burner and combustor assembly for a gas turbine engine  

DOE Patents [OSTI]

A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

Leto, Anthony (Franklin Lakes, NJ)

1983-01-01T23:59:59.000Z

51

Refinery burner simulation design architecture summary.  

SciTech Connect (OSTI)

This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

2011-10-01T23:59:59.000Z

52

Pressurized fluidized bed reactor  

DOE Patents [OSTI]

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

Isaksson, J.

1996-03-19T23:59:59.000Z

53

Pressurized fluidized bed reactor  

DOE Patents [OSTI]

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

Isaksson, Juhani (Karhula, FI)

1996-01-01T23:59:59.000Z

54

Safety Topic: Bunsen Burners and Hotplates  

E-Print Network [OSTI]

a medium to medium-high setting of the hot plate to heat most liquids, including water. Do not use the high setting to heat low-boiling liquids. The hot plate surface can reach a maximum temperature of 540 °C · Do.med.cornell.edu/ehs/updates/bunsen_burner_safety.htm #12;Hot Plate Procedures · Use only heat-resistant, borosilicate glassware, and check for cracks

Cohen, Robert E.

55

PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION  

SciTech Connect (OSTI)

Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

Robert States

2006-07-15T23:59:59.000Z

56

Coal-water mixture fuel burner  

DOE Patents [OSTI]

The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

Brown, T.D.; Reehl, D.P.; Walbert, G.F.

1985-04-29T23:59:59.000Z

57

Advanced Burners and Combustion Controls for Industrial Heat Recovery Systems  

E-Print Network [OSTI]

ADVANCED BURNERS AND COMBUSTION CONTROLS FOR INDUSTRIAL HEAT RECOVERY SYSTEMS J.L.FERRI GTE PRODUCTS CORPORATION TOWANDA, PA ABSTRACT When recuperators are installed on indus trial furnaces, burners and ratio control systems must... recuperators by demonstrating their technical and economi cal feasibility in well monitored field installations (1). During the contract, it became evident to GTE that a systems approach (recuperator, burner, and con troIs) is necessary to be accepted...

Ferri, J. L.

58

The Front Burner Cybersecurity The ACIO for Cybersecurity  

Broader source: Energy.gov (indexed) [DOE]

Special Edition of The Front Burner Cybersecurity The ACIO for Cybersecurity Issue No. 13 October 2012 National Cybersecurity Awareness Month October 2012 The Department of Energy...

59

Enhanced Combustion Low NOx Pulverized Coal Burner  

SciTech Connect (OSTI)

For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing firing system technologies do not provide a means to meet current or anticipated regulations absent the use of an SCR. The DOE/ALSTOM program performed large pilot scale combustion testing in ALSTOM's Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut. During this work, the near-field combustion environment was optimized to maximize NOx reduction while minimizing the impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down under globally reducing conditions. Initially, ALSTOM utilized computational fluid dynamic modeling to evaluate a series of burner and/or near field stoichiometry controls in order to screen promising design concepts in advance of the large pilot scale testing. The third and final test, to be executed, will utilize several variants of the best nozzle tip configuration and compare performance with 3 different coals. The fuels to be tested will cover a wide range of coals commonly fired at US utilities. The completion of this work will provide sufficient data to allow ALSTOM to design, construct, and demonstrate a commercial version of an enhanced combustion low NOx pulverized coal burner. A preliminary cost/performance analysis of the developed enhanced combustion low NOx burner applied to ALSTOM's state-of-the-art TFS 2000 firing system was performed to show that the burner enhancements is a cost effective means to reduce NOx.

Ray Chamberland; Aku Raino; David Towle

2006-09-30T23:59:59.000Z

60

Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1  

E-Print Network [OSTI]

1 Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1 , D. Dunn-Rankin2 , F. Liu3 B, Irvine Abstract A review of turbine-burner research and some relevant background issues is presented. Previous work on thermal cycle analysis for augmentative combustion in the passages of the turbine

Liu, Feng

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Residential oil burners with low input and two stages firing  

SciTech Connect (OSTI)

The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

Butcher, T.; Krajewski, R.; Leigh, R. [and others

1997-12-31T23:59:59.000Z

62

Advanced oil burner for residential heating -- development report  

SciTech Connect (OSTI)

The development of advanced oil burner concepts has long been a part of Brookhaven National Laboratory`s (BNL) oil heat research program. Generally, goals of this work include: increased system efficiency, reduced emissions of soot and NO{sub x}, and the practical extension of the firing rate range of current burners to lower input rates. The report describes the results of a project at BNL aimed at the development of air atomized burners. Two concepts are discussed. The first is an air atomizer which uses air supplied at pressures ranging from 10 to 20 psi and requiring the integration of an air compressor in the system. The second, more novel, approach involves the use of a low-pressure air atomizing nozzle which requires only 8-14 inches of water air pressure for fuel atomization. This second approach requires the use of a fan in the burner instead of a compressor although the fan pressure is higher than with conventional, pressure atomized retention head burners. In testing the first concept, high pressure air atomization, a conventional retention head burner was modified to accept the new nozzle. In addition, the burner head was modified to reduce the flow area to maintain roughly 1 inch of water pressure drop across the head at a firing rate of 0.25 gallons of oil per hour. The burner ignited easily and could be operated at low excess air levels without smoke. The major disadvantage of this burner approach is the need for the air compressor as part of the system. In evaluating options, a vane-type compressor was selected although the use of a compressor of this type will lead to increased burner maintenance requirements.

Butcher, T.A.

1995-07-01T23:59:59.000Z

63

Fluidized bed injection assembly for coal gasification  

DOE Patents [OSTI]

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

64

Tube construction for fluidized bed combustor  

DOE Patents [OSTI]

A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

De Feo, Angelo (Totowa, NJ); Hosek, William (Mt. Tabor, NJ)

1984-01-01T23:59:59.000Z

65

Fluidized bed combustor and tube construction therefor  

DOE Patents [OSTI]

A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

De Feo, Angelo (Passaic, NJ); Hosek, William (Morris, NJ)

1981-01-01T23:59:59.000Z

66

Gas fluidized-bed stirred media mill  

DOE Patents [OSTI]

A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

Sadler, III, Leon Y. (Tuscaloosa, AL)

1997-01-01T23:59:59.000Z

67

Fluidized Bed Technology - Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fluidized-bed combustion evolved from efforts to find a combustion process able to control pollutant emissions without external emission controls (such as scrubbers). The...

68

FLUIDIZED BED COMBUSTION UNIT FOR OIL SHALE  

E-Print Network [OSTI]

A fluidized bed combustion unit has been designed and installed to study the fluidized bed combustion performance using oil shale as fuel in direct burning process. It is a steel column of 18 cm inside diameter and 130 cm height fitted with a perforated plate air distributor of 611 holes, each of 1

M. Hammad; Y. Zurigat; S. Khzai; Z. Hammad; O. Mubydeem

69

Continuous austempering fluidized bed furnace. Final report  

SciTech Connect (OSTI)

The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering] [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

1997-09-23T23:59:59.000Z

70

J.R. Simplot: Burner Upgrade Project Improves Performance and...  

Broader source: Energy.gov (indexed) [DOE]

Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho. J.R. Simplot: Burner Upgrade Project Improves...

71

Advanced Petrochemical Process Heating with the Pyrocore Burner  

E-Print Network [OSTI]

natural gas or refinery process gas and designed to take full advantage of the Pyrocore burner's radiant heat transfer characteristics. This will result in a process heater with design and performance attributes that will be attractive to users...ADVANCED PETROCHEMICAL PROCESS HEATING WITH THE PYROCORE BURNER WAYNE V. KRILL ANDREW C. MINDEN LESLIE W. DONALDSON, JR. Vice President Project Engineer Manager, Process Systems Research Alzeta Corporation Alzeta Corporation Gas Research...

Krill, W. V.; Minden, A. C.; Donaldson, L. W. Jr.

72

Attrition resistant fluidizable reforming catalyst  

DOE Patents [OSTI]

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

2011-03-29T23:59:59.000Z

73

Advanced burner test reactor preconceptual design report.  

SciTech Connect (OSTI)

The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

2008-12-16T23:59:59.000Z

74

Dual-water mixture fuel burner  

DOE Patents [OSTI]

A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.

Brown, Thomas D. (Finleyville, PA); Reehl, Douglas P. (Pittsburgh, PA); Walbert, Gary F. (Library, PA)

1986-08-05T23:59:59.000Z

75

Enhanced Combustion Low NOx Pulverized Coal Burner  

SciTech Connect (OSTI)

For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

2007-06-30T23:59:59.000Z

76

Packed fluidized bed blanket for fusion reactor  

DOE Patents [OSTI]

A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

Chi, John W. H. (Mt. Lebanon, PA)

1984-01-01T23:59:59.000Z

77

Combined fluidized bed retort and combustor  

DOE Patents [OSTI]

The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

Shang, Jer-Yu (Fairfax, VA); Notestein, John E. (Morgantown, WV); Mei, Joseph S. (Morgantown, WV); Zeng, Li-Wen (Morgantown, WV)

1984-01-01T23:59:59.000Z

78

Particle withdrawal from fluidized bed systems  

DOE Patents [OSTI]

Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

Salvador, Louis A. (Greensburg, PA); Andermann, Ronald E. (Arlington Heights, IL); Rath, Lawrence K. (Mt. Pleasant, PA)

1982-01-01T23:59:59.000Z

79

Stability of Gas-Fluidized Beds  

E-Print Network [OSTI]

T.B. & Jackson, R. A fluid mechanical description ofJ. & Jackson, R. Fluid mechanical description of fluidizedT.B. & Jackson, R. A fluid mechanical description of

Mandich, Kevin Matthew

80

State of Fluidized Bed Combustion Technology  

E-Print Network [OSTI]

directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions, thereby eliminating the need for stack gas scrubbing equipment. The excellent heat transfer characteristics...

Pope, M.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Flame quality monitor system for fixed firing rate oil burners  

DOE Patents [OSTI]

A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

Butcher, Thomas A. (Pt. Jefferson, NY); Cerniglia, Philip (Moriches, NY)

1992-01-01T23:59:59.000Z

82

OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS  

SciTech Connect (OSTI)

It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

2001-09-04T23:59:59.000Z

83

Fluidized bed heat treating system  

DOE Patents [OSTI]

Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

Ripley, Edward B; Pfennigwerth, Glenn L

2014-05-06T23:59:59.000Z

84

High Efficiency Burners by Retrofit - A Simple Inexpensive Way to Improve Combustion Efficiency  

E-Print Network [OSTI]

Existing direct fired process heaters and steam boilers can have their efficiencies remarkably improved, and thus cut the fuel bill, by conversion from conventional type natural draft burners to high intensity, "forced draft" type burners...

Rogers, W. T.

1980-01-01T23:59:59.000Z

85

Slurry burner for mixture of carbonaceous material and water  

DOE Patents [OSTI]

The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

Nodd, D.G.; Walker, R.J.

1985-11-05T23:59:59.000Z

86

MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS  

SciTech Connect (OSTI)

An initial testing campaign was carried out during the summer of 2000 to evaluate the impact of multiburner firing on NOx emissions. Extensive data had been collected during the Fall of 1999 and Spring of 2000 using a single pulverized-coal (PC) burner, and this data collection was funded by a separate Department of Energy program, the Combustion 2000 Low Emission Boiler System (LEBS) project under the direction of DB Riley. This single-burner data was thus available for comparison with NOx emissions obtained while firing three burners at the same overall load and operating conditions. A range of operating conditions were explored that were compatible with single-burner data, and thus the emission trends as a function of air staging, burner swirl and other parameters will be described below. In addition, a number of burner-to-burner operational variations were explored that provided interesing insight on their potential impact on NOx emissions. Some of these variations include: running one burner very fuel rich while running the others fuel lean; varying the swirl of a single burner while holding others constant; increasing the firing rate of a single burner while decreasing the others. In general, the results to date indicated that multiburner firing yielded higher NOx emissions than single burner firing at the same fuel rate and excess air. At very fuel rich burner stoichiometries (SR < 0.75), the difference between multiple and single burners became indistinguishable. This result is consistent with previous single-burner data that showed that at very rich stoichiometries the NOx emissions became independent of burner settings such as air distributions, velocities and burner swirl.

E.G.Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

2001-06-01T23:59:59.000Z

87

Development of an air-atomized oil burner  

SciTech Connect (OSTI)

A new concept for the design of a residential oil burner is presented involving a low pressure, air atomizing nozzle. Advantages of this approach, relative to conventional, pressure atomized burners include: ability to operate at very low excess air levels without smoke, ability to operate at low (and possibly variable) rates, reduced boiler fouling, and low NO{sub x}. The nozzle used is a low pressure, airblast atomizer which can achieve fuel spray drop sizes similar to conventional nozzles and very good combustion performance with air pressure as low as 5 inches of water (1.24 kPa). A burner head has been developed for this nozzle and combustion test results are presented in a wide variety of equipment including cast iron and steel boilers, warm air furnaces, and water heaters over the firing rate range 0.25 gph to 1.0 gph (10 to 41 kW). Beyond the nozzle and combustion head the burner system must be developed and two approaches have been taken. The first involves a small, brushless DC motor/fan combination which uses high fan speed to achieve air pressures from 7 to 9 inches of water (1.74 to 2.24 kPa). Fuel is delivered to the atomizer at less than 1 psig (6.9 kPa) using a solenoid pump and flow metering orifice. At 0.35 gph (14 kW) the electric power draw of this burner is less than 100 watts. In a second configuration a conventional motor is used with a single stage fan which develops 5 to 6 inches of water pressure (1.24 to 1.50 kPa) at similar firing rates. This burner uses a conventional type fuel pump and metering orifice to deliver fuel. The fuel pump is driven by the fan motor, very much like a conventional burner. This second configuration is seen as more attractive to the heating industry and is now being commercialized. Field tests with this burner have been conducted at 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination.

Butcher, T.A.; Celebi, Y.

1996-06-01T23:59:59.000Z

88

Development of quick repairing technique for ceramic burner in hot stove of blast furnace  

SciTech Connect (OSTI)

Refractories of ceramic burner in hot stoves at Wakayama No. 4 blast furnace were damaged. There are only three hot stoves, so repairing must be done in a short. Therefore, a quick repairing technique for ceramic burners has been developed, and two ceramic burners were repaired in just 48 hours.

Kondo, Atsushi; Doura, Kouji; Nakamura, Hirofumi [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

1997-12-31T23:59:59.000Z

89

BURNER DEVELOPMENT AND OPERABILITY ISSUES ASSOCIATED WITH STEADY FLOWING SYNGAS  

E-Print Network [OSTI]

BURNER DEVELOPMENT AND OPERABILITY ISSUES ASSOCIATED WITH STEADY FLOWING SYNGAS FIRED COMBUSTORS-Mu¨nchen, Garching, Germany This article addresses the impact of syngas fuel composition on combustor blowout, flash flashback mechanisms are present in swirling flows, and the key thermophysical properties of a syngas

Lieuwen, Timothy C.

90

Fire suppression efficiency screening using a counterflow cylindrical burner  

SciTech Connect (OSTI)

The design and validation of a counterflow cylindrical burner for fire suppression efficiency screening are described. The stability limits of the burner were mapped using various fuel (propane) and oxidizer (air) flows. The stability envelopes compared favorably with those reported in the literature. The apparatus was characterized using inert gases (argon, helium, and nitrogen), and the relative fire suppression efficiency ranking of these three gases was found to be commensurate with that from cup-burner tests. For liquid suppression experiments, a piezoelectric droplet generator was used to form droplets (<100 {micro}m). Water was used as a representative liquid suppressant to study the feasibility of using such a burner for screening liquid agents. Extinction was facilitated with the addition of water droplets, and the effect of water became more pronounced when its application rate was increased. Suppression experiments using water with and without nitrogen dilution in the oxidizer stream were also performed. Flame extinction due to the combined effect of water and nitrogen dilution was demonstrated.

Yang, J.C.; Donnelly, M.K.; Prive, N.; Grosshandler, W.L.

1999-07-01T23:59:59.000Z

91

Pressurized fluidized-bed combustion  

SciTech Connect (OSTI)

The US DOE pressurized fluidized bed combustion (PFBC) research and development program is designed to develop the technology and data base required for the successful commercialization of the PFBC concept. A cooperative program with the US, West Germany, and the UK has resulted in the construction of the 25 MWe IEA-Grimethorpe combined-cycle pilot plant in England which will be tested in 1981. A 13 MWe coal-fired gas turbine (air cycle) at Curtis-Wright has been designed and construction scheduled. Start-up is planned to begin in early 1983. A 75 MWe pilot plant is planned for completion in 1986. Each of these PFBC combined-cycle programs is discussed. The current status of PFB technology may be summarized as follows: turbine erosion tolerance/hot gas cleanup issues have emerged as the barrier technology issues; promising turbine corrosion-resistant materials have been identified, but long-term exposure data is lacking; first-generation PFB combustor technology development is maturing at the PDU level; however, scale-up to larger size has not been demonstrated; and in-bed heat exchanger materials have been identified, but long-term exposure data is lacking. The DOE-PFB development plan is directed at the resolution of these key technical issues. (LCL)

Not Available

1980-10-01T23:59:59.000Z

92

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS  

SciTech Connect (OSTI)

Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process. Computer simulations for coal: LB blends were performed by modifying an existing computer code to include the drying and phosphorus (P) oxidation models. The gasification studies revealed that there is bed agglomeration in the case of chicken litter biomass due to its higher alkaline oxide content in the ash. Finally, the results of the economic analysis show that considerable fuel cost savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings is reduced.

Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

2003-08-28T23:59:59.000Z

93

Study of the Effects of Ambient Conditions Upon the Performance of Fan Powered, Infrared Natural Gas Burners  

SciTech Connect (OSTI)

The objective of this investigation was to characterize the operation of a fan-powered, infrared burner (IR burner) at various gas compositions and ambient conditions, develop numerical model to simulate the burner performances, and provide design guidelines for appliances containing PIR burners for satisfactory performance.

Clark Atlanta University

2002-12-02T23:59:59.000Z

94

VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.  

SciTech Connect (OSTI)

The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

2004-10-01T23:59:59.000Z

95

Fluidized bed selective pyrolysis of coal  

DOE Patents [OSTI]

The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

1992-12-15T23:59:59.000Z

96

Fluidized bed catalytic coal gasification process  

DOE Patents [OSTI]

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

1984-01-01T23:59:59.000Z

97

Advanced Fluidized Bed Waste Heat Recovery Systems  

E-Print Network [OSTI]

and produce steam. In a one-year evaluation test on an aluminum remelt furnace, the FBWHRS generated about 26 million lb of saturated steam at 150 psig. Before entering the FBWHRS, the flue gases were diluted to IIOO?F to protect the fluidized bed... an improved foulant cleaning system for the fluidized bed di~tributor plate and operating the total system on an aluminum remelt furnace which has a corrosive and fouling flue gas stream (3). Although this project focused on an aluminum remelt furnace...

Peterson, G. R.

98

Fluidizable Catalysts for Hydrogen Production from Biomass  

E-Print Network [OSTI]

Fluidizable Catalysts for Hydrogen Production from Biomass Pyrolysis/Steam Reforming K. Magrini/Objective Develop and demonstrate technology to produce hydrogen from biomass at $2.90/kg plant gate price based Bio-oil aqueous fraction CO H2 CO2 H2O Trap grease Waste plastics textiles Co-processing Pyrolysis

99

Fluidized bed electrowinning of copper. Final report  

SciTech Connect (OSTI)

The objectives of the study were to: design and construct a 10,000- amp fluidized bed electrowinning cell for the recovery of copper from acidic sulfate solutions; demonstrate the technical feasibility of continuous particle recirculation from the electrowinning cell with the ultimate goal of continuous particle removal; and measure cell efficiency as a function of operating conditions.

NONE

1997-07-01T23:59:59.000Z

100

Particle Pressures in Fluidized Beds. Final report  

SciTech Connect (OSTI)

This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

Campbell, C.S.; Rahman, K.; Jin, C.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Particle pressures in fluidized beds. Final report  

SciTech Connect (OSTI)

This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

Campbell, C.S.; Rahman, K.; Jin, C.

1996-09-01T23:59:59.000Z

102

Reversed flow fluidized-bed combustion apparatus  

DOE Patents [OSTI]

The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Wilson, John S. (Morgantown, WV)

1984-01-01T23:59:59.000Z

103

OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS  

SciTech Connect (OSTI)

The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

2001-08-20T23:59:59.000Z

104

Downhole burner systems and methods for heating subsurface formations  

DOE Patents [OSTI]

A gas burner assembly for heating a subsurface formation includes an oxidant conduit, a fuel conduit, and a plurality of oxidizers coupled to the oxidant conduit. At least one of the oxidizers includes a mix chamber for mixing fuel from the fuel conduit with oxidant from the oxidant conduit, an igniter, and a shield. The shield includes a plurality of openings in communication with the oxidant conduit. At least one flame stabilizer is coupled to the shield.

Farmayan, Walter Farman (Houston, TX); Giles, Steven Paul (Damon, TX); Brignac, Jr., Joseph Phillip (Katy, TX); Munshi, Abdul Wahid (Houston, TX); Abbasi, Faraz (Sugarland, TX); Clomburg, Lloyd Anthony (Houston, TX); Anderson, Karl Gregory (Missouri City, TX); Tsai, Kuochen (Katy, TX); Siddoway, Mark Alan (Katy, TX)

2011-05-31T23:59:59.000Z

105

E-Print Network 3.0 - advanced burner test Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POWER Vol. 21, No. 1, JanuaryFebruary 2005 Summary: each test sequence. IV. Blowout Phenomenology A. Piloted Burner In this section, we describe... attachment to nonattachment at...

106

E-Print Network 3.0 - actinide burner fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tennessee Technological University Collection: Engineering 51 An Atomized Spray Vortex Incinerator for Burning Dilute Siudge* Summary: of the burner gases with the sludge....

107

E-Print Network 3.0 - actinide burner reactors Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Design 85 (2010) 14881491 Contents lists available at ScienceDirect Summary: subcritical advanced burner reactor, Nuclear technology 162 (2008). 9 M. Kotschenreuther,...

108

Control of bed height in a fluidized bed gasification system  

DOE Patents [OSTI]

In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

Mehta, Gautam I. (Greensburg, PA); Rogers, Lynn M. (Export, PA)

1983-12-20T23:59:59.000Z

109

$A^t_{FB}$ Meets LHC  

SciTech Connect (OSTI)

The recent Tevatron measurement of the forward-backward asymmetry of the top quark shows an intriguing discrepancy with Standard Model expectations, particularly at large t{bar t} invariant masses. Measurements of this quantity are subtle at the LHC, due to its pp initial state, however, one can define a forward-central-charge asymmetry which captures the physics. We study the capability of the LHC to measure this asymmetry and find that within the SM a measurement at the 5{sigma} level is possible with roughly 60 fb{sup -1} at {radical}s = 14 TeV. If nature realizes a model which enhances the asymmetry (as is necessary to explain the Tevatron measurements), a significant difference from zero can be observed much earlier, perhaps even during early LHC running at {radical}s = 7 TeV. We further explore the capabilities of the 7 TeV LHC to discover resonances or contact interactions which modify the t{bar t} invariant mass distribution using recent boosted top tagging techniques. We find that TeV-scale color octet resonances can be discovered, even with small coupling strengths and that contact interactions can be probed at scales exceeding 6 TeV. Overall, the LHC has good potential to clarify the situation with regards to the Tevatron forward-backward measurement.

Hewett, JoAnne L.; /SLAC; Shelton, Jessie; /Yale U.; Spannowsky, Michael; /Oregon U.; Tait, Tim M.P.; /UC, Irvine; Takeuchi, Michihisa; /Heidelberg U.

2012-02-14T23:59:59.000Z

110

E-Print Network 3.0 - anaerobic fluidized bed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physik, Universitt Dortmund Collection: Physics 12 POTENTIAL ADVANTAGES OF INCINERATION IN FLUIDIZED BEDS Summary: POTENTIAL ADVANTAGES OF INCINERATION IN FLUIDIZED BEDS...

111

E-Print Network 3.0 - agitation fluidized bed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

large-scale, commercial, fluidized bed reactor was started by Fritz Winkler for the gasification... of powdered coal in 1926. Since then fluidized beds have been developed...

112

E-Print Network 3.0 - atmospheric fluidized bed Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

large-scale, commercial, fluidized bed reactor was started by Fritz Winkler for the gasification... of powdered coal in 1926. Since then fluidized beds have been developed...

113

E-Print Network 3.0 - agitated fluidized bed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

large-scale, commercial, fluidized bed reactor was started by Fritz Winkler for the gasification... of powdered coal in 1926. Since then fluidized beds have been developed...

114

E-Print Network 3.0 - annual fluidized bed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Minnesota Collection: Engineering 16 POTENTIAL ADVANTAGES OF INCINERATION IN FLUIDIZED BEDS Summary: POTENTIAL ADVANTAGES OF INCINERATION IN FLUIDIZED BEDS...

115

Fluidized Bed Technology - An R&D Success Story | Department...  

Energy Savers [EERE]

line. The Nucla fluidized bed power plant in Colorado was operated in DOE's Clean Coal Technology Program. The technology progressed into larger scale utility applications...

116

Fluidized bed gasification of extracted coal  

DOE Patents [OSTI]

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

1986-01-01T23:59:59.000Z

117

Fluidized bed gasification of extracted coal  

DOE Patents [OSTI]

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

1984-07-06T23:59:59.000Z

118

Bed material agglomeration during fluidized bed combustion  

SciTech Connect (OSTI)

The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

Brown, R.C.; Dawson, M.R.; Noble, S.

1993-02-01T23:59:59.000Z

119

Pulsed atmospheric fluidized bed combustor apparatus  

DOE Patents [OSTI]

A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

Mansour, Momtaz N. (Columbia, MD)

1993-10-26T23:59:59.000Z

120

Gas distributor for fluidized bed coal gasifier  

DOE Patents [OSTI]

A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW  

SciTech Connect (OSTI)

This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

BUTCHER,T.A.

1998-01-01T23:59:59.000Z

122

Fluidized bed retorting of eastern oil shale  

SciTech Connect (OSTI)

This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of eastern New Albany oil shale. This is the fourth design study conducted by Foster Wheeler; previous design cases employed the following technologies: Fluidized bed rotating/combustion of Colorado Mahogany zone shale. An FCC concept of fluidized bed retorting/combustion of Colorado Mahogany zone shale. Directly heated moving vertical-bed process using Colorado Mahogany zone shale. The conceptual design encompasses a grassroots facility which processes run-of-mine oil shale into a syncrude oil product and dispose of the spent shale solids. The plant has a nominal capacity of 50,000 barrels per day of syncrude product, produced from oil shale feed having a Fischer Assay of 15 gallons per ton. Design of the processing units was based on non-confidential published information and supplemental data from process licensors. Maximum use of process and cost information developed in the previous Foster Wheeler studies was employed. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is detailed by plant section and estimates of the annual operating requirements and costs are provided. In addition, process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed. 12 refs., 17 figs., 52 tabs.

Gaire, R.J.; Mazzella, G.

1989-03-01T23:59:59.000Z

123

Status of the fluidized bed unit  

SciTech Connect (OSTI)

Rocky Flats has a serious mixed waste problem. No technology or company has a license and available facilities to remedy this dilemma. One solution under study is to use a catalytic fluidized bed unit to destroy the combustible portion of the mixed waste. The fluidized bed thermal treatment program at Rocky Flats is building on knowledge gained over twenty years of successful development activity. The FBU has numerous technical advantages over other thermal technologies to treat Rocky Flats` mixed waste, the largest being the lower temperature (700{degrees}C versus 1000{degrees}C) which reduces acid corrosion and mechanical failures and obviates the need for ceramic lining. Successful demonstrations have taken place on bench, pilot, and full-scale tests using radioactive mixed wastes. The program is approaching implementation and licensing of a production-scale fluidized bed system for the safe treatment of mixed waste. The measure for success on this project is the ability to work closely with the community to jointly solve problems and respond to concerns of mixed waste treatment at Rocky Flats.

Williams, P.M.; Wade, J.F.

1994-06-01T23:59:59.000Z

124

Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces   

E-Print Network [OSTI]

Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has been proven inadequate...

Cvoro, Valentina

125

Slurry burner for mixture of carbonaceous material and water  

DOE Patents [OSTI]

A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

Nodd, Dennis G. (West Mifflin, PA); Walker, Richard J. (Bethel Park, PA)

1987-01-01T23:59:59.000Z

126

REAL TIME FLAME MONITORING OF GASIFIER BURNER AND INJECTORS  

SciTech Connect (OSTI)

This report is submitted to the United States Department of Energy in partial fulfillment of the contractual requirements for Phase I of the project titled, ''Real Time Flame Monitoring of Gasifier Burner and Injectors'', under co-operative agreement number DE-FS26-02NT41585. The project is composed of three one-year budget periods. The work in each year is divided into separate Tasks to facilitate project management, orderly completion of all project objectives, budget control, and critical path application of personnel and equipment. This Topical Report presents results of the Task 1 and 2 work. The 2 D optical sensor was developed to monitor selected UV and visible wavelengths to collect accurate flame characterization information regarding mixing, flame shape, and flame rich/lean characteristic. Flame richness, for example, was determined using OH and CH intensity peaks in the 300 to 500 nanometer range of the UV and visible spectrum. The laboratory burner was operated over a wide range of air to fuel ratio conditions from fuel rich to fuel lean. The sooty oxygen enriched air flames were established to test the sensor ability to characterize flame structures with substantial presence of hot solid particles emitting strong ''black body radiation''. The knowledge gained in these experiments will be very important when the sensor is used for gasifier flame analyses. It is expected that the sensor when installed on the Global Energy gasifier will be exposed to complex radiation patterns. The measured energy will be a combination of spectra emitted by the combusting gases, hot solid particulates, and hot walls of the gasifier chamber. The ability to separate flame emissions from the ''black body emissions'' will allow the sensor to accurately determine flame location relative to the gasifier walls and the injectors, as well as to analyze the flame's structure and condition. Ultimately, this information should enable the gasification processes to be monitored and controlled and as a result increase durability and efficiency of the gasifier. To accomplish goals set for Task 2 GTI will utilize the CANMET Coal Gasification Research facility. The Entrained Coal Gasifier Burner Test Stand has been designed and is currently under construction in the CANMET Energy Technology Center (CETC), the research and technology arm of Natural Resources Canada (NRCan). This Gasifier Burner Stand (GBS) is a scaled-down mock-up of a working gasifier combustion system that can provide the flexible platform needed in the second year of the project to test the flame sensor. The GBS will be capable of simulating combustion and gasification processes occurring in commercial gasifiers, such as Texaco, Shell, and Wabash River.

James Servaites; Serguei Zelepouga; David Rue

2003-10-01T23:59:59.000Z

127

Industrial pulverized coal low-NO{sub x} burner. Phase 1, Final report  

SciTech Connect (OSTI)

Arthur D. Little, Inc., jointly with its university partner, the Massachusetts Institute of Technology, and its industrial partner, Hauck Manufacturing Corporation, is developing a low NO{sub x} pulverized coal burner for use in industrial processes, including those which may require preheated air or oxygen enrichment. The design of the burner specifically addresses the critical performance requirements of industrial systems, namely: high heat release rates, short flames, even heat flux distribution, and high combustion efficiency. The design is applicable to furnaces, industrial boilers, and cement kilns. The development program for this burner includes a feasibility analysis, performance modelling, development of the burner prototype design, and assessment of the economic viability of the burner. The Phase 1 activities covered by this report consisted of three principal tasks: preliminary burner design; fluid flow/combustion modelling and analyses; and market evaluation. The preliminary design activities included the selection of a design coal for the Phase 1 design, preliminary design layout, and preliminary sizing of the burner components. Modelling and analysis were conducted for the coal pyrolysis zone, the rich combustion zone and the lean bumout zone. Both chemical kinetics and one-dimensional coal combustion modelling were performed. The market evaluation included a review of existing industrial coal use, identification of potential near- and long-term markets and an assessment of the optimum burner sizes.

Not Available

1993-12-01T23:59:59.000Z

128

CFCC radiant burner assessment. Final report, April 1, 1992--July 31, 1994  

SciTech Connect (OSTI)

The objective of this work was to identify methods of improving the performance of gas-fired radiant burners through the use of Continuous Fiber Ceramic Composites (CFCCs). Methods have been identified to improve the price and performance characteristics of the porous surface burner. Results are described.

Schweizer, S.; Sullivan, J.

1994-11-01T23:59:59.000Z

129

Low NOx burner retrofits and enhancements for a 518 MW oil and gas fired boiler  

SciTech Connect (OSTI)

Low NOx oil/gas burners originally supplied to Jacksonville Electric Authority, Northside No. 3 .500 MW unit, were based on a duplex air register design with lobed spray oil atomizers providing additional fuel staging. Although the burners could meet the targeted NOx levels of 0.3 and 0.2 lbs/10{sup 6} BTU on oil and gas respectively. There was insufficient margin on these NOx levels to enable continuous low NOx operation to be achieved. Further burner development was undertaken based on improved aerodynamic control within the burner design to give an approximate 25% improvement in NOx emission reduction thus providing an adequate operating margin. This `RoBTAS` (Round Burner with Tilted Air Supply) burner design based on techniques developed successfully for front wall coal firing applications achieved the required NOx reductions in full scale firing demonstrations on both heavy fuel oil and natural gas firing. The paper describes the development work and the subsequent application of the `RoBTAS` burners to the Northside No. 3 boiler. The burner will also be test fired on Orimulsion fuel and thus the comparison between heavy fuel oil firing and Orimulsion firing under ultra low NOx conditions will be made.

King, J.J. [Jacksonville Electric Authority, FL (United States); Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom). Rolls-Royce Industrial Power Group

1995-12-31T23:59:59.000Z

130

Full-scale demonstration Low-NO sub x Cell trademark Burner retrofit  

SciTech Connect (OSTI)

The Low-NO{sub x} Cell{trademark} Burner operates on the principle of staged combustion. The lower burner of each two-nozzle cell is modified to accommodate all the fuel input previously handled by two nozzles. Secondary air, less than theoretically required for complete combustion, is introduced to the lower burner. The remainder of secondary air is directed to the upper port'' of each cell to complete the combustion process. B W/EPRI have thoroughly tested the LNCB{trademark} at two pilot scales (6 million Btu per hour and 100 million Btu per hour), and tested a single full-scale burner in a utility boiler. Combustion tests at two scales have confirmed NO{sub x} reduction with the low-NO{sub x} cell on the order of 50% relative to the standard cell burner at optimum operating conditions. The technology is now ready for full unit, full-scale demonstration.

Not Available

1992-05-11T23:59:59.000Z

131

Heat exchanger support apparatus in a fluidized bed  

DOE Patents [OSTI]

A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

Lawton, Carl W. (West Hartford, CT)

1982-01-01T23:59:59.000Z

132

Pressure Fluctuations as a Diagnostic Tool for Fluidized Beds  

SciTech Connect (OSTI)

The purpose of this project was to investigate the origin of pressure fluctuations in fluidized bed systems. The study assessed the potential for using pressure fluctuations as an indicator of fluidized bed hydrodynamics in both laboratory scale cold-models and industrial scale boilers. Both bubbling fluidized beds and circulating fluidized beds were evaluated. Testing including both cold-flow models and laboratory and industrial-scale combustors operating at elevated temperatures. The study yielded several conclusions on the relationship of pressure fluctuations and hydrodynamic behavior in fluidized beds. The study revealed the importance of collecting sufficiently long data sets to capture low frequency (on the order of 1 Hz) pressure phenomena in fluidized beds. Past research has tended toward truncated data sets collected with high frequency response transducers, which miss much of the spectral structure of fluidized bed hydrodynamics. As a result, many previous studies have drawn conclusions concerning hydrodynamic similitude between model and prototype fluidized beds that is insupportable from the low resolution data presented.

Ethan Bure; Joel R. Schroeder; Ramon De La Cruz; Robert C. Brown

1998-05-01T23:59:59.000Z

133

EXPERIMENT AND NEURAL NETWORK MODEL OF PRIMARY FRAGMENTATION OF OIL SHALE IN FLUIDIZED BED  

E-Print Network [OSTI]

that the fluidized bed temperature is an important factor of primary fragmentation of oil shale, and

Zhigang Cui; Xiangxin Han; Xiumin Jiang; Jianguo Liu

134

Pulsed atmospheric fluidized bed combustion. Final report  

SciTech Connect (OSTI)

ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

NONE

1998-03-01T23:59:59.000Z

135

Model for attrition in fluidized beds  

SciTech Connect (OSTI)

A model developed to predict the particle-size distribution and amount of fines generated during the attrition of particles in fluidized beds agrees well with experimental data for siderite iron ore and lignite char. Certain parameters used in the model are independent of particle size, orifice size, system pressure, bed weight, and attrition time, thus making the model suitable for scale-up purposes. Although the analysis was limited to a single jet with the attrition occurring at room temperature, the model can be extended to multi-jet, high-temperature operations.

Chen, T.P.; Sishtla, C.I.; Punwani, D.V.; Arastoopour, H.

1980-01-01T23:59:59.000Z

136

Second-generation pressurized fluidized bed combustion  

SciTech Connect (OSTI)

Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

Wolowodiuk, W.; Robertson, A.

1992-05-01T23:59:59.000Z

137

Second-generation pressurized fluidized bed combustion  

SciTech Connect (OSTI)

Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

Wolowodiuk, W.; Robertson, A.

1992-01-01T23:59:59.000Z

138

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project  

SciTech Connect (OSTI)

This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

Not Available

1991-01-01T23:59:59.000Z

139

Process and apparatus for igniting a burner in an inert atmosphere  

DOE Patents [OSTI]

According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.

Coolidge, Dennis W. (Katy, TX); Rinker, Franklin G. (Perrysburg, OH)

1994-01-01T23:59:59.000Z

140

Low NOx modifications on front-fired pulverized coal fuel burners  

SciTech Connect (OSTI)

Burner optimizations and modifications were performed on Public Service of New Hampshire`s Schiller Units 4, 5, and 6. These are Foster-Wheeler 50 MWg pulverized coal and No.6 fuel oil-fired boilers with six burners each. Burner optimizations consisted of fuel flow, primary air, secondary air testing and balancing. Burner modifications consisted of the addition of circumferentially and radially staged flame stabilizers, circumferentially-staged coal spreaders, and modifications to the existing pulverized coal pipe. NO{sub x} emissions on Unit 6 of .41 lb/mmBtu were achieved at optimized burner settings at full load with all burners in service and without the use of overfire air or bias firing. This represented a 50% NO{sub x} reduction from the average pre-modification baseline NO{sub x} emissions of .81 lb/mmBtu prior to the optimizations and burner modification program. NO{sub x} emissions as low as .38 lb/mmBtu were achieved with the use of overfire air. There was essentially no quantifiable change in LOIs (baseline LOIs averaged 40%). Furnace excess O{sub 2} as low as 1.2% was achieved with CO emissions of less than 200 ppm. Total installed costs including the overfire air system were approximately $7/kW.

Owens, B.; Hitchko, M. [Public Service of New Hampshire, Manchester, NH (United States); Broderick, R.G. [RJM Corp., Ridgefield, CT (United States)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

An Energy Analysis of the Catalytic Combustion Burner  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Heating technologies for energy efficiency Vol.III-1-3 An Energy Analysis of the Catalytic Combustion Burner Qingshan Dong Postgraduate Shihong. Zhang Ph. D. Professor Zhiyin Duan Postgraduate Qi Zhou... for energy efficiency Vol.III-1-3 Tab. 1 Compositions of natural gas Compositions CH4 C2H6 C3H8 i-C4H10 n-C4H10 CO2 N2 O2 Volume fraction (%) 93.908 0.951 0.198 0.012 0.011 2.657 1.894 0.369 Lower heating value (kJ Nm-3) 35906 64397 93244 122857...

Dong, Q.; Zhang, S.; Duan, Z.; Zhou, Q.

2006-01-01T23:59:59.000Z

142

Heat transfer coefficients in three phase fluidized beds  

SciTech Connect (OSTI)

In order to obtain a semitheoretical correlation for the heat transfer coefficients in three phase fluidized beds, Deckwer's semitheoretical correlation for the heat transfer coefficients in the bubble column, which was derived from Higbie's surface renewal theory of interphase mass transfer with the concept of isotropic turbulence, has been extended to three phase fluidized beds with the modification of the energy dissipation rate. One of the desirable characteristics of three phase fluidized beds is the uniformity of temperature in the bed. The intense longitudinal and transverse turbulent mixing in a fluidized bed may induce the uniform fields of temperature and solids concentration. For highly exothermic reactions, the uniform temperature in the bed is essential to avoid the local hot spots. In order to control the uniform temperature of three phase fluidized beds, the addition or removal of heat in the bed is required and the information on heat transfer surface and the bed is essential to designing the heat exchanger. Recently, Chiu and Ziegler (1983) determined wall-to-bed heat transfer coefficients in three phase fluidized bed (5.08 cm ID) of glass beads and cylindrical gamma alumina particles which were fluidized by cocurrent flow of air and water. Their data were correlated in terms of the modified Colburn j factor. Kato et al. (1981) measured wall-to-bed heat transfer coefficients in three phase fluidized beds of 5.2 and 12.0 cm internal diameter. Four different sizes of glass beads (0.42-2.2 mm) were fluidized by air and aqueous carboxymethyl cellulose solutions. The coefficients increased with decrease in liquid viscosity and with increase in gas and liquid velocity.

Suh, I.S.; Jin, G.T.; Kim, S.D.

1985-03-01T23:59:59.000Z

143

Coal-feeding mechanism for a fluidized bed combustion chamber  

DOE Patents [OSTI]

The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

Gall, Robert L. (Morgantown, WV)

1981-01-01T23:59:59.000Z

144

Heat transfer and combustion characteristics of a burner with a rotary regenerative heat exchanger  

SciTech Connect (OSTI)

The authors have developed a Rotary Regenerative Combustion (RRX) System, which is coupled with a compact high efficiency regenerative air heat exchanger and a combustion burner. This system contributes to saving energy of fuel firing industrial furnaces and decreases NO{sub x} emission. This technology can be considered as a solution of greenhouse problem. This paper, discusses a compact high efficiency regenerative air heat exchanger in comparison with the existing types of regenerative burners and reverse firing with high momentum fuel jet (with motive fluid) in the furnace. This burner is compact in size, with high fuel efficiency, low NOx emission, easy to operate, and reliable, based on the results of field tests and commercial operations. The authors can say that the RRX system is a regenerative burner of the second generation.

Hirose, Yasuo; Kaji, Hitoshi; Arai, Norio

1998-07-01T23:59:59.000Z

145

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer...  

Office of Environmental Management (EM)

Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification C.M. Jantzen and E.M. Pierce November 18, 2010 2 Participating Organizations 3...

146

Application of a fluidized bed combustor to the DARS process  

SciTech Connect (OSTI)

Australian Paper has built the world`s first and only operational Direct Alkali Recovery System (DARS) to recover caustic soda for a soda AQ chemical pulp mill. At the heart of the DARS process, concentrated spent pulping liquor is burnt in a fluidized bed. The bed material is made up of coarse, dense iron oxide pellets which require a high fluidizing velocity. Bubbling is violent and gives robust fluidization of the iron and sodium compounds. The plant suffered a protracted startup because of equipment failures, air flow instability problems, and process and equipment design errors. A large amount of post construction development work was required. This paper discusses the experiences and knowledge gained in adapting a fluidized bed to the DARS process.

Scott-Young, R.E. [Australian Paper, Burnie, Tasmania (Australia). Pulp Mill and Services Unit

1995-12-31T23:59:59.000Z

147

EA-0575: Fundamental Fluidization Research Project, Morgantown, West Virginia  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to design, construct, and operate a 2-foot diameter, 50-foot high pressurized fluidization with particular emphasis on operation in the...

148

The backflow cell model for fluidized bed catalytic reactors  

E-Print Network [OSTI]

that the backmixing of gas in a small fluidized bed with high length to diameter rati. o is relatively small. Hence, it was recommended. that reaction rate studies in fluidized bed reactors be correlated on the basis oi' piston flow~ neglecting mixing. Nay (19...) points out that the straight line obtained on plotting the results of Gilliland's ex- periment on a paper with semilogarithmic coordinates, can be used to characterize the residence time distribution introduced by Danckwerts (6). A steep slope, he...

Ganapathy, E. V

2012-06-07T23:59:59.000Z

149

Inclined fluidized bed system for drying fine coal  

DOE Patents [OSTI]

Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY); Boysen, John E. (Laramie, WY)

1992-02-11T23:59:59.000Z

150

Fluidized bed boiler having a segmented grate  

DOE Patents [OSTI]

A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

Waryasz, Richard E. (Longmeadow, MA)

1984-01-01T23:59:59.000Z

151

Advanced control strategies for fluidized bed dryers  

SciTech Connect (OSTI)

Generating the best possible control strategy comprises a necessity for industrial processes, by virtue of product quality, cost reduction and design simplicity. Three different control approaches, namely an Input-Output linearizing, a fuzzy logic and a PID controller, are evaluated for the control of a fluidized bed dryer, a typical non-linear drying process of wide applicability. Based on several closed loop characteristics such as settling times, maximum overshoots and dynamic performance criteria such as IAE, ISE and ITAE, it is shown that the Input-Output linearizing and the fuzzy logic controller exhibit a better performance compared to the PID controller tuned optimally with respect to IAE, for a wide range of disturbances; yet, the relevant advantage of the fuzzy logic over the conventional nonlinear controller issues upon its design simplicity. Typical load rejection and set-point tracking examples are given to illustrate the effectiveness of the proposed approach.

Siettos, C.I.; Kiranoudis, C.T.; Bafas, G.V.

1999-11-01T23:59:59.000Z

152

Nucla circulating atmospheric fluidized bed demonstration project  

SciTech Connect (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Keith, Raymond E.

1991-10-01T23:59:59.000Z

153

Dynamics of Gas-Fluidized Granular Rods  

E-Print Network [OSTI]

We study a quasi-two-dimensional monolayer of granular rods fluidized by a spatially and temporally homogeneous upflow of air. By tracking the position and orientation of the particles, we characterize the dynamics of the system with sufficient resolution to observe ballistic motion at the shortest time scales. Particle anisotropy gives rise to dynamical anisotropy and superdiffusive dynamics parallel to the rod's long axis, causing the parallel and perpendicular mean squared displacements to become diffusive on different timescales. The distributions of free times and free paths between collisions deviate from exponential behavior, underscoring the non-thermal character of the particle motion. The dynamics show evidence of rotational-translational coupling similar to that of an anisotropic Brownian particle. We model rotational-translation coupling in the single-particle dynamics with a modified Langevin model using non-thermal noise sources. This suggests a phenomenological approach to thinking about collections of self-propelling particles in terms of enhanced memory effects.

L. J. Daniels; Y. Park; T. C. Lubensky; D. J. Durian

2008-11-17T23:59:59.000Z

154

Constraints to Stop Deforestation FB IV Informatik, Universitat Trier,  

E-Print Network [OSTI]

Constraints to Stop Deforestation H. Seidl FB IV ­ Informatik, Universit¨at Trier, D­54286 Trier, Universitetsparken 1, DK­2100 Copenhagen �, Denmark. rambo@diku.dk Abstract Wadler's deforestation algorithm, deforestation must terminate on all programs. Several techniques exist to ensure termination of de­ forestation

Seidl, Helmut

155

Constraints to Stop HigherOrder Deforestation FB IV Informatik  

E-Print Network [OSTI]

Constraints to Stop Higher­Order Deforestation H. Seidl FB IV ­ Informatik Universit¨at Trier, D of Copenhagen Universitetsparken 1, DK­2100 Copenhagen �, Denmark rambo@diku.dk Abstract Wadler's deforestation in a compiler, it must terminate on all programs. Several techniques to ensure termi­ nation of deforestation

Seidl, Helmut

156

Development and applications of clean coal fluidized bed technology  

SciTech Connect (OSTI)

Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

Eskin, N.; Hepbasli, A. [Ege University, Izmir (Turkey). Faculty of Engineering

2006-09-15T23:59:59.000Z

157

Development, Application and Performance of Venturi Register L. E. A. Burner System for Firing Oil and Gas Fuels  

E-Print Network [OSTI]

DEVELOPMENT, APPLICATION AND PERFORMANCE OF VENTURI REGISTER L. E. A. BURNER SYSTEM FOR FIRING OIL AND GAS FUELS A. D. Cawte CEA Combustion, Inc. Stamford, Connecticut INTRODUCTION The effect of reducing excess air as a means of curtailing..., extensive investigation work was undertaken us ing the water analog model techniques developed by Associated British Combustion for burner design. The development work resulted in the burner design known today as the Venturi Register, LEA (low excess air...

Cawte, A. D.

1979-01-01T23:59:59.000Z

158

Study of the effects of ambient conditions upon the performance of fam powered, infrared, natural gas burners  

SciTech Connect (OSTI)

The objective of this investigation is to characterize the operation of a fan powered infrared burner (PIR burner) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PIR burners for satisfactory performance. The fan powered infrared burner is a technology introduced more recently in the residential and commercial markets. It is a surface combustor that elevates the temperature of the burner head to a radiant condition. A variety of metallic and ceramic materials are used for the burner heads. It has been demonstrated that infrared burners produce low CO and NO{sub x} emissions in a controlled geometric space. This project consists of both experimental research and numerical analysis. To conduct the experiments, an experimental setup has been developed and installed in the Combustion Laboratory at Clerk Atlanta University (CAU). This setup consists of a commercial deep fat fryer that has been modified to allow in-situ radiation measurements on the surface of the infrared burner via a view port installed on the side wall of the oil vat. Proper instrumentation including fuel/air flow rate measurement, exhaust gas emission measurement, and radiation measurement has been developed. The project is progressing well. The scheduled tasks for this period of time were conducted smoothly. Specifically: 1. Baseline experimental study at CAU has been completed. The data are now under detailed analysis and will be reported in next quarterly report. 2. Theoretical formulation and analysis of the PIR burner performance model are continuing. Preliminary results have been obtained.

Bai, Tiejun

1996-10-01T23:59:59.000Z

159

Latest developments and application of DB Riley's low NOx CCV{reg{underscore}sign} burner technology  

SciTech Connect (OSTI)

Recent developments in DB Riley (DBR) low NOx burner technology and the application of this technology in coal fired utility boilers are discussed. Since the promulgation of the Clean Air Act Amendment in 1990, DBR has sold nearly 1,500 Controlled Combustion Venturi (CCV{reg{underscore}sign}) burners on pulverized coal fired utility boilers reducing NOx emissions 50--70% from uncontrolled levels. This technology has been retrofitted on boiler designs ranging in size and type from 50 MW front wall fired boilers to 1,300 MW opposed fired cell type boilers. In DBR's latest version of the CCV{reg{underscore}sign} burner, a second controlled flow air zone was added to enhance NOx control capability. Other developments included improved burner air flow measurement accuracy and several mechanical design upgrades such as new coal spreader designs for 3 year wear life. Test results of the CCV{reg{underscore}sign} dual air zone burner in DBR's 100 million Btu/hr (29 MW) coal burner test facility are presented. In the test program, coals from four utility boiler sites were fired to provide a range of coal properties. A baseline high volatile bituminous coal was also fired to provide a comparison with 1992 test data for the CCV{reg{underscore}sign} single register burner. The tests results showed that the second air zone enhanced NOx reduction capability by an additional 20% over the single register design. Computational fluid dynamic (DFD) modeling results of the CCV{reg{underscore}sign} dual air zone burner are also presented showing near field mixing patterns conducive to low NOx firing. DBR was recently awarded Phase IV of the Low Emission Boiler System (LEBS) program by the US Department of Energy to build a proof of concept facility representing the next major advancement in pulverized coal burning technology. A key part of winning that award were test results of the CCV{reg{underscore}sign} dual air zone burner with advanced air staging and coal reburning in a 100 million Btu/hr (20 MW) U-fired slagging combustor test facility. These results showed NOx emissions of less than 0.2 lb/million Btu (0.086 g/MJ) while converting the coal ash into an inert, non-leachable solid. This results is an 80% reduction in NOx emissions from currently operating U-fired slagging boilers.

Penterson, C.; Ake, T.

1998-07-01T23:59:59.000Z

160

Development of a Low Pressure, Air Atomized Oil Burner with High Atomizer Air Flow: Progress Report FY 1997  

SciTech Connect (OSTI)

This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5-8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or ''FAB'' has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a toroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the firing rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% O{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

Butcher, T.A.

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS  

SciTech Connect (OSTI)

Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

Ibrahim, Essam A

2013-01-09T23:59:59.000Z

162

Fluidized bed pyrolysis of terrestrial biomass feedstocks  

SciTech Connect (OSTI)

Hybrid poplar, switchgrass, and corn stover were pyrolyzed in a bench scale fluidized-bed reactor to examine the influence of storage time on thermochemical converting of these materials. The influence of storage on the thermochemical conversion of the biomass feedstocks was assessed based on pyrolysis product yields and chemical and instrumental analyses of the pyrolysis products. Although char and gas yields from corn stover feedstock were influenced by storage time, hybrid poplar and switchgrass were not significantly affected. Liquid, char, and gas yields were feedstock dependent. Total liquid yields (organic+water) varied from 58%-73% depending on the feedstock. Char yields varied from 14%-19% while gas yields ranged from 11%-15%. The chemical composition of the pyrolysis oils from hybrid polar feedstock was slightly changed by storage, however, corn stover and switchgrass feedstock showed no significant changes. Additionally, stored corn stover and hybrid poplar pyrolysis oils showed a significant decrease in their higher heating values compared to the fresh material.

Besler, S.; Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)] [and others

1994-12-31T23:59:59.000Z

163

Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, October 1, 1995--December 31, 1995  

SciTech Connect (OSTI)

Infrared burner is a surface combustor that elevates the temperature of the burner head to a radiant condition. Applications of radiant burners includes boilers, air heaters, deep fat fryers, process heaters, and immersion heaters. On reason for the present interest in this type of burner is its low NO{sub x} emissions, which is attributed to the fact that a large proportion of the combustion heat is given out as radiation from the burner surface, which results in relatively low gas temperature in the combustion zone compared to that of a conventional free-flame burner. As a consequence, such burners produce less NO{sub x}, mainly by the so-called prompt-NO mechanism. A porous radiant burner testing facility was built, consisting of spectral radiance as well as flue gas composition measurements. Measurement capabilities were tested using methane; results were consistent with literature.

Bai, Tiejun; Yeboah, Y.D.; Sampath, R.

1996-01-01T23:59:59.000Z

164

Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, October 1, 1996--December 31, 1996  

SciTech Connect (OSTI)

This quarterly technical progress report describes work performed under DOE Grant No. DE-FG22-94MT94011 during the period September 1, 1996 to December 31, 1996 which covers the nineth quarter of the project. The objective of this investigation is to characterize the operation of a fan powered infrared burner (IR burner) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PIR burners for satisfactory performance. The fan powered infrared burner is a technology introduced more recently in the residential and commercial markets. It is a surface combustor that elevates the temperature of the burner head to a radiant condition. A variety of metallic and ceramic materials are used for the burner heads. It has been demonstrated that infrared burners produce low CO and NO{sub x} emissions in a controlled geometric space. As the environmental regulations become more stringent, infrared burners are receiving increasing interests.

Bai, T.

1997-01-01T23:59:59.000Z

165

Fluidized bed combustor and removable windbox and tube assembly therefor  

DOE Patents [OSTI]

A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

DeFeo, Angelo (Totowa, NJ); Hosek, William (Mt. Tabor, NJ)

1983-01-01T23:59:59.000Z

166

Fluidized bed combustor and removable windbox and tube assembly therefor  

DOE Patents [OSTI]

A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

DeFeo, Angelo (Totowa, NJ); Hosek, William S. (Mt. Tabor, NJ)

1981-01-01T23:59:59.000Z

167

Methods of forming a fluidized bed of circulating particles  

DOE Patents [OSTI]

There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

Marshall, Douglas W. (Blackfoot, ID)

2011-05-24T23:59:59.000Z

168

Thermionic-cogeneration-burner assessment study. Second quarterly technical progress report, January-March 1983  

SciTech Connect (OSTI)

The performance analysis work continued with the completion of the programming of the mathematical model and with the start of a series of parametric analyses. Initial studies predict that approximately 25 to 30% of the heat contained in the flue gas can be passed through the thermionic converters (TEC) and then be converted at 12 to 15% efficiency into electrical power. This results in up to 17 kWe per 1 million Btu/h burner firing rate. This is a 4 to 10 percent energy saving over power produced at the utility. The thermal burner design and construction have been completed, as well as initial testing on the furnace and preheat systems. The following industries are still considered viable options for use of the thermionic cogeneration burner: chlor-alkali, alumina-aluminum, copper refining, steel and gray iron, industries using resistance heating, electrolytic industries and electrochemical industries. Information gathered on these industries is presented.

Not Available

1983-01-01T23:59:59.000Z

169

Computational fluid dynamic modeling of fluidized-bed polymerization reactors  

SciTech Connect (OSTI)

Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

Rokkam, Ram [Ames Laboratory

2012-11-02T23:59:59.000Z

170

Description of emission control using fluidized-bed, heat-exchange technology  

SciTech Connect (OSTI)

Environmental effects of fluidized-bed, waste-heat recovery technology are identified. The report focuses on a particular configuration of fluidized-bed, heat-exchange technology for a hypothetical industrial application. The application is a lead smelter where a fluidized-bed, waste-heat boiler (FBWHB) is used to control environmental pollutants and to produce steam for process use. Basic thermodynamic and kinetic information for the major sulfur dioxide (SO/sub 2/) and NO/sub x/ removal processes is presented and their application to fluidized-bed, waste heat recovery technology is discussed. Particulate control in fluidized-bed heat exchangers is also discussed.

Vogel, G.J.; Grogan, P.J.

1980-06-01T23:59:59.000Z

171

Pressurized fluidized-bed combustion technology exchange workshop  

SciTech Connect (OSTI)

The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

,

1980-04-01T23:59:59.000Z

172

Refractory experience in circulating fluidized bed combustors, Task 7  

SciTech Connect (OSTI)

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

173

An evolution of nozzle design: The low NOx burner experience at the Baldwin Power Station  

SciTech Connect (OSTI)

Illinois Power Company (IPC) installed low NO{sub x} burners on Baldwin Unit 3 in the Spring of 1994. Although the NO{sub x} reduction performance of these burners has been outstanding, IPC suffered catastrophic nozzle failure in the first 8 weeks of operation. The nozzles were then modified and later, replaced. Within 1 week of operation, 2 of the new nozzles also failed. This paper traces the development of the original nozzle, the influences-of other nozzle failures on its design, the determination of the cause of the original and subsequent failures, and the current state of the nozzles.

Forney, D.W. [Illinois Power Co., Decatur, IL (United States); Murray, D.G. [Rolls Royce Industrial Power, Inc., Atlanta, GA (United States); Beal, P.R. [Rolls-Royce Industrial Power, Inc., Derby (United Kingdom)

1996-01-01T23:59:59.000Z

174

Gas-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood, Lars Sitzki* and Paul D. Ronney  

E-Print Network [OSTI]

1 Gas-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood title: Extinction limits in excess enthalpy burners To be published in Proceedings of the Combustion-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood, Lars Sitzki* and Paul D

175

FB/SN CRAC Workshops (rates/meetings)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolution Enhanced OilExtractingFinancial-Based (FB) and

176

FB EcoSolutions LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,Law andEnergyEvogyMoreOpen EnergyFASFB

177

Method for using fast fluidized bed dry bottom coal gasification  

DOE Patents [OSTI]

Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

Snell, George J. (Fords, NJ); Kydd, Paul H. (Lawrenceville, NJ)

1983-01-01T23:59:59.000Z

178

Staged fluidized-bed combustion and filter system  

DOE Patents [OSTI]

A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

Mei, Joseph S. (Morgantown, WV); Halow, John S. (Waynesburg, PA)

1994-01-01T23:59:59.000Z

179

DMEC-1 Pressurized Circulating Fluidized-Bed Demonstration Project  

SciTech Connect (OSTI)

The DMEC-1 project will demonstrate the use of Pyropower`s PYROFLOW pressurized circulating fluidized bed technology to repower an existing coal fired generating station. This will be the first commercial application of this technology in the world. The project is now in budget period 1, the preliminary design phase.

Kruempel, G.E.; Ambrose, S.J. [Midwest Power, Des Moines, IA (United States); Provol, S.J. [Pyropower Corp., San Diego, CA (United States)

1992-12-01T23:59:59.000Z

180

Fluidized bed combustor and coal gun-tube assembly therefor  

DOE Patents [OSTI]

A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

Hosek, William S. (Mt. Tabor, NJ); Garruto, Edward J. (Wayne, NJ)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Establishing criteria for the design of a combination parallel and cross-flaming covered burner  

E-Print Network [OSTI]

it with the two open flame practices. This evaluation was performed by moving the burners over an area that would monitor the temperatures at specified heights and locations. Temperatures were measured using thermocouples placed at heights 7-mm, 150-mm, and 300...

Stark, Christopher Charles

2003-01-01T23:59:59.000Z

182

ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel  

DOE Patents [OSTI]

The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

2013-04-02T23:59:59.000Z

183

Note LPSC 07-37 The TMSR as Actinide Burner and Thorium Breeder  

E-Print Network [OSTI]

Note LPSC 07-37 The TMSR as Actinide Burner and Thorium Breeder E. Merle-Lucotte, D. Heuer, C. Le actinides. Studies [1] have thus been done on the Molten Salt Breeder Reactor (MSBR) [2] of Oak-Ridge to re fluoride salt LiF- ThF4 with 28%- mole 232 Th. This reflector, corresponding to a fertile blanket

Paris-Sud XI, Université de

184

Measurement and analysis of heating of paper with gas-fired infrared burner  

E-Print Network [OSTI]

. Gas-fired IR heaters produce combustion on the burner surface by ignition of a pre-mixed air and fuel streams. The combustion raises the surface temperature to ranges of 800-1,100°C to emit radiation, mainly in the medium IR range, which has a...

Husain, Abdullah Nadir

2000-01-01T23:59:59.000Z

185

Design and Evaluation of a High Temperature Burner Duct Recuperator System  

E-Print Network [OSTI]

"The Babcock & Wilcox Company (B&W) has completed a program to design, construct, install, and field test a ceramic-based high-temperature burner-duct-recuperator (HTBDR) in an industrial setting. The unit was capable of operating in corrosive, high...

Parks, W. P.; DeBellis, C. L.; Kneidel, K.

186

Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers  

SciTech Connect (OSTI)

Cyclone furnaces operate with high excess air and at high temperature. The heat release during combustion is very high and as a result the boiler volume is much smaller than would be found in a conventional pc-fired system. The Marion Unit 1 boiler, at the level of the cyclone entry, has a small cross-section; about 5-feet in depth and about 20-feet in width. A boiler schematic showing the LNS Burner and relative location of the superheater region and overfire air ports is shown in Figure 1. The LNS Burner's combustion process is fundamentally different from that of the cyclone, and the combustion products are also different. The LNS Burner products enter the boiler as hot, fuel-rich gases. Additional overfire air must be added to complete this combustion step with care taken to avoid the formation of thermal NO{sub x}. If done correctly, S0{sub 2} is controlled and significant NO{sub x} reductions are achieved. Because of the small boiler volume, flow modelling was found to be necessary to insure that adequate mixing of LNS Burner combustion products with air can be accomplished to achieve NO{sub x} emissions goals. Design requirements for the air injection system for the Marion boiler were developed using FLUENT, a commercially available computational fluid dynamics (CFD) code. A series of runs were made to obtain a design for final air injection that met the process design goals as closely as possible.

Not Available

1990-01-01T23:59:59.000Z

187

Simulation of Nitrogen Emissions in a Premixed Hydrogen Flame Stabilized on a Low Swirl Burner  

E-Print Network [OSTI]

of fuels such as pure hydrogen and hydrogen-seeded hydrocarbon mixtures. However, many hydrogen-rich fuels in the context of a laboratory-scale low swirl burner fueled with a lean hydrogen-air mixture at atmospheric of burning lean hydrogen or hydrogen-enriched lean hydrocar- bon fuels (e.g., [2­5]). For these fuels

Bell, John B.

188

CONTROL OF POLLUTANT EMISSIONS IN NATURAL GAS DIFFUSION FLAMES BY USING CASCADE BURNERS  

SciTech Connect (OSTI)

The goal of this exploratory research project is to control the pollutant emissions of diffusion flames by modifying the air infusion rate into the flame. The modification was achieved by installing a cascade of venturis around the burning gas jet. The basic idea behind this technique is controlling the stoichiometry of the flame through changing the flow dynamics and rates of mixing in the combustion zone with a set of venturis surrounding the flame. A natural gas jet diffusion flame at burner-exit Reynolds number of 5100 was examined with a set of venturis of specific sizes and spacing arrangement. The thermal and composition fields of the baseline and venturi-cascaded flames were numerically simulated using CFD-ACE+, an advanced computational environment software package. The instantaneous chemistry model was used as the reaction model. The concentration of NO was determined through CFD-POST, a post processing utility program for CFD-ACE+. The numerical results showed that, in the near-burner, midflame and far-burner regions, the venturi-cascaded flame had lower temperature by an average of 13%, 19% and 17%, respectively, and lower CO{sub 2} concentration by 35%, 37% and 32%, respectively, than the baseline flame. An opposite trend was noticed for O{sub 2} concentration; the cascaded flame has higher O{sub 2} concentration by 7%, 26% and 44%, in average values, in the near-burner, mid-flame and far-burner regions, respectively, than in the baseline case. The results also showed that, in the near-burner, mid-flame, and far-burner regions, the venturi-cascaded flame has lower NO concentrations by 89%, 70% and 70%, in average values, respectively, compared to the baseline case. The numerical results substantiate that venturi-cascading is a feasible method for controlling the pollutant emissions of a burning gas jet. In addition, the numerical results were useful to understand the thermo-chemical processes involved. The results showed that the prompt-NO mechanism plays an important role besides the conventional thermal-NO mechanism. The computational results of the present study need to be validated experimentally.

Dr. Ala Qubbaj

2001-12-30T23:59:59.000Z

189

Lateral solids dispersion coefficient in large-scale fluidized beds  

SciTech Connect (OSTI)

The design of fuel feed ports in a large-scale fluidized bed combustor depends on the fuel characteristics and lateral solids mixing. However, the reported values of the effective lateral solids dispersion coefficient (D{sub sr}) are scattered in the broad range of 0.0001-0.1 m{sup 2}/s. With the aim of predicting D{sub sr} in wider fluidized beds which is difficult to measure directly or deduce from experimental results in lab-scale facilities, a computational method is proposed. It combines the Eulerian-Granular simulation and fictitious particle tracing technique. The value of D{sub sr} is calculated based on the movement of the tracers. The effect on D{sub sr} of bed width (W) ranging from 0.4 m up to 12.8 m at different levels of superficial gas velocity (U{sub 0}) is investigated. It is found that increasing W whilst maintaining U{sub 0}, D{sub sr} initially increases markedly, then its increase rate declines, and finally it stays around a constant value. The computed values of D{sub sr} are examined quantitatively and compared with a thorough list of the measured D{sub sr} in the literature since 1980s. Agreed with the measurements performed in the pilot-scale fluidized beds, the value of D{sub sr} in wider facilities at higher fluidizing velocities is predicted to be around the order of magnitude of 0.1 m{sup 2}/s, much higher than that in lab-scale beds. Finally, the effect of D{sub sr} on the distribution of fuel particles over the cross section in fluidized beds with the specified layout of feed ports is discussed. (author)

Liu, Daoyin; Chen, Xiaoping [School of Energy and Environment, Southeast University, Nanjing 210096 (China)

2010-11-15T23:59:59.000Z

190

Development of a 16-MW sub th coal-water/heavy oil burner for front-wall firing  

SciTech Connect (OSTI)

The Canadian program of coal-water fuel (CWF) technology development has included the demonstration of commercial burners for CWF in both coal and oil-designed utility boilers. The demonstrations clearly showed that these burners were prototypes, and were, in fact, modified oil burners that were mismatched to the rheological properties of the CWF. As the demonstrations were proceeding, a simultaneous research program was undertaken in which the basic principles governing atomization and combustion of CWF were studied. Results from the fundamental studies which led to the development of a novel prototype dual fuel CWF/oil burner are described. In the various stages of development, the burner was scaled up from 1.5 MW{sub th} to an industrial scale of 16 MS{sub th} for demonstration in a 20-MW{sub (e)} oil-designed industrial utility boiler and for a single-burner commercial operation in an oil designed package steam boiler. A summary of the burner performance in these demonstrations is also given in this paper.

Thambimuthu, K.V.; Whaley, H. (EMR Canada/CANMET, Ottawa (CA)); Bennet, A.; Jonasson, K.A. (NRC Canada, Ottawa (CA))

1990-06-01T23:59:59.000Z

191

Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

Not Available

1990-01-01T23:59:59.000Z

192

Results of initial operation of the Jupiter Oxygen Corporation oxy-fuel 15 MWth burner test facility  

SciTech Connect (OSTI)

Jupiter Oxygen Corporation (JOC), in cooperation with the National Energy Technology Laboratory (NETL), constructed a 15 MWth oxy-fuel burner test facility with Integrated Pollutant Removal (IPRTM) to test high flame temperature oxy-fuel combustion and advanced carbon capture. Combustion protocols include baseline air firing with natural gas, oxygen and natural gas firing with and without flue gas recirculation, and oxygen and pulverized coal firing with flue gas recirculation. Testing focuses on characterizing burner performance, determining heat transfer characteristics, optimizing CO2 capture, and maximizing heat recovery, with an emphasis on data traceability to address retrofit of existing boilers by directly transforming burner systems to oxy-fuel firing.

Thomas Ochs, Danylo Oryshchyn, Rigel Woodside, Cathy Summers, Brian Patrick, Dietrich Gross, Mark Schoenfield, Thomas Weber and Dan O'Brien

2009-04-01T23:59:59.000Z

193

FB-line neutron multiplicity counter operation manual  

SciTech Connect (OSTI)

This manual describes the design features, performance, and operating characteristics for the FB-Line Neutron Multiplicity counter (FBLNMC). The FBLNMC counts neutron multiplicities to quantitatively assay plutonium in many forms, including impure scrap and waste. Monte Carlo neutronic calculations were used to design the high-efficiency (57%) detector that has 113 {sup 3}He tubes in a high-density polyethylene body. The new derandomizer circuit is included in the design to reduce deadtime. The FBLNMC can be applied to plutonium masses in the range from a few tens of grams to 5 kg; both conventional coincidence counting and multiplicity counting can be used as appropriate. This manual gives the performance data and preliminary calibration parameters for the FBLNMC.

Langner, D.G.; Sweet, M.R.; Salazar, S.D.; Kroncke, K.E.

1997-12-31T23:59:59.000Z

194

Complete genome sequence of Arthrobacter sp. strain FB24  

SciTech Connect (OSTI)

Arthrobacter sp. strain FB24 is a species in the genus Arthrobacter Conn and Dimmick 1947, in the family Micrococcaceae and class Actinobacteria. A number of Arthrobacter genome sequences have been completed because of their important role in soil, especially bioremediation. This isolate is of special interest because it is tolerant to multiple metals and it is extremely resistant to elevated concentrations of chromate. The genome consists of a 4,698,945 bp circular chromosome and three plasmids (96,488, 115,507, and 159,536 bp, a total of 5,070,478 bp), coding 4,536 proteins of which 1,257 are without known function. This genome was sequenced as part of the DOE Joint Genome Institute Program.

Nakatsu, C. H.; Barabote, Ravi; Thompson, Sue; Bruce, David; Detter, Chris; Brettin, T.; Han, Cliff F.; Beasley, Federico; Chen, Weimin; Konopka, Allan; Xie, Gary

2013-09-30T23:59:59.000Z

195

Downgrade of the Savannah River Sites FB-Line  

SciTech Connect (OSTI)

This paper will discuss the Safeguards & Security (S&S) activities that resulted in the downgrade of the Savannah River Site's FB-Line (FBL) from a Category I Material Balance Area (MBA) in a Material Access Area (MAA) to a Category IV MBA in a Property Protection Area (PPA). The Safeguards activities included measurement of final product items, transferal of nuclear material to other Savannah River Site (SRS) facilities, discard of excess nuclear material items, and final measurements of holdup material. The Security activities included relocation and destruction of classified documents and repositories, decertification of a classified computer, access control changes, updates to planning documents, deactivation and removal of security systems, Human Reliability Program (HRP) removals, and information security training for personnel that will remain in the FBL PPA.

SADOWSKI, ED; YOURCHAK, RANDY; PRETZELLO MARJI; MIXON, BONNIE; LYNN, ROBBIE

2005-07-05T23:59:59.000Z

196

Fluidized-bed bioreactor system for the microbial solubilization of coal  

DOE Patents [OSTI]

A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

Scott, C.D.; Strandberg, G.W.

1987-09-14T23:59:59.000Z

197

Fluidized-bed bioreactor process for the microbial solubiliztion of coal  

DOE Patents [OSTI]

A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

Scott, Charles D. (Oak Ridge, TN); Strandberg, Gerald W. (Farragut, TN)

1989-01-01T23:59:59.000Z

198

E-Print Network 3.0 - advanced fluidized bed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Biomass Thermochemcial Conversion to Biofuels: Advances in Modeling and Summary: gasification in fluidized bed reactors will be presented. This includes the development of...

199

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, February 1-July 31, 1982  

SciTech Connect (OSTI)

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W. E.; DeSaro, R.; Griffith, J.; Joshi, C.

1982-08-01T23:59:59.000Z

200

Studies with a laboratory atmospheric fluidized bed combustor system  

SciTech Connect (OSTI)

Growing public concerns over acid rain and municipal solid waste problems have created interest in the development of atmospheric fluidized bed combustion systems. A computer controlled 12-inch laboratory atmospheric fluidized bed combustor (AFBC) system has been developed at Western Kentucky University. On-line analysis by gas chromatography, Fourier-transform infrared (FTIR) spectrometry, and mass spectrometry (MS) allows extensive analysis of the flux gases. Laboratory experiments with a thermogravimetric analyzer (TGA) interfaced with FTIR and MS systems are used to screen fuel blends for runs in the AFBC system. Current experiments being conducted include co-firing blends of refuse derived fuels with coal and extended burns with coals containing different levels of chlorine.

Orndorff, W.W.; Su, Shi; Napier, J. [Western Kentucky Univ., Bowling Green, KY (United States)] [and others

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Decontamination of combustion gases in fluidized bed incinerators  

DOE Patents [OSTI]

Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

Leon, Albert M. (Mamaroneck, NY)

1982-01-01T23:59:59.000Z

202

Latest developments and application of DB Riley`s low NOx CCV{reg_sign} burner technology  

SciTech Connect (OSTI)

Recent developments in DB Riley (DBR) low NO{sub x} burner technology and the application of this technology in coal fired utility boilers are discussed. Since the promulgation of the Clean Air Act Amendment in 1990, DBR has sold nearly 1500 Controlled Combustion Venturi (CCV{reg_sign}) burners on pulverized coal fired utility boilers reducing NOx emissions 50 - 70% from uncontrolled levels. This technology has been retrofitted on boiler designs ranging in size and type from 50 MW front wall fired boilers to 1300 MW opposed fired cell type boilers. In DBR`s latest version of the CCV{reg_sign} burner, a second controlled flow air zone was added to enhance NO{sub x} control capability. Other developments included improved burner air flow measurement accuracy and several mechanical design upgrades such as new coal spreader designs for 3 year wear life. Test results of the CCV{reg_sign} dual air zone burner in DBR`s 100 million Btu/hr (29 MW) coal burner test facility are presented. In the test program, coals from four utility boiler sites were fired to provide a range of coal properties. A baseline high volatile bituminous coal was also fired to provide a comparison with 1992 test data for the CCV{reg_sign} single register burner. The test results showed that the second air zone enhanced NO{sub x} reduction capability by an additional 20% over the single register design. Computational fluid dynamic (CFD) modeling results of the CCV{reg_sign} dual air zone burner are also presented showing near field mixing patterns conducive to low NO{sub x} firing.

Penterson, C.; Ake, T. [DB Riley, Inc., Worcester, MA (United States)

1998-04-01T23:59:59.000Z

203

Bed drain cover assembly for a fluidized bed  

DOE Patents [OSTI]

A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

Comparato, Joseph R. (Bloomfield, CT); Jacobs, Martin (Hartford, CT)

1982-01-01T23:59:59.000Z

204

Fluidized bed gasification ash reduction and removal process  

DOE Patents [OSTI]

In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

1984-12-04T23:59:59.000Z

205

Fluidized bed gasification ash reduction and removal system  

DOE Patents [OSTI]

In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

1984-02-28T23:59:59.000Z

206

Four Rivers second generation Pressurized Circulating Fluidized Bed Combustion Project  

SciTech Connect (OSTI)

Air Products has been selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The four Rivers Energy Project (Four Rivers) will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

Holley, E.P.; Lewnard, J.J. [Air Products and Chemicals, Inc. (United States); von Wedel, G. [LLB Lurgi Lentjes Babcock Energietechnik (GmbH); Richardson, K.W. [Foster Wheeler Energy Corp. (United States); Morehead, H.T. [Westinghouse Electric Corp. (United States)

1995-04-01T23:59:59.000Z

207

Spectral methods applied to fluidized bed combustors. Final report  

SciTech Connect (OSTI)

The objective of this project was to develop methods for characterizing fuels and sorbents from time-series data obtained during transient operation of fluidized bed boilers. These methods aimed at determining time constants for devolatilization and char burnout using carbon dioxide (CO{sub 2}) profiles and from time constants for the calcination and sulfation processes using CO{sub 2} and sulfur dioxide (SO{sub 2}) profiles.

Brown, R.C.; Christofides, N.J.; Junk, K.W.; Raines, T.S.; Thiede, T.D.

1996-08-01T23:59:59.000Z

208

Dynamic analysis of a circulating fluidized bed riser  

SciTech Connect (OSTI)

A linear state model is proposed to analyze dynamic behavior of a circulating fluidized bed riser. Different operating regimes were attained with high density polyethylene beads at low and high system inventories. The riser was operated between the classical choking velocity and the upper transport velocity demarcating fast fluidized and transport regimes. At a given riser superficial gas velocity, the aerations fed at the standpipe were modulated resulting in a sinusoidal solids circulation rate that goes into the riser via L-valve. The state model was derived based on the mass balance equation in the riser. It treats the average solids fraction across the entire riser as a state variable. The total riser pressure drop was modeled using Newton’s second law of motion. The momentum balance equation involves contribution from the weight of solids and the wall friction caused by the solids to the riser pressure drop. The weight of solids utilizes the state variable and hence, the riser inventory could be easily calculated. The modeling problem boils down to estimating two parameters including solids friction coefficient and time constant of the riser. It has been shown that the wall friction force acts in the upward direction in fast fluidized regime which indicates that the solids were moving downwards on the average with respect to the riser wall. In transport regimes, the friction acts in the opposite direction. This behavior was quantified based on a sign of Fanning friction factor in the momentum balance equation. The time constant of the riser appears to be much higher in fast fluidized regime than in transport conditions.

Panday, Rupen [REM Engineering PLLC; Shadle, Lawrence J. [U.S. DOE; Guenther, Chris [U.S. DOE

2012-01-01T23:59:59.000Z

209

Pulsed atmospheric fluidized bed combustor apparatus and process  

DOE Patents [OSTI]

A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

Mansour, Momtaz N. (Columbia, MD)

1992-01-01T23:59:59.000Z

210

Air fluidized balls in a background of smaller beads  

E-Print Network [OSTI]

We report on quasi-two-dimensional granular systems in which either one or two large balls is fluidized by an upflow of air in the presence of a background of several hundred smaller beads. A single large ball is observed to propel ballistically in nearly circular orbits, in direct contrast to the Brownian behavior of a large ball fluidized in the absence of this background. Further, the large ball motion satisfies a Langevin equation with an additional speed-dependent force acting in the direction of motion. This results in a non-zero average speed of the large ball that is an order of magnitude faster than the root mean square speed of the background balls. Two large balls fluidized in the absence of the small-bead background experience a repulsive force depending only on the separation of the two balls. With the background beads present, by contrast, the ball-ball interaction becomes velocity-dependent and attractive. The attraction is long-ranged and inconsistent with a depletion model; instead, it is mediated by local fluctuations in the density of the background beads which depends on the large balls' motion.

M. E. Beverland; L. J. Daniels; D. J. Durian

2010-12-02T23:59:59.000Z

211

Erosion of heat exchanger tubes in fluidized beds  

SciTech Connect (OSTI)

This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

Johnson, E.K.; Flemmer, R.L.C.

1991-01-01T23:59:59.000Z

212

Propagating Waves in a Monolayer of Gas-Fluidized Rods  

E-Print Network [OSTI]

We report on an observation of propagating compression waves in a quasi-two-dimensional monolayer of apolar granular rods fluidized by an upflow of air. The collective wave speed is an order of magnitude faster than the speed of the particles. This gives rise to anomalously large number fluctuations dN ~ $N^{0.72 \\pm 0.04}$, which are greater than ordinary number fluctuations of N^{1/2}. We characterize the waves by calculating the spatiotemporal power spectrum of the density. The position of observed peaks, as a function of frequency w and wavevector k, yields a linear dispersion relationship in the long-time, long-wavelength limit and a wavespeed c = w/k. Repeating this analysis for systems at different densities and air speeds, we observe a linear increase in the wavespeed with increasing packing fraction with no dependence on the airflow. Although air-fluidized rods self-propel individually or in dilute collections, the parallel and perpendicular root-mean-square speeds of the rods indicate that they no longer self-propel when propagating waves are present. Based on this mutual exclusivity, we map out the phase behavior for the existence of waves vs self-propulsion as a function of density and fluidizing airflow.

L. J. Daniels; D. J. Durian

2010-11-12T23:59:59.000Z

213

State of the art of pressurized fluidized bed combustion systems  

SciTech Connect (OSTI)

This report was prepared at the request of the Tennessee Valley Authority (TVA) to clarify the development status of the pressurized fluidized bed combustor (PFBC) and to place in perspective the problems which are yet to be solved before commercialization of the concept is practical. This report, in essence, supersedes the interim report published in 1979, Assessment of the State of the Art of Pressurized Fluidized Bed Combustion Systems. A brief overview of the PFBC concept is included citing potential advantages and disadvantages relative to atmospheric fluidized bed combustion (AFBC) and conventional pulverized coal plants. A survey of existing and developing PFBC experimental facilities is presented in some detail which includes the major accomplishments at the respective facilities. Recent data on plant emissions, turbine/gas cleanup systems, and overall efficiency are provided. Findings of several design studies are also discussed. The results of recent gas turbine and cascade tests have been encouraging although the full assessment of the accomplishments have not been made. The delay in construction of the Grimethorpe plant causes further delay in proof-testing full-size, rotating turbomachinery. Several parameters are recommended for further assessment in design studies including: (1) effect of turbine life on cost of power; and (2) effect of reduced gas turbine inlet temperature and pressure on cost of power.

Graves, R.L.

1980-09-01T23:59:59.000Z

214

Evaluation of Fluid Conduction and Mixing within a Subassembly of the Actinide Burner Test Reactor  

SciTech Connect (OSTI)

The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of the Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid, including axial and radial heat conduction and subchannel mixing, that are not currently represented with internal code models. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor.

Cliff B. Davis

2007-09-01T23:59:59.000Z

215

Method for reducing NOx during combustion of coal in a burner  

DOE Patents [OSTI]

An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

Zhou, Bing (Cranbury, NJ); Parasher, Sukesh (Lawrenceville, NJ); Hare, Jeffrey J. (Provo, UT); Harding, N. Stanley (North Salt Lake, UT); Black, Stephanie E. (Sandy, UT); Johnson, Kenneth R. (Highland, UT)

2008-04-15T23:59:59.000Z

216

Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers  

SciTech Connect (OSTI)

Work on process design was deferred pending a restart of the mainstream project activities. LNS Burner design effort was focussed mainly on the continued development of the slag screen model. Documentation of the LNS Burner thermal model also continued. Balance of plant engineering continued on the P ID's for the fuel preparation building HVAC system, lighter oil, limestone/fuel additive handling system, instrument and service air and fire protection systems. Work began on the preparation of system and sub-system descriptions. Schematic connection and wiring drawings and diagrams for the fuel handling system, flame scanner/igniter system and DCS control modification for the lighter oil pumps and Unit 1 circulating water pumps were completed.

Not Available

1991-01-01T23:59:59.000Z

217

Orimulsion in low NO{sub x} burner based combustion systems  

SciTech Connect (OSTI)

The potential of Orimulsion (a bitumen in water emulsion) as a suitable fuel for power generation boilers has been established subject to full recognition being given to the environmental aspects of its application. An important factor is the control of NO{sub x} emissions from the combustion process. Work on NO{sub x} control when firing Orimulsion has inevitably been based on the techniques utilized for low NO{sub x} fuel oil combustion. This fundamental work has indicated the different performance characteristics of these two fuels when fired in similar low NO{sub x} burner configurations. Nevertheless it has been demonstrated that Orimulsion can achieve similar, and perhaps even improved, low NO{sub x} performance when compared to heavy (No. 6) fuel oil, and can be used with equal flexibility to that of heavy fuel oil in low NO{sub x} combustion systems based on both burner and in furnace staging techniques.

Allen, J.W.; Beal, P. [International Combustion Ltd., Derby (United Kingdom). Rolls-Royce Industrial Power Group

1996-12-31T23:59:59.000Z

218

Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California  

SciTech Connect (OSTI)

Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

2014-06-01T23:59:59.000Z

219

Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners  

SciTech Connect (OSTI)

This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

Jennifer Sinclair Curtis

2005-08-01T23:59:59.000Z

220

Evaluation of gas-reburning and low NO sub x burners on a wall fired boiler  

SciTech Connect (OSTI)

Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is formed. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at the lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} emission reductions of 75 percent or more as a result of combing Low NO{sub x} Burners and Gas Reburning on a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

Not Available

1992-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Large eddy simulation of forced ignition of an annular bluff-body burner  

SciTech Connect (OSTI)

The optimization of the ignition process is a crucial issue in the design of many combustion systems. Large eddy simulation (LES) of a conical shaped bluff-body turbulent nonpremixed burner has been performed to study the impact of spark location on ignition success. This burner was experimentally investigated by Ahmed et al. [Combust. Flame 151 (2007) 366-385]. The present work focuses on the case without swirl, for which detailed measurements are available. First, cold-flow measurements of velocities and mixture fractions are compared with their LES counterparts, to assess the prediction capabilities of simulations in terms of flow and turbulent mixing. Time histories of velocities and mixture fractions are recorded at selected spots, to probe the resolved probability density function (pdf) of flow variables, in an attempt to reproduce, from the knowledge of LES-resolved instantaneous flow conditions, the experimentally observed reasons for success or failure of spark ignition. A flammability map is also constructed from the resolved mixture fraction pdf and compared with its experimental counterpart. LES of forced ignition is then performed using flamelet fully detailed tabulated chemistry combined with presumed pdfs. Various scenarios of flame kernel development are analyzed and correlated with typical flow conditions observed in this burner. The correlations between, velocities and mixture fraction values at the sparking time and the success or failure of ignition, are then further discussed and analyzed. (author)

Subramanian, V.; Domingo, P.; Vervisch, L. [CORIA-CNRS and INSA de Rouen, Technopole du Madrillet, BP 8, 76801 Saint-Etienne-du-Rouvray (France)

2010-03-15T23:59:59.000Z

222

MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS  

SciTech Connect (OSTI)

Coal continues to be one of the principal energy sources for electric power generation in the United States. One of the biggest environmental challenges involved with coal utilization is the reduction of nitrogen oxides (NO{sub x}) formed during coal combustion. The most economical method of NO{sub x} abatement in coal combustion is through burner modification. Air-staging techniques have been widely used in the development of low-NO{sub x} pulverized coal burners, promoting the conversion of NO{sub x} to N{sub 2} by delaying the mixing in the fuel-rich zone near the burner inlet. Previous studies have looked at the mechanisms of NO{sub x} evolution at relatively low temperatures where primary pyrolysis is dominant, but data published for secondary pyrolysis in the pulverized coal furnace are scarce. In this project, the nitrogen evolution behavior during secondary coal pyrolysis will be explored. The end result will be a complete model of nitrogen evolution and NO{sub x} precursor formation due to primary and secondary pyrolysis.

E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

2000-04-01T23:59:59.000Z

223

Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler  

SciTech Connect (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18%. The performance goal of 70/40 reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18%.

None

1998-07-01T23:59:59.000Z

224

Adaptive higher order numerical simulation of heat and mass transfer in fluidized beds  

E-Print Network [OSTI]

Adaptive higher order numerical simulation of heat and mass transfer in fluidized beds Ch. Nagaiah1 adaptive numerical results of heat and mass transfer in fluidized beds using higher order time stepping injection. The numerical results are tested with different time stepping methods for different spatial grid

Magdeburg, Universität

225

Operation of a steam hydro-gasifier in a fluidized bed reactor  

E-Print Network [OSTI]

OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOROF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOR F Iis fed into a hydro-gasifier reactor. One such process was

Park, Chan Seung; Norbeck, Joseph N.

2008-01-01T23:59:59.000Z

226

Contributed papers Study of gas-fluidization dynamics with laser-polarized 129  

E-Print Network [OSTI]

Gas fluidization is a process in which solid particles experience fluid-like suspension in an upward. Bubbles, or void spaces with volume much larger than that of a single particle, emerge when the gas flowContributed papers Study of gas-fluidization dynamics with laser-polarized 129 Xe Ruopeng Wanga

Walsworth, Ronald L.

227

Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

The objective of this investigation is to characterize the operation of fan powered infrared (PIR) burner at various barometric pressures (operating altitude) and gas compositions and develop design guidelines for appliances containing PIR burners for satisfactory performance. In this program, the theoretical basis for the behavior of PIR burners will be established through analysis of the combustion, heat and mass transfer, and other related processes that determine the performance of PIR burners. Based on the results of this study, a burner performance model for radiant output will be developed. The model will be applied to predict the performance of the selected burner and will also be modified and improved through comparison with experimental results. During this period, laboratory facilities that are necessary for conducting this research are completed. The student research assistants have started working in the laboratory. The selection of the test burner has completed. The preparation and instrumentation of this test burner is underway. The theoretical analysis and modeling of the fundamental combustion process of the PIR burner is progressing well. A study of the existing models are being conducted, which will yield specific direction and recommendations for the new model to be developed.

Bai, Tiejun

1995-04-01T23:59:59.000Z

228

Zevenhoven & Kilpinen NITROGEN 13.4.2002 4-34 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed  

E-Print Network [OSTI]

the nitric oxide emission, the laughing gas emission at fluidized bed combustion must be accounted for too fluidized bed combustion, where the interaction between gas and particles is more intensive than in bubbling fluidized bed combustion In fluidized bed combustion, the combustion takes place in a bed of particles

Laughlin, Robert B.

229

Zevenhoven & Kilpinen NITROGEN 18.1.2004 4-35 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed  

E-Print Network [OSTI]

the nitric oxide emission, the laughing gas emission at fluidized bed combustion must be accounted for too fluidized bed combustion, where the interaction between gas and particles is more intensive than in bubbling fluidized bed combustion In fluidized bed combustion, the combustion takes place in a bed of particles

Zevenhoven, Ron

230

Enhanced durability of desulfurization sorbents for fluidized-bed applications  

SciTech Connect (OSTI)

To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 {mu}m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871{degrees}C. Bench-scale testing variables included sorbent type, temperature (550 to 750{degrees}C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750{degrees}C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

Gupta, R.P.; Gangwal, S.K.

1992-11-01T23:59:59.000Z

231

Enhanced durability of desulfurization sorbents for fluidized-bed applications  

SciTech Connect (OSTI)

To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 [mu]m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871[degrees]C. Bench-scale testing variables included sorbent type, temperature (550 to 750[degrees]C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750[degrees]C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

Gupta, R.P.; Gangwal, S.K.

1992-11-01T23:59:59.000Z

232

Four Rivers second generation pressurized circulating fluidized bed combustion project  

SciTech Connect (OSTI)

Air Products has been selected in the DOE Clean Coal Technology Round 5 program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The Four Rivers Energy Project (Four Rivers) will produce approximately 70 MW electricity, and will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

Holley, E.P.; Lewnard, J.J. [Air Products and Chemicals, Inc., Allentown, PA (United States); Wedel, G. von; Richardson, K.W.; Morehead, H.T.

1995-12-31T23:59:59.000Z

233

Fluidized-Bed Waste-Heat Recovery System Advances  

E-Print Network [OSTI]

ACCESS DOOR (TYPICAL) 1.. LEVEL . PUTFORII ?n'if~~??? FLUIDIZED L--lJ FLUE ';:S ! "'D I DUCT , PRQVISK>N FOR 14" I.P.S. : FLUE GAS . LFr UN! J-~DU~C~T~CL!:!:E~ANO~UT~? RE~':aL:"-~L_--WL:!:!J~~~=:IAIR 1." I.P.S. PREHEATED COMBUSTION AIR... of six months. Data gathered will be used to evaluate performance, energy savings. and economic attractiveness of the FBWHR system. ACKNOWLEDGEMENT This work was jointly funded by the Depart ment of Energy and Thermo Electron Corporation...

Patch, K. D.; Cole, W. E.

234

Control of thermal processes in a fluidized bed combustor (FBC)  

SciTech Connect (OSTI)

Heat and mass balance equations for the transient process of a fluidized bed furnace are described. The equations involve heat release from char and volatiles combustion, heat consumption during moisture evaporation, and heating of char and circulating particles. Calculations and experimental data for steady-state and unsteady conditions are compared. The results show that the height of the dense bed, the excess-air ratio and kinetic features of the fuel affect the rate of the transient process. The time constant for a disturbance by a change of the air flow rate was found to be smaller than the one for a change of the fuel input.

Munts, V.A.; Filippovskij, N.F.; Baskakov, A.P.; Pavliok, E.J. [Ural State Technical Univ., Ekaterinburg (Russian Federation). Heat Power Dept.; Leckner, B. [Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Energy Conversion

1997-12-31T23:59:59.000Z

235

Pressurized circulating fluidized-bed combustion for power generation  

SciTech Connect (OSTI)

Second-generation Pressurized Circulating Fluidized Bed Combustion (PCFBC) is the culmination of years of effort in the development of a new generation of power plants which can operate on lower-quality fuels with substantially improved efficiencies, meet environmental requirements, and provide a lower cost of electricity. Air Products was selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second-generation PCFBC technology, to be located at an Air Products chemicals manufacturing facility in Calvert City, Kentucky. This paper describes the second-generation PCFBC concept and its critical technology components.

Weimer, R.F.

1995-08-01T23:59:59.000Z

236

MODELING AND SIMULATION OF SOLID FLUIDIZATION IN A RESIN COLUMN  

SciTech Connect (OSTI)

The objective of the present work is to model the resin particles within the column during fluidization and sedimentation processes using computation fluid dynamics (CFD) approach. The calculated results will help interpret experimental results, and they will assist in providing guidance on specific details of testing design and establishing a basic understanding of particle’s hydraulic characteristics within the column. The model is benchmarked against the literature data and the test data (2003) conducted at Savannah River Site (SRS). The paper presents the benchmarking results and the modeling predictions of the SRS resin column using the improved literature correlations applicable for liquid-solid granular flow.

Lee, S.

2014-06-24T23:59:59.000Z

237

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988  

SciTech Connect (OSTI)

This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

Not Available

1991-01-01T23:59:59.000Z

238

Pressure Fluctuations as a Disgnostic Tool for Fluidized Beds.  

SciTech Connect (OSTI)

The validity of using bubbling fluidized bed (BFB) similitude parameters to match a hot BFB to a cold BFB is being studied. Sand in a BFB combustor and copper powder in cold BFB model have been analyzed and found to be out of similitude. In the analysis process, it was determined that the condition of the screen covering the pressure tap affects the quality of pressure data recorded. In addition, distributor plate design and condition will affect the hydrodynamics of the bed. Additional tests are planned to evaluate the validity of similitude concepts in BFB.

Brown, R.C.; Schroeder, J.R.

1997-10-28T23:59:59.000Z

239

Standby cooling system for a fluidized bed boiler  

DOE Patents [OSTI]

A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

Crispin, Larry G. (Akron, OH); Weitzel, Paul S. (Canal Fulton, OH)

1990-01-01T23:59:59.000Z

240

{sup 239}Pu Holdup Measurements at Savannah River Site's FB-Line  

SciTech Connect (OSTI)

Plutonium holdup measurements were conducted in the dry cabinets of FB-Line at the Savannah River Site. This report will discuss the methodology, measurements, assumptions, calculations, and corrections.

Hodge, C.A.

2001-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler  

SciTech Connect (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70% reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

None

1998-09-01T23:59:59.000Z

242

Evaluation of gas-reburning and low NO sub x burners on a wall fired boiler  

SciTech Connect (OSTI)

This clean coal technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and (to some extent) SO{sub x} emissions: Gas reburning and low NO{sub x} burners. The demonstrations will be conducted on a pre-NSPS utility boiler representative of US boilers that contribute significantly to the inventory of acid rain precursor emissions: a wall fired unit. Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is burned. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} and SO{sub x} emission reductions of 75 percent or more as a result of combining LNB and GR to a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

Not Available

1991-04-26T23:59:59.000Z

243

CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS  

SciTech Connect (OSTI)

Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising result as the levels of N are higher in the biomass fuel than in coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process to reduce NO{sub x} emissions. Since crushing costs of biomass fuels may be prohibitive, stoker firing may be cost effective; in order simulate such a firing, future work will investigate the performance of a gasifier when fired with larger sized coal and biomass. It will be a fixed bed gasifier, and will evaluate blends, coal, and biomass. Computer simulations were performed using the PCGC-2 code supplied by BYU and modified by A&M with three mixture fractions for handling animal based biomass fuels in order to include an improved moisture model for handling wet fuels and phosphorus oxidation. Finally the results of the economic analysis show that considerable savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings will be reduced, due to increased transportation costs. A spreadsheet program was created to analyze the fuel savings for a variety of different moisture levels, ash levels, and power plant operating parameters.

Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

2002-01-15T23:59:59.000Z

244

Development and validation of a combustion model for a fuel cell off-gas burner  

E-Print Network [OSTI]

Development and Validation of a Combustion Model for a Fuel Cell Off-Gas Burner W. Tristan Collins A low-emissions power generator comprising a solid oxide fuel cell coupled to a gas turbine has been developed by Rolls-Royce Fuel Cell Systems. As part... of chemical energy in the fuel to electricity. A prototype commer- cial system developed by Rolls-Royce Fuel Cell Systems Limited (RRFCS), consisting of a combined solid oxide fuel cell and gas turbine (SOFC hybrid) cycle, has the goal of high cycle ef#2...

Collins, William Tristan

2008-10-14T23:59:59.000Z

245

Hot repair of ceramic burner on hot blast stoves at USS/Kobe`s {number_sign}3 blast furnace  

SciTech Connect (OSTI)

During the 1992 reline of the No. 3 blast furnace, three new stoves were constructed. The design of the stoves, equipped with internal ceramic burners, was for providing a hot blast temperature of 2,000 F at a wind rate of 140,000 SCFM. After 3 years the performance had deteriorated so the burners were cleaned. When a second cleaning did not improve the performance of No. 3 blast furnace, it was decided to repair the refractory while still hot. The paper describes the hot repair procedures, taking a stove off for repairs, maintenance heat up during repairs, two stove operation, stove commissioning, repair of a ceramic burner, and wet gas prevention.

Bernarding, T.F.; Chemorov, M.; Shimono, S.; Phillips, G.R.

1997-12-31T23:59:59.000Z

246

Fluidized bed combustion of alternate fuels. Final report  

SciTech Connect (OSTI)

Fluidized bed combustion (FBC) technology offers the opportunity combust a broader range of fuels than previously possible with other technologies. FBC boilers are currently being used throughout the world to dispose of a wide range of solid and semi-solid waste fuels, including municipal and industrial solid wastes and sludges, agricultural wastes, and coal mining or cleaning wastes. FBCs can also accommodate cofiring waste fuels in units designed for coal or other solid fuels with relative ease compared to conventional technology. The capacity and experience base for coal-fired FBCs has increased in recent years so that utility-scale reheat units of 200-300 MWe in size are now commercially available, and larger units are now being considered. As utilities install fluidized bed boilers to generate power, it is anticipated that many will at some point consider cofiring one or more waste fuels either together or with coal to reduce the quantity and cost of the primary fuel, and in many cases, help offset the environmental impact of other disposal options such as landfills. In order to assist the industry in their evaluations, this report summarizes the fuel characteristics, experience base, and technical issues associated with burning selected fuels using FBC technology, including: Municipal Solid Wastes; Biomass; Sewage Sludge; Paper Manufacturing and Recycling Wastes; Scrap Tires; and Automobile Wastes.

Howe, W.C.; Divilio, R.J. [Combustion Systems, Inc., Aptos, CA (United States)

1993-12-01T23:59:59.000Z

247

Fluidized-bed gasification of an eastern oil shale  

SciTech Connect (OSTI)

The current conceptual HYTORT process design for the hydroretorting of oil shales employs moving-bed retorts that utilize shale particles larger than 3 mm. Work at the Institute of Gas Technology (IGT) is in progress to investigate the potential of high-temperature (1100 to 1300 K) fluidized-bed gasification of shale fines (<3 mm size) using steam and oxygen as a technique for more complete utilization of the resource. Synthesis gas produced from fines gasification can be used for making some of the hydrogen needed in the HYTORT process. After completing laboratory-scale batch and continuous gasification tests with several Eastern oil shales, two tests with Indiana New Albany shale were conducted in a 0.2 m diameter fluidized-bed gasification process development unit (PDU). A conceptual gasifier design for 95% carbon conversion was completed. Gasification of 20% of the mined shale can produce the hydrogen required by the HYTORT reactor to retort 80% of the remaining shale. 12 refs., 1 fig., 5 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1987-01-01T23:59:59.000Z

248

Incineration of biological sludge in a fluidized bed  

SciTech Connect (OSTI)

Incineration rate, ash properties, and percentage destruction of the combustible material were evaluated under different operating conditions. Experimental measurements were made for temperature, air flow rate, sludge size, ash size and sludge composition. A model based on the heat transfer consideration was derived to describe the drying and devolatilization process during sludge incineration. The model assumes that the drying and devolatilization of a sludge particle is manly caused by the heat flowing into the sludge particle from the bed. Parameters affecting the simulation results included sludge size, inert particle size, sludge heat capacity, sludge heat conductivity, operating flow rate and incinerator temperature. A model developed to simulate a batch type air-sand fluidized bed considered the incineration process as being composed of three consecutive operations, namely, drying, devolatilization, and char combustion. The simulation model predicted the dynamic characteristics of sludge incineration in the bed including its percentage completion and the incinerator temperature. The effects of sludge moisture level, sludge size and incinerator operating conditions on the incinerator behavior were also evaluated. The model developed to simulate the behavior of a fluidized bed incinerator under continuous operation was capable of predicting the time to reach steady state, the stack gas composition, the percentage combustion and the auxiliary heat required under various operating conditions, including sludge feed rate and size, air feed rate, and incinerator temperature.

Ku, W.C.P.

1988-01-01T23:59:59.000Z

249

Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds  

SciTech Connect (OSTI)

The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

2008-02-29T23:59:59.000Z

250

Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler  

SciTech Connect (OSTI)

Measurements were performed in a 300-MWe wall-fired pulverized-coal utility boiler. Enhanced ignition-dual register (EI-DR) burners and centrally fuel rich (CFR) swirl coal combustion burners were installed in the bottom row of the furnace during experiments. Local mean concentrations of O{sub 2}, CO, CO{sub 2} and NOx gas species, gas temperatures, and char burnout were determined in the region of the two types of burners. For centrally fuel rich swirl coal combustion burners, local mean CO concentrations, gas temperatures and the temperature gradient are higher and mean concentrations of O{sub 2} and NOx along the jet flow direction in the burner region are lower than for the enhanced ignition-dual register burners. Moreover, the mean O{sub 2} concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. For centrally fuel rich swirl coal combustion burners in the bottom row, the combustion efficiency of the boiler increases from 96.73% to 97.09%, and NOx emission decreases from 411.5 to 355 ppm at 6% O{sub 2} compared to enhanced ignition-dual register burners and the boiler operates stably at 110 MWe without auxiliary fuel oil.

Li, Z.Q.; Jing, J.P.; Chen, Z.C.; Ren, F.; Xu, B.; Wei, H.D.; Ge, Z.H. [Harbin Institute for Technology, Harbin (China). School for Energy Science & Engineering

2008-07-01T23:59:59.000Z

251

Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, September 1--September 30, 1994  

SciTech Connect (OSTI)

The objective of this investigation is to characterize the operation of fan powered infrared(PIR) burner at various barometric pressures (operating altitude) and gas compositions and develop design guidelines for appliances containing PIR burners for satisfactory performance. In this program, the theoretical basis for the behavior of PIR burners will be established through analysis of the combustion, heat and mass transfer, and other related processes which determine the performance of PIR burners. Based on the results of this study, a first order model of the performance of the burner, including radiant output will be developed. The model will be applied to predict the performance of the selected burner and modified through comparison with test results. Concurrently, an experimental setup will be devised and built. This experimental rig will be a modified appliance, capable of measuring the heat and combustion product output, as well as providing a means by which the radiant heat output can be measured. The burner will be selected from an existing commercial appliance, a commercial deep fat fryer, and will be of a scale that will be compatible with the laboratory facilities in the Combustion Laboratory at Clark Atlanta University. Theoretical analysis and formulation of the PIR burner performance model has been started and the development of the test facilities and experimental setup has also been initiated. These are described.

Bai, T.

1994-10-01T23:59:59.000Z

252

Full-scale demonstration Low-NO{sub x} Cell{trademark} Burner retrofit. Quarterly report No. 6, January 1, 1992--March 31, 1992  

SciTech Connect (OSTI)

The Low-NO{sub x} Cell{trademark} Burner operates on the principle of staged combustion. The lower burner of each two-nozzle cell is modified to accommodate all the fuel input previously handled by two nozzles. Secondary air, less than theoretically required for complete combustion, is introduced to the lower burner. The remainder of secondary air is directed to the upper ``port`` of each cell to complete the combustion process. B&W/EPRI have thoroughly tested the LNCB{trademark} at two pilot scales (6 million Btu per hour and 100 million Btu per hour), and tested a single full-scale burner in a utility boiler. Combustion tests at two scales have confirmed NO{sub x} reduction with the low-NO{sub x} cell on the order of 50% relative to the standard cell burner at optimum operating conditions. The technology is now ready for full unit, full-scale demonstration.

Not Available

1992-05-11T23:59:59.000Z

253

Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners  

SciTech Connect (OSTI)

We developed a physics-based data-supported model to investigate indoor pollutant exposure distributions resulting from use of natural gas cooking appliances across households in California. The model was applied to calculate time-resolved indoor concentrations of CO, NO2 and formaldehyde resulting from cooking burners and entry with outdoor air. Exposure metrics include 1-week average concentrations and frequency of exceeding ambient air quality standards. We present model results for Southern California (SoCal) using two air-exchange scenarios in winter: (1) infiltration-only, and (2) air exchange rate (AER) sampled from lognormal distributions derived from measurements. In roughly 40percent of homes in the SoCal cohort (N=6634) the 1-hour USEPA NO2 standard (190 ?g/m3) was exceeded at least once. The frequency of exceeding this standard was largely independent of AER assumption, and related primarily to building volume, emission rate and amount of burner use. As expected, AER had a more substantial impact on one-week average concentrations.

Lobscheid, Agnes; Singer, Brett C.; Klepeis, Neil E.

2011-06-01T23:59:59.000Z

254

Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion  

DOE Patents [OSTI]

A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

Tuthill, Richard Sterling (Bolton, CT); Bechtel, II, William Theodore (Scotia, NY); Benoit, Jeffrey Arthur (Scotia, NY); Black, Stephen Hugh (Duanesburg, NY); Bland, Robert James (Clifton Park, NY); DeLeonardo, Guy Wayne (Scotia, NY); Meyer, Stefan Martin (Troy, NY); Taura, Joseph Charles (Clifton Park, NY); Battaglioli, John Luigi (Glenville, NY)

2002-01-01T23:59:59.000Z

255

Multi-ported, internally recuperated burners for direct flame impingement heating applications  

SciTech Connect (OSTI)

A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

Abbasi, Hamid A. (Naperville, IL); Kurek, Harry (Dyer, IN); Chudnovsky, Yaroslav (Skokie, IL); Lisienko, Vladimir G. (Ekaterinburg, RU); Malikov, German K. (Ekaterinburg, RU)

2010-08-03T23:59:59.000Z

256

The impact of conversion to low-NO{sub x} burners on ash characteristics  

SciTech Connect (OSTI)

A research initiative focusing on the changes in coal-combustion byproducts that result from the conversion of coal-fired boilers to low-NO{sub x} burners has been implemented at the Center for Applied Energy Research (CAER). This paper presents selected results from the first such study, the conversion of East Kentucky Power`s 116 MW, wall-fired unit {number_sign}1 at the John Sherman Cooper Station in Pulaski County, Kentucky. Samples of the coal feedstock and fly ash recovered in several downstream collection vessels were collected prior to and following conversion and extensively analyzed. The results presented in this report include total carbon, petrography, mineralogy, particle size, and leaching characteristics. The major changes noted in the fly-ash properties include an increase in carbon content, a slight increase in particle size, and a decrease in glassy components in the ash following conversion. Those changes induced by the conversion to low-NO{sub x} burners are evaluated in terms of the potential impact on the marketability of the fly ash.

Robi, T.L.; Hower, J.C.; Graham, U.M.; Groppo, J.G.; Rathbone, R.F.; Taulbee, D.N. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Medina, S.S. [East Kentucky Power Cooperative, Winchester, KY (United States)

1995-12-31T23:59:59.000Z

257

Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion  

SciTech Connect (OSTI)

Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO{sub 2} from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H{sub 2} concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO{sub 2} and H{sub 2}O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient g{sub F}) values for CH{sub 4}-O{sub 2}-CO{sub 2} flames. The scaling relation (𝐠{sub F} = 𝐜 𝐒{sub 𝐋}{sup 2}/𝛂) for different burner diameters was obtained for various diameter burners. The report shows that results correlated linearly with a scaling value of c =0.0174. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH{sub 4}/21%O{sub 2}/79%N{sub 2} and CH{sub 4}/38%O{sub 2}/72%CO{sub 2} mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of CH{sub 4}/air and CH{sub 4}/38%O{sub 2}/72%CO{sub 2} combustion. The velocity fluctuations, turbulence intensities and local propagation velocities along the combustion chamber have been determined. The turbulent intensities increase as we move away from the combustor axis. CH{sub 4}-38%O{sub 2}-72%CO{sub 2} flames have low radial velocity and turbulent intensity distributions at different axial distances when compared with CH{sub 4}-Air flames.

Choudhuri, Ahsan

2013-05-30T23:59:59.000Z

258

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS  

E-Print Network [OSTI]

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS Kimberly established that biomass pyrolysis oil could be steam-reformed to generate hydrogen using non pyrolysis oil could be almost stoichiometrically converted to hydrogen. However, process performance

259

Operation of a steam hydro-gasifier in a fluidized bed reactor  

E-Print Network [OSTI]

OPERATION OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BEDMaterial Using Self-Sustained Hydro- Gasification." [0011]the process, using a steam hydro-gasification reactor (SHR)

Park, Chan Seung; Norbeck, Joseph N.

2008-01-01T23:59:59.000Z

260

Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial  

E-Print Network [OSTI]

Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell Roland D. Cusick*, Mark L. Ullery, Brian A. Dempsey, Bruce E. Logan Department of Civil January 2014 Available online 6 February 2014 Keywords: Microbial electrolysis cell Electrochemical

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Supplementary Information for: Electrochemical struvite precipitation from digestate with a fluidized bed  

E-Print Network [OSTI]

Supplementary Information for: Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell Roland D. Cusick1,2 , Mark Ullery1 , Brian A. Dempsey1

262

Empirical models of emissions and energy efficiencies of coal-fired fluidized bed power plants  

E-Print Network [OSTI]

Mass and energy balances of fluidized bed energy technologies are to a significant degree dependent upon the specific design being investigated. It is difficult to make any generally accurate comments. about these balances. ...

Gruhl, Jim

263

E-Print Network 3.0 - activated carbon fluidized-bed Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies 16 PRODUCTION OF MULTI-WALL CARBON NANOTUBES BY MEANS OF FLUIDIZED BED PYROLYSIS OF VIRGIN OR RECYCLED POLYMERS Summary: PRODUCTION OF MULTI-WALL CARBON NANOTUBES BY...

264

Performance and gas cleanup criterion for a cotton gin waste fluidized-bed gasifier  

E-Print Network [OSTI]

Biodegradation Combustion Pyrolysis Gasification . Gas Clean-Up . Fluidized-Bed Gasification DESIGN OF THE GASIFICATION SYSTEM Fluidized-Bed Reactor Particle Size Distributor Plate Insulation Preheaters . Cyclone Feed Injection System Gasifier..., The greatest thermal efficiency appeared to occur near 760'C, well below the expected ash fusion temperature. The gasification reaction was operated with no supplemental heat for most of the experiments. The most prominent problem with the gasifier...

Craig, Joe David

1980-01-01T23:59:59.000Z

265

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2006 through June 30, 2006. Substantial progress was made on the development and application of software for the effective operation and safe control of the Circulating Fluidized-Bed (CFB) Combustor, as well as for the display and logging of acquired data and operating parameters.

Wei-Ping Pan; Yan Cao; John Smith

2006-07-01T23:59:59.000Z

266

Continuous fluidized-bed contactor with recycle of sorbent  

DOE Patents [OSTI]

A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.

Scott, Charles D. (Oak Ridge, TN); Petersen, James N. (Moscow, ID); Davison, Brian H. (Knoxville, TN)

1996-01-01T23:59:59.000Z

267

Development of second-generation pressurized fluidized bed combustion process  

SciTech Connect (OSTI)

Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages -- namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects -- brief descriptions of these are also included.

Wolowodiuk, W.; Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D. [USDOE Morgantown Energy Technology Center, WV (United States)

1994-10-01T23:59:59.000Z

268

Nucla circulating atmospheric fluidized bed demonstration project. Final report  

SciTech Connect (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Not Available

1991-10-01T23:59:59.000Z

269

First archeointensity determinations on Maya incense burners from Palenque temples, Mexico: New data to constrain the Mesoamerica secular  

E-Print Network [OSTI]

First archeointensity determinations on Maya incense burners from Palenque temples, Mexico: New´sica, Universidad Nacional Autonoma de Mexico, Me´xico D.F., Mexico c Instituto Nacional de Antropologia e Historia, Me´xico D.F., Mexico d Institut Charles Gerhardt, Laboratoire des Agre´gats, Interfaces et Mate

Demouchy, Sylvie

270

Simulation of Nitrogen Emissions in a Low Swirl Burner J. B. Bell, M. S. Day, X. Gao, M. J. Lijewski  

E-Print Network [OSTI]

Simulation of Nitrogen Emissions in a Low Swirl Burner J. B. Bell, M. S. Day, X. Gao, M. J nitrogen emissions. The simulation shows how the cellular burn- ing structures characteristic of lean premixed hydrogen combustion lead to enhancements in the NOx emissions from these flames. Analysis

Bell, John B.

271

Metal behavior during fluidized bed thermal treatment of soil  

SciTech Connect (OSTI)

The Superfund dumpsites are frequently composed of soils contaminated with hazardous organic constituents and toxic heavy metals. While thermal treatment is an effective method of remediating the contaminated soils, the major environmental concerns are the emissions of toxic metal fumes during the treatment and the leaching of metals from the treated soil. The US EPA has reported that metals can account for almost all of the identified cancer risks from waste incineration systems. Research leading to better understanding of their behavior and better controlling of their emissions is urgently needed. In this study, the behavior of metals during the fluidized bed thermal treatment of artificially prepared metal-contaminated clay was experimentally and theoretically investigated. The objective of the study was to evaluate the effects of operating conditions on metal volatilization and metal leachability associated with the process. Metal experiments were carried out in a well instrumented 76 mm (3 inch) i.d. fluidized bed incinerator. The metals involved were compounds of lead and cadmium and the operating parameters included metal concentration, air flow rate, treatment temperature and treatment duration. The observed results indicated that metal volatilization is mainly a function of treatment temperature and treatment duration. The degree of volatilization was observed to range from 5 to 40% depending on the operating conditions. Cadmium leachability was observed to be relatively high compared to that of lead. In addition to the experimental study, a theoretical model based on the laws of heat and mass transfer operations and reaction kinetics was derived to simulate the metal volatilization process. The derived model was found to predict reasonably well the experimental observations.

Ho, T.C.; Lee, H.T.; Shiao, C.C.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering] [Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering; Bostick, W.D. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Chemistry Dept.] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Chemistry Dept.

1995-12-31T23:59:59.000Z

272

Durability Testing of Fluidized Bed Steam Reforming Products  

SciTech Connect (OSTI)

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes but especially aqueous high sodium wastes at the Hanford site, at the Idaho National Laboratory (INL), and at the Savannah River Site (SRS). The FBSR technology converts organic compounds to CO{sub 2} and H{sub 2}O, converts nitrate/nitrite species to N{sub 2}, and produces a solid residue through reactions with superheated steam, the fluidizing media. If clay is added during processing a ''mineralized'' granular waste form can be produced. The mineral components of the waste form are primarily Na-Al-Si (NAS) feldspathoid minerals with cage-like and ring structures and iron bearing spinel minerals. The cage and ring structured minerals atomically bond radionuclides like Tc{sup 99} and Cs{sup 137} and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals appear to stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Durability testing of the FBSR products was performed using ASTM C1285 (Product Consistency Test) and the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP). The FBSR mineral products (bed and fines) evaluated in this study were found to be two orders of magnitude more durable than the Hanford Low Activity Waste (LAW) glass requirement of 2 g/m{sup 2} release of Na{sup +}. The PCT responses for the FBSR samples tested were consistent with results from previous FBSR Hanford LAW product testing. Differences in the response can be explained by the minerals formed and their effects on PCT leachate chemistry.

JANTZEN, CAROL M.; PAREIZS, JOHN M.; LORIER, TROY H.; MARRA, JAMES C.

2005-07-01T23:59:59.000Z

273

Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, July 1--September 30, 1995  

SciTech Connect (OSTI)

The objective of this investigation is to characterize the operation of fan powered infrared burner (PIR) at various gas compositions and ambient conditions and develop design guidelines for appliances in containing PIR burners for satisfactory performance. During this period, experimental setup with optical and electronic instrumentation that is necessary for measuring the radiant heat output and the emission gas output of the burner has been established. The radiation measurement instrument, an FTIR, has been purchased and installed in the porous burner experimental system. The radiation measurement capability of the FTIR was tested and found to be satisfactory. A standard blackbody source, made by Graseby Infrared, was employed to calibrate the FTIR. A collection duct for emission gas measurement was fabricated and connected to the existing Horiba gas analyzer. Test runs are being conducted for flue gas analysis. A number of published research papers on modeling of porous burners were reviewed. The physical mechanism and theoretical analysis of the combustion process of the PIR burner was formulated. The numerical modeling, and implementation of a PIR burner code at CAU`s computing facility is in progress.

Bai, T.; Yeboah, Y.D.; Sampath, R.

1995-10-01T23:59:59.000Z

274

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1982-31 January 1983  

SciTech Connect (OSTI)

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W.E.; DeSaro, R.; Joshi, C.

1983-02-01T23:59:59.000Z

275

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1981-31 January 1982  

SciTech Connect (OSTI)

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W. E.; DeSaro, R.; Joshi, C.

1982-02-01T23:59:59.000Z

276

Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly report, April 1, 1996 - June 30, 1996  

SciTech Connect (OSTI)

A porous radiant burner testing facility consisting of a commercial deep-fat fryer, an FTIR based spectral radiance measurement system, a set of flue gas analysis components, and a fuel gas mixing station was constructed. The measurement capabilities of the system were tested using methane and the test results were found to be consistent with the literature. Following the validation of the measurement system, various gas mixtures were tested to study the effect of gas compositions have on burner performance. Results indicated that the emissions vary with fuel gas composition and air/fuel ratio. The maximum radiant efficiency of the burner was obtained close to air/fuel ratio of 1.

Bai, T.; Yeboah, Y.D.; Sampath, R.

1996-07-01T23:59:59.000Z

277

Mechanical swirler for a low-NO{sub x}, weak-swirl burner  

DOE Patents [OSTI]

Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen. 16 figs.

Cheng, R.K.; Yegian, D.T.

1999-03-09T23:59:59.000Z

278

Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)  

SciTech Connect (OSTI)

The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

2008-02-01T23:59:59.000Z

279

Multifractal detrended fluctuation analysis of combustion flames in four-burner impinging entrained-flow gasifier  

E-Print Network [OSTI]

On a laboratory-scale testing platform of impinging entrained-flow gasifier with four opposed burners, the flame images for diesel combustion and gasification process were measured with a single charge coupled device (CCD) camera. The two-dimensional multifractal detrended fluctuation analysis was employed to investigate the multifractal nature of the flame images. Sound power-law scaling in the annealed average of detrended fluctuations was unveiled when the order $q>0$ and the multifractal feature of flame images were confirmed. Further analyses identified two multifractal parameters, the minimum and maximum singularity $\\alpha_{\\min}$ and $\\alpha_{\\max}$, serving as characteristic parameters of the multifractal flames. These two characteristic multifractal parameters vary with respect to different experimental conditions.

Niu, Miao-Ren; Yan, Zhuo-Yong; Guo, Qing-Hua; Liang, Qin-Feng; Wang, Fu-Chen; Yu, Zun-Hong

2007-01-01T23:59:59.000Z

280

A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility  

SciTech Connect (OSTI)

The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.

S. Khericha

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles  

SciTech Connect (OSTI)

One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed height for both spherical and non-spherical particles. Further, it decrease with decreasing particle size and decreases with decreasing bed diameter. Shadow sizing, a non-intrusive imaging and diagnostic technology, was also used to visualize flow fields inside fluidized beds for both spherical and non- spherical particles and to detect the particle sizes.

Choudhuri, Ahsan

2013-06-30T23:59:59.000Z

282

Treating exhaust gas from a pressurized fluidized bed reaction system  

DOE Patents [OSTI]

Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

Isaksson, J.; Koskinen, J.

1995-08-22T23:59:59.000Z

283

FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL  

SciTech Connect (OSTI)

Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

Williams, M

2008-05-09T23:59:59.000Z

284

Circulating fluidized-bed boiler makes inroads for waste recycling  

SciTech Connect (OSTI)

Circulating fluidized-bed (CFB) boilers have ben used for years in Scandinavia to burn refuse-derived fuel (RDF). Now, Foster Wheeler Power Systems, Inc., (Clinton, N.J.) is bringing the technology to the US. Touted as the world`s largest waste-to-energy plant to use CFB technology, the Robbins (III.) Resource Recovery Facility will have the capacity to process 1,600 tons/d of municipal solid waste (MSW) when it begins operation in early 1997. The facility will have two materials-separation and RDF-processing trains, each with dual trommel screens, magnetic and eddy current separators, and shredders. About 25% of the incoming MSW will be sorted and removed for recycling, while 75% of it will be turned into fuel, with a heat value of roughly 6,170 btu/lb. Once burned in the twin CFB boilers the resulting steam will be routed through a single turbine generator to produce 50,000 mW of electric power.

NONE

1995-09-01T23:59:59.000Z

285

Data:70fb1a96-4bf7-4d99-8c11-bf6fb693232b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63cfd4f0-e47e-4d0c-bf46-09878b282c90 Nobf6fb693232b No revision has

286

Data:A14f5840-19c2-47c6-9fb9-0ef49511a2fb | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision-b209-069dd1fd7c05 No revision has been approved for this9511a2fb No revision

287

Firing microfine coal with a low NOx, RSFC burner in an industrial boiler designed for oil and gas  

SciTech Connect (OSTI)

ABB Power Plant Laboratories (ABB-PPL) working under a US Department of Energy-Pittsburgh Energy Technology Center (DOE-PETC) contract has carried out tests with the Radially Stratified Flame Core (RSFC) burner which was licensed from the Massachusetts Institute of Technology who developed and patented the RSFC burner. Tests were carried out in a small industrial boiler, designed for oil and natural gas, located at the Energy and Fuels Research Center of Penn State University who was working as a subcontractor to ABB-PPL. The paper presents results from the long-term testing task in the DOE-PETC program with particular attention being paid to the challenges faced in maintaining high combustion efficiencies while achieving low NOx in a small industrial boiler designed for firing oil or natural gas. The paper will also address the issue of ash management when firing coal in a boiler designed for fuels having essentially no ash.

Thornhock, D.E.; Patel, R.; Borio, R.W. [Combustion Engineering, Inc., Windsor, CT (United States). ABB Power Plant Labs.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center

1996-12-31T23:59:59.000Z

288

Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle  

DOE Patents [OSTI]

The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

Butcher, Thomas A. (Port Jefferson, NY); Celebi, Yusuf (Middle Island, NY); Fisher, Leonard (Colrain, MA)

2000-09-15T23:59:59.000Z

289

Atmospheric fluidized bed combustion (AFBC) plants: an operations and maintenance study  

SciTech Connect (OSTI)

The authors analyzed data from a fluidized bed boiler survey distributed during the spring of 2003 to develop appropriate AFBC (Atmospheric Fluidized Bed Combustion) performance benchmarks. The survey was sent to members of CIBO (Council of Industrial Boiler Owners), who sponsored the survey, as well as to other firms who had an operating AFBC boiler on-site. There were three primary purposes for the collection and analysis of the data contained in this fluidized bed boiler survey: (1) To develop AFBC benchmarks on technical, cost, revenue, and environmental issues; (2) to inform AFBC owners and operators of contemporary concerns and issues in the industry; (3) to improve decision making in the industry with respect to current and future plant start-ups and ongoing operations.

Jack A. Fuller; Harvie Beavers; Robert Bessette [West Virginia University, Morgantown, WV (United States). College of Business and Economics

2006-06-15T23:59:59.000Z

290

Evaluation of Wall Boundary Condition Parameters for Gas-Solids Fluidized Bed Simulations  

SciTech Connect (OSTI)

Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of gas-solids flow. In this study, a model for specularity coefficient used in Johnson and Jackson boundary conditions by Li and Benyahia (AIChE Journal, 2012, 58, 2058-2068) is implemented in the open-source CFD code-MFIX. The variable specularity coefficient model provides a physical way to calculate the specularity coefficient needed by the partial-slip boundary conditions for the solids phase. Through a series of 2-D numerical simulations of bubbling fluidized bed and circulating fluidized bed riser, the model predicts qualitatively consistent trends to the previous studies. Furthermore, a quantitative comparison is conducted between numerical results of variable and constant specularity coefficients to investigate the effect of spatial and temporal variations in specularity coefficient.

Li, Tingwen; Benyahia, Sofiane

2013-10-01T23:59:59.000Z

291

The effect of cohesive forces on the fluidization of aeratable powders  

SciTech Connect (OSTI)

The effects of cohesive forces of van der Waals type in the fluidization/defluidization of aeratable type A powders in the Geldart classification are numerically investigated. The effects of friction and particle-size distribution (PSD) on some design-significant parameters, such as minimum fluidization and bubbling velocities, are also investigated. For these types of particles, cohesive forces are observed as necessary to fully exhibit the role friction plays in commonly observed phenomena, such as pressure overshoot and hysteresis around minimum fluidization. This study also shows that a full-experimental PSD consisting of a dozen particle sizes may be sufficiently represented by a few particle diameters. Reducing the number of particle types may benefit the continuum approach, which is based on the kinetic theory of granular flow, by reducing computational expense, while still maintaining the accuracy of the predictions.

Galvin, Janine F.; Benyahia, Sofiane

2014-01-01T23:59:59.000Z

292

Metal wastage design guidelines for bubbling fluidized-bed combustors. Final report  

SciTech Connect (OSTI)

These metal wastage design guidelines identify relationships between metal wastage and (1) design parameters (such as tube size, tube spacing and pitch, tube bundle and fluidized-bed height to distributor, and heat exchanger tube material properties) and (2) operating parameters (such as fluidizing velocity, particle size, particle hardness, and angularity). The guidelines are of both a quantitative and qualitative nature. Simplified mechanistic models are described, which account for the essential hydrodynamics and metal wastage processes occurring in bubbling fluidized beds. The empirical correlational approach complements the use of these models in the development of these design guidelines. Data used for model and guideline validation are summarized and referenced. Sample calculations and recommended design procedures are included. The influences of dependent variables on metal wastage, such as solids velocity, bubble size, and in-bed pressure fluctuations, are discussed.

Lyczkowski, R.W.; Podolski, W.F.; Bouillard, J.X.; Folga, S.M. [Argonne National Lab., IL (United States)

1992-11-01T23:59:59.000Z

293

Automatic control of air to fuel ratio in a fluidized bed gasifier  

E-Print Network [OSTI]

as fuel. Gasification is a thermal chemical process where a controlled combustion of solid or liquid material is used to produce a combustible gas (Groves and Anthony, 1979). Groves (1978), from his experiment with a 50 mm diameter fluidized bed... heating value, 5. 9 mJ/m , of the LCV gas for a 61 cm diameter fluidized bed 3 gasifier operation. If too little fuel or too much air is supplied to the system, gasification will shift into combustion, causing slagging and fouling (LePori et al. , 1983...

Ling, Peter P.

1984-01-01T23:59:59.000Z

294

Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration  

DOE Patents [OSTI]

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

1981-09-14T23:59:59.000Z

295

A Fluidized Bed Chiller: A New Approach in Making Slush-Ice  

E-Print Network [OSTI]

A FLUIDIZED BED CHILLER: A NEW APPROACH IN MAKING SLUSH-ICE Dr.Ir. D.G. Klaren M.Sc. Technical Director Gebr. Scheffers B.V. Schiedam, The Netherlands ABSTRACT A fluidized bed heat exchanger already successfully applied for heat transfer... applications involving severely fouling liquids, can also be used in making slush-ice. Overwhelming world-wide interest confirms the importance of this technology. This paper explains the principle and presents the first results of this fas cinating new...

Klaren, D. G.; Van Der Meer, J. S.

296

Model-free adaptive control of supercritical circulating fluidized-bed boilers  

DOE Patents [OSTI]

A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

Cheng, George Shu-Xing; Mulkey, Steven L

2014-12-16T23:59:59.000Z

297

Refractory experience in circulating fluidized bed combustors, Task 7. Final report  

SciTech Connect (OSTI)

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

298

Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information  

SciTech Connect (OSTI)

The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

Not Available

1993-01-01T23:59:59.000Z

299

MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS  

SciTech Connect (OSTI)

Reduction of NO{sub x} emission is an important environmental issue in pulverized coal combustion. Final emissions of NO{sub x} are strongly affected by the nitrogen release during devolatilization, which is the first stage of coal combustion. The most cost-effective approach to NO{sub x} reduction is air-staging which can also operate with additional down-stream techniques such as reburning [1]. Air staging promotes the conversion of NO{sub x} precursors (HCN, NH{sub 3}, etc.) to N{sub 2} by delaying the oxygen supply to the greatest extent when those nitrogen species are released during devolatilization. Such a delay gives the primary volatiles a chance to undergo secondary reactions, including tar cracking and soot formation. Secondary reactions of volatiles largely determine the fate of the ultimate NO{sub x} production from pyrolysis, therefore a detailed investigation into the transformation of nitrogen species during secondary reactions and effects of soot on nitrogen release is critical for design and implementation of new pollution control strategies. Current nitrogen models (including the CPD model at BYU) only simulate the nitrogen release during primary pyrolysis, which happens at low temperatures. This project helps to build a nitrogen release model that accounts for secondary reactions and the effects of soot at temperatures relevant to industrial burners.

E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

2000-04-01T23:59:59.000Z

300

MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS  

SciTech Connect (OSTI)

Reduction of NO{sub x} emission is an important environmental issue in pulverized coal combustion. The most cost-effective approach to NO{sub x} reduction is air-staging which can also operate with additional down-stream techniques such as reburning [1]. Air staging promotes the conversion of NO{sub x} precursors (HCN, NH{sub 3}, etc.) to N{sub 2} by delaying the oxygen supply to the greatest extent when those nitrogen species are released during devolatilization. Such a delay gives the primary volatiles a chance to undergo secondary reactions, including tar cracking and soot formation. Secondary reactions of volatiles largely determine the fate of the ultimate NO{sub x} production from pyrolysis, therefore a detailed investigation into the transformation of nitrogen species during secondary reactions and effects of soot on nitrogen release is critical for design and implementation of new pollution control strategies. Current nitrogen models (including the CPD model at BYU) only simulate the nitrogen release during primary pyrolysis, which happens at low temperatures. This project helps to build a nitrogen release model that accounts for secondary reactions and the effects of soot at temperatures relevant to industrial burners.

E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

2000-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility  

SciTech Connect (OSTI)

A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

2012-09-30T23:59:59.000Z

302

Pressurized fluidized-bed hydroretorting of Eastern oil shales  

SciTech Connect (OSTI)

The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))

1992-11-01T23:59:59.000Z

303

Data:2fb49c52-12f1-4201-9105-4058c3bd0fb7 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4 No revision has beenb0-d98183a03aa1 Noa5c0-78d0a979e9c3 No4058c3bd0fb7

304

Operating Experience of a Coal Fired Fluidized Bed at Georgetown University  

E-Print Network [OSTI]

Operation of the 100,000 lb/hr capacity, coal fired fluidized bed steam generator at Georgetown University began in July 1979. This project, which was co-funded by Georgetown University and the U. S. Department of Energy, involved expansion...

Lutes, I. G.; Gamble, R. L.

1980-01-01T23:59:59.000Z

305

FLUIDIZED BED STEAM REFORMING FOR TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE  

SciTech Connect (OSTI)

This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of fluidized bed steam reforming and its possible application to treat and immobilize Hanford low-activity waste.

HEWITT WM

2011-04-08T23:59:59.000Z

306

Alumina atomic layer deposition nanocoatings on primary diamond particles using a fluidized bed reactor  

E-Print Network [OSTI]

/high-temperature (HP/HT) synthesis methods [4­7] led to the discovery of polycrystalline diamond grit and the manufacture of polycrystalline diamond compact (PDC) materials [8]. PDC cutters are well known and widely usedAlumina atomic layer deposition nanocoatings on primary diamond particles using a fluidized bed

George, Steven M.

307

Behavior of fluidized beds similar to equilibrium states Kengo Ichiki* & Hisao Hayakaway  

E-Print Network [OSTI]

on the behavi* *or of systems excited by mechanical activations such as vibration or rotation of vessels. On* * the other hand, the researches on fluidized beds, where systems are excited by the fluid * *flow for the fluid flow at the bottom. I* *n experiments, energy injection to the system is controlled by the flow

Ichiki, Kengo

308

Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, October--December 1990  

SciTech Connect (OSTI)

Cyclone furnaces operate with high excess air and at high temperature. The heat release during combustion is very high and as a result the boiler volume is much smaller than would be found in a conventional pc-fired system. The Marion Unit 1 boiler, at the level of the cyclone entry, has a small cross-section; about 5-feet in depth and about 20-feet in width. A boiler schematic showing the LNS Burner and relative location of the superheater region and overfire air ports is shown in Figure 1. The LNS Burner`s combustion process is fundamentally different from that of the cyclone, and the combustion products are also different. The LNS Burner products enter the boiler as hot, fuel-rich gases. Additional overfire air must be added to complete this combustion step with care taken to avoid the formation of thermal NO{sub x}. If done correctly, S0{sub 2} is controlled and significant NO{sub x} reductions are achieved. Because of the small boiler volume, flow modelling was found to be necessary to insure that adequate mixing of LNS Burner combustion products with air can be accomplished to achieve NO{sub x} emissions goals. Design requirements for the air injection system for the Marion boiler were developed using FLUENT, a commercially available computational fluid dynamics (CFD) code. A series of runs were made to obtain a design for final air injection that met the process design goals as closely as possible.

Not Available

1990-12-31T23:59:59.000Z

309

Characterization of Biofilm in 200W Fluidized Bed Reactors  

SciTech Connect (OSTI)

Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry evaluations, a more complete understanding of the balance between system additions (nutrients, groundwater) and biology can be achieved, thus increasing long-term predictions of performance. These analyses uniquely provide information that can be used in optimizing the overall performance, efficiency, and stability of the system both in real time as well as over the long-term, as the system design is altered or improved and/or new streams are added.

Lee, Michelle H.; Saurey, Sabrina D.; Lee, Brady D.; Parker, Kent E.; Eisenhauer, Emalee ER; Cordova, Elsa A.; Golovich, Elizabeth C.

2014-09-29T23:59:59.000Z

310

PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY  

SciTech Connect (OSTI)

The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

S. T. Khericha

2007-04-01T23:59:59.000Z

311

Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems  

SciTech Connect (OSTI)

The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

D. E. Shropshire

2009-01-01T23:59:59.000Z

312

Oil burners: Crude oil, atomization, and combustion efficiency. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning fuel properties and boiler operations techniques to make maximum use of heavy crude oil, shale oil, and low grade fuels to reduce energy costs in boiler firing. Fuel properties pertain to chemical constituents, viscosity, desulfurization, and processing methods to upgrade the fuels. Operating techniques include atomization, dual-fuel burners, emission characteristics, and cost factors. Combustion efficiency is examined and some citations report on additives or processing techniques to improve the efficiency. The citations also report on studies of health effects in the use of synfuels, mostly as coal liquids to replace oil. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-12-01T23:59:59.000Z

313

Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion system. Final technical report  

SciTech Connect (OSTI)

Research is presented on erosion and corrosion of fluidized bed combustor component materials. The characteristics of erosion of in-bed tubes was investigated. Anti-corrosion measures were also evaluated.

Lee, Seong W.

1996-11-01T23:59:59.000Z

314

The design of a fluidized bed for testing of a robotic burrowing device which mimics razor clams  

E-Print Network [OSTI]

This thesis reviews the design of a fluidized bed test setup for testing digging kinematics of RoboClam, a burrowing device based on Atlantic Razor Clams. This test bed allows for in-lab testing in an environment covered ...

Dorsch, Daniel Scott

2012-01-01T23:59:59.000Z

315

Small (5 million Btu/h) and large (300 million Btu/h) thermal test rigs for coal and coal slurry burner development  

SciTech Connect (OSTI)

NEI International Combustion Ltd. of Derby, England, now operates two thermal test rigs for the development of burners capable of handling coal-water slurries (CWS). A general description of the large rig and its capacity was given. Also, the necessary conversions of the equipment to handle CWS were described. Information on the properties of the CWS was included. This consisted of chemical analysis of the parent coal and the slurry, sieve analysis of a dry sample, and viscosity versus temperature data of the CWS. The process of design development of the burner was outlined. Ten illustrations were presented, including schematic diagrams of equipment and graphs of data.

Allen, J.W.; Beal, P.R.; Hufton, P.F.

1983-01-01T23:59:59.000Z

316

Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado  

SciTech Connect (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

None

1998-07-01T23:59:59.000Z

317

FLUIDIZED BED STEAM REFORMER (FBSR) PRODUCT: MONOLITH FORMATION AND CHARACTERIZATION  

SciTech Connect (OSTI)

The most important requirement for Hanford's low activity waste (LAW) form for shallow land disposal is the chemical durability of the product. A secondary, but still essential specification, is the compressive strength of the material with regards to the strength of the material under shallow land disposal conditions, e.g. the weight of soil overburden and potential intrusion by future generations, because the term ''near-surface disposal'' indicates disposal in the uppermost portion, or approximately the top 30 meters, of the earth's surface. The THOR{reg_sign} Treatment Technologies (TTT) mineral waste form for LAW is granular in nature because it is formed by Fluidized Bed Steam Reforming (FBSR). As a granular product it has been shown to be as durable as Hanford's LAW glass during testing with ASTM C-1285-02 known as the Product Consistency Test (PCT) and with the Single Pass Flow Through Test (SPFT). Hanford Envelope A and Envelope C simulants both performed well during PCT and SPFT testing and during subsequent performance assessment modeling. This is partially due to the high aluminosilicate content of the mineral product which provides a natural aluminosilicate buffering mechanism that inhibits leaching and is known to occur in naturally occurring aluminosilicate mineral analogs. In order for the TTT Na-Al-Si (NAS) granular mineral product to meet the compressive strength requirements (ASTM C39) for a Hanford waste form, the granular product needs to be made into a monolith or disposed of in High Integrity Containers (HIC's). Additionally, the Hanford intruder scenario for disposal in the Immobilized Low Activity Waste (ILAW) trench is mitigated as there is reduced intruder exposure when a waste form is in a monolithic form. During the preliminary testing of a monolith binder for TTT's FBSR mineral product, four parameters were monitored: (1) waste loading (not optimized for each waste form tested); (2) density; (3) compressive strength; and (4) durability must not be compromised--binding agent should not react with the NAS product and binding agent should not create an unfavorable pH environment that may cause accelerated leaching. It is the goal of the present study to survey cementitious waste forms based on Ordinary Portland Cement (OPC), Ceramicrete, and hydroceramic binders by correlating waste loading, density and compressive strength and then determine if these binders affect the product performance in terms of the PCT response. This will be done by making a one-to-one comparison of the PCT response measured on granular NAS mineral product (mixed bed and fines products) with the PCT response of the monolithed NAS product in the different binders. Future studies may include, refining the above binders, and examining other binders. It is likely that binders formed from kaolin would be most compatible with the chemistry of the THOR{reg_sign} mineral waste form which is made by steam reforming of kaolin and sodium rich wastes. The economics of production on a large scale have yet to be investigated for any of the binders tested.

Jantzen, C

2006-09-13T23:59:59.000Z

318

Use of freeze-casting in advanced burner reactor fuel design  

SciTech Connect (OSTI)

This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary results show that criticality is achievable with freeze-cast fuel pins despite the significant amount of inert fuel matrix. Freeze casting is a promising method to achieve very precise fuel placement within fuel pins. (authors)

Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

2012-07-01T23:59:59.000Z

319

DURABILITY OF VERY LOW CAPACITY PRESSURE ATOMIZED FUEL NOZZLES USED WITH LOW FIRING RATE RESIDENTIAL OIL BURNERS.  

SciTech Connect (OSTI)

Brookhaven National Laboratory (BNL), working for the United States Department of Energy (DOE), has conducted a preliminary evaluation of the potential of very low fuel input capacity Simplex type pressure atomizing nozzles for use with oil burners designed for residential boilers, furnaces and water heaters. These nozzles under suitable conditions can be sufficiently reliable to enable new heating system designs. This would allow for the design of heating appliances that match the smaller load demands of energy efficient homes built with modern components and architectural systems designed to minimize energy use. When heating systems are installed with excessive capacity, oversized by three to four times the load, the result is a loss of up to ten percent as compared to the rated appliance efficiency. The use of low capacity nozzles in systems designed to closely match the load can thereby result in significant energy savings. BNL investigated the limitations of low flow rate nozzles and designed long-term experiments to see if ways could be determined that would be beneficial to long-term operation at low input capacities without failures. In order to maximize the potential for success the best possible industry practices available were employed. Low flow rate nozzles primarily fail by blockage or partial blockage of internal fuel flow passages inside the nozzle. To prevent any contaminants from entering the nozzle BNL investigated the geometry and critical dimensions and the current sate of the art of fuel filter design. Based on this investigation it was concluded that the best available filters should be more than capable of filtering contaminants from the fuel prior to entering the oil burner itself. This position was indeed validated based on the long-term trials conducted under this study no evidence resulted to change our position. It is highly recommended that these filters rated at 10 microns and with large filter capacity (surface area), should be used with all oil burner installations. The other possible failure mode had been attributed to fuel degradation and this became the main focus of the evaluation. The degradation of fuel usually occurs faster under higher temperature conditions. To preclude this as much as possible controls that provided for a post-purge of combustion airflow after burner shut down were selected. This provided a short period of time where the burner's combustion air blower continues to operate after the flame has gone out. This tends to cool the nozzle and in turn the fuel inside the small flow pathways inside the nozzle components. This study concludes that the use of low capacity nozzles is possible but only when the temperature and thermal mass environment of the combustion chamber result in a relatively ''cool'' condition. This was accomplished in one long-term experiment that essentially operated for a full heating season equivalent with no evidence of nozzle plugging or failure. The nozzle body surface temperature was kept at or below 150 F during the duration of the trial. On the other hand, a second system was studied that ended in a partial nozzle blockage and a system failure. In this ''hot environment'' system the nozzle body temperature reached 210 F. This occurred at close to a full heating season equivalent, yet it still would have resulted in a no-heat complaint by the homeowner.

MCDONALD,R.J.

2007-05-01T23:59:59.000Z

320

Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios.  

SciTech Connect (OSTI)

A consistent set of designs for 1000 MWt commercial-scale sodium-cooled Advance Burner Reactors (ABR) have been developed for both metal and oxide-fueled cores with conversion ratios from breakeven (CR=1.0) to fertile-free (CR=0.0). These designs are expected to satisfy thermal and irradiation damage limits based on the currently available data. The very low conversion ratio designs require fuel that is beyond the current fuel database, which is anticipated to be qualified by and for the Advanced Burned Test Reactor. Safety and kinetic parameters were calculated, but a safety analysis was not performed. Development of these designs was required to achieve the primary goal of this study, which was to generate representative fuel cycle mass flows for system studies of ABRs as part of the Global Nuclear Energy Partnership (GNEP). There are slight variations with conversion ratio but the basic ABR configuration consists of 144 fuel assemblies and between 9 and 22 primary control assemblies for both the metal and oxide-fueled cores. Preliminary design studies indicated that it is feasible to design the ABR to accommodate a wide range of conversion ratio by employing different assembly designs and including sufficient control assemblies to accommodate the large reactivity swing at low conversion ratios. The assemblies are designed to fit within the same geometry, but the size and number of fuel pins within each assembly are significantly different in order to achieve the target conversion ratio while still satisfying thermal limits. Current irradiation experience would allow for a conversion ratio of somewhat below 0.75. The fuel qualification for the first ABR should expand this experience to allow for much lower conversion ratios and higher bunrups. The current designs were based on assumptions about the performance of high and very high enrichment fuel, which results in significant uncertainty about the details of the designs. However, the basic fuel cycle performance trends such as conversion ratio and mass flow parameters are less sensitive to these parameters and the current results should provide a good basis for static and dynamic system analysis. The conversion ratio is fundamentally a ratio of the macroscopic cross section of U-238 capture to that of TRU fission. Since the microscopic cross sections only change moderately with fuel design and isotopic concentration for the fast reactor, a specific conversion ratio requires a specific enrichment. The approximate average charge enrichment (TRU/HM) is 14%, 21%, 33%, 56%, and 100% for conversion ratios of 1.0, 0.75, 0.50, 0.25, and 0.0 for the metal-fueled cores. The approximate average charge enrichment is 17%, 25%, 38%, 60%, and 100% for conversion ratios of 1.0, 0.75, 0.50, 0.25, and 0.0 for the oxide-fueled core. For the split batch cores, the maximum enrichment will be somewhat higher. For both the metal and oxide-fueled cores, the reactivity feedback coefficients and kinetics parameters seem reasonable. The maximum single control assembly reactivity faults may be too large for the low conversion ratio designs. The average reactivity of the primary control assemblies was increased, which may cause the maximum reactivity of the central control assembly to be excessive. The values of the reactivity coefficients and kinetics parameters show that some values appear to improve significantly at lower conversion ratios while others appear far less favorable. Detailed safety analysis is required to determine if these designs have adequate safety margins or if appropriate design modifications are required. Detailed system analysis data has been generated for both metal and oxide-fueled core designs over the entire range of potential burner reactors. Additional data has been calculated for a few alternative fuel cycles. The systems data has been summarized in this report and the detailed data will be provided to the systems analysis team so that static and dynamic system analyses can be performed.

Hoffman, E. A.; Yang, W. S.; Hill, R. N.; Nuclear Engineering Division

2008-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numerical results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.

Li, Tingwen; Dietiker, Jean-Francois; Shahnam, Mehrdad

2012-12-24T23:59:59.000Z

322

Trace metal capture by various sorbents during fluidized bed coal combustion  

SciTech Connect (OSTI)

This study investigated the potential of employing suitable sorbents to capture toxic trace metallic substances during fluidized bed coal combustion. Metal capture experiments were carried out in a 25.4 mm (1 inch) quartz fluidized bed combustor enclosed in an electric furnace. The metals involved were cadmium, lead, chromium, arsenic and selenium, and the sorbents tested included bauxite, zeolite and lime. In addition to the experimental investigations, potential metal-sorbent reactions were also identified through chemical equilibrium calculations based on the minimization of system free energy. The observed experimental results indicated that metal capture by sorbents can be as high as 88% depending on the metal species and sorbent involved. Results from thermodynamic equilibrium simulations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}(s), CdAl{sub 2}O{sub 4}(s) and CdSiO{sub 3}(s) under the combustion conditions.

Ho, T.C.; Ghebremeskel, A.; Wang, K.S.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

1997-07-01T23:59:59.000Z

323

Bed material agglomeration during fluidized bed combustion. Technical progress report, September 30, 1992--December 31, 1992  

SciTech Connect (OSTI)

The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

Brown, R.C.; Dawson, M.R.; Noble, S.

1993-02-01T23:59:59.000Z

324

Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions  

SciTech Connect (OSTI)

The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

none,

1980-08-01T23:59:59.000Z

325

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Yan Cao; Songgeng Li

2006-04-01T23:59:59.000Z

326

INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER  

SciTech Connect (OSTI)

The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

Kevin Whitty

2003-12-01T23:59:59.000Z

327

Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions  

SciTech Connect (OSTI)

The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

none,

1980-08-01T23:59:59.000Z

328

Mixing and combustion in a coal-limestone fluidized bed combustor  

SciTech Connect (OSTI)

Task 1 was to investigate experimentally the characteristics of solids mixing between coal and limestone in a cold fluidized bed; Task 2 was to derive a model to describe the behavior of solids mixing observed in Task 1; and Task 3 was to develop a combustor model, which couples the mixing model derived in Task 2 with a combustion model, to simulate the mixing and combustion behavior in a hot coal-limestone fluidized bed combustor. In Task 1, the experiments were carried out in a 0.203 m diameter cold fluidized bed with coal and limestone of different sizes the the fluidized particles. Experimental parameters examined included operation time, air flow rate, bed height, initial bed setup, relative particle size and relative amount of the two particles. In the second task, the mixing model considered the downward or upward movement of a particle in the bed as being governed by certain probability laws; these laws were, in turn, affected by the bubbles. The distance of the upward movement was governed by the residence time of a particle staying in a bubble wake; the distance of downward movement, however, was determined from a material balance consideration. In all, the model took into account the effects of time, flow rate, initial bed setup and relative particle size on solids mixing. Dynamic coal concentration profiles under different operating conditions were generated by the simulation and were found to represent the experimental data reasonably well. In addition to the operation parameters included in Tasks 1 and 2, the model developed in Task 3 also considered the inlet size distribution of coal, size reduction of coal due to combustion and coal elutriation. This model was a capable of predicting the dynamic mixing and combustion behavior in a combustor under specific operation conditions.

Kirkpatrick, M.O.

1987-01-01T23:59:59.000Z

329

Operating Experience with a Large Fluidized-Bed Gasifier of Woodwaste  

E-Print Network [OSTI]

OPERATING EXPERIENCE WITH A LARGE FLUIDIZED-BED GASIFIER OF WOODWASTE Robin F.W. Guard Omnifuel Gasification Systems Toronto, Ontario ABSTRACT The town of Hearst in northern Ontario is the lo cation of many forest product industries. One... Houston, TX, April 4-7, 1982 energy recovery systems before choosing gasification. The main reason for the choice was the need to be able to distribute the energy to four existing boilers in different locations, all working on natural gas. A secondary...

Guard, R. F. W.

1982-01-01T23:59:59.000Z

330

Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions  

SciTech Connect (OSTI)

The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

none,

1980-08-01T23:59:59.000Z

331

Analysis and optimized design of airlocks for fluidized bed gasifier fuel feed systems  

E-Print Network [OSTI]

into the bottom center of a fluidized bed. A feed hopper with a feeder assembly, two pressure sealing rotary valves and an injector feeder were used, Problems experienced included uneven metering of the trash into the gasifier. In a report prepared... of cotton gin trash and the fact that feeding this material will be without preprocessing, the decision was made to study devices that provide mechanical pressure seals. Three concepts were chosen, lock hopper with door valves, lock hopper with knife gate...

Nuboer, Benito Frans

1991-01-01T23:59:59.000Z

332

Design and performance of a fluidized-bed incinerator for TRU combustible wastes  

SciTech Connect (OSTI)

Problems encountered in the incineration of glovebox generated waste at Rocky Flats Plant (RFP) led to the development of a fluidized-bed incineration (FBI) system for transuranic (TRU) combustible wastes. Laboratory and pilot-scale testing of the process preceded the installation of an 82-kg/h production demonstration incinerator at RFP. The FBI process is discussed, and the design of the demonstration incinerator is described. Operating experience and process performance for both the pilot and demonstration units are presented.

Meile, L.J.; Meyer, F.G.

1982-01-01T23:59:59.000Z

333

Multistage fluidized bed reactor performance characterization for adsorption of carbon dioxide  

SciTech Connect (OSTI)

Carbon dioxide and its different compounds are generated as primary greenhouse gases from the flue gases of coal-fired thermal power plants, boilers, and other stationary combustion processes. This greenhouse gas causes global warming after being emitted to the environment. To deal with this problem, a new dry scrubbing process was tested in this study. A three-stage countercurrent fluidized bed adsorber was developed, designed, and fabricated. It was used as a removal apparatus and operated in a continuous regime for the two-phase system. The height of each stage was 0.30 m, and the inner diameter was 0.10 m. The paper presents the removal of CO{sub 2} from gas mixtures by chemical sorption on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of a multistage fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of the gas when using a dry method. The effects of the operating parameters such as sorbent, superficial gas velocity, and the Weir height on CO{sub 2} removal efficiency in the multistage fluidized bed were investigated. The results indicate that the removal efficiency of the carbon dioxide was around 71% at a high solid flow rate corresponding to lower gas velocity at room temperature. In comparison with wet scrubbers, this dry process appears to have lower cost, less complicated configuration, and simpler disposal of used sorbent. The results in this study assume importance from the perspective of use of a multistage fluidized bed adsorber for control of gaseous pollutants at high temperature.

Roy, S.; Mohanty, C.R.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

2009-12-15T23:59:59.000Z

334

Apparatus for high flux photocatalytic pollution control using a rotating fluidized bed reactor  

DOE Patents [OSTI]

An apparatus based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. An apparatus for high-flux photocatalytic pollution control is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.

Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

2003-06-24T23:59:59.000Z

335

High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors  

SciTech Connect (OSTI)

Heat-exchanger tubes in fluidized bed combustors (FBCs) often suffer material loss due to combined corrosion and erosion. Most severe damage is believed to be caused by the impact of dense packets of bed material on the lower parts of the tubes. In order to understand this phenomenon, a unique laboratory test rig at Berkeley was designed to simulate the particle hammering interactions between in-bed particles and tubes in bubbling fluidized bed combustors. In this design, a rod shaped specimen is actuated a short distance within a partially fluidized bed. The downward specimen motion is controlled to produce similar frequencies, velocities and impact forces as those experienced by the impacting particle aggregates in practical systems. Room temperature studies have shown that the degradation mechanism is a three-body abrasion process. This paper describes the characteristics of this test rig, reviews results at elevated temperatures and compares them to field experience. At higher temperatures, deposits of the bed material on tube surfaces can act as a protective layer. The deposition depended strongly on the type of bed material, the degree of tube surface oxidation and the tube and bed temperatures. With HCl present in the bed, wastage was increased due to enhanced oxidation and reduced oxide scale adherence.

Hou, Peggy Y.; MacAdam, S.; Niu, Y.; Stringer, J.

2003-04-22T23:59:59.000Z

336

Development of the fluidized bed thermal treatment process for treating mixed waste  

SciTech Connect (OSTI)

A fluidized bed system is being developed at Rocky Flats for the treatment of mixed waste (a mixture of radioactive and chemically hazardous waste). The current program builds on experience gained in the 1970`s and 1980`s in tests with bench-scale, pilot-scale, and demonstration-scale fluidized bed systems. The system operates at low temperatures ({approx} 525--600{degree}C) which eliminates many of the disadvantages associated with high temperature thermal treatment processes. The process has shown the ability to destroy polychlorinated biphenyls (PCB`s) with 99.9999% (``six-nines``) destruction efficiency in tests monitored by the Environmental Protection Agency (EPA). The bed makes use of in situ neutralization of acidic off-gases by incorporating sodium carbonate (Na{sub 2}CO{sub 3}) in the bed media. This eliminates using wet scrubbers to treat the off-gas; these produce a high volume of secondary waste. Once in operation, it is expected that the fluidized bed process will yield up to a 40:1 reduction in the volume of the waste.

Semones, G.B.; Williams, P.M.; Stiefvater, S.P.; Mitchell, D.L.; Roecker, B.D.

1993-05-01T23:59:59.000Z

337

Alexandria fluidized-bed process development unit: cold-mode testing  

SciTech Connect (OSTI)

The objectives of the current test program include: validation of predictions from the Massachusetts Institute of Technology (MIT) Coal Atmospheric Fluidized Bed Combustor System Model; experimental studies supporting AFBC process developments; and the collection of transient data for process control design. This topical report summarizes results from cold mode testing, i.e., experiments performed without combustion for MIT Model verification. During these tests, sulfated limestone (generated from normal AFBC operations) was fluidized with air at temperatures ranging from 80 to 500/sup 0/F in the 3' x 3' (nominal) size PDU at Alexandria, VA. The MIT Model predictions tested include: slumped bed height, minimum fluidization velocity, and expanded bed height. In all cases, there were large discrepancies between the Model predictions and corresponding experimental results. Other results obtained included solids size distribution and particle size profiles in the bed. Size distribution was adequately modeled by the Rosin-Rammler equation. No transient process data was collected due to hardware problems with the Data Acquisition System. Tests were also performed to determine the effect of maldistribution of air, caused by leaks in the air distributor, on experimental results. The data indicated that effects of these leaks seemed to be undetectable.

None

1981-02-01T23:59:59.000Z

338

A Study of Vertical Gas Jets in a Bubbling Fluidized Bed  

SciTech Connect (OSTI)

A detailed experimental study of a vertical gas jet impinging a fluidized bed of particles has been conducted with the help of Laser Doppler Velocimetry measurements. Mean and fluctuating velocity profiles of the two phases have been presented and analyzed for different fluidization states of the emulsion. The results of this work would be greatly helpful in understanding the complex two-phase mixing phenomenon that occurs in bubbling beds, such as in coal and biomass gasification, and also in building more fundamental gas-solid Eulerian/Lagrangian models which can be incorporated into existing CFD codes. Relevant simulations to supplement the experimental findings have also been conducted using the Department of Energyâ??s open source code MFIX. The goal of these simulations was two-fold. One was to check the two-dimensional nature of the experimental results. The other was an attempt to improve the existing dense phase Eulerian framework through validation with the experimental results. In particular the sensitivity of existing frictional models in predicting the flow was investigated. The simulation results provide insight on wall-bounded turbulent jets and the effect frictional models have on gas-solid bubbling flows. Additionally, some empirical minimum fluidization correlations were validated for non-spherical particles with the idea of extending the present study to non-spherical particles which are more common in industries.

Steven Ceccio; Jennifer Curtis

2011-01-18T23:59:59.000Z

339

Grid-region heat transfer in a gas solid fluidized bed  

SciTech Connect (OSTI)

The grid region heat transfer to a horizontal tube in a gas-solid fluidized bed was studied experimentally and theoretically. A preliminary experimental study was first conducted to investigate semi-quantitatively the heat transfer characteristics in the grid region as well as in the bubbling region of the gas-solid fluidized bed using a simple hot water circulation system. Experimental parameters included particle size, static bed height, superficial gas velocity, distributor open area, distributor hole sizes, distributor hole numbers, and vertical locations of the heating tube. An additional experimental study was then carried out to study quantitatively the heat transfer coefficient in each grid region phase, i.e., jet phase, emulsion phase and dead phase using an artificial jet and an electrically heated tube. The observed heat transfer coefficients for each phase were correlated as a function of experimental parameters. The observed results are also compared with results estimated from a heat transfer model, which is based on plausible heat transfer mechanisms in the grid region of a gas-solid fluidized bed.

Wang, R.C.

1986-01-01T23:59:59.000Z

340

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study  

SciTech Connect (OSTI)

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Economics of co-firing waste materials in an advanced pressurized fluidized-bed combustor  

SciTech Connect (OSTI)

The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach is the atmospheric fluidized bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts.

Bonk, D.L.; McDaniel, H.M. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center; DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1995-04-01T23:59:59.000Z

342

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study  

SciTech Connect (OSTI)

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

343

Capture of toxic metals by vaious sorbents during fluidized bed coal combustion  

SciTech Connect (OSTI)

This study investigated the potential of employing suitable sorbents to capture trace metallic substances during fluidized bed coal combustion. The objectives of the study were to demonstrate the capture process, identify effective sorbents, and characterize the capture efficiency. Experiments were carried out in a 25.4 mm (1 ``) quartz fluidized bed coal combustor enclosed in an electric furnace. In an experiment, a coal sample from the DOE Coal Sample Bank or the Illinois Basin Coal Sample Bank was burned in the bed with a sorbent under various combustion conditions and the amount of metal capture by the sorbent was determined. The metals involved in the study were arsenic, cadmium, lead, mercury and selenium, and the sorbents tested included bauxite, zeolite and lime. The combustion conditions examined included bed temperature, particle size, fluidization velocity (percent excess air), and sorbent bed height. In addition to the experimental investigations, potential metal-sorbent reactions were also identified through performing chemical equilibrium analyses based on the minimization of system free energy.

Ho, T.C.; Ghebremeskel, A.; Hopper, J.R.

1995-12-31T23:59:59.000Z

344

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

SciTech Connect (OSTI)

This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

Wei-Ping Pan; Andy Wu; John T. Riley

2005-07-30T23:59:59.000Z

345

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Andy Wu; John T. Riley

2005-04-30T23:59:59.000Z

346

Erosion of heat exchanger tubes in fluidized beds. Annual report, 1990  

SciTech Connect (OSTI)

This final report describes the activities of the 3-year project entitled ``Erosion of Heat Exchanger Tubes In Fluidized Beds.`` which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. {times} 24in. fluidized bed, comparative wear results In a 6in. {times} 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. {times} 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. {times} 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. {times} 24in. bed and the modeling of the tube wear in the 24in. {times} 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

Johnson, E.K.; Flemmer, R.L.C.

1991-01-01T23:59:59.000Z

347

Fluidized-bed waste-heat recovery system development: Final report  

SciTech Connect (OSTI)

A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize the energy, which is applicable to all processes, is to preheat the combustion air for the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) system is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, recirculating alumina particles are heated by the flue gas in a raining bed. The hot particles are then removed from the bed and placed in a fluidized bed where they are fluidized by the combustion air. Through this process, the combustion air is preheated. The cooled particles are then returned to the raining bed. Initial development of this concept is for the aluminum smelting industry. In this final report, the design, development, fabrication, and installation of a full-scale FBWHR system is detailed.

Patch, K.D.; Cole, W.E.

1988-06-01T23:59:59.000Z

348

Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990  

SciTech Connect (OSTI)

The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

Not Available

1990-12-31T23:59:59.000Z

349

Supercritical Carbon Dioxide Brayton Cycle Energy Conversion for Sodium-Cooled Fast Reactors/Advanced Burner Reactors  

SciTech Connect (OSTI)

An optimized supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle power converter has been developed for the 100 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) eliminating the potential for sodium-water reactions and achieving a small power converter and turbine generator building. Cycle and plant efficiencies of 39.1 and 38.3 %, respectively, are calculated for the ABTR core outlet temperature of 510 deg. C. The ABTR S-CO{sub 2} Brayton cycle will incorporate Printed Circuit Heat Exchanger{sup TM} units in the Na-to-CO{sub 2} heat exchangers, high and low temperature recuperators, and cooler. A new sodium test facility is being completed to investigate the potential for transient plugging of narrow sodium channels typical of a Na-to-CO{sub 2} heat exchanger under postulated off-normal or accident conditions. (authors)

Sienicki, James J.; Moisseytsev, Anton; Cho, Dae H.; Momozaki, Yoichi; Kilsdonk, Dennis J.; Haglund, Robert C.; Reed, Claude B.; Farmer, Mitchell T. [Argonne National Laboratory 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

2007-07-01T23:59:59.000Z

350

Oil burners: Crude oil, atomization, and combustion efficiency. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning fuel properties and boiler operations techniques to make maximum use of heavy crude oil, shale oil, and low grade fuels to reduce energy costs in boiler firing. Fuel properties pertain to chemical constituents, viscosity, desulfurization, and processing methods to upgrade the fuels. Operating techniques include atomization, dual-fuel burners, emission characteristics, and cost factors. Combustion efficiency is examined and some citations report on additives or processing techniques to improve the efficiency. The citations also report on studies of health effects in the use of synfuels, mostly as coal liquids to replace oil. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-03-01T23:59:59.000Z

351

Oil burners: Crude oil, atomization, and combustion efficiency. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning fuel properties and boiler operations techniques to make maximum use of heavy crude oil, shale oil, and low grade fuels to reduce energy costs in boiler firing. Fuel properties pertain to chemical constituents, viscosity, desulfurization, and processing methods to upgrade the fuels. Operating techniques include atomization, dual-fuel burners, emission characteristics, and cost factors. Combustion efficiency is examined and some citations report on additives or processing techniques to improve the efficiency. The citations also report on studies of health effects in the use of synfuels, mostly as coal liquids to replace oil. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-06-01T23:59:59.000Z

352

DEVELOPMENT OF SELF-TUNING RESIDENTIAL OIL/BURNER - OXYGEN SENSOR ASSESSMENT AND EARLY PROTOTYPE SYSTEM OPERATING EXPERIENCE  

SciTech Connect (OSTI)

This document is the first topical report dealing with a new project leading towards the development of a self-tuning residential oil burner. It was initiated under the Statement of Work for the Oil Heat Research and Development Program, for Fiscal Year 1997 as defined in the Combustion Equipment Technology Program, under the management of Brookhaven National Laboratory (BNL). In part, this work is based on research reported by BNL in 1990, suggesting various options for developing control strategies in oil heat technology leading to the enhanced efficiency of oil-fired heating systems. BNL has been addressing these concepts in order of priority and technology readiness. The research described in this report is part of an ongoing project and additional work is planned for the future assuming adequate program funding is made available.

MCDONALD,R.J.; BUTCHER,T.A.; KRAJEWSKI,R.F.

1998-09-01T23:59:59.000Z

353

Bench-scale testing of fluidized-bed sorbents -- ZT-4  

SciTech Connect (OSTI)

The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. Specific objectives of this study are the following: {sm_bullet} Investigating various manufacturing methods to produce fluidizable zinc ferrite and zinc titanate sorbents in a particle size range of 50 to 400 {mu}m; Characterizating and screening the formulations for chemical reactivity, attrition resistance, and structural properties; Testing selected formulations in an HTHP bench-scale fluidized-bed reactor to obtain an unbiased ranking of the promising sorbents; Investigating the effect of various process variables, such as temperature, nature of coal gas, gas velocity, and chemical composition of the sorbent, on the performance of the sorbent; Life-cycle testing of the superior zinc ferrite and zinc titanate formulations under HTHP conditions to determine their long-term chemical reactivity and mechanical strength; Addressing various reactor design issues; Generating a database on sorbent properties and performance (e.g., rates of reaction, attrition rate) to be used in the design and scaleup of future commercial hot-gas desulfurization systems; Transferring sorbent manufacturing technology to the private sector; Producing large batches (in tonnage quantities) of the sorbent to demonstrate commercial feasibility of the preparation method; and Coordinate testing of superior formulations in pilot plants with real and/or simulated coal gas.

Gangwal, S.K.; Gupta, R.P.

1995-12-01T23:59:59.000Z

354

Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993  

SciTech Connect (OSTI)

The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed boilers is in progress. Preliminary results indicate that at least five boilers were experiencing some form of bed material agglomeration. In these instances it was observed that large particles were forming within the bed which were larger that the feed. Four operators could confirm that the larger bed particles had formed due to bed particles sticking together or agglomerating. Deposit formation was reported at nine sites with these deposits being found most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Examples of these agglomerates and deposits have been received from five of the surveyed facilities. Also during this quarter, a bulk sample of Illinois No. 6 coal was obtained from the Fossil Energy Program at Ames Laboratory here at Iowa State University and prepared for combustion tests. This sample was first ground to a top-size of 3/8`` using a jaw crusher then a size fraction of 3/8`` {times} 8 (US mesh) was then obtained by sieving using a Gilson Test-Master. This size fraction was selected for the preliminary laboratory-scale experiments designed to simulate the dense bed conditions that exist in the bottom of CFB combustors. To ensure uniformity of fuel composition among combustion runs, the sized coal was riffled using, a cone and long row method and stored in bags for each experiment. During this quarter additional modifications were made to achieve better control of fluidization regimes and to aid in monitoring the hydrodynamic and chemical conditions within the reactor.

Brown, R.C.; Dawson, M.R.; Noble, S.D.

1993-04-01T23:59:59.000Z

355

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect (OSTI)

This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

Wei-Ping Pan; Yan Cao; John Smith

2007-03-31T23:59:59.000Z

356

Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design  

SciTech Connect (OSTI)

A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

1981-09-01T23:59:59.000Z

357

Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer  

SciTech Connect (OSTI)

University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

Kevin Whitty

2007-06-30T23:59:59.000Z

358

Method of burning sulfur-containing fuels in a fluidized bed boiler  

DOE Patents [OSTI]

A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

Jones, Brian C. (Windsor, CT)

1982-01-01T23:59:59.000Z

359

In-bed tube bank for a fluidized-bed combustor  

DOE Patents [OSTI]

An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

Hemenway, Jr., Lloyd F. (Morgantown, WV)

1990-01-01T23:59:59.000Z

360

A simplified model for the combustion of coal in a continuous flow fluidized bed  

E-Print Network [OSTI]

specific heat of char (J/g K) 0 specific heat of the fluidizing gas (J/g K) domain over which the interval is defined particle diameter (cm) molecular gas diffusion coefficient (cm /s) intraparticle diffusion coefficient through the ash layer (cm /s... particle (N) weight of an individual particle (N) number of times a bubble is flushed ratio of the volume of ash formed to char burnt z-coordinate of the lower boundary (m) z-coordinate of the upper boundary (m) ~GkS b 1 s/K convective heat transfer...

Richardson, Thomas Wade

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

PSNH's Northern Wood power project repowers coal-fired plant with new fluidized-bed combustor  

SciTech Connect (OSTI)

The Northern Wood Power project permanently replaced a 50-MW coal-burning boiler (Unit 5) at Public Service of New Hampshire's Schiller station with a state-of-the-art circulating fluidized bed wood-burning boiler of the same capacity. The project, completed in December 2006, reduced emissions and expanded the local market for low-grade wood. For planning and executing the multiyear, $75 million project at no cost to its ratepayers, PSNH wins Power's 2007 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshoot par excellence. 7 figs., 1 tab.

Peltier, R.

2007-08-15T23:59:59.000Z

362

Analysis of fluidized beds for the simultaneous aerosol separation and heat recovery  

SciTech Connect (OSTI)

A mathematical model is developed to describe the performance of fluidized beds for the simultaneous heat recovery and aerosol separation. This new concept is analyzed in light of the various transport processes taking place within the bed. A two-phase model is developed for the system in which heat and aerosol particles are transferred from the bubble phase to the emulsion phase. In addition to aerosol separation via diffusion, interception, impaction and electrostatic precipitation, thermophoretic collection is also analyzed. The results indicate that high thermal and separation efficiencies can be obtained.

El-Halwagi, M.M. [Auburn Univ., AL (United States)

1993-01-01T23:59:59.000Z

363

Update of waste fuel firing experience in Foster Wheeler circulating fluidized bed boilers  

SciTech Connect (OSTI)

As the costs and availability of more conventional fuels continue to escalate, more and more customers are investigating and choosing operation with lower cost waste or alternative fuels. Details of units firing waste or alternative fuels which have been in active service for many years are summarized, and the fuel analyses are given. This chapter gives a general overview of the projects that are or will be firing waste or alternative fuels, namely, the Mt. Carmel Manitowoc, NISCO and HUNOSA units. The experience of the four operating units has demonstrated that waste and alternative fuels can be successfully and economically burned in an atmosphere circulating fluidized bed unit while meeting permitted emission requirements.

Abdulally, I.F.; Reed, K.A.

1993-12-31T23:59:59.000Z

364

Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, April--June 1991  

SciTech Connect (OSTI)

Work on process design was deferred pending a restart of the mainstream project activities. LNS Burner design effort was focussed mainly on the continued development of the slag screen model. Documentation of the LNS Burner thermal model also continued. Balance of plant engineering continued on the P&ID`s for the fuel preparation building HVAC system, lighter oil, limestone/fuel additive handling system, instrument and service air and fire protection systems. Work began on the preparation of system and sub-system descriptions. Schematic connection and wiring drawings and diagrams for the fuel handling system, flame scanner/igniter system and DCS control modification for the lighter oil pumps and Unit 1 circulating water pumps were completed.

Not Available

1991-12-31T23:59:59.000Z

365

Operational results of a low NO{sub x} burner retrofit on a 780 net MW{sub e} PC-fired utility boiler  

SciTech Connect (OSTI)

The primary objective of this project was to comply with state and federal clean air regulations while maintaining operational flexibility and control. This objective was accomplished with the installation of DRB-XCL{reg_sign} burners with a separated overfire air system. The DRB-XCL{reg_sign} burners can consistently achieve 0.5 lbs/10{sup 6} Btu NO{sub x} or less. Even lower NO{sub x} levels can be achieved with the new equipment. However, increased carbon levels affecting stack opacity prevent long-term operation at this level with the existing scrubbing equipment. Final test results indicated that the project goals were met with some exceeded. The results of this project pointed out the numerous interactions of all of the interrelated complex systems in today`s state-of-the-art power plants. The increase in unburned carbon levels affected the wet scrubber and impacted stack plume color. Being one indicator of inefficiency, this item is currently being reviewed to take advantage of further improving operating efficiency. Mechanical reliability of the Babcock & Wilcox DRB-XCL{reg_sign} burner has been good and it is estimated that long-term maintenance costs will be low. Close cooperation between Ohio Edison and B&W contributed positively to the success of this project.

Bryk, S.A.; Cioffi, P.L.; Tucker, T.J. [Babcock & Wilcox, Barberton, OH (United States); Mellody, J.G. [Ohio Edison Co., Akron, OH (United States); Hooks, M.E. [Pennsylvania Power Co., Shippingport, PA (United States)

1995-12-31T23:59:59.000Z

366

Evaluation of gas-reburning and low NO{sub x} burners on a wall fired boiler. Technical progress report No. 5, October 1--December 31, 1991  

SciTech Connect (OSTI)

Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is formed. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at the lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} emission reductions of 75 percent or more as a result of combing Low NO{sub x} Burners and Gas Reburning on a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

Not Available

1992-01-15T23:59:59.000Z

367

Correlations describing the pressurized fluidized-bed hydroretorting carbon conversions of six Eastern oil shales  

SciTech Connect (OSTI)

A set of correlations has been developed to describe the pressurized fluidized-bed hydroretorting carbon conversion of six Eastern oil shales. Laboratory scale fluidized bed and thermogravimetric data were used to relate hydroretorting conditions and organic carbon conversions to oil, gas, and residue. Conversions have been found to depend on temperature, hydrogen pressure, and residence time over the ranges studied of 750 to 865 K, 0 to 7 MPa H{sub 2}, and 0 to 30 minutes, respectively. Gas yield increases with increasing temperature but is independent of changes in hydrogen pressure. Oil yield increases with increasing hydrogen pressure and has different relationships to temperature for the various shales. A single mechanism has been used to describe the carbon conversions of Alabama and Tennessee Chattanooga, Indiana and Kentucky, New Albany, Michigan Antrim, and Ohio Cleveland shales under PFH conditions. The mechanism includes the simultaneous conversion of carbon to gas, oil, and an active carbon species which can form oil or remain as residue carbon. Yields are predicted over the temperature, hydrogen pressure, and residence time ranges used to PFH processing.

Rue, D.M.

1991-01-01T23:59:59.000Z

368

Correlations describing the pressurized fluidized-bed hydroretorting carbon conversions of six Eastern oil shales  

SciTech Connect (OSTI)

A set of correlations has been developed to describe the pressurized fluidized-bed hydroretorting carbon conversion of six Eastern oil shales. Laboratory scale fluidized bed and thermogravimetric data were used to relate hydroretorting conditions and organic carbon conversions to oil, gas, and residue. Conversions have been found to depend on temperature, hydrogen pressure, and residence time over the ranges studied of 750 to 865 K, 0 to 7 MPa H{sub 2}, and 0 to 30 minutes, respectively. Gas yield increases with increasing temperature but is independent of changes in hydrogen pressure. Oil yield increases with increasing hydrogen pressure and has different relationships to temperature for the various shales. A single mechanism has been used to describe the carbon conversions of Alabama and Tennessee Chattanooga, Indiana and Kentucky, New Albany, Michigan Antrim, and Ohio Cleveland shales under PFH conditions. The mechanism includes the simultaneous conversion of carbon to gas, oil, and an active carbon species which can form oil or remain as residue carbon. Yields are predicted over the temperature, hydrogen pressure, and residence time ranges used to PFH processing.

Rue, D.M.

1991-12-31T23:59:59.000Z

369

Application of a fiber optic probe to the hydrodynamic study of an industrial fluidized bed furnace  

SciTech Connect (OSTI)

A fiber optic probe technique is used to establish the hydrodynamic characteristics of an industrial scale (0.9 m internal diameter and 2.5 m tall) bubbling fluidized bed. This measurement technique allows for the bubbling phenomenon to be studied locally. Bubble parameters such as size, velocity and frequency can be measured with an adequate accuracy. This, however, is not a straight forward procedure, since among other things the shape of the bubble and the position at which fiber intercepts the bubble are unknown. This requires a statistical treatment of the data and the use of a correction factor. A geometrical and statistical analysis of the bubble/probe interactions shows that the correction factor is approximately unitary and thus the bubble size distribution can be obtained directly from the statistical treatment of the results of relatively large number of series of measurements. In addition, sampling rate and sample duration have to be determined as a function of the bubble size and velocity. Several combinations of sampling time and sampling rate have been tested allowing for the best combination of these parameters to be determined. After treatment of the acquired signals, the mean bubble size and velocity were calculated. The results obtained were compared to the measured expansion of the bed and the overall gas flow rate. This confirmed the accuracy of the measurements and the usefulness of this technique to establish the hydrodynamics of bubbling fluidized beds.

Saberi, B.; Shakourzadeh, K. [Technical Univ. of Compiegne (France); Militzer, J. [Technical Univ. of Nova Scotia, Halifax, Nova Scotia (Canada)

1997-12-31T23:59:59.000Z

370

Synthesis gas formation by catalytic oxidation of methane in fluidized bed reactors  

SciTech Connect (OSTI)

The production of synthesis gas (CO + H[sub 2]) by the catalytic partial oxidation of CH[sub 4] in air or O[sub 2] in static fluidized beds at atmospheric pressure has been examined over Pt, Rh, and Ni catalysts coated on 100-[mu]m [alpha]-Al[sub 2]O[sub 3] beads. With CH[sub 4]/air feeds, CO and H[sub 2] selectivities as high as 95% with >90% CH[sub 4] conversion were obtained on Rh and Ni catalysts at contact times of 0.1-0.5 sec. Pt catalysts were found to have significantly lower selectivities for all the three catalysts were improved by heating the reaction mixture above the autothermal reactor temperature and using O[sub 2] instead of air. The selectivities and conversions were fairly constant over the range of contact time s used. Probable reaction pathways for CH[sub 4] oxidation in fluidized beds are discussed. 31 refs., 6 figs.

Bharadwaj, S.S.; Schmidt, L.D. (Univ. of Minnesota, Minneapolis (United States))

1994-03-01T23:59:59.000Z

371

Pressurized Fluidized Bed Combustion Second-Generation System Research and Development  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant--called a Second-Generation or Advanced Pressurized Circulating Fluidized Bed Combustion (APCFB) plant--offers the promise of efficiencies greater than 45% (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. The APCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler (PCFB), and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design was previously prepared for this new type of plant and an economic analysis presented, all based on the use of a Siemens Westinghouse W501F gas turbine with projected carbonizer, PCFB, and topping combustor performance data. Having tested these components at the pilot plant stage, the referenced conceptual design is being updated to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine and a conventional 2400 psig/1050 F/1050 F/2-1/2 in. steam turbine. This report describes the updated plant which is projected to have an HHV efficiency of 48% and identifies work completed for the October 2001 through September 2002 time period.

A. Robertson; D. Horazak; R. Newby; H. Goldstein

2002-11-01T23:59:59.000Z

372

A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds  

SciTech Connect (OSTI)

Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

Li, Tingwen; Zhang, Yongmin

2013-10-11T23:59:59.000Z

373

Fluidized-bed waste-heat recovery system development. Semiannual report, February 1, 1983-July 31, 1983  

SciTech Connect (OSTI)

A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize this energy, which is applicable to all processes, is to preheat the combustion air from the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry. In this report, the accomplishments of the proceeding six-month period are described.

Cole, W. E.; De Saro, R.; Joshi, C.

1983-08-01T23:59:59.000Z

374

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents [OSTI]

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

375

Initial test results of the limestone injection multistage burner (LIMB) demonstration project. Report for September 1984-April 1988  

SciTech Connect (OSTI)

This paper discusses SO/sub 2/ removal efficiency and low-NOx burner performance obtained during short term tests, as well as the impact of LIMB ash on electrostatic precipitator (ESP) performance at Ohio Edison's Edgewater Station. Project goals are to demonstrate 50% or more SO/sub 2/ removal at a Ca/S molar stoichiometry of 2.0 and NOx emissions of less than 0.5 lb/million Btu while maintaining boiler operability and reliability. The tests, conducted before September 1987, indicated that 55-60% SO/sub 2/ removal and NOx emissions on the order of 0.48 lb/million Btu are achievable. The increased dust loading of a high-resistivity ash typically limited continuous operation to 2-6 hr. The paper discusses how the LIMB ash gave rise to back corona which, in turn, increased stack opacity to regulated levels. The extension of the project to include humidification of the flue gas is also described as a way to minimize these effects.

Nolan, P.S.; Hendriks, R.V.

1988-05-01T23:59:59.000Z

376

Search for Sneutrino Production in e? Final States in 5.3??fb(?1) of pp-bar Collisions at s?=1.96??TeV  

E-Print Network [OSTI]

We report the results of a search for R parity violating (RPV) interactions leading to the production of supersymmetric sneutrinos decaying into e? final states using 5.3??fb(?1) of integrated luminosity collected by the ...

Baringer, Philip S.; Bean, Alice; Clutter, Justace Randall; McGivern, Carrie Lynne; Sekaric, Jadranka; Wilson, Graham Wallace; Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.

2010-11-05T23:59:59.000Z

377

A study of cellulose gasification in a fluidized bed using a high-temperature solar furnace  

SciTech Connect (OSTI)

A 4.2-meter solar furnace was used to study the gasification of cellulose with steam in a fluidized bed. The heating value of the high-temperature equilibrium products is about twenty percent higher than that of the reactants. The increase represents stored solar energy; and the product, synthesis gas, is valuable as a chemical feedstock or pipeline gas. All experiments were performed at atmospheric pressure. Pure tabular alumina as well as crushed automotive exhaust was used as a bed material. Microcrystalline {alpha}-cellulose, entrained in argon, entered the fluidized bed just above the distributor. Steam heated to the operating temperature in a 10 cm packed bed section below the fluidized bed. In all cases, the process ran with more steam than required to produce an equimolar mixture of carbon monoxide and hydrogen. We used a quartz reactor between 1100 and 1430 K; a steel reactor at 1500 K and an Inconel reactor at 1600 K. Reactor inside diameter, nominally 5 cm, varied slightly; the bed height was adjusted to keep the gas residence time constant. Hydrogen production rate was measured before and after experiments with steam alone, with this amount subtracted. Equilibrium mixtures were not achieved. Catalysts improved hydrogen yields with higher than expected concentrations of carbon monoxide, methane and lighter hydrocarbons such as ethylene and acetylene. Experiments performed without catalyst at 1300 K, achieved a mixture (dry, argon-free) of 46 mole% CO, 30% H{sub 2} 14% CH{sub 4} 5% CO{sub 2} and 5% C{sub 2}H{sub 4}. An equilibrium mixture at this temperature would have contained 39% CO, 30% H{sub 2} 7% CO{sub 2} and no CH{sub 4} or C{sub 2}H{sub 4}. With the catalyst, the CO and CH{sub 4} decreased to 40% and 2% respectively, the H{sub 2} increased to 47%, and CO{sub 2} remained the same. No ethylene was formed. The hydrocarbon-rich mixtures achieved are typical of rapid-pyrolysis processes.

Murray, J.P.

1989-01-01T23:59:59.000Z

378

Pressurized fluidized-bed hydroretorting of raw and beneficiated Eastern oil shales  

SciTech Connect (OSTI)

The Institute of Gas Technology (IGT) with US Department of Energy (DOE) support has developed a pressurized fluidized-bed hydroretorting (PFH) process for Eastern oil shales. Bench-scale tests have been conducted with raw and beneficiated shales in an advanced multipurpose research reactor (AMRR). Raw Alabama shale and raw and beneficiated Indiana shales were retorted at 515{degrees}C using hydrogen pressures of 4 and 7 MPa. Shale feed rates to the AMRR were 15 to 34 kg/h. High oils yields and carbon conversions were achieved in all tests. Oil yield from Alabama shale hydroretorted at 7 MPa was 200% of Fischer Assay. Raw and beneficiated Indiana shales hydroretorted at 7 MPa produced oil yields of 170% to 195% of Fischer Assay, respectively. Total carbon conversions were greater than 70% for all tests conducted at 7 MPa.

Roberts, M.J.; Rue, D.M.; Lau, F.S.

1991-01-01T23:59:59.000Z

379

Pressurized fluidized-bed hydroretorting of raw and beneficiated Eastern oil shales  

SciTech Connect (OSTI)

The Institute of Gas Technology (IGT) with US Department of Energy (DOE) support has developed a pressurized fluidized-bed hydroretorting (PFH) process for Eastern oil shales. Bench-scale tests have been conducted with raw and beneficiated shales in an advanced multipurpose research reactor (AMRR). Raw Alabama shale and raw and beneficiated Indiana shales were retorted at 515{degrees}C using hydrogen pressures of 4 and 7 MPa. Shale feed rates to the AMRR were 15 to 34 kg/h. High oils yields and carbon conversions were achieved in all tests. Oil yield from Alabama shale hydroretorted at 7 MPa was 200% of Fischer Assay. Raw and beneficiated Indiana shales hydroretorted at 7 MPa produced oil yields of 170% to 195% of Fischer Assay, respectively. Total carbon conversions were greater than 70% for all tests conducted at 7 MPa.

Roberts, M.J.; Rue, D.M.; Lau, F.S.

1991-12-31T23:59:59.000Z

380

Pressurized fluidized-bed hydroretorting of Indiana New Albany shale in batch and continuous units  

SciTech Connect (OSTI)

Work is being conducted at the Institute of Gas Technology (IGT) to develop a pressurized fluidized-bed hydroretorting (PFH) process for the production of oil from Eastern oil shales. The PFH process, using smaller particle sizes than the moving-bed hydroretorting process, offers higher oil yields and greater reactor mass fluxes through higher selectivity of organic carbon to oil and shorter residence times, respectively. Batch PFH tests have been conducted to study the effects of shale preheat time (15 to 30 min) and temperature (25{degree} to 320{degree}C), retorting temperature (450{degree} to 710{degree}C), hydrogen pressure (2.8 to 7.0 MPa), particle size (65 to 330 microns), and residence time (5 to 30 min) on the product yields from Indiana New Albany shale. Oil yield has been found to increase with increasing hydrogen pressure. Results are discussed. 10 refs., 14 figs., 3 tabs.

Roberts, M.J.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (USA)); Roosmagi, C. (USDOE Laramie Energy Technology Center, WY (USA))

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Process for generating electricity in a pressurized fluidized-bed combustor system  

DOE Patents [OSTI]

A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

Kasper, Stanley (Pittsburgh, PA)

1991-01-01T23:59:59.000Z

382

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2005 through December 31, 2005. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility is nearly completed. The erection of the CFBC facility is expected to start in the second week of February, 2006. Second, effect of flue gas components on mercury oxidation was investigated in a drop tube reactor. As a first step, experiment for mercury oxidation by chlorine was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Songgeng Li

2006-01-01T23:59:59.000Z

383

Trace metal capture by various sorbents during fluidized bed coal combustion  

SciTech Connect (OSTI)

Experiments were conducted in a 1-in. quartz fluidized bed combustor enclosed in an electric furnace. Coal samples were burned in the bed with a sorbent under specific combustion conditions and the amount of metal capture by the sorbent determined. Three different cao samples from the Illinois Basin Coal Sample Bank were tested. Metals involved were Cd, Pb, and Cr; the sorbents included bauxite, zeolite, and lime. Potential metal-sorbent reactions were identified. Results indicated that metal capture by sorbent can be as high as 96%, depending on the metal species and sorbent. All 3 sorbents were capable of capturing Pb, zeolite and lime were able to capture Cr, and bauxite was the only sorbent capable of capturing Cd. Thermodynamic equilibrium calculations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}, CdAl{sub 2}O{sub 4}, and CdSiO{sub 3} solids under the combustion conditions.

Ho, T.C.; Ghebremeskel, A.; Hopper, J.R.

1996-06-01T23:59:59.000Z

384

Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

Experiments performed support the hypothesis that a reducing atmosphere during fluidized bed coal combustion contributes to the formation of agglomerates. Reducing conditions are imposed by controlling the amount of combustion air supplied to the combustor, 50% of theoretical in these experiments. These localized reducing conditions may arise from either poor lateral bed mixing or oxygen-starved conditions due to the coal feed locations. Deviations from steady-state operating conditions in bed pressure drop may be used to detect agglomerate formation. Interpretation of the bed pressure drop was made more straightforward by employing a moving average difference method. During steady-state operation, the difference between the moving point averages should be close to zero, within {plus_minus}0.03 inches of water. Instability within the combustor, experienced once agglomerates begin to form, can be recognized as larger deviations from zero, on the magnitude of {plus_minus}0.15 inches of water.

Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

1995-04-01T23:59:59.000Z

385

Rocky Flats Plant fluidized-bed incinerator. Engineering design and reference manual  

SciTech Connect (OSTI)

The information in this manual is being presented to complete the documentation of the fluidized-bed incineration (FBI) process development at the Rocky Flats Plant. The information pertains to the 82-kg/hour demonstration unit at the Rocky Flats Plant. This document continues the presentation of design reference material in the aeas of equipment drawings, space requirements, and unit costs. In addition, appendices contain an operating procedure and an operational safety analysis of the process. The cost figures presented are based on 1978 dollars and have not been converted to a current dollar value. Also, the cost of modifications are not included, since they would be insignificant if they were incorporated into a new installation.

Meile, L.J.

1982-11-05T23:59:59.000Z

386

Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).  

SciTech Connect (OSTI)

An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish (; ); Trujillo, Steven Mathew

2006-08-01T23:59:59.000Z

387

Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes  

SciTech Connect (OSTI)

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

2012-10-22T23:59:59.000Z

388

Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor  

SciTech Connect (OSTI)

The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

Bonk, D.L.; McDaniel, H.M. [USDOE Morgantown Energy Technology Center, WV (United States); DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1995-07-01T23:59:59.000Z

389

Carbon attrition during the circulating fluidized bed combustion of a packaging-derived fuel  

SciTech Connect (OSTI)

Cylindrical pellets of a market-available packaging-derived fuel, obtained from a mono-material collection of polyethylene terephthalate (PET) bottles, were batchwise fed to a laboratory scale circulating fluidized bed (CFB) combustor. The apparatus, whose riser was 41 mm ID and 4 m high, was operated under both inert and oxidizing conditions to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. Silica sand particles of two size distributions were used as inert materials. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping the combustor were determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed (BFB) combustor to point out peculiarities of attrition in CFB combustors. After devolatilization, PET pellets generated fragile aggregates of char and sand, which easily crumbled, leading to single particles, partially covered by a carbon-rich layer. The injected fixed carbon was therefore present in the bed in three phases: an A-phase, made of aggregates of sand and char, an S-phase, made of individual carbon-covered sand particles and an F-phase, made of carbon fines, abraded by the surfaces of the A- and S-phases. The effects of the size of inert material on the different forms under which fixed carbon was present in the bed and on the rate of escape of attrited carbon fines from the combustor were investigated. Features of carbon attrition in CFB and BFB combustors are discussed.

Mastellone, M.L. [Univ. Federico II of Naples, Napoli (Italy). Dept. of Chemical Engineering] [Univ. Federico II of Naples, Napoli (Italy). Dept. of Chemical Engineering; Arena, U. [National Research Council, Napoli (Italy). Inst. for Combustion Research] [National Research Council, Napoli (Italy). Inst. for Combustion Research; [Univ. of Naples, Caserta (Italy). Dept. of Environmental Sciences

1999-05-01T23:59:59.000Z

390

Evaluation of gas reburning and low NO{sub x} burners on a wall-fired boiler  

SciTech Connect (OSTI)

An evaluation of Gas Reburning (GR) and Low NO{sub x}, Burners (LNB) has been completed at Public Service Company of Colorado`s Cherokee Station Unit 3. The goal of the demonstration, which was carried out in a US DOE Clean Coal Technology Round 3 Program, was to reduce NO{sub x} emissions by 70%. The reduction was to be achieved from the pre-project level, prior to LNB retrofit. The GR system was supplied by Energy and Environmental Research Corporation (EER) and the LNBs were supplied by the Foster Wheeler Energy Corporation. The project was carried out in three phases in which EER designed the GR system and obtained necessary permits (Phase 1), constructed the system and completed start-up tasks (Phase 2), and evaluated its performance with both Optimization Tests and a Long-Term Demonstration (Phase 3). As directed by the cooperative agreement, environmental monitoring was conducted in each phase. Measurements were taken by plant personnel and an EER Field Testing Team and were divided into two types. ``Compliance Monitoring`` was conducted by plant personnel to satisfy requirements of regulatory agencies, while ``Supplemental Monitoring`` was conducted by EER personnel to develop a database of environmental impacts of the technology and to ensure environmental acceptability of the project. This document presents environmental monitoring data obtained during the Long-Term Testing period, April 27, 1993 to January 27, 1995. During this period, ten months of testing of the GR-LNB system was followed by a modification into a ``second-generation`` GR-LNB system, which was evaluated for six months. Compliance Monitoring was conducted primarily in two areas, air emissions and aqueous discharges.

NONE

1995-06-01T23:59:59.000Z

391

Evaluation of gas reburning and low NO{sub x} burners on a wall-fired boiler  

SciTech Connect (OSTI)

An evaluation of Gas Reburning (GR) and Low NO{sub x} Burners (LNB) has been completed at Public Service Company of Colorado`s Cherokee Station Unit 3. The goal of the demonstration was to reduce NO{sub x} emissions by 70%. The reduction was to be achieved from the pre-project level prior to LNB retrofit. The GR system was supplied by Energy and Environmental Research Corporation (EER) and the LNBs were supplied by the Foster Wheeler Energy Corporation. The project was carried out in three phases in which EER designed the GR system and obtained necessary permits (Phase 1), constructed the system and completed start-up tasks (Phase 2), and evaluated its performance with both Optimization Tests and a Long-Term Demonstration (Phase 3). As directed by the Cooperative Agreement, environmental monitoring was conducted in each phase. Measurements were taken by plant personnel and an EER Field Testing Team and were divided into two types. ``Compliance Monitoring`` was conducted by plant personnel to satisfy requirements of regulatory agencies, while ``Supplemental Monitoring`` was conducted by EER personnel to develop a database of environmental impacts of the technology and to ensure environmental acceptability of the project. This document presents environmental monitoring data obtained during the Optimization Testing period, November 11, 1992 to April 23, 1993. Compliance Monitoring was conducted primarily in two areas, air emissions and aqueous discharges. The unit is required to meet an SO{sub 2} limit of 1.2 lb/MBtu and an opacity limit of 20 percent (6 minute average). Therefore, the plant monitors flue gas SO{sub 2} and opacity continuously and submits Excess Emissions Reports to the Colorado Air Pollution Control Division on a quarterly basis. Discharge limits for the aqueous effluent from the plant and monitoring requirements are specified by a permit issued by the Colorado Water Quality Control Division.

NONE

1995-06-01T23:59:59.000Z

392

Development of self-tuning residential oil-burner. Oxygen sensor assessment and early prototype system operating experience  

SciTech Connect (OSTI)

This document is the first topical report dealing with a new project leading towards the development of a self-tuning residential oil burner. It was initiated under the Statement of Work for the Oil Heat Research and Development Program, for Fiscal Year 1997 as defined in the Combustion Equipment Technology Program, under the management of Brookhaven National Laboratory (BNL). In part, this work is based on research reported by BNL in 1990, suggesting various options for developing control strategies in oil heat technology leading to the enhanced efficiency of oil-fired heating systems. BNL has been addressing these concepts in order of priority and technology readiness. The research described in this report is part of an ongoing project and additional work is planned for the future assuming adequate program funding is made available. BNL has continued to investigate all types of sensor technologies associated with combustion systems including all forms of oxygen measurement techniques. In these studies the development of zirconium oxide oxygen sensors has been considered over the last decade. The development of these sensors for the automotive industry has allowed for cost reductions based on quantity of production that might not have occurred otherwise. This report relates BNL`s experience in testing various zirconium oxide sensors, and the results of tests intended to provide evaluation of the various designs with regard to performance in oil-fired systems. These tests included accuracy when installed on oil-fired heating appliances and response time in cyclic operating mode. An evaluation based on performance criteria and cost factors was performed. Cost factors in the oil heat industry are one of the most critical issues in introducing new technology.

McDonald, R.J.; Butcher, T.A.; Krajewski, R.F.

1998-09-01T23:59:59.000Z

393

Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion  

SciTech Connect (OSTI)

The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

Wayne Penrod

2006-12-31T23:59:59.000Z

394

Data:08343154-f48b-4fb7-b094-26eee1338164 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc Nof7e0a4fb No2aeb24eac2eb Nod2c7ac3646eee1338164 No

395

Data:0a5c0020-89d5-4813-aa27-9973172504fb | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable-1a29da98863b No revision has been approved9a8af83b8c43172504fb No revision

396

Data:A0243432-ed06-472b-99e3-778497d510fb | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision hasdb5-b05c-76b1be5a4007 Nof7ffd374e No revisionf1f306fd8 No778497d510fb No

397

Data:7ebeffe5-fb88-45f8-8376-6ba307047cb9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321bfd-b46c-2ea652fe29afebeffe5-fb88-45f8-8376-6ba307047cb9 No revision has been

398

DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS  

SciTech Connect (OSTI)

The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at the Gordon Conference on Modern Development in Thermodynamics. The results obtained are very encouraging for the development of the RCSC as a commercial burner for significant reduction of NO{sub x} emissions, and highly warrants further study and development.

Noam Lior; Stuart W. Churchill

2003-10-01T23:59:59.000Z

399

Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays  

SciTech Connect (OSTI)

The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatial resolution of meso-scale clustering heterogeneities is sacrificed.

Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

2014-03-01T23:59:59.000Z

400

Low temperature SO{sub 2} removal with solid sorbents in a circulating fluidized bed absorber. Final report  

SciTech Connect (OSTI)

A novel flue gas desulfurization technology has been developed at the University of Cincinnati incorporating a circulating fluidized bed absorber (CFBA) reactor with dry sorbent. The main features of CFBA are high sorbent/gas mixing ratios, excellent heat and mass transfer characteristics, and the ability to recycle partially utilized sorbent. Subsequently, higher SO{sub 2} removal efficiencies with higher overall sorbent utilization can be realized compared with other dry sorbent injection scrubber systems.

Lee, S.K.; Keener, T.C.

1994-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Petrographic characteristics of Romanian lignite and solid by-products resulting from circulating fluidized bed combustion -- CFBC  

SciTech Connect (OSTI)

The low rank coals -- lignites -- are the main source, in Romania for power and thermal energy generation. The Circulating Fluidized Bed Combustion -- CFBC -- was chosen to be used for its particular features with very low emission levels. Carbopetrographic research, using optical microscopy, was carried out on the raw coals and, especially, on the carbonaceous products in different thermal stages and the residues. The existence of successive and simultaneous phases of degasing, pyrolysis and burning of organic and mineral material was revealed. The study gave the possibility of improving the process-governing parameters, in order to raise the combustion efficiency on once-through combustors. The main solid fuel fired in power plants is the lignite obtained from surface exploitation. Experience of its use in high load power systems has shown that it can be fired only by adding liquid fuel. Moreover, it is rather difficult to prepare it to exact size requested. The only technology conveniently applied for this fuel was the fluidized bed combustion (FBC), which uses a 0--7 mm-sized lignite. On the basis of this original concept technology, steam and hot water load generators were built in Romania, that is 2 t/h, 8 bar, 170 C, and 10 t/h, 16 bar, 350 C steam generators and 5 Gcal/h, and 10 Gcal/h hot water boilers. For loads over 100 Gcal/h, 100 t/h, circulating fluidized bed combustion boilers were conceived.

Panaitescu, C. [Politehnica Univ. Bucharest (Romania); Dragos, L.; Fluieraru, C.; Nistor, I. [Thermal Power Engineering Inst., Bucharest (Romania)

1994-12-31T23:59:59.000Z

402

Experimental and theoretical investigation on the mechanism of transient bubble images in fluidized-bed combustors: Systematic interpretation and analysis. Final report, July 1992--July 1995  

SciTech Connect (OSTI)

For the improvement of the design and operation of the FBC systems, the insight into the intrinsic transient bubbling phenomena in freely bubbling fluidized beds is of vital importance. The authors have found several basic new bubbling mechanisms in this work experimentally, and some of them have not been published in past literature. Using the two dimensional fluidized bed, the images of transient bubbling behavior were recorded by videos, and processed and analyzed by computers. As the results of experiments, the following new experimental facts were found: (1) transient bubbles change and fluctuate their size and shape over very short time intervals (on the order of 30 milliseconds); (2) bubble disappearance and reappearance occurred in the emulsion phase in addition to the known phenomena of coalescence and splitting. The bubble interaction occurred between the bubbles and adjacent emulsion phase and also among the transient bubbles; (3) bubble`s velocity fluctuated significantly, e.g., 0.6 to 3.0 m/s; (4) under one single specific fluidization condition, two different fluidization patterns appeared to occur randomly shifting from one pattern to the other or vice versa; (5) the erosion rates of in-bed tubes at ambient and elevated temperature could be predicted using material property data and transient behavior of bubbles. By introducing a new quantitative criterion which the authors call a gas stress index in the emulsion phase, the comparison of the fluidization quality between two and three dimensional fluidized beds was accomplished. They found reasonable correspondence between the two beds, and concluded that the new findings of transient bubble behavior should hold true for both types of fluidized beds. 32 refs., 85 figs., 13 tabs.

Hisashi O. Kono

1995-08-01T23:59:59.000Z

403

PARTICULATE CHARACTERIZATION AND ULTRA LOW-NOx BURNER FOR THE CONTROL OF NO{sub x} AND PM{sub 2.5} FOR COAL FIRED BOILERS  

SciTech Connect (OSTI)

In response to the serious challenge facing coal-fired electric utilities with regards to curbing their NO{sub x} and fine particulate emissions, Babcock and Wilcox and McDermott Technology, Inc. conducted a project entitled, ''Particulate Characterization and Ultra Low-NO{sub x} Burner for the Control of NO{sub x} and PM{sub 2.5} for Coal Fired Boilers.'' The project included pilot-scale demonstration and characterization of technologies for removal of NO{sub x} and primary PM{sub 2.5} emissions. Burner development and PM{sub 2.5} characterization efforts were based on utilizing innovative concepts in combination with sound scientific and fundamental engineering principles and a state-of-the-art test facility. Approximately 1540 metric tonnes (1700 tons) of high-volatile Ohio bituminous coal were fired. Particulate sampling for PM{sub 2.5} emissions characterization was conducted in conjunction with burner testing. Based on modeling recommendations, a prototype ultra low-NO{sub x} burner was fabricated and tested at 100 million Btu/hr in the Babcock and Wilcox Clean Environment Development Facility. Firing the unstaged burner with a high-volatile bituminous Pittsburgh 8 coal at 100 million Btu/hr and 17% excess air achieved a NO{sub x} goal of 0.20 lb NO{sub 2}/million Btu with a fly ash loss on ignition (LOI) of 3.19% and burner pressure drop of 4.7 in H{sub 2}O for staged combustion. With the burner stoichiometry set at 0.88 and the overall combustion stoichiometry at 1.17, average NO{sub x} and LOI values were 0.14 lb NO{sub 2}/million Btu and 4.64% respectively. The burner was also tested with a high-volatile Mahoning 7 coal. Based on the results of this work, commercial demonstration is being pursued. Size classified fly ash samples representative of commercial low-NO{sub x} and ultra low-NO{sub x} combustion of Pittsburgh 8 coal were collected at the inlet and outlet of an ESP. The mass of size classified fly ash at the ESP outlet was sufficient to evaluate the particle size distribution, but was of insufficient size to permit reliable chemical analysis. The size classified fly ash from the inlet of the ESP was used for detailed chemical analyses. Chemical analyses of the fly ash samples from the ESP outlet using a high volume sampler were performed for comparison to the size classified results at the inlet. For all test conditions the particulate removal efficiency of the ESP exceeded 99.3% and emissions were less than the NSPS limits of {approx}48 mg/dscm. With constant combustion conditions, the removal efficiency of the ESP increased as the ESP voltage and Specific Collection Area (SCA) increased. The associated decrease in particle emissions occurred in size fractions both larger and smaller than 2.5 microns. For constant ESP voltage and SCA, the removal efficiency for the ultra low-NO{sub x} combustion ash (99.4-99.6%) was only slightly less than for the low-NO{sub x} combustion ash (99.7%). The decrease in removal efficiency was accompanied by a decrease in ESP current. The emission of PM{sub 2.5} from the ESP did not change significantly as a result of the change in combustion conditions. Most of the increase in emissions was in the size fraction greater than 2.5 microns, indicating particle re-entrainment. These results may be specific to the coal tested in this program. In general, the concentration of inorganic elements and trace species in the fly ash at the ESP inlet was dependent on the particle size fraction. The smallest particles tended to have higher concentrations of inorganic elements/trace species than larger particles. The concentration of most elements by particle size range was independent of combustion condition and the concentration of soluble ions in the fly ash showed little change with combustion condition when evaluated on a carbon free basis.

Ralph Bailey; Hamid Sarv; Jim Warchol; Debi Yurchison

2001-09-30T23:59:59.000Z

404

Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner  

SciTech Connect (OSTI)

Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

Selle, L.; Ferret, B. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); Poinsot, T. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); CERFACS, Toulouse (France)

2011-01-15T23:59:59.000Z

405

CRUCIBLE TESTING OF TANK 48H RADIOACTIVEWASTE SAMPLE USING FLUIDIZED BED STEAMREFORMING TECHNOLOGY FOR ORGANICDESTRUCTION  

SciTech Connect (OSTI)

The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble fractions of the product solids. Radioanalytical measurements were performed on the Tank 48H feed material and on the dissolved products in order to estimate retention of Cs-137 in the process. All aspects of prior crucible scale testing with simulant Tank 48H slurry were demonstrated to be repeatable with the actual radioactive feed. Tetraphenylborate destruction was shown to be >99% and the final solid product is sodium carbonate crystalline material. Less than 10 wt% of the final solid products are insoluble components comprised of Fe/Ni/Cr/Mn containing sludge components and Ti from monosodium titanate present in Tank 48H. REDOX measurements on the radioactive solid products indicate a reducing atmosphere with extremely low oxygen fugacity--evidence that the sealed crucible tests performed in the presence of a reductant (sugar) under constant argon purge were successful in duplicating the pyrolysis reactions occurring with the Tank 48H feed. Soluble anion measurements confirm that using sugar as reductant at 1X stoichiometry was successful in destroying nitrate/nitrite in the Tank 48H feed. Radioanalytical measurements indicate that {approx}75% of the starting Cs-137 is retained in the solid product. No attempts were made to analyze/measure other potential Cs-137 in the process, i.e., as possible volatile components on the inner surface of the alumina crucible/lid or as offgas escaping the sealed crucible. The collective results from these crucible scale tests on radioactive material are in good agreement with simulant testing. Crucible scale processing has been shown to duplicate the complex reactions of an actual fluidized bed steam reformer. Thus this current testing should provide a high degree of confidence that upcoming bench-scale steam reforming with radioactive Tank 48H slurry will be successful in tetraphenylborate destruction and production of sodium carbonate product.

Crawford, C

2008-07-31T23:59:59.000Z

406

Four stage, fluidized bed gasification process minimizes NO{sub x}  

SciTech Connect (OSTI)

In 1981, after a long and thorough study of alternative methods of sewage sludge (biosolids) disposal, the City of Los Angeles (CLA) embarked on a pilot test program to incinerate dried sewage sludge from its Hyperion Wastewater Treatment Plant. This dried sludge is typically 47% ash, 53% combustible, and has an average higher heating value (HHV), moisture, ash-free (MAF) of 10,675 Btu/Lbm. The dried sludge is called sludge derived fuel (SDF). Approximately 8% of the MAF fraction of SDF is fuel-bound nitrogen. When SDF, with its extremely high fuel-bound nitrogen, was combusted in conventional multiple hearth and fluidized bed pilot plant furnaces, NO{sub x} emissions were extremely high ({gt}1,000 ppm). Faced with this dilemma, the CLA initiated an R and D program to reduce NO{sub x}. The pilot tests with a sub-stoichiometric fluid bed and an excess air afterburner (two-stages) reduced NO{sub x} to 400--600 ppm. With one intermediate stage added (three-stage), NO{sub x} was reduced to 130--150 ppm. However, when the following four-stage process was developed and tested, NO{sub x} was reduced to 50--75 ppm. Stage 1: Sub-stoichiometric fluidized bed operating at a nominal 30% stoichiometric air (SA). Stage 2:Sub-stoichiometric zone operating at a nominal 80% SA. Stage 3: Stoichiometric zone operating at a nominal 100% SA. Stage 4: Excess air zone (Afterburner) operating at a nominal 135% SA (35% excess air). After pilot testing was complete and design parameters established, three full-size, fluid bed gasifiers (two operational--one standby) were designed, constructed and operated until 1996. This paper describes the design, operation, and emission testing of these four-stage fluid bed gasifiers with special emphasis on the problems of (a) pneumatic feeding of SDF powder into the pressurized bed and (b) baghouse fabrics (expanded PTEE membrane on PTFE scrim). Final emission test results for NO{sub x} and other criteria pollutants are also presented.

Lewis, F.M.; Haug, R.T.

1999-07-01T23:59:59.000Z

407

Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows  

SciTech Connect (OSTI)

Gas-particle flows in fluidized beds and riser reactors are inherently unstable, and they manifest fluctuations over a wide range of length and time scales. Two-fluid models for such flows reveal unstable modes whose length scale is as small as ten particle diameters. Yet, because of limited computational resources, gas-particle flows in large fluidized beds are invariably simulated by solving discretized versions of the two-fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not resolve the small-scale spatial structures which are known to affect the macroscale flow structures both qualitatively and quantitatively. Thus there is a need to develop filtered two-fluid models which are suitable for coarse-grid simulations and capturing the effect of the small-scale structures through closures in terms of the filtered variables. The overall objective of the project is to develop validated closures for filtered two-fluid models for gas-particle flows, with the transport gasifier as a primary, motivating example. In this project, highly resolved three-dimensional simulations of a kinetic theory based two-fluid model for gas-particle flows have been performed and the statistical information on structures in the 100-1000 particle diameters length scale has been extracted. Based on these results, closures for filtered two-fluid models have been constructed. The filtered model equations and closures have been validated against experimental data and the results obtained in highly resolved simulations of gas-particle flows. The proposed project enables more accurate simulations of not only the transport gasifier, but also many other non-reacting and reacting gas-particle flows in a variety of chemical reactors. The results of this study are in the form of closures which can readily be incorporated into existing multi-phase flow codes such as MFIX (www.mfix.org). Therefore, the benefits of this study can be realized quickly. The training provided by this project has prepared a PhD student to enter research and development careers in DOE laboratories or chemicals/energy-related industries.

Sankaran Sundaresan

2010-02-14T23:59:59.000Z

408

Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2–5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved essentially complete bed turnover within approximately 40 hours. Samples of mineralized solid product materials were analyzed for chemical/physical properties. SRNL will report separately the results of product performance testing that were accomplished.

Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

2004-11-01T23:59:59.000Z

409

Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed chemical processing systems at Building 9212, Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is located within the Y-12 Plant on DOE`s Oak Ridge Reservation in Oak Ridge, Tennessee. The proposed replacement system would be based upon modern design criteria and safety analyses. The replacement AHF supply and distribution system equipment would be located on the existing Dock 8/8A at Building 9212. Utilities would be extended to the dock to service the process equipment. The following process equipment modules would be prefabricated for installation at the modified dock: an AHF cylinder enclosure, an AHF supply manifold and vaporizer module, an AHF sump tank and transfer skid, and an AHF supply off-gas scrubber assembly module. The fluidized-bed reactor system would be constructed in an area adjacent to the existing system in Building 9212. The replacement equipment would consist of a new reduction fluidized-bed reactor, a hydrofluorination fluidized-bed reactor, and associated air emission control equipment. The no-action alternative, which is the continued operation of the existing AHF supply and fluidized-bed reactor systems, was also evaluated.

NONE

1995-09-01T23:59:59.000Z

410

Data:6ce88841-eb3a-404a-a36a-b913d0def6fb | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approvedea02758d3f49fa2694 No9fb1785f5 No revision has been approveda-b913d0def6fb

411

Data:E5213578-0993-4bca-aaee-c3cfe1fb9d18 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has been approved for-1837723ccd6b No3f21d72298d8ae87cdee Nof3d1a2fb05 Noc3cfe1fb9d18

412

Pressurized fluidized-bed hydroretorting of Eastern oil shales. Progress report, July--September 1988  

SciTech Connect (OSTI)

The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the 3-year program, is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following eight tasks: Task 1, PFH Scoping Studies; Task 2, PFH Optimization Tests; Task 3, Testing of Process Improvement Concepts; Task 4, Beneficiation Research; Task 5, Operation of PFH on Beneficiated Shale; Task 6, Environmental Data and Mitigation Analyses; Task 7, Sample Procurement, Preparation, and Characterization; Task 8, Project Management and Reporting. In order to accomplish all the program objectives, the Institute of Gas Technology, the prime contractor, is working with six other institutions; the University of Alabama/Mineral Resources Institute, Illinois Institute of Technology, the University of Michigan, Ohio State University, Tennessee Technological University and the University of Pittsburgh. This report presents the work performed during the fourth program quarter from July 1 through September 30, 1988.

Punwani, D.V.; Lau, F.S.; Knowlton, T.M.; Akin, C.; Roberts, M.J.; Findlay, J.G.; Mensinger, M.C.; Chang, I.H.; Xiong, T.Y.

1988-12-01T23:59:59.000Z

413

Pressurized Fluidized-Bed Hydroretorting of Eastern Oil Shales. Progress report, July--September 1989  

SciTech Connect (OSTI)

The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the 3-year program, initiated in October 1987 is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following eight tasks: Task 1, PFH Scoping Studies; Task 2, PFH Optimization Tests; Task 3, Testing of Process Improvement Concepts; Task 4, Beneficiation Research; Task 5, Operation of PFH on Beneficiated Shale; Task 6, Environmental Data and Mitigation Analyses; Task 7, Sample Procurement, Preparation, and Characterization; Task 8, Project Management and Reporting. In order to accomplish all the program objectives, the Institute of Gas Technology, the prime contractor, is working with seven other institutions; the University of Alabama/Mineral Resources Institute, Illinois Institute of Technology, the University of Michigan, the University of Nevada, Ohio State University, Tennessee Technological University and the University of Pittsburgh. This report presents the work performed during the eighth program quarter from July 1 through September 30, 1989.

Punwani, D.V.; Lau, F.S.; Knowlton, T.M. [and others

1989-12-01T23:59:59.000Z

414

Pressurized Fluidized-Bed Hydroretorting of Eastern Oil Shales. Progress report, October--December 1988  

SciTech Connect (OSTI)

The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the 3-year program, initiated in October 1987 is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following eight tasks: Task 1, PFH Scoping Studies; Task 2, PFH Optimization Tests; Task 3, Testing of Process Improvement Concepts; Task 4, Beneficiation Research; Task 5, Operation of PFH on Beneficiated Shale; Task 6, Environmental Data and Mitigation Analyses; Task 7, Sample Procurement, Preparation, and Characterization; Task 8, Project Management and Reporting. In order to accomplish all the program objectives, the Institute of Gas Technology, the prime contractor, is working with seven other institutions; the University of Alabama/Mineral Resources Institute, Illinois Institute of Technology, the University of Michigan, the University of Nevada, Ohio State University, Tennessee Technological University and the University of Pittsburgh. This report presents the work performed during the fifth program quarter from October 1 through December 31, 1988.

Punwani, D.V.; Lau, F.S.; Knowlton, T.M. [and others

1989-02-01T23:59:59.000Z

415

Bed-inventory Overturn Mechanism for Pant-leg Circulating Fluidized Bed Boilers  

E-Print Network [OSTI]

A numerical model was established to investigate the lateral mass transfer as well as the mechanism of bed-inventory overturn inside a pant-leg circulating fluidized bed (CFB), which are of great importance to maintain safe and efficient operation of the CFB. Results show that the special flow structure in which the solid particle volume fraction along the central line of the pant-leg CFB is relative high enlarges the lateral mass transfer rate and make it more possible for bed inventory overturn. Although the lateral pressure difference generated from lateral mass transfer inhibits continuing lateral mass transfer, providing the pant-leg CFB with self-balancing ability to some extent, the primary flow rate change due to the outlet pressure change often disable the self-balancing ability by continually enhancing the flow rate difference. As the flow rate of the primary air fan is more sensitive to its outlet pressure, it is easier to lead to bed inventory overturn. While when the solid particle is easier to c...

Wang, Zhe; Yang, Zhiwei; West, Logan; Li, Zheng

2011-01-01T23:59:59.000Z

416

Pressurized fluidized bed reactor and a method of operating the same  

DOE Patents [OSTI]

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

Isaksson, Juhani (Karhula, FI)

1996-01-01T23:59:59.000Z

417

Market Assessment and Technical Feasibility Study of Pressurized Fluidized Bed Combustion Ash Use  

SciTech Connect (OSTI)

Western Research Institute in conjunction with the Electric Power Research Institute, Foster Wheeler Energy International, Inc. and the U.S. Department of Energy Technology Center (METC), has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for pressurized fluidized bed combustion (PFBC) ashes. The assessment is designed to address six applications, including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) synthetic aggregate, and (5) agricultural/soil amendment applications. Ash from low-sulfur subbituminous coal-fired Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, and ash from the high-sulfur bituminous coal-fired American Electric Power (AEP) bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing. This paper addresses the technical feasibility of ash use options for PFBC unit using low- sulfur coal and limestone sorbent (karhula ash) and high-sulfur coal and dolomite sorbents (AEP Tidd ash).

Bland, A.E.; Brown, T.H. [Western Research Inst., Laramie, WY (United States)

1996-12-31T23:59:59.000Z

418

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report  

SciTech Connect (OSTI)

The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

NONE

1996-06-30T23:59:59.000Z

419

Pressurized fluidized bed reactor and a method of operating the same  

DOE Patents [OSTI]

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

Isaksson, J.

1996-02-20T23:59:59.000Z

420

Hydrotreating the bitumen-derived hydrocarbon liquid produced in a fluidized-bed pyrolysis reactor  

SciTech Connect (OSTI)

The pyrolysis of bitumen-impregnated sandstone produces three primary product streams: C{sub 1}-C{sub 4} hydrocarbons gases, a C{sub 5}{sup +} total liquid product, and a carbonaceous residue on the spent sand. The bitumen-derived hydrocarbon liquid was significantly upgraded relative to the native bitumen: it had a higher API gravity, lower Conradson carbon residue, asphaltene content, pour point and viscosity and a reduced distillation endpoint relative to the native bitumen. The elemental composition was little different from that of the native bitumen except for the hydrogen content which was lower. The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor to determine the extent of upgrading as a function of process operating variables. The extent of denitrogenation and desulfurization of the bitumen-derived liquid was used to monitor catalyst activity as a function of process operating variables and to estimate the extent of catalyst deactivation as a function of time on-stream. The apparent kinetics for the nitrogen and sulfur removal reactions were determined. Product distribution and yield data were also obtained.

Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.; Tsai, C.H.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "burner fb fluidized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hydrotreating the bitumen-derived hydrocarbon liquid produced in a fluidized-bed pyrolysis reactor  

SciTech Connect (OSTI)

The pyrolysis of bitumen-impregnated sandstone produces three primary product streams: C{sub 1}-C{sub 4} hydrocarbons gases, a C{sub 5}{sup +} total liquid product, and a carbonaceous residue on the spent sand. The bitumen-derived hydrocarbon liquid was significantly upgraded relative to the native bitumen: it had a higher API gravity, lower Conradson carbon residue, asphaltene content, pour point and viscosity and a reduced distillation endpoint relative to the native bitumen. The elemental composition was little different from that of the native bitumen except for the hydrogen content which was lower. The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor to determine the extent of upgrading as a function of process operating variables. The extent of denitrogenation and desulfurization of the bitumen-derived liquid was used to monitor catalyst activity as a function of process operating variables and to estimate the extent of catalyst deactivation as a function of time on-stream. The apparent kinetics for the nitrogen and sulfur removal reactions were determined. Product distribution and yield data were also obtained.

Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.; Tsai, C.H.

1991-01-01T23:59:59.000Z

422

Trace metal capture by various sorbents during fluidized bed coal combustion  

SciTech Connect (OSTI)

Toxic trace metallic elements such as arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, and selenium are usually contained in coal in various forms and trace amounts. These metals will either stay in the ash or be vaporized during high temperature combustion. Portions of the vaporized metals may eventually be emitted from a combustion system in the form of metal fumes or particulates with diameters less than 1 micron, which are potentially hazardous to the environment. Current practice of controlling trace metal emissions during coal combustion employs conventional air pollution control devices (APCDs), such as electrostatic precipitators and baghouses, to collect fly ash and metal fumes. The control may not always be effective on metal fumes due to their extremely fine sizes. This study is to explore the opportunities for improved control of toxic trace metal emissions from coal-fired combustion systems. Specifically, the technology proposed is to employ suitable sorbents to reduce the amount of metal volatilization and capture volatilized metal vapors during fluidized bed coal combustion. The objective of the study was to investigate experimentally and theoretically the metal capture process.

Ho, T.C.; Ghebremeskel, A.N.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

1996-12-31T23:59:59.000Z

423

Effect of pressure on second-generation pressurized fluidized bed combustion plants  

SciTech Connect (OSTI)

In the search for a more efficient, less costly, and more environmentally responsible method for generating electrical power from coal, research and development has turned to advanced pressurized fluidized bed combustion (PFBC) and coal gasification technologies. A logical extension of this work is the second- generation PFBC plant, which incorporates key components of each of these technologies. In this new type of plant, coal devolatilized/carbonized before it is injected into the PFB combustor bed, and the low Btu fuel gas produced by this process is burned in a gas turbine topping combustor. By integrating coal carbonization with PFB coal/char combustion, gas turbine inlet temperatures higher than 1149{degrees}C (2100{degrees}F) can be achieved. The carbonizer, PFB combustor, and particulate-capturing hot gas cleanup systems operate at 871{degrees}C (1600{degrees}F), permitting sulfur capture by lime-based sorbents and minimizing the release of coal contaminants to the gases. This paper presents the performance and economics of this new type of plant and provides a brief overview of the pilot plant test programs being conducted to support its development.

Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D.L. [USDOE Morgantown Energy Technology Center, WV (United States)

1993-06-01T23:59:59.000Z

424

Radionuclide and contaminant immobilization in the fluidized bed steam reforming waste products  

SciTech Connect (OSTI)

The goal of this chapter is to introduce the reader to the Fluidized Bed Steam Reforming (FBSR) process and resulting waste form. The first section of the chapter gives an overview of the potential need for FBSR processing in nuclear waste remediation followed by an overview of the engineering involved in the process itself. This is followed by a description of waste form production at a chemical level followed by a section describing different process streams that have undergone the FBSR process. The third section describes the resulting mineral product in terms of phases that are present and the ability of the waste form to encapsulate hazardous and radioactive wastes from several sources. Following this description is a presentation of the physical properties of the granular and monolith waste form product including and contaminant release mechanisms. The last section gives a brief summary of this chapter and includes a section on the strengths associated with this waste form and the needs for additional data and remaining questions yet to be answered. The reader is directed elsewhere for more information on other waste forms such as Cast Stone (Lockrem, 2005), Ceramicrete (Singh et al., 1997, Wagh et al., 1999) and geopolymers (Kyritsis et al., 2009; Russell et al., 2006).

Neeway, James J.; Qafoku, Nikolla; Westsik, Joseph H.; Brown, Christopher F.; Jantzen, Carol; Pierce, Eric M.

2012-05-01T23:59:59.000Z

425

Some investigations on heat transfer in a hot circulating fluidized bed  

SciTech Connect (OSTI)

An experimental investigation has been made to study the heat transfer characteristics at different bed heights along the riser column in a Circulating Fluidized Bed (CFB) unit of 102 mm x 102 mm in bed cross-section, 5.25 m in height with a return leg of the same dimensions. The test probes have dimensions of 42.5 mm in O.D., 70 mm in height, and half of its outer surface is exposed to the bed. Three such test sections made of mild steel are located at 1.8 m, 2.3 m and 3.4 m (probe 3, probe 2 and probe 1 respectively) above the distributor plate in the riser column. The variation of the heat transfer coefficient at different bed heights, and the influence of operating parameters are investigated. PG and coal (of mean size 800 {micro}m) are burned. The primary superficial air velocity is varied between 3.0 to 7.0 m/s. Local sand of mean size 248 {micro}m is used as the bed material. The present data is compared with the published literature.

Nag, P.K.; Reddy, B.V. [Indian Inst. of Tech., Kharagpur (India). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

426

Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion  

SciTech Connect (OSTI)

This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

none,

1992-10-01T23:59:59.000Z

427

Engineering systems analysis of pressurized fluidized-bed-combustion power systems  

SciTech Connect (OSTI)

This effort was conducted to provde supporting data for the research and development program on pressurized fluidized bed combustor (PFBC) systems being continued under the auspices of the Office of Coal Utilization of DOE. This report deals with the first phase of the effort, designated Task 1, which was scoped to be a somewhat broad review of PFBC technology and an analysis to determine its potential and sensitivity to key development needs. Background information pertaining to the application of PFBC to the market for coal-fired technology is included. The status of development is reviewed and the deficiencies in data are identified. Responses to a survey of PFBC developers are reviewed with emphasis on the high risk areas of the PFBC concept. Some of these problems are: uncertainty of life of gas turbine components; lack of demonstration of load following; and hot solids handling. Some high risk areas, such as the gas cleanup or gas turbine systems, can be relieved by reducing the severity of design conditions such as the turbine inlet temperature. Alternate turbine designs or plant configurations are also possible solutions. Analyses were performed to determine whether the advantages held by PFBC systems in cost, efficiency, and emissions would be nullified by measures taken to reduce risk. In general, the results showed that the attractive features of the PFBC could be preserved.

Graves, R.L.; Griffin, F.P.; Lackey, M.E.

1982-04-01T23:59:59.000Z

428

Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor  

SciTech Connect (OSTI)

In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnut shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.

Zuhal Gogebakan; Nevin Selcuk [Middle East Technical University, Ankara (Turkey). Department of Chemical Engineering

2008-05-15T23:59:59.000Z

429

Desulfurization of fuel gases in fluidized bed gasification and hot fuel gas cleanup systems  

DOE Patents [OSTI]

A problem with the commercialization of fluidized bed gasification is that vast amounts of spent sorbent are generated if the sorbent is used on a once-through basis, especially if high sulfur coals are burned. The requirements of a sorbent for regenerative service in the FBG process are: (1) it must be capable of reducing the sulfur containing gas concentration of the FBG flue gas to within acceptable environmental standards; (2) it must not lose its reactivity on cyclic sulfidation and regeneration; (3) it must be capable of regeneration with elimination of substantially all of its sulfur content; (4) it must have good attrition resistance; and, (5) its cost must not be prohibitive. It has now been discovered that calcium silicate pellets, e.g., Portland cement type III pellets meet the criteria aforesaid. Calcium silicate removes COS and H/sub 2/S according to the reactions given to produce calcium sulfide silicate. The sulfur containing product can be regenerated using CO/sub 2/ as the regenerant. The sulfur dioxide can be conveniently reduced to sulfur with hydrogen or carbon for market or storage. The basic reactions in the process of this invention are the reactions with calcium silicate given in the patent. A convenient and inexpensive source of calcium silicate is Portland cement. Portland cement is a readily available, widely used construction meterial.

Steinberg, M.; Farber, G.; Pruzansky, J.; Yoo, H.J.; McGauley, P.

1983-08-26T23:59:59.000Z

430

Pressurized fluidized-bed hydroretorting of eastern oil shales. Progress report, September 1992--November 1992  

SciTech Connect (OSTI)

This report presents the work performed during the program quarter from September 1, 1992 though November 30, 1992. The Institute of Gas Technology (IGT) is the prime contractor for the program extension to develop the Pressurized Fluidized-Bed Hydroretorting II system technology. Four institutions are working with IGT as subcontractors. Task achievements are discussed for the following active tasks of the program: Subtask 3.7 innovative reactor concept testing; Subtask 3.9 catalytic hydroretorting; Subtask 3.10 autocatalysis in hydroretorting; Subtask 3.11 shale oil upgrading and evaluation; Subtask 4.1.3 stirred ball mill grinding; Subtask 4.1.5 alternative technology evaluation; Subtask 4.1.6 ultrafine size separation; Subtask 4.2.1 column flotation tests; Subtask 4.4 integrated grinding and flotation; Subtask 4.7 economic analysis; Subtask 6.2.2 wastewater treatability; Subtask 6.2.3 waste management facility conceptual design; and Subtask 8 project management and reporting.

Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

1992-12-01T23:59:59.000Z

431

Pressurized Fluidized-Bed Hydroretorting of eastern oil shales. Final report, June 1992--January 1993  

SciTech Connect (OSTI)

The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in September 1987 by the US Department of Energy was to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program was divided into the following active tasks: Task 3 -- Testing of Process Improvement Concepts; Task 4 -- Beneficiation Research; Task 6 -- Environmental Data and Mitigation Analyses; and Task 9 -- Information Required for the National Environmental Policy Act. In order to accomplish all of the program objectives, tho Institute of Gas Technology (ICT), the prime contractor, worked with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed by IGT from June 1, 1992 through January 31, 1993.

Roberts, M.J.; Mensinger, M.C.; Erekson, E.J.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Hatcher, W.E. [Alabama Univ., University, AL (United States). Mineral Resources Inst.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

1993-03-01T23:59:59.000Z

432

Mineralogy and pore water chemistry of a boiler ash from a MSW fluidized-bed incinerator  

SciTech Connect (OSTI)

This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al{sup 0}, as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al{sup 0} are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction.

Bodenan, F., E-mail: f.bodenan@brgm.f [BRGM - French Geological Survey, Environment and Processes Division, BP 36009, 3 Av. C. Guillemin, 45060 Orleans Cedex (France); Guyonnet, D.; Piantone, P.; Blanc, P. [BRGM - French Geological Survey, Environment and Processes Division, BP 36009, 3 Av. C. Guillemin, 45060 Orleans Cedex (France)

2010-07-15T23:59:59.000Z

433

Performance of the Fluidized Bed Steam Reforming Product Under Hydraulically Unsaturated Conditions  

SciTech Connect (OSTI)

Currently, several candidates for secondary waste immobilization at the Hanford site in the State of Washington, USA are being considered. To demonstrate the durability of the product in the unsaturated Integrated Disposal Facility (IDF) at the site, a series of tests have been performed one of the candidate materials using the Pressurized Unsaturated Flow (PUF) system. The material that was tested was the Fluidized Bed Steam Reformer (FBSR) granular product and the granular product encapsulated in a geopolymer matrix. The FBSR product is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals mostly nepheline, sodalite, and nosean. The PUF test method allows for the accelerated weathering of materials, including radioactive waste forms, under hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that most likely will be present at the IDF. The experiments show a trend of decreasing tracer release as a function of time for several of the elements released from the material including Na, Si, Al, and Cs. However, some of the elements, notably I and Re, show a steady release throughout the yearlong test. This result suggests that the release of these minerals from the sodalite cage occurs at a different rate compared with the dissolution of the predominant nepheline phase.

Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Rod, Kenton A.; Bowden, Mark E.; Brown, Christopher F.; Pierce, Eric M.

2014-05-01T23:59:59.000Z

434

Characterization and Leaching Tests of the Fluidized Bed Steam Reforming (FBSR) Waste Form for LAW Immobilization  

SciTech Connect (OSTI)

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) have been evaluated. One such immobilization technology is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Pacific Northwest National Laboratory (PNNL) was involved in an extensive characterization campaign. This goal of this campaign was study the durability of the FBSR mineral product and the mineral product encapsulated in a monolith to meet compressive strength requirements. This paper gives an overview of results obtained using the ASTM C 1285 Product Consistency Test (PCT), the EPA Test Method 1311 Toxicity Characteristic Leaching Procedure (TCLP), and the ASTMC 1662 Single-Pass Flow-Through (SPFT) test. Along with these durability tests an overview of the characteristics of the waste form has been collected using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), microwave digestions for chemical composition, and surface area from Brunauer, Emmett, and Teller (BET) theory.

Neeway, James J.; Qafoku, Nikolla; Brown, Christopher F.; Peterson, Reid A.

2013-10-01T23:59:59.000Z

435

Measurement of the W boson helicity in top quark decays using 5.4 fb?¹ of pp? collision data  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We present a measurement of the helicity of the W boson produced in top quark decays using tt¯ decays in the ?+jets and dilepton final states selected from a sample of 5.4??fb?¹ of collisions recorded using the D0 detector at the Fermilab Tevatron pp? collider. We measure the fractions of longitudinal and right-handed W bosons to be f?=0.669±0.102[±0.078(stat.)±0.065(syst.)] and f?=0.023±0.053[±0.041(stat.)±0.034(syst.)], respectively. This result is consistent at the 98% level with the standard model. A measurement with f? fixed to the value from the standard model yields f?=0.010±0.037[±0.022(stat.)±0.030(syst.)].

Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Ancu, L. S.; Aoki, M.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Atramentov, O.; Avila, C.; BackusMayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Beale, S.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Bolton, T. A.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Camacho-Pérez, E.; Carrasco-Lizarraga, M. A.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chen, G.; Chevalier-Théry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Christoudias, T.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; ?wiok, M.; Das, A.; Davies, G.; De, K.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demarteau, M.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Gadfort, T.; Garcia-Bellido, A.; Gavrilov, V.; Gay, P.; Geist, W.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guo, F.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hossain, S.; Hubacek, Z.; Huske, N.; Hynek, V.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jain, S.; Jamin, D.; Jesik, R.; Johns, K.; Johnson, M.; Johnston, D.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Khatidze, D.; Kirby, M. H.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Kvita, J.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Liu, Z.; Lobodenko, A.; Lokajicek, M.; Love, P.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Mondal, N. K.; Muanza, G. S.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Novaes, S. F.; Nunnemann, T.; Obrant, G.; Orduna, J.; Osman, N.; Osta, J.; Otero y Garzón, G. J.; Owen, M.; Padilla, M.; Pangilinan, M.; Parashar, N.; Parihar, V.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, K.; Peters, Y.; Petrillo, G.; Pétroff, P.; Piegaia, R.; Piper, J.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pol, M.-E.; Polozov, P.; Popov, A. V.; Prewitt, M.; Price, D.; Protopopescu, S.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Rich, P.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Royon, C.; Rubinov, P.; Ruchti, R.; Safronov, G.; Sajot, G.; Sánchez-H