Powered by Deep Web Technologies
Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel to Burn: Economics of Converting Forest  

E-Print Network [OSTI]

Fuel to Burn: Economics of Converting Forest Thinnings to Energy Using BioMax in Southern Oregon E a small-scale (100-kW) BioMax without a subsidy or tax credit, even if fuel were delivered to the plant; Christensen, Glenn. 2005. Fuel to burn: Economics of converting forest thinnings to energy using Bio

Fried, Jeremy S.

2

Ignition and Burn in a Small Magnetized Fuel Target  

E-Print Network [OSTI]

LASNEX calculations of a small magnetized target show high gain at a velocity significantly lower than needed for unmagnetized targets. Its cryogenic fuel layer appears to be raised to an equilibrium ignition temperature of about 2 keV by the radiation from the burning magnetized fuel.

Kirkpatrick, Ronald C

2014-01-01T23:59:59.000Z

3

Theory of Antineutrino Monitoring of Burning MOX Plutonium Fuels  

E-Print Network [OSTI]

This letter presents the physics and feasibility of reactor antineutrino monitoring to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected for different MOX fuels, for the purposes of nuclear accountability and safeguards. The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium. Thus, antineutrino monitoring could be used to verify the destruction of plutonium in reactors, though verifying the grade of the plutonium being burned is found to be more challenging.

Hayes, A C; Nieto, Michael Martin; WIlson, W B

2011-01-01T23:59:59.000Z

4

Theory of Antineutrino Monitoring of Burning MOX Plutonium Fuels  

E-Print Network [OSTI]

This letter presents the physics and feasibility of reactor antineutrino monitoring to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected for different MOX fuels, for the purposes of nuclear accountability and safeguards. The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium. Thus, antineutrino monitoring could be used to verify the destruction of plutonium in reactors, though verifying the grade of the plutonium being burned is found to be more challenging.

A. C. Hayes; H. R. Trellue; Michael Martin Nieto; W. B. WIlson

2011-10-03T23:59:59.000Z

5

MIPAS observations of organic tracers for biomass burning and intercontinental transport  

E-Print Network [OSTI]

MIPAS observations of organic tracers for biomass burning and intercontinental transport observations of organic tracers for biomass burning and intercontinental transport Introduction Suite - Oxford - September 2009 #12;MIPAS observations of organic tracers for biomass burning

6

Soot from the burning of fossil fuels and solid biofuels contributes far more to global  

E-Print Network [OSTI]

Soot from the burning of fossil fuels and solid biofuels contributes far more to global warming Researchers ScienceDaily (July 30, 2010) -- Soot from the burning of fossil fuels and solid biofuels analyzed the impacts of soot from fossil fuels -- diesel, coal, gasoline, jet fuel -- and from solid

7

Burning of Hydrocarbon Fuels Directly in a Water-Based Heat Carrier  

Science Journals Connector (OSTI)

A principal possibility of burning hydrocarbon fuels directly in a water-based heat carrier is demonstrated. The first experimental results are presented by an example of burning acetylene in water with initia...

V. S. Teslenko; V. I. Manzhalei; R. N. Medvedev…

2010-07-01T23:59:59.000Z

8

Design and Optimization of Future Aircraft for Assessing the Fuel Burn Trends of Commercial  

E-Print Network [OSTI]

aircraft R1 Maximum payload at maximum range SFC Engine specific fuel consumption Sref Reference area STADesign and Optimization of Future Aircraft for Assessing the Fuel Burn Trends of Commercial Francisco, CA 94104, U.S.A. Accurately predicting the fuel burn performance and CO2 emissions of future

Alonso, Juan J.

9

U S Burning Plasma Organization:U.S. Burning Plasma Organization: Supporting US Scientific Contributions to  

E-Print Network [OSTI]

Community (TTF,...) US Technology Community · USBPO mission is to coordinate US Burning Plasma related research to advance science USBPO Director, Jim Van Dam, also serves as US IPO Chief Scientist, assuring

10

Vertical feed stick wood fuel burning furnace system  

DOE Patents [OSTI]

A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1984-01-01T23:59:59.000Z

11

Vertical feed stick wood fuel burning furnace system  

DOE Patents [OSTI]

A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1982-01-01T23:59:59.000Z

12

Fuel-Burn Impact of Re-Designing Future Aircraft with Changes in Mission Specifications  

E-Print Network [OSTI]

., with permission. AIAA SciTech #12;SA Single aisle aircraft SFC Engine specific fuel consumption Sref Reference.S.A. Over the past few years, pressure to reduce the overall fuel consumption of the commer- cial aircraftFuel-Burn Impact of Re-Designing Future Aircraft with Changes in Mission Specifications Anil

Alonso, Juan J.

13

Transverse liquid fuel jet breakup, burning, and ignition  

SciTech Connect (OSTI)

An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

Li, H.

1990-01-01T23:59:59.000Z

14

Transverse liquid fuel jet breakup, burning, and ignition  

SciTech Connect (OSTI)

An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

Li, H.

1990-12-31T23:59:59.000Z

15

>Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (NDP-058a) Prepared by Antoinette L. Brenkert Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 Date Published: February 1998 (Revised for the Web: 2003) CONTENTS Abstract Documentation file for Data Base NDP-058a (2-1998) Data Base NDP-058a (2-1998) Abstract Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis. (March 1998) Antoinette L. Brenkert DOI: 10.3334/CDIAC/ffe.ndp058.2003 This data package presents the gridded (one degree latitude by one degree longitude) summed emissions from fossil-fuel burning, hydraulic cement

16

Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity  

Science Journals Connector (OSTI)

Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longe...

Melissa C. Teague; Bradley S. Fromm; Michael R. Tonks; David P. Field

2014-10-01T23:59:59.000Z

17

Cost–Performance Analysis and Optimization of Fuel-Burning Thermoelectric Power Generators  

Science Journals Connector (OSTI)

Energy cost analysis and optimization of thermoelectric (TE) power generators burning fossil fuel show a lower initial cost ... The produced heat generates electric power. Unlike waste heat recovery systems, the ...

Kazuaki Yazawa; Ali Shakouri

2013-07-01T23:59:59.000Z

18

Assessment of an Industrial Wet Oxidation System for Burning Waste and Low-Grade Fuels  

E-Print Network [OSTI]

"Stone & Webster Engineering Corporation, under Department of Energy sponsorship, is developing a wet oxidation system to generate steam for industrial processes by burning industrial waste materials and low-grade fuels. The program involves...

Bettinger, J.; Koppel, P.; Margulies, A.

19

Pellet Fueling Technology Development Leading to Efficient Fueling of ITER Burning Plasmas  

SciTech Connect (OSTI)

Pellet injection is the primary fueling technique planned for central fueling of the ITER burning plasma, which is a requirement for achieving high fusion gain. Injection of pellets from the inner wall has been shown on present day tokamaks to provide efficient fueling and is planned for use on ITER [1,2]. Significant development of pellet fueling technology has occurred as a result of the ITER R&D process. Extrusion rates with batch extruders have reached more than 1/2 of the ITER design specification of 1.3 cm3/s [3] and the ability to fuel efficiently from the inner wall by injecting through curved guide tubes has been demonstrated on several fusion devices. Modeling of the fueling deposition from inner wall pellet injection has been done using the Parks et al. ExB drift model [4] shows that inside launched pellets of 3mm size and speeds of 300 m/s have the capability to fuel well inside the separatrix. Gas fueling on the other hand is calculated to have very poor fueling efficiency due to the high density and wide scrape off layer compared to current machines. Isotopically mixed D/T pellets can provide efficient tritium fueling that will minimize tritium wall loading when compared to gas puffing of tritium. In addition, the use of pellets as an ELM trigger has been demonstrated and continues to be investigated as an ELM mitigation technique. During the ITER CDA and EDA the U.S. was responsible for ITER fueling system design and R&D and is in good position to resume this role for the ITER pellet fueling system. Currently the performance of the ITER guide tube design is under investigation. A mockup is being built that will allow tests with different pellet sizes and repetition rates. The results of these tests and their implication for fueling efficiency and central fueling will be discussed. The ITER pellet injection technology developments to date, specified requirements, and remaining development issues will be presented along with a plan to reach the design goal in time for employment on ITER.

Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Jernigan, Thomas C [ORNL; Houlberg, Wayne A [ORNL; Maruyama, S. [ITER International Team, Garching, Germany; Owen, Larry W [ORNL; Parks, P. B. [General Atomics; Rasmussen, David A [ORNL

2005-01-01T23:59:59.000Z

20

11, 26552696, 2011 Organic functional  

E-Print Network [OSTI]

) name biomass burning (BB) as the largest (42%) combustion source of pri- mary organic carbon fossil-fuel combustion and burning and non-burning forest sources of the measured organic aerosol. The OM

Russell, Lynn

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Method and apparatus for controlling fuel/air mixture in a lean burn engine  

DOE Patents [OSTI]

The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

Kubesh, John Thomas (San Antonio, TX); Dodge, Lee Gene (San Antonio, TX); Podnar, Daniel James (San Antonio, TX)

1998-04-07T23:59:59.000Z

22

Organic fuels | Open Energy Information  

Open Energy Info (EERE)

fuels fuels Jump to: navigation, search Name Organic fuels Place Houston, Texas Zip 77056 Product Biodiesel producer and distributor Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and  

E-Print Network [OSTI]

combustion, biomass burning and soil emissions Lyatt Jaegle´ ,a Linda Steinberger,a Randall V. Martinbc anthropogenic emissions, mostly resulting from fossil fuel combustion and biomass burning, are superimposed-CHEM chemical transport model. Top-down NOx sources are partitioned among fuel combustion (fossil fuel

Lyatt Jaeglé

24

Advanced Lean-Burn DI Spark Ignition Fuels Research  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

25

Advanced Lean-Burn DI Spark Ignition Fuels Research  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

26

Advanced Lean-Burn DI Spark Ignition Fuels Research  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

27

Final Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL  

Office of Scientific and Technical Information (OSTI)

Project Report Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL Nuclear Engineering Education Research Program (grant # DE-FG07-99ID13767) Rodney C. Ewing (co-PI) Lumin Wang (co-PI) October 30,2002 For the Period of 07/01/1999 to 06/30/2002 Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor, MI 48109 1 1. Background Excess actinides result from the dismantlement of nuclear weapons (239Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241Am, Cm and 237Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burn- up of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-

28

Organic Rankine Cycle System Preliminary Design with Corn Cob Biomass Waste Burning as Heat Source  

Science Journals Connector (OSTI)

Abstract The renewable energy source potencies in Indonesia are needed to be utilized to fulfill the electricity requirement in rural or remote area that not yet get electricity. One of the potency is biomass waste. Therefore, this paper discusses about the electricity generation preliminary design of Organic Rankine Cycle (ORC) system with corn cob biomass waste burning as heat source, so it can be obtained the theoretic corn farm area requirement, electricity power, and thermal efficiency at heat source temperature and flow rate variations. Corn cob burning temperature can heat up the heating fluid that is heated by boiler with corn cob as the biomass fuel. Furthermore, that heating fluid is used as ORC electricity generation heat source. The independent variables in this study are the heating fluid temperature which varied between 110, 120, and 130oC, and the heating fluid flow rate that varied between 100, 150, and 200 liter/minute. \\{R141b\\} is selected to be the working fluid, palm oil is used for heating fluid and water as cooling fluid. The calculation results that the theoretic electricity power, thermal efficiency, and corn farm area requirement, respectively, are in the range of 3.5-8.5 kW, 9.2-10.3%, and 49.5-101.1 hectare/year. All of the highest range values are resulted at the highest temperature and flow rate, 130oC and 200 liter/minute. This result shows that corn cob burning heat is potential to be utilized as electricity generation heat source for rural society, particularly for some areas that have been studied.

Nur Rohmah; Ghalya Pikra; Agus Salim

2013-01-01T23:59:59.000Z

29

An assessment of waste fuel burning in operating circulating fluidized bed boilers  

SciTech Connect (OSTI)

Fluidized bed combustion (FBC), today's fastest growing boiler technology, has the flexibility to burn a wide range of fuels, including many waste fuels, while satisfying all present and anticipated environmental regulations. The first generation of FBC--atmospheric fluidized bed combustion (AFBC)--concentrated on ''bubbling'' fluidized bed designs. These systems have inherent limitations and experienced several problems. In response to these problems, circulating fluidized bed (CFB) technology was developed.

Gendreau, R.J.; Raymond, D.L.

1986-01-01T23:59:59.000Z

30

Characterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta-analysis of Four Regions  

E-Print Network [OSTI]

and combustion conditions in determining OA loadings from biomass burning. 1. INTRODUCTION Biomass burningCharacterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta: Characteristic organic aerosol (OA) emission ratios (ERs) and normalized excess mixing ratios (NEMRs) for biomass

Jimenez, Jose-Luis

31

Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design  

SciTech Connect (OSTI)

High fuel temperatures and resulting fuel particle coating stresses can be expected in a Pu and minor actinide fueled Pebble Bed Modular Reactor (400 MWth) design as compared to the ’standard’ UO2 fueled core. The high discharge burnup aimed for in this Deep-Burn design results in increased power and temperature peaking in the pebble bed near the inner and outer reflector. Furthermore, the pebble power in a multi-pass in-core pebble recycling scheme is relatively high for pebbles that make their first core pass. This might result in an increase of the mechanical failure of the coatings, which serve as the containment of radioactive fission products in the PBMR design. To investigate the integrity of the particle fuel coatings as a function of the irradiation time (i.e. burnup), core position and during a Loss Of Forced Cooling (LOFC) incident the PArticle STress Analysis code (PASTA) has been coupled to the PEBBED code for neutronics, thermal-hydraulics and depletion analysis of the core. Two deep burn fuel types (Pu with or without initial MA fuel content) have been investigated with the new code system for normal and transient conditions including the effect of the statistical variation of thickness of the coating layers.

B. Boer; A. M. Ougouag

2010-05-01T23:59:59.000Z

32

In-Situ Safeguards Verification of Low Burn-up Pressurized Water Reactor Spent Fuel Assemblies  

SciTech Connect (OSTI)

A novel in-situ gross defect verification method for light water reactor spent fuel assemblies was developed and investigated by a Monte Carlo study. This particular method is particularly effective for old pressurized water reactor spent fuel assemblies that have natural uranium in their upper fuel zones. Currently there is no method or instrument that does verification of this type of spent fuel assemblies without moving the spent fuel assemblies from their storage positions. The proposed method uses a tiny neutron detector and a detector guiding system to collect neutron signals inside PWR spent fuel assemblies through guide tubes present in PWR assemblies. The data obtained in such a manner are used for gross defect verification of spent fuel assemblies. The method uses 'calibration curves' which show the expected neutron counts inside one of the guide tubes of spent fuel assemblies as a function of fuel burn-up. By examining the measured data in the 'calibration curves', the consistency of the operator's declaration is verified.

Ham, Y S; Sitaraman, S; Park, I; Kim, J; Ahn, G

2008-04-16T23:59:59.000Z

33

Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423  

SciTech Connect (OSTI)

Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can be accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized. Results will be presented showing the potential for thorium to reach a high TRU transmutation rate over a wide variety of fuel types (oxide, metal, nitride and carbide) and transmutation schemes (recycle or partition of in-bred U-233). In addition, a sustainable scheme has been devised to burn the TRU accumulated in the core inventory once the legacy TRU supply has been exhausted, thereby achieving long-term virtually TRU-free. A comprehensive 'back-to-front' approach to the fuel cycle has recently been proposed by Westinghouse which emphasizes achieving 'acceptable', low-radiotoxicity, high-level waste, with the intent not only to satisfy all technical constraints but also to improve public acceptance of nuclear energy. Following this approach, the thorium fuel cycle, due to its low radiotoxicity and high potential for TRU transmutation has been selected as a promising solution. Additional studies not shown here have shown significant reduction of decay heat. The TRU burning potential of the Th-based fuel cycle has been illustrated with a variety of fuel types, using the Toshiba ARR to perform the analysis, including scenarios with continued LWR operation of either uranium fueled or thorium fueled LWRs. These scenarios will afford overall reduction in actinide radiotoxicity, however when the TRU supply is exhausted, a continued U- 235 LWR operation must be assumed to provide TRU makeup feed. This scenario will never reach the characteristically low TRU content of a closed thorium fuel cycle with its associated potential benefits on waste radiotoxicity, as exemplified by the transition scenario studied. At present, the cases studied indicate ThC as a potential fuel for maximizing TRU burning, while ThN with nitrogen enriched to 95% N-15 shows the highest breeding potential. As a result, a transition scenario with ThN was developed to show that a sustainable, closed Th-cycle can be achieved starting from burning the legacy TRU stock and completing the transmutation of the residual TRU remaining in the core inventory after the legacy TRU external supply has been

Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo [Westinghouse Electric Company LLC,Cranberry Township, PA, 16066 (United States); Sartori, Alberto; Ricotti, Marco [Politecnico di Milano, Milan (Italy)

2012-07-01T23:59:59.000Z

34

Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio  

Science Journals Connector (OSTI)

Abstract This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67 ± 0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (?30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1 ? 1.2) and polar organic aerosols (OM2/OC2 ? 2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9 ± 0.2 and 1.8 ± 0.2, from paddy- and wheat-residue burning emissions.

Prashant Rajput; M.M. Sarin

2014-01-01T23:59:59.000Z

35

Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (NDP-058) data Data image ASCII Text Documentation PDF file PDF file Contributors R. J. Andres, G. Marland, I. Fung, and E. Matthews (contributors) DOI DOI: 10.3334/CDIAC/ffe.ndp058 This data package presents data sets recording 1° latitude by 1° longitude CO2 emissions in units of thousand metric tons of carbon per year from anthropogenic sources for 1950, 1960, 1970, 1980, and 1990. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions.

36

Ambient measurements of light-absorption by agricultural waste burning organic aerosols  

Science Journals Connector (OSTI)

Absorption properties (absorption Ångstrom exponent and mass absorption efficiency) of agricultural waste burning organic aerosols (AWB-OA) and their impact on total absorption were investigated in Cairo (Egypt) during the post-harvest rice straw burning autumn season. At 370 nm, AWB-OA were found to account for more than 25% of total absorption on average for the period of study (and for ?50% during intense biomass burning events), pointing out the major role potentially played by such particles on light absorption at short wavelengths. The absorption exponent obtained for AWB-OA (?3.5) is consistent with values previously reported for biomass burning brown carbon. In addition, AWB-OA were found to exhibit high mass absorption efficiencies at the near ultraviolet/mid-visible regions (e.g. 3.2±1.6 m2 g?1 at 370 nm and 0.8±0.4 m2 g?1 at 520 nm). Such findings clearly illustrate the need to take light absorption by organic aerosols into account for a better estimate of the radiative impact of biomass burning aerosols.

Olivier Favez; Stéphane C. Alfaro; Jean Sciare; Hélène Cachier; Magdy M. Abdelwahab

2009-01-01T23:59:59.000Z

37

Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning  

Science Journals Connector (OSTI)

Abstract Fossil fuels endow wide applications in industrial, transportation, and power generation sectors. However, smoke released by burning fossil fuels contains toxic gases, which pollutes the environment and severely affects human health. Carbon nanotubes (CNTs) are potential material for gas sensors due to their high structural porosity and high specific surface area. Defects present on the CNT sidewalls and end caps facilitate adsorption of gas molecules. The chemical procedures adopted to purify and disperse carbon nanotubes create various chemical groups on their surface, which further enhance the adsorption of gas molecules and thus improve the sensitivity of CNTs. Present review focuses on CNT chemiresistive gas sensing mechanisms, which make them suitable for the development of next generation sensor technology. The resistance of carbon nanotubes decreases when oxidizing gas molecules adsorb on their surface, whereas, adsorption of reducing gas molecules results in increasing the resistance of CNTs. Sensing ability of carbon nanotubes for the gases namely, NO, NO2, CO, CO2 and SO2, released on burning of fossil fuels is reviewed. This review provides basic understanding of sensing mechanisms, creation of adsorption sites by chemical processes and charge transfer between adsorbed gas molecules and surface of CNTs. In addition, useful current update on research and development of CNT gas sensors is provided.

M. Mittal; A. Kumar

2014-01-01T23:59:59.000Z

38

R and D of Oxide Dispersion Strengthening Steels for High Burn-up Fuel Claddings  

SciTech Connect (OSTI)

Research and development of fuel clad materials for high burn-up operation of light water reactor and super critical water reactor (SCPWR) will be shown with focusing on the effort to overcome the requirements of material performance as the fuel clad. Oxide dispersion strengthening (ODS) steels are well known as a high temperature structural material. Recent irradiation experiments indicated that the steels were quite highly resistant to neutron irradiation embrittlement, showing hardening without accompanying loss of ductility. High Cr ODS steels whose chromium concentration was in the range from 15 to 19 wt% showed high resistance to corrosion in supercritical pressurized water (SCPW). As for the susceptibility to hydrogen embrittlement of ODS steels, the critical hydrogen concentration required to hydrogen embrittlement is ranging 10{approx}12 wppm that is approximately one order of magnitude higher value than that of 9Cr reduced activation ferritic (RAF) steel. In the ODS steels, the fraction of helium desorption by bubble migration mechanism was smaller than that in the RAF steel, indicating that the ODS steels are also resistant to helium He bubble-induced embrittlement. Finally, it is demonstrated that the ODS steels are very promising for the fuel clad material for high burn-up operation of water-cooling reactors. (authors)

Kimura, A.; Cho, H.S.; Lee, J.S.; Kasada, R. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Ukai, S. [Japan Nuclear Cycle Development Institute, Tokai (Japan); Fujiwara, M. [Kobelco, Ltd, Takatsukadai, Nishi-ku, Kobe (Japan)

2004-07-01T23:59:59.000Z

39

Experimental observation of carbon dioxide reduction in exhaust gas from hydrocarbon fuel burning  

Science Journals Connector (OSTI)

A high-negative voltage at the cathode initiates a dark discharge resulting in a reduction of the carbon dioxide concentration in exhaust gas from the burning of hydrocarbon fuel. An experiment indicated that nearly 44% of the carbon dioxide in exhaust gas disappears after a high-voltage application to the cathode. The energy needed for the endothermic reaction of the carbon dioxidedissociation corresponding to this concentration reduction is provided mainly by the internal energy reduction of the discharge gas which is nearly 20 times the electrical energy for electron emission.

Han S. Uhm; Chul H. Kim

2009-01-01T23:59:59.000Z

40

Method of burning sulfur-containing fuels in a fluidized bed boiler  

DOE Patents [OSTI]

A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

Jones, Brian C. (Windsor, CT)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Investigation of the behaviour of high burn-up PWR fuel under RIA conditions in the CABRI test reactor  

SciTech Connect (OSTI)

Performance, reliability and economics are the goal criteria for fuel pin design and development. For steady state behaviour and operational transients, the demonstration is made worldwide that burn-up of more than 60 GWd/t can be reached reliably with improved PWR fuel. It has however not been demonstrated yet that safety criteria, related to design basis accident scenarios, are still respected at these high burn-up levels. In particular, for the reactivity initiated accident (RIA), resulting from a postulated, rapid removal of control rod elements, the amount of energy injection must be limited by design such that no severe damage to the core and its structures might occur.

Schmitz, F.; Papin, J.; Haessler, M.; Nervi, J.C. [Institut de Protection et de Surete Nucleaire (France); Permezel, P. [Electricite de France, Septen (France)

1994-10-01T23:59:59.000Z

42

Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report  

SciTech Connect (OSTI)

Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A—MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled “Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled “Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors” Appendix B—External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, “Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, “Uranium Powder Production Using a Hydride-Dehydride Process,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C—Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys” presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis by William Sames, Research Fellow, entitled “Uranium Metal Powder Production, Particle Dis

Sean M. McDeavitt

2011-04-29T23:59:59.000Z

43

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect (OSTI)

This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

Constance Senior

2004-10-29T23:59:59.000Z

44

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect (OSTI)

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the available data from laboratory, pilot and full-scale SCR units was reviewed, leading to hypotheses about the mechanism for mercury oxidation by SCR catalysts.

Constance Senior

2004-04-30T23:59:59.000Z

45

Hygroscopicity of Water-Soluble Organic Compounds in Atmospheric Aerosols:? Amino Acids and Biomass Burning Derived Organic Species  

Science Journals Connector (OSTI)

In the hygroscopic measurement, the chemicals were first dissolved in ultrapure water to make stock solutions that were used to generate particles by a piezoelectric droplet generator (Uni-Photon Inc., NY., USA, Model 201). ... Together with the measurements of the hygroscopicity of glucose, glycerol, humic-like substances, and arginine, which have been detected in biomass burning aerosols and found noncrystallizing in single particle measurements (8,9,16,20,28,41), these results suggest that organic species derived from biomass burning may retain water at low RH in the atmosphere. ... (6)?Zhang, Q.; Anastasio, C. Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from Northern California. ...

Man Nin Chan; Man Yee Choi; Nga Lee Ng; Chak K. Chan

2005-02-04T23:59:59.000Z

46

Development of hot corrosion resistant coatings for gas turbines burning biomass and waste derived fuel gases  

Science Journals Connector (OSTI)

Carbon dioxide emission reductions are being sought worldwide to mitigate climate change. These need to proceed in parallel with optimisation of thermal efficiency in energy conversion systems on economic grounds to achieve overall sustainability. The use of renewable energy is one strategy being adopted to achieve these needs; with one route being the burning of biomass and waste derived fuels in the gas turbines of highly efficient, integrated gasification combined cycle (IGCC) electricity generating units. A major factor to be taken into account with gas turbines using such fuels, compared with natural gas, is the potentially higher rates of hot corrosion caused by molten trace species which can be deposited on hot gas path components. This paper describes the development of hot corrosion protective coatings for such applications. Diffusion coatings were the basis for coating development, which consisted of chemical vapour deposition (CVD) trials, using aluminising and single step silicon-aluminising processes to develop new coating structures on two nickel-based superalloys, one conventionally cast and one single crystal (IN738LC and CMSX-4). These coatings were characterised using SEM/EDX analysis and their performance evaluated in oxidation and hot corrosion screening tests. A variant of the single step silicon-aluminide coating was identified as having sufficient oxidation/hot corrosion resistance and microstructural stability to form the basis for future coating optimisation.

A. Bradshaw; N.J. Simms; J.R. Nicholls

2013-01-01T23:59:59.000Z

47

Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California Lightning Series fires  

E-Print Network [OSTI]

, Ketone, Biomass burning, Fossil fuel combustion 1. Introduction Globally the two largest sources of primary organic aerosol are fossil fuel combustion (2-28 Tg C yr-1 ) and biomass burning (31-45 Tg C yr-1Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California

Russell, Lynn

48

Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX  

SciTech Connect (OSTI)

The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

Van den Akker, B.P.; Ahn, J. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

2013-07-01T23:59:59.000Z

49

Steam thermolysis of discarded tires: testing and analysis of the specific fuel consumption with tail gas burning, steam generation, and secondary waste slime processing  

Science Journals Connector (OSTI)

This paper presents the process of steam thermolysis of shredded used tires for obtaining from them liquid fuel and technical carbon carried out in a screw reactor with heating due to the partial burning of obtai...

V. A. Kalitko; Morgan Chun Yao Wu…

2009-03-01T23:59:59.000Z

50

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect (OSTI)

The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

Constance Senior

2004-12-31T23:59:59.000Z

51

Characteristics of Generating Electricity with Microbial Fuel Cell by Different Organics as Fuel  

Science Journals Connector (OSTI)

A two-chambered microbial fuel cell (MFC) was designed to test the feasibility of organics degradation and electricity production, simultaneously, by using ... glucose, glucose-phenol mixture, and phenol as fuel....

Luo Haiping; Liu Guangli; Zhang Renduo…

2009-01-01T23:59:59.000Z

52

Emissions of unintentional persistent organic pollutants from open burning of municipal solid waste from developing countries  

Science Journals Connector (OSTI)

Open burning of waste is the most significant source of polychlorinated dibenzo-para-dioxins and dibenzofurans (PCDD/PCDF) in many national inventories prepared pursuant to the Stockholm Convention on Persistent Organic Pollutants. This is particularly true for developing countries. Emission factors for \\{POPs\\} such as PCDD/PCDF, dioxin-like polychlorinated biphenyls (dl-PCB) and penta- and hexachlorobenzenes (PeCBz/HCB) from open burning of municipal solid waste in China and Mexico are reported herein. Six different waste sources were studied varying from urban-industrial to semi-urban to rural. For PCDD/PCDF, the emission factors to air ranged from 3.0 to 650 ng TEQ kg?1 waste and for dl-PCB from 0.092 to 54 ng TEQ kg?1 waste. Emission factors for PeCBz (17–1200 ng kg?1 waste) and HCB (24–1300 ng kg?1 waste) spanned a wide but similar range. Within the datasets there is no indication of significant waste composition effect on emission factor with the exception of significantly higher Mexico rural samples.

Tingting Zhang; Heidelore Fiedler; Gang Yu; Gustavo Solorzano Ochoa; William F. Carroll Jr.; Brian K. Gullett; Stellan Marklund; Abderrahmane Touati

2011-01-01T23:59:59.000Z

53

High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor  

SciTech Connect (OSTI)

The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

2010-09-01T23:59:59.000Z

54

Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor  

SciTech Connect (OSTI)

The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high TRU content and high burn-up).

B. Boer; A. M. Ougouag

2010-09-01T23:59:59.000Z

55

Fertile free fuels for plutonium and minor actinides burning in LWRs  

E-Print Network [OSTI]

The feasibility of using various uranium-free fuels for plutonium incineration in present light water reactors is investigated. Two major categories of inert matrix fuels are studied: composite ceramic fuel particles ...

Zhang, Yi, 1979-

2003-01-01T23:59:59.000Z

56

Probing nanoscale photo-oxidation in organic films using spatial hole burning near-field scanning optical microscopy  

E-Print Network [OSTI]

Probing nanoscale photo-oxidation in organic films using spatial hole burning near-field scanning from a stationary NSOM tip to induce photo-oxidation. The reduction in the fluorescence yield resulting photo-oxidation as a function of time, position, and environment free from the limits of far

Buratto, Steve

57

Nonlinear control and online optimization of the burn condition in ITER via heating, isotopic fueling and impurity injection  

Science Journals Connector (OSTI)

The ITER tokamak, the next experimental step toward the development of nuclear fusion reactors, will explore the burning plasma regime in which the plasma temperature is sustained mostly by fusion heating. Regulation of the fusion power through modulation of fueling and external heating sources, referred to as burn control, is one of the fundamental problems in burning plasma research. Active control will be essential for achieving and maintaining desired operating points, responding to changing power demands, and ensuring stable operation. Most existing burn control efforts use either non-model-based control techniques or designs based on linearized models. These approaches must be designed for particular operating points and break down for large perturbations. In this work, we utilize a spatially averaged (zero-dimensional) nonlinear model to synthesize a multi-variable nonlinear burn control strategy that can reject large perturbations and move between operating points. The controller uses all of the available actuation techniques in tandem to ensure good performance, even if one or more of the actuators saturate. Adaptive parameter estimation is used to improve the model parameter estimates used by the feedback controller in real-time and ensure asymptotic tracking of the desired operating point. In addition, we propose the use of a model-based online optimization algorithm to drive the system to a state that minimizes a given cost function, while respecting input and state constraints. A zero-dimensional simulation study is presented to show the performance of the adaptive control scheme and the optimization scheme with a cost function weighting the fusion power and temperature tracking errors.

Mark D Boyer; Eugenio Schuster

2014-01-01T23:59:59.000Z

58

Observations of nonmethane organic compounds during ARCTAS - Part 1: Biomass burning emissions and plume enhancements  

E-Print Network [OSTI]

from smoldering combustion of biomass measured by open-pathorganic species from biomass combustion, J. Geophys. Res. ,Biomass Burning Plume Origin Plume Age, Days a Modified Combustion

2011-01-01T23:59:59.000Z

59

Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California Lightning Series fires  

E-Print Network [OSTI]

., 2000), making SOA from fossil fuel combustion, biogenic, and biomass burning emissions a potentiallyOxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California in revised form 20 July 2010 Accepted 21 July 2010 Keywords: Organic carbon particles Ketone Biomass burning

Russell, Lynn

60

Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds  

Science Journals Connector (OSTI)

Combustion of biomass and municipal solid wastes is one of the key areas in the global cleaner energy strategy. But there is still a lack of detailed and systematically theoretical study on the packed bed burning of biomass and municipal solid wastes. The advantage of theoretical study lies in its ability to reveal features of the detailed structure of the burning process inside a solid bed, such as reaction zone thickness, combustion staging, rates of individual sub-processes, gas emission and char burning characteristics. These characteristics are hard to measure by conventional experimental techniques. In this paper, mathematical simulations as well as experiments have been carried out for the combustion of wood chips and the incineration of simulated municipal solid wastes in a bench-top stationary bed and the effects of primary air flow rate and moisture level in the fuel have been assessed over wide ranges. It is found that volatile release as well as char burning intensifies with an increase in the primary air flow until a critical point is reached where a further increase in the primary air results in slowing down of the combustion process; a higher primary airflow also reduces the char fraction burned in the final char-burning-only stage, shifts combustion in the bed to a more fuel-lean environment and reduces CO emission at the bed top; an increase in the moisture level in the fuel produces a higher flame front temperature in the bed at low primary air flow rates.

Y.B Yang; V.N Sharifi; J Swithenbank

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Willingness to pay function for two fuel treatments to reduce wildfire acreage burned: A scope test and comparison of White and Hispanic households  

Science Journals Connector (OSTI)

This research uses the Contingent Valuation Method to test whether willingness to pay increases for larger reductions in acres of forests burned by wildfires across the states of California, Florida and Montana. This is known as a test of scope, a measure of internal validity of the contingent valuation method (CVM). The scope test is conducted separately for White households and Hispanic households to determine if cultural differences influences whether the scope test is passed. The public program to reduce acres burned involved prescribed burning and a mechanical fuel reduction program. The results of CVM logit regressions show that the acreage reduction variable is statistically significant at the 1% level for the two proposed fuel reduction programs, and the two types of households. The positive sign of this variable means that the more acreage reduction proposed in the survey the more likely people would pay for the fuel reduction program. Because of the significance of the acreage reduction variable in the willingness to pay function, this function can be used to evaluate the incremental benefits of different forest fire management plans that reduce acres burned by wildfires. These benefits would be part of the justification for prescribed burning and mechanical fire fuel reduction programs to protect forests from wildfires.

John B. Loomis; Le Trong Hung; Armando González-Cabán

2009-01-01T23:59:59.000Z

62

Neutronics of accelerator-driven subcritical fission for burning transuranics in used nuclear fuel  

SciTech Connect (OSTI)

We report the development of a conceptual design for accelerator-driven subcritical fission in a molten salt core (ADSMS). ADSMS is capable of destroying all of the transuranics at the same rate and proportion as they are produced in a conventional nuclear power plant. The ADSMS core is fueled solely by transuranics extracted from used nuclear fuel and reduces its radiotoxicity by a factor 10,000. ADSMS offers a way to close the nuclear fuel cycle so that the full energy potential in the fertile fuels uranium and thorium can be recovered.

Sattarov, A.; Assadi, S.; Badgley, K.; Baty, A.; Comeaux, J.; Gerity, J.; Kellams, J.; Mcintyre, P.; Pogue, N.; Sooby, E.; Tsvetkov, P.; Rosaire, G. [Texas A and M University, College Station, TX 77845 (United States); Mann, T. [Argone National Laboratory, Argone, IL (United States)

2013-04-19T23:59:59.000Z

63

Vehicle Technologies Office Merit Review 2014: Advanced Lean-Burn DI Spark Ignition Fuels Research  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced lean...

64

Process for clean-burning fuel from low-rank coal  

DOE Patents [OSTI]

A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

Merriam, Norman W. (Laramie, WY); Sethi, Vijay (Laramie, WY); Brecher, Lee E. (Laramie, WY)

1994-01-01T23:59:59.000Z

65

Determination of the optimum fuel burn-up and energy intensities of nuclear fuel by the method of cost calculations  

Science Journals Connector (OSTI)

This report gives the procedure for determining the economical efficiency of the utilization of nuclear fuel in a reactor on the basis of calculated costs. The expression obtained for the fuet constituent of the

Yu. I. Koryakin; V. V. Batov; V. G. Smirnov

1964-08-01T23:59:59.000Z

66

Fuel processor for fuel cell power system  

DOE Patents [OSTI]

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

67

Nonphotochemical hole burning of organic dyes and rare earth ions in polymers and glasses: a probe of the amorphous state  

SciTech Connect (OSTI)

New and in depth studies of amorphous materials (e.g., glasses and polymers) probed via the low temperature optical technique of nonphotochemical hole burning (NPHB) are presented. An extensive review of the phenomena itself, along with selected topics involving the use of persistent hole burning techniques, is given. In addition, a semi-complete tabulation of essentially all hole burning systems to date is included. The deuteration dependence in an amorphous host is examined for the system of tetracene in an ethanol/methanol mixture. The results illustrate the importance of hydrogen bonding in the hole burning process. The discovery of a highly efficient (or facile) class of hole burning systems, i.e., ionic dyes in hydroxylated polymers (i.e., poly(vinyl alcohol) (PVOH) and poly(acrylic acid) (PAA)), is presented and discussed. Ultrafast relaxation processes (i.e., dephasing) are studied for the system of cresyl violet perchlorate (CV) in PVOH. Further, for the first time, NPHB of rare earth ions, specifically Pr/sup +3/ and Nd/sup +3/, in a soft organic glass (i.e., PVOH) is discussed briefly. Detailed experimental results of two related phenomena, spontaneous hole filling (SPHF) and laser induced hole filling (LIHF), are presented and discussed for several systems: rhodamine 560 perchlorate (R560), rhodamine 640 perchlorate (R640), CV, Pr/sup +3/ and Nd..mu../sup 3/ in either PVOH or PAA. A theoretical model is developed for SPHF. The model invokes a correlated feedback mechanism from the anti-hole, which is able to account for the fact that no line broadening is observed. A tentative model is also presented for the phenomenon of LIHF.

Fearey, B.L.

1986-01-01T23:59:59.000Z

68

Emissions Characteristics of a Turbine Engine and Research Combustor Burning a Fischer?Tropsch Jet Fuel  

Science Journals Connector (OSTI)

GTL and CTL technologies were discovered in Germany in the mid-1910s and further developed in 1923 by German scientists Drs. ... The Department of Energy (DOE) National Energy Technology Laboratory and the Fuels Branch of the Air Force Research Laboratory (AFRL/PRTG) established a collaborative research and development program in 2000 to study and demonstrate clean aviation fuels as part of the DOE Ultra Clean Transportation Fuels Initiative. ... 21 Gaseous emissions were quantified using an MKS MultiGas 2030 Fourier-transform infrared based gas analyzer and a flame ionization detector based total hydrocarbon analyzer. ...

Edwin Corporan; Matthew J. DeWitt; Vincent Belovich; Robert Pawlik; Amy C. Lynch; James R. Gord; Terrence R. Meyer

2007-07-17T23:59:59.000Z

69

Recommended surrogate PCB waste feed and fuel compositions to meet requirements given in Spec. K/D 5552 for test burns in the Martin Marietta Energy Systems Inc. incinerator  

SciTech Connect (OSTI)

Waste feed heats of combustion, principle organic hazardous constituents (POHCs), ash contents, and organic chlorine concentrations are specified in Table 3 of Spec. No. K/D-5552 for test burns 1 through 7 in the Martin Marietta Energy Systems, Inc. incinerator. The first four tests are intended to demonstrate that the incinerator will meet RCRA emission standards, HCl removal efficiencies, and requirements for destruction of POHCs. A mix containing 1,2-dichloro-, 1,2,4-trichloro-, and 1,2,4,5-tetrachlorobenzenes with a small amount of hexachlorobenzene is recommended as a PCB surrogate for test burns 5 and 6 to simulate the destructibility of PCBs in plant wastes. The mix would be diluted with appropriate amounts of dimethyl malonate and kerosene to obtain a homogeneous solution having the required heat of combustion and chlorine content for the liquid waste feeds. For test burn 7 the polychlorinated benzene mix would contain a small amount of hexachlorobenzene with larger amounts of 1,2,4,5-tetrachloro- and 1,2,4-trichlorobenzenes. The composition of the polychlorinated mixes is such that they should be comparable to Aroclor 1254 in overall destructibility by incineration, and achievement of a DRE for hexachlorobenzene greater than 99.99% in the test burns should provide assurance that the incinerator will be able to destroy PCBs in Aroclor 1260, which is the most refractory PCB mix present in plant wastes. If hexachlorobenzene is not available for these tests, hexachlorocyclopentadiene is recommended as a substitute for hexachlorobenzene in tests 5-7, which involve a PCB surrogate, and hexachloroethane is recommended as the alternative solid waste feed for test 4. Solutions containing kerosene and methanol are recommended as liquid fuels for tests 1 and 4 to achieve the required heats of combustion, while a dimethyl malonate-methanol solution is recommended to achieve the 7000 Btu/lb heat of combustion for test burn 2.

Anderson, R.W.

1984-12-28T23:59:59.000Z

70

Hot corrosion tests on corrosion resistant coatings developed for gas turbines burning biomass and waste derived fuel gases  

Science Journals Connector (OSTI)

Abstract This paper reports on results of hot corrosion tests carried out on silicon–aluminide coatings developed for hot components of gas turbines burning biomass and waste derived fuel gases. The corrosion tests of the silicon–aluminide coatings, applied to superalloys IN738LC and CMSX-4, each consisted of five 100 h periods; at 700 °C for the type II tests and at 900 °C for the type I tests. Deposits of Cd + alkali and Pb + alkali were applied before each exposure. These deposits had been previously identified as being trace species produced from gasification of biomass containing fuels which after combustion had the potential to initiate hot corrosion in a gas turbine. Additionally, gases were supplied to the furnace to simulate the atmosphere anticipated post-combustion of these biomass derived fuel gases. Results of the type I hot corrosion tests showed that these novel coatings remained in the incubation stage for at least 300 h, after which some of the coating entered propagation. Mass change results for the first 100 h confirmed this early incubation stage. For the type II hot corrosion tests, differences occurred in oxidation and sulphidation rates between the two substrates; the incubation stages for CMSX-4 samples continued for all but the Cd + alkali high salt flux samples, whereas, for IN738LC, all samples exhibited consistent incubation rates. Following both the type I and type II corrosion tests, assessments using BSE/EDX results and XRD analysis confirmed that there has to be remnant coating, sufficient to grow a protective scale. In this study, the novel silicon–aluminide coating development was based on coating technology originally evolved for gas turbines burning natural gas and fossil fuel oils. So in this paper comparisons of performance have been made with three commercially available coatings; a CoCrAlY overlay, a platinum-aluminide diffusion, and triple layer nickel–aluminide/silicon–aluminide-diffusion coatings. These comparisons showed that the novel single-step silicon–aluminide coatings provide equal or superior type II hot corrosion resistance to the best of the commercial coatings.

A. Bradshaw; N.J. Simms; J.R. Nicholls

2013-01-01T23:59:59.000Z

71

Prescribed Range Burning in Texas  

E-Print Network [OSTI]

and implement a prescribed burn, including predicting fire and weather behavior, topography, fuel, firing techniques, fire containment, safety precautions and costs. A graph illustrates factors that influence prescribed burning and a table shows the relationship...

White, Larry D.; Hanselka, C. Wayne

2000-04-25T23:59:59.000Z

72

BNL | Biomass Burns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

73

Burning syngas in a high swirl burner: Effects of fuel composition  

Science Journals Connector (OSTI)

Abstract Flame characteristics of swirling non-premixed H2/CO syngas fuel mixtures have been simulated using large eddy simulation and detailed chemistry. The selected combustor configuration is the TECFLAM burner which has been used for extensive experimental investigations for natural gas combustion. The large eddy simulation (LES) solves the governing equations on a structured Cartesian grid using a finite volume method, with turbulence and combustion modelling based on the localised dynamic Smagorinsky model and the steady laminar flamelet model respectively. The predictions for H2-rich and CO-rich flames show considerable differences between them for velocity and scalar fields and this demonstrates the effects of fuel variability on the flame characteristics in swirling environment. In general, the higher diffusivity of hydrogen in H2-rich fuel is largely responsible for forming a much thicker flame with a larger vortex breakdown bubble (VBB) in a swirling flame compare to the H2-lean but CO-rich syngas flames.

K.K.J. Ranga Dinesh; K.H. Luo; M.P. Kirkpatrick; W. Malalasekera

2013-01-01T23:59:59.000Z

74

Case Study of Water-Soluble Metal Containing Organic Constituents of Biomass Burning Aerosol  

SciTech Connect (OSTI)

Natural and prescribed biomass fires are a major source of atmospheric aerosols that can persist in the atmosphere for long periods of time. Biomass burning aerosols (BBA) can be associated with long range transport of water soluble N?, S?, P?, and metal?containing species. In this study, BBA samples were collected using a particle?into?liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR?MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of probable elemental formulae. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba?containing organometallic species were identified. The results suggest that the biomass may have accumulated metal?containing species that were reemitted during biomass burning. Further research into the sources, persistence, and dispersion of metal?containing aerosols as well as their environmental effects is needed.

Chang-Graham, Alexandra L.; Profeta, Luisa Tm; Johnson, Timothy J.; Yokelson, Robert J.; Laskin, Alexander; Laskin, Julia

2011-01-10T23:59:59.000Z

75

Time-dependent inversion estimates of global biomass-burning CO emissions using Measurement of Pollution in the Troposphere (MOPITT) measurements  

E-Print Network [OSTI]

fuel/biofuel combustion (FFBF), biomass burning (BIOM) andsource from fuel combustion as well as biomass burning of

Arellano, Avelino F; Kasibhatla, Prasad S; Giglio, Louis; van der Werf, Guido R; Randerson, James T; Collatz, G. James

2006-01-01T23:59:59.000Z

76

Organic combustion fingerprints of three common home heating fuels  

SciTech Connect (OSTI)

The paper discusses the chemical structures of three common home heating fuels: wood, coal, and No. 2 fuel oil. GC and GC/MS data are then presented which demonstrate how the thermal destruction of each fuel results in the production of a characteristic group of organic 'fingerprint' compounds. For wood, where the chief structural element is lignin polymer, they are methoxy benzenes, methoxy phenols, and alkyl bezenes. For coal, where the polymer contains more fused-ring structures, the chief products are fused-ring aromatics with structures of three or more rings, benzothiophenes, and to a lesser extent methyl-substituted phenols. For oil, the chief byproducts are unburned droplets of the oil. The paper concludes with a brief discussion of how these fingerprints can be used as apportionment guides in complex airsheds.

Steiber, R.S.

1993-01-01T23:59:59.000Z

77

Acid rain: commentary on controversial issues and observations on the role of fuel burning  

SciTech Connect (OSTI)

Even though much information has been accumulated on the subject of acid precipitation, lack of knowledge in certain technical areas precludes an adequate understanding of (1) how serious the acid precipitation problem really is and (2) what effect controlling sources of acid precipitation precursors would have in reducing acidification. It is nevertheless possible to draw some broad conclusions regarding the problem and to ascertain the direction that the required further work should take. This report presents the results of an investigation of various issues associated with acid rain. The following topics are addressed: occurrence of acid precipitation; effects of acid precipitation; sources of acid precipitation; transport, transformation, and deposition of acid pollutants; and fuel trend analysis. Recommendations for further research are included. (DMC)

Szabo, M.F.; Esposito, M.P.; Spaite, P.W.

1982-03-01T23:59:59.000Z

78

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

79

Burns Prevention  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Burns Burns Burns can result from everyday things and activities in your home. The most common causes of burns are from scalds (steam, hot bath water, hot drinks and foods), fire, chemicals, electricity and overexposure to the sun. Some burns may be more serious than others. The severity of the burn is based on the depth of the burn. First degree burns are the least severe, and third degree burns are the most severe. Call 911 or seek medical attention if you are unsure of how severe your burn is. All burns are susceptible to tetanus (lockjaw). Get a tetanus shot every 10 years. If your last shot was 5 years ago, talk to your doctor - you may need a booster shot. Causes of Burns: Scalds Scalding injuries and burns are caused by hot tap water, hot beverages and food, and steam.

80

Understanding the role of organic aerosol in the coastal and remote pacic marine boundary layer  

E-Print Network [OSTI]

whereas fossil fuel combustion and biomass burning emissionsof fossil fuel combustion and biomass burning emissionsMarine Fossil Fuel Combustion Biomass Burning Frequency (

Hawkins, Lelia Nahid

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir  

E-Print Network [OSTI]

Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir Sebastian. Wehrli (2012), Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir; revised 25 November 2011; accepted 30 November 2011; published 4 January 2012. [1] Organic carbon (OC

Wehrli, Bernhard

82

Response to “Comment on ‘Experimental observation of carbon dioxide reduction in exhaust gas from hydrocarbon fuel burning’ ” [Phys. Plasmas17, 014701 (2010)  

Science Journals Connector (OSTI)

A high-voltage cathode initiates an electron emission resulting in a reduction in the carbon dioxide concentration in exhaust gas from the burning of hydrocarbon fuel. Assuming that the observed carbon dioxide reduction is originated from the molecular decomposition the energy needed for the endothermic reaction of this carbon dioxide reduction may stem primarily from the internal energy reduction in the exhaust gas in accordance of the first law of the thermodynamics. An oxygen increase due to the reduction in carbon dioxide in a discharge gas was observed in real time.

Han S. Uhm; Chul H. Kim

2010-01-01T23:59:59.000Z

83

Tracking the spectroscopic and chromatographic changes of algal derived organic matter in a microbial fuel cell  

Science Journals Connector (OSTI)

Changes in the characteristics of algae-derived organic matter (AOM) were examined upon the operation of a microbial fuel cell (MFC) using multiple analytical methods....

Jin Hur; Bo-Mi Lee; Kwang-Soon Choi…

2014-02-01T23:59:59.000Z

84

Impact of natural gas fuel composition on criteria, toxic, and particle emissions from transit buses equipped with lean burn and stoichiometric engines  

Science Journals Connector (OSTI)

Abstract This study investigated the impacts of varying natural gas composition on the exhaust emissions from different technology transit buses. For this study, two CNG (compressed natural gas) buses equipped with lean burn combustion and \\{OCs\\} (oxidation catalysts), and one stoichiometric CNG bus equipped with a TWC (three-way catalyst) and EGR (exhaust gas recirculation) were tested on a chassis dynamometer over the CBD (Central Business District) cycle on six different gas blends each. The gases represented a range of compositions from gases with high levels of methane and correspondingly lower energy contents/WN (Wobbe number) to gases with higher levels of heavier hydrocarbons and correspondingly higher energy contents/WN. For the lean burn buses, gases with low methane contents exhibited higher \\{NOx\\} (nitrogen oxides) (19%–53%) and NMHC (non-methane hydrocarbon) (39%–102%) emissions, but lower emissions of THC (total hydrocarbon) (9%–24%), CH4 (methane) (23%–33%), and formaldehyde emissions (14%–45%). The stoichiometric engine bus with a TWC showed significantly reduced \\{NOx\\} and THC emissions compared to the lean burn buses, but did show higher levels of CO (carbon monoxide) and NH3 (ammonia). PM (particulate matter) mass emissions did not show any fuel effects, while PN (particle number) emissions exhibited some reductions for the higher WN gases.

Maryam Hajbabaei; Georgios Karavalakis; Kent C. Johnson; Linda Lee; Thomas D. Durbin

2013-01-01T23:59:59.000Z

85

The Energy Institute Live Green, Burn Clean  

E-Print Network [OSTI]

combustion in a Cummins ISB 5.9L MY2000 turbodiesel engine Sources of the "Biodiesel NOx" effect Fuel quality turbodiesel engine Sources of the "Biodiesel NOx" effect Fuel quality issues and blending level question: B2The Energy Institute Live Green, Burn Clean: Advancing Engines for Renewable Fuels Live Green, Burn

Lee, Dongwon

86

Biomass burning and urban air pollution over the Central Mexican Plateau  

E-Print Network [OSTI]

J. D. Crounse et al. : Biomass burning pollution overChemistry and Physics Biomass burning and urban airprimary anthropogenic and biomass burning organic aerosols

2009-01-01T23:59:59.000Z

87

Deep Burn: Development of Transuranic Fuel for High-Temperature Helium-Cooled Reactors- Monthly Highlights September 2010  

SciTech Connect (OSTI)

The DB Program monthly highlights report for August 2010, ORNL/TM-2010/184, was distributed to program participants by email on September 17. This report discusses: (1) Core and Fuel Analysis - (a) Core Design Optimization in the HTR (high temperature helium-cooled reactor) Prismatic Design (Logos), (b) Core Design Optimization in the HTR Pebble Bed Design (INL), (c) Microfuel analysis for the DB HTR (INL, GA, Logos); (2) Spent Fuel Management - (a) TRISO (tri-structural isotropic) repository behavior (UNLV), (b) Repository performance of TRISO fuel (UCB); (3) Fuel Cycle Integration of the HTR (high temperature helium-cooled reactor) - Synergy with other reactor fuel cycles (GA, Logos); (4) TRU (transuranic elements) HTR Fuel Qualification - (a) Thermochemical Modeling, (b) Actinide and Fission Product Transport, (c) Radiation Damage and Properties; (5) HTR Spent Fuel Recycle - (a) TRU Kernel Development (ORNL), (b) Coating Development (ORNL), (c) Characterization Development and Support, (d) ZrC Properties and Handbook; and (6) HTR Fuel Recycle - (a) Graphite Recycle (ORNL), (b) Aqueous Reprocessing, (c) Pyrochemical Reprocessing METROX (metal recovery from oxide fuel) Process Development (ANL).

Snead, Lance Lewis [ORNL; Besmann, Theodore M [ORNL; Collins, Emory D [ORNL; Bell, Gary L [ORNL

2010-10-01T23:59:59.000Z

88

Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen  

DOE Patents [OSTI]

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

1986-01-28T23:59:59.000Z

89

Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest  

Science Journals Connector (OSTI)

Fire exclusion has led to an unnatural accumulation and greater spatial continuity of organic material on the ground in many forests. This material serves both as potential fuel for forest fires and habitat for a large array of forest species. Managers must balance fuel reduction to reduce wildfire hazard with fuel retention targets to maintain other forest functions. This study reports fuel consumption and changes to coarse woody debris attributes with prescribed burns ignited under different fuel moisture conditions. Replicated early season burn, late season burn, and unburned control plots were established in old-growth mixed conifer forest in Sequoia National Park that had not experienced fire for more than 120 years. Early season burns were ignited during June 2002 when fuels were relatively moist, and late season burns were ignited during September/October 2001 when fuels were dry. Fuel loading and coarse woody debris abundance, cover, volume, and mass were evaluated prior to and after the burns. While both types of burns reduced fuel loading, early season burns consumed significantly less of the total dead and down organic matter than late season burns (67% versus 88%). This difference in fuel consumption between burning treatments was significant for most all woody fuel components evaluated, plus the litter and duff layers. Many logs were not entirely consumed – therefore the number of logs was not significantly changed by fire – but burning did reduce log length, cover, volume, and mass. Log cover, volume, and mass were reduced to a lesser extent by early season burns than late season burns, as a result of higher wood moisture levels. Early season burns also spread over less of the ground surface within the burn perimeter (73%) than late season burns (88%), and were significantly patchier. Organic material remaining after a fire can dam sediments and reduce erosion, while unburned patches may help mitigate the impact of fire on fire-sensitive species by creating refugia from which these species can recolonize burned areas. Early season burns may be an effective means of moderating potential ecosystem damage when treating heavy and/or continuous fuels resulting from long periods of fire exclusion, if burning during this season is not detrimental to other forest functions.

Eric E. Knapp; Jon E. Keeley; Elizabeth A. Ballenger; Teresa J. Brennan

2005-01-01T23:59:59.000Z

90

Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen gas  

E-Print Network [OSTI]

MSNBC.com Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen method for generating hydrogen fuel from wastewater is now operating at a California winery material in the wastewater into hydrogen gas. There is a lot more energy locked in the wastewater than

91

Numerical and experimental study of soot formation in laminar diffusion flames burning simulated biogas fuels at elevated pressures  

E-Print Network [OSTI]

biogas fuels at elevated pressures Marc R.J. Charest , �mer L. Gülder, Clinton P.T. Groth University 18 April 2014 Available online 2 June 2014 Keywords: Soot formation High pressure combustion Biogas, and other chemical species that are harmful to human health and the environment. Gaseous biofuels, or biogas

Gülder, �mer L.

92

LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL  

E-Print Network [OSTI]

1 LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 (2014) 162-169" DOI : 10.1016/j.fuel.2013.07.015 #12;2 LAMINAR BURNING VELOCITY OF GASOLINES, Sweden Abstract The adiabatic laminar burning velocities of a commercial gasoline and of a model fuel (n

Boyer, Edmond

93

Actinide Burning in CANDU Reactors  

SciTech Connect (OSTI)

Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

Hyland, B.; Dyck, G.R. [Atomic Energy of Canada Limited, Chalk River, Ontario, K0J 1J0 (Canada)

2007-07-01T23:59:59.000Z

94

Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California  

E-Print Network [OSTI]

fuel (FF) combustion and biomass burning (BB), respectively. The enhancements of BC and LSP in BBEmission characteristics of black carbon in anthropogenic and biomass burning plumes over. (2012), Emission characteristics of black carbon in anthropogenic and biomass burning plumes over

Jimenez, Jose-Luis

95

Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer  

Science Journals Connector (OSTI)

Organic solvents with different volatilities are widely used in various processes and generate air and water pollution problems. In the cleaning processes of electronics industries, most volatile organic compounds (VOCs) are vented to air pollution control devices while most non-volatile organic solvents dissolve in the cleaning water and become the major sources of COD in wastewater. Discharging a high-COD wastewater stream to wastewater treatment facility often disturbs the treatment performance. A pretreatment of the high-COD wastewater is therefore highly desirable. This study used a packed-bed stripping tower in combination with a regenerative thermal oxidizer to remove the COD in the wastewater from a printed circuit board manufacturing process and to utilize the stripped organic compounds as the auxiliary fuel of the RTO. The experimental results showed that up to 45% of the COD could be removed and 66% of the RTO fuel could be saved by the combined treatment system.

Meng-Wen Chang; Jia-Ming Chern

2009-01-01T23:59:59.000Z

96

Aged black carbon identified in marine dissolved organic carbon  

E-Print Network [OSTI]

South Asia: Biomass or fossil fuel combustion? , Science,of combustion, in Sediment Records of Biomass Burning andduring biomass burning and fossil fuel combustion, the sinks

Ziolkowski, L. A; Druffel, E. R. M

2010-01-01T23:59:59.000Z

97

Observational constraints on the photochemistry of non-acyl peroxy nitrates and organic nitrates on regional and global scales  

E-Print Network [OSTI]

roles of fossil fuel combustion, biomass burning and soiland combustion of fossil fuels and biomass. Current

Browne, Eleanor Carol

2012-01-01T23:59:59.000Z

98

Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills  

SciTech Connect (OSTI)

Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (<70%). High airflow rate was required to achieve >50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a marketable lightweight aggregate and recover a high-grade fuel product. Spiral concentration provided acceptable grade lightweight aggregate with yields of only 10 to 20%. Incorporating a sieve bend into the process to recover coarse, porous ash particles from the outside race of the spirals increased aggregate yield to as high as 75%, however, the carbon content of the aggregate also increased. An opening size of 28 mesh on the sieve bend appeared to be sufficient. Lightweight concrete blocks (28 to 32 lbs) were produced from bottom ash and results show that acceptable strength could be attained with a cement/concrete ratio as low as 1/4. A mobile Proof-of-Concept (POC) field unit was designed and fabricated to meet the processing objectives of the project. The POC plant consisted of two trailer-mounted modules and was completely self sufficient with respect to power and water requirements. The POC unit was hauled to Coleman Station and operated at a feed rate of 2 tph. Results showed that the spirals operated similarly to previous pilot-scale operations and a 500 lb composite sample of coarse carbon was collected with a grade of 51.7% C or 7279 Btu/lb. Flotation results compared favorably with release analysis and 500 lbs of composite froth product was collected with a grade of 35% C or 4925 Btu/lb. The froth product was dewatered to 39% moisture with vacuum filtration. Pan pelletization and briquetting were evaluated as a means of minimizing handling concerns. Rotary pan pelletization produced uniform pellets with a compressive strength of 4 lbf without the use of any binder. Briquettes were produced by blending the coarse and fine carbon products at a ratio of 1:10, which is the proportion that the two products would be produced in a commercial operation. Using 3% lime as a binder produced the most desirable briquettes with respect to strength, attrition and drop testing. Additionally, the POC carbon products compared favorably with commercial activated carbon when used for removal of mercury from simulated flue gas. A business model was generated to summarize anti

J.G. Groppo; T.L. Robl

2005-09-30T23:59:59.000Z

99

Self-Organization in Catalyst Layers of Polymer Electrolyte Fuel Cells  

Science Journals Connector (OSTI)

Self-Organization in Catalyst Layers of Polymer Electrolyte Fuel Cells ... These insights are highly valuable for the structural design of catalyst layers with optimized performance and stability. ... The foremost objective in optimizing the composition and structure of CLs is to provide the most uniform distributions of reactants and reaction rates possible and, thus, attain the highest catalyst utilizations and voltage efficiencies. ...

Kourosh Malek; Michael Eikerling; Qianpu Wang; Titichai Navessin; Zhongsheng Liu

2007-08-17T23:59:59.000Z

100

Microsoft Word - Deep-Burn awards news release _2_.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Energy announced it has selected teams led by Idaho National Laboratory and Argonne National Laboratory to advance the technology of nuclear fuel "Deep-Burn," in...

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The distribution and biomagnification of higher brominated \\{BDEs\\} in terrestrial organisms affected by a typical e-waste burning site in South China  

Science Journals Connector (OSTI)

Abstract Soil, vegetation, and several terrestrial species including turtledove, chicken, goose, grasshopper, dragonfly, butterfly and ant, were collected from an area surrounding a typical e-waste burning site in South China. The samples were examined to investigate the levels, congener profiles, and biomagnification extent of polybrominated diphenyl ethers (PBDEs) that may be present in the environment as a result of the e-waste, which was processed in a crude recycling style. Elevated levels of ?21PBDEs were found in the biota (101–4725 ng g?1 lipid weight (lw)), vegetation leaf (82.9–319 ng g?1 dry weight (dw)) and soil samples (5.2–22 110 ng g?1 dw), indicating that PBDE contamination in the samples collected from the e-waste burning site may pose risks to the local terrestrial ecosystem and local populations. Higher BDE congeners, especially deca-BDE (BDE-209) were the dominant homologs in organisms and nonbiological matrices, followed by nona-BDE and octa-BDE. Biomagnification factors (BMFs) were calculated as the ratio of the lipid-normalized concentration in the predator to that in the prey. The highest BMF (3.4) was determined for BDE-153 in the grasshopper/turtledove food chain. Other higher brominated congeners, such as BDE-202, -203, -154, -183 and -209, were also biomagnified in the terrestrial food chain with \\{BMFs\\} of 1.7–3.3. BDE-47, -100, and -99 were not biomagnified in the examined food chains (BMFs < 1), which suggests that bioaccumulation and biotransformation of \\{PBDEs\\} in terrestrial ecosystems could be distinguished from those in aquatic ecosystems.

Zhiqiang Nie; Shulei Tian; Yajun Tian; Zhenwu Tang; Yi Tao; Qingqi Die; Yanyan Fang; Jie He; Qi Wang; Qifei Huang

2015-01-01T23:59:59.000Z

102

Planning a Prescribed Burn  

E-Print Network [OSTI]

drinks are best used when it?s over) Water or fire retardant in the ? pumpers Gasoline for the pumpers ? Diesel fuel and gas for the drip ? torches Lunch for the crew (a cooler with ? sandwich makings is handy) First aid kit ? Keys or combinations... in April with picloram to knock out my prickly pear.? Now you are heading in the right direction. Other reading Prescribed Range Burning in Texas. Texas AgriLife Extension Service. E-37. Acknowledgment The original manuscript on which...

Hanselka, C. Wayne

2009-04-01T23:59:59.000Z

103

Global burned area and biomass burning emissions from small fires  

E-Print Network [OSTI]

such as agricultural waste burning or prescribed burning infield agricultural waste burning [e.g. , Yevich and Logan,

Randerson, J. T; Chen, Y.; van der Werf, G. R; Rogers, B. M; Morton, D. C

2012-01-01T23:59:59.000Z

104

Composition, sources, and formation of secondary organic aerosols from urban emissions  

E-Print Network [OSTI]

oil burning, coal burning, and solid waste incineration (burning and disposal Fuel (mainly natural gas) combustion Industrial processes Solvent evaporation Waste

Liu, Shang; Liu, Shang

2012-01-01T23:59:59.000Z

105

Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase  

E-Print Network [OSTI]

Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil-caused CO2 emissions and to remove CO2 from the atmosphere. 2.0 What is carbon sequestration? The term "carbon sequestration" is used to describe both natural and deliberate CARBON,INGIGATONSPERYEAR 1.5 Fossil

106

In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents  

DOE Patents [OSTI]

An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs.

Taylor, R.T.; Jackson, K.J.; Duba, A.G.; Chen, C.I.

1998-05-19T23:59:59.000Z

107

In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents  

DOE Patents [OSTI]

An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

Taylor, Robert T. (Livermore, CA); Jackson, Kenneth J. (San Leandro, CA); Duba, Alfred G. (Livermore, CA); Chen, Ching-I (Danville, CA)

1998-01-01T23:59:59.000Z

108

Integrated production of fuel gas and oxygenated organic compounds from synthesis gas  

DOE Patents [OSTI]

An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

Moore, Robert B. (Allentown, PA); Hegarty, William P. (State College, PA); Studer, David W. (Wescosville, PA); Tirados, Edward J. (Easton, PA)

1995-01-01T23:59:59.000Z

109

Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation  

E-Print Network [OSTI]

Oxford ; New York ; Oxford University Press. Fuel- Trac,Spent Fuel / Reprocessing, in Nuclear Industry Statusto Burn Non-Fissile Fuels. 2008. GA. Energy Multiplier

Heidet, Florent

2010-01-01T23:59:59.000Z

110

Particle and Gas Emissions from a Simulated Coal-Burning Household Fire Pit  

Science Journals Connector (OSTI)

Particle and Gas Emissions from a Simulated Coal-Burning Household Fire Pit ... Chinese anthracite and bituminous coals produce different amounts of emissions when burned in a fire pit that simulates common rural household use of these fuels. ... Here we present emissions from burning 15 different fuels in a laboratory system designed to mimic the fire pits used in Xuan Wei County, China. ...

Linwei Tian; Donald Lucas; Susan L. Fischer; S. C. Lee; S. Katharine Hammond; Catherine P. Koshland

2008-02-21T23:59:59.000Z

111

Fuel Systems Solutions Inc | Open Energy Information  

Open Energy Info (EERE)

company with divisions focusing on bringing cleaner-burning gaseous fuel (such as propane and natural gas) technology to various types of vehicles. References: Fuel Systems...

112

Sunrise Agri Fuels | Open Energy Information  

Open Energy Info (EERE)

Agri Fuels Place: Bird Island, Minnesota Zip: 55310 Sector: Biomass Product: Manufacturer of Biomass Fuel Pellets for Pellet Burning Stoves. References: Sunrise Agri...

113

Oxidized organic functional groups in aerosol particles from forest emissions measured at mid-mountain and high- elevation mountain sites in Whistler, BC  

E-Print Network [OSTI]

ships, fossil fuel combustion, and biomass burning (BB).as biomass burning (types “i” and “j”), combustion (types “name biomass burning (BB) as the largest (42%) combustion

Schwartz, Rachel E.

2010-01-01T23:59:59.000Z

114

Utilization of TRISO Fuel with LWR Spent Fuel in Fusion-Fission Hybrid Reactor System  

Science Journals Connector (OSTI)

HTRs use a high performance particulate TRISO fuel with ceramic multi-layer coatings due to the high burn up capability and very neutronic performance. TRISO fuel because of capable of high burn up and very neutr...

Adem Ac?r; Taner Altunok

2010-10-01T23:59:59.000Z

115

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames  

E-Print Network [OSTI]

of premixed burners capable of stably burning ultra-lean hydrogen-air fuel mixtures. Such burners couldAnalyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames Peer-Timo Bremer, Member demonstrate our approach by analyzing three numerical simulations of lean hydrogen flames subject to different

Pascucci, Valerio

116

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames  

E-Print Network [OSTI]

- bly burning ultra-lean hydrogen-air fuel mixtures. Such burners could, for example, be used as oneAnalyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames P.-T. Bremer1, G. Weber2 of the temporal behavior. We demonstrate our approach by analyzing three numerical simulations of lean hydrogen

117

Uniform-burning matrix burner  

DOE Patents [OSTI]

Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

Bohn, Mark S. (Golden, CO); Anselmo, Mark (Arvada, CO)

2001-01-01T23:59:59.000Z

118

Wood would burn  

Science Journals Connector (OSTI)

Absract In view of the world-wide problem of energy sustainability and greenhouse gas production (carbon dioxide), it is timely to review the issues involved in generating heat and power from all fuels and especially new (to the UK) solid fuels, including high moisture fuels such as wood, SRF, oil shale, tar sands and brown coal, which will become major international fuels as oil and gas become depleted. The combustion properties of some of these materials are significantly different from traditional coal, oil and gas fuels, however the technology proposed herein is also applicable to these conventional fuels. This paper presents some innovative combustion system options and the associated technical factors that must be considered for their implementation. For clarity of understanding, the novel concepts will be largely presented in terms of a currently developing solid fuel market; biomass wood chips. One of the most important characteristics of many solid fuels to be used in the future (including oil shale and brown coal) is their high moisture content of up to 60%. This could be removed by utilising low grade waste heat that is widely available in industry to dry the fuel and thus reduce transport costs. Burning such dried wood for power generation also increases the energy available from combustion and thus acts as a thermal transformer by upgrading the low grade heat to heat available at combustion temperatures. The alternative approach presented here is to recover the latent heat by condensing the extrinsic moisture and the water formed during combustion. For atmospheric combustion, the temperature of the condensed combustion products is below the dew point at about 55–65 °C and is only suitable for recovery in an efficient district heating system. However, in order to generate power from the latent heat, the condensation temperature must be increased to the level where the heat can be used in the thermodynamic power cycle. This can be achieved by increasing the combustion pressure to above 80 bar, resulting in the recovered latent heat being available at more than 200 °C. It can then be used to increase the cycle efficiency by about 15% by pre-heating the boiler water and/or combustion air etc. A further advantage is that the high pressure of the combustion gases also reduces the superheater tube stress since it can balance the steam pressure. The key advantage of this high pressure flue gas is that it is above the pressure at which carbon dioxide ‘condenses’ to a liquid or supercritical gas at atmospheric temperature. Thus when used with oxy-fuel combustion, the carbon dioxide flue gas from which the moisture has been condensed can be cooled to atmospheric temperature and the supercritical CO2 can be fed directly into the pipes leading to the sequestration site. An important consideration of these strategies is to ensure that non-condensable gases in the exhaust, including oxygen and nitrogen, do not adversely affect the ‘condensation’ processes. When oxy-fuel combustion is used, the flame temperature must be moderated by a cool diluent. Recycled carbon dioxide is often proposed for this duty. However, since the latent heat is recovered, the moisture or even additional water can fulfil this role. This latter option may be advantageous since it is more efficient to pump wood chip fuel in water into the high pressure zone rather than feed solid wood particles. Surplus water can be simply drained and the wet wood chips are a good fuel when the latent heat of the moisture in the fuel gases is recovered into the power cycle. Bearing in mind that it is much more efficient to pump a liquid to high pressure than to compress the same material as a gas, indicates that cryogenic oxygen is a suitable material to use for an efficient power station that generates energy from biomass (or other fuels such as coal etc). Finally, combustion of the hydrogen from the water–gas reaction with oxygen allows the steam temperature in the turbine to be increased to the “gas-turbine engine” range of 1000–1400 °C an

Jim Swithenbank; Qun Chen; Xiaohui Zhang; Vida Sharifi; Mohamed Pourkashanian

2011-01-01T23:59:59.000Z

119

Interannual variability in global biomass burning emissions from 1997 to 2004  

E-Print Network [OSTI]

F. : Retrieval of biomass combustion rates and totals fromM. C. : Fuel biomass and combustion factors associated within global biomass burning emissions combustion factor.

van der Werf, G. R; Randerson, J. T; Giglio, L.; Collatz, G. J; Kasibhatla, P. S; Arellano, A. F

2006-01-01T23:59:59.000Z

120

Preparing limestone for burning  

Science Journals Connector (OSTI)

Classification of limestone before burning can be done by the screening method ... enables us to use the heat of the waste gases from the calcination units.

V. I. Goncharov; T. P. Kirichenko

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Burn Wound Infections  

Science Journals Connector (OSTI)

...described, noting areas of circumferential...of body surface area burned (252...protein-rich plasma into terminal...clinical effects of thermal inhalation injury...312). High-frequency ventilation may...standard of care for large thermal injuries...of the burned area is excised during...

Deirdre Church; Sameer Elsayed; Owen Reid; Brent Winston; Robert Lindsay

2006-04-01T23:59:59.000Z

122

Understanding the role of organic aerosol in the coastal and remote pacic marine boundary layer  

E-Print Network [OSTI]

Absorbance Polluted Marine Fossil Fuel Combustion BiomassBiomass Fossil Fuel Polluted Marine Burning Combustion FTIRof both coastal fossil fuel combustion and marine sources of

Hawkins, Lelia Nahid

2010-01-01T23:59:59.000Z

123

No Fossils in This Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan for Environmental Teaching Plan for Environmental Teaching GM Environmental Science Club No Fossils in This Fuel Your PlanET Sixth through Eighth Grades (Can be easily adapted to any elementary/middle school level) Ingredients: Yeast, sugar ... what are you making? Sweet rolls? Not in Science Class! You're blending these ingredients to make an innovative form of fuel! That's right ... when these two simple ingredients are mixed, the yeast  a simple, living organism  breaks the sugar down into ethyl alcohol, or ethanol, and carbon dioxide. While you won't be burning the fuel to prove its usefulness, you can share with your students how ethanol is being used right now to power some of today's vehicles! Students will be able to experiment with the activity, and they will see how the fermentation that occurs can blow up a

124

Quantitative IR Spectrum and Vibrational Assignments for Glycolaldehyde Vapor: Glycolaldehyde Measurements in Biomass Burning Plumes  

SciTech Connect (OSTI)

Glycolaldehyde (GA, 2-hydroxyethanal, C2H4O2) is a semi-volatile molecule of atmospheric importance, recently proposed as a precursor in the formation of aqueous-phase secondary organic aerosol (SOA). There are few methods to measure glycolaldehyde vapor, but infrared spectroscopy has been used successfully. Using vetted protocols we have completed the first assignment of all fundamental vibrational modes and derived quantitative IR absorption band strengths using both neat and pressure-broadened GA vapor. Even though GA is problematic due to its propensity to both dimerize and condense, our intensities agree well with the few previously published values. Using the reference ?10 band Q-branch at 860.51 cm-1, we have also determined GA mixing ratios in biomass burning plumes generated by field and laboratory burns of fuels from the southeastern and southwestern United States, including the first field measurements of glycolaldehyde in smoke. The GA emission factors were anti-correlated with modified combustion efficiency confirming release of GA from smoldering combustion. The GA emission factors (g of GA emitted per kg dry biomass burned on a dry mass basis) had a low dependence on fuel type consistent with the production mechanism being pyrolysis of cellulose. GA was emitted at 0.23 ± 0.13% of CO from field fires and we calculate that it accounts for ~18% of the aqueous-phase SOA precursors that we were able to measure.

Johnson, Timothy J.; Sams, Robert L.; Profeta, Luisa T.; Akagi, Sheryl; Burling, Ian R.; Yokelson, Robert J.; Williams, Stephen D.

2013-04-15T23:59:59.000Z

125

Environmental Aspects of Advanced Nuclear Fuel Cycles: Parametric Modeling and Preliminary Analysis  

E-Print Network [OSTI]

........................................................... 10 2 Simplified schematic of the once-through open fuel cycle .................................. 12 3 Simplified schematic of the plutonium-burning fuel cycle .................................. 13 4 Simplified schematic of the actinide... ..................................................... 23 7 Material flow for the plutonium-burning fuel cycle, year 0 ................................. 24 8 Material flow for the plutonium-burning fuel cycle, year 40 ............................... 25 9 Material flow for the actinide-burning fuel...

Yancey, Kristina D.

2010-07-14T23:59:59.000Z

126

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy  

E-Print Network [OSTI]

, and carbon dioxide. Introduction Carbon dioxide emissions resulting from the burning of fossil fuels 20 metric tons of carbon dioxide per capita are released annually into the atmosphere.1a,b CarbonStorage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks

Yaghi, Omar M.

127

Sun tanning/burning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sun tanning/burning Sun tanning/burning Name: Richardo Cossyleon Location: N/A Country: N/A Date: N/A Question: Why doesn't the sun affect or burn people with dark pigment in their skin? Replies: Good question! The pigment, melanin, is more toward the surface of the upper skin layer and absorbs ultraviolet rays from the Sun or artificial sources. This absorption protects the lower layers from damage and inflammation (burning). A very dark skinned person may have over a 1000X the protection from UV compared to a fair skinned person. Fair skinned people should use sun-block lotions especially early in the warm season AND keep exposure to the sun, particularly at midday, to less than 30 min. Even if a person gets a good tan, the sun's UV will age the skin over time. It will get wrinkled and develop age lines, etc. after many years of exposure. Moderation is the key!

128

Task report No. 3. Systems analysis of organic Rankine bottoming cycles. [Fuel cell power plant  

SciTech Connect (OSTI)

A model was developed that predicts the design performance and cost of a Fuel Cell/Rankine cycle powerplant. The Rankine cycle utilizes the rejected heat of an 11.3 MW phosphoric acid fuel cell powerplant. Improvements in the total plant heat rate and efficiency of up to 10% were attainalbe, using ammonia as the working fluid. The increase in total plant cost divided by the increase in total plant power ranged from $296/kW to $1069/kW for the cases run, and was a strong function of ambient temperature. The concept appears to be capable of producing substantial energy savings in large fuel cell powerplants, at reasonable costs. However, a much more detailed study that includes such factors as duty cycle, future cost of fuel and site meteorology needs to be done to prove the design for any potential site.

Bloomfield, D.; Fried, S.

1980-12-01T23:59:59.000Z

129

Reforming of fuel inside fuel cell generator  

DOE Patents [OSTI]

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

130

Assessment of uranium-free nitride fuels for spent fuel transmutation in fast reactor systems  

E-Print Network [OSTI]

. ....................................................................................... 18 Fig. 4. Standard PWR ¼ core model with fresh, once- and twice-burned fuel, and the location of MOX fuel assemblies with respect to original layout, 32% MOX loading................................................................................................................ 21 Fig. 5. Control rod locations......................................................................................... 21 Fig. 6. Net change of U, Pu and Am for PWR and 1/3 MOX fueled whole cores, 360 day burn...

Szakaly, Frank Joseph

2004-09-30T23:59:59.000Z

131

Arbor Fuel | Open Energy Information  

Open Energy Info (EERE)

Fuel Jump to: navigation, search Name: Arbor Fuel Place: Connecticut Zip: CT 06030 Sector: Biomass Product: Arbor Fuel is developing micro-organisms to convert biomass into...

132

Nano-porous Silicon Microcavity Sensors for Determination of Organic Fuel Mixtures  

Science Journals Connector (OSTI)

We present the preparation and characteristics of liquid-phase sensors based on nano-porous silicon multilayer structures for determination of organic content in gasoline. The...

Pham, Van Hoi; Bui, Huy; Hoang, Le Ha; Nguyen, Thuy Van; Nguyen, The Anh; Pham, Thanh Son; Ngo, Quang Minh

2013-01-01T23:59:59.000Z

133

9, 140, 2009 Oxygenated organic  

E-Print Network [OSTI]

resulted in three fossil fuel combustion type factors, one biomass burning factor, and one mixed main factors representing soot, secondary, and biomass burning type spectra. PMF of FTIR spectra15 or processed factor. The fossil fuel combustion type factors were found to have the largest contributions to OM

Russell, Lynn

134

Dual Fuel Conversion System for Diesel Engines: Inventions and Innovation Project Fact Sheet  

SciTech Connect (OSTI)

Project fact sheet written for the Inventions and Innovation Program about a new dual fuel conversion system allows diesel fuel switching with clean burning natural gas.

Wogsland, J.

2001-01-25T23:59:59.000Z

135

The spherically symmetric droplet burning characteristics of Jet-A and biofuels derived from camelina and tallow  

E-Print Network [OSTI]

The spherically symmetric droplet burning characteristics of Jet-A and biofuels derived from the biofuels due to its higher aromatic content. " Droplet burning rates of camelina and tallow HRJ fuel Available online 1 March 2013 Keywords: Alternative jet fuel Hydroprocessed biofuel Spherically symmetric

Walter, M.Todd

136

Fuel Gas Production from Organic Wastes by Low Capital Cost Batch Digestion  

Science Journals Connector (OSTI)

The technical background is reviewed on energy recovery from biomass--i.e., all organic wastes, especially municipal solid wastes, but also including agricultural residues and crops grown specifically for ener...

Donald L. Wise; Alfred P. Leuschner…

1986-01-01T23:59:59.000Z

137

13, 3226932289, 2013 Biomass burning  

E-Print Network [OSTI]

ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

Dong, Xiquan

138

7, 1733917366, 2007 Biomass burning  

E-Print Network [OSTI]

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

139

Cold Temperature and Biodiesel Fuel Effects on Speciated Emissions of Volatile Organic Compounds from Diesel Trucks  

Science Journals Connector (OSTI)

Emissions testing was conducted on a chassis dynamometer at two ambient temperatures (?7 and 22 °C) operating on two fuels (ultra low sulfur diesel and 20% soy biodiesel blend) over three driving cycles: cold start, warm start and heavy-duty urban dynamometer driving cycle. ... Different 2007+ aftertreatment technologies involving catalyst regeneration led to significant modifications of VOC emissions that were compound-specific and highly dependent on test conditions. ... However, emissions of other toxic partial combustion products such as carbonyls were not reduced in the modern diesel vehicles tested. ...

Ingrid J. George; Michael D. Hays; Richard Snow; James Faircloth; Barbara J. George; Thomas Long; Richard W. Baldauf

2014-11-13T23:59:59.000Z

140

Cellular burning in lean premixed turbulent hydrogen-air flames: coupling experimental and  

E-Print Network [OSTI]

of burners, particularly for alternative fuels, depends on improving our understanding of basic flame. Beckner1, M. J. Lijewski1 1 Center for Computational Science and Engineering, Lawrence Berkeley National for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

An Empirical Study of Alternative Fuel Vehicle Choice by Commercial Fleets: Lessons in Transportation Choices, and Public Agencies' Organization  

E-Print Network [OSTI]

1990). “The Economics of Alternative Fuel Use: SubstitutingAn Empirical Study of Alternative Fuel Vehicle Choice byFleet Demand for Alternative-Fuel Vehicles,” with T. Golob,

Crane, Soheila Soltani

1996-01-01T23:59:59.000Z

142

Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts  

SciTech Connect (OSTI)

This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

1997-01-01T23:59:59.000Z

143

23 Reformulated Fuels and Related Issues REFORMULATED FUELS AND  

E-Print Network [OSTI]

INTRODUCTION Reformulated gasoline (RFG) is a cleaner burning fuel than conventional gasoline that will significantly improve air quality by reducing emissions from all gasoline-burning motor vehicles and engines. The chapter also includes a description of CARB's Phase 2 Reformulated Gasoline Advisory Committee and its

144

Polycyclic aromatic hydrocarbons (PAHs) in burning and non-burning coal waste piles  

Science Journals Connector (OSTI)

The coal waste material that results from Douro Coalfield exploitation was analyzed by gas chromatography with mass spectrometry (GC–MS) for the identification and quantification of the 16 polycyclic aromatic hydrocarbons (PAHs), defined as priority pollutants. It is expected that the organic fraction of the coal waste material contains \\{PAHs\\} from petrogenic origin, and also from pyrolytic origin in burning coal waste piles. The results demonstrate some similarity in the studied samples, being phenanthrene the most abundant PAH followed by fluoranthene and pyrene. A petrogenic contribution of \\{PAHs\\} in unburned samples and a mixture of \\{PAHs\\} from petrogenic and pyrolytic sources in the burning/burnt samples were identified. The lowest values of the sum of the 16 priority \\{PAHs\\} found in burning/burnt samples and the depletion LMW \\{PAHs\\} and greater abundance of HMW \\{PAHs\\} from the unburned coal waste material relatively to the burning/burnt material demonstrate the thermal transformation attributed to the burning process. The potential environmental impact associated with the coal waste piles are related with the release of petrogenic and pyrolytic \\{PAHs\\} in particulate and gaseous forms to soils, sediments, groundwater, surface water, and biodiversity.

Joana Ribeiro; Tais Silva; Joao Graciano Mendonca Filho; Deolinda Flores

2012-01-01T23:59:59.000Z

145

Comparing properties of coal ash and alternative-fuel ash  

Science Journals Connector (OSTI)

The results of investigating ash produced in burning alternative kinds of fuel are discussed. Its impact on the environment is evaluated, and possibilities of recovering it are studied.

E. P. Dick; G. A. Ryabov; A. N. Tugov; A. N. Soboleva

2007-03-01T23:59:59.000Z

146

Moving North Texas Forward by Addressing Alternative Fuel Barriers...  

Broader source: Energy.gov (indexed) [DOE]

MOVING NORTH TEXAS FORWARD BY ADDRESSING ALTERANATIVE FUEL BARRIERS Presenter: Pamela Burns North Central Texas Council of Governments June 20, 2014 P.I. Mindy Mize Project ID...

147

Combustion aerosols formed during burning of radioactively contaminated materials: Experimental results  

SciTech Connect (OSTI)

Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases. Radioactive aerosols generated by fires were investigated in experiments in which combustible solids and liquids were contaminated with radioactive materials and burned. Uranium in powder and liquid form was used to contaminate five fuel types: polychloroprene, polystyrene, polymethylmethacrylate, cellulose, and a mixture of 30% tributylphosphate (TBP) in kerosene. Heat flux, oxygen concentration, air flow, contaminant concentration, and type of ignition were varied in the experiments. The highest release (7.1 wt %) came from burning TBP/kerosene over contaminated nitric acid. Burning cellulose contaminated with uranyl nitrate hexahydrate liquid gave the lowest release (0.01 wt %). Rate of release and particle size distribution of airborne radioactive particles were highly dependent on the type of fuel burned.

Halverson, M.A.; Ballinger, M.Y.; Dennis, G.W.

1987-03-01T23:59:59.000Z

148

Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the question of whether or not potentially hazardous wastes were generated at three of the four CASs within CAU 490, and whether or not potentially hazardous and radioactive wastes were generated at the fourth CAS in CAU 490 (CAS 09-54-001-09L2). Suspected CAS-specific COPCs include volatile organic compounds, semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, pesticides, explosives, and uranium and plutonium isotopes. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, Nevada Operations Office

2000-06-09T23:59:59.000Z

149

Biomass burning and global change  

Science Journals Connector (OSTI)

The burning of living and dead biomass including forests savanna grasslands and agricultural wastes is much more widespread and extensive than previously believed and may consume as much as 8700 teragrams of dry biomass matter per year. The burning of this much biomass releases about 3940 teragrams of total carbon or about 3550 teragrams of carbon in the form of CO2 which is about 40% of the total global annual production of CO2. Biomass burning may also produce about 32% of the world’s annual production of CO 24% of the nonmethane hydrocarbons 20% of the oxides of nitrogen and biomass burn combustion products may be responsible for producing about 38% of the ozone in the troposphere. Biomass burning has increased with time and today is overwhelmingly human?initiated.

Joel S. Levine; Wesley R. Cofer III; Donald R. Cahoon Jr.; Edward L. Winsted; Brian J. Stocks

1992-01-01T23:59:59.000Z

150

Organization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organization Print Organization Print 2012-12 org chart A complete ALS organization chart (June 2013) is available in PDF. Appointed and elected members of advisory panels provide guidance to Berkeley Lab and ALS management in developing the ALS scientific and user programs. ALS Staff Photo staff photo thumb Click on the image to see a recent photo of ALS staff in front of the dome. The photo was taken on May 14, 2013. ALS Management and Advisory Team Steve Kevan, Deputy Division Director, Science Michael J. Banda, Deputy Division Director, Operations Robert W. Schoenlein, Senior Staff Scientist, Next Generation Light Source Initiative Janos Kirz, Scientific Advisor Paul Adams, Division Deputy for Biosciences ALS Scientific, Technical, and User Support Groups Accelerator Physics

151

Dynamic stability, blowoff, and flame characteristics of oxy-fuel combustion  

E-Print Network [OSTI]

Oxy-fuel combustion is a promising technology to implement carbon capture and sequestration for energy conversion to electricity in power plants that burn fossil fuels. In oxy-fuel combustion, air separation is used to ...

Shroll, Andrew Philip

2011-01-01T23:59:59.000Z

152

ARM - Biomass Burning Observation Project (BBOP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

153

Molecular Characterization of Biomass Burning Aerosols Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

154

Fuel effects in homogeneous charge compression ignition (HCCI) engines  

E-Print Network [OSTI]

Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

Angelos, John P. (John Phillip)

2009-01-01T23:59:59.000Z

155

Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells  

Science Journals Connector (OSTI)

Four microbial fuel cells (MFCs) inoculated with different bacterial species...Pseudomonas putida, Comamonas testosteroni, Corynebacterium gultamicum, and Arthrobacter polychromogenes.... The MFCs were operated u...

Der-Fong Juang; Pi-Chiu Yang; Huei-Yin Chou; Ling-Jan Chiu

2011-11-01T23:59:59.000Z

156

Hydrogen and Gaseous Fuel Safety and Toxicity  

SciTech Connect (OSTI)

Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

Lee C. Cadwallader; J. Sephen Herring

2007-06-01T23:59:59.000Z

157

Category:Burns, OR | Open Energy Information  

Open Energy Info (EERE)

Burns, OR Burns, OR Jump to: navigation, search Go Back to PV Economics By Location Media in category "Burns, OR" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Burns OR PacifiCorp (Oregon).png SVFullServiceRestauran... 71 KB SVHospital Burns OR PacifiCorp (Oregon).png SVHospital Burns OR Pa... 74 KB SVLargeHotel Burns OR PacifiCorp (Oregon).png SVLargeHotel Burns OR ... 74 KB SVLargeOffice Burns OR PacifiCorp (Oregon).png SVLargeOffice Burns OR... 69 KB SVMediumOffice Burns OR PacifiCorp (Oregon).png SVMediumOffice Burns O... 71 KB SVMidriseApartment Burns OR PacifiCorp (Oregon).png SVMidriseApartment Bur... 72 KB SVOutPatient Burns OR PacifiCorp (Oregon).png SVOutPatient Burns OR ... 69 KB SVPrimarySchool Burns OR PacifiCorp (Oregon).png

158

Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap  

Broader source: Energy.gov [DOE]

Lean-burn improves PFI fuel economy by ~3% relative to best stoichiometric VCT/EGR conditions, when used in combination with VCT & EGR.

159

Enhanced biodegradation of diesel fuel through the addition of particulate organic carbon and inorganic nutrients in coastal marine waters  

Science Journals Connector (OSTI)

Diesel fuel pollution in coastal waters, resulting from recreational ... operations, is common and can adversely affect marine biota. The purpose of this study was...Spartina alterniflora...), inorganic nutrients...

Michael F. Piehler; Hans W. Paerl

1996-06-01T23:59:59.000Z

160

Reducing Emissions of Persistent Organic Pollutants from a Diesel Engine by Fueling with Water-Containing Butanol Diesel Blends  

Science Journals Connector (OSTI)

An increasing energy demand and environmental pollution has motivated a search for bio-fuels, such as bio-diesels(1, 2) and bio-alcohols,(3, 4) that can be used as alternative fuels for diesel engines. ... In general, both bio-diesel and bio-alcohols, such as ethanol and butanol, have the advantages of higher brake thermal efficiency (BTE) and lower emissions of particulate matter (PM), carbon monoxide (CO) and hydrocarbons (HC). ... Diesel Engine and Test Cycle ...

Yu-Cheng Chang; Wen-Jhy Lee; Hsi-Hsien Yang; Lin-Chi Wang; Jau-Huai Lu; Ying I. Tsai; Man-Ting Cheng; Li-Hao Young; Chia-Jui Chiang

2014-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CANDU fuel cycle flexibility  

SciTech Connect (OSTI)

High neutron economy, on-power refuelling, and a simple bundle design provide a high degree of flexibility that enables CANDU (CANada Deuterium Uranium; registered trademark) reactors to be fuelled with a wide variety of fuel types. Near-term applications include the use of slightly enriched uranium (SEU), and recovered uranium (RU) from reprocessed spent Light Water Reactor (LWR) fuel. Plutonium and other actinides arising from various sources, including spent LWR fuel, can be accommodated, and weapons-origin plutonium could be destroyed by burning in CANDU. In the DUPIC fuel cycle, a dry processing method would convert spent Pressurized Water Reactor (PWR) fuel to CANDU fuel. The thorium cycle remains of strategic interest in CANDU to ensure long-term resource availability, and would be of specific interest to those countries possessing large thorium reserves, but limited uranium resources.

Torgerson, D.F.; Boczar, P.G. [Chalk River Lab., Ontario (Canada); Dastur, A.R. [AECL CANDU, Mississauga, Ontario (Canada)

1994-12-31T23:59:59.000Z

162

The EBR-II X501 Minor Actinide Burning Experiment  

SciTech Connect (OSTI)

The X501 experiment was conducted in EBR-II as part of the IFR (Integral Fast Reactor) program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data, and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few minor actinide-bearing fuel irradiation tests conducted worldwide and knowledge can be gained by understanding the changes in fuel behavior due to addition of MA’s. Of primary interest are the affect of the MA’s on fuel-cladding-chemical-interaction, and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995-1996, and currently represents a set of observations rather than a complete understanding of fuel behavior. This paper provides a summary of the X501 fabrication, characterization, irradiation, and post irradiation examination.

M. K. Meyer; S. L. Hayes; W. J. Carmack; H. Tsai

2009-07-01T23:59:59.000Z

163

The EBR-II X501 Minor Actinide Burning Experiment  

SciTech Connect (OSTI)

The X501 experiment was conducted in EBR-II as part of the IFR (Integral Fast Reactor) program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data, and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few minor actinide-bearing fuel irradiation tests conducted worldwide and knowledge can be gained by understanding the changes in fuel behavior due to addition of MA’s. Of primary interest are the affect of the MA’s on fuel-cladding-chemical-interaction, and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995-1996, and currently represents a set of observations rather than a complete understanding of fuel behavior.

Jon Carmack; S. L. Hayes; M. K. Meyer; H. Tsai

2008-06-01T23:59:59.000Z

164

Alternative Fuels Data Center: Alternative Fuel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Tax Fuel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Exemption Alternative fuel is exempt from taxes if it is sold to a government entity for its exclusive use, sold to a nonprofit charitable organization for the

165

Potential health impacts of burning coal beds and waste banks  

Science Journals Connector (OSTI)

Uncontrolled release of pollutants from burning coal beds and waste banks presents potential environmental and human health hazards. On a global scale, the emissions of large volumes of greenhouse gases from burning coal beds may contribute to climate change that alters ecosystems and patterns of disease occurrence. On regional and local scales, the emissions from burning coal beds and waste banks of acidic gases, particulates, organic compounds, and trace elements can contribute to a range of respiratory and other human health problems. Although there are few published reports of health problems caused by these emissions, the potential for problems can be significant. In India, large numbers of people have been displaced from their homes because of health problems caused by emissions from burning coal beds. Volatile elements such as arsenic, fluorine, mercury, and selenium are commonly enriched in coal deposits. Burning coal beds can volatilize these elements, which then can be inhaled, or adsorbed on crops and foods, taken up by livestock or bioaccumulated in birds and fish. Some of these elements can condense on dust particles that can be inhaled or ingested. In addition, selenium, arsenic, lead, tin, bismuth, fluorine, and other elements condense where the hot gaseous emissions come in contact with ambient air, forming mats of concentrated efflorescent minerals on the surface of the ground. These mats can be leached by rainwater and washed into local water bodies providing other potential routes of exposure. Although there are little data linking burning coal beds and waste banks to known health problems, a possibly analogous situation exists in rural China where mineralized coal burned in a residential environment has caused widespread and severe health problems such as fluorosis and arseniasis.

Robert B Finkelman

2004-01-01T23:59:59.000Z

166

Biomass Burning Observation Project Specifically,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Burning Observation Project Burning Observation Project Specifically, the aircraft will obtain measurements of the microphysical, chemical, hygroscopic, and optical properties of aerosols. Data captured during BBOP will help scientists better understand how aerosols combine and change at a variety of distances and burn times. Locations Pasco, Washington. From July through September, the G-1 will be based out of its home base in Washington. From this location, it can intercept and measure smoke plumes from naturally occurring uncontrolled fires across Washington, Oregon, Idaho, Northern California, and Western Montana. Smoke plumes aged 0-5 hours are the primary targets for this phase of the campaign. Memphis, Tennessee. In October, the plane moves to Tennessee to sample prescribed

167

Study of the burning capability of the los alamos ATW system  

Science Journals Connector (OSTI)

The aim of calculations is to evaluate the evolution of the infinite multiplication factor (k inf) during the irradiation of minor actinides High Level Waste (HLW) and Plutonium. The most important results are independently verified with Monte Carlo calculations. The relative importance of the main parameters affecting the k inf was investigated by performing calculations with several minor actinide and plutonium concentrations as well as different 238U decontamination factors for HLW. The merit figure value for minor actinide alone considering a constant neutron flux indicates that the best results are reached for minor actinide concentration equal to PWR spent fuel. The best plutonium burning results are obtained for a concentration (50.23 g/l) equal to the half of PWR spent fuel one. The simulations lead to two different reactor concepts: one for HLW burning and the other for plutonium burning purposes. To burn the HLW the most suitable reactor is an homogeneous one. This kind of reactor can effectively be utilised to burn minor actinide in low concentration (namely the PWR spent fuel). On the other hand an heterogeneous reactor with channels filled by all actinides present in PWR spent fuel with the exclusion of U isotopes with a concentration of 50 g/l can be studied.

P. A. Landeyro; A. Buccafurni; A. Orazi

1995-01-01T23:59:59.000Z

168

Synthetic Design of New Metal-Organic Framework Materials for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Pingyun Feng (Primary Contact), Qipu Lin, Xiang Zhao Department of Chemistry University of California Riverside, CA 92521 Phone: (951) 827-2042 Email: pingyun.feng@ucr.edu DOE Program Officer: Dr. Michael Sennett Phone: (301) 903-6051 Email: Michael.Sennett@science.doe.gov Objectives Design and * synthesize new metal-organic framework materials using lightweight chemical elements to help improve gravimetric hydrogen storage capacity. Develop new synthetic strategies to generate novel * active binding sites on metal ions and ligands to enhance solid-gas interactions for increased uptake near ambient conditions.

169

Open Burning (New Mexico) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Open Burning (New Mexico) Open Burning (New Mexico) Open Burning (New Mexico) < Back Eligibility Commercial Construction General Public/Consumer Industrial Residential Program Info Start Date 2003 State New Mexico Program Type Environmental Regulations Provider New Mexico Environment Department The New Mexico Environment Department's Air Quality Bureau regulates the open burning rules established by the Environmental Improvement Board. These rules are established to protect public health and welfare by establishing controls on pollution produced by open burning. Open burning is allowed for recreational and ceremonial purposes, for barbecuing, for heating purposes in fireplaces, for the noncommercial cooking of food for human consumption and for warming by small wood fires at construction

170

Mercury Emissions from Biomass Burning in China  

Science Journals Connector (OSTI)

Because the burned area products from remote sensors with medium resolution often miss the crop burning in fields due to its small size, we used the official statistics data at the provincial level to estimate the mercury emissions from crop residues burning in fields and biofuel combustion in homes. ... Although the amount of crop residues burnt in fields in China could not be reflected accurately in burned area products (MCD45A1) because of their small size, they could be located by MODIS fire counts data. ... Frequently burning grasslands in Africa and Australia, and agricultural waste burning globally, contribute relatively little to the Hg budget. ...

Xin Huang; Mengmeng Li; Hans R. Friedli; Yu Song; Di Chang; Lei Zhu

2011-09-27T23:59:59.000Z

171

Ion kinetic effects on the ignition and burn in ICF Ion kinetic effects on the ignition and burn of ICF targets  

E-Print Network [OSTI]

and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level to treat fusion products (suprathermal -particles) in a self-consistent manner with the thermal bulk enhancement of fusion products leads to a significant reduction of the fusion yield. I. MOTIVATION AND CONTEXT

172

Mechanisms of synfuel degradation 1. Effects of organic nitrogen compounds on the stability of a shale derived diesel fuel  

SciTech Connect (OSTI)

A reliable accelerated fuel stability test regimen has been developed and applied to the study of the storage stability of a shale derived diesel fuel marine (DFM). The results of a survey of nitrogen compounds as dopants in a stable shale DFM base fuel indicate that some pyrroles and indoles may play significant roles in storage stability. A complete stability test matrix has been developed for the temperatures of 43, 65 and 80/sup 0/C, for time periods between 4 and 179 days, and for a ten-fold concentration range of a model dopant, 2,5-dimethylpyrrole (DMP). Stability was defined by the amount of total insoluble material (filterable sediment and adherent gum) produced after stress, and also by the amount of titratable peroxide present in the filtrates of stressed fuel samples. A very regular pattern for insolubles formation was found within the test matrix. Deposit formation rates exhibited a first-order dependence on DMP concentration, with an apparent activation energy of 11-12 kcal/mol. The sediment was found to contain 12% nitrogen and 18-20% oxygen irrespective of the stress conditions employed.

Cooney, J.V.; Beal, E.J.; Huzlett, R.N.

1984-01-01T23:59:59.000Z

173

Actinide burning in the integral fast reactor  

SciTech Connect (OSTI)

During the past few years, Argonne National Laboratory has been developing the integral fast reactor (IFR), an advanced liquid-metal reactor concept. In the IFR, the inherent properties of liquid-metal cooling are combined with a new metallic fuel and a radically different refining process to allow breakthroughs in passive safety, fuel cycle economics, and waste management. A key feature of the IFR concept is its unique pyroprocessing. Pyroprocessing has the potential to radically improve long-term waste management strategies by exploiting the following attributes: 1. Minor actinides accompany plutonium product stream; therefore, actinide recycling occurs naturally. Actinides, the primary source of long-term radiological toxicity, are removed from the waste stream and returned to the reactor for in situ burning, generating useful energy. 2. High-level waste volume from pyroprocessing call be reduced substantially as compared with direct disposal of spent fuel. 3. Decay heat loading in the repository can be reduced by a large factor, especially for the long-term burden. 4. Low-level waste generation is minimal. 5. Troublesome fission products, such as [sup 99]Tc, [sup 129]I, and [sup 14]C, are contained and immobilized. Singly or in combination, the foregoing attributes provide important improvements in long-term waste management in terms of the ease in meeting technical performance requirements (perhaps even the feasibility of demonstrating that technical performance requirements can be met) and perhaps also in ultimate public acceptance. Actinide recycling, if successfully developed, could well help the current repository program by providing an opportunity to enhance capacity utilization and by deferring the need for future repositories. It also represents a viable technical backup option in the event unforeseen difficulties arise in the repository licensing process.

Chang, Y.I. (Argonne National Lab., IL (United States))

1993-01-01T23:59:59.000Z

174

Raymond Burns > Product Research Technologist - Exxon Mobile...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Raymond Burns Product Research Technologist - Exxon Mobile raymond.burns@gmail.com Formerly a member of the DiSalvo Group, Ray earned his PhD in August 2013...

175

Health assessment for New Hanover County Burn Pit, Wilmington, New Hanover County, North Carolina, Region 4. CERCLIS No. NCD981021157. Preliminary report  

SciTech Connect (OSTI)

The New Hanover County Burn Pit, Wilmington, New Hanover County, North Carolina, has been proposed for the National Priorities List by the Environmental Protection Agency (EPA). The burn pit is part of an active airport and was used from 1968-1979 for fire-training exercises. Aviation fuel, waste oil, and petroleum tank bottoms were burned and extinguished with water, carbon dioxide, or dry chemicals. Samples from the pit and soil adjacent to the pit, where pit contents were drained, showed the presence of heavy metals, polynuclear aromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs). Investigation of the site has been limited to the pit and surrounding soil. Groundwater is close to land surface in the area and may be affected. Groundwater is used for domestic purposes within a 3-mile radius of the site. Based on the available information, the site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances.

Not Available

1990-05-09T23:59:59.000Z

176

Making premium diesel fuel  

SciTech Connect (OSTI)

For refiners, extra processing and blending is a practical, though not always easy, option for improving diesel fuel properties; however, it entails compromises. For example, ignition quality can be improved by including more paraffins, but this negatively impacts the required low-temperature operability properties. Another example is adding aromatics to increase the diesel`s Btu value, but aromatics burn poorly and tend to cause smoking. Due to these and other types of diametrical trade-offs, the scope of distillate processing and fuels blending at the refinery is often very limited. Therefore, fuel additives are rapidly becoming the only alternative for obtaining the superior quality necessary in a premium diesel fuel. If stabilizers, dispersants and other fuel additive components are used in the additive package, the product can be marketed as a premium diesel fuel additive. Engines using this additive-treated fuel will consistently have less emissions, produce optimum power from the fuel energy conversion process and perform to design specifications. And the user will truly have a premium diesel fuel. The paper discusses detergent additives, cetane or ignition improvers, fuel stabilizers, cold weather additives, and lubricity additives.

Pipenger, G. [Amalgamated Inc., Fort Wayne, IN (United States)

1997-02-01T23:59:59.000Z

177

The burn bactericidal index: A bactericidal index specific for burn patients  

Science Journals Connector (OSTI)

The percentage of the body surface area burned together with the bactericidal capacity of polymorphs were found to have an influence on burned patients' resistance to infection. This new indicator of resistance to infection in burns, the Burn Bactericidal Index (BBI), was high in patients not susceptible to infection especially in patients vaccinated against Pseudomonas aeruginosa, but low in patients with extensive burns and in patients with septicaemia and other acute clinical infections.

E.A. Roe

1979-01-01T23:59:59.000Z

178

Composition, sources, and formation of secondary organic aerosols from urban emissions  

E-Print Network [OSTI]

fossil fuel combus- tion, biomass burning, and marineand marine origin. Among these sources, fossil fuelfuel combustion factors, which dominated the OM. The marine

Liu, Shang; Liu, Shang

2012-01-01T23:59:59.000Z

179

Chapter 3 - Fuels for Fuel Cells  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with various types of liquid fuels and the relevant chemical and physical properties of these fuels as a means of comparison to the fuels of the future. It gives an overview of the manufacture and properties of the common fuels as well as a description of various biofuels. A fuel mixture usually contains a wide range of organic compounds (usually hydrocarbons). The specific mixture of hydrocarbons gives a fuel its characteristic properties, such as boiling point, melting point, density, viscosity, and a host of other properties. Depending on the application (stationary, central power, remote, auxiliary, transportation, military, etc.), there are a wide range of conventional fuels, such as natural gas, liquefied petroleum gas, light distillates, methanol, ethanol, dimethyl ether, naphtha, gasoline, kerosene, jet fuels, diesel, and biodiesel, that could be used in reforming processes to produce hydrogen (or hydrogen-rich synthesis gas) to power fuel cells. Fossils fuels include gaseous fuels, gasoline, kerosene, diesel fuel, and jet fuels. Gaseous fuels include natural gas and liquefied petroleum gas. Types of gasoline include automotive gasoline, aviation gasoline, and gasohol. Some additives added into gasoline are antioxidants, corrosion inhibitors, demulsifiers, anti-icing, dyes and markers, drag reducers, and oxygenates.

James G. Speight

2011-01-01T23:59:59.000Z

180

Hydrogen Storage in Metal-Organic Frameworks - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jeffrey Long (Primary Contact), Martin Head-Gordon Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 95720 Phone: (510) 642-0860 Email: jrlong@berkeley.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Subcontractors: * National Institute of Standards and Technology, Gaithersburg, MD (Craig Brown) * General Motors Corporation, Warren, MI (Anne Dailly) Project Start Date: April 1, 2012 Project End Date: March 31, 2015 Fiscal Year (FY) 2012 Objectives

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development of alternate extractant systems for fast reactor fuel cycle  

SciTech Connect (OSTI)

Due to the limitations of TBP in processing of high burn-up, Pu-rich fast reactor fuels, there is a need to develop alternate extractants for fast reactor fuel processing. In this context, our Centre has been examining the suitability of alternate tri-alkyl phosphates. Third phase formation in the extraction of Th(IV) by TBP, tri-n-amyl phosphate (TAP) and tri-2-methyl-butyl phosphate (T2MBP) from nitric acid media has been investigated under various conditions to derive conclusions on their application for extraction of Pu at macro levels. The chemical and radiolytic degradation of tri-n-amyl-phosphate (TAP) diluted in normal paraffin hydrocarbon (NPH) in the presence of nitric acid has been investigated by the measurement of plutonium retention in organic phase. The potential application of room temperature ionic liquids (RTILs) for reprocessing of spent nuclear fuel has been explored. Extraction of uranium (VI) and palladium (II) from nitric acid medium by commercially available RTIL and tri-n-butyl phosphate solution in RTIL have been studied and the feasibility of electrodeposition of uranium as uranium oxide (UO{sub 2}) and palladium (II) as metallic palladium from the loaded organic phase have been demonstrated. This paper describes results of the above studies and discusses the suitability of the systems for fast reactor fuel reprocessing. (authors)

Vasudeva Rao, P.R.; Suresh, A.; Venkatesan, K.A.; Srinivasan, T.G.; Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102 (India)

2007-07-01T23:59:59.000Z

182

Requirements For An Advanced Fueling System  

E-Print Network [OSTI]

supported by DOE grant No. DE-FG03-02ER54686 Supported by 1 #12;Reactor Fueling Requirements Not Adequately for current drive, a fueling system is all that a burning plasma system may be able to rely on to alter core density peaking via. core fuelling provides more flexibility to reach ignition 3Raman/FESAC/7Aug07 #12

Princeton Plasma Physics Laboratory

183

Pulverized coal fuel injector  

DOE Patents [OSTI]

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

184

Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Craig Jensen 1 (Primary Contact), Daniel Brayton 1 , and Scott Jorgensen 2 1 Hawaii Hydrogen Carriers, LLC 531 Cooke Street Honolulu, HI 96813 Phone: (808) 339-1333 Email: hhcllc@hotmail.com 2 General Motors Technical Center DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0005020 Project Start Date: July 1, 2011 Project End Date: June 30, 2013 *Congressionally directed project Fiscal Year (FY) 2012 Objectives The objective of this project is to optimize a hydrogen storage media based on a liquid organic carrier (LOC) for hydrogen and design a commercially viable hydrogen

185

A Biomimetic Approach to Metal-Organic Frameworks with High H2 Uptake - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hong-Cai (Joe) Zhou Dept. of Chem., Texas A&M University P.O. Box 30012 College Station, TX 77842-3012 Phone: (979) 845-4034 Email: zhou@mail.chem.tamu.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-07GO17033 Project Start Date: July 1, 2007 Project End Date: June 30, 2013 Fiscal Year (FY) 2012 Objectives Design, synthesis, and characterization of metal-organic * frameworks (MOFs) with potential anchors for active metal centers introduction. Design, synthesis, and optimization of porous polymer * frameworks (PPNs) with different functionalities. These functionalized MOFs and PPNs demonstrate much *

186

Design and Synthesis of Chemically and Electronically Tunable Nanoporous Organic Polymers for Use in Hydrogen Storage Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hani M. El-Kaderi (Primary Contact), Mohammad G. Rabbani, Thomas E. Reich, Karl T. Jackson, Refaie M. Kassab Virginia Commonwealth University Department of Chemistry 1001 West Main St Richmond, VA 23284-2006 Phone: (804) 828-7505 Email: helkaderi@vcu.edu DOE Program Officer: Michael Sennett Phone: (301) 903-6051 Email: Michael.Sennett@science.doe.go Objectives Design and synthesis of new classes of low density * nanoporous organic polymers that are linked by strong covalent bonds and composed of chemically and electronically tunable building blocks. Use gas sorption experiments to investigate porosity and * determine hydrogen storage at variable temperature and

187

Burn  

E-Print Network [OSTI]

stream that meanders through the cavern. My guide tells me the brook was once a roaring river, two hundred million years ago this site was covered by an inland sea. He points out salamander and raccoon tracks in the mud as we hike past Mirror... While Painting a Red Canna: A Rhapsody 52 IV. New Poems Halloween 54 Alabaster Caverns 55 Subterranean Red 57 Ten Seconds After the Gun 58 Rock Wall 59 Following the Red Hills home 60...

Johnson, Vivian Kathleen

2008-01-01T23:59:59.000Z

188

ETHANOL FROM CORN: CLEAN RENEWABLE FUEL FOR THE FUTURE, OR DRAIN ON OUR RESOURCES AND POCKETS?  

E-Print Network [OSTI]

ETHANOL FROM CORN: CLEAN RENEWABLE FUEL FOR THE FUTURE, OR DRAIN ON OUR RESOURCES AND POCKETS? TAD as ethanol from corn. When this corn ethanol is burned as a gasoline additive or fuel, its use amounts that burn corn ethanol is halved. The wide- spread use of corn ethanol will cause manifold damage to air

Patzek, Tadeusz W.

189

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Center to someone by E-mail Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Local Laws and Incentives There are a variety of local laws and incentives that support reducing U.S. petroleum consumption by encouraging or requiring individuals and/or public and private organizations to use alternative fuels, advanced vehicles, and strategies to decrease fuel use or increase fuel economy. Local city and county governments create such laws and incentives to ensure people use

190

Central Shops Burning/Rubble Pit 631-6G Additonal Sampling and Monitor Well Installation Report  

SciTech Connect (OSTI)

The Central Shops Burning/Rubble Pit 631-6G was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal and incineration of potentially hazardous substances, such as metals and organic solvents.

Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1995-02-01T23:59:59.000Z

191

Excision and Skin Grafting of Thermal Burns  

Science Journals Connector (OSTI)

...such as loss of hand function or facial deformity. There are often psychological sequelae in burned patients, including post-traumatic stress disorder and depression. Pathophysiology and the Effect of Therapy. The pathophysiology of thermal injury is related to the initial distribution of heat within... A 45-year-old man presents with extensive burns after a house fire. Excision and grafting are recommended for management of his burns. Depending on the depth and extent of the burn, early excision and grafting promote wound healing, reduce the risk of infection, and shorten hospitalization but increase the need for blood transfusion, as compared with conservative management.

Orgill D.P.

2009-02-26T23:59:59.000Z

192

Pollution by cereal waste burning in Spain  

Science Journals Connector (OSTI)

In this paper, the amount of cereal waste burned in Spain, which represents the most important source of biomass burning in this country, is estimated. During the period between 1980 and 1998, an average mass of 8 Tg of cereal waste was burned annually, with remaining 1 Tg of ash on the cereal fields after combustion. By using emission factors previously calculated by Ortiz de Zárate et al. [Ortiz de Zárate, I., Ezcurra, A., Lacaux, J.P., Van Dihn, P., 2000. Emission factor estimates of cereal waste burning in Spain. Atmos. Environ. 34, 3183–3193.], it is deduced that pollutant emissions linked to cereal waste-burning process reach values of 11 Tg CO2, 80 Gg of TPM and 23 Gg of \\{NOx\\} year?1 during the cereal-burning period. These emissions represent 46% of total CO2 and 23% \\{NOx\\} emitted in Spain during the burning period that lasts 1 month after harvesting. Therefore, the relative importance of cereal waste burning as pollutant source in Spain almost during fire period becomes evident. Finally, our study allows to deduce that the production of 1 kg of cereal crop implies that 410 g of carbon and 3.3 g of nitrogen are going to be introduced into the atmosphere by this pollutant process. We estimate a total gaseous emission of 3.3 Tg of C and 25 Gg N as different pollutants by cereal waste burning.

I. Ortiz de Zárate; A. Ezcurra; J.P. Lacaux; P. Van Dinh; J. Díaz de Argandoña

2005-01-01T23:59:59.000Z

193

Burn site groundwater interim measures work plan.  

SciTech Connect (OSTI)

This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

Witt, Jonathan L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID)

2005-05-01T23:59:59.000Z

194

Lean burn limit and time to light characteristics of laser ignition in gas turbines  

Science Journals Connector (OSTI)

Abstract This work details a study of laser ignition in a low pressure combustion test rig, representative of an industrial gas turbine (SGT-400, Siemens Industrial Turbomachinery Ltd.) and for the first time investigates the effect of air mass flow rate on combustion characteristics at air/fuel ratios at the lean burn limit. Both the lean burn limit and time taken to light are essential in determining the suitability of a specified air/fuel ratio, especially in multi-chamber ignition applications. Through extension of the lean burn limit and reduction of the time taken to light, the operating window for ignition with regards to the air/fuel ratio can be increased, leading to greater reliability and repeatability of ignition. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using both a standard high energy igniter and a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 1064 nm wavelength. A detailed comparison of the lean burn limit and time taken to light for standard ignition and laser ignition is presented.

J. Griffiths; M. Riley; A. Kirk; A. Borman; J. Lawrence; C. Dowding

2014-01-01T23:59:59.000Z

195

Dynamically balanced fuel nozzle and method of operation  

DOE Patents [OSTI]

An apparatus and method of operation designed to reduce undesirably high pressure oscillations in lean premix combustion systems burning hydrocarbon fuels are provided. Natural combustion and nozzle acoustics are employed to generate multiple fuel pockets which, when burned in the combustor, counteract the oscillations caused by variations in heat release in the combustor. A hybrid of active and passive control techniques, the apparatus and method eliminate combustion oscillations over a wide operating range, without the use of moving parts or electronics.

Richards, George A. (Morgantown, WV); Janus, Michael C. (Baltimore, MD); Robey, Edward H. (Westover, WV)

2000-01-01T23:59:59.000Z

196

Alternate Fuels: Is Your Waste Stream a Fuel Source?  

E-Print Network [OSTI]

in their boiler systems. And, the trend toward using Process Gases, Flammable Liquids, and Volatile Organic Compounds (\\iDe's), to supplement fossil fuels, will be considered a key element of the management strategy for industrial power plants. The increase...ALTERNATE FUELS: IS YOUR WASTE STREAM A FUEL SOURCE? PHn, COERPER. MANAGER ALTERNATE FUEL SYSTEMS. CLEAVER-BROOKS. Mn,WAUKEE. WI ABSTRACT Before the year 2000. more than one quarter of u.s. businesses will be firing Alternate Fuels...

Coerper, P.

197

Conceptual development of a continuous burning system for oil spill remediation  

E-Print Network [OSTI]

or ocean environment. During the period from 1974 to 1977, an average of four mil- lion gallons of crude oil per year were discharged into open waters and this trend is expected to increase (Buist 1987). The situation where combustion of oil employed... requirement of initiating the burning safely. This is done with a automatic valve which regulates the fuel supply. The valve is operated by a radio signal sway from the zone of burning. 45 C. CHEMISTRY OF LIQUID PETROLEUM GASES In a Liquefied Hydrocarbon...

Venkataramaiah, Ramesh H.

2012-06-07T23:59:59.000Z

198

Assessment of Rich-Burn, Quick-Mix, Lean-Burn Trapped Vortex Combustor for Stationary Gas Turbines  

SciTech Connect (OSTI)

This paper describes the evaluation of an alternative combustion approach to achieve low emissions for a wide range of fuel types. This approach combines the potential advantages of a staged rich-burn, quick-mix, lean-burn (RQL) combustor with the revolutionary trapped vortex combustor (TVC) concept. Although RQL combustors have been proposed for low-Btu fuels, this paper considers the application of an RQL combustor for high-Btu natural gas applications. This paper will describe the RQL/TVC concept and experimental results conducted at 10 atm (1013 kPa or 147 psia) and an inlet-air temperature of 644 K (700°F). The results from a simple network reactor model using detailed kinetics are compared to the experimental observations. Neglecting mixing limitations, the simplified model suggests that NOx and CO performance below 10 parts per million could be achieved in an RQL approach. The CO levels predicted by the model are reasonably close to the experimental results over a wide range of operating conditions. The predicted NOx levels are reasonably close for some operating conditions; however, as the rich-stage equivalence ratio increases, the discrepancy between the experiment and the model increases. Mixing limitations are critical in any RQL combustor, and the mixing limitations for this RQL/TVC design are discussed.

Douglas L. Straub; Kent H. Casleton; Robie E. Lewis; Todd G. Sidwell; Daniel J. Maloney; George A. Richards

2005-01-01T23:59:59.000Z

199

PHYSICS OF BURNING PHYSICS INACCESSIBLE TO  

E-Print Network [OSTI]

PHYSICS OF BURNING PLASMAS: PHYSICS INACCESSIBLE TO PRESENT FACILITIES FIRE Physics Workshop May 2000 F. Perkins and N. Sauthoff Princeton Plasma Physics Laboratory FIRE Workshop 1 May 2000 #12;OUTLINE · Introduction · Three Classes of Burning Plasma Physics inaccessable to contemporary tokamak

200

Philadelphians protest ocean burning of waste  

Science Journals Connector (OSTI)

Philadelphians protest ocean burning of waste ... A raucous, hostile crowd of Philadelphia residents shouted down Environmental Protection Agency officials last week at a public hearing on the agency's tentative decision to issue a research permit for an ocean burn of chemical wastes. ...

1986-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

In Situ Measurement Technique for Simultaneous Detection of K, KCl, and KOH Vapors Released During Combustion of Solid Biomass Fuel in a Single Particle Reactor  

Science Journals Connector (OSTI)

A quantitative and simultaneous measurement of K, KCl, and KOH vapors from a burning fuel sample combusted in a single particle reactor was performed using collinear photofragmentation...

Sorvajärvi, Tapio; DeMartini, Nikolai; Rossi, Jussi; Toivonen, Juha

2014-01-01T23:59:59.000Z

202

Burning hazardous waste in cement kilns  

SciTech Connect (OSTI)

The cement manufacturing process is one of the oldest in the world, having been in practice for over 2000 years. It is also one of the most energy intensive, with up to 65 percent of the cost of the product attributable to energy consumption. In addition to high energy demand, the process conditions include extremely high temperatures. Cement clinker forms when the correct mixture of raw materials is heated to 2650/sup 0/ F. This requires combustion temperatures exceeding 3000/sup 0/ F. under oxidizing conditions. To accomplish this, gas temperatures above 2000/sup 0/ F. occur for several seconds (typically five seconds), which is much longer than residence times in permitted hazardous waste incinerators. These conditions are extremely favorable to the destruction of organic compounds and have led to extensive investigation into the potential for burning hazardous waste in cement kilns. Cement kilns consuming hazardous wastes have been tested for air emissions under various operating conditions. The substantial body of information on the emissions and handling of hazardous wastes from these studies has demonstrated that effective destruction of wastes can be accomplished with the added benefits of energy conservation and no significant change in air emissions.

Chadbourne, J.F.; Helmsteller, A.J.

1983-06-01T23:59:59.000Z

203

SRC burn test in 700-hp oil-designed boiler. Annex Volume C. Boiler emission report. Final technical report  

SciTech Connect (OSTI)

The Solvent-Refined Coal (SRC) test burn program was conducted at the Pittsburgh Energy Technology Center (PETC) located in Bruceton, Pa. One of the objectives of the study was to determine the feasibility of burning SRC fuels in boilers set up for fuel oil firing and to characterize emissions. Testing was conducted on the 700-hp oil-fired boiler used for research projects. No. 6 fuel oil was used for baseline data comparison, and the following SRC fuels were tested: SRC Fuel (pulverized SRC), SRC Residual Oil, and SRC-Water Slurry. Uncontrolled particulate emission rates averaged 0.9243 lb/10/sup 6/ Btu for SRC Fuel, 0.1970 lb/10/sup 6/ Btu for SRC Residual Oil, and 0.9085 lb/10/sup 6/ Btu for SRC-Water Slurry. On a lb/10/sup 6/ Btu basis, emissions from SRC Residual Oil averaged 79 and 78%, respectively, lower than the SRC Fuel and SRC-Water Slurry. The lower SRC Residual Oil emissions were due, in part, to the lower ash content of the oil and more efficient combustion. The SRC Fuel had the highest emission rate, but only 2% higher than the SRC-Water Slurry. Each fuel type was tested under variable boiler operating parameters to determine its effect on boiler emissions. The program successfully demonstrated that the SRC fuels could be burned in fuel oil boilers modified to handle SRC fuels. This report details the particulate emission program and results from testing conducted at the boiler outlet located before the mobile precipitator take-off duct. The sampling method was EPA Method 17, which uses an in-stack filter.

Not Available

1983-09-01T23:59:59.000Z

204

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Prospects for Hydrogen and Fuel Cells,” Organization forquiet and powerful. .Hydrogen and fuel cells also offer thevehicles (PHEVs), hydrogen fuel cell vehicles (FCVs) are

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

205

Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Characterized particulate emissions from U.S.-legal...

206

Reduction in biomass burning aerosol light absorption upon humidificat...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, Reduction in biomass burning aerosol light absorption upon...

207

Effect of H2/CO ratio and N2/CO2 dilution rate on laminar burning velocity of syngas investigated by direct measurement and simulation  

Science Journals Connector (OSTI)

Abstract Laminar burning velocities of syngas/air premixed flames, varying with H2/CO ratio (from 5/95 to 75/25) and N2 or CO2 dilution rate (from 0% to 60%), were accurately measured using a Teflon coated Heat Flux burner and OH-PLIF based Bunsen flame method. Experiments were carried out at atmospheric pressure and room temperature, with fuel/air equivalence ratios ranging from fuel-lean to fuel-rich. Coupled with experimental data, three chemical kinetic mechanisms, namely GRI-Mech 3.0, USC Mech II and Davis H2–CO mechanism, were validated. The Davis H2–CO and USC Mech II mechanisms appear to provide a better prediction for the laminar burning velocity. The laminar burning velocity variations with H2 and dilution gas contents were systematically investigated. For given dilution gas fraction, the laminar burning velocity reduction rate was enhanced as H2/CO ratio increasing. Effects of the syngas components and equivalence ratio variation on the concentrations of radical H and OH were also studied. It appears that there is a strong linear correlation between the laminar burning velocity and the maximum concentration of the H radical in the reaction zone for syngas. This characteristic is exclusively different from that in methane air premixed flame. These findings indicated that the high thermal diffusivity of the H radical played an important role in the laminar burning velocity enhancement and affected the laminar burning velocity reduction rate under dilution condition.

Z.H. Wang; W.B. Weng; Y. He; Z.S. Li; K.F. Cen

2014-01-01T23:59:59.000Z

208

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

gas produced from biomass, where biomass is defined as any organic material other than oil, natural gas, and coal; liquid, gaseous or solid synthetic fuels produced from coal; or...

209

Overview and Burning Technology Opportunities  

E-Print Network [OSTI]

development and demonstra tion. These programs include: Energy From the Forest (ENFOR) , a contract research program dealing with forest oriented matters relating to raw material (feedstock) supply; Bioenergy Development Program (BOP), also a contract R... of the technology in that specific application. The most common and pervasive barrier to the deployment of bioenergy technologies in industry is economic. In the long term the barrier will disappear as non-renewable fuel prices increase relatively as well...

Waller, J.

210

Alternative Fuels Data Center: Propane Benefits  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Benefits to Benefits to someone by E-mail Share Alternative Fuels Data Center: Propane Benefits on Facebook Tweet about Alternative Fuels Data Center: Propane Benefits on Twitter Bookmark Alternative Fuels Data Center: Propane Benefits on Google Bookmark Alternative Fuels Data Center: Propane Benefits on Delicious Rank Alternative Fuels Data Center: Propane Benefits on Digg Find More places to share Alternative Fuels Data Center: Propane Benefits on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Benefits and Considerations Also known as liquefied petroleum gas (LPG), propane is a domestically produced, well-established, clean-burning fuel. Using propane as a vehicle fuel increases energy security, provides convenience and performance

211

Alternative Fuels Data Center: Propane Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Propane Basics on Facebook Tweet about Alternative Fuels Data Center: Propane Basics on Twitter Bookmark Alternative Fuels Data Center: Propane Basics on Google Bookmark Alternative Fuels Data Center: Propane Basics on Delicious Rank Alternative Fuels Data Center: Propane Basics on Digg Find More places to share Alternative Fuels Data Center: Propane Basics on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Fuel Basics Propane dispenser Also known as liquefied petroleum gas (LPG) or autogas, propane is a clean-burning, high-energy alternative fuel that's been used for decades to

212

Alternative Fuels Data Center: Pollutants and Health  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center: Pollutants and Health to someone by E-mail Share Alternative Fuels Data Center: Pollutants and Health on Facebook Tweet about Alternative Fuels Data Center: Pollutants and Health on Twitter Bookmark Alternative Fuels Data Center: Pollutants and Health on Google Bookmark Alternative Fuels Data Center: Pollutants and Health on Delicious Rank Alternative Fuels Data Center: Pollutants and Health on Digg Find More places to share Alternative Fuels Data Center: Pollutants and Health on AddThis.com... Pollutants and Health Pollutants emitted from burning conventional and alternative fuels fall into two categories: Criteria and Non-Criteria pollutants. The Clean Air Act (CAA) requires the U.S. Environmental Protection Agency

213

Oxidized organic functional groups in aerosol particles from forest emissions measured at mid-mountain and high- elevation mountain sites in Whistler, BC  

E-Print Network [OSTI]

with fossil fuel combustion and marine emissions (Russell etfuel combustion, and biomass burning (BB). Natural sources include biogenic (from the biosphere), marine (

Schwartz, Rachel E.

2010-01-01T23:59:59.000Z

214

Fuel Cell Power SystemFuel Cell Power System May 21, 2003  

E-Print Network [OSTI]

/ Commercial / Industrial Transportation Fleet Vehicles Automotive Fuel Cell Microturbine Organic Rankine Cycle · Technical Goals and Objectives · Organization and Team Structure · Background and Program Overview

215

Army urged to resume burning chemical arms  

Science Journals Connector (OSTI)

Army urged to resume burning chemical arms ... Under baseline, the weapon is disassembled into four components—the chemical agent, energetic materials, metal parts, and dunnage (waste)—with each incinerated separately. ...

1994-02-14T23:59:59.000Z

216

Wood-Burning Heating System Deduction  

Broader source: Energy.gov [DOE]

This statute allows individual taxpayers a deduction for the purchase and installation of a wood-burning heating system. The deduction is equal to the total cost of purchase and installation for...

217

Vehicle Technologies Office 2013 Merit Review: A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines  

Broader source: Energy.gov [DOE]

A presentation given by the University of Michigan at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a university consortium to research efficient and clean high-pressure lean burn engines.

218

Feature Article Negative pressure dependence of mass burning rates of H2/CO/O2/diluent flames  

E-Print Network [OSTI]

with predominantly CO, CO2, and H2O) as a fuel itself as synthetic gas or ``syngas" from coal or biomass gasification of burning rates, analysis of the key reactions and kinetic pathways, and modeling studies were performed and temperature dependence compared to Ar-diluted flames of the same flame temperature. Simulations were performed

Ju, Yiguang

219

Tool and Calculator (Transit, Fuel) | Open Energy Information  

Open Energy Info (EERE)

and Calculator (Transit, Fuel) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Tool and Calculator (Transit, Fuel) AgencyCompany Organization: Publictransportation...

220

Early Adoption of Fuel Cell Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Market Transformation Early Adoption of Fuel Cell Technologies Early Adoption of Fuel Cell Technologies Many private sector organizations-grocers, banks, tire and hardware...

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

James W. Van Dam US Burning Plasma Organization  

E-Print Network [OSTI]

transport barriers, electron thermal transport, momentum transport, ... · MHD macrostability ­ Resistive materials, divertor design, ... · Long-pulse operation ­ Heating and current drive, profile control, hybrid Uniquely BP issues · Alpha particles ­ Large population of supra- thermal ions · Self-heating ­ "Autonomous

222

Global observations of desert dust and biomass burning aerosols  

E-Print Network [OSTI]

Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning.6 Biomass burning over Angola, 09 Sep. 2004 Absorbing Aerosol Index PMD image #12;biomass burning ocean

Graaf, Martin de

223

TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy  

SciTech Connect (OSTI)

As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

2014-04-01T23:59:59.000Z

224

Advanced atomization concept for CWF burning in small combustors  

SciTech Connect (OSTI)

The present project involves the second phase of research on a new concept in coal-water fuel (CWF) atomization that is applicable to burning in small combustors. It is intended to address the most important problem associated with CWF combustion; i.e., production of small spray droplets in an efficient manner by an atomization device. Phase 1 of this work was successfully completed with the development of an opposed-jet atomizer that met the goals of the first contract. Performance as a function of operating conditions was measured, and the technical feasibility of the device established in the Atlantic Research Atomization Test Facility employing a Malvern Particle Size Analyzer. Testing then proceeded to a combustion stage in a test furnace at a firing rate of 0.5 to 1.5 MMBtu/H.

Heaton, H.; McHale, E.

1991-01-01T23:59:59.000Z

225

Poland Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Europe Europe » Poland Poland Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Carbon dioxide emissions from Poland's use of fossil-fuels and cement production climbed at a remarkably steady rate of 3.9% per year from 1800 until 1980, when they dropped abruptly (11.7%). Fossil-fuel CO2 emissions crept back up throughout the 1980s peaking in 1987 at 127 million metric tons of carbon. Since the 1987 high, CO2 emissions have plummeted 32% to early 1970s levels while per capita emissions have dropped to late 1960s levels. Poland is the world's ninth largest producer of coal and emissions are predominantly from coal burning: 97% in 1950 and 68% in 2008. The drop following 1980 is apparent in rates of liquid fuel burning but releases from consumption of petroleum products have returned and surpassed 1980s

226

On the Stability of Thermonuclear Burning Fronts in Type Ia Supernovae  

E-Print Network [OSTI]

The propagation of cellularly stabilized thermonuclear flames is investigated by means of numerical simulations. In Type Ia supernova explosions the corresponding burning regime establishes at scales below the Gibson length. The cellular flame stabilization - which is a result of an interplay between the Landau-Darrieus instability and a nonlinear stabilization mechanism - is studied for the case of propagation into quiescent fuel as well as interaction with vortical fuel flows. Our simulations indicate that in thermonuclear supernova explosions stable cellular flames develop around the Gibson scale and that deflagration-to-detonation transition is unlikely to be triggered from flame evolution effects here.

F. K. Roepke; W. Hillebrandt

2004-04-26T23:59:59.000Z

227

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

228

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

229

Alternative Fuels Data Center: Biodiesel Benefits  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Benefits to Benefits to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Benefits on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Benefits on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Benefits on Google Bookmark Alternative Fuels Data Center: Biodiesel Benefits on Delicious Rank Alternative Fuels Data Center: Biodiesel Benefits on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Benefits on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Benefits and Considerations Biodiesel is a domestically produced, clean-burning, renewable substitute for petroleum diesel. Using biodiesel as a vehicle fuel increases energy security, improves public health and the environment, and provides safety

230

Alternative Fuels Data Center: Video Download Help  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC » Case Studies AFDC » Case Studies Printable Version Share this resource Send a link to Alternative Fuels Data Center: Video Download Help to someone by E-mail Share Alternative Fuels Data Center: Video Download Help on Facebook Tweet about Alternative Fuels Data Center: Video Download Help on Twitter Bookmark Alternative Fuels Data Center: Video Download Help on Google Bookmark Alternative Fuels Data Center: Video Download Help on Delicious Rank Alternative Fuels Data Center: Video Download Help on Digg Find More places to share Alternative Fuels Data Center: Video Download Help on AddThis.com... Video Download Help Learn how to download, watch, burn, and share videos. Download Videos To download videos for a PC, right-click a Windows Media Video (WMV) link and select "Save Target As..." from the shortcut menu.

231

scalating jet fuel prices are bringing fresh interest in NASAled research into tech  

E-Print Network [OSTI]

scalating jet fuel prices are bringing fresh interest in NASAled research into tech nologies that promise to reduce the amount of fuel needed to fly an airliner from gate to gate. Whether conservation to burn only half as much fuel by 2020 and at least 70% less by 2025, compared to one of today's most

232

Treatment of a severe alkali burn  

Science Journals Connector (OSTI)

The case history of a 20-year-old male patient who sustained an 85 per cent total body surface area alkali burn to his skin, after falling into a caustic lime pit, is reported. Considerable problems regarding the correct estimate of burn wound depth, predominant location of the deepest burn on the posterior half of the body, appropriate wound coverage, and lack of sufficient skin graft donor sites required a complex treatment plan. Excisions to fascia and intradermal debridement were required to achieve an appropriate bed for wound closure. Five per cent mafenide acetate solution (Sulfamylon) was applied to prevent burn wound sepsis. Human allografts and Biobrane were used extensively to achieve temporary wound closure, to provide mechanical protection of freshly autografted wounds, and to prevent desiccation following application of cultured epidermal autografts on to debrided wounds and split thickness skin grafted donor sites. The case illustrates a number of problems associated with the evaluation and treatment of patients suffering severe alkali burns, and demonstrates the implementation of both established and evolving technologies in the management of these injuries.

D. Erdmann; J. Hussmann; J.O. Kucan

1996-01-01T23:59:59.000Z

233

Development of Pillared M(IV) Phosphate Phosphonate Inorganic Organic Hybrid Ion Exchange Materials for Applications in Separations found in the Nuclear Fuel Cycle  

E-Print Network [OSTI]

This dissertation focuses on key intergroup and intragroup separations found in the back end of the nuclear fuel cycle, specifically americium from lanthanides and americium from other actinides, most importantly americium from curium. Our goal...

Burns, Jonathan

2012-10-02T23:59:59.000Z

234

Engines - Fuel Injection and Spray Research - Gasoline Sprays  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasoline Sprays Gasoline Sprays Animated image of fuel emerging from a gasoline injector Animated image of fuel emerging from a gasoline injector (simulated environment). Some newer automobiles in the U.S. use gasoline direct injection (GDI) engines. These advanced gasoline engines inject the fuel directly into the engine cylinder rather than into the intake port. These engines can achieve higher fuel efficiency, but they depend on a precise fuel/air mixture at the spark plug to initiate ignition. This leads to more stringent requirements on spray quality and reproducibility. GDI also enables new combustion strategies for gasoline engines such as lean burn engines that use less fuel and air. Lean burn engines may achieve efficiencies near those of diesels while producing low emissions. This

235

Chemical Kinetic Modeling of Advanced Transportation Fuels  

SciTech Connect (OSTI)

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20T23:59:59.000Z

236

Paradigm Shift: Burning Coal to Geothermal  

Broader source: Energy.gov (indexed) [DOE]

Paradigm Shift: Burning Coal Paradigm Shift: Burning Coal to Geothermal" November 20, 2012 jlowe@bsu.edu 765.285.2805 Ball State University Ball State University Administration Building 1899 Ball State 1920s Ball State University Ball State University (4) Coal Fired Boilers Installed 1941/1955 (3) Natural Gas Fired Boilers Installed in the 1970s Heat and Chilled Water Plant Operations Heat Plant: 4 Coal Fired Boilers 3 Natural Gas Fired Boilers 320,000 Lbs/Hr nameplate 240,000 Lbs/Hr current 700,000,000 Lbs/Year Chilled Water Plant: 5 Electrical Centrifugal Chillers 9,300 ton capacity 25,000,000 Ton Hours/Year Pollutants Produced from Burning 36,000 tons of Coal * Carbon Dioxide 85,000 tons (Global Warming)

237

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

238

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

239

Assessment of the effectiveness of mixed uranium-plutonium fuel in VVÉR  

Science Journals Connector (OSTI)

An assessment of the cost-effectiveness of burning mixed uranium-plutonium fuel in VVÉR reactors is made as a function of the price of natural uranium. It is shown that for the present price structure, based on t...

N. N. Ponomarev-Stepnoi; V. F. Tsibul’skii

2007-11-01T23:59:59.000Z

240

Molten Salt Batteries and Fuel Cells  

Science Journals Connector (OSTI)

This chapter describes recent work on batteries and fuel cells using molten salt electrolytes. This entails a comparison with other batteries and fuel cells utilizing aqueous and organic electrolytes; for...(1,2)

D. A. J. Swinkels

1971-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires  

E-Print Network [OSTI]

Regulation of agricultural waste burning occurs at multipleexample, agricultural waste burning is managed by individualalso take agricultural waste- burning emissions into

Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

2012-01-01T23:59:59.000Z

242

Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?  

E-Print Network [OSTI]

fication of drought-induced biomass burning in Indonesiavariability in global biomass burning emissions from 1997 toChemistry and Physics Do biomass burning aerosols intensify

Tosca, M. G; Randerson, J. T; Zender, C. S; Flanner, M. G; Rasch, P. J

2010-01-01T23:59:59.000Z

243

Biomass burning contribution to black carbon in the Western United States Mountain Ranges  

E-Print Network [OSTI]

and the atmosphere from biomass burning, Climatic Change, 2,Chemistry and Physics Biomass burning contribution to black2011 Y. H. Mao et al. : Biomass burning contribution to

2011-01-01T23:59:59.000Z

244

VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS  

Science Journals Connector (OSTI)

Volatile organic compounds (VOCs) emitted from fires of biomass commonly found in the southeast and southwest U.S. were investigated with PTR-MS and PIT-MS, which are capable of fast measurements of a large number of VOCs. Both instruments were calibrated with gas standards and mass dependent calibration curves are determined. The sensitivity of the PIT-MS linearly increases with mass, because the ion trap mass spectrometer used in PIT-MS is more efficient for higher masses, whereas the quadrupole in PTR-MS is most efficient around 70 amu. The identification of \\{VOCs\\} in the complicated mix of the fire emissions was done by gas chromatographic pre separation and inter-comparison with other instrumentation: GC–MS, FTIR, and NI-PT-CIMS. With these state of the art identification methods only 50–75% of the mass detectable by PTR-MS or PIT-MS could be identified. The amount of identified material was dependent on the type of fuel used and the phase of the burns, more can be identified in the flaming stage of the fire. Compounds with masses above 100 amu contributed the largest fraction of the unidentified mass. Emission ratios with CO for all identified and unidentified compounds were determined. Small oxygenated \\{VOCs\\} had the highest emission ratios of the observed compounds.

C. Warneke; J.M. Roberts; P. Veres; J. Gilman; W.C. Kuster; I. Burling; R. Yokelson; J.A. de Gouw

2011-01-01T23:59:59.000Z

245

Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications  

SciTech Connect (OSTI)

Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

Eteman, Shahrokh

2013-06-30T23:59:59.000Z

246

The origin and fate of organic pollutants from the combustion of alternative fuels: Phase 3 report. Final report, May 1, 1995--April 30, 1996  

SciTech Connect (OSTI)

The overall objective of this project is to determine the impact of alternative fuels on air quality, particularly ozone formation. This objective will be met through steps: qualitative identification of alternative fuel combustion products; quantitative measurement of specific emission levels of these products; and determination of the fate of the combustion products in the atmosphere, particularly in terms of depletion or conversion by hydroxyl (OH) radical attack. The alternative fuels of interest are methanol, ethanol, natural gas, and liquefied petroleum gas. The role of the University of Dayton Research Institute (UDRI) in this project is twofold. first, fused silica flow reactor instrumentation is being used to obtain both qualitative identification and quantitative emissions data on the thermal degradation products from the fuel-lean (oxidative), stoichiometric, and fuel-rich (pyrolytic) decomposition of methanol, ethanol,natural gas, and LP gas. Second, a laser photolysis/laser- induced fluorescence apparatus is being used to determine the rates and mechanisms of reaction of selected degradation products under atmospheric and combustion conditions. This draft final report contains the results of the third year of the study.

Taylor, P.H.; Dellinger, B. [Dayton Univ., OH (United States). Research Inst.

1996-07-01T23:59:59.000Z

247

Global Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data (ASCII, Fixed Format) Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited) Trends Since 1751 approximately 337 billion metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these emissions have occurred since the mid 1970s. The 2007 global fossil-fuel carbon emission estimate, 8365 million metric tons of carbon, represents an all-time high and a 1.7% increase from 2006. Globally, liquid and solid fuels accounted for 76.3% of the emissions from fossil-fuel burning and cement production in 2007. Combustion of gas fuels (e.g., natural gas) accounted for 18.5% (1551 million metric tons of carbon) of the total emissions from fossil fuels in 2007 and reflects a gradually increasing global utilization of natural gas. Emissions from

248

India Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

India India India Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends India's 2008 total fossil-fuel CO2 emissions rose 8.1% over the 2007 level to 475 million metric tons of carbon. From 1950 to 2008, India experienced dramatic growth in fossil-fuel CO2 emissions averaging 5.7% per year and becoming the world's third largest fossil-fuel CO2-emitting country. Indian total emissions from fossil-fuel consumption and cement production have more than doubled since 1994. Fossil-fuel emissions in India continue to result largely from coal burning with India being the world's third largest producer of coal. Coal contributed 87% of the emissions in 1950 and 71% in 2008; at the same time, the oil fraction increased from 11% to 20%. Indian emissions data reveal little impact from the oil price increases that

249

Ignition of deuterium-tritium fuel targets  

DOE Patents [OSTI]

Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.

Musinski, D.L.; Mruzek, M.T.

1991-08-27T23:59:59.000Z

250

ASSESSMENTOF BURNING-PLASMA PHENOMENA COMPACTIGNITION TOKAMAK  

E-Print Network [OSTI]

Report+ on ASSESSMENTOF BURNING-PLASMA PHENOMENA . in a COMPACTIGNITION TOKAMAK presented-coil tokamak configurations that would achieve ignition under presently accepted scaling laws. Studies the extent to which these compact tokamak ignition experiments can resolve the technical issue of under

251

First Sustained Burning Plasma. Starts in 2019.  

E-Print Network [OSTI]

-T fusion power density is approximated by: Plasma pressure in atmospheres We need >1MWm-3 for an economic system -- need a few Atmospheres of plasma pressure. Can we hold it with a magnetic field? MagneticITER JET (to scale) JET (to scale) First Sustained Burning Plasma. Starts in 2019. BASIC PARAMETERS

252

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network [OSTI]

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR TRUCKS OF BIOMASS/ DAY (Currently 82) #12;BAD FOR THE ECONOMY · Taxpayers will pay 50% - tax credits, etc · Not a cogen project so only 25% efficient · Biomass better for biofuels, not electricity · MILL JOBS

253

Novel theoretical and experimental approaches for understanding and optimizing hydrogen-sorbent interactions in metal organic framework materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Yves. J. Chabal (Primary Contact), Jing Li, Timo Thonhauser UT Dallas - Department of Materials Science and Engineering 800 W. Campbell Road, RL 10 Richardson, TX 75080 Phone: (972) 883-5751 Email: chabal@utdallas.edu DOE Program Officer: Dr. Bonnie Gersten Phone: (301) 903-0002 Email: Bonnie.Gersten@science.doe.gov Subcontractors: * Jing Li (Rutgers University) * Timo Thonhauser (Wake Forest University) Objectives Develop a * comprehensive understanding of how small molecules (e.g. H 2 ) bind inside metal organic framework

254

Fuel pin  

DOE Patents [OSTI]

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

255

Alternative Fuels Data Center: Biogas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biogas to someone by Biogas to someone by E-mail Share Alternative Fuels Data Center: Biogas on Facebook Tweet about Alternative Fuels Data Center: Biogas on Twitter Bookmark Alternative Fuels Data Center: Biogas on Google Bookmark Alternative Fuels Data Center: Biogas on Delicious Rank Alternative Fuels Data Center: Biogas on Digg Find More places to share Alternative Fuels Data Center: Biogas on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Renewable Natural Gas (Biogas) Biogas-also known as biomethane, swamp gas, landfill gas, or digester gas-is the gaseous product of anaerobic digestion (decomposition without oxygen) of organic matter. In addition to providing electricity and heat, biogas is useful as a vehicle fuel. When processed to purity standards,

256

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Pennsylvania Incentives and Laws Pennsylvania Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Alternative Fuel Project Grants Archived: 11/30/2013 Pennsylvania Energy Harvest Grant seeks to deploy cleaner energy sources by providing funding for alternative energy projects, including those involving clean, alternative fuels for transportation. Projects must address both energy and environmental concerns; projects that are primarily education, outreach, feasibility, assessment, planning, or research and development are not eligible. Eligible applicants include an incorporated 501(c)(3) non-profit organizations that is also registered with the

257

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

258

Fuel System and Fuel Measurement  

Science Journals Connector (OSTI)

Fuel management provides optimal solutions to reduce fuel consumption. Merchant vessels, such as container ships, drive at a reduced speed to save fuel since the reduction of the speed from...?1 lowers consumption

Michael Palocz-Andresen

2013-01-01T23:59:59.000Z

259

Platinum-CatalyzedOxidations of Organic Compounds by Ferric Sulfate: Use of a Redox Fuel Cell to Mediate Complete Oxidation of  

E-Print Network [OSTI]

and complete oxidation of ethylene glycolto carbon dioxide under mild conditionsusing dioxy- gen operating with ethylene glycol as fuel (5, 10-12). METHODS Materials. Methanol, ethanol, and ethylene catalyst was determined to be 3.3 X mol/g Pt (6.44% dispersion) by alternating titration with hydrogen

Prentiss, Mara

260

EPA aide wary about burning waste at sea  

Science Journals Connector (OSTI)

EPA aide wary about burning waste at sea ... An Environmental Protection Agency official has cautioned that a proposal by Chemical Waste Management (CWM) to perform a research burn of chemical wastes at sea should be permitted only if stringent conditions are met. ... During 19 days of burns, EPA would conduct research to determine the incinerator emissions' composition, transport, and effect on marine life. ...

1986-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Plasma Materials Interaction Issues For Burning Plasma Experiments  

E-Print Network [OSTI]

Plasma Materials Interaction Issues For Burning Plasma Experiments M. Ulrickson Presented · Introduction to Burning Plasmas · Plasma Materials Interaction Phenomena · Materials Issues · Summary #12;MAU 4 ­ Resistance to neutron damage #12;MAU 5 11/15/2001 The FIRE Burning Plasma Device · A compact high field

262

Transmutation Analysis of Enriched Uranium and Deep Burn High Temperature Reactors  

SciTech Connect (OSTI)

High temperature reactors (HTRs) have been under consideration for production of electricity, process heat, and for destruction of transuranics for decades. As part of the transmutation analysis efforts within the Fuel Cycle Research and Development (FCR&D) campaign, a need was identified for detailed discharge isotopics from HTRs for use in the VISION code. A conventional HTR using enriched uranium in UCO fuel was modeled having discharge burnup of 120 GWd/MTiHM. Also, a deep burn HTR (DB-HTR) was modeled burning transuranic (TRU)-only TRU-O2 fuel to a discharge burnup of 648 GWd/MTiHM. For each of these cases, unit cell depletion calculations were performed with SCALE/TRITON. Unit cells were used to perform this analysis using SCALE 6.1. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were first set by using Serpent calculations to match a spectral index between unit cell and whole core domains. In the case of the DB-HTR, the unit cell which was arrived at in this way conserved the ratio of fuel to moderator found in a single block of fuel. In the conventional HTR case, a larger moderator-to-fuel ratio than that of a single block was needed to simulate the whole core spectrum. Discharge isotopics (for 500 nuclides) and one-group cross-sections (for 1022 nuclides) were delivered to the transmutation analysis team. This report provides documentation for these calculations. In addition to the discharge isotopics, one-group cross-sections were provided for the full list of 1022 nuclides tracked in the transmutation library.

Michael A. Pope

2012-07-01T23:59:59.000Z

263

Berkeley Lab's Ashok Gadgil Takes Fuel Efficient Cookstoves to Ethiopia |  

Broader source: Energy.gov (indexed) [DOE]

Berkeley Lab's Ashok Gadgil Takes Fuel Efficient Cookstoves to Berkeley Lab's Ashok Gadgil Takes Fuel Efficient Cookstoves to Ethiopia Berkeley Lab's Ashok Gadgil Takes Fuel Efficient Cookstoves to Ethiopia February 8, 2011 - 1:21pm Addthis Darfuri woman using a Berkeley-Darfur cookstove | Courtesy of darfurstoves.org Darfuri woman using a Berkeley-Darfur cookstove | Courtesy of darfurstoves.org April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? Clean-burning cookstoves reduce the need for firewood in the developing world. Refugees are able to spend less time outside of the camps searching for fuel, therefore reducing the risk of violence and assault. By using less fuel, clean-burning cookstoves decrease deforestation and lessen greenhouse gas emissions. Researchers at the Department of Energy's Lawrence Berkeley National

264

Why is fuel Economy Important?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why Is Fuel Economy Important? Why Is Fuel Economy Important? Saves You Money Save as much as $1,700 in fuel costs each year by choosing the most efficient vehicle that meets your needs. See how much you can save! Photo of gasoline receipt on top of money Reduces Climate Change Carbon dioxide (CO2) from burning gasoline and diesel contributes to global climate change. You can do your part to reduce climate change by reducing your carbon footprint! Photo of Earth from space Reduces Oil Dependence Costs Our dependence on oil makes us vulnerable to oil market manipulation and price shocks. Find out how oil dependence hurts our economy! Chart showing annual cost of oil imports increasing from $21 billion per year in 1975 to approximately $330 billion in 2011 Increases Energy Sustainability

265

Breakout Group 5: Solid Oxide Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

Oxide Fuel Cells PARTICIPANTS Name Organization Robert Ploessl Corning, Inc. Tim Armstrong Oak Ridge National Laboratory Barbara Heydorn SRI International Suresh Baskaran...

266

Definition: Fossil fuels | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Fossil fuels Jump to: navigation, search Dictionary.png Fossil fuels Fuels formed in the Earth's crust over millions of years from decomposed organic matter. Common fossil fuels include petroleum, coal, and natural gas.[1][2] View on Wikipedia Wikipedia Definition Fossil fuels are fuels formed by natural processes such as anaerobic decomposition of buried dead organisms. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years. Fossil fuels contain high percentages of carbon and include coal, petroleum, and natural gas. They range from volatile materials with low carbon:hydrogen ratios like methane, to liquid petroleum

267

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

268

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

269

Superfund record of decision (EPA Region 4): New Hanover County Airport Burn Pit Site, New Hanover County, Wilmington, NC. (First remedial action), September 1992. Final report  

SciTech Connect (OSTI)

The New Hanover site was located on Gardner Road approximately 500 feet west of the New Hanover County Airport terminal, New Hanover, North Carolina. From 1968 to 1979, the site was used for fire-fighter training purposes. During training exercises, jet fuel, gasoline, petroleum storage bottoms, fuel oil, kerosene, and sorbent materials from oil spill cleanup were burned in a pit. During its active years, water from the pit was allowed to flow onto land surfaces. Inspections conducted after the pit was abandoned showed that most of the standing liquid in the pit was water. In addition to the burn pit area, fire-fighting activities resulted in contamination at several other site areas, including an auto burn area; a railroad tank burn area; an aircraft mock-up area; a fuel tank and pipelines area; and two stained soil areas north of the burn pit. The ROD addressed restoration of the aquifer to drinking water quality as a final action for the site. The primary contaminants of concern that affect the soil and ground water were VOCs, including benzene; and metals, including chromium and lead.

Not Available

1992-09-29T23:59:59.000Z

270

Fuel Cell Technologies Office: Photoelectrochemical Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Photoelectrochemical Working Group to someone by E-mail Share Fuel Cell Technologies Office: Photoelectrochemical Working Group on Facebook Tweet about Fuel Cell Technologies Office: Photoelectrochemical Working Group on Twitter Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Google Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Delicious Rank Fuel Cell Technologies Office: Photoelectrochemical Working Group on Digg Find More places to share Fuel Cell Technologies Office: Photoelectrochemical Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts

271

Fuel Cell Technologies Office: Catalysis Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalysis Working Catalysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Catalysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Catalysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Google Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Delicious Rank Fuel Cell Technologies Office: Catalysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Catalysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis

272

Physical and Chemical Characterization of Particulate and Gas phase Emissions from Biomass Burning  

E-Print Network [OSTI]

of the pile as waste. Waste burning is not permitted in manyagricultural residue/waste burning, residential wood

Hosseini, Seyedehsan

2012-01-01T23:59:59.000Z

273

Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest landscape of northeastern China  

E-Print Network [OSTI]

Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest, Columbia, MO 65211, USA H I G H L I G H T S · Focusing on fuel load may ignore effects of other spatial controls on fire. · We used burn probability to combine effects of fuel load and other spatial controls

He, Hong S.

274

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost and equipment  

E-Print Network [OSTI]

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost gas instead of continuing to burn low-sulfur fuel oil, a report said. Switching to liquefied natural who switch from gasoline-powered vehicles to ones fueled by compressed natural gas could save as much

275

Microstructured Hydrogen Fuel Cells  

Science Journals Connector (OSTI)

Micro fuel cells ; Polymer electrolyte membrane fuel cells ; Proton exchange membrane fuel cells ...

Luc G. Frechette

2014-05-01T23:59:59.000Z

276

Impact of Trash Burning on Air Quality in Mexico City  

Science Journals Connector (OSTI)

designed to simulate waste generated by a "recycling" and a "nonrecycling" family in a 208-L (55-gal) burn barrel at the EPA's Open Burning Test Facility. ... Four test burns were made in which the amt. of waste placed in the barrel varied from 6.4 to 13.6 kg and the amt. ... The results of this study indicate that backyard burning emits more PCDDs/PCDFs on a mass of refuse burned basis than various types of municipal waste combustors (MWCs). ...

A. Hodzic; C. Wiedinmyer; D. Salcedo; J. L. Jimenez

2012-03-29T23:59:59.000Z

277

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

278

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

279

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

280

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

282

Blending high sulfer coal with refuse derived fuel to make SO{sub 2} compliant slurry fuels  

SciTech Connect (OSTI)

The need for a better method of disposing of the international community`s garbage hardly needs emphasizing. In 1993, the United States alone generated approximately 207 million ton per year of Municipal Solid Waste (MSW), with 62% landfilled, 220/6 recycled, and 16% combusted for energy recovery. Despite strenuous efforts to make these disposal methods meet present needs, the cost of disposal is rising dramatically. Concurrently, the Clean Air Act Amendments (CAAA) of 1990 have severely restricted the SO{sub 2} emissions from coal fired boilers. Medium and high sulfur coals will not comply with the Phase II CAAA regulation limit of 1.2 lb SO{sub 2}/MM Btu, without advanced coal cleaning technologies or flue gas desulfurization, including the majority of the North Dakota lignite reserves. Utility power plants have attempted to burn refuse derived fuel (RDF), a heterogeneous solid fuel produced from MSW, with coal in utility scale boilers (generally referred to as co-firing). Co-firing of RDF with coal has been attempted in sixteen different boilers, five commercially. While lower SO{sub 2} emissions provided the impetus, co-firing RDF with coal suffered from several disadvantages including increased solids handling, increased excess air requirements, higher HCI, CO, NO{sub x} and chlorinated organic emissions, increased slag formation in the boiler, and higher fly ash resistivity. Currently, only two of the sixteen boilers are still regularly used to co-fire RDF. The overall objective of this research program was to assess the feasibility of blending RDF with lignite coal to form SO{sub 2} Compliant slurry fuels using EnerTech`s SlurryCarb{trademark} process. In particular, the objective was to overcome the difficulties of conventional co-firing. Blended slurry fuels were produced with the Energy & Environmental Research Center`s (EERC) bench-scale autoclave and were combusted in a pressurized fluidized-bed reactor (PFBR).

Klosky, M. [EnerTech Environmental, Inc., Atlanta, GA (United States); Anderson, C. [Energy & Environmental Research Center, Grand Forks, ND (United States)

1995-12-31T23:59:59.000Z

283

The Short-Term Cooling but Long-Term Global Warming Due to Biomass Burning  

Science Journals Connector (OSTI)

Biomass burning releases gases (e.g., CO2, CO, CH4, NOx, SO2, C2H6, C2H4, C3H8, C3H6) and aerosol particle components (e.g., black carbon, organic matter, K+, Na+, Ca2+, Mg2+, NH4+, H+, Cl?, H2SO4, HSO4?, SO42?, NO3?). To date, the global-scale climate response of ...

Mark Z. Jacobson

2004-08-01T23:59:59.000Z

284

Bacterioplankton and Organic Carbon Dynamics in the Lower Mesohaline Chesapeake Bay  

Science Journals Connector (OSTI)

...organic matter fuels the upper mesohaline...organic matter fuels the upper mesohaline...of the oxygen consumption (25-27) and...aboard the research vessel immediately after...north, serving to fuel bacterial oxygen consumption. Major differences...

Robert B. Jonas; Jon H. Tuttle

1990-03-01T23:59:59.000Z

285

Solar Fuels via Artificial Photosynthesis  

Science Journals Connector (OSTI)

Solar Fuels via Artificial Photosynthesis ... Indeed, all of the fossil-fuel-based energy consumed today derives from sunlight harvested by photosynthetic organisms. ... One is artificial photosynthesis, the use of the fundamental science underlying photosynthetic energy conversion to design synthetic systems for converting light into stored chemical energy. ...

Devens Gust; Thomas A. Moore; Ana L. Moore

2009-11-10T23:59:59.000Z

286

Alternative Fuel for Portland Cement Processing  

SciTech Connect (OSTI)

The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted at a full-scale cement plant with alternative fuels to examine their compatibility with the cement production process. Construction and demolition waste, woodchips, and soybean seeds were used as alternative fuels at a full-scale cement production facility. These fuels were co-fired with coal and waste plastics. The alternative fuels used in this trial accounted for 5 to 16 % of the total energy consumed during these burns. The overall performance of the portland cement produced during the various trial burns performed for practical purposes very similar to the cement produced during the control burn. The cement plant was successful in implementing alternative fuels to produce a consistent, high-quality product that increased cement performance while reducing the environmental footprint of the plant. The utilization of construction and demolition waste, woodchips and soybean seeds proved to be viable replacements for traditional fuels. The future use of these fuels depends on local availability, associated costs, and compatibility with a facilityâ??s production process.

Anton K. Schindler; Steve R. Duke; Thomas E. Burch; Edward W. Davis; Ralph H. Zee; David I. Bransby; Carla Hopkins; Rutherford L. Thompson; Jingran Duan; Vignesh Venkatasubramanian; Stephen Giles.

2012-06-30T23:59:59.000Z

287

Emissions of Polychlorinated Dibenzodioxins and Dibenzofurans and Polychlorinated Biphenyls from Uncontrolled Burning of Garden and Domestic Waste (Backyard Burning)  

Science Journals Connector (OSTI)

Straw and plastic (polyethylene) film used for wrapping silage were included, since burnings of these wastes on agricultural fields is considered to be one of the most common types of uncontrolled waste combustions in Sweden. ... To obtain fundamental information on dioxin emissions from an open burning 8 wastes which were likely amenable to be burnt wildly or suspected to generate high levels of dioxins were subjected to an open burning simulation in a special adapted furnace. ... designed to simulate waste generated by a "recycling" and a "nonrecycling" family in a 208-L (55-gal) burn barrel at the EPA's Open Burning Test Facility. ...

Björn Hedman; Morgan Näslund; Calle Nilsson; Stellan Marklund

2005-10-13T23:59:59.000Z

288

A feasibility study of reactor-based deep-burn concepts.  

SciTech Connect (OSTI)

A systematic assessment of the General Atomics (GA) proposed Deep-Burn concept based on the Modular Helium-Cooled Reactor design (DB-MHR) has been performed. Preliminary benchmarking of deterministic physics codes was done by comparing code results to those from MONTEBURNS (MCNP-ORIGEN) calculations. Detailed fuel cycle analyses were performed in order to provide an independent evaluation of the physics and transmutation performance of the one-pass and two-pass concepts. Key performance parameters such as transuranic consumption, reactor performance, and spent fuel characteristics were analyzed. This effort has been undertaken in close collaborations with the General Atomics design team and Brookhaven National Laboratory evaluation team. The study was performed primarily for a 600 MWt reference DB-MHR design having a power density of 4.7 MW/m{sup 3}. Based on parametric and sensitivity study, it was determined that the maximum burnup (TRU consumption) can be obtained using optimum values of 200 {micro}m and 20% for the fuel kernel diameter and fuel packing fraction, respectively. These values were retained for most of the one-pass and two-pass design calculations; variation to the packing fraction was necessary for the second stage of the two-pass concept. Using a four-batch fuel management scheme for the one-pass DB-MHR core, it was possible to obtain a TRU consumption of 58% and a cycle length of 286 EFPD. By increasing the core power to 800 MWt and the power density to 6.2 MW/m{sup 3}, it was possible to increase the TRU consumption to 60%, although the cycle length decreased by {approx}64 days. The higher TRU consumption (burnup) is due to the reduction of the in-core decay of fissile Pu-241 to Am-241 relative to fission, arising from the higher power density (specific power), which made the fuel more reactivity over time. It was also found that the TRU consumption can be improved by utilizing axial fuel shuffling or by operating with lower material temperatures (colder core). Results also showed that the transmutation performance of the one-pass deep-burn concept is sensitive to the initial TRU vector, primarily because longer cooling time reduces the fissile content (Pu-241 specifically.) With a cooling time of 5 years, the TRU consumption increases to 67%, while conversely, with 20-year cooling the TRU consumption is about 58%. For the two-pass DB-MHR (TRU recycling option), a fuel packing fraction of about 30% is required in the second pass (the recycled TRU). It was found that using a heterogeneous core (homogeneous fuel element) concept, the TRU consumption is dependent on the cooling interval before the 2nd pass, again due to Pu-241 decay during the time lag between the first pass fuel discharge and the second pass fuel charge. With a cooling interval of 7 years (5 and 2 years before and after reprocessing) a TRU consumption of 55% is obtained. With an assumed ''no cooling'' interval, the TRU consumption is 63%. By using a cylindrical core to reduce neutron leakage, TRU consumption of the case with 7-year cooling interval increases to 58%. For a two-pass concept using a heterogeneous fuel element (and homogeneous core) with first and second pass volume ratio of 2:1, the TRU consumption is 62.4%. Finally, the repository loading benefits arising from the deep-burn and Inert Matrix Fuel (IMF) concepts were estimated and compared, for the same initial TRU vector. The DB-MHR concept resulted in slightly higher TRU consumption and repository loading benefit compared to the IMF concept (58.1% versus 55.1% for TRU consumption and 2.0 versus 1.6 for estimated repository loading benefit).

Kim, T. K.; Taiwo, T. A.; Hill, R. N.; Yang, W. S.

2005-09-16T23:59:59.000Z

289

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

290

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

291

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on AddThis.com...

292

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel and Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on AddThis.com... More in this section...

293

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on AddThis.com...

294

Alternative fuels for industrial gas turbines (AFTUR)  

Science Journals Connector (OSTI)

Environmentally friendly, gas turbine driven co-generation plants can be located close to energy consumption sites, which can produce their own fuel such as waste process gas or biomass derived fuels. Since gas turbines are available in a large power range, they are well suited for this application. Current gas turbine systems that are capable of burning such fuels are normally developed for a single specific fuel (such as natural gas or domestic fuel oil) and use conventional diffusion flame technology with relatively high levels of \\{NOx\\} and partially unburned species emissions. Recently, great progress has been made in the clean combustion of natural gas and other fossil fuels through the use of dry low emission technologies based on lean premixed combustion, particularly with respect of \\{NOx\\} emissions. The objective of the AFTUR project is to extend this capability to a wider range of potentially commercial fuel types, including those of lower calorific value produced by gasification of biomass (LHV gas in line with the European Union targets) and hydrogen enriched fuels. The paper reports preliminary progress in the selection and characterisation of potential, liquid and gas, alternative fuels for industrial gas turbines. The combustion and emission characteristics of the selected fuels will be assessed, in the later phases of the project, both in laboratory and industrial combustion chambers.

Iskender Gökalp; Etienne Lebas

2004-01-01T23:59:59.000Z

295

An experimental investigation of the burning characteristics of water-oil emulsions  

SciTech Connect (OSTI)

An experimental investigation was conducted on the combustion characteristics of droplets of n-heptane, n-decane, n-dodecane, n-hexadecane and iso-octane emulsified with various amount of water and freely falling in a furnace of controlled temperature. Results demonstrate the intricate influences of water emulsification on the ignition, extinction and micro-explosion of the droplet response, and that the droplet burning time can be significantly reduced through judicious fuel blending so as to minimize the ignition delay and advance the onset of micro-explosion.

Wang, C.H.; Chen, J.T. [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering] [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering

1996-10-01T23:59:59.000Z

296

Coal fueled diesel system for stationary power applications-technology development  

SciTech Connect (OSTI)

The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

NONE

1995-08-01T23:59:59.000Z

297

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Infrastructure Grants to someone by E-mail Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

298

Dispersion model development for open burn/open detonation sources  

SciTech Connect (OSTI)

The disposal of obsolete munitions, propellants, and manufacturing wastes is conducted at Department of Defense (DOD) and Department of Energy (DOE) facilities. The most common disposal method is open burning (OB) and open detonation (OD) of the material, which occurs in an earthen pit or bermed area. OB/OD operations generate air pollutants and require predictions of pollutant concentrations. The pollutants include SO{sub 2}, NO{sub x}, particulates, volatile organic compounds and toxic materials such as metals, semivolatile organics, etc. Dispersion models are used to estimate pollutant concentrations given the source and meteorological conditions. However, there is currently no recommended EPA dispersion model to address OB/OD sources. Due to the constraints of existing models, a model development program was initiated under the DOD/DOE Strategic Environmental Research and Development Program. In Section 2, the authors give an overview of the model design which is divided into simple and research components. Sections 3 and 4 describe the simple component which includes Gaussian puff and analytic plume models.

Weil, J.C.; Templeman, B. [Univ. of Colorado, Boulder, CO (United States); Banta, R.; Weber, R. [NOAA-ETL, Boulder, CO (United States). Environmental Research Labs.; Mitchell, W. [Environmental Protection Agency, Research Triangle Park, NC (United States)

1996-12-31T23:59:59.000Z

299

Survival and evolution of Shewanella oneidensis MR-1: applications for microbial fuel cells.  

E-Print Network [OSTI]

??Microbial fuel cells are batteries in which microorganisms catalyze the conversion of organic fuel (such as lactate) into protons and electrons that power a resistor… (more)

Ribbens, Meghann Adrienne

2012-01-01T23:59:59.000Z

300

Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel  

Science Journals Connector (OSTI)

Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil bio petroleum fuel and diesel which can be an energy source.

Mustafa Hamid Al-abbas; Wan Aini Wan Ibrahim; Mohd. Marsin Sanagi

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Synthetic Fuel  

ScienceCinema (OSTI)

Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

2010-01-08T23:59:59.000Z

302

Mastication: A fuel reduction and site preperation alternative* ~ e f f~albrook',Han-Sup an^: Russell T. ~raham',Theresa B. ~ a i n ~and Robert ~ e l i n e r ~  

E-Print Network [OSTI]

Mastication: A fuel reduction and site preperation alternative* ~ e f f~albrook',Han-Sup an piling/burning site preparation and fuel treatment alternatives. Keywords: mastication. activity fuels of mastication used to treat activity and standing live fuels. In this study, a rotary head masticator was used

Fried, Jeremy S.

303

NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

304

Swell Fuel | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Swell Fuel Place Houston, Texas Zip 77072 Sector Marine and Hydrokinetic Product Texas-based developer of small-scale wave energy devices. Website http://www.swellfuel.com References Swell Fuel LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Lever Operated Pivoting Float Swell Fuel This article is a stub. You can help OpenEI by expanding it. Swell Fuel is a company located in Houston, Texas . References Retrieved from "http://en.openei.org/w/index.php?title=Swell_Fuel&oldid=680057" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies

305

Investigation of soil contamination at the Riot Control Burning Pit area in J-Field, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

A remedial investigation was conducted to identify soil contamination in the Riot Control Burning Pit area in J-field, Aberdeen Proving Ground, Maryland. The investigation included geophysical surveys to delineate the filled section of the pit, soil-gas surveys to locate the organic contamination area, field X-ray fluorescence measurements along the burning pit to identify the major metal contamination, and surface and subsurface soil analyses to investigate the nature and extent of contamination. This paper presents the results of this investigation

Wang, Ying-Ya; Yuen, C.R.; Martino, L.

1996-05-01T23:59:59.000Z

306

Radiative and climate impacts of absorbing aerosols  

E-Print Network [OSTI]

fossil fuel, biofuel and biomass combustion, organic carbonincomplete combustion of fossil fuel and biomass burning. BCof incomplete combustion of fossil fuels and biomass, black

Zhu, Aihua

2010-01-01T23:59:59.000Z

307

Stars as thermonuclear reactors: their fuels and ashes  

E-Print Network [OSTI]

Atomic nuclei are transformed into each other in the cosmos by nuclear reactions inside stars: -- the process of nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars and how they manage to burn their fuel so slowly most of the time are discussed. Thermonuclear reactions involving protons in the hydrostatic burning of hydrogen in stars are discussed first. This is followed by triple alpha reactions in the helium burning stage and the issues of survival of carbon and oxygen in red giant stars connected with nuclear structure of oxygen and neon. Advanced stages of nuclear burning in quiescent reactions involving carbon, neon, oxygen and silicon are discussed. The role of neutron induced reactions in nucleosynthesis beyond iron is discussed briefly, as also the experimental detection of neutrinos from SN 1987A which confirmed broadly the ideas concerning gravitational collapse leading to a supernova.

A. Ray

2004-05-28T23:59:59.000Z

308

Initial Estimates of Mercury Emissions to the Atmosphere from Global Biomass Burning  

Science Journals Connector (OSTI)

Frequently burning grasslands in Africa and Australia, and agricultural waste burning globally, contribute relatively little to the mercury budget. ... Savannas burn frequently (intentionally or by accident), typically annually or biannually, while boreal forest burns at 50?200 year time scales, and wet tropical forests rarely burn at all. ... Total C emissions tracked burning in forested areas (including deforestation fires in the tropics), whereas burned area was largely controlled by savanna fires which responded to different environmental and human factors. ...

H.R. Friedli; A.F. Arellano; S. Cinnirella; N. Pirrone

2009-04-15T23:59:59.000Z

309

Update of waste fuel firing experience in Foster Wheeler circulating fluidized bed boilers  

SciTech Connect (OSTI)

As the costs and availability of more conventional fuels continue to escalate, more and more customers are investigating and choosing operation with lower cost waste or alternative fuels. Details of units firing waste or alternative fuels which have been in active service for many years are summarized, and the fuel analyses are given. This chapter gives a general overview of the projects that are or will be firing waste or alternative fuels, namely, the Mt. Carmel Manitowoc, NISCO and HUNOSA units. The experience of the four operating units has demonstrated that waste and alternative fuels can be successfully and economically burned in an atmosphere circulating fluidized bed unit while meeting permitted emission requirements.

Abdulally, I.F.; Reed, K.A.

1993-12-31T23:59:59.000Z

310

FORMULATION OF A SURROGATE FOR THE SIMULATION OF JET FUEL POOL FIRES  

E-Print Network [OSTI]

City, Utah, USA The simulation of pool fires involving complex hydrocarbon fuels requires behavior to that of the jet fuel. The surrogate was shown to simulate the burn- ing rate, radiant heat flux provided by the University of Utah Research Fund. Ã? Address correspondence to eddings@che.utah.edu Combust

Utah, University of

311

Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles  

E-Print Network [OSTI]

Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum Aluminum nanoparticles Microexplosion Particle aggregation a b s t r a c t The burning characteristics of fuel droplets containing nano and micron-sized aluminum particles were investigated. Particle size

Qiao, Li

312

Schoenberg, Chang, Keeley, Pompa, Woods, Xu. Burning Index. 1 RH: Burning index in Los Angeles  

E-Print Network [OSTI]

A Critical Assessment of the Burning Index in Los Angeles County, California Frederic Paik Schoenberg Research Center, Sequoia-Kings Canyon National Parks, Three Rivers, CA 93271. D Department of Ecology and wildfires in Los Angeles County, California from January 1976 to December 2000 reveals that although the BI

Schoenberg, Frederic Paik (Rick)

313

Schoenberg, Chang, Pompa, Woods, Xu. Burning Index. 1 RH: Burning index in Los Angeles  

E-Print Network [OSTI]

Assessment of the Burning Index in Los Angeles County, California Frederic Paik SchoenbergA,E , Chien Research Center, Sequoia-Kings Canyon National Parks, Three Rivers, CA 93271. D Department of Ecology and wildfires in Los Angeles County, California from January 1976 to December 2000 reveals that although the BI

Schoenberg, Frederic Paik (Rick)

314

Life Satisfaction Over the First Five Years Following Burn Injury  

E-Print Network [OSTI]

.......................................................................... 88 1 CHAPTER I INTRODUCTION In the United States, approximately 500,000 individuals present annually for treatment of burns; about 40,000 of whom require hospitalization (Esselman, 2007). These individuals are typically men, ages 20... year after hospitalization is almost universally a time of high distress for individuals with burn injuries (Patterson & Ford, 2000). The psychological distress following burn injury is said to be the “most disabling of secondary complications...

Hoskins, Jessica Lynne

2012-10-19T23:59:59.000Z

315

Veto likely on ocean burning of toxic wastes  

Science Journals Connector (OSTI)

Veto likely on ocean burning of toxic wastes ... Ocean incineration of toxic wastes has been under study for some time, and EPA has authorized test burns as far back as 1974. ... (where more than 6000 people showed up), and Mobile, Ala., where the issues of transporting the waste safely to the burn site and what advantages ocean incineration has over land incineration were hotly debated. ...

1984-04-30T23:59:59.000Z

316

Alkyl Amides and Nitriles as Novel Tracers for Biomass Burning  

Science Journals Connector (OSTI)

Ammonia emissions into the atmosphere have been reported for numerous sources, as for example natural decay in soils, sewage treatment plants, livestock waste, and ammonia-based fertilizers (42, 43). ... Anal. of emissions from the burning of dried tropical grasses and agricultural wastes in a small-scale app. ... under the smoldering conditions of residential wood combustion, as compared to the active burning of forest fires and slash burns, incomplete combustion resulted in the preservation of high levels of the natural products. ...

Bernd R. T. Simoneit; A. I. Rushdi; M. R. bin Abas; B. M. Didyk

2002-11-23T23:59:59.000Z

317

Flame Stability of Methane and Syngas Oxy-fuel Steam Flames  

Science Journals Connector (OSTI)

The scaling relation [gF = c(SL2/?)] for different burner diameters was obtained for various diameter burners. ... The fuels used for these experiments were methane and syngas (CO–H2), which were burned with oxidants O2 and recirculated CO2 and H2O. Research-grade fuel and oxidant were delivered to the burners from pressurized tanks. ... Narrower flammable regimes and lower laminar burning velocity under oxy-fuel combustion conditions may lead to new stability challenges in operating oxy-coal burners. ...

B. K. Dam; N. D. Love; A. R. Choudhuri

2012-11-26T23:59:59.000Z

318

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

319

Geopolymeric Agent for Immobilization of Radioactive Ashes after Biomass Burning  

Science Journals Connector (OSTI)

Solidification of low-level radioactive wastes obtained after biomass burning was studied. Two solidification modes using Portland...- 6 g cm- 2 day- 1.... Thus, su...

A. D. Chervonnyi; N. A. Chervonnaya

2003-03-01T23:59:59.000Z

320

Reflective Terahertz Imaging for early diagnosis of skin burn severity  

E-Print Network [OSTI]

the brand area is also visualized in the THz images of thebrand shape is discernible as early as the post burn THz image.

TEWARI, PRIYAMVADA

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Burning of coal waste piles from Douro Coalfield (Portugal): Petrological, geochemical and mineralogical characterization  

Science Journals Connector (OSTI)

In the Douro Coalfield anthracites were exploited for decades (1795–1994). Besides many small mines Douro Coalfield had two principal mining areas (S. Pedro da Cova and Pejão). Coal mining activities cause several impacts on the environment, one of which is the amount of discard or waste which was disposed of all over Douro Coalfield resulting in one of the most significant and severe impacts on the environment. Over 20 waste piles exist in the old mining areas, geographically dispersed, and three of them are presently burning. Their ignition was caused by forest fires during the summer of 2005. Samples from the burning and unburned zones of the waste piles were studied as were the gas from vents and the minerals resulting after combustion. Geochemical processes and mineralogical transformations in the burning coal waste pile were investigated. Microscopic analyses of the samples identified some particular aspects related with combustion: oxidation of pyrite, the presence of iron oxides, organic particles with cracks and rims with lowered (suppressed) Rr, devolatilization vacuoles and some char structures. The occurrence of vitreous (glassy) material as well as Fe–Al spinels in the burning coal waste provide evidences that the combustion temperature could have reached values above 1000 °C. Due to combustion, and as expected, the samples studied reported high ash yields. Samples taken from the burning zones reported an increase of As, Cr, Li, Nb, Ni, Pb, Rb, Sr and LREE concentrations and a decrease in Zr and HREE concentrations. Enrichment in Cs, Li and Rb was noted when comparing with the geochemical composition of black shales and world coals composition that is related with the contribution of granitic rocks in the sediments that originated the main lithologies of the Douro Coalfield (carbonaceous shale and lithic arenites). Cluster analyses (R-type and Q-type) were performed to understand the trend between the unburned and burning samples and it seems that some chemical variations are responsible for this separation. Elemental sulphur and salammoniac (ammonium salt) are the coal fire gas minerals neoformed on the surface of piles, near the burning zones. They were identified by different techniques, mainly SEM-EDX, XRD and FTIR. Relatively high concentrations of several aromatic compounds were detected in the gas collected at the studied areas, as well as aliphatic hydrocarbons. The highest concentrations of aromatic hydrocarbons were measured in gas samples from S. Pedro da Cova waste pile. The exposure to hazardous compounds present in the gas is a serious risk to human health and the environment.

J. Ribeiro; E. Ferreira da Silva; D. Flores

2010-01-01T23:59:59.000Z

322

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

323

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

324

Fueling up with Hydrogen: New Approaches to Hydrogen Storage (433rd Brookhaven Lecture)  

SciTech Connect (OSTI)

Hydrogen, the most abundant element in the universe, burns excellently and cleanly, with only pure water as a byproduct. NASA has used hydrogen as fuel for years in the space program. So, why not use hydrogen to fuel cars? The bottleneck of developing hydrogen-fueled vehicles has been identified: the greatest problem is storage. The conventional storage method, compressed hydrogen gas, requires a large tank volume, and the possibility of a tank rupture poses a significant safety risk. Another method, low temperature liquid storage, is expensive and impractical for most automotive applications. An alternative is to store the hydrogen in the solid state. In his talk, Jason Graetz will describe the new approaches to hydrogen storage being studied by his group at BNL. These include using kinetically stabilized hydrides, bialkali alanates and reversible metal-organic hydrides. The researchers are also using novel synthesis approaches, state-of-the-art characterization and first principles modeling, all providing a better fundamental understanding of these interesting and useful new materials.

Graetz, Jason (Energy Sciences and Technology Dept) [Energy Sciences and Technology Dept

2008-02-20T23:59:59.000Z

325

Dual-fueling turbocharged diesels with ethanol  

SciTech Connect (OSTI)

Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution. (Refs. 6).

Cruz, J.M.; Rotz, C.A.; Watson, D.H.

1982-09-01T23:59:59.000Z

326

Dual-fueling turbocharged diesels with ethanol  

SciTech Connect (OSTI)

Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution.

Cruz, J.M.; Rotz, C.A.; Watson, D.H.

1982-09-01T23:59:59.000Z

327

Clean Cities: East Tennessee Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tennessee Clean Fuels Coalition Tennessee Clean Fuels Coalition The East Tennessee Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. East Tennessee Clean Fuels coalition Contact Information Jonathan Overly 865-974-3625 jonathan@etcleanfuels.org Coalition Website Clean Cities Coordinator Jonathan Overly Photo of Jonathan Overly Jonathan Overly founded the East Tennessee Clean Fuels Coalition (ETCleanFuels) in 2002 and has managed it since its inception. He has spoken to thousands of people across east Tennessee including over 100 companies and organizations about partnering to expand alternative fuel use in the area. Many government and industry fleets are coalition members. Although biodiesel was an early lead fuel for the coalition, more recently

328

Canada's Fuel Consumption Guide | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Canada's Fuel Consumption Guide Jump to: navigation, search Tool Summary Name: Canada's Fuel Consumption Guide Agency/Company /Organization: Natural Resources Canada Focus Area: Fuels & Efficiency Topics: Analysis Tools Website: oee.nrcan.gc.ca/transportation/tools/fuel-consumption-guide/fuel-consu Natural Resources Canada has compiled fuel consumption ratings for passenger cars and light-duty pickup trucks, vans, and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices to reduce fuel consumption. How to Use This Tool This tool is most helpful when using these strategies:

329

Clean Cities: Alabama Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alabama Clean Fuels Coalition Alabama Clean Fuels Coalition The Alabama Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Alabama Clean Fuels coalition Contact Information Mark Bentley 205-402-2755 mark@alabamacleanfuels.org Coalition Website Clean Cities Coordinator Mark Bentley Photo of Mark Bentley Mark Bentley has been the executive director of the Alabama Clean Fuels Coalition (ACFC) since August 2006. ACFC is a nonprofit, membership-based, organization that participates in the U. S. Department of Energy's Clean Cities program, which promotes the use of alternative fuels and alternative fuel vehicles throughout the United States. Bentley actively strives to lead efforts to build an alternative fuel industry in Alabama and leverages

330

Emissions from Open Burning of Simulated Military Waste from Forward Operating Bases  

Science Journals Connector (OSTI)

Emissions from two different burning scenarios, so-called “burn piles/pits” and an air curtain burner/“burn box”, were compared using simulated FOB waste from municipal and commercial sources. ... Aerial- and ground-sampled emissions from three prescribed forest burns in the southeastern U.S. were compared to emissions from laboratory open burn tests using biomass from the same locations. ...

Johanna Aurell; Brian K. Gullett; Dirk Yamamoto

2012-09-19T23:59:59.000Z

331

Acoustic characterization of a partially-premixed gas turbine model combustor: Syngas and hydrocarbon fuel comparisons  

Science Journals Connector (OSTI)

In this work, the acoustic behavior of a combustion instability in a gas turbine model combustor was investigated as fuel properties, air flow rates, and burner geometry were varied. The dual-swirl burner, developed at DLR Stuttgart by Meier, was operated using syngas (H2/CO), ethylene, propane, and methane. The frequency of the instability was found to vary significantly from 250 to 480 Hz. When the plenum volume and the exhaust pipe length and diameter were changed, the frequencies followed trends similar to a Helmholtz resonator. The variation of fuel type, flame speed, and air flow rate greatly altered the instability frequency and amplitude. These effects are not predicted by Helmholtz or organ tone acoustic theory. Higher frequencies were correlated with larger laminar burning velocities and higher air flow rates. The burner is a forced resonator, in which the flame oscillations couple with the flowfield to create convectively altered Helmholtz resonances. This suggests the need for an improved model of a forced Helmholtz resonator that includes flame properties. Alkane fuels displayed similar acoustic trends, but ethylene varied greatly from methane and propane. Syngas displayed different behavior than hydrocarbon fuels, even when the laminar flame speeds of the fuels were matched between ethylene and a syngas mixture. Flame characteristics such as anchoring, liftoff height, and shape appear to play a major role in the determination of instability strength and presence. With increasing hydrogen-content in the syngas-mixture, the flame transitions from a lifted to a fully anchored flame, resulting in a drastic decrease in the acoustic amplitude associated with non-resonating flames. Rayleigh indices show that flat flames create strong regions of thermo-acoustic coupling compared to axially extended V-shape flames. It is concluded that, in the current burner configuration, integrated-acoustics occur that involve a combination of Helmholtz and convective-mechanisms.

Patton M. Allison; James F. Driscoll; Matthias Ihme

2013-01-01T23:59:59.000Z

332

Tropical biomass burning smoke plume size, shape, reflectance, and age based on 2001â??2009 MISR imagery of Borneo  

E-Print Network [OSTI]

C. S. Zender et al. : Tropical biomass burning smoke plumeslaboratory measurements of biomass-burning emis- sions: 1.aerosol optical depth biomass burning events: a comparison

Zender, C. S; Krolewski, A. G; Tosca, M. G; Randerson, J. T

2012-01-01T23:59:59.000Z

333

Evaluation of soy based heavy fuel oil emulsifiers for energy efficiency and environmental improvement  

SciTech Connect (OSTI)

It is known that the emulsification of water into heavy fuel oil (No. 6) can result in improved atomization of the fuel in a combustion chamber, which results in several benefits. In this study, two soybean lecithin based emulsifiers were evaluated. The emulsifiers were added to the No. 6 fuel at 0.5% and 1 % levels and emulsions of 10% and 15% water were prepared and burned in a pilot scale combustion chamber. The results showed a significant decrease in NO{sub x} emissions, and a reduction in carbon particulates, as well as a decrease in the excess oxygen requirement when the emulsions were burned when compared to fuel oil alone and a fuel oil/water mixture without the emulsifier. It was concluded that the use of a soybean lecithin based emulsifier may be used to increase the burning efficiency of heavy fuel oils, reduce emissions and particulates, and reduce down time for cleaning. This can be very important in utility plants which burn large volumes of heavy fuel oil and are located near urban areas.

Lee, P.K.; Szuhaj, B.F. [Central Soya Company, Inc., Fort Wayne, IN (United States); Diego, A. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

1996-12-31T23:59:59.000Z

334

Commercial utilization of weapon grade plutonium as TRISO fuel in conventional CANDU reactors  

Science Journals Connector (OSTI)

Large quantities of weapon grade (WG) plutonium have been accumulated in the nuclear warheads. Plutonium and heavy water moderator can give a good combination with respect to neutron economy. TRISO type fuel can withstand very high fuel burn up levels. The paper investigates the prospects of utilization of TRISO fuel made of WG-plutonium in CANDU reactors. Three different fuel compositions have been investigated: (1): 90% ThC + 10% PuC, (2): 70% ThC + 30% PuC and (3): 50% ThC + 50% PuC. The temporal variation of the criticality k? and the burn-up values of the reactor have been calculated by full power operation up to 17 years. Calculated startup criticalities for these fuel modes are k?,0 = 1.6403, 1.7228 and 1.7662, respectively. Attainable burn up values and reactor operation times without new fuel charge will be 94 700, 265 000 and 425 000 MW.D/MT and along with continuous operation periods of ?3.5, 10 and 17 years, respectively, for the corresponding modes. These high burn ups would reduce fuel fabrication costs and nuclear waste mass for final disposal per unit energy drastically.

Sümer ?ahin; Hac? Mehmet ?ahin; Adem Ac?r

2012-01-01T23:59:59.000Z

335

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

336

Analysis of Tracer Dispersion During a Prescribed Forest Burn  

E-Print Network [OSTI]

become a method to manage forest health, while preventing uncontrolled wild land fire. Low intensity, prescribed burns release less carbon dioxide than wildfires of the same size and may be used as a strategy. The ultimate goal of the project is to use the data from the burn, along with modeling techniques to improve

Collins, Gary S.

337

UNCORRECTED 2 Burning biodiversity: Woody biomass use by commercial  

E-Print Network [OSTI]

UNCORRECTED PROOF 2 Burning biodiversity: Woody biomass use by commercial 3 and subsistence groups Biodiversity Science, Conservation International, 1919 M St., Washington, DC 20036, USA 7 c Energy as: Lisa Naughton-Treves et al., Burning biodiversity: Woody biomass use by commercial

Kammen, Daniel M.

338

Prioritizing Burn-Injured Patients During a Disaster  

Science Journals Connector (OSTI)

The U.S. government has mandated that, in a catastrophic event, metropolitan areas need to be capable of caring for 50 burn-injured patients per million population. In New York City, this corresponds to 400 patients. There are currently 140 burn beds ... Keywords: disaster planning, healthcare, triage

Carri W. Chan; Linda V. Green; Yina Lu; Nicole Leahy; Roger Yurt

2013-04-01T23:59:59.000Z

339

Stellar Burning Falk Herwig, Alexander Heger, and Frank  

E-Print Network [OSTI]

]. In these objects, a thermonuclear runaway of the helium shell on top of an electron-degenerate core (a young White implications for the production of neutron- rich elements. log Tlog Teffeff Figure 1-- A thermonuclear runaway stellar conditions. We will include a stellar equation of state as well as thermonuclear burning (TN burn

Herwig, Falk

340

Study of composite cement containing burned oil shale  

E-Print Network [OSTI]

Study of composite cement containing burned oil shale Julien Ston Supervisors : Prof. Karen properties. SCMs can be by-products from various industries or of natural origin, such as shale. Oil shale correctly, give a material with some cementitious properties known as burned oil shale (BOS). This study

Dalang, Robert C.

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Process May Reduce Pollution From Burning Coal Refuse Piles  

Science Journals Connector (OSTI)

Process May Reduce Pollution From Burning Coal Refuse Piles ... The process uses a heavy liquid to separate marketable high-ash coal from nonburnable waste rock. ... Nearly 500 mountains of coal refuse, waste material from coal cleaning operations, are burning uncontrollably in 15 states in the U.S., according to a Bureau of Mines survey. ...

1965-01-25T23:59:59.000Z

342

Physics of fusion-fuel cycles  

SciTech Connect (OSTI)

The evaluation of nuclear fusion fuels for a magnetic fusion economy must take into account the various technological impacts of the various fusion fuel cycles as well as the relative reactivity and the required ..beta..'s and temperatures necessary for economic steady-state burns. This paper will review some of the physics of the various fusion fuel cycles (D-T, catalyzed D-D, D-/sup 3/He, D-/sup 6/Li, and the exotic fuels: /sup 3/He/sup 3/He and the proton-based fuels such as P-/sup 6/Li, P-/sup 9/Be, and P-/sup 11/B) including such items as: (1) tritium inventory, burnup, and recycle, (2) neutrons, (3) condensable fuels and ashes, (4) direct electrical recovery prospects, (5) fissile breeding, etc. The advantages as well as the disadvantages of the different fusion fuel cycles will be discussed. The optimum fuel cycle from an overall standpoint of viability and potential technological considerations appears to be catalyzed D-D, which could also support smaller relatively clean, lean-D, rich-/sup 3/He satellite reactors as well as fission reactors.

McNally, J.R. Jr.

1981-01-01T23:59:59.000Z

343

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

344

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

345

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

346

Microsoft PowerPoint - burns.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Low Evaluation of Low Tank Level Mixing Technologies for DOE High Level Waste Tank Retrieval (10516) Heather Burns Andrew Fellinger and Richard Minichan Savannah River National Laboratory March 7 - 11, 2010 Phoenix, Arizona Waste Management Symposia 2010 SRNL-STI-2010-00139 2 W A S T E M A N A G E M E N T S Y M P O S I A 2 0 1 0 Agenda Overview Background Why a retrieval knowledge center Initial objectives / goals Low Level Mixing Addressing a challenge through technology demonstration Evaluation criteria Instrumentation Test matrix HOW DID WE GET THERE? WHERE DID WE GO? "Building a Foundation" The challenges that lead to gaps in retrieval Development and mock-up of retrieval technologies 3 W A S T E M A N A G E M E N T S Y M P O S I A 2 0 1 0 Background -

347

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

348

V Fuel Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

Fuel Pty Ltd Fuel Pty Ltd Jump to: navigation, search Name V-Fuel Pty Ltd Place Victoria, Australia Product Victoria-based company set up by Magnam Technologies to commercialise the vanadium redox battery. References V-Fuel Pty Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. V-Fuel Pty Ltd is a company located in Victoria, Australia . References ↑ "V-Fuel Pty Ltd" Retrieved from "http://en.openei.org/w/index.php?title=V_Fuel_Pty_Ltd&oldid=352699" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

349

American Ag Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Ag Fuels LLC Ag Fuels LLC Jump to: navigation, search Name American Ag Fuels LLC Place Defiance, Ohio Zip 43512 Product Biodiesel producer in Defiance, Ohio. References American Ag Fuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Ag Fuels LLC is a company located in Defiance, Ohio . References ↑ "American Ag Fuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=American_Ag_Fuels_LLC&oldid=342105" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

350

ALL Fuels Energy | Open Energy Information  

Open Energy Info (EERE)

ALL Fuels Energy ALL Fuels Energy Jump to: navigation, search Name ALL Fuels & Energy Place Iowa Zip 50131 Product Ethanol plant developer based in Iowa, US. References ALL Fuels & Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. ALL Fuels & Energy is a company located in Iowa . References ↑ "ALL Fuels & Energy" Retrieved from "http://en.openei.org/w/index.php?title=ALL_Fuels_Energy&oldid=342009" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

351

High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant  

SciTech Connect (OSTI)

High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and P is the pressure in units of MPa. Details of the experimental method, results and data analysis are discussed herein and briefly compared to other AP based materials that have been measured in this apparatus.

Glascoe, E A; Tan, N

2010-04-21T23:59:59.000Z

352

Alternative fuels  

SciTech Connect (OSTI)

This paper presents the preliminary results of a review, of the experiences of Brazil, Canada, and New Zealand, which have implemented programs to encourage the use of alternative motor fuels. It will also discuss the results of a separate completed review of the Department of Energy's (DOE) progress in implementing the Alternative Motor Fuels Act of 1988. The act calls for, among other things, the federal government to use alternative-fueled vehicles in its fleet. The Persian Gulf War, environmental concerns, and the administration's National Energy Strategy have greatly heightened interest in the use of alternative fuels in this country.

Not Available

1991-07-01T23:59:59.000Z

353

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust...

354

Method and apparatus to measure the depth of skin burns  

DOE Patents [OSTI]

A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

Dickey, Fred M. (Albuquerque, NM); Holswade, Scott C. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

355

Colloidal Petcoke-in-Water Suspensions as Fuels for Power Generation  

Science Journals Connector (OSTI)

Colloidal Petcoke-in-Water Suspensions as Fuels for Power Generation ... In this work, it is shown that, despite the low reactivity of petroleum coke (petcoke) and the presence of 40% water, a petcoke suspension having a large colloidal population burned with unprecedented high efficiencies (>99%) without a support fuel. ... Combustion tests of a typical heavy fuel oil (HFO) were carried out to produce baseline data for comparison to the colloidal petcoke in water suspension (CPW) performance. ...

Gustavo A. Núñez; María I. Briceño; Cebers Gómez; Takeshi Asa; Hamid Farzan; Shengteng Hu; Daniel D. Joseph

2012-10-24T23:59:59.000Z

356

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

357

State Level Incentives for Biogas-Fuel Cell Projects  

Broader source: Energy.gov [DOE]

State policy and legislative outlook for biogas and fuel cells. Presented by Norma McDonald, Organic Waste Systems, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

358

Upcoming Webinar March 11: National Fuel Cell Technology Evaluation...  

Broader source: Energy.gov (indexed) [DOE]

academia, and government organizations as well as a new activity to report on current fuel cell price. This webinar will be of interest to hydrogen and fuel cell manufacturers,...

359

Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Lean-burn SIDI...

360

Atmospheric polycyclic aromatic hydrocarbons and isomer ratios as tracers of biomass burning emissions in Northern India  

Science Journals Connector (OSTI)

Emission from large-scale post-harvest agricultural-waste burning (paddy-residue burning during October–November and wheat-residue burning in April–May) is a conspicuous feature ... in northern India. The poor an...

Prashant Rajput; M. M. Sarin; Deepti Sharma…

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

E-Print Network 3.0 - american biomass burning Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biomass burning Search Powered by Explorit Topic List Advanced Search Sample search results for: american biomass burning Page: << < 1 2 3 4 5 > >> 1 Recent biomass burning in the...

362

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

363

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

364

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

365

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

366

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

367

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

368

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

369

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

370

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

371

Alternative Fuels Data Center: Natural Gas Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions to someone by E-mail Emissions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Emissions on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Laws & Incentives Natural Gas Vehicle Emissions Natural gas burns cleaner than conventional gasoline or diesel due to its

372

Fuel Research  

Science Journals Connector (OSTI)

... FUEL research was discussed by Sir Harry McGowan, who succeeds Sir William Larke as president of the Institute of Fuel, in ... has a ragged front, and new knowledge is continually changing relative national positions. Sir Harry McGowan referred to the domestic use of raw coal, which is still preferred to ...

1934-11-24T23:59:59.000Z

373

E-Print Network 3.0 - acute burn patients Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: Burns & Plastic Surgery Care for Adults and Paediatrics 12;Studying Nursing & Health Care at Glasgow... Certificate in Burns & Plastic Surgery Care for Adults and...

374

Alternative Fuels Data Center: Related Links  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Related Links to Related Links to someone by E-mail Share Alternative Fuels Data Center: Related Links on Facebook Tweet about Alternative Fuels Data Center: Related Links on Twitter Bookmark Alternative Fuels Data Center: Related Links on Google Bookmark Alternative Fuels Data Center: Related Links on Delicious Rank Alternative Fuels Data Center: Related Links on Digg Find More places to share Alternative Fuels Data Center: Related Links on AddThis.com... Related Links For a list of additional resources about alternative fuels and advanced vehicles, select one or more categories below. All organizations are provided as suggested resources. The Alternative Fuels Data Center does not endorse these companies or the products and services listed on their websites (see disclaimer).

375

Fuel Cell Technologies Office: Key Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Key Activities to Key Activities to someone by E-mail Share Fuel Cell Technologies Office: Key Activities on Facebook Tweet about Fuel Cell Technologies Office: Key Activities on Twitter Bookmark Fuel Cell Technologies Office: Key Activities on Google Bookmark Fuel Cell Technologies Office: Key Activities on Delicious Rank Fuel Cell Technologies Office: Key Activities on Digg Find More places to share Fuel Cell Technologies Office: Key Activities on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Key Activities The Fuel Cell Technologies Office conducts work in several key areas to

376

International Fuel Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Fuel Technology Inc Fuel Technology Inc Jump to: navigation, search Name International Fuel Technology Inc Place St. Louis, Missouri Zip 63105 Product Supplier of environmentally friendly surfactant-based fuel additives designed to significantly reduce harmful emissions produced from internal combustion engines. References International Fuel Technology Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. International Fuel Technology Inc is a company located in St. Louis, Missouri . References ↑ "International Fuel Technology Inc" Retrieved from "http://en.openei.org/w/index.php?title=International_Fuel_Technology_Inc&oldid=347044" Categories: Clean Energy Organizations

377

Fuel cell membranes and crossover prevention  

DOE Patents [OSTI]

A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

Masel, Richard I. (Champaign, IL); York, Cynthia A. (Newington, CT); Waszczuk, Piotr (White Bear Lake, MN); Wieckowski, Andrzej (Champaign, IL)

2009-08-04T23:59:59.000Z

378

Clean Cities: Clean Fuels Ohio coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clean Fuels Ohio Coalition Clean Fuels Ohio Coalition The Clean Fuels Ohio coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Clean Fuels Ohio coalition Contact Information Sam Spofforth 614-884-7336 sam@cleanfuelsohio.org Andrew Conley 614-884-7336 andrew@cleanfuelsohio.org Coalition Website Clean Cities Coordinators Coord Sam Spofforth Coord Coord Andrew Conley Coord Photo of Sam Spofforth Sam Spofforth has served as Executive Director of Clean Fuels Ohio since the organization's founding in 2002. Under Spofforth's leadership, Clean Fuels Ohio has become the "go to" resource in Ohio for cleaner fuels, vehicles and energy-saving transportation technologies that reduce climate change, increase American energy security and strengthen Ohio's economy. He

379

Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields  

SciTech Connect (OSTI)

We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10{sup 4} T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ?50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.

Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2013-07-15T23:59:59.000Z

380

Freese-casting as a Novel Manufacturing Process for Fast Reactor Fuels  

SciTech Connect (OSTI)

Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reqctors requires novel fuel types based on new materials and designs that can acieve higher performance requirements (higher burn up, higher power, and greator margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a welldefined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

Wegst, Ulrike G.K.; Allen, Todd; Sridharan, Kumar

2014-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

382

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

383

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

384

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

385

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

386

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

387

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

388

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

389

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

390

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

391

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

392

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

393

California Fuel Cell Partnership: Alternative Fuels Research  

Broader source: Energy.gov [DOE]

This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research.

394

PLUTONIUM METALLIC FUELS FOR FAST REACTORS  

SciTech Connect (OSTI)

Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

2007-02-07T23:59:59.000Z

395

Fuel treatment effectiveness in California yellow pine and mixed conifer forests H.D. Safford a,b,  

E-Print Network [OSTI]

Fuel treatment effectiveness in California yellow pine and mixed conifer forests H.D. Safford a Accepted 15 February 2012 Keywords: Fuel treatment Fire severity Yellow pine forests Mixed conifer forests or mixed conifer forests, in a variety of land- scape conditions. Most fires burned under warm, dry

North, Malcolm

396

Fuel Processing Valri Lightner  

E-Print Network [OSTI]

, ORNL, NETL #12;Accomplishments · Demonstrated in the lab an advanced fuel flexible fuel processor

397

Oil/gas separator for installation at burning wells  

DOE Patents [OSTI]

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

1993-03-09T23:59:59.000Z

398

Oil/gas separator for installation at burning wells  

SciTech Connect (OSTI)

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait`s oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R. [and others

1991-12-31T23:59:59.000Z

399

Spectral hole burning for stopping light  

SciTech Connect (OSTI)

We propose a protocol for storage and retrieval of photon wave packets in a {lambda}-type atomic medium. This protocol derives from spectral hole burning and takes advantages of the specific properties of solid-state systems at low temperature, such as rare-earth ion-doped crystals. The signal pulse is tuned to the center of the hole that has been burnt previously within the inhomogeneously broadened absorption band. The group velocity is strongly reduced, being proportional to the hole width. This way the optically carried information and energy are carried over to the off-resonance optical dipoles. Storage and retrieval are performed by conversion to and from ground-state Raman coherence by using brief {pi} pulses. The protocol exhibits some resemblance with the well-known electromagnetically induced transparency process. It also presents distinctive features such as the absence of coupling beam. In this paper we detail the various steps of the protocol, summarize the critical parameters, and theoretically examine the recovery efficiency.

Lauro, R.; Chaneliere, T.; Le Goueet, J.-L. [Laboratoire Aime Cotton, CNRS UPR3321, Universite Paris Sud, Batiment 505, Campus Universitaire, 91405 Orsay (France)

2009-05-15T23:59:59.000Z

400

On the Combustion of Hydrogen-Rich Gaseous Fuels with Low Calorific Value in a Porous Burner  

Science Journals Connector (OSTI)

It was also observed that, for the Wobbe Index varying from 5 to 44 MJ/Nm3, it is possible to burn stably at ?260 kW/m2, which reveals the fuel interchangeability potential of the present burner design. ... A range of low calorific value gaseous fuel mixtures containing CH4, H2, CO2, CO, and N2 have been burned in a porous radiant burner to analyze the effects of the fuel composition on flame stability and pollutant emissions. ... There are, however, gaps in the fundamental understanding of syngas combustion and emissions, as most previous research has focused on flames burning individual fuel components such as H2 and CH4, rather than syngas mixts. ...

R. W. Francisco, Jr.; F. Rua; M. Costa; R. C. Catapan; A. A. M. Oliveira

2009-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

402

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

403

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

404

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

405

Alternative Fuels Data Center: Alternative Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuels Alternative Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion The state of Hawaii has signed a memorandum of understanding (MOU) with the U.S. Department of Energy to collaborate to produce 70% of the state's

406

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

407

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

408

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

409

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

410

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

411

Alternative Fuels Data Center: Alternative Fuel Study  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Study Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Study As directed by the Nevada Legislature, the Legislative Commission (Commission) conducted an interim study in 2011 concerning the production and use of energy in the state. The study included information on the use

412

Fluorescence methods for determination of temperature in fuel sprays  

Science Journals Connector (OSTI)

Fluorescent additives which allow the determination of droplet temperatures in hydrocarbon fuel sprays have been developed. These systems, which exploit the chemistry of organic...

Murray, A M; Melton, L A

1985-01-01T23:59:59.000Z

413

Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel...  

Open Energy Info (EERE)

Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions AgencyCompany Organization: Oak Ridge National Laboratory Sector: Energy, Climate Topics: GHG inventory, Background...

414

Farm Motorization, Consumption and Prices of Motor Fuels  

Science Journals Connector (OSTI)

... Development of Farm Motorization and Consumption and Prices of Motor ... of Motor Fuels in Member Countries is the title of a publication recently issued by the Organization for ...

1963-12-21T23:59:59.000Z

415

Engineering Organic/inorganic hybrids comprise a mixture of oxide  

E-Print Network [OSTI]

examine the current status of using organic/inorganic hybrids in fabrication of solid oxide fuel cells, and reactions on solid oxide fuel cell catalysts. The objectives of his research program are (i) developing of potential applications in coatings, fuel cells, solar cells, and sensors. Organic amino (-NH2) silane

416

Fuels - Biodiesel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

417

Nuclear Fuels  

Science Journals Connector (OSTI)

The core of a nuclear reactor is composed of a controlled critical configuration of a fissile material, which in strict a sense is the fuel. This fissile material is contained in a matrix, normally a ceramic c...

Rudy J. M. Konings; Thierry Wiss…

2011-01-01T23:59:59.000Z

418

Fuel economizer  

SciTech Connect (OSTI)

A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

Zwierzelewski, V.F.

1984-06-26T23:59:59.000Z

419

ARM - Field Campaign - Biomass Burning Observation Project - BBOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsBiomass Burning Observation Project - BBOP govCampaignsBiomass Burning Observation Project - BBOP Campaign Links BNL BBOP Website ARM Aerial Facility Payload Science Plan Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biomass Burning Observation Project - BBOP 2013.07.01 - 2013.10.24 Website : http://campaign.arm.gov/bbop/ Lead Scientist : Larry Kleinman For data sets, see below. Description This field campaign will address multiple uncertainties in aerosol intensive properties, which are poorly represented in climate models, by means of aircraft measurements in biomass burning plumes. Key topics to be investigated are: Aerosol mixing state and morphology Mass absorption coefficients (MACs) Chemical composition of non-refractory material associated with

420

ARM - News from the Biomass Burn Observation Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project (BBOP)News from the Biomass Burn Observation Project Related Links BBOP Home Outreach News & Press Backgrounder (PDF, 2.1MB) Images ARM flickr site ARM Data Discovery...

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Reversal of Catabolism by Beta-Blockade after Severe Burns  

Science Journals Connector (OSTI)

...-isotope methods and serial body-composition scanning to determine that beta-blockade with propranolol diminishes wasting of skeletal-muscle protein after severe burns. Thirteen severely burned children were given propranolol for up to four weeks and had a decrease in resting energy expenditure, without... Patients with severe burns have catecholamine-mediated hypermetabolism, including pronounced muscle-protein catabolism, that adversely affects recovery. In a prospective, randomized study, 13 children with severe burns were given oral propranolol for up to four weeks in an attempt to interrupt this process, and 12 served as controls. Beta-blockade decreased resting energy expenditure and increased net muscle-protein balance by 82 percent, as compared with a 27 percent decrease in net muscle-protein balance in the control group.

Herndon D.N.Hart D.W.Wolf S.E.Chinkes D.L.Wolfe R.R.

2001-10-25T23:59:59.000Z

422

Purifying rotary kiln waste gases in chamotte burning  

Science Journals Connector (OSTI)

A study of the operation of electric filters connected to rotary kilns for burning clay into chamotte showed that to increase the dust extraction efficiency it is necessary: with dust concentrations in the gas...

Yu. I. Chander; S. Z. Belinskii; L. G. Borisovskii

423

Nonphotochemical hole burning and dispersive kinetics in amorphous solids.  

E-Print Network [OSTI]

??Results of an extensive study, covering burn intensities in the nW to {dollar}?{dollar}W/cm{dollar}2{dollar} range, of dispersive hole growth kinetics are reported for Oxazine 720 in… (more)

Kenney, Michael Joseph

1990-01-01T23:59:59.000Z

424

Issues to be Addressed Next Step MFE Burning Plasma Experiment  

E-Print Network [OSTI]

of risk into burning plasma initiatives. The level of acceptable risk is clearly a matter of personal with Acceptably Small Elms ALL of these Issues are the subject of active research at ALL major experimental

425

Presented at UFA Burning Plasma Science Workshop II  

E-Print Network [OSTI]

Idaho National Engineering Laboratory Lawrence Livermore National Laboratory Massachusetts Institute, Madison, WI · Charge for First and Second meetings Scientific value of a Burning Plasma experiment Scientific readiness to proceed with such an experiment Is the FIRE mission scientifically appropriate

426

Alternative Fueling Station Locator - Mobile | Open Energy Information  

Open Energy Info (EERE)

Fueling Station Locator - Mobile Fueling Station Locator - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator - Mobile Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options, Prepare a Plan Resource Type: Online calculator User Interface: Mobile Device Website: www.afdc.energy.gov/afdc/locator/m/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/m/stations/ Cost: Free References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator - Mobile Find fueling stations for your alternative fuel vehicle on-the-go with the

427

Fuel Cell Technologies Office: Transport Modeling Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transport Modeling Transport Modeling Working Group to someone by E-mail Share Fuel Cell Technologies Office: Transport Modeling Working Group on Facebook Tweet about Fuel Cell Technologies Office: Transport Modeling Working Group on Twitter Bookmark Fuel Cell Technologies Office: Transport Modeling Working Group on Google Bookmark Fuel Cell Technologies Office: Transport Modeling Working Group on Delicious Rank Fuel Cell Technologies Office: Transport Modeling Working Group on Digg Find More places to share Fuel Cell Technologies Office: Transport Modeling Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

428

Fuel Cell Technologies Office: Water Electrolysis Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Electrolysis Water Electrolysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Water Electrolysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Water Electrolysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Water Electrolysis Working Group on Google Bookmark Fuel Cell Technologies Office: Water Electrolysis Working Group on Delicious Rank Fuel Cell Technologies Office: Water Electrolysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Water Electrolysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

429

Stable carbon fractionation in size-segregated aerosol particles produced by controlled biomass burning  

Science Journals Connector (OSTI)

Abstract Six different biomass fuel types (wood pellets, sunflower stalk pellets, straw pellets, buckwheat shells, mixed biomass waste pellets, and grain screenings) and wastewater sludge pellets were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size-segregated particles. Aerosol particles were sampled using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles (size <1 µm) in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The isotopic fractionation between aerosol particles and original biomass material varied from ?0.94±0.23‰ to 1.12±0.16‰. The largest negative fractionation ?0.94±0.23‰ was obtained for the wood pellet fuel type while the largest positive isotopic fractionation (1.12±0.16‰) was observed during the grain screenings combustion. The carbon isotope composition of MOUDI samples compared very well with the isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in size-segregated aerosol particles suggested that combustion processes could strongly affect isotopic fractionation in aerosol particles of different sizes thereby potentially affecting an interpretation of ambient atmospheric observations.

A. Garbaras; A. Masalaite; I. Garbariene; D. Ceburnis; E. Krugly; V. Remeikis; E. Puida; K. Kvietkus; D. Martuzevicius

2015-01-01T23:59:59.000Z

430

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production  

SciTech Connect (OSTI)

The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

2002-01-01T23:59:59.000Z

431

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

432

Fuel Equivalence Ratio Imaging for Methane Jets  

Science Journals Connector (OSTI)

A 2-D fuel/oxygen equivalence ratio imaging system has been developed. The technique exploits the efficient quenching of the fluorescence of organic molecules by molecular oxygen in...

Ni, T Q; Melton, L A

1993-01-01T23:59:59.000Z

433

Fuel Effects on Emissions Control Technologies  

Broader source: Energy.gov [DOE]

Document:  ft007_sluder_2013_o.pdfTechnology Area: Fuels and LubricantsPresenter: Scott SluderPresenting Organization: Oak Ridge National Laboratory (ORNL)Presentation date: Thursday, May 16,...

434

High-value use of weapons-plutonium by burning in molten salt accelerator-driven subcritical systems or reactors  

SciTech Connect (OSTI)

The application of thermal-spectrum molten-salt reactors and accelerator-driven subcritical systems to the destruction of weapons-return plutonium is considered from the perspective of deriving the maximum societal benefit. The enhancement of electric power production from burning the fertile fuel {sup 232}Th with the plutonium is evaluated. Also the enhancement of destruction of the accumulated waste from commercial nuclear reactors is considered using the neutron-rich weapons plutonium. Most cases examined include the concurrent transmutation of the long-lived actinide and fission product waste ({sup 99}Tc, {sup 129}I, {sup 135}Cs, {sup 126}Sn and {sup 79}Se).

Bowman, C.D.; Venneri, F.

1993-11-01T23:59:59.000Z

435

Indiana Brings Alternative Fuels to the Forefront  

Office of Energy Efficiency and Renewable Energy (EERE)

With the support of $10.1 million from EERE (including funds from the American Recovery and Reinvestment Act), more than matched by $13.6 million from partner organizations, Indiana Clean Cities and the Indiana Office of Energy Development have put more than 350 alternative fuel vehicles on the road and deployed 121 alternative fueling stations.

436

Hydrogen, the Once and Future Fuel  

Science Journals Connector (OSTI)

Hydrogen, the Once and Future Fuel ... Assuming fossil fuels will be depleted or their use restricted by limits on greenhouse gas emissions, new sources of organic feedstocks will be required, and hydrogen will be needed as a chemical feed in the production process. ...

Catherine E. Gregoire-Padró

1998-01-12T23:59:59.000Z

437

Single particle size and fluorescence spectra from emissions of burning materials in a tube furnace to simulate burn pits  

Science Journals Connector (OSTI)

A single-particle fluorescence spectrometer (SPFS) and an aerodynamic particle sizer were used to measure the fluorescence spectra and particle size distribution from the particulate emissions of 12 different burning

Yong-Le Pan; Joshua D. T. Houck; Pamela A. Clark; Ronald G. Pinnick

2013-08-01T23:59:59.000Z

438

Urban air quality improvement by using a CNG lean burn engine for city buses  

Science Journals Connector (OSTI)

The use of compressed natural gas (CNG)-fuelled lean-burn city bus engines has a significant potential for air quality improvement in urban areas. Particularly important is the reduction of NOx, as well as particulate and non-regulated HC-emissions. For this reason, a CNG-fuelled, lean-bum, turbocharged, intercooled engine equipped with catalytic converter was developed. The basic engine is a 6-cylinder, heavy duty, serial production Hungarian diesel engine which complies with Euro-2 emissions limits. The objective of this development was to meet European emission limits forecast for the year 2005 (NOx fuel consumption capability of the engine are reported. Based on the evaluation of economical feasibility, the costs of CNG bus operation is additionally discussed. It can be concluded that CNG city bus operation is - compared to diesel operation - a promising way to improve economically the local air quality.

Tamas Meretei; Joep A.N. van Ling; Cornelis Havenith

1998-01-01T23:59:59.000Z

439

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Presentation covers stationary fuel cells...

440

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November...

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November 1, 2011. Fuel Cell...

442

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Broader source: Energy.gov (indexed) [DOE]

Investment in Nuclear Fuel Storage Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

443

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Broader source: Energy.gov (indexed) [DOE]

Announces New Investment in Nuclear Fuel Storage Announces New Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

444

Transportation Fuel Basics - Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

445

Alternative Fueling Station Locator | Open Energy Information  

Open Energy Info (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Fuels & Efficiency, Transportation Phase: Evaluate Options, Prepare a Plan Topics: Datasets Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/afdc/locator/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/stations/ Cost: Free OpenEI Keyword(s): Featured References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator The alternative fuel station locator uses an address based search to find

446

Transportation Fuel Basics - Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

447

Global Fuel Economy Initiative | Open Energy Information  

Open Energy Info (EERE)

Global Fuel Economy Initiative Global Fuel Economy Initiative Jump to: navigation, search Tool Summary Name: Global Fuel Economy Initiative Agency/Company /Organization: FIA Foundation, International Energy Agency, International Transport Forum, United Nations Environment Programme Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.globalfueleconomy.org/ The Global Fuel Economy Initiative has launched the 50by50 challenge to facilitate large reductions of greenhouse gas emissions and oil use through improvements in automotive fuel economy. The website provides access to working papers, a map showing countries with fuel economy standards, and other related information. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel

448

Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study  

SciTech Connect (OSTI)

The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

Kristine Barrett; Shannon Bragg-Sitton

2012-09-01T23:59:59.000Z

449

Fuel Processing Valri Lightner  

E-Print Network [OSTI]

of Hydrogen · Fuel Processors for PEM Fuel Cells Nuvera Fuel Cells, Inc. GE Catalytica ANL PNNL University-Board Fuel Processing Barriers $35/kW Fuel Processor $10/kW Fuel Cell Power Systems $45/kW by 2010 BARRIERS · Fuel processor start-up/ transient operation · Durability · Cost · Emissions and environmental issues

450

Clean-Burning Wood Stove Grant Program (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean-Burning Wood Stove Grant Program (Maryland) Clean-Burning Wood Stove Grant Program (Maryland) Clean-Burning Wood Stove Grant Program (Maryland) < Back Eligibility Residential Savings Category Bioenergy Program Info Start Date 09/07/2012 State Maryland Program Type State Rebate Program Rebate Amount Stick Burning Stove: $500 Pellet Burning Stove: $700 The Maryland Energy Administration (MEA) now offers the Clean Burning Wood Stove Grant program as part of its Residential Clean Energy Grant Program. The Clean Burning Wood Stove Grant program offers a flat grant award of $500 for stick burning wood stoves and $700 for pellet burning wood stoves that meet program eligibility requirements. Basic requirements for grant funding include: *The property must serve as primary residence *Clean burning wood stove must replace existing electric or non-natural gas

451

Oxidation of automotive primary reference fuels at elevated pressures  

SciTech Connect (OSTI)

Automotive engine knock limits the maximum operating compression ratio and ultimate thermodynamic efficiency of spark-ignition (SI) engines. In compression-ignition (CI) or diesel cycle engines, the premixed burn phase, which occurs shortly after injection, determines the time it takes for autoignition to occur. In order to improve engine efficiency and to recommend more efficient, cleaner-burning alternative fuels, they must understand the chemical kinetic processes that lead to autoignition in both SI and CI engines. These engines burn large molecular-weight blended fuels, a class to which the primary reference fuels (PRF) n-heptane and iso-octane belong. In this study, experiments were performed under engine like conditions in a high-pressure flow reactor using both the pure PRF fuels and their mixtures in the temperature range 550-880 K and 12.5 atm pressure. These experiments not only provide information on the reactivity of each fuel but also identify the major intermediate products formed during the oxidation process. A detailed chemical kinetic mechanism is used to simulate these experiments, and comparisons of experimentally measured and model predicted profiles for O{sub 2}, CO, CO{sub 2}, H{sub 2}O and temperature rise are presented. Intermediates identified in the flow reactor are compared with those present in the computations, and the kinetic pathways leading to their formation are discussed. In addition, autoignition delay times measured in a shock tube over the temperature range 690-1220 K and at 40 atm pressure were simulated. Good agreement between experiment and simulation was obtained for both the pure fuels and their mixtures. Finally, quantitative values of major intermediates measured in the exhaust gas of a cooperative fuels research engine operating under motored engine conditions are presented together with those predicted by the detailed model.

Callahan, C V; Curran, H J; Dryer, F L; Pitz, W J; Westbrook, C K

1999-03-01T23:59:59.000Z

452

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Carolina Incentives and Laws Carolina Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Biofuels Commercialization Grants Archived: 10/01/2013 The Biofuels Center of North Carolina (Center) is a private, nonprofit corporation the Legislature funds to implement the goal that by 2017, 10% of liquid fuels sold in North Carolina will come from biofuels grown and produced within the state. The Center awards funds to academic institutions, economic development organizations, nonprofit corporations, and other entities through an annual competitive awards process. Grants and contracts are designed to identify and bridge gaps in knowledge and

453

Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities  

SciTech Connect (OSTI)

This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF – specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as “MOX”. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these “minor actinides” can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

2007-12-15T23:59:59.000Z

454

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

motor fuel containing at least 10% alcohol) or alternative fuels whenever feasible and cost effective. DOA must place a list of gasohol and alternative fueling station locations...

455

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

special fuels. Special fuels include compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, and fuel suitable for use in diesel engines. In addition,...

456

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

alternative fuel vehicles (AFVs) capable of operating on natural gas or liquefied petroleum gas (propane), or bi-fuel vehicles capable of operating on conventional fuel or...

457

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum displacement plans to increase the use of alternative fuels and fuel-efficient...

458

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and Special Fuel Definitions The definition of alternative fuel includes liquefied petroleum gas (propane). Special fuel is defined as all combustible gases and liquids that are...

459

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Labeling Requirement Biodiesel, biobutanol, and ethanol blend dispensers must be affixed with decals identifying the type of fuel blend. If fuel blends containing...

460

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn organic fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and alternative fuel vehicles; promotes the development, sale, distribution, and consumption of alternative fuels; promotes the development and use of alternative fuel vehicles...

462

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

providers to install biofuel fueling facilities. Fueling facilities include storage tanks and fuel pumps dedicated to dispensing E85 and biodiesel blends of 20% (B20). TDOT...

463

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

interest in the qualified property. Renewable fuel is defined as a fuel produced from biomass that is used to replace or reduce conventional fuel use. (Reference Florida Statutes...

464

Alternative Fuel Vehicle Resources  

Broader source: Energy.gov [DOE]

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

465

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Grants and Rebates The Arkansas Alternative Fuels Development Program (Program) provides grants to alternative fuel producers, feedstock processors, and...

466

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Exclusivity Contract Regulation Motor fuel franchise dealers may obtain alternative fuels from a supplier other than a franchise distributor. Any franchise provision that...

467

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Production and Retail Requirements All hydrogen fuel produced and sold in Michigan must meet state fuel quality requirements. Any retailer offering hydrogen fuel for sale...

468

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

that operate using at least 90% alternative fuel. Eligible alternative fuels include electricity, propane, natural gas, or hydrogen fuel. Medium-duty hybrid electric vehicles also...

469

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Promotion and Information The Center for Alternative Fuels (Center) promotes alternative fuels as viable energy sources in the state. The Center must assess the...

470

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85%...

471

Low Carbon Fuel Standards  

E-Print Network [OSTI]

in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

472

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuels Labeling Requirement Retailers must display ratings on fueling pumps that are consistent with the percentage by volume of the alternative fuel being dispensed....

473

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

is defined as a renewable transportation fuel, transportation fuel additive, heating oil, or jet fuel that meets the definition of either biodiesel or non-ester renewable...

474

Greenhouse Gases Converted to Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greenhouse Greenhouse Gases Converted to Fuel Greenhouse Gases Converted to Fuel carbon-conversion-fig-1.jpg Key Challenges: An important strategy for reducing global CO2 emissions calls for capturing the greenhouse gas and converting it to fuels and chemicals. Although researchers working toward that goal demonstrated in 1992 such a reaction in the lab, a key outstanding scientific challenge was explaining the details of how the reaction took place - its "mechanism." Why it Matters: An important potential strategy for reducing global CO2 emissions calls for capturing the greenhouse gas and converting it electrochemically to fuels and chemicals. Accomplishments: Computation to explain how carbon dioxide can be converted to small organic molecules with little energy input. The

475

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect (OSTI)

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

476

Effects of Fuel Physical Properties on Diesel Engine Combustion Using Diesel and Bio-Diesel Fuels  

SciTech Connect (OSTI)

A computational study is performed to investigate the effects of physical property on diesel engine combustion characteristics using bio-diesel fuels. Properties of typical bio-diesel fuels that were either calculated or measured are used in the study and the simulation results are compared with those of conventional diesel fuels. Sensitivity of the computational results to individual physical properties is also investigated, and the results can provide information for desirable characteristics of the blended fuels. The properties considered in this study include liquid density, vapor pressure, surface tension, liquid viscosity, liquid thermal conductivity, liquid specific heat, latent heat, vapor specific heat, vapor diffusion coefficient, vapor viscosity and vapor thermal conductivity. The results show significant effects of the fuel physical properties on ignition delay and burning rates at various engine operating conditions. It is seen that there is no single physical property that dominates differences of ignition delay between diesel and bio-diesel fuels. However, among the 11 properties considered in the study, the simulation results were found to be most sensitive to the liquid fuel density, vapor pressure and surface tension through their effects on the mixture preparation processes.

Ra, Youngchul [ORNL; Reitz, Rolf [University of Wisconsin; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL

2007-01-01T23:59:59.000Z

477

Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle Acquisition and Alternative Fuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

478

Development of Sensors for Automotive PEM-based Fuel Cells  

E-Print Network [OSTI]

organization #12;4 Sensors for Automotive PEM Fuel Cells - Motivation Sensor Performance and Cost ImprovementsDevelopment of Sensors for Automotive PEM-based Fuel Cells DOE Agreement DE-FC04-02AL67616 Brian FC Series 200 - 50 kW PEM #12;2 Development of Sensors for Automotive PEM-based Fuel Cells ­ Program

479

Combustor oscillation attenuation via the control of fuel-supply line dynamics  

DOE Patents [OSTI]

Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value. 9 figs.

Richards, G.A.; Gemmen, R.S.