Powered by Deep Web Technologies
Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Paradigm Shift: Burning Coal to Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paradigm Shift: Burning Coal to Geothermal Paradigm Shift: Burning Coal to Geothermal Paradigm Shift: Burning Coal to Geothermal 20121120ballstatepresentation.pdf More Documents...

2

New Computer Codes Unlock the Secrets of Cleaner Burning Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes Unlock the Secrets of Cleaner Burning Coal New Computer Codes Unlock the Secrets of Cleaner Burning Coal March 29, 2012 | Tags: Advanced Scientific Computing Research (ASCR),...

3

Paradigm Shift: Burning Coal to Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paradigm Shift: Burning Coal Paradigm Shift: Burning Coal to Geothermal" November 20, 2012 jlowe@bsu.edu 765.285.2805 Ball State University Ball State University Administration Building 1899 Ball State 1920s Ball State University Ball State University (4) Coal Fired Boilers Installed 1941/1955 (3) Natural Gas Fired Boilers Installed in the 1970s Heat and Chilled Water Plant Operations Heat Plant: 4 Coal Fired Boilers 3 Natural Gas Fired Boilers 320,000 Lbs/Hr nameplate 240,000 Lbs/Hr current 700,000,000 Lbs/Year Chilled Water Plant: 5 Electrical Centrifugal Chillers 9,300 ton capacity 25,000,000 Ton Hours/Year Pollutants Produced from Burning 36,000 tons of Coal * Carbon Dioxide 85,000 tons (Global Warming)

4

Superheater Corrosion in Plants Burning High-Chlorine Coals  

Science Conference Proceedings (OSTI)

Corrosion caused by molten alkali sulfates can cause premature failure in superheaters and reheaters of coal-fired boilers. Coals with a high chlorine content are more likely to cause molten sulfate corrosion than those with a low chlorine content. Tests in a boiler burning coal with 0.37% chlorine and 1.3% sulfur show that stainless steels with at least 35% chromium are very corrosion resistant, while steels containing less than 20% chromium have high corrosion rates.

1992-12-01T23:59:59.000Z

5

NETL: News Release - Combustion Optimization Systems - Cleaner Coal Burning  

NLE Websites -- All DOE Office Websites (Extended Search)

"Combustion Optimization System" - Cleaner Coal Burning at Lower Costs "Combustion Optimization System" - Cleaner Coal Burning at Lower Costs DOE Joins with Sunflower Electric to Outfit Kansas Coal Plant with Lower Cost System to Cut Air Emissions FINNEY COUNTY, KS - A unique combination of high-tech combustion modifications and sophisticated control systems will be tested on a Kansas coal-fired power plant as part of the federal government's efforts to show how new technology can reduce air emissions and save costs for ratepayers. - Sunflower Electric's Holcomb Station - Sunflower Electric's Holcomb Station will be outfitted with a combination of innovative hardware and software to further reduce air emissions. - The U.S. Department of Energy and Sunflower Electric Power Corporation have signed an agreement to use the utility's Holcomb Station power plant in

6

On the burning behavior of pulverized coal chars  

SciTech Connect

A model that predicts the physical changes that pulverized coal char particles undergo during combustion has been developed. In the model, a burning particle is divided into a number of concentric annular volume elements. The mass loss rate, specific surface area, and apparent density in each volume element depend upon the local particle conditions, which vary as a consequence of the adsorbed oxygen and gas-phase oxygen concentration gradients inside the particle. The model predicts the particle's burning rate, temperature, diameter, apparent density, and specific surface area as combustion proceeds, given ambient conditions and initial char properties. A six-step heterogeneous reaction mechanism is used to describe carbon reactivity to oxygen. A distributed activation energy approach is used to account for the variation in desorption energies of adsorbed O-atoms on the carbonaceous surface. Model calculations support the three burning zones established for the oxidation of pulverized coal chars. The model indicates two types of zone II behavior, however. Under weak zone II burning conditions, constant-diameter burning occurs up to 30% to 50% conversion before burning commences with reductions in both size and apparent density. Under strong zone II conditions, particles burn with reductions in both size and apparent density after an initial short period (conversion) of constant-diameter burning. Model predictions reveal that early in the oxidation process, there is mass loss at constant diameter under all zone II burning conditions. Such weak and strong burning behavior cannot be predicted with the commonly used power-law model for the mode of burning employing a single value for the burning mode parameter. Model calculations also reveal how specific surface area evolves when oxidation occurs in the zone II burning regime. Based on the calculated results, a surface area submodel that accounts for the effects of pore growth and coalescence during combustion under zone I conditions was modified to permit the characterization of the variations in specific surface area that occur during char conversion under zones II conditions. The modified surface area model is applicable to all burning regimes. Calculations also indicate that the particle's effectiveness factor varies during conversion under zone II burning conditions. With the adsorption/desorption mechanism employed, a near first-order Thiele modulus-effectiveness factor relationship is obeyed over the particle's lifetime. (author)

Mitchell, Reginald E.; Ma, Liqiang; Kim, BumJick [Thermosciences Group, Mechanical Engineering Department, Stanford University, Stanford, CA 94305-3032 (United States)

2007-11-15T23:59:59.000Z

7

New Computer Codes Unlock the Secrets of Cleaner Burning Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes Codes Unlock the Secrets of Cleaner Burning Coal New Computer Codes Unlock the Secrets of Cleaner Burning Coal March 29, 2012 | Tags: Advanced Scientific Computing Research (ASCR), Combustion, Franklin, Hopper Linda Vu, lvu@lbl.gov, +1 510 495 2402 The Polk Power Station near Mulberry, Florida, is an Integrated Gasification Combined Cycle gasification plant. It is capable of generating 313 megawatts of electricity - 250 megawatts of which are supplied to the electric grid. The plant's gas cleaning technology removes more than 98 percent of the sulfur in coal, converting it to a commercial product. Nitrogen oxide emissions are reduced by more than 90 percent. (Photo courtesy of DOE-NETL) Approximately half of all electricity used in the United States comes from

8

Mercury Control Technologies for Electric Utilities Burning Lignite Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury control technologies for Mercury control technologies for electric utilities Burning lignite coal Background In partnership with a number of key stakeholders, the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), through its National Energy Technology Laboratory (NETL), has been carrying out a comprehensive research program since the mid-1990s focused on the development of advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Mercury is a poisonous metal found in coal, which can be harmful and even toxic when absorbed from the environment and concentrated in animal tissues. Mercury is present as an unwanted by-product of combustion in power plant flue gases, and is found in varying percentages in three basic chemical forms(known as speciation): particulate-bound mercury, oxidized

9

Process for clean-burning fuel from low-rank coal  

SciTech Connect

A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

Merriam, Norman W. (Laramie, WY); Sethi, Vijay (Laramie, WY); Brecher, Lee E. (Laramie, WY)

1994-01-01T23:59:59.000Z

10

Economic assessment of coal-burning locomotives: Topical report  

DOE Green Energy (OSTI)

The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurry as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.

Not Available

1986-02-01T23:59:59.000Z

11

Coal keeps the home fires burning, at a price  

SciTech Connect

The wild ride of 2007 thermal and coking coal and freight prices does not show any signs of abating as 2008 nears, leaving consumers coping with historic high costs, except in the US. 3 figs.

O'Connell, J.

2007-11-15T23:59:59.000Z

12

Method of burning lightly loaded coal-water slurries  

DOE Patents (OSTI)

In a preferred arrangement of the method of the invention, a lightly loaded coal-water slurry, containing in the range of approximately 40% to 52% + 2% by weight coal, is atomized to strip water from coal particles in the mixture. Primary combustor air is forced around the atomized spray in a combustion chamber of a combustor to swirl the air in a helical path through the combustion chamber. A flame is established within the combustion chamber to ignite the stripped coal particles, and flame temperature regulating means are provided for maintaining the flame temperature within a desired predetermined range of temperatures that is effective to produce dry, essentially slag-free ash from the combustion process.

Krishna, C.R.

1984-07-27T23:59:59.000Z

13

Process for clean-burning fuel from low-rank coal  

DOE Patents (OSTI)

A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

Merriam, N.W.; Sethi, V.; Brecher, L.E.

1994-06-21T23:59:59.000Z

14

Air extraction in gas turbines burning coal-derived gas  

SciTech Connect

In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

1993-11-01T23:59:59.000Z

15

The effects of technological change, experience and environmental regulation on the construction of coal-burning generating units  

E-Print Network (OSTI)

This paper provides an empirical analysis of the technological, regulatory and organizational factors that have influenced the costs of building coal-burning steam-electric generating units over the past twenty year. We ...

Joskow, Paul L.

1984-01-01T23:59:59.000Z

16

Analysis of mass loss of a coal particle during the course of burning in a flow of inert material  

SciTech Connect

This paper is an attempt to explain the role of erosion during the process of coal combustion in a circulating fluidized bed. Different kinds of carbon deposits found in Poland, both bituminous as well as lignite with the particle of 10 mm in diameter were the subject of the research. According to many publications it is well known that erosion plays a significant role in coal combustion, by changing its mechanism as well as generating an additional mass loss of the mother particle. The purpose of this research was to determine the influence of an inert material on an erosive mass loss of a single coal particle burning in a two-phase flow. The determination of the influence of a coal type, the rate of flow of inert material and the temperature inside the furnace on the erosive mass loss of burning coal particle was also taken into consideration. The results obtained indicate that the velocity of the erosive mass loss depends on the chemical composition and petrographic structure of burning coal. The mechanical interaction of inert and burning coal particles leads to the shortening of the period of overall mass loss of the coal particle by even two times. The increase in the rate of flow of the inert material intensifies the generation of mass loss by up to 100%. The drop in temperature which slows down the combustion process, decreases the mass loss of the coal particle as the result of mechanical interaction of the inert material. As was observed, the process of percolation plays a significant role by weakening the surface of the burning coal. (author)

Pelka, Piotr [Czestochowa University of Technology, Department of Boilers and Thermodynamics, Armii Krajowej 19c, Czestochowa, Silesia 42-200 (Poland)

2009-08-15T23:59:59.000Z

17

NOx Reduction Assessment for Tangentially Fired Boilers Burning Powder River Basin Coal  

Science Conference Proceedings (OSTI)

The objective of this project was to assess the feasibility of and the most cost-effective approaches for reducing nitrous oxide (NOx) emissions for tangentially fired boilers burning Powder River Basin (PRB) coal in order to achieve average NOx emission rates of 0.15 lb/mmBtu (110 ppm), or lower. This is typically achievable by a deep level of combustion air staging, which may be possible if operational issues experienced during low combustion air operation (for example, slagging) can be mitigated. Acc...

2010-01-20T23:59:59.000Z

18

JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal  

SciTech Connect

The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

2009-03-29T23:59:59.000Z

19

Quantitative measurement of atomic sodium in the plume of a single burning coal particle  

Science Conference Proceedings (OSTI)

The release of volatile sodium during coal combustion is a significant factor in the fouling and corrosion of heat transfer surfaces within industrial coal-fired boilers. A method for measuring the temporal release of atomic sodium from a single coal particle is described. Laser absorption was used to calibrate laser-induced fluorescence measurements of atomic sodium utilising the sodium D1 line (589.59 nm) in a purpose-designed flat flame environment. The calibration was then applied to planar laser-induced fluorescence measurements of sodium atoms in the plume from a single Victorian brown coal particle (53 mg) suspended within the flat flame. The peak concentration of atomic sodium was approximately 64.1 ppb after 1080.5 s, which appears to correspond to the end of char combustion. To our knowledge this is the first in situ quantitative measurement of the concentration field of atomic sodium in the plume above a burning particle. A simple kinetic model has been used to estimate the rate of sodium decay in the post-flame gases. Comparison of the estimated and measured decay rates showed reasonable agreement. (author)

van Eyk, P.J.; Ashman, P.J.; Alwahabi, Z.T. [Cooperative Research Centre for Clean Power from Lignite, School of Chemical Engineering, The University of Adelaide, South Australia 5005 (Australia); Nathan, G.J. [School of Mechanical Engineering, The University of Adelaide, South Australia 5005 (Australia)

2008-11-15T23:59:59.000Z

20

Epoxy-borax-coal tar composition for a radiation protective, burn resistant drum liner and centrifugal casting method  

SciTech Connect

A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of Borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% Borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

Taylor, Robert S. (Livermore, CA); Boyer, Norman W. (Livermore, CA)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass  

DOE Green Energy (OSTI)

The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

Anuar, S.H.; Keener, H.M.

1995-12-31T23:59:59.000Z

22

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the available data from laboratory, pilot and full-scale SCR units was reviewed, leading to hypotheses about the mechanism for mercury oxidation by SCR catalysts.

Constance Senior

2004-04-30T23:59:59.000Z

23

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

Constance Senior

2004-12-31T23:59:59.000Z

24

The deposition and burning characteristics during slagging co-firing coal and wood: modeling and numerical simulation  

SciTech Connect

Numerical analysis was used to study the deposition and burning characteristics of combining co-combustion with slagging combustion technologies in this paper. The pyrolysis and burning kinetic models of different fuels were implanted into the WBSF-PCC2 (wall burning and slag flow in pulverized co-combustion) computation code, and then the slagging and co-combustion characteristics (especially the wall burning mechanism of different solid fuels and their effects on the whole burning behavior in the cylindrical combustor at different mixing ratios under the condition of keeping the heat input same) were simulated numerically. The results showed that adding wood powder at 25% mass fraction can increase the temperature at the initial stage of combustion, which is helpful to utilize the front space of the combustor. Adding wood powder at a 25% mass fraction can increase the reaction rate at the initial combustion stage; also, the coal ignitability is improved, and the burnout efficiency is enhanced by about 5% of suspension and deposition particles, which is helpful for coal particles to burn entirely and for combustion devices to minimize their dimensions or sizes. The results also showed that adding wood powder at a proper ratio is helpful to keep the combustion stability, not only because of the enhancement for the burning characteristics, but also because the running slag layer structure can be changed more continuously, which is very important for avoiding the abnormal slag accumulation in the slagging combustor. The theoretic analysis in this paper proves that unification of co-combustion and slagging combustion technologies is feasible, though more comprehensive and rigorous research is needed.

Wang, X.H.; Zhao, D.Q.; Jiang, L.Q.; Yang, W.B. [Chinese Academy of Sciences, Ghangzhou (China)

2009-07-01T23:59:59.000Z

25

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the second set of mercury measurements was made after the catalysts had been exposed to flue gas for about 2,000 hours. There was good agreement between the Ontario Hydro measurements and the SCEM measurements. Carbon trap measurements of total mercury agreed fairly well with the SCEM. There did appear to be some loss of mercury in the sampling system toward the end of the sampling campaign. NO{sub x} reductions across the catalysts ranged from 60% to 88%. Loss of total mercury across the commercial catalysts was not observed, as it had been in the March/April test series. It is not clear whether this was due to aging of the catalyst or to changes in the sampling system made between March/April and August. In the presence of ammonia, the blank monolith showed no oxidation. Two of the commercial catalysts showed mercury oxidation that was comparable to that in the March/April series. The other three commercial catalysts showed a decrease in mercury oxidation relative to the March/April series. Oxidation of mercury increased without ammonia present. Transient experiments showed that when ammonia was turned on, mercury appeared to desorb from the catalyst, suggesting displacement of adsorbed mercury by the ammonia.

Constance Senior; Temi Linjewile

2003-10-31T23:59:59.000Z

26

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

27

Increased U.S. coal consumption met by burning through stockpiles ...  

U.S. Energy Information Administration (EIA)

Coal inventories at power plants dropped below the monthly five-year average in April, the first time this has happened since December 2011.

28

7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during a one-day period and the rate of air flowing through the furnace are to be determined.  

E-Print Network (OSTI)

7-11 7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during The heating value of the coal is given to be 28,000 kJ/kg. Analysis (a) The rate and the amount of heat inputs'tQQ The amount and rate of coal consumed during this period are kg/s48.33 s360024 kg10893.2 MJ/kg28 MJ101.8 6

Bahrami, Majid

29

Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide: WHAT IS COAL? Coal looks like a shiny black rock. Coal has lots of energy in it. When it is burned, coal makes heat and light energy. Th e cave men used coal for...

30

A. Kusiak and A. Burns, Mining Temporal Data: A Coal-Fired Boiler Case Study, Proceedings of International Conference, KES 2005, Melbourne, Australia, September 14-16, 2005, in R.  

E-Print Network (OSTI)

A. Kusiak and A. Burns, Mining Temporal Data: A Coal-Fired Boiler Case Study, Proceedings of the 9 3683, Springer, Heidelberg, Germany, 2005, pp. 953-958. Mining Temporal Data: A Coal-Fired Boiler Case. This paper presents an approach to control pluggage of a coal-fired boiler. The proposed approach involves

Kusiak, Andrew

31

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated April 28, 2004) Spot coal prices in the East rose steadily since Labor Day 2003, with rapid escalations ...

32

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated September 26) The average spot prices for reported coal purchases rose once again ...

33

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

34

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated August 12) According to Platts Coal Outlook’s Weekly Price Survey (August 11), the ...

35

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated September 2) The average spot prices for coal traded last week were relatively ...

36

Overlapping of the devolatilization and char combustion stages in the burning of coal particles  

SciTech Connect

The oxygen content at the surface of a fuel particle can significantly exceed zero during the devolatilization stage of combustion, despite the flux of volatiles from the surface and also gas phase reactions. This implies that char oxidation can take place simultaneously. This overlapping of the devolatilization and char combustion stages is studied by modeling. The rates of gas phase reactions around the particle influence the availability of oxygen at the surface of a burning particle and they are accounted for by using a two-step global model for combustion of volatiles. The effects of particle size, ambient temperature, and oxygen concentration on the degree of overlap are studied. The study provides theoretical and experimental evidence that the combustion time of a particle does not always increase with its size at constant ambient conditions, but there can be a specific particle size giving a maximum combustion rate.

Veras, C.A.G. [Escola Politecnica da Univ., Sao Paulo (Brazil). Dept. de Engenharia Mecanica; Saastamoinen, J.; Aho, M. [VTT Energy, Jyvaeskylae (Finland); Carvalho, J.A. Jr. [Inst. Nacional de Pesquisas Espaciais, Cachoeira Paulista, Sao Paulo (Brazil)

1999-03-01T23:59:59.000Z

37

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated July 7, 2004) In the trading week ended July 2, the average spot coal prices tracked by EIA were mixed.

38

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

39

Overburden characterization and post-burn study of the Hanna IV, underground coal gasification site, Wyoming, and comparison to other Wyoming UCG sites  

SciTech Connect

Analysis of 21 post-burn cores taken from the Hanna IV UCG site allows 96 m (315 ft) of overburden to be subdivided into four local stratigraphic units. The 7.6 m (25 ft) thick Hanna No. 1 coal seam is overlain by a laterally discontinuous, 3.3 m (11 ft) thick shaley mudstone (Unit A') in part of the Hanna IV site. A more widespread, 30 m (90 ft) thick well-indurated sandstone (Unit A) overlies the A' unit. Unit A is the roof rock for both of the Hanna IV cavities. Overlying Unit A is a 33 m (108 ft) thick sequence of mudstone and claystone (Unit B), and the uppermost unit at the Hanna IV site (Unit C) is a coarse-grained sandstone that ranges in thickness from 40 to 67 m (131 to 220 ft). Two elliptical cavities were formed during the two phases of the Hanna IV experiment. The larger cavity, Hanna IVa, is 45 x 15 m in plan and has a maximum height of 18 m (59 ft) from the base of the coal seam to the top of the cavity; the Hanna IVb cavity is 40 x 15 m in plan and has a maximum height of 11 m (36 ft) from the base of the coal seam to the top of the cavity. Geotechnical tests indicated that the Hanna IV overburden rocks were moderately strong to strong, based on the empirical classification of Broch and Franklin (1972), and a positive, linear correlation exists between rock strength and volume percent calcite cement. There is an inverse linear correlation between rock strength and porosity for the Hanna IV overburden rocks. 28 refs., 34 figs., 13 tabs..

Marcouiller, B.A.; Burns, L.K.; Ethridge, F.G.

1984-11-01T23:59:59.000Z

40

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Contaminants in coals and coal residues. [10 refs  

SciTech Connect

Most of the major enviromental pollutants from coals originate as impurities in the coal structure. These include various organic compounds, minerals, and trace elements that are released into the air and water when coal is mined, processed and utilized. The use of coal preparation to produce cleaner burning fuels involves an environmental compromise, wherein reduced emissions and solid wastes from coal burning sources are achieved at the expense of greater environmental degradation from coal cleaning wastes.

Wewerka, E.M.; Williams, J.M.; Vanderborgh, N.E.

1976-01-01T23:59:59.000Z

42

Feasibility study of burning waste paper in coal-fired boilers on Air Force installations. Master's thesis  

Science Conference Proceedings (OSTI)

This thesis examined the feasibility of using waste paper derived fuel in coal-fired boilers on Air Force installations in an attempt to help solve air pollution and solid waste disposal problems. The implementation of waste paper derived fuel was examined from both a technical acceptability and an economic feasibility viewpoint. The majority of data for this study was obtained through literature reviews and personal interviews. Waste paper was found to be technically acceptable for use as fuel. However, waste paper has certain characteristics that may create problems during combustion and therefore further research is required. These problems included the possibility of increased nitrous oxide emissions, increased volatile emissions, dioxin and furan emissions, formation of hydrochloric acid, and the presence of heavy metals in emissions and ash.

Smith, K.P.

1993-09-01T23:59:59.000Z

43

SRC burn test in 700-hp oil-designed boiler. Volume 2. Engineering evaluation report. Final technical report. [Oil-fired boiler to solvent-refined coal  

Science Conference Proceedings (OSTI)

Volume 2 of this report gives the results of an engineering evaluation study and economic analysis of converting an existing 560-MW residual (No. 6) oil-fired unit to burn solvent refined coal (SRC) fuel forms. Volume 1 represents an integrated overview of the test program conducted at the Pittsburgh Energy Technology Center. Three SRC forms (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) were examined. The scope of modifications necessary to convert the unit to each of the three SRC fuel forms was identified and a capital cost of the necessary modifications estimated. A fuel conversion feasibility study of the boiler was performed wherein boiler modifications and performance effects of each fuel on the boiler were identified. An economic analysis of the capital and operating fuel expenses of conversion of the unit was performed. It was determined that conversion of the unit to any one of the three SRC fuel forms was feasible where appropriate modifications were made. It also was determined that the conversion of the unit can be economically attractive if SRC fuel forms can be manufactured and sold at prices discounted somewhat from the price of No. 16 Fuel Oil. As expected, greater discounts are required for the pulverized SRC and the slurry than for the solution of SRC dissolved in process-derived distillates.

Not Available

1983-12-01T23:59:59.000Z

44

Burns Prevention  

NLE Websites -- All DOE Office Websites (Extended Search)

Burns Burns Burns can result from everyday things and activities in your home. The most common causes of burns are from scalds (steam, hot bath water, hot drinks and foods), fire, chemicals, electricity and overexposure to the sun. Some burns may be more serious than others. The severity of the burn is based on the depth of the burn. First degree burns are the least severe, and third degree burns are the most severe. Call 911 or seek medical attention if you are unsure of how severe your burn is. All burns are susceptible to tetanus (lockjaw). Get a tetanus shot every 10 years. If your last shot was 5 years ago, talk to your doctor - you may need a booster shot. Causes of Burns: Scalds Scalding injuries and burns are caused by hot tap water, hot beverages and food, and steam.

45

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Clean Coal 101 Lesson 2: The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead in finding a solution. One of the steps taken by the U.S. Department of Energy was to create a partnership program between the Government, several States, and private companies to test new methods developed by scientists to make coal burning much cleaner. This became the "Clean Coal Technology Program."

46

JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING  

SciTech Connect

The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite-based activated (800 C, 1472 F) carbons required a shorter (15-minute) conditioning period in the simulated lignite flue gas and captured gaseous mercury more effectively than those activated at 750 C (1382 F). Subsequent tests with higher acid gas concentrations including 50 ppm HCl showed no early mercury breakthrough for either the activated (750 C, 1382 F) Bienfait carbon or the DARCO FGD. Although these high acid gas tests yielded better mercury capture initially, significant breakthrough of mercury ultimately occurred sooner than during the simulated lignite flue gas tests. The steam-activated char, provided by Luscar Ltd., and DARCO FGD, provided by NORIT Americas, were evaluated for mercury removal potential in a 580 MJ/hr (550,000-Btu/hr) pilot-scale coal combustion system equipped with four particulate control devices: (1) an electrostatic precipitator (ESP), (2) a fabric filter (FF), (3) the Advanced Hybrid{trademark} filter, and (4) an ESP and FF in series, an EPRI-patented TOXECON{trademark} technology. The Ontario Hydro method and continuous mercury monitors were used to measure mercury species concentrations at the inlet and outlet of the control technology devices with and without sorbent injection. Primarily Hg{sup o} was measured when lignite coals from the Poplar River Plant and Freedom Mine were combusted. The effects of activated Luscar char, DARCO FGD, injection rates, particle size, and gas temperature on mercury removal were evaluated for each of the four particulate control device options. Increasing injection rates and decreasing gas temperatures generally promoted mercury capture in all four control devices. Relative to data reported for bituminous and subbituminous coal combustion flue gases, higher sorbent injection rates were generally required for the lignite coal to effectively remove mercury. Documented results in this report provide the impacts of these and other parameters and provide the inputs needed to direct Phase II of the project.

John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

2003-10-01T23:59:59.000Z

47

Pulverized coal fuel injector  

DOE Patents (OSTI)

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

48

HS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Fossil Energy Study Guide: Coal Coal is the most plentiful fuel in the fossil family. The United States has more coal reserves than any other country in the world. In fact, one-fourth of all known coal in the world is in the United States, with large deposits located in 38 states. The United States has almost as much energ y in coal that can be mined as the rest of the world has in oil that can be pumped from the ground. TYPES OF COAL Coal is a black rock made up of large amounts of carbon. Like all fossil fuels, coal can be burned to release energy. Coal contains elements such as hydrogen, oxygen, and nitrogen; has various amounts of minerals; and is itself considered to be a mineral of organic origin. Due to the variety of materials buried over time in the

49

MS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COAL-OUR MOST ABUNDANT FUEL COAL-OUR MOST ABUNDANT FUEL America has more coal than any other fossil fuel resource. Th e United States also has more coal reserves than any other single country in the world. In fact, 1/4 of all the known coal in the world is in the United States. Th e United States has more energy in coal that can be mined than the rest of the world has in oil that can be pumped from the ground. Currently, coal is mined in 25 of the 50 states. Coal is used primarily in the United States to generate electricity. In fact, it is burned in power plants to produce nearly half of the electricity we use. A stove uses about half a ton of coal a year. A water heater uses about two tons of coal a year. And a refrigerator, that's another half-ton a year. Even though you

50

Economic Evaluation of By-Product Power/Co-Generation Systems for Industrial Plants with Fluidized-Bed Coal Burning Facilities  

E-Print Network (OSTI)

Economic analysis of the construction and operation of by-product electric power and steam/power cogeneration systems in coal fired fluidized-bed steam cycles, located at individual industrial sites analyzed by the author, is being presented. The plants analyzed employ fluidized bed boilers for generation of steam for process and building/heating/cooling demands, in conjunction with electric power co-generation. Results of the analysis are presented, using life cycle costs and investment payback periods, pinpointing the areas, type and magnitude of costs which should be considered in the selection of combustors or systems. Capital and operating costs, and recognized technical and economic barriers are also presented and their effects indicated. Life cycle cost of each of the alternatives analyzed are compared and the expected payback periods for the different size FBC plants and for different annual average production levels are discussed.

Mesko, J. E.

1980-01-01T23:59:59.000Z

51

Role of coal in the world and Asia  

SciTech Connect

This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning.

Johnson, C.J.; Li, B.

1994-10-01T23:59:59.000Z

52

The burning bush  

E-Print Network (OSTI)

ISSN 1948-6596 The burning bush Fire in Mediterraneandiscussion. Pre- scription burning is used in many forest

Schwilk, Dylan W

2013-01-01T23:59:59.000Z

53

Fireside Corrosion in the Oxy-Combustion of Coal  

Science Conference Proceedings (OSTI)

Oxy-fuel combustion is burning a fuel in oxygen rather than air. This work considers the case of burning coal in a mixture of recirculated flue gas and oxygen.

54

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network (OSTI)

Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

Dai, Pengcheng

55

Coal - Energy Explained, Your Guide To Understanding Energy ...  

U.S. Energy Information Administration (EIA)

Solar Thermal Power Plants; Solar Thermal Collectors; ... Lignite is mainly burned at power plants to generate electricity. Also on Energy Explained. Use of Coal;

56

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Applications Blast Furnace Granular-Coal Injection System Demonstration Project - Project Brief PDF-314KB Bethlehem Steel Corp., Burns Harbor, IN PROGRAM PUBLICATIONS...

57

NETL: News Release - New Projects Positioning Coal-Fired Utilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Standards with New, Lower Cost Technologies With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S....

58

A pulverized coal fuel injector  

DOE Patents (OSTI)

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO{sub 2} formation.

Rini, M.J.; Towle, D.P.

1991-12-31T23:59:59.000Z

59

Coal combustion products (CCPs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

60

Underground gasification of coal  

DOE Patents (OSTI)

There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

Pasini, III, Joseph (Morgantown, WV); Overbey, Jr., William K. (Morgantown, WV); Komar, Charles A. (Uniontown, PA)

1976-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Burning plasmas  

SciTech Connect

The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R D areas that need to be addressed on the way to a fusion power demonstration.

Furth, H.P.; Goldston, R.J.; Zweben, S.J. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Sigmar, D.J. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

1990-10-01T23:59:59.000Z

62

Considerations for Prescribed Burning  

E-Print Network (OSTI)

Considerations for Prescribed Burning NEW M EX ICO S TAE U N I V E R SI T YT Cooperative Extension prescribed burns ...................... 1 Fire effects ................................................ 3 Justification for burning ......................................... 3 Reclamation versus

Castillo, Steven P.

63

Materials challenges in advanced coal conversion technologies  

SciTech Connect

Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

Powem, C.A.; Morreale, B.D. [National Energy Technology Laboratory, Albany, OR (United States)

2008-04-15T23:59:59.000Z

64

Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM  

E-Print Network (OSTI)

Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM ANAHEIM, Calif., March 29 (UPI) -- Fly ash, a byproduct of coal-burning electric power plants, could save billions. More than 450 coal-burning electric power plants in the United States produce about 130 million tons

Belogay, Eugene A.

65

Coal combustion system  

SciTech Connect

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

66

National Coal Quality Inventory (NACQI)  

Science Conference Proceedings (OSTI)

The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

Robert Finkelman

2005-09-30T23:59:59.000Z

67

A3: Investigation on Co-combustion Kinetics of Anthracite Coal and ...  

Science Conference Proceedings (OSTI)

Results show: compared with anthracite coal, the ignition and burn out temperatures of biomass char were lower and the combustion characteristics were better ...

68

Mercury concentrations in wetlands associated with coal-fired power plants in Illinois.  

E-Print Network (OSTI)

??Burning of fossil fuels by coal-fired power plants (CFPPs) is one of the largest sources of environmental mercury in the United States and there have… (more)

Weir, Scott

2009-01-01T23:59:59.000Z

69

Spring Cleaning. Calorie Burning.  

E-Print Network (OSTI)

Spring Cleaning. Calorie Burning. Laundry: 73 Dusting: 85 Mopping the Floor: 153 Washing the Car Painting: 161 (Estimate based on 150 lb person per 30 minutes, more calories burned if weigh more, fewer calories burned if weigh less) Allergy Sufferers' Survival Guide > Wash your hair before bed to avoid

Acton, Scott

70

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

Burn Non-Lignite Coal Burn Non-Lignite Coal Page 7 8. Month-to-Month Comparisons: Electric Power Retail Sales and Average Prices Page 8 9. Retail Sales Trends Page 9 10. Average Retail Price Trends Page 10 11. Heating and Cooling Degree Days Page 11 12. Documentation Page 12 Monthly Flash Estimates of Data for: October 2010 Section 1. Commentary Electric Power Data In October 2010, the contiguous United States experienced temperatures that were above average. Accordingly, the total population-weighted heating degree days for the United States were 15.6 percent below the October normal. Retail sales of electricity remained relatively unchanged from October 2009. Over the same period, the average U.S. retail price of electricity increased 1.8 percent. For the 12-month period ending October 2010, the average U.S.

71

BNL | Biomass Burns  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

72

Bittersweet and Burning Bush  

NLE Websites -- All DOE Office Websites (Extended Search)

Bittersweet and Burning Bush Nature Bulletin No. 250 December 25, 1982 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation...

73

Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trial 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal  

SciTech Connect

This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993. Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test orI C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

1997-11-01T23:59:59.000Z

74

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1981-01-01T23:59:59.000Z

75

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1985-02-12T23:59:59.000Z

76

Method for control of subsurface coal gasification  

SciTech Connect

The burn front in an in situ underground coal gasification operation is controlled by utilizing at least two parallel groups of vertical bore holes disposed in the coalbed at spaced-apart locations in planes orthogonal to the plane of maximum permeability in the coalbed. The combustion of the coal is initiated in the coalbed adjacent to one group of the bore holes to establish a combustion zone extending across the group while the pressure of the combustion supporting gas mixture and/or the combustion products is regulated at each well head by valving to control the burn rate and maintain a uniform propagation of the burn front between the spaced-apart hole groups to gasify virtually all the coal lying therebetween.

Komar, Charles A. (Uniontown, PA)

1976-12-14T23:59:59.000Z

77

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal 101 Lesson 1: Cleaning Up Coal Clean Coal COAL is our most abundant fossil fuel. The United States has more coal than the rest of the world has oil. There is still...

78

Coal pump  

DOE Patents (OSTI)

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

79

Sun tanning/burning  

NLE Websites -- All DOE Office Websites (Extended Search)

Sun tanning/burning Sun tanning/burning Name: Richardo Cossyleon Location: N/A Country: N/A Date: N/A Question: Why doesn't the sun affect or burn people with dark pigment in their skin? Replies: Good question! The pigment, melanin, is more toward the surface of the upper skin layer and absorbs ultraviolet rays from the Sun or artificial sources. This absorption protects the lower layers from damage and inflammation (burning). A very dark skinned person may have over a 1000X the protection from UV compared to a fair skinned person. Fair skinned people should use sun-block lotions especially early in the warm season AND keep exposure to the sun, particularly at midday, to less than 30 min. Even if a person gets a good tan, the sun's UV will age the skin over time. It will get wrinkled and develop age lines, etc. after many years of exposure. Moderation is the key!

80

Open Burning Permit Events Management  

E-Print Network (OSTI)

Open Burning Permit Events Management Form Revision Date: 09/29/2010 OpenBurningPermit.docx A Use being burned: (check all that apply) [ ] Small logs (less than 16 in. long) [ ] Finished Lumber________________________________ As the individual responsible for this event, I have read the attached Regulations for Open Burning. The sponsoring

Manning, Sturt

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EIA - Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal...

82

The Coal-Waste Artificial Reef Program (C-WARP): A New Resource  

E-Print Network (OSTI)

The Coal-Waste Artificial Reef Program (C-WARP): A New Resource Potential for Fishing Reef ABSTRACT-Thefeasibility ofusing solid blocks of waste materialfrom coal:firedpower plantslor underwater (scrubber) sludge from coal-burning power stations. was constructed in the Atlantic Ocean offLong Island. N

83

Designing and upgrading plants to blend coal  

SciTech Connect

Fuel flexibility isn't free. Whether you are equipping a new power plant to burn more than one type of coal or retrofitting an existing plant to handle coal blends, you will have to spend time and money to ensure that all three functions performed by its coal-handling system, unloading, stockout, and reclaim, are up to the task. The first half of this article lays out the available options for configuring each subsystem to support blending. The second half describes, in words and pictures, how 12 power plants in the USA, both new and old, address the issue. 9 figs., 1 tab.

McCartney, R.H. [Roberts and Schaefer Co. (United States)

2006-10-15T23:59:59.000Z

84

Clean Coal Technology and the Clean Coal Power Initiative | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Clean Coal Technology and the Clean Coal Power Initiative Clean Coal Technology and the Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants. In the late 1980s and early 1990s, the U.S. Department of Energy conducted a joint program with industry and State agencies to demonstrate the best of these new technologies at scales large enough for companies to make commercial decisions. More than 20 of the technologies tested in the original program achieved commercial success. The early program, however, was focused on the environmental challenges of the time - primarily concerns over the impact of acid rain on forests and

85

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanest Coal Technology Clean Coal 101 Lesson 5: The Cleanest Coal Technology-A Real Gas Don't think of coal as a solid black rock. Think of it as a mass of atoms. Most of the...

86

Clean Coal Technology and the Clean Coal Power Initiative | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Technology and the Clean Coal Power Initiative Clean Coal Technology and the Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy...

87

5, 27912831, 2005 Biomass burning  

E-Print Network (OSTI)

ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract Introduction measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia P. Guyon1 , G. Frank1. 2791 #12;ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract

Paris-Sud XI, Université de

88

Smoke Management for Prescribed Burning  

E-Print Network (OSTI)

Smoke Management for Prescribed Burning E-1008 Oklahoma Cooperative Extension Service Division of Agricultural Sciences and Natural Resources Oklahoma State University Smoke Management for Prescribed Burning Extension #12;#12;Smoke Management for Prescribed Burning John R. Weir Research Associate Natural Resource

Balasundaram, Balabhaskar "Baski"

89

Burning Plasma Developments Presented to  

E-Print Network (OSTI)

Burning Plasma Developments Dale Meade Presented to VLT Program Advisory Committee UCLA December 4 and Burning Plasma Issues · NSO PAC Activities First Meeting July 20-21, 2001 at GA Action Items and Status Second Meeting January 17-18, 2001 at MIT Agenda items · FuSAC Recommendation on a burning plasma

90

7, 1733917366, 2007 Biomass burning  

E-Print Network (OSTI)

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

91

Nomogram calculates power plant coal use  

SciTech Connect

The number of tons of coal burned annually by a generating unit can be calculated by the following formula: Q = 43.8 (MW) (HR) (CF/HV)/10/sup 6/ where: Q = Annual usage, million tons MW = Unit capacity, MW HR = Unit heat rate, Btu/kWh CF = Annual unit capacity factor, % HV = Heating value of coal, Btu/lb The nomogram solves this equation and permits annual coal usage to be estimated quickly for various combinations of the other variables. The nomogram also can be used in reverse to determine such things as the annual capacity factor that a certain coal usage could sustain. Example: An 840-MW unit has an average heat rate of 10,000 Btu/kWh and burns coal with a heating value of 8600 Btu/lb. The annual capacity factor is 60%. Calculate the annual coal usage. Solution: (A) Align 840 on MW scale with 8600 on HV scale and mark intersection with CF scale; (B) align this marked point with 10,000 on HR scale and mark intersection with Reference Line; (C) align this point with 60 on CF scale and extend to Q scale. Read answer as approximately 2.6 million tons/year.

McAlister, J.

1984-05-01T23:59:59.000Z

92

Coal industry annual 1994  

SciTech Connect

This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

NONE

1995-10-01T23:59:59.000Z

93

EIA Energy Kids - Coal  

U.S. Energy Information Administration (EIA)

Sometimes, coal-fired electric power plants are built near coal mines to lower ... industries and businesses with their own power plants use coal to generate ...

94

Reducing the moisture content of clean coals  

SciTech Connect

Coal moisture content can profoundly effect the cost of burning coal in utility boilers. Because of the large effect of coal moisture, the Empire State Electric Energy Research Corporation (ESEERCO) contracted with the Electric Power Research Institute to investigate advanced coal dewatering methods at its Coal Quality Development Center. This report contains the test result on the high-G solid-bowl centrifuge, the second of four devices to be tested. The high-G solid-bowl centrifuge removes water for coal by spinning the coal/water mixture rapidly in a rotating bowl. This causes the coal to cling to the sides of the bowl where it can be removed, leaving the water behind. Testing was performed at the CQDC to evaluate the effect of four operating variables (G-ratio, feed solids concentration, dry solids feed rate, and differential RPM) on the performance of the high-G solid-bowl centrifuge. Two centrifuges of different bowl diameter were tested to establish the effect of scale-up of centrifuge performance. Testing of the two centrifuges occurred from 1985 through 1987. CQDC engineers performed 32 tests on the smaller of the two centrifuges, and 47 tests on the larger. Equations that predict the performance of the two centrifuges for solids recovery, moisture content of the produced coal, and motor torque were obtained. The equations predict the observed data well. Traditional techniques of establishing the performance of centrifuge of different scale did not work well with the two centrifuges, probably because of the large range of G-ratios used in the testing. Cost of operating a commercial size bank of centrifuges is approximately $1.72 per ton of clean coal. This compares well with thermal drying, which costs $1.82 per ton of clean coal.

Kehoe, D. (CQ, Inc., Homer City, PA (United States))

1992-12-01T23:59:59.000Z

95

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Knocking the NOx Out of Coal Clean Coal 101 Lesson 3: Knocking the NOx Out of Coal How NOx Forms NOx Formation Air is mostly nitrogen molecules (green in the above diagram) and...

96

Coal and bituminous reserves  

SciTech Connect

Chapter 5 of this book contains sections entitled: other coal processes; underground processing of coal; and other important energy sources.

NONE

2008-02-15T23:59:59.000Z

97

How Coal Gasification Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasification » How Coal Gasification » How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work The heart of a gasification-based system is the gasifier. A gasifier converts hydrocarbon feedstock into gaseous components by applying heat under pressure in the presence of steam. A gasifier differs from a combustor in that the amount of air or oxygen available inside the gasifier is carefully controlled so that only a relatively small portion of the fuel burns completely. This "partial oxidation" process provides the heat. Rather than burning, most of the carbon-containing feedstock is chemically broken apart by the gasifier's heat and pressure, setting into motion chemical reactions that produce "syngas." Syngas is primarily hydrogen and carbon monoxide, but can include

98

Results of the PDF{trademark} test burn at Clifty Creek Station  

Science Conference Proceedings (OSTI)

Process Derived Fuel (PDF{sup TM}) from the ENCOAL process is different from other coals used to generate steam for the power industry. Although PDF{sup TM} is currently produced from Powder River Basin (PRB) subbituminous coal, the coal structure changes during processing. Compared to the parent coal, PDF{sup TM} contains much less moisture and slightly lower volatile matter resulting in a higher heating value and higher ash per million Btu. These coal properties can potentially benefit utility boiler performance. Combining the high combustion reactivity typical of PRB coals with significantly reduced moisture should produce higher flame zone temperatures and shorter flames. As a result, some boilers may experience increased steam production, better burnout, or lower excess air. The objective of the work contracted to Quinapoxet Engineering was to quantify the impacts of burning PDF{sup TM} on boiler performance at Clifty Creek Unit 3. A unique optical temperature monitor called SpectraTemp was used to measure changes in furnace exit gas temperature (FEGT) with time and boiler operating parameters for both PDF{sup TM} blends as well as a baseline coal blend consisting of 60% PRB coal, 20% Ohio coal, and 20% low-volatile eastern bituminous coal from Virginia. FEGT was then related to net plant heat rate, NO{sub x} emissions, and electrostatic precipitator performance.

Johnson, S.A.; Knottnerus, B.

1996-10-01T23:59:59.000Z

99

Coal combustion products 2007 production and use report  

Science Conference Proceedings (OSTI)

The American Coal Ash Association's 2007 Annual Coal Combustion Products (CCP) are derived from data from more than 170 power plants. The amount of CCPs used was 40.55%, a decrease of 2.88% from 2006, attributed to reduced fuel burn and a decrease in demand in the building industry. Figures are given for the production of fly ash, flue gas desulfurization gypsum, bottom ash, FBC ash and boiler slag. The article summarises results of the survey. 1 ref., 1 tab.

NONE

2009-07-01T23:59:59.000Z

100

Ash Properties Analysis from Co-Firing Biomass and Coal  

Science Conference Proceedings (OSTI)

Power plant interest in renewable energy has been increasing, especially in response to legislative requirements to include renewables in the generation mix. One promising renewable strategy is co-firing biomass with coal, in pulverized coal- (PC-) fired units. The objective of this research is to provide quantitative data on full-scale test burn samples to demonstrate changes in ash characteristics and to identify anomalies affecting particulate material (PM) collection efficiency that result from co-fi...

2011-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, December 1, 1991--February 29, 1992  

SciTech Connect

The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through -200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc.

Singh, S. [SS Energy Environmental International, Inc., Rockford, IL (United States); Scaroni, A.; Miller, B. [Pennsylvania State Univ., University Park, PA (United States). Combustion Lab.; Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States)

1992-08-01T23:59:59.000Z

102

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

103

Combustion characterization of the blend of plant coal and recovered coal fines  

SciTech Connect

The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through {minus}200 mesh size. These samples' combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc. This report covers the first quarter's progress. Major activities during this period were focused on finding the plants where a demo MTU column will be installed to prepare the samples needed to characterize the combustion behavior of slurry effluents. Also, a meeting was held at Penn State University to discuss the availability of the laboratory furnace for testing the plant coal/recovered coal fines blends.

Singh, Shyam.

1991-01-01T23:59:59.000Z

104

Coal gasification  

Science Conference Proceedings (OSTI)

A standard series of two staged gas generators (GG) has been developed in the United States for producing gas with a combustion heat from 4,700 to 7,600 kilojoules per cubic meter from coal (U). The diameter of the gas generators is from 1.4 to 3.65 meters and the thermal capacity based on purified cold gas is from 12.5 to 89 million kilojoules per hour. Certain standard sized gas generators have undergone experimental industrial tests which showed that it is most expedient to feed the coal into the gas generators pneumatically. This reduces the dimensions of the charging device, makes it possible to use more common grades of structural steels and reduces the cost of the gas. A double valve reliably prevents ejections of the gasification product and promotes the best distribution of the coal in the gas generator. The gas generators may successfully operate on high moisture (up to 36 percent) brown coal. Blasting with oxygen enriched to 38 percent made it possible to produce a gas with a combustion heat of 9,350 kilojoules per cubic meter. This supports a combustion temperature of 1,700C.

Rainey, D.L.

1983-01-01T23:59:59.000Z

105

Blast furnace granular coal injection project. Annual report, January--December 1993  

SciTech Connect

This initial annual report describes the Blast Furnace Granular Coal Injection project being implemented at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. This installation will be the first in the United States to employ British Steel technology that uses granular coal to provide part of the fuel requirement of blast furnaces. The project will demonstrate/assess a broad range of technical/economic issues associated with the use of coal for this purpose. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. Preliminary Design (Phase 1) began in 1991 with detailed design commencing in 1993. Construction at Burns Harbor (Phase 2) began in August 1993. Construction is expected to complete in the first quarter of 1995 which will be followed by the demonstration test program (Phase 3). Progress is described.

1994-06-01T23:59:59.000Z

106

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

DOE Green Energy (OSTI)

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

107

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Clean Coal Crosscutting Research University Coal Research University Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal...

108

O A L Section 2. Coal  

U.S. Energy Information Administration (EIA)

Section 2. Coal Coal prices are developed for the following three categories: coking coal; steam coal (all noncoking coal); and coal coke imports and exports.

109

Bending Burning Matches and Crumpling Burning Paper Texas A&M University  

E-Print Network (OSTI)

Bending Burning Matches and Crumpling Burning Paper Zeki Melek Texas A&M University Department burning. Specifically, we can simulate the bending of burning matches, and the folding of burning paper interactively. 1 Introduction We present a simple method to increase the realism of the simu- lation of burning

Keyser, John

110

BLM Burns District Office | Open Energy Information  

Open Energy Info (EERE)

Burns District Office Jump to: navigation, search Name BLM Burns District Office Place Hines, Oregon References BLM Burns District Office1 This article is a stub. You can help...

111

INHIBITION EFFECTS ON EXTINCTION OF POLYMER BURNING  

E-Print Network (OSTI)

ON EXTINCTION OF POLYMER BURNING* W.J. Pitz R.F. SawyerQuantitative determinations of burning rates, extinctionlayer at the surface of a burning polymer. The char l ayer

Pitz, W.J.

2011-01-01T23:59:59.000Z

112

Combustion characterization of the blend of plant coal and recovered coal fines. Final technical report, September 1, 1991--August 31, 1992  

SciTech Connect

The overall objective of this proposed research program was to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples were prepared as 100% plant coal, 90% plant coal/10% fines, 85% plant coal/15% fines, and 80% plant coal /20% fines with a particle size distribution of 70% passing through {minus}200 mesh size. The plant coal and recovered coal fines were obtained from the Randolph Preparation Plant of Peabody Coal Co., Marissa, IL. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace was used mainly to measure the emissions and ash deposition study, while the drop tube furnace was used to determine burning profile, combustion efficiency, etc. The burning profile of the plant coal and the three blends was determined in a thermogravimetric analyzer. Results indicated slower burning of the blends due to low volatile matter and oxidized coal particles. Combustion emissions of these samples were determined in the down-fired combustor, while relative ignition temperatures were determined in the drop tube furnace. Chemical composition of ashes were analyzed to establish a correlation with their respective ash fusion temperatures. Overall study of these samples suggested that the blended samples had combustion properties similar to the original plant coal. In other words, flames were stable under identical firing rates of approximately 200,000 Btu`s/hr and 25% excess air. CO, NO{sub x}, and SO{sub x}, were similar to each other and within the experimental error. Combustion efficiency of 99{sup +}% was achievable. Ash chemical analysis of each sample revealed that slagging and fouling should not be different from each other.

Singh, S. [SS Energy Environmental International, Inc., Rockford, IL (United States); Scaroni, A.; Miller, B. [Pennsylvania State Univ., University Park, PA (United States). Combustion Lab.; Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States)

1992-12-31T23:59:59.000Z

113

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

Cobb, J.T. Jr.

1992-09-11T23:59:59.000Z

114

Modeling char oxidation behavior under Zone II burning conditions at elevated pressures  

SciTech Connect

For accurate modeling of the coal combustion process at elevated pressures, account must be made for variations in char-particle structure. As pressure is increased, particle swelling increases during the devolatilization of certain bituminous coals, yielding a variety of char-particle structures, from uniform high-density particles to thin-walled non-uniform low-density particles having large internal void volumes. Since under Zone II burning conditions the char conversion rate depends upon the accessibility of the internal surfaces, the char structure plays a key role in determining particle burnout times. In our approach to characterize the impact of char structure on particle burning rates, effectiveness factors appropriate for thin-walled cenospherical particles and thick-walled particles having a few large cavities are defined and related to the effectiveness factor for uniform high-density particles that have no large voids, only a random distribution of pores having a mean pore size in the sub-micron range. For the uniform case, the Thiele modulus approach is used to account for Zone 11 type burning in which internal burning is limited by the combined effects of pore diffusion and the intrinsic chemical reactivity of the carbonaceous material. In the paper, the impact of having a variety of char structures in a mix of particles burning under Zone II burning conditions is demonstrated.

Ma, L.Q.; Mitchell, R. [Stanford University, Stanford, CA (USA). High Temperature Gasdynamics Laboratory

2009-01-15T23:59:59.000Z

115

Coal industry annual 1997  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

116

Coal industry annual 1996  

Science Conference Proceedings (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

117

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

1996-10-01T23:59:59.000Z

118

Microbial solubilization of coal  

DOE Patents (OSTI)

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

119

Survey and evaluation of current and potential coal beneficiation processes  

SciTech Connect

Coal beneficiation is a generic term used for processes that prepare run-of-mine coal for specific end uses. It is also referred to as coal preparation or coal cleaning and is a means of reducing the sulfur and the ash contents of coal. Information is presented regarding current and potential coal beneficiation processes. Several of the processes reviewed, though not yet commercial, are at various stages of experimental development. Process descriptions are provided for these processes commensurate with the extent of information and time available to perform the evaluation of these processes. Conceptual process designs, preliminary cost estimates, and economic evaluations are provided for the more advanced (from a process development hierarchy viewpoint) processes based on production levels of 1500 and 15,000 tons/day (maf) of cleaned product coal. Economic evaluations of the coal preparation plants are conducted for several project financing schemes and at 12 and 15% annual after-tax rates of return on equity capital. A 9% annual interest rate is used on the debt fraction of the plant capital. Cleaned product coal prices are determined using the discounted cash flow procedure. The study is intended to provide information on publicly known coal beneficiation processes and to indicate the relative costs of various coal beneficiation processes. Because of severe timeconstraints, several potential coal beneficiation processes are not evaluated in great detail. It is recommended that an additional study be conducted to complement this study and to more fully appreciate the potentially significant role of coal beneficiation in the clean burning of coal.

Singh, S. P.N.; Peterson, G. R.

1979-03-01T23:59:59.000Z

120

Small boiler uses waste coal  

SciTech Connect

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

METC research on coal-fired diesels  

DOE Green Energy (OSTI)

The METC in-house Coal-Fueled Diesel Research project is part of the overall DOE effort to develop a technology base for diesel engines capable of operating on coal, shale oil or low-cost coal-derived fuels. The in-house effort started in 1985 as a test-bed for coal-derived liquid fuels and will end this fiscal year with the successful completion of METC`s diesel R&D program. Currently METC in-house research and development efforts focus on pilot chamber combustion in METC`s coal-water slurry (CWS) fueled diesel engine. A novel pilot chamber for a direct-injected, coal-fueled diesel engine has been designed and is being tested in METC`s single cylinder research diesel engine. The pilot chamber configuration allows for operation at extended load and speed conditions using 100 percent CWS and no other pilot fuel. The concept involves the use of a small volume chamber exterior to the main cylinder in which approximately 5 percent of the total fuel energy at full load conditions is injected. Lower NO{sub X} levels may be obtained due to leaner burning as well as broader stable performance using only CWS fuel.

McMillian, M.H. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E.H.; Addis, R.E. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

1993-11-01T23:59:59.000Z

122

Burning Plasma Support Research Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Burning Plasma Support Research Program on Alcator C-Mod Presented by: Stephen M. Wolfe Alcator C-Mod Five Year Proposal Review MIT Plasma Science & Fusion Center Cambridge, MA May...

123

Coal liquefaction and hydrogenation  

DOE Patents (OSTI)

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

124

Coal industry annual 1993  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

125

Westinghouse to launch coal gasifier with combined cycle unit  

Science Conference Proceedings (OSTI)

Westinghouse has designed a prototype coal gasifier which can be intergrated with a combined cycle unit and enable power plants to use coal in an efficient and environmentally acceptable way. Coal Gasification Combined Cycle (CGCC) technology burns gas made from coal in a gas turbine to generate power and then collects the hot exhaust gases to produce steam for further power generation. The commercialization of this process would meet the public's need for an economical and clean way to use coal, the utitities' need to meet electric power demands, and the nation's need to reduce dependence on imported oil. The Westinghouse process is described along with the company's plans for a demonstration plant and the option of a phased introduction to allow utilities to continue the use of existing equipment and generate revenue while adding to capacity. (DCK)

Stavsky, R.M.; Margaritis, P.J.

1980-03-01T23:59:59.000Z

126

ACC forum looks at 'burning' questions  

Science Conference Proceedings (OSTI)

The American Coal Council's (ACC) Spring Coal Forum had as its theme: Coal's renaissance: prospects for regenerating coal generation'. It explored US coal demand, supply, end-user technology and market trends. The article gives an overview of the conference, highlighting several presentations. 2 figs., 1 tab.

Carter, R.

2005-06-01T23:59:59.000Z

127

Category:Burns, OR | Open Energy Information  

Open Energy Info (EERE)

Burns, OR Burns, OR Jump to: navigation, search Go Back to PV Economics By Location Media in category "Burns, OR" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Burns OR PacifiCorp (Oregon).png SVFullServiceRestauran... 71 KB SVHospital Burns OR PacifiCorp (Oregon).png SVHospital Burns OR Pa... 74 KB SVLargeHotel Burns OR PacifiCorp (Oregon).png SVLargeHotel Burns OR ... 74 KB SVLargeOffice Burns OR PacifiCorp (Oregon).png SVLargeOffice Burns OR... 69 KB SVMediumOffice Burns OR PacifiCorp (Oregon).png SVMediumOffice Burns O... 71 KB SVMidriseApartment Burns OR PacifiCorp (Oregon).png SVMidriseApartment Bur... 72 KB SVOutPatient Burns OR PacifiCorp (Oregon).png SVOutPatient Burns OR ... 69 KB SVPrimarySchool Burns OR PacifiCorp (Oregon).png

128

Patch Burning: Integrating Fire and Grazing  

E-Print Network (OSTI)

Patch Burning: Integrating Fire and Grazing to Promote Heterogeneity Patch Burning: Integrating Oklahoma Cooperative Extension Service Oklahoma State University June 2013 #12;#12;Patch Burning: Integrating Fire and Grazing to Promote Heterogeneity Patch Burning: Integrating Fire and Grazing to Promote

Balasundaram, Balabhaskar "Baski"

129

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network (OSTI)

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR #12;PT COGENERATION LLC A wood-burning cogeneration power plant - Generates electricity (for sale off paper making process, black and white liquor , sludge #12;SLASH BURNING Slash burned in 2008: Jefferson

130

FROM YEARNING TO BURNING Marshall Rosenbluth  

E-Print Network (OSTI)

FROM YEARNING TO BURNING Marshall Rosenbluth Possible broad-brush guidelines for "burning plasma" thinking December 6, 2000 The "yearn to burn" is well motivated. Most of us came into the fusion program for many years, the point at which science and the fusion energy goal converge is in a burning plasma

131

Patch Burning: Integrating Fire and Grazing  

E-Print Network (OSTI)

Patch Burning: Integrating Fire and Grazing to Promote Heterogeneity Patch Burning: Integrating Oklahoma Cooperative Extension Service Oklahoma State University September 2007 #12;#12;Patch Burning: Integrating Fire and Grazing to Promote Heterogeneity Patch Burning: Integrating Fire and Grazing to Promote

Debinski, Diane M.

132

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

133

Annual Coal Distribution Report  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report Release Date: December 19, 2013 | Next Release Date: November 2014 | full report | RevisionCorrection Revision to the Annual Coal Distribution...

134

2014 Coal Form Proposals  

U.S. Energy Information Administration (EIA)

Coal Survey Form Changes Proposed for 2014. The U.S. Energy Information Administration (EIA) has begun the process of re-clearing the coal survey ...

135

Coal Mining (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

136

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Metallurgical coal markets became volatile when the thriving Chinese steel industry in late 2003 and 2004 made outsized demands for coking coal and met coke, ...

137

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Coal Prices (updated December 27, 2006) This report summarizes spot coal prices for the business weeks ended December 1, 8, and 15.

138

Annual Coal Report 2001  

U.S. Energy Information Administration (EIA)

DOE/EIA-0584 (2001) Annual Coal Report 2001 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy

139

Coal liquefaction  

DOE Patents (OSTI)

In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

Schindler, Harvey D. (Fairlawn, NJ)

1985-01-01T23:59:59.000Z

140

American Coal Council 2004 Spring Coal Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NETL: Coal & Coal Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Biomass to Liquids Hydrogen-from-Coal RD&D ENERGY ANALYSIS About Us Search Products Contacts SMART GRID ANALYSIS BASELINE STUDIES QUALITY GUIDELINES NETL-RUA About NETL-RUA...

142

SUBCHAPTER D. OUTDOOR BURNING Sec. 352.081. REGULATION OF OUTDOOR BURNING. (a) In this  

E-Print Network (OSTI)

SUBCHAPTER D. OUTDOOR BURNING Sec. 352.081. REGULATION OF OUTDOOR BURNING. (a) In this section measurement that takes into consideration the burning index, spread component, or ignition component court of a county by order may prohibit or restrict outdoor burning in general or outdoor burning

143

Self-scrubbing coal{sup TM}: An integrated approach to clean air. A proposed Clean Coal Technology Demonstration Project  

Science Conference Proceedings (OSTI)

This environmental assessment (EA) was prepared by the U.S.Department of Energy (DOE), with compliance with the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality (CE) regulations for implementating NEPA (40 CFR 1500-1508) and DOE regulations for compliance with NEPA (10 CFR 1021), to evaluate the potential environmental impacts associated with a proposed demonstration project to be cost-shared by DOE and Custom Coals International (CCI) under the Clean Coal Technology (CCT) Demonstration Program of DOE`s Office of Fossil Energy. CCI is a Pennsylvania general partnership located in Pittsburgh, PA engaged in the commercialization of advanced coal cleaning technologies. The proposed federal action is for DOE to provide, through a cooperative agreement with CCI, cost-shared funding support for the land acquisition, design, construction and demonstration of an advanced coal cleaning technology project, {open_quotes}Self-Scrubbing Coal: An Integrated Approach to Clean Air.{close_quotes} The proposed demonstration project would take place on the site of the presently inactive Laurel Coal Preparation Plant in Shade Township, Somerset County, PA. A newly constructed, advanced design, coal preparation plant would replace the existing facility. The cleaned coal produced from this new facility would be fired in full-scale test burns at coal-fired electric utilities in Indiana, Ohio and PA as part of this project.

Not Available

1994-01-01T23:59:59.000Z

144

Combustion characterization of the blend of plant coal and recovered coal fines. [Quarterly] technical report, March 1, 1992--May 31, 1992  

SciTech Connect

The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. One plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through -200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace win be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc. The burning profile of the plant coal and the three blends was determined in a thermogravimetric analyzer. Results indicated slower burning of the blends due to low volatile matter and oxidized coal particles. Ash fusing temperatures of the samples were determined using ASTM procedure. Preliminary combustion evaluation of the samples (100% plant coal, 80% plant coal/20% recovered coal fines) indicated that the flame was stable at 100,000-200,000 Btu/hr firing rate. Carbon conversion efficiency of 85 to 90% was recorded using the Ash Tracer technique. Tests are continuing to determine the operating boundaries for these blends while measuring the emissions of SO{sub x}, NO{sub x}, CO and O{sub 2}, maintaining a stable flame.

Singh, S. [SS Energy Environmental International, Inc., Rockford, IL (United States); Scaroni, A.; Miller, B. [Pennsylvania State Univ., University Park, PA (United States). Combustion Lab.; Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States)

1992-10-01T23:59:59.000Z

145

Hydrogen Burning on Magnetar Surfaces  

E-Print Network (OSTI)

We compute the rate of diffusive nuclear burning for hydrogen on the surface of a "magnetar" (Soft Gamma-Ray Repeater or Anomalous X-Ray Pulsar). We find that hydrogen at the photosphere will be burned on an extremely rapid timescale of hours to years, depending on composition of the underlying material. Improving on our previous studies, we explore the effect of a maximally thick "inert" helium layer, previously thought to slow down the burning rate. Since hydrogen diffuses faster in helium than through heavier elements, we find this helium buffer actually increases the burning rate for magnetars. We compute simple analytic scalings of the burning rate with temperature and magnetic field for a range of core temperature. We conclude that magnetar photospheres are very unlikely to contain hydrogen. This motivates theoretical work on heavy element atmospheres that are needed to measure effective temperature from the observed thermal emission and constrains models of AXPs that rely on magnetar cooling through thick light element envelopes.

P. Chang; P. Arras; L. Bildsten

2004-10-18T23:59:59.000Z

146

Clean Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Research Clean Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal to Liquids Major Demonstrations Crosscutting Research Carbon Capture and...

147

Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report number 8, October 1--December 31, 1995  

SciTech Connect

The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. On the other hand, Mulled Coal does not cause the fugitive and airborne dust problems normally associated with thermally dried coal. The objectives of this project are to demonstrate that: the Mulled Coal process, which has been proved to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality, and at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems.

1996-03-15T23:59:59.000Z

148

Successful so far, coal lobby's campaign may run out of steam  

SciTech Connect

The anti-coal lobby has mounted a highly successful campaign that has brought the permitting, financing, and construction of new conventional coal-fired plants to a virtual halt. But the coal lobby is not yet ready to concede defeat. With powerful constituents in coal-mining and coal-burning states and influential utilities, mining companies, and railroads, it continues to fight for its survival using any and all gimmicks and scare tactics in the book. The battle is being waged in courtrooms, public forums, media campaigns, and especially in Congress. The problem with the coal lobby is that it refuses to admit that coal combustion to generate electricity is among the chief sources of U.S. greenhouse gas emissions; unless they address this issue honestly, effectively, and immediately, their efforts are going to win few converts in the courts of law or public opinion.

NONE

2009-05-15T23:59:59.000Z

149

Coal Tar and Bedrock  

Science Conference Proceedings (OSTI)

The characterization of bedrock groundwater and coal tar impacts is one of the most complicated tasks associated with managing manufactured gas plant (MGP) sites. This report provides an overview of the fate and transport of coal tar in bedrock and the methods available to investigate coal tar at particular sites and discusses how to develop a decision-making framework for coal tar investigations.

2007-02-22T23:59:59.000Z

150

Clean coal: Global opportunities for small businesses  

Science Conference Proceedings (OSTI)

The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world`s most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market.

NONE

1998-01-01T23:59:59.000Z

151

Process for stabilization of coal liquid fractions  

SciTech Connect

Coal liquid fractions to be used as fuels are stabilized against gum formation and viscosity increases during storage, permitting the fuel to be burned as is, without further expensive treatments to remove gums or gum-forming materials. Stabilization is accomplished by addition of cyclohexanol or other simple inexpensive secondary and tertiary alcohols, secondary and tertiary amines, and ketones to such coal liquids at levels of 5-25% by weight with respect to the coal liquid being treated. Cyclohexanol is a particularly effective and cost-efficient stabilizer. Other stabilizers are isopropanol, diphenylmethanol, tertiary butanol, dipropylamine, triethylamine, diphenylamine, ethylmethylketone, cyclohexanone, methylphenylketone, and benzophenone. Experimental data indicate that stabilization is achieved by breaking hydrogen bonds between phenols in the coal liquid, thereby preventing or retarding oxidative coupling. In addition, it has been found that coal liquid fractions stabilized according to the invention can be mixed with petroleum-derived liquid fuels to produce mixtures in which gum deposition is prevented or reduced relative to similar mixtures not containing stabilizer.

Davies, Geoffrey (Boston, MA); El-Toukhy, Ahmed (Alexandria, EG)

1987-01-01T23:59:59.000Z

152

Byproducts can make coal plants green  

Science Conference Proceedings (OSTI)

Co-locating ethanol plants at coal-burning sites, along with the use of biomass gasification to boost coal-fired plant output, can have positive economic and environmental benefits. Adding a biomass gasifier to an older coal-fired plant would inject gas with up to 10% of the fuel value in the coal and increase steam generation by the same amount. Sawdust can be injected as a reburn fuel without the need for gasification. A pre-scrubber would be added before the existing SO{sub 2} scrubber and waste heat from the boiler in the form of low-pressure steam would be sent to a co-located ethanol plant. This would lead to a decrease in emissions of NOx, mercury and SO{sub 2}, less mercury in the gypsum, a large greenhouse gas reduction, reduced net fuel cost, and revenue from hydrochloric acid by- product and from selling low-pressure steam to the ethanol plant. The Blue Flint Ethanol facility uses waste heat from Grand River Energy's 1,100 MW Coal Creek Station in South Jordan, Utah. The new generation of US ethanol plants is likely to use switchgrass and other cellulosic materials as feedstock. Straw and other forms of biomass have high chlorine content. PVC waste can be added to optimise the chlorine content of the scrubber. A chlorine pre-scrubber before the SO{sub 2} scrubber would capture HCl. 1 fig., 1 photo.

McIlvaine, B. [McIlvaine Co. (United States)

2007-07-15T23:59:59.000Z

153

Biomass Burning Observation Project Specifically,  

NLE Websites -- All DOE Office Websites (Extended Search)

Burning Observation Project Burning Observation Project Specifically, the aircraft will obtain measurements of the microphysical, chemical, hygroscopic, and optical properties of aerosols. Data captured during BBOP will help scientists better understand how aerosols combine and change at a variety of distances and burn times. Locations Pasco, Washington. From July through September, the G-1 will be based out of its home base in Washington. From this location, it can intercept and measure smoke plumes from naturally occurring uncontrolled fires across Washington, Oregon, Idaho, Northern California, and Western Montana. Smoke plumes aged 0-5 hours are the primary targets for this phase of the campaign. Memphis, Tennessee. In October, the plane moves to Tennessee to sample prescribed

154

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

155

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

156

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

157

NO reduction in decoupling combustion of biomass and biomass-coal blend  

SciTech Connect

Biomass is a form of energy that is CO{sub 2}-neutral. However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. In this study, a technology called decoupling combustion was investigated to demonstrate how it reduces NO emissions in biomass and biomass-coal blend combustion. The decoupling combustion refers to a two-step combustion method, in which fuel pyrolysis and the burning of char and pyrolysis gas are separated and the gas burns out during its passage through the burning-char bed. Tests in a quartz dual-bed reactor demonstrated that, in decoupling combustion, NO emissions from biomass and biomass-coal blends were both less than those in traditional combustion and that NO emission from combustion of blends of biomass and coal decreased with increasing biomass percentage in the blend. Co-firing rice husk and coal in a 10 kW stove manufactured according to the decoupling combustion technology further confirmed that the decoupling combustion technology allows for truly low NO emission as well as high efficiency for burning biomass and biomass-coal blends, even in small-scale stoves and boilers. 22 refs., 6 figs., 1 tab.

Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu [Chinese Academy of Sciences, Beijing (China). State Key Laboratory of Multi-Phase Complex Systems

2009-01-15T23:59:59.000Z

158

NETL: Coal & Coal Biomass to Liquids - Alternate Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal and CoalBiomass to Liquids Alternate Hydrogen Production In the Alternate Production technology pathway, clean syngas from coal is converted to high-hydrogen-content liquid...

159

The Effect of Circulating Coal Slurry Water Hardness on Coal ...  

Science Conference Proceedings (OSTI)

In order to investigate the effect of gypsum on flotation and coal slurry settling during coal slurry recirculation, the water hardness and proton conductivity of coal ...

160

Subbituminous and bituminous coal dominate U.S. coal ...  

U.S. Energy Information Administration (EIA)

While almost all coal consumed in the United States is used to generate electricity (90% in 2010), coal is not entirely homogeneous. Coal is ...

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CE to do 150-MW coal-gas-retrofit design study  

Science Conference Proceedings (OSTI)

Combustion Engineering (CE) has a $5 million DOE contract to design a coal gasifier that will convert eastern coal into a fuel gas and replace the oil and gas now burned in a Gulf States Utility unit. A pilot unit which has been converting Pittsburgh No. 8 seam coal into 110-Btu fuel gas will be scaled up. The company will also begin testing four other coal types. CE finds that retrofitting an air-blown atmospheric pressure system is cost-effective, but warns that the costs of a large-scale intergrated plant are still speculative. (DCK)

Not Available

1980-11-01T23:59:59.000Z

162

Open Burning (New Mexico) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Open Burning (New Mexico) Open Burning (New Mexico) Open Burning (New Mexico) < Back Eligibility Commercial Construction General Public/Consumer Industrial Residential Program Info Start Date 2003 State New Mexico Program Type Environmental Regulations Provider New Mexico Environment Department The New Mexico Environment Department's Air Quality Bureau regulates the open burning rules established by the Environmental Improvement Board. These rules are established to protect public health and welfare by establishing controls on pollution produced by open burning. Open burning is allowed for recreational and ceremonial purposes, for barbecuing, for heating purposes in fireplaces, for the noncommercial cooking of food for human consumption and for warming by small wood fires at construction

163

Coal data: A reference  

SciTech Connect

This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

Not Available

1995-02-01T23:59:59.000Z

164

Prebaked Anode from Coal Extract  

Science Conference Proceedings (OSTI)

We previously reported that the coal extract prepared from non-hydrogenative extraction of thermal coals using two-ring-aromatic solvent (Hyper-coal) is suitable ...

165

Coal desulfurization with sodium hypochlorite.  

E-Print Network (OSTI)

??Wet desulfurization of Pittsburgh No. 8 coal and Illinois No. 6 coal were conducted with sodium hypochlorite in the laboratory. Pittsburgh No. 8 coal was… (more)

Li, Wei, M.S.

2004-01-01T23:59:59.000Z

166

Combustion of Illinois coals and chars with natural gas. [Quarterly] technical report, March 1, 1992--May 31, 1992  

Science Conference Proceedings (OSTI)

Combined combustion of coal and natural gas offers advantages compared to burning coal or natural gas alone. For example, low volatile coals or low volatile chars derived from treatment or gasification processes can be of limited use due to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary ``volatiles`` to enhance the combustion. Additionally, natural gas provides a clean cofiring fuel source which can enhance the usefulness of coals with high sulfur content. Addition of natural gas may reduce SO{sub x} emissions through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. This research program seeks to clarify the contributions and to identify the controlling mechanisms of coining natural gas with Illinois coal through studies of particle ignition, burning rates and ash characterization. The first two quarters focused on the ignition delay measurements and their analysis, along with the incorporation of particle porosity into the burning rate model. The emphasis of the third quarter was on a more detailed understanding of the burning rate process, as well as understanding of cofiring`s effects on sulfur retention. The contributions of particle burning area to the quantification of the particle burning mechanisms have been shown to be important and continue to be investigated. Ash samples for various methane concentrations under similar other conditions have shown positive trends in reducing S0{sub 2} emission through increased sulfur capture in the ash.

Buckius, R.O.; Peters, J.E.; Krier, H.

1992-10-01T23:59:59.000Z

167

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames  

E-Print Network (OSTI)

effects on cellular burning structures in lean premixedAnalyzing and Tracking Burning Structures in Lean Premixedthe turbulence of the burning process with the distribution

Bremer, Peer-Timo

2010-01-01T23:59:59.000Z

168

Practical tip: Precooling topical calcineurin inhibitors tube; reduces burning sensation  

E-Print Network (OSTI)

inhibitors tube; reduces burning sensation Sultan Al-salkhenaizan@hotmail.com Abstract Burning sensation at theuse, does reduce the burning sensation and enable most

Al-Khenaizan, Sultan

2010-01-01T23:59:59.000Z

169

Investigations into coal coprocessing and coal liquefaction  

DOE Green Energy (OSTI)

The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

1994-06-01T23:59:59.000Z

170

Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, September 1--November 30, 1991  

SciTech Connect

The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through {minus}200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc. This report covers the first quarter`s progress. Major activities during this period were focused on finding the plants where a demo MTU column will be installed to prepare the samples needed to characterize the combustion behavior of slurry effluents. Also, a meeting was held at Penn State University to discuss the availability of the laboratory furnace for testing the plant coal/recovered coal fines blends.

Singh, Shyam

1991-12-31T23:59:59.000Z

171

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

172

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

173

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

174

NETL: Coal & Power Systems - Brief History of Coal Use  

NLE Websites -- All DOE Office Websites (Extended Search)

History of Coal Coal & Power Systems Brief History of Coal Use Steam Locomotive In the 1800s, one of the primary uses of coal was to fuel steam engines used to power locomotives....

175

NETL: Coal & Coal Biomass to Liquids - Closely Aligned Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > C&CBTL > Closely Aligned Programs Coal and CoalBiomass to Liquids Closely Aligned Programs The Department of Energy's (DOE) Coal & CoalBiomass to Liquids...

176

Sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

Vogt, Robert L. (Schenectady, NY)

1980-01-01T23:59:59.000Z

177

NETL: News Release - DOE, Jacksonville Utility Complete Major Clean Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2, 2005 August 2, 2005 DOE, Jacksonville Utility Complete Major Clean Coal Technology Project Eight Year Demonstration Project Results in One of World's Cleanest Coal-Based Power Plants WASHINGTON, DC - The U.S. Department of Energy and JEA, the public utility of Florida, have achieved a significant milestone in the DOE's Clean Coal Technology Demonstration Program by completing a project in which JEA's Northside Generating Station was converted into one of the cleanest burning coal-fired power plants in the world. MORE INFO Read the final project report [PDF-438KB] As part of the 8-year, $320 million cost-shared project, JEA installed state-of-the-art technology known as circulating fluidized bed combustion in a 300?megawatt combustor-triple the size of any previous

178

NETL: News Release - Converting Coal Wastes to Clean Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

November 28, 2000 November 28, 2000 Converting Coal Wastes to Clean Energy DOE to Scale Up 3 Projects That Upgrade Coal Fines, Wastes PITTSBURGH, PA - Three new technologies that can help the nation's coal industry turn waste into energy are now ready for scale up, the U.S. Department of Energy said today. MORE INFO Solid Fuels & Feedstocks Program Each of the three recover carbon-rich materials that in the past have been discarded during coal mining and cleaning operations. Using innovative approaches, the technologies remove unwanted water and other impurities and upgrade the waste materials into clean-burning fuels for power plants. The three were first selected for smaller-scale research in August 1998 as part of the Energy Department's Fossil Energy "solid fuels and feedstocks"

179

Encoal mild coal gasification project: Final design modifications report  

Science Conference Proceedings (OSTI)

The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

NONE

1997-07-01T23:59:59.000Z

180

Coal char fragmentation during pulverized coal combustion  

Science Conference Proceedings (OSTI)

A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

Baxter, L.L.

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

commercial (point sources) Coal Oil Other Area sourcesSource Stationary fuel combugtion Electric utilities Coal Oil

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

182

Upgraded Coal Interest Group  

Science Conference Proceedings (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

183

Coal feed lock  

DOE Patents (OSTI)

A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

Pinkel, I. Irving (Fairview Park, OH)

1978-01-01T23:59:59.000Z

184

Fly Ash Carbon Burn-Out at TVA's Colbert and Shawnee Stations: Site Specific Application Study  

Science Conference Proceedings (OSTI)

Fly ash beneficiation using Carbon Burn-Out (CBO) technology offers the opportunity to market fly ash that was previously landfilled. This site application study of beneficiating pulverized coal boiler fly ash at Tennessee Valley Authority's Colbert and Shawnee Stations indicates this process is a cost effective solution for decreasing solid waste disposal, increasing landfill life, improving boiler heat rate, and generating a positive revenue stream.

1996-07-02T23:59:59.000Z

185

Biomass Burning: A Driver for Global Change!  

Science Conference Proceedings (OSTI)

Biomass burning includes the burning of the world''s vegetation---forests, savannas, and agricultural lands---to clear the land and change its use. Only in the past decade have researchers realized the important contributions of biomass burning to the ...

Levine J. S.; III W. R. Cofer; Jr D. R. Cahoon; Winstead E. L.

1995-01-01T23:59:59.000Z

186

7, 80178033, 2007 burning-tropopause  

E-Print Network (OSTI)

ACPD 7, 8017­8033, 2007 Biomass burning-tropopause mixing J. Brioude et al. Title Page Abstract Discussions Mixing between a stratospheric intrusion and a biomass burning plume J. Brioude1 , O. R. Cooper1.brioude@noaa.gov) 8017 #12;ACPD 7, 8017­8033, 2007 Biomass burning-tropopause mixing J. Brioude et al. Title Page

Paris-Sud XI, Université de

187

MFE Burning Plasmas Innovative Confinement Concepts (ICCs)  

E-Print Network (OSTI)

MFE Burning Plasmas and Innovative Confinement Concepts (ICCs) Bick Hooper LLNL Presentation power requires: · A burning plasma experiment · An advancing portfolio of ICCs · Plasma physics unified Improved Configurations Magnetic Configurations Knowledge Base Burning Plasma Phys. & Tech. Knowledge Base

188

TQ2. Global Biomass Burning What is the impact of global biomass burning on the terrestrial  

E-Print Network (OSTI)

TQ2. Global Biomass Burning What is the impact of global biomass burning on the terrestrial and land use. MODIS active fire detections 2000-2006 for Southern California 2001-2004 mean annual burned (bottom), expressed as fraction of grid cell that burns each year. From Giglio et al. (2005), Atmos. Chem

Christian, Eric

189

Schoenberg, Chang, Pompa, Woods, Xu. Burning Index. 1 RH: Burning index in Los Angeles  

E-Print Network (OSTI)

Schoenberg, Chang, Pompa, Woods, Xu. Burning Index. 1 RH: Burning index in Los Angeles A Critical Assessment of the Burning Index in Los Angeles County, California Frederic Paik SchoenbergA,E , Chien: The effectiveness of the Burning Index (BI) in predicting wildfire ac- tivity is assessed using 25 years of area

Schoenberg, Frederic Paik (Rick)

190

Schoenberg, Chang, Keeley, Pompa, Woods, Xu. Burning Index. 1 RH: Burning index in Los Angeles  

E-Print Network (OSTI)

Schoenberg, Chang, Keeley, Pompa, Woods, Xu. Burning Index. 1 RH: Burning index in Los Angeles A Critical Assessment of the Burning Index in Los Angeles County, California Frederic Paik Schoenberg: The effectiveness of the Burning Index (BI) in predicting wildfire ac- tivity is assessed using 25 years of area

Schoenberg, Frederic Paik (Rick)

191

Coal Severance Tax (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

192

NETL: Coal-Fired Power Plants (CFPPs)  

NLE Websites -- All DOE Office Websites (Extended Search)

NOx Sources NOx Sources Coal-Fired Power Plants (CFPPs) Causes of greenhouse gases, Including NOx What is NOx? Environmental Impacts NOx Sources Reduction Efforts Several greenhouse gases, including NOx, are increasing due to human activities in the following areas: Burning of fossil fuel (for example, coal-fired power plants), Logging (mainly contributes to carbon monoxide), Agriculture processes, Use of chlorofluorocarbons (CFC) in holon fire suppression and refrigeration The chart below shows the three major gases contributing to greenhouse gas emissions along with their source by sector. Annual Greenhouse Gas Emissions by Sector Note: This figure was created and copyrighted by Robert A. Rohde from published data and is part of the Global Warming Art project. This image is an original work created for Global Warming Art Permission is granted to copy, distribute and/or modify this image under either:

193

Executive roundtable on coal-fired generation  

Science Conference Proceedings (OSTI)

Power Engineering magazine invited six industry executives from the coal-fired sector to discuss issues affecting current and future prospects of coal-fired generation. The executives are Tim Curran, head of Alstom Power for the USA and Senior Vice President and General Manager of Boilers North America; Ray Kowalik, President and General Manager of Burns and McDonnell Energy Group; Jeff Holmstead, head of Environmental Strategies for the Bracewell Giuliani law firm; Jim Mackey, Vice President, Fluor Power Group's Solid Fuel business line; Tom Shelby, President Kiewit Power Inc., and David Wilks, President of Energy Supply for Excel Energy Group. Steve Blankinship, the magazine's Associate Editor, was the moderator. 6 photos.

NONE

2009-09-15T23:59:59.000Z

194

Biomass Cofiring in Coal-Fired Boilers  

DOE Green Energy (OSTI)

Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

Not Available

2004-06-01T23:59:59.000Z

195

Pelletization of fine coals  

SciTech Connect

The present research project attempts to provide a basis to determine the pelletizability of fine coals, to ascertain the role of additives and binders and to establish a basis for binder selection. Currently, there are no established techniques for determining the quality of coal pellets. Our research is intended to develop a series of tests on coal pellets to measure their storage characteristics, transportability, ease of gasification and rate of combustion. Information developed from this research should be valuable for making knowledgeable decisions for on-time plant design, occasional binder selection and frequent process control during the pelletization of coal fines. During the last quarter, we continued the batch pelletization studies on Upper Freeport coal. The results as presented in that last quarterly report (April 1991) indicated that the surface conditions on the coal particle influenced the pelletizing growth rates. For example, a fresh (run of mine) sample of coal will display different pelletizing growth kinetics than a weathered sample of the same coal. Since coal is a heterogeneous material, the oxidized product of coal is equally variable. We found it to be logistically difficult to consistently produce large quantities of artificially oxidized coal for experimental purposes and as such we have used a naturally weathered coal. We have plans to oxidize coals under controlled oxidizing conditions and be able to establish their pelletizing behavior. The next phase of experiments were directed to study the effect of surface modification, introduced during the coal cleaning steps, on pelletizing kinetics. Accordingly, we initiated studies with two additives commonly used during the flotation of coal: dextrin (coal depressant) and dodecane (coal collector).

Sastry, K.V.S.

1991-09-01T23:59:59.000Z

196

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

197

International perspectives on coal preparation  

SciTech Connect

The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

1997-12-31T23:59:59.000Z

198

Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

Not Available

1993-05-01T23:59:59.000Z

199

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL&P) Lakeside Generating Station, while capturing 90% of the coal`s sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E`s technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL&P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

200

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Overview of coal conversion  

SciTech Connect

The structure of coal and the processes of coal gasification and coal liquefaction are reviewed. While coal conversion technology is not likely to provide a significant amount of synthetic fuel within the next several years, there is a clear interest both in government and private sectors in the development of this technology to hedge against ever-diminishing petroleum supplies, especially from foreign sources. It is evident from this rather cursory survey that there is some old technology that is highly reliable; new technology is being developed but is not ready for commercialization at the present state of development. The area of coal conversion is ripe for exploration both on the applied and basic research levels. A great deal more must be understood about the reactions of coal, the reactions of coal products, and the physics and chemistry involved in the various stages of coal conversion processes in order to make this technology economically viable.

Clark, B.R.

1981-03-27T23:59:59.000Z

202

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

1993-10-29T23:59:59.000Z

203

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Over the past month and a half, NAP spot coal prices have been flat or declining (graph above). ... (the walls of coal left in place to support the roof), ...

204

Indonesian coal mining  

Science Conference Proceedings (OSTI)

The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

NONE

2008-11-15T23:59:59.000Z

205

Stacker speeds coal recovery  

SciTech Connect

The Spring Creek Coal Co., near Decker, Montana, features the only stacker/reclaimer in the U.S. to stockpile and reclaim coal produced by a dragline/truck-shovel operation.

Jackson, D.

1981-08-01T23:59:59.000Z

206

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

March 2011 DOEEIA-0121 (201004Q) Revised: July 2012 Quarterly Coal Report October - December 2010 March 2011 U.S. Energy Information Administration Office of Oil, Gas, and Coal...

207

Coal Market Module  

Annual Energy Outlook 2012 (EIA)

6, DOEEIA-M060(2006) (Washington, DC, 2006). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for...

208

Microbial solubilization of coal  

DOE Patents (OSTI)

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

209

Chemicals from coal  

Science Conference Proceedings (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

210

NETL: News Release - Commercial Sales of Low-Polluting Clean Coal Burner  

NLE Websites -- All DOE Office Websites (Extended Search)

March 14, 2001 March 14, 2001 Commercial Sales of Low-Polluting Clean Coal Burner Top $1 Billion Abraham Says Commercial Success Shows Benefits of Clean Coal Investment WASHINGTON, DC - An advanced, low-polluting coal combustor is rapidly becoming one of the government's fastest growing clean coal technology success stories. The U.S. Department of Energy today announced that sales of the "low-NOx concentric firing system" (LNCFS?), first pioneered in 1992-92 as part of the federal Clean Coal Technology Program, now top $1 billion. Results show the system is reducing nitrogen oxides, NOx, by nearly 40 percent in older coal burning plants. NOx is one of the air pollutants that contributes to smog, ground-level ozone, and acid rain. According to data compiled by the Energy Department's National Energy Technology Laboratory, 56,000 megawatts of electricity are now being generated in the United States by power plants equipped with the high-tech burner.

211

Coal Industry Annual, 2000  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Information Center

212

Ore components in coal  

Science Conference Proceedings (OSTI)

The dependence of the mineral content in coal and concentrates on the degree of metamorphism is analyzed.

Kh.A. Ishhakov [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry, Siberian Branch

2009-05-15T23:59:59.000Z

213

Coal Industry Annual, 1996  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1998-04-01T23:59:59.000Z

214

Coal Industry Annual, 1997  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1998-11-23T23:59:59.000Z

215

Coal Industry Annual, 1995  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1996-11-17T23:59:59.000Z

216

Coal Industry Annual, 1998  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

2000-07-07T23:59:59.000Z

217

Coal Industry Annual, 1994  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1996-04-18T23:59:59.000Z

218

Coal gasification apparatus  

DOE Patents (OSTI)

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

219

Method for fluorinating coal  

DOE Patents (OSTI)

Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

Huston, John L. (Skokie, IL); Scott, Robert G. (Westmont, IL); Studier, Martin H. (Downers Grove, IL)

1978-01-01T23:59:59.000Z

220

Coal News and Markets  

U.S. Energy Information Administration (EIA)

... (Energy Publishing, Coal & Energy Price Report, Bulletin, ... Although, the soaring demands of the Chinese steel industry are still with us, ...

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Coal Industry Annual, 1999  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Information Center

222

COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal  

SciTech Connect

Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

Smith, V.E.; Merriam, N.W.

1994-10-01T23:59:59.000Z

223

Coal production 1989  

SciTech Connect

Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

1990-11-29T23:59:59.000Z

224

Flash hydrogenation of coal  

DOE Patents (OSTI)

A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

Manowitz, Bernard (Brightwaters, NY); Steinberg, Meyer (Huntington Station, NY); Sheehan, Thomas V. (Hampton Bays, NY); Winsche, Warren E. (Bellport, NY); Raseman, Chad J. (Setauket, NY)

1976-01-01T23:59:59.000Z

225

Proceedings: Coal Combustion Workshop  

Science Conference Proceedings (OSTI)

The primary objective of the 2007 Coal Combustion workshop was to present a holistic view of the various combustion processes required for minimal emissions, peak performance, and maximum reliability in a coal-fired power plant. The workshop also defined needs for future RD in coal combustion technology.

2008-01-09T23:59:59.000Z

226

Coal Market Module  

Reports and Publications (EIA)

Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2013 (AEO2013). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

Michael Mellish

2013-07-17T23:59:59.000Z

227

Two Stage Liquefaction With Illinois 6 Coal: Volume 1: Run 247  

Science Conference Proceedings (OSTI)

This report presents the operating results for Run 247 at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. This run operated in a Two-Stage Liquefaction (TSL) mode using Illinois No. 6 bituminous coal from the Burning Star mine. The primary run objective was to obtain performance data for the TSL system and the individual process units with particular emphasis on hydrotreating catalyst performance. Secondary objectives were to demonstrate operability for the system and the respective ...

1991-03-01T23:59:59.000Z

228

NETL: Coal-Fired Power Plants (CFPPs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Sources Coal-Fired Power Plants (CFPPs) Where is the coal in the United States? Coal Across the U.S. The U.S. contains coal resources in various places. The coal occurs...

229

Development of a Coal Quality Expert  

SciTech Connect

ABB Power Plant Laboratories Combustion Engineering, Inc., (ABB CE) and CQ Inc. completed a broad, comprehensive program to demonstrate the economic and environmental benefits of using higher quality U.S. coals for electrical power generation and developed state-of-the-art user-friendly software--Coal Quality Expert (CQE)-to reliably predict/estimate these benefits in a consistent manner. The program was an essential extension and integration of R and D projects performed in the past under U.S. DOE and EPRI sponsorship and it expanded the available database of coal quality and power plant performance information. This software will permit utilities to purchase the lowest cost clean coals tailored to their specific requirements. Based on common interest and mutual benefit, the subject program was cosponsored by the U.S. DOE, EPRI, and eight U.S. coal-burning utilities. In addition to cosponsoring this program, EPN contributed its background research, data, and computer models, and managed some other supporting contracts under the terms of a project agreement established between CQ Inc. and EPRI. The essential work of the proposed project was performed under separate contracts to CQ Inc. by Electric Power Technologies (El?'T), Black and Veatch (B and V), ABB Combustion Engineering, Babcock and Wilcox (B and W), and Decision Focus, Inc. Although a significant quantity of the coals tied in the United States are now cleaned to some degree before firing, for many of these coals the residual sulfur content requires users to install expensive sulfur removal systems and the residual ash causes boilers to operate inefficiently and to require frequent maintenance. Disposal of the large quantities of slag and ash at utility plant sites can also be problematic and expensive. Improved and advanced coal cleaning processes can reduce the sulfur content of many coals to levels conforming to environmental standards without requiring post-combustion desulfurization systems. Also, some coals may be beneficiated or blended to a quality level where significantly less costly desulfurization systems are needed. Coal cleaning processes may also be used to remove the precursors of other troublesome emissions that can be identified now or in the future. An added benefit of coal cleaning and blending is the reduction in concentrations of mineral impurities in the fuel leading to improved performance and operation of the'' boiler in which it is fired. The ash removed during the pre-combustion cleaning process can be more easily and safely disposed of at the mine than at the utility plant after combustion. EPRI's Coal Quality Impact Model (CQIM) has shown that improved fuel quality can result in savings in unit capital and operating costs. This project produced new and improved software to select coal types and specifications resulting in the best quality and lowest cost fuel to meet specific environmental requirements.

None

1998-06-20T23:59:59.000Z

230

NETL: Coal Utilization By-Products (CUB)  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Coal Utilization Byproducts Innovations for Existing Plants Solid Waste (Coal Utilization...

231

Deployment of coal briquettes and improved stoves: possibly an option for both environment and climate  

Science Conference Proceedings (OSTI)

The use of coal briquettes and improved stoves by Chinese households has been encouraged by the government as a means of reducing air pollution and health impacts. In this study we have shown that these two improvements also relate to climate change. Our experimental measurements indicate that, if all coal were burned as briquettes in improved stoves, particulate matter (PM), organic carbon (OC), and black carbon (BC) could be annually reduced by 63 {+-} 12%, 61 {+-} 10%, and 98 {+-} 1.7%, respectively. Also, the ratio of BC to OC (BC/OC) could be reduced by about 97%, from 0.49 to 0.016, which would make the primary emissions of household coal combustion more optically scattering. Therefore, it is suggested that the government consider the possibility of: (i) phasing out direct burning of bituminous raw-coal-chunks in households; (ii) phasing out simple stoves in households; and, (iii) financially supporting the research, production, and popularization of improved stoves and efficient coal briquettes. These actions may have considerable environmental benefits by reducing emissions and mitigating some of the impacts of household coal burning on the climate. International cooperation is required both technologically and financially to accelerate the emission reduction in the world. 50 refs., 3 figs., 2 tabs.

Guorui Zhi; Conghu Peng; Yingjun Chen; Dongyan Liu; Guoying Sheng; Jiamo Fu [Chinese Academy of Meteorological Sciences, Beijing (China). Key Laboratory for Atmospheric Chemistry

2009-08-15T23:59:59.000Z

232

Coal recovery process  

DOE Patents (OSTI)

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

233

Coal Blending for NOx Reductions and Performance Improvements  

Science Conference Proceedings (OSTI)

Following its formation and initial meeting in 1995, the Alabama Fuels Development Consortium (AFDC) identified its highest priority as mitigating the adverse effects of burning low-volatile Alabama coals. These adverse effects included increased NOx emissions and flame instability. A pilot-scale AFDC study in 1995 and larger-scale projects conducted in partnership with EPRI in 1996 (Shoal Creek/Mina Pribbenow Blend Firing Demonstration) and 1997 (Shoal Creek/Mina Pribbenow Blend Milling Demonstration) m...

2004-09-20T23:59:59.000Z

234

Test Burns of Torrefied Wood  

Science Conference Proceedings (OSTI)

Biomass fuel is an important option for mitigating the production of carbon dioxide emissions from generating units that are designed to fire conventional fossil fuels. The key attraction of biomass fuels is that they are carbon neutralthe carbon dioxide released by combustion was fixed or removed from the atmosphere by photosynthesis, so its return does not provide a net carbon addition. Utilities in the United States and Canada are considering options both for co-firing biomass with coal and for comple...

2010-06-24T23:59:59.000Z

235

Coal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture

236

Coal: the new black  

SciTech Connect

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

237

Coal production: 1980  

Science Conference Proceedings (OSTI)

US coal production and related data are reported for the year 1980, with similar data for 1979 given for comparison. The data here collected on Form EIA-7A, coal production report, from 3969 US mines that produced, processed, or prepared 10,000 or more short tons of coal in 1980. Among the items covered are production, prices, employment, productivity, stocks, and recoverable reserves. Data are reported by state, county, coal producing district, type of mining, and by type of coal (anthracite, bituminous, subbituminous, and lignite). Also included are a glossary of coal terms used, a map of the coal producing disricts, and form EIA-7A with instructions. 14 figures, 63 tables.

Not Available

1982-05-01T23:59:59.000Z

238

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

239

Quarterly Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of ...

240

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Prices in 2007 real $ Coal Prices Coal prices have been farprices. Factors like coal prices and EOR revenues affect theCoal Prices..

Phadke, Amol

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Quarterly Coal Distribution Report - Energy Information ...  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of ...

242

Two-stage coal gasification and desulfurization  

DOE Patents (OSTI)

The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover. 1 fig.

Bissett, L.A.; Strickland, L.D.

1990-08-03T23:59:59.000Z

243

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

Cobb, J.T. Jr.

1990-08-15T23:59:59.000Z

244

Actinide Burning in CANDU Reactors  

Science Conference Proceedings (OSTI)

Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

Hyland, B.; Dyck, G.R. [Atomic Energy of Canada Limited, Chalk River, Ontario, K0J 1J0 (Canada)

2007-07-01T23:59:59.000Z

245

Process for hydrogenating coal and coal solvents  

SciTech Connect

A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

Tarrer, Arthur R. (Auburn, AL); Shridharani, Ketan G. (Auburn, AL)

1983-01-01T23:59:59.000Z

246

Upgraded coal interest group. First quarterly technical progress report, October 1, 1994--December 31, 1994  

SciTech Connect

The interest group got under way effective January 1, 1994, with nine utility members, EPRI, Bechtel, and the Illinois Clean Coal Institute. DOE participation was effective October 1, 1994. The first meeting was held on April 22, 1994 in Springfield, Illinois and the second meeting was held on August 10--11, 1994 at Johnstown, Pennsylvania. Technical reviews were prepared in several areas, including the following: status of low rank coal upgrading, advanced physical coal cleaning, organic sulfur removal from coal, handling of fine coal, combustion of coal water slurries. It was concluded that, for bituminous coals, processing of fines from coal cleaning plants or impoundments was going to be less costly than processing of coal, since the fines were intrinsically worth less and advanced upgrading technologies require fine coal. Penelec reported on benefits of NOX reductions when burning slurry fuels. Project work was authorized in the following areas: Availability of fines (CQ, Inc.), Engineering evaluations (Bechtel), and Evaluation of slurry formulation and combustion demonstrations (EER/MATS). The first project was completed.

Weber, W. [Electric Power Research Inst., Chattanooga, TN (United States); Lebowitz, H.E. [Fossil Fuel Sciences, Palo Alto, CA (United States)

1994-12-31T23:59:59.000Z

247

Uniform-burning matrix burner  

DOE Patents (OSTI)

Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

Bohn, Mark S. (Golden, CO); Anselmo, Mark (Arvada, CO)

2001-01-01T23:59:59.000Z

248

Coal sector profile  

SciTech Connect

Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

1990-06-05T23:59:59.000Z

249

In Situ Burning of Oil Spills  

Science Conference Proceedings (OSTI)

... burns, the Teflon filters were weighed and sealed in Petri dishes, while the ... terrain, solar heating and surface friction creates a tur- bulent wind field ...

2001-02-13T23:59:59.000Z

250

The Performance Culture of Burning Man.  

E-Print Network (OSTI)

??Theatre in the United States for the last twenty years has been evolving in scope by way of a cultural phenomenon known as Burning Man.… (more)

Clupper, Wendy Ann

2007-01-01T23:59:59.000Z

251

Two Stage Liquefaction With Illinois 6 Coal: Volume 3: Run 250  

Science Conference Proceedings (OSTI)

This report presents the operating results for Run 250 at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. This run operated in a Two-Stage Liquefaction (TSL) mode using Illinois No. 6 bituminous coal from the Burning Star mine. The primary run objective was demonstration of unit and system operability for bituminous coal in the Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) mode of operation. In CC-ITSL the products from the thermal (first stage) reactor are sent directly ...

1991-03-01T23:59:59.000Z

252

The use of FBC wastes in the reclamation of coal slurry solids  

SciTech Connect

Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to SO{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4}{center dot}2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in the Illinois are mixed with coal slurry solids from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The ultimate of this and future research is to determine whether mixed FBC waste and coal slurry solids can be slurry pond reclamation.

Dreher, G.B.

1991-01-01T23:59:59.000Z

253

Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report No. 7, April 1993--June 1993  

Science Conference Proceedings (OSTI)

The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases. This effect is also demonstrated by improved catalyst precursor impregnation with increased contact temperature. Laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent.

Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States); Gutterman, C.

1994-09-01T23:59:59.000Z

254

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

255

Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired Power Plants with In-Situ CO 2 Capture Background Pulverized coal (PC)-fired power plants provide nearly 50% of...

256

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

the costs have on the price of coal delivered by railroadsindicate that the price of coal delivered by railroads ismake up the delivered price of coal that electric plants are

McCollum, David L

2007-01-01T23:59:59.000Z

257

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Applications Industrial Applications Blast Furnace Granular-Coal Injection System Demonstration Project - Project Brief [PDF-314KB] Bethlehem Steel Corp., Burns Harbor, IN PROGRAM PUBLICATIONS Final Reports Blast Furnace Granular Coal Injection System Demonstration Project, Project Performance and Economics, Final Report Vol. 2 [PDF-3.8MB] (Oct 1999) Annual/Quarterly Technical Reports Blast Furnace Granular Coal Injection Project, Annual Reports January - December 1998 [PDF-1.7MB] January - December 1997 [PDF-1.7MB] January - December 1996 [PDF-1.7MB] January - December 1995 [PDF-2.6MB] January - December 1994 [PDF-2MB] (July 1995) January - December 1993[PDF-1.5MB] (June 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports

258

Agglomerating combustor-gasifier method and apparatus for coal gasification  

DOE Patents (OSTI)

A method and apparatus for gasifying coal wherein the gasification takes place in a spout fluid bed at a pressure of about 10 to 30 atmospheres and a temperature of about 1800.degree. to 2200.degree.F and wherein the configuration of the apparatus and the manner of introduction of gases for combustion and fluidization is such that agglomerated ash can be withdrawn from the bottom of the apparatus and gas containing very low dust loading is produced. The gasification reaction is self-sustaining through the burning of a stoichiometric amount of coal with air in the lower part of the apparatus to form the spout within the fluid bed. The method and apparatus are particularly suitable for gasifying coarse coal particles.

Chen, Joseph L. P. (Murrysville, PA); Archer, David H. (Pittsburgh, PA)

1976-09-21T23:59:59.000Z

259

Preparation and combustion of coal-water fuel from the Sin Pun coal deposit, southern Thailand  

SciTech Connect

In response to an inquiry by the Department of Mineral Resources in Thailand, the Energy & Environmental Research Center (EERC) prepared a program to assess the responsiveness of Sin Pun lignite to the temperature and pressure conditions of hot-water drying. The results indicate that drying made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 27 wt% for the raw coal to about 15 wt% for the hot-water-dried (HWD) coals. The energy density for a pumpable coal-water fuel (CWF) indicates an increase from 4500 to 6100 Btu/lb by hot-water drying. Approximately 650 lb of HWD Sin Pun CWF were fired in the EERC`s combustion test facility. The fuel burned extremely well, with no feed problems noted during the course of the test. Fouling and slagging deposits each indicated a very low rate of ash deposition, with only a dusty layer formed on the cooled metal surfaces. The combustor was operated at between 20% and 25% excess air, resulting in a flue gas SO{sub 2} concentration averaging approximately 6500 parts per million.

1997-05-01T23:59:59.000Z

260

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL P) Lakeside Generating Station, while capturing 90% of the coal's sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E's technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

262

WCI Case for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal The role of as an energy source The role of coal as an energy source Key Messages * Energy demand has grown strongly and will continue to increase, particularly in developing countries where energy is needed for economic growth and poverty alleviation. * All energy sources will be needed to satisfy that demand by providing a diverse and balanced supply mix. * Coal is vital for global energy security. It is abundantly available, affordable, reliable and easy and safe to transport. * In an energy hungry world the challenge for coal, as for other fossil fuels, is to further substantially reduce its greenhouse gas and other emissions, while continuing to make a major contribution to economic and social development and energy security. * Coal is part way down a technology pathway that has already delivered major

263

The ENCOAL Mild Coal Gasification Project, A DOE Assessment  

Science Conference Proceedings (OSTI)

This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall objective, the following goals were established for the ENCOAL{reg_sign} Project: Provide sufficient quantity of products for full-scale test burns; Develop data for the design of future commercial plants; Demonstrate plant and process performance; Provide capital and O&M cost data; and Support future LFC{trademark} technology licensing efforts. Each of these goals has been met and exceeded. The plant has been in operation for nearly 5 years, during which the LFC{trademark} process has been demonstrated and refined. Fuels were made, successfully burned, and a commercial-scale plant is now under contract for design and construction.

National Energy Technology Laboratory

2002-03-15T23:59:59.000Z

264

Development of a Software System to Facilitate Implementation of Coal and Wood Co-Fired Bilers  

E-Print Network (OSTI)

Coal and wood co-fired boiler technology has improved significantly over the years. The term "co-firing", when used by members of the biomass or utility communities, has come to mean mixing a modest amount of clean, dry sawdust with coal and burning the sawdust coal mixture in a large, coal-burning, utility boiler. This paper discusses the development of a computer software system that interacts with the user and allows coal-wood co-fired boilers to be sized, priced, implemented, and operated properly. Information about the equipment that is required for the boiler replacement project is provided. Along with these features, the software would allow the user to determine energy and cost savings that would be available upon installation as compared to other types of boilers. The paper outlines how these savings are realized, and the steps that must be taken to ensure the proper operation of the boiler to achieve these savings. A sensitivity analysis has also been performed on the implementation of coal-wood co-fired boilers in order to determine the key factors influencing the project payback period. The key factors that are considered in the analysis are the boiler size, the annual operating hours, and the current fuel cost. Additional analysis has been done on the boiler size and the annual operating hours. This analysis allows the users to determine if their current facility falls into the feasible range for implementing a coal-wood co-fired boiler system.

Gopalakrishnan, B.; Gump, C. D.; Gupta, D. P.; Chaudhari, S.

2013-01-01T23:59:59.000Z

265

Integrated coal liquefaction process  

DOE Patents (OSTI)

In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

Effron, Edward (Springfield, NJ)

1978-01-01T23:59:59.000Z

266

Gasification of Lignite Coal  

Science Conference Proceedings (OSTI)

This report on the gasification of lignite coal is presented in two parts. The first includes research into technology options for preparing low-rank fuels for gasification, gasifiers for converting the coal into synthesis gas, and technologies that may be used to convert synthesis gas into valuable chemical products. The second part focuses on performance and cost screening analyses for either Greenfield or retrofit gasification options fueled by low-rank lignite coal. The work was funded through Tailor...

2009-01-23T23:59:59.000Z

267

AIAA 2001-0339 INTERMITTENT BURNING AND ITS  

E-Print Network (OSTI)

AIAA 2001-0339 INTERMITTENT BURNING AND ITS CONTRIBUTION TO PLATEAU BURNING OF COMPOSITE and Astronautics, Inc. with permission. INTERMITTENT BURNING AND ITS CONTRIBUTION TO PLATEAU BURNING OF COMPOSITE; Fellow AIAA §Senior Research Engineer Abstract The plateau burning behavior of composite solid

Seitzman, Jerry M.

268

Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 7, July 1, 1995--September 30, 1995  

SciTech Connect

The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled Coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. The Mulled Coal circuit was installed in an empty bay at the Chetopa Preparation Plant. Equipment has been installed to divert a 2.7 tonnes/hr (3 tons/hr) slipstream of the froth concentrate to a dewatering centrifuge. The concentrated wet coal fines from the centrifuge dropped through a chute directly into a surge hopper and feed system for the Mulled Coal circuit. The Mulled Coal product was gravity discharged from the circuit to a truck or product discharge area from which it will be hauled to a stockpile located at the edge of the clean coal stockpile area. During the 3-month operating period, the facility produced 870 tonnes (966 tons) of the Muffed Coal for evaluation in various storage, handling, and transportation equipment and operations. Immediately following the production demonstration, the circuit was disassembled and the facility was decommissioned.

1996-08-22T23:59:59.000Z

269

Mercury emission control for coal fired power plants using coal and biomass  

E-Print Network (OSTI)

Mercury is a leading concern among the air toxic metals addressed in the 1990 Clean Air Act Amendments (CAAA) because of its volatility, persistence, and bioaccumulation as methylmercury in the environment and its neurological health impacts. The Environmental Protection Agency (EPA) reports for 2001 shows that total mercury emissions from all sources in USA is about 145 tons per annum, of which coal fired power plants contribute around 33% of it, about 48 tons per annum. Unlike other trace metals that are emitted in particulate form, mercury is released in vapor phase in elemental (Hg0) or oxidized (Hg2+, mainly HgCl2) form. To date, there is no post combustion treatment which can effectively capture elemental mercury vapor, but the oxidized form of mercury can be captured in traditional emission control devices such as wet flue gas defulrization (WFGD) units, since oxidized mercury (HgCl2) is soluble in water. The chlorine concentration present during coal combustion plays a major role in mercury oxidation, which is evident from the fact that plants burning coal having high chlorine content have less elemental mercury emissions. A novel method of co-firing blends of low chlorine content coal with high chlorine content cattle manure/biomass was used in order to study its effect on mercury oxidation. For Texas Lignite and Wyoming coal the concentrations of chlorine are 139 ppm and 309 ppm on dry ash free basis, while for Low Ash Partially Composted Dairy Biomass it is 2,691 ppm. Co-firing experiments were performed in a 100,000 BTU/hr (29.3 kWt) Boiler Burner facility located in the Coal and Biomass Energy laboratory (CBEL); coal and biomass blends in proportions of 80:20, 90:10, 95:5 and 100:0 were investigated as fuels. The percentage reduction of Hg with 95:5, 90:10 and 80:20 blends were measured to be 28- 50%, 42-62% and 71-75% respectively. Though cattle biomass serves as an additive to coal, to increase the chlorine concentration, it leads to higher ash loading. Low Ash and High Ash Partially Composted Dairy Biomass have 164% and 962% more ash than Wyoming coal respectively. As the fraction of cattle biomass in blend increases in proportion, ash loading problems increase simultaneously. An optimum blend ratio is arrived and suggested as 90:10 blend with good reduction in mercury emissions without any compromise on ash loading.

Arcot Vijayasarathy, Udayasarathy

2007-12-01T23:59:59.000Z

270

Weekly NYMEX Coal Futures  

Reports and Publications (EIA)

The New York Mercantile Exchange (NYMEX) Report provides settlement price data for Central Appalachian (CAPP), Western Powder River Basin (PRB), and Eastern CSX Transportation (CSX) coal futures.

Information Center

271

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA)

figure data Figure 7 shows the percent change in average real rates for those state-to-state ... Estimated transportation rates for coal delivered to electric ...

272

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Speaking about Consol Energy’s 1Q05 earnings, J. Brett Harvey, president and CEO, noted that the “pricing environment for our coal is excellent, ...

273

Coal liquefaction quenching process  

DOE Patents (OSTI)

There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

1983-01-01T23:59:59.000Z

274

Quarterly Coal Report  

Annual Energy Outlook 2012 (EIA)

December 2010 DOEEIA-0121 (201003Q) Revised: July 2012 Quarterly Coal Report July - September 2010 December 2010 U.S. Energy Information Administration Office of Oil, Gas, and...

275

Coal Combustion Products: Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Products: Challenges and Opportunities American Coal Ash Association Conference St. Petersburg, FL January 27-30, 2003 Carl O. Bauer National Energy Technology Laboratory...

276

Initiators of coal hydrogenation  

Science Conference Proceedings (OSTI)

The results are given of an investigation of the influence of additions of certain organosilicon compounds of cyclic and linear nature on the coal hydrogenation process.

Krichko, A.A.; Dembovskaya, E.A.; Gorlov, E.G.

1983-01-01T23:59:59.000Z

277

Clean Coal Projects (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

278

Coal Development (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

279

Direct Coal Liquefaction  

NLE Websites -- All DOE Office Websites (Extended Search)

solvent. * The coal fragments are further hydrocracked to produce a synthetic crude oil. * This synthetic crude must then undergo refinery upgrading and hydrotreating to...

280

Handbook of coal analysis  

SciTech Connect

The Handbook deals with the various aspects of coal analysis and provides a detailed explanation of the necessary standard tests and procedures that are applicable to coal in order to help define usage and behavior relative to environmental issues. It provides details of the meaning of various test results and how they might be applied to predict coal behavior during use. Emphasis is on ASTM standards and test methods but ISO and BSI standards methods are included. Chapter headings are: Coal analysis; Sampling and sample preparation; Proximate analysis; Ultimate analysis; Mineral matter; Physical and electrical properties; Thermal properties; Mechanical properties; Spectroscopic properties; Solvent properties; and Glossary.

James G. Speight

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Technical progress report, Run 243 with Illinois 6 coal  

DOE Green Energy (OSTI)

This report presents the operating results for Run 243 at the Advanced Coal Liquefaction R and D Facility in Wilsonville, Alabama. This run was made in an Integrated Two-Stage Liquefaction (ITSL) mode using Illinois 6 coal from the Burning Star mine. The primary objective was to demonstrate the effect of a dissolver on the ITSL product slate, especially on the net C/sub 1/-C/sub 5/ gas production and hydrogen consumption. Run 243 began on 3 February 1983 and continued through 28 June 1983. During this period, 349.8 tons of coal was fed in 2947 hours of operation. Thirteen special product workup material balances were defined, and the results are presented herein. 29 figures, 19 tables.

Not Available

1984-02-01T23:59:59.000Z

282

Annul Coal Consumption by Country (1980 -2009) Total annual coal  

Open Energy Info (EERE)

Annul Coal Consumption by Country (1980 -2009) Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration...

283

NETL: Coal & Coal Biomass to Liquids - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Coal and CoalBiomass to Liquids Reference Shelf Documents Papers Presentations DOCUMENTS 2012 Technology Readiness Assessment-Analysis of Active Research Portfolio...

284

NETL: Coal & Coal Biomass to Liquids - Project Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information CoalBiomass Feed and Gasification Development of Biomass-Infused Coal Briquettes for Co-Gasification FE0005293 Development of Kinetics and Mathematical...

285

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

286

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

287

Cyclic flow underground coal gasification process  

SciTech Connect

The present invention is directed to a method of in situ coal gasification for providing the product gas with an enriched concentration of carbon monoxide. The method is practiced by establishing a pair of combustion zones in spaced-apart boreholes within a subterranean coal bed and then cyclically terminating the combustion in the first of the two zones to establish a forward burn in the coal bed so that while an exothermic reaction is occurring in the second combustion zone to provide CO.sub.2 -laden product gas, an endothermic CO-forming reaction is occurring in the first combustion zone between the CO.sub.2 -laden gas percolating thereinto and the hot carbon in the wall defining the first combustion zone to increase the concentration of CO in the product gas. When the endothermic reaction slows to a selected activity the roles of the combustion zones are reversed by re-establishing an exothermic combustion reaction in the first zone and terminating the combustion in the second zone.

Bissett, Larry A. (Morgantown, WV)

1978-01-01T23:59:59.000Z

288

Illinois Coal Revival Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

289

Coal Mining Tax Credit (Arkansas)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

290

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network (OSTI)

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

291

Advanced coal-fueled gas turbine systems reference system definition update  

Science Conference Proceedings (OSTI)

The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

Not Available

1991-09-01T23:59:59.000Z

292

Oil to Coal Conversion of Power and Industrial Facilities in the Dominican Republic  

E-Print Network (OSTI)

Realizing that the use of coal has the potential to offset the effects of world oil prices on the Dominican Republic's economy, the Commission Nacional de Politica Energetica (CNPE) requested Bechtel Power Corporation to study the technical and economic feasibility of converting the nation's largest oil-fired facilities to coal and to develop preliminary designs for the conversions. This paper addresses the methodology used in the study, with special emphasis on the determination of the technical and economic feasibility of converting power plants and cement plants from oil to coal. The summary results and conclusions are presented and include coal conversion capital costs, cost savings, and program overall schedule. The intent of the authors is to provide a reference for the study of converting other islands' oil burning facilities to coal.

Causilla, H.; Acosta, J. R.

1982-01-01T23:59:59.000Z

293

PressurePressure Indiana Coal Characteristics  

E-Print Network (OSTI)

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · CoalTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL · Indiana Coal Forecasting · Under-Ground Coal Gasification · Benefits of Oxyfuel Combustion · Economic

Fernández-Juricic, Esteban

294

Advanced Coal Wind Hybrid: Economic Analysis  

SciTech Connect

Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW transmission line. In the G+CC+CCS plant, coal is gasified into syngas and CO{sub 2} (which is captured). The syngas is burned in the combined cycle plant to produce electricity. The ACWH facility is operated in such a way that the transmission line is always utilized at its full capacity by backing down the combined cycle (CC) power generation units to accommodate wind generation. Operating the ACWH facility in this manner results in a constant power delivery of 3,000 MW to the load centers, in effect firming-up the wind generation at the project site.

Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

2008-11-28T23:59:59.000Z

295

Fuel blending with PRB coal  

Science Conference Proceedings (OSTI)

Many methods exist to accomplish coal blending at a new or existing power plant. These range from a basic use of the secondary (emergency) stockout/reclaim system to totally automated coal handling facilities with segregated areas for two or more coals. Suitable choices for different sized coal plant are discussed, along with the major components of the coal handling facility affected by Powder River Basin coal. 2 figs.

McCartney, R.H.; Williams, R.L. Jr. [Roberts and Schaefer, Chicago, IL (United States)

2009-03-15T23:59:59.000Z

296

Back Issues of the Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

coal > Quarterly Coal Report > Quarterly Coal Report Back Issues Quarterly Coal Report Back Issues of the Quarterly Coal Report Year 4thquarter 3rdquarter 2ndquarter 1stquarter QCR...

297

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOENETL-20051217 U.S. Department of Energy Office of Fossil Energy National Energy...

298

Clean coal technologies market potential  

SciTech Connect

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

299

NETL: Clean Coal Demonstrations - Clean Coal Today Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Today Newsletter Clean Coal Today Newsletter Clean Coal Demonstrations Clean Coal Today Newsletter Clean Coal Today is a quarterly newsletter of the U.S. Department of Energy, Office of Fossil Energy (FE), Office of Clean Coal. Among other things, Clean Coal Today highlights progress under the Clean Coal Power Initiative, the Power Plant Improvement Initiative, and the few remaining projects of the original Clean Coal Technology Demonstration Program. Reporting on coal R&D performed at government laboratories, as well as in conjunction with stakeholders, it provides key information on FE's coal-related activities, most of which are directed toward near-zero emissions, ultra-efficient technologies of the future. Subscriptions are free – to have your name placed on the mailing list, contact the Editor at Phoebe.Hamill@hq.doe.gov.

300

Visualizing Buoyant Burning Bubbles in Type Ia Supernovae at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Burning in Supernovae Buoyant Burning Bubbles in Type Ia Supernovae bubble-s.jpeg Flame ignition in type Ia supernovae leads to isolated bubbles of burning buoyant fluid. As a...

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Dry piston coal feeder  

SciTech Connect

This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

Hathaway, Thomas J. (Belle Meade, NJ); Bell, Jr., Harold S. (Madison, NJ)

1979-01-01T23:59:59.000Z

302

Method for coal liquefaction  

SciTech Connect

A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

Wiser, Wendell H. (Kaysville, UT); Oblad, Alex G. (Salt Lake City, UT); Shabtai, Joseph S. (Salt Lake City, UT)

1994-01-01T23:59:59.000Z

303

Coal liquefaction process  

DOE Patents (OSTI)

A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

Carr, Norman L. (Allison Park, PA); Moon, William G. (Cheswick, PA); Prudich, Michael E. (Pittsburgh, PA)

1983-01-01T23:59:59.000Z

304

Mechanochemical hydrogenation of coal  

DOE Patents (OSTI)

Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

Yang, Ralph T. (Tonawanda, NY); Smol, Robert (East Patchogue, NY); Farber, Gerald (Elmont, NY); Naphtali, Leonard M. (Washington, DC)

1981-01-01T23:59:59.000Z

305

STEO November 2012 - coal supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Despite drop in domestic coal production, U.S. coal exports to reach Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to decline in 2013, primarily because of continuing economic weakness in Europe, lower international coal prices, and higher coal production in Asia. However, U.S. coal exports next year are still expected to top 100 million tons for the third year in a row

306

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Origin State, Origin State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

307

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Distribution Category UC-950 Quarterly Coal Report January-March 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed

308

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State, Destination State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

309

By Coal Origin State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Florida Total - - 15 - 15 Florida Railroad - - 11 - 11 Florida Truck - - 3 - 3 Georgia Total 196 - 15 - 211 Georgia Railroad 189 - 1 - 190 Georgia Truck

310

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Distribution Category UC-950 Quarterly Coal Report April-June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed to Paulette Young at (202) 426-1150, email

311

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Colorado Total 2,113 - - - 2,113 Colorado Railroad 2,113 - - - 2,113 Illinois Total 336 - - - 336 Illinois River 336 - - - 336 Indiana Total 1,076

312

State coal profiles, January 1994  

SciTech Connect

The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

1994-02-02T23:59:59.000Z

313

REMOTE SENSING OF BURN SEVERITY AND THE INTERACTIONS BETWEEN BURN SEVERITY, TOPOGRAPHY AND VEGETATION IN INTERIOR ALASKA  

E-Print Network (OSTI)

REMOTE SENSING OF BURN SEVERITY AND THE INTERACTIONS BETWEEN BURN SEVERITY, TOPOGRAPHY likely to change vegetation type. Finally, vegetation recovery, estimated using a remotely-sensed................................................................................6 Chapter 2. Mapping Burn Severity Using Satellite Remote Sensing..........................8

Ruess, Roger W.

314

FESAC Panel on Burning Plasmas 1.What scientific issues should be addressed by a burning plasma physics experiment and  

E-Print Network (OSTI)

FESAC Panel on Burning Plasmas Charge 1.What scientific issues should be addressed by a burning of using various magnetic confinement concepts in studying burning plasma physics? As a part of your

315

The QSE-Reduced Nuclear Reaction Network for Silicon Burning.  

E-Print Network (OSTI)

??Iron and neighboring nuclei are formed by silicon burning in massive stars before core collapse and during supernova outbursts. Complete and incomplete silicon burning is… (more)

Parete-Koon, Suzanne T

2008-01-01T23:59:59.000Z

316

OLIGOMERIZATION OF LEVOGLUCOSAN IN PROXIES OF BIOMASS BURNING AEROSOLS.  

E-Print Network (OSTI)

??Biomass burning aerosols play an important role in the chemistry and physics of the atmosphere and therefore, affect global climate. Biomass burning aerosols are generally… (more)

Holmes, Bryan J.

317

UNCORRECTED 2 Burning biodiversity: Woody biomass use by commercial  

E-Print Network (OSTI)

UNCORRECTED PROOF 2 Burning biodiversity: Woody biomass use by commercial 3 and subsistence groups as: Lisa Naughton-Treves et al., Burning biodiversity: Woody biomass use by commercial

Kammen, Daniel M.

318

Apparatus and method for feeding coal into a coal gasifier  

DOE Patents (OSTI)

This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.

Bissett, Larry A. (Morgantown, WV); Friggens, Gary R. (Morgantown, WV); McGee, James P. (Morgantown, WV)

1979-01-01T23:59:59.000Z

319

Uncovering Coal's Secrets Through the University Coal Research Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uncovering Coal's Secrets Through the University Coal Research Uncovering Coal's Secrets Through the University Coal Research Program Uncovering Coal's Secrets Through the University Coal Research Program December 18, 2013 - 10:38am Addthis Uncovering Coal’s Secrets Through the University Coal Research Program The challenges confronting the environmentally sound use of our country's fossil energy resources are best addressed through collaborative research and development. That's why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy's University Coal Research (UCR) Program. Managed by the National Energy Technology Laboratory (NETL), the UCR program funds university research to improve understanding of the chemical and physical properties of coal, one of our nation's most abundant

320

Focus on Alaska's coal '80  

Science Conference Proceedings (OSTI)

Papers are presented under the broad headings of: Northern Alaskan coals; Beluga-Yentna coal field; resource development and utilization; transportation and economics; coal mining methods and regulations; and, federal and state policies concerning coal development. There is also a panel discussion, and luncheon and banquet speeches. 36 papers have been abstracted separately.

Rao, P.D.; Wolff, E.N. (eds.)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Coal market momentum converts skeptics  

SciTech Connect

Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

Fiscor, S.

2006-01-15T23:59:59.000Z

322

Consensus Coal Production Forecast for  

E-Print Network (OSTI)

Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

Mohaghegh, Shahab

323

Unraveling the Excess Air/Coal Fineness Enigma  

E-Print Network (OSTI)

In the use of powered coal as a boiler fuel, the factors involved in heat loss from unburnt carbon in the ash are but partially understood. More finely pulverized coal particles will result in lower carbon-in-ash losses. On the other hand, the finer grind of coal requires a considerably higher energy input to the pulverizing mill. Thus, an optimum balance must be achieved between fuel savings and grinding costs to arrive at the maximum economic savings. If these were the only considerations, the solution would be simple. The problem, however, is compounded by a concurrent reduction in mill capacity as the fineness is increased. In addition, there are marked interactions between coal particle size and excess air as they effect carbon burning rate with its concomitant effect upon carbon-in-ash heat loss. Finally, variability in the excess air will alter the energy supplied to the induced-draft and forced-draft air fans. To generate a greater understanding of the impact of the aforesaid factors, upon potential fuel savings, a computer simulation was developed for the powdered coal boiler. The current paper presents results of exploratory studies using the simulator.

Laspe, C. G.

1983-01-01T23:59:59.000Z

324

The closed cycle gas turbine, the most efficient turbine burning any fuel  

Science Conference Proceedings (OSTI)

There are two types of gas turbines. The open cycle is very well known as, for example, the JET. The closed cycle in the U.S.A. is just starting to be well known. In Europe, the closed cycle gas turbine has been used in power plants, especially in Germany, and have been very efficient in burning coal. Concentrated in this paper is the Closed Cycle Gas Turbine (CCGT) as it is the most efficient type of turbine. There are the following sections in this paper: closed cycle gas turbine in more detail; various advantages of the CCGT; Nuclear power; and three comments.

Sawyer, R.T.

1983-12-01T23:59:59.000Z

325

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Colorado Railroad 575 - - - 575 Illinois River 99 - - - 99 Indiana River 241 - - - 241 Kentucky Railroad 827 - 12 - 839 Kentucky (East) Railroad 76 - - - 76 Kentucky (West) Railroad

326

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Colorado Railroad 514 - - - 514 Illinois River 99 - - - 99 Indiana River 172 - - - 172 Kentucky Railroad 635 - 11 - 647 Kentucky (East) Railroad 45 - - - 45 Kentucky (West)

327

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Colorado Railroad 385 - - - 385 Illinois River 15 - - - 15 Indiana Railroad 1 - - - 1 Indiana River 350 - - - 350 Indiana Total 351 - - - 351 Kentucky Railroad 682 - 2 - 685 Kentucky (East)

328

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

June 2010 DOE/EIA-0121 (2010/01Q) June 2010 DOE/EIA-0121 (2010/01Q) Revised: July 2012 Quarterly Coal Report January - March 2010 June 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply Statistics U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.gov/coal/production/quarterly/ _____________________________________________ This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

329

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Colorado Railroad 640 - - - 640 Illinois River 123 - - - 123 Indiana River 312 - - - 312 Kentucky Railroad 622 - 36 - 658 Kentucky (East) Railroad 96 - 36 - 132 Kentucky (West)

330

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Colorado Total 468 - - - 468 Colorado Railroad 468 - - - 468 Illinois Total 90 - 26 - 116 Illinois River 90 - 26 - 116 Indiana Total 181 - - - 181 Indiana River 181 -

331

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Colorado Total 82 - - - 82 Colorado Railroad 82 - - - 82 Illinois Total 149 - 14 - 163 Illinois Railroad 44 - - - 44 Illinois River 105 - 14 - 119 Indiana Total 99 - - - 99

332

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Quarterly Coal Report July - September 2008 December 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

333

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2008 September 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

334

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

8/04Q) 8/04Q) Quarterly Coal Report October - December 2008 March 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

335

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Colorado Railroad 600 - - - 600 Illinois River 203 - 13 - 217 Indiana River 180 - - - 180 Kentucky Railroad 465 - 10 - 475 Kentucky (West) Railroad 465 - 10 - 475 Utah Railroad 18 - - -

336

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,486 155 328 - 1,970 Alabama Railroad 1,020 - 75 - 1,095 Alabama River 417 - - - 417 Alabama Truck 49 155 253 - 458 Colorado Total 195 - - - 195 Colorado Railroad 195 - - - 195 Illinois Total 127 - 18 - 145 Illinois Railroad 20 - - - 20 Illinois River 107 - 18 - 125 Indiana Total

337

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Georgia Total s - s - s Georgia Truck s - s - s Indiana Total - 98 - - 98 Indiana Railroad - 98 - - 98 Kentucky Total - - 12 - 12 Kentucky Truck - - 12 - 12 Ohio Total - 30 - - 30 Ohio

338

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Colorado Total 621 2 - - 623 Colorado Railroad 621 2 - - 623 Illinois Total 113 - 11 - 123 Illinois River 113 - 11 - 123 Indiana Total 265 - - - 265 Indiana Railroad

339

A commitment to coal  

SciTech Connect

Quin Shea explores the need for power generated with coal and the advanced technologies that will generate that power more efficiently and cleanly in the future. The article considers the air and waste challenges of using coal, including progress toward reducing emissions of SO{sub 2}, NOx, and mercury; efforts to address CO{sub 2}, including voluntary programs like the Climate Challenge, Power Partners, and the Asia-Pacific Partnership on Clean Development and Climate; and the regulation and beneficial use of coal-combustion byproducts (e.g., fly ash, bottom ash, flue gas desulfurization materials, boiler slag). 17 refs.

Shea, Q. [Edison Electric Institute, Washington, DC (United States)

2006-07-15T23:59:59.000Z

340

Coal liquefaction process  

DOE Patents (OSTI)

A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

Wright, C.H.

1986-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Aqueous coal slurry  

DOE Patents (OSTI)

A principal object of the invention is the provision of an aqueous coal slurry containing a dispersant, which is of low-cost and which contains very low or no levels of sodium, potassium, sulfur and other contaminants. In connection with the foregoing object, it is an object of the invention to provide an aqueous slurry containing coal and dextrin as a dispersant and to provide a method of preparing an aqueous coal slurry which includes the step of adding an effective amount of dextrin as a dispersant. The invention consists of certain novel features and a combination of parts hereinafter fully described, and particularly pointed out in the appended claims. 6 tabs.

Berggren, M.H.; Smit, F.J.; Swanson, W.W.

1989-10-30T23:59:59.000Z

342

Coal liquefaction process  

DOE Green Energy (OSTI)

A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

Wright, Charles H. (Overland Park, KS)

1986-01-01T23:59:59.000Z

343

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Quarterly Coal Report January - March 2008 July 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

344

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2009 September 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

345

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

7/01Q) 7/01Q) Quarterly Coal Report January - March 2007 June 2007 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

346

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Georgia Railroad 23 - - - 23 Georgia Truck s - - - s Georgia Total 23 - - - 23 Indiana Railroad - 115 - - 115 Indiana Truck - 71 - - 71 Indiana Total - 186 - - 186 Tennessee Railroad - - 1 - 1 Tennessee Truck

347

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Georgia Total s - - - s Georgia Truck s - - - s Indiana Total - 72 - - 72 Indiana Railroad - 72 - - 72 Tennessee Total - - 7 - 7 Tennessee Truck - - 7 - 7 Origin State Total 1,896

348

Wood-Burning Heating System Deduction  

Energy.gov (U.S. Department of Energy (DOE))

This statute allows individual taxpayers a deduction for the purchase and installation of a wood-burning heating system. The deduction is equal to the total cost of purchase and installation for...

349

Clean Burn Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

developer planning to build a 60m gallons per year (227.12m litres per year) bioethanol plant in Raeford, North Carolina. References Clean Burn Fuels LLC1 LinkedIn...

350

Underground Coal Gasification at Tennessee Colony  

E-Print Network (OSTI)

The Tennessee Colony In Situ Coal Gasification Project conducted by Basic Resources Inc. is the most recent step in Texas Utilities Company's ongoing research into the utilization of Texas lignite. The project, an application of the Soviet technology which was acquired under a license agreement in 1975, is a continuation of the field testing program to examine the feasibility of in situ lignite gasification in Texas which began with a 27-day test burn at a site near Fairfield in August of 1976. The objectives of the Tennessee Colony Project are to examine the economic, technological and environmental aspects of a commercial project. The Project which began in August of 1978 utilizes air as the oxidizing agent and is comprised of two channels of gasification operating simultaneously. The test is presently still in progress and producing gas with a heat content in the range of 8-100 Btu.

Garrard, C. W.

1979-01-01T23:59:59.000Z

351

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network (OSTI)

P.J. and Wells, J.H. , Coal, Coke and Coal Chemicals, 108, (of coal, carbon, char. coke, and other coal derived orpulverized coal, char, coke, solvent refined coal, and coal

Chin, W.K.

2010-01-01T23:59:59.000Z

352

DOE Hydrogen Analysis Repository: Coal Distribution Constraints  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Distribution Constraints Project Summary Full Title: Future Impacts of Coal Distribution Constraints on Coal Cost Project ID: 199 Principal Investigator: David McCollum...

353

EIA Energy Kids - Coal - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Coal Basics Coal takes millions of years to create. Coal is a combustible black or brownish-black sedimentary rock composed mostly of carbon and hydrocarbons.

354

Coal News and Markets - Energy Information Administration  

U.S. Energy Information Administration (EIA)

"Coal News and Markets Report" summarizes spot coal prices by coal commodity regions (i.e., Central Appalachia (CAPP), Northern Appalachia (NAPP), Illinois Basin (ILB ...

355

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

356

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

Aden, Nathaniel

2010-01-01T23:59:59.000Z

357

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

12 2.6. International coal prices and18 International coal prices and trade In parallel with thesocial stability. High coal prices and domestic shortages

Aden, Nathaniel

2010-01-01T23:59:59.000Z

358

WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT  

E-Print Network (OSTI)

Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

Bhat, M.S.

2011-01-01T23:59:59.000Z

359

Quarterly Coal Report April - June 2011  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Report (QCR) presents U.S. coal production, exports, imports, receipts, prices, consumption, coal quality, and stocks data.

360

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A master file, this information has been documented in an ancillary spreadsheet in the EIA

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Coal Utilization Science Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Utilization SCienCe Program Coal Utilization SCienCe Program Description The Coal Utilization Science (CUS) Program sponsors research and development (R&D) in fundamental science and technology areas that have the potential to result in major improvements in the efficiency, reliability, and environmental performance of advanced power generation systems using coal, the Nation's most abundant fossil fuel resource. The challenge for these systems is to produce power in an efficient and environmentally benign manner while remaining cost effective for power providers as well as consumers. The CUS Program is carried out by the National Energy Technology Laboratory (NETL) under the Office of Fossil Energy (FE) of the U.S. Department of Energy (DOE). The program supports DOE's Strategic Plan to:

362

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology EIA uses the confidential version of the STB Waybill data, which includes actual revenue for shipments that originate and terminate at specific locations. The STB Waybill data are a sample of all rail shipments. EIA's 2011 report describes the sampling procedure. EIA aggregates the confidential STB data to three different levels: national, coal-producing basin to state, and state to state. EIA applies STB withholding rules to the aggregated data to identify records that must be suppressed to protect business-sensitive data. Also, EIA adds additional location fields to the STB data, identifying the mine from which the coal originates, the power plant that receives the coal, and, in some cases, an intermediate delivery location where coal is terminated by the initial carrier but then

363

Coal markets squeeze producers  

SciTech Connect

Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

Ryan, M.

2005-12-01T23:59:59.000Z

364

Aqueous coal slurry  

DOE Patents (OSTI)

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

1993-01-01T23:59:59.000Z

365

Clean Coal Technology (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

366

Proximate analysis of coal  

Science Conference Proceedings (OSTI)

This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter, fixed carbon, and ash content are determined for each sample and comparisons are made. Proximate analysis is performed on a coal sample from a local electric utility. From the weight percent sulfur found in the coal (determined by a separate procedure the Eschka method) and the ash content, students calculate the quantity of sulfur dioxide emissions and ash produced annually by a large coal-fired electric power plant.

Donahue, C.J.; Rais, E.A. [University of Michigan, Dearborn, MI (USA)

2009-02-15T23:59:59.000Z

367

Simulation of a Burning Plasma C. Kessel, PPPL  

E-Print Network (OSTI)

Simulation of a Burning Plasma Experiment C. Kessel, PPPL UFA Workshop on Burning Plasma Science, December 11-13, 2000 #12;FIRE Burning Plasma Discharge Simulation with TSC ELMy H-mode, N, R=2.0 m, Ip=6.5 MA #12;Burning Plasma Experiment Simultaneously Needs · L-H mode transition · Non

368

BURNING PLASMA NEXT STEPS: DISCUSSION OF KEY DEVELOPMENTS  

E-Print Network (OSTI)

BURNING PLASMA NEXT STEPS: DISCUSSION OF KEY DEVELOPMENTS Gerald A. Navratil Columbia University/FESAC Burning Plasma Strategy Dec 2002 NRC/NAS Interim Report on Burning Plasmas Jan 30, 2003 DOE of the physics of burning plasma, advance fusion technology, and contribute to the development of fusion energy

369

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames  

E-Print Network (OSTI)

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames P.-T. Bremer1, G. Weber2 flames subject to different levels of tur- bulence. Due to their unstable nature, lean flames burn to quantitatively correlate the turbulence of the burning process with the distribution of burning regions, properly

370

Global observations of desert dust and biomass burning aerosols  

E-Print Network (OSTI)

Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning.6 Biomass burning over Angola, 09 Sep. 2004 Absorbing Aerosol Index PMD image #12;biomass burning ocean

Graaf, Martin de

371

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames  

E-Print Network (OSTI)

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames Peer-Timo Bremer, Member levels of turbulence. Due to their unstable nature, lean flames burn in cells separated by locally the turbulence of the burning process with the distribution of burning regions, properly segmented and selected

Pascucci, Valerio

372

Effects of Range Burning on Kansas Flint Hills Soil  

E-Print Network (OSTI)

Effects of Range Burning on Kansas Flint Hills Soil CLENTON E. OWENSBY AND JOHN BRUCE WYRILL, III Highlight: Two tallgrass prairie areas burned annually for 20 (grazed) nnd 48 (un. grazed) years ar-spring burned ungrared plots were generally higher in soil pH, organic ma~fer, and K than late-spring burned

Owensby, Clenton E.

373

Final Report Environmental Footprints and Costs of Coal-Based Integrated Gasification Combined Cycle and  

E-Print Network (OSTI)

Currently, over 50 percent of electricity in the U.S. is generated from coal. Given that coal reserves in the U.S. are estimated to meet our energy needs over the next 250 years, coal is expected to continue to play a major role in the generation of electricity in this country. With dwindling supplies and high prices of natural gas and oil, a large proportion of the new power generation facilities built in the U.S. can be expected to use coal as the main fuel. The environmental impact of these facilities can only be minimized by innovations in technology that allow for efficient burning of coal, along with an increased capture of the air pollutants that are an inherent part of coal combustion. EPA considers integrated gasification combined cycle (IGCC) as one of the most promising technologies in reducing environmental consequences of generating electricity from coal. EPA has undertaken several initiatives to facilitate and incentivize development and deployment of this technology. This report is the result of one of these initiatives and it represents the combined efforts of a joint EPA/DOE team formed to advance the IGCC technology. The various offices within DOE that participated in the development/review of this report were the Office of Fossil Energy, including the Clean Coal Office and the National Energy Technology Laboratory.

Pulverized Coal; Technologies Foreword

2006-01-01T23:59:59.000Z

374

Coal liquefaction process  

DOE Patents (OSTI)

An improved coal liquefaction process is provided which enables conversion of a coal-oil slurry to a synthetic crude refinable to produce larger yields of gasoline and diesel oil. The process is characterized by a two-step operation applied to the slurry prior to catalytic desulfurization and hydrogenation in which the slurry undergoes partial hydrogenation to crack and hydrogenate asphaltenes and the partially hydrogenated slurry is filtered to remove minerals prior to subsequent catalytic hydrogenation.

Karr, Jr., Clarence (Morgantown, WV)

1977-04-19T23:59:59.000Z

375

Coal liquefaction process  

DOE Patents (OSTI)

This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

1985-01-01T23:59:59.000Z

376

Coal Liquefaction desulfurization process  

DOE Patents (OSTI)

In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

Givens, Edwin N. (Bethlehem, PA)

1983-01-01T23:59:59.000Z

377

International Coal Market Analysis  

Science Conference Proceedings (OSTI)

As this report is being finalized in November 2007, international steam coal freight-on-board (FOB) prices are at levels not seen since 1980-1982, shipping rates are at unprecedented high levels, and currency fluctuations are altering the degree to which major individual countries are impacted. This report systematically examines the history of the international coal trade, the major exporting and importing countries, and the drivers behind how trade functions. In addition, the report examines in depth t...

2007-12-14T23:59:59.000Z

378

Method for coal liquefaction  

DOE Patents (OSTI)

A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400 C at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1. 1 figures.

Wiser, W.H.; Oblad, A.G.; Shabtai, J.S.

1994-05-03T23:59:59.000Z

379

American coal imports 2015  

SciTech Connect

As 2007 ends, the US coal industry passes two major milestones - the ending of the Synfuel tax break, affecting over 100M st annually, and the imposition of tighter and much more expensive safety measures, particularly in deep mines. Both of these issues, arriving at a time of wretched steam coal price levels, promise to result in a major shake up in the Central Appalachian mining sector. The report utilizes a microeconomic regional approach to determine whether either of these two schools of thought have any validity. Transport, infrastructure, competing fuels and regional issues are examined in detail and this forecasts estimates coal demand and imports on a region by region basis for the years 2010 and 2015. Some of the major highlights of the forecast are: Import growth will be driven by steam coal demand in the eastern and southern US; Transport will continue to be the key driver - we believe that inland rail rates will deter imports from being railed far inland and that the great majority of imports will be delivered directly by vessel, barge or truck to end users; Colombian coal will be the overwhelmingly dominant supply source and possesses a costs structure to enable it to compete with US-produced coal in any market conditions; Most of the growth will come from existing power plants - increasing capacity utilization at existing import facilities and other plants making investments to add imports to the supply portfolio - the growth is not dependent upon a lot of new coal fired capacity being built. Contents of the report are: Key US market dynamics; International supply dynamics; Structure of the US coal import market; and Geographic analysis.

Frank Kolojeski [TransGlobal Ventures Corp. (United States)

2007-09-15T23:59:59.000Z

380

Proceedings of the eighth annual coal-fueled heat engines and gas stream cleanup systems contractors review meeting  

SciTech Connect

The goal of the Heat Engines and Gas Stream Cleanup Programs at Morgantown Energy Technology Center is to develop essential technologies so the private sector can commercialize power plants burning coal-derived fuels. The purpose of this annual meeting is to provide a forum for scientists and engineers to present their results, exchange ideas and talk about their plans. Topics discussed were: Heat Engines Commercialization and Proof of Concepts Projects; Components and Testing of Coal-Fueled Gas Turbines; Advances in Barrier Filters; Pulse Combustion/Agglomeration; Advances in Coal-Fueled Diesels; Gas Stream Cleanup; Turbine and Diesel Emissions; and Poster Presentations.

Webb, H.A.; Bedick, R.C.; Geiling, D.W.; Cicero, D.C. (eds.)

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Climate control on Quaternary coal fires and landscape evolution, Powder River basin, Wyoming and Montana  

SciTech Connect

Late Cenozoic stream incision and basin excavation have strongly influenced the modern Rocky Mountain landscape, but constraints on the timing and rates of erosion are limited. The geology of the Powder River basin provides an unusually good opportunity to address spatial and temporal patterns of stream incision. Numerous coal seams in the Paleocene Fort Union and Eocene Wasatch Formations within the basin have burned during late Cenozoic incision, as coal was exposed to dry and oxygen-rich near-surface conditions. The topography of this region is dominated by hills capped with clinker, sedimentary rocks metamorphosed by burning of underlying coal beds. We use (U-Th)/He ages of clinker to determine times of relatively rapid erosion, with the assumption that coal must be near Earth's surface to burn. Ages of 55 in situ samples range from 0.007 to 1.1 Ma. Clinker preferentially formed during times in which eccentricity of the Earth's orbit was high, times that typically but not always correlate with interglacial periods. Our data therefore suggest that rates of landscape evolution in this region are affected by climate fluctuations. Because the clinker ages correlate better with eccentricity time series than with an oxygen isotope record of global ice volume, we hypothesize that variations in solar insolation modulated by eccentricity have a larger impact on rates of landscape evolution in this region than do glacial-interglacial cycles.

Riihimaki, C.A.; Reiners, P.W.; Heffern, E.L. [Drew University, Madison, NJ (USA). Dept. of Biology

2009-03-15T23:59:59.000Z

382

The use of FBC wastes in the reclamation of coal slurry solids. Technical report, September 1--November 30, 1991  

SciTech Connect

Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to SO{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in the Illinois are mixed with coal slurry solids from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The ultimate of this and future research is to determine whether mixed FBC waste and coal slurry solids can be slurry pond reclamation.

Dreher, G.B.

1991-12-31T23:59:59.000Z

383

Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 4, July 1, 1993--September 30, 1993  

Science Conference Proceedings (OSTI)

Laboratory work and studies of full-scale coal-fired boilers have identified two general mechanisms for ash production. The vast majority of the ash is formed from mineral matter that coalesces as the char burns, yielding particles that are normally larger than 0.5 {mu}m. The second major mechanism is the generation of a submicron aerosol through a vaporization/condensation mechanism. Previous work has shown that pulverized bituminous coals that were treated by coal cleaning (via froth flotation) or aerodynamic sizing exhibited altered aerosol emission characteristics. Specifically, the emissions of aerosol for the cleaned and sized coals increased by as much as one order of magnitude. The goals of the present progress are to: (1) perform measurements on carefully characterized coals to identify the means by which the coal treatment increases aerosol yields; (2) investigate means by which coal cleaning can be done in a way that will not increase aerosol yields; (3) identify whether this mechanism can be used to reduce aerosol yields from systems burning straight coal. This paper discusses model description and model formulation, and reports on the progress of furnace design and construction, and coal selection.

Kramlich, J.C.; Hoffman, D.A.; Butcher, E.K.

1993-10-29T23:59:59.000Z

384

Weekly Coal Production by State  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly Coal Production Weekly Coal Production Data for week ended: December 14, 2013 | Release date: December 19, 2013 | Next release date: December 30, 2013 For the week ended December 14, 2013: U.S. coal production totaled approximately 18.9 million short tons (mmst) This production estimate is 3.1% higher than last week's estimate and 2.9% lower than the production estimate in the comparable week in 2012 Coal production east of the Mississippi River totaled 8.2 mmst Coal production west of the Mississippi River totaled 10.8 mmst U.S. year-to-date coal production totaled 957.1 mmst, 1.9% lower than the comparable year-to-date coal production in 2012 EIA revises its weekly estimates of state-level coal production using Mine Safety and Health Administration (MSHA) quarterly coal production data.

385

Powdered coal air dispersion nozzle  

SciTech Connect

An improved coal/air dispersion nozzle introduces fuel into the combustion chamber of a gas turbine engine as a finely atomized, dispersed spray for a uniform combustion. The nozzle has an inlet that receives finely powdered coal from a coal transport or coal/air fluidizer system and a scroll swirl generator is included within the nozzle to swirl a fluidized coal/air mixture supplied to the inlet of the nozzle. The scroll is in the form of a thin, flat metal sheet insert, twisted along its length, and configured to prevent build-up of coal particles within the nozzle prior to ejection from its outlet. Airblast air jets are included along the length of the nozzle body to assist in the discharge of the fluidized coal from the nozzle outlet and an angular pintle tip overlies the outlet to redirect coal/air mixture through a desired fluidized coal spray angle.

Kosek, T.P.; Steinhilper, E.A.

1981-10-27T23:59:59.000Z

386

Coal/biomass fuels and the gas turbine: Utilization of solid fuels and their derivatives  

Science Conference Proceedings (OSTI)

This paper discusses key design and development issues in utilizing coal and other solid fuels in gas turbines. These fuels may be burned in raw form or processed to produce liquids or gases in more or less refined forms. The use of such fuels in gas turbines requires resolution of technology issues which are of little or no consequence for conventional natural gas and refined oil fuels. For coal, these issues are primarily related to the solid form in which coal is naturally found and its high ash and contaminant levels. Biomass presents another set of issues similar to those of coal. Among the key areas discussed are effects of ash and contaminant level on deposition, corrosion, and erosion of turbine hot parts, with particular emphasis on deposition effects.

DeCorso, M. [Power Tech Associates, Inc., Paramus, NJ (United States); Newby, R. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Anson, D. [Battelle, Columbus, OH (United States); Wenglarz, R. [Allison Engine Co., Indianapolis, IN (United States); Wright, I. [Oak Ridge National Lab., TN (United States)

1996-06-01T23:59:59.000Z

387

DOE/PETC two-stage MHD pressurized coal combustor. Quarterly activity report, April 1-June 30, 1979  

DOE Green Energy (OSTI)

Efforts involved preparing for and conducting scroll combustor test run SC7905, followed by disassembly, inspection and refurbishment of the combustor internals after the run. Numerous design and operational improvements, described in this report, were made to the combustor and its support systems, based on previous run experience, in an effort to extend run duration to 24 hours of continuous operation, burning coal.

Not Available

1979-07-31T23:59:59.000Z

388

THE DEVELOPMENT AND APPLICATION OF GAS TURBINES IN SOUTH AFRICA WITH SPECIAL REFERENCE TO COAL AND NUCLEAR FUELS  

SciTech Connect

Aspects of gas turbine development with emphasis on applications in South Africa are discussed. A review of developmental work in various parts of the world on coal burning turbines is presented and local efforts on conventional combustion chambers and resonant combustion systems are outlined. The possible applications of gas turbines to nuclear reactors in South Africa are also examined. (J.R.D.)

Grant, W.L.; Roux, A.J.A.

1959-07-01T23:59:59.000Z

389

Development and testing of a high efficiency advanced coal combustor: Phase 3 industrial boiler retrofit. Final report  

SciTech Connect

Economics and/or political intervention may one day dictate the conversion from oil or natural gas to coal in boilers that were originally designed to burn oil or gas. In recognition of this future possibility the US Department of Energy, Federal Energy Technical Center (DOE-FETC) supported a program led by ABB Power Plant Laboratories with support from the Energy and Fuels Research Center of Penn State University with the goal of demonstrating the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of the overall goal the following specific objectives were targeted: develop a coal handling/preparation system that can meet the technical and operational requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; maintain boiler thermal performance in accordance with specifications when burning oil or natural gas; maintain NOx emissions at or below 0.6 lb NO{sub 2} per million Btu; achieve combustion efficiencies of 98% or higher; and determine economic payback periods as a function of key variables.

Patel, R.L.; Thornock, D.E.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

1998-03-01T23:59:59.000Z

390

Coal-fired power-plant-capital-cost estimates. Final report. [Mid-1978 price level; 13 different sites  

Science Conference Proceedings (OSTI)

Conceptual designs and order-of-magnitude capital cost estimates have been prepared for typical 1000-MW coal-fired power plants. These subcritical plants will provide high efficiency in base load operation without excessive efficiency loss in cycling operation. In addition, an alternative supercritical design and a cost estimate were developed for each of the plants for maximum efficiency at 80 to 100% of design capacity. The power plants will be located in 13 representative regions of the United States and will be fueled by coal typically available in each region. In two locations, alternate coals are available and plants have been designed and estimated for both coals resulting in a total of 15 power plants. The capital cost estimates are at mid-1978 price level with no escalation and are based on the contractor's current construction projects. Conservative estimating parameters have been used to ensure their suitability as planning tools for utility companies. A flue gas desulfurization (FGD) system has been included for each plant to reflect the requirements of the promulgated New Source Performance Standards (NSPS) for sulfur dioxide (SO/sub 2/) emissions. The estimated costs of the FGD facilities range from 74 to 169 $/kW depending on the coal characteristics and the location of the plant. The estimated total capital requirements for twin 500-MW units vary from 8088 $/kW for a southeastern plant burning bituminous Kentucky coal to 990 $/kW for a remote western plant burning subbituminous Wyoming coal.

Holstein, R.A.

1981-05-01T23:59:59.000Z

391

Report to the United States Congress clean coal technology export markets and financing mechanisms  

SciTech Connect

This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country`s coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently.

Not Available

1994-05-01T23:59:59.000Z

392

PSNH's Northern Wood power project repowers coal-fired plant with new fluidized-bed combustor  

SciTech Connect

The Northern Wood Power project permanently replaced a 50-MW coal-burning boiler (Unit 5) at Public Service of New Hampshire's Schiller station with a state-of-the-art circulating fluidized bed wood-burning boiler of the same capacity. The project, completed in December 2006, reduced emissions and expanded the local market for low-grade wood. For planning and executing the multiyear, $75 million project at no cost to its ratepayers, PSNH wins Power's 2007 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshoot par excellence. 7 figs., 1 tab.

Peltier, R.

2007-08-15T23:59:59.000Z

393

Coal fueled diesel system for stationary power applications-technology development  

DOE Green Energy (OSTI)

The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

NONE

1995-08-01T23:59:59.000Z

394

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

world’s largest CBM (coal-bed methane) power plant. In orderunder the China United Coal-bed Methane Corporation (CUCBM)quandary. 3.3.4. Coal-bed and coal-mine methane Effective

Aden, Nathaniel

2010-01-01T23:59:59.000Z

395

EIA projections of coal supply and demand  

SciTech Connect

Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

Klein, D.E.

1989-10-23T23:59:59.000Z

396

Coal Severance Tax (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

coal taxes to: (a) allow the severance taxes on coal production to remain a constant percentage of the price of coal; (b) stabilize the flow of tax revenue from coal mines to local...

397

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/this operational mode, the gasifiers and other parts of the

Phadke, Amol

2008-01-01T23:59:59.000Z

398

NETL: Coal & Coal Biomass to Liquids - Hydrogen and Clean Fuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategies Central Hydrogen Production Coal Supply Regions CLICK ON IMAGE TO SEE LARGER VIEW Coal is a plentiful domestic resource, and is available in several major regions of the...

399

NETL: Coal & Coal Biomass to Liquids - Hydrogen and Clean Fuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

of hydrogen and nitrogen. CLICK ON IMAGE TO SEE LARGER VIEW Hydrogen is produced from coal in a process that is similar to SMR but more complex because coal is not a single...

400

Method of extracting coal from a coal refuse pile  

DOE Patents (OSTI)

A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

Yavorsky, Paul M. (Monongahela, PA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

402

NETL: Coal and Coal/Biomass to Liquids - Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

by Gasification. Small-Scale Coal-biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis; FE0010231 Small-Scale Pilot Plant for the Gasification of Coal...

403

Slag processing system for direct coal-fired gas turbines  

SciTech Connect

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

404

Production of mineral wool from lignite coal slag  

SciTech Connect

This is a report of research conducted at the University of North Dakota concerning the utilization of the ''molten state'' condition of lignite coal slag for the fabrication of a mineral wool insulant. The research was funded by the Mercer County Energy Development Board with monies allocated from the Department of Energy. The objective of the research was to investigate, on a preliminary basis, some critical criteria such as the chemical nature of the raw material, the ability of the slag to be fiberized, as well as the possibilities that such a insulant could indeed have a market in the immediate area. In essence it was felt that a mineral wool product could be produced at coal fired power plants which burn lignite at a minimal cost. The major cost saving would come from the fact that the raw material that would be used would not have to have a great deal of energy added at the expense of the consumer.

Manz, O.E.; Eaton, L.C.

1983-03-01T23:59:59.000Z

405

Illinois Coal Development Program (Illinois) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Coal Development Program (Illinois) Illinois Coal Development Program (Illinois) < Back Eligibility Commercial Construction Developer Industrial Program Info State...

406

Coal News and Markets - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated October 7, 2005) (Today's updates are limited to spot coal prices in the graph below)

407

Annual Coal Distribution Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination, 2001 Coal-Exporting State and Destination Metallurgical Steam Total Alaska - 761 761 South Korea - 761 761 Alabama 4,667 167 4,834 Argentina 155 - 155 Belgium 989 - 989 Brazil 1,104 - 1,104 Bulgaria 82 - 82 Egypt 518 - 518 Italy 115 - 115 Netherlands 56 83 139 Spain 412 84 496 Turkey 581 - 581 United Kingdom 654 - 654 Kentucky 2,130 - 2,130 Canada 920 - 920 France 22 - 22 Iceland 9 - 9 Italy 430 - 430 Netherlands 417 - 417 Spain 9 - 9 United Kingdom 323 - 323 Pennsylvania 1,086 14,326 15,722 Belgium - 203 203 Brazil 372 - 373 Canada - 12,141 12,418 France - 84 84 Germany 495 165 661 Ireland - 136 136 Netherlands 219 879 1,097 Norway - - 7 Peru - - 21 Portugal - 634 634 United Kingdom - 85 85 Venezuela - - 3 Utah - 1,420 1,420 Japan - 1,334 1,334 Taiwan - 86 86 Virginia 4,531

408

Development and evaluation of coal/water mixture combustion technology. Final report  

Science Conference Proceedings (OSTI)

The objective was to advance the technology for the preparation, storage, handling and combustion of highly-loaded coal/water mixtures. A systematic program to prepare and experimentally evaluate coal/water mixtures was conducted to develop mixtures which (1) burn efficiently using combustion chambers and burners designed for oil, (2) can be provided at a cost less than that of No. 6 oil, and (3) can be easily transported and stored. The program consisted of three principal tasks. The first was a literature survey relevant to coal/water mixture technology. The second involved slurry preparation and evaluation of rheological and stability properties, and processing techniques. The third consisted of combustion tests to characterize equipment and slurry parameters. The first task comprised a complete search of the literature, results of which are tabulated in Appendix A. Task 2 was involved with the evaluation of composition and process variables on slurry rheology and stability. Three bituminous coals, representing a range of values of volatile content, ash content, and hardness were used in the slurries. Task 3 was concerned with the combustion behavior of coal/water slurry. The studies involved first upgrading of an experimental furnace facility, which was used to burn slurry fuels, with emphasis on studying the effect on combustion of slurry properties such as viscosity and particle size, and the effect of equipment parameters such as secondary air preheat and atomization.

Scheffee, R.S.; Rossmeissl, N.P.; Skolnik, E.G.; McHale, E.T.

1981-08-01T23:59:59.000Z

409

Preliminary investigation of the effects of coal-water slurry fuels on the combustion in GE coal fueled diesel engine (Task 1. 1. 2. 2. 1, Fuels)  

DOE Green Energy (OSTI)

In prior work with the coal fired diesel research engine, a necessity to determine the sensitivity of the engine to a wider range of fuels was resolved and included in the R and D Test Plan submitted on 2/9/89. In general, the economic viability and universal acceptance of the commercial engine will be a factor of its ability to tolerate the widest range of source fuels with minimal fuel beneficiation. As detailed in the R and D Test Plan, a preliminary investigation on the effects of coal-water slurry (CWS) fuels on the combustion in a GE single cylinder test engine was conducted. The following conclusions are obtained from this investigation. All the test CWS fuels were successfully burned in the GE engine combustion system. They include: 3 to 15 microns mean particle size; 0.7 to 2.8% ash level; KY Blue Gem and PA Mariana bituminous coal, WY Kemmer and Spring Creek Sub-Bituminous coal; coal beneficiated with physical and chemical processes; two kinds of additives for OTISCA CWS; and burnout is not effected by ash or particle size within the test range. For each kind of CWS fuel, the detail design parameters of the fuel injection system has to be compatible. With sufficiently high fuel injection pressure, the 3 micron mean particle size OTISCA fuel burns faster than the 5 micron ones. For OTISCA fuel, the burn rate using Ammonium Lignosulfonate as additive is faster than using Ammonium Condensed Naphthalene Sulfonate. Appendices contain data on heat release, fuel characterization reports from two laboratories, general engine test data, and particulate size distribution. 3 refs.

Not Available

1990-06-01T23:59:59.000Z

410

Assessment of mercury health risks to adults from coal combustion  

SciTech Connect

The U.S. Environmental Protection Agency (EPA) is preparing, for the U.S. Congress, a report evaluating the need to regulate mercury (Hg) emissions from electric utilities. This study, to be completed in 1995, will have important health and economic implications. In support of these efforts, the U.S. Department of Energy, Office of Fossil Energy, sponsored a risk assessment project at Brookhaven National Laboratory (BNL) to evaluate methylmercury (MeHg) hazards independently. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical 1000 MW{sub e} coal-fired power plant were estimated using probabilistic risk assessment techniques. The approach draws on the extant knowledge in each of the important steps in the calculation chain from emissions to health effects. Estimated results at key points in the chain were compared with actual measurements to help validate the modeled estimates. Two cases were considered: the baseline case (no local impacts), and the impact case (maximum local power-plant impact). The BNL study showed that the effects of emissions of a single power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized area near the power plant. Many implicit and explicit sources of uncertainty exist in this analysis. Those that appear to be most in need of improvement include data on doses and responses for potentially sensitive subpopulations (e.g., fetal exposures). Rather than considering hypothetical situations, it would also be preferable to assess the risks associated with actual coal-fired power plants and the nearby sensitive water bodies and susceptible subpopulations. Finally, annual total Hg emissions from coal burning and from other anthropogenic sources are still uncertain; this makes it difficult to estimate the effects of U.S. coal burning on global Hg concentration levels, especially over the long term.

Lipfert, F.W.; Moskowitz, P.D.; Fthenakis, V.M.; DePhillips, M.P.; Viren, J.; Saroff, L.

1994-05-01T23:59:59.000Z

411

Plants of the Coal Age  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Age Nature Bulletin No. 330-A February 1, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation PLANTS OF THE COAL...

412

Low-rank coal research  

DOE Green Energy (OSTI)

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Not Available

1989-01-01T23:59:59.000Z

413

Dry cleaning of Turkish coal  

Science Conference Proceedings (OSTI)

This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8, 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.

Cicek, T. [Dokuz Eylul University, Izmir (Turkey). Faculty of Engineering

2008-07-01T23:59:59.000Z

414

U.S. Coal Reserves  

Reports and Publications (EIA)

U.S. Coal Reserves presents detailed estimates of U.S. coal reserves by State, as well as descriptions of the data, methods, and assumptions used to develop such estimates.

Information Center

2012-11-20T23:59:59.000Z

415

2008 Coal Age buyers guide  

Science Conference Proceedings (OSTI)

The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

NONE

2008-07-15T23:59:59.000Z

416

A study of coal formation  

SciTech Connect

Coal is a solid, brittle, more or less distinctly stratified, combustible, carbonaceous rock. It is being rediscovered as a reliable energy source, which, historically provided the resource base for the industrialization of the United States economy. A firm understanding of growth in coal development is important to the national energy scene so that the implications of factors influencing coal growth upon the industry`s ability to realize national energy objectives may be determined. As a result, the future of coal development will be facilitated by compiling basic facts on coal reserves, production, and utilization. In view of this, a review and assessment of facts pertaining to the nature and origin of coal is presented. The various properties and uses of coal are then described, followed by a discussion of the process of coal formation.

Jubert, K.; Stevens, G.; Masudi, H.

1995-03-01T23:59:59.000Z

417

STEO December 2012 - coal demand  

U.S. Energy Information Administration (EIA) Indexed Site

coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in...

418

2009 Coal Age Buyers Guide  

SciTech Connect

The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

NONE

2009-07-15T23:59:59.000Z

419

Montana Coal Mining Code (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

420

The world price of coal  

E-Print Network (OSTI)

A significant increase in the seaborne trade for coal over the past twenty years has unified formerly separate coal markets into a world market in which prices move in tandem. Due to its large domestic market, the United ...

Ellerman, A. Denny

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

International Energy Outlook 1999 - Coal  

Gasoline and Diesel Fuel Update (EIA)

coal.jpg (1776 bytes) coal.jpg (1776 bytes) CoalÂ’s share of world energy consumption falls slightly in the IEO99 forecast. Coal continues to dominate many national fuel markets in developing Asia, but it is projected to lose market share to natural gas in some other areas of the world. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1996. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union. In Western Europe, coal consumption declined by 30

422

Process for the production of ethylene and other hydrocarbons from coal  

DOE Patents (OSTI)

A process for the production of economically significant amounts of ethyl and other hydrocarbon compounds, such as benzene, from coal is disclosed wherein coal is reacted with methane at a temperature in the approximate range of 500.degree. C. to 1100.degree. C. at a partial pressure less than about 200 psig for a period of less than 10 seconds. Ethylene and other hydrocarbon compounds may be separated from the product stream so produced, and the methane recycled for further production of ethylene. In another embodiment, other compounds produced, such as by-product tars, may be burned to heat the recycled methane.

Steinberg, Meyer (Huntington Station, NY); Fallon, Peter (East Moriches, NY)

1986-01-01T23:59:59.000Z

423

Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers  

E-Print Network (OSTI)

Chemical technology has been used successfully to solve many of the operational and emissions problems that result from burning coal. This paper describes the use of blended chemical flue gas conditioners to significantly reduce particulate emissions in coal-fired industrial boilers. In many cases, these chemical conditioning agents have increased the efficiency of electrostatic precipitators and mechanical collectors by more than fifty percent. The effectiveness of this technology has been demonstrated on units generating 50,000 to 200,000 lbs./hr. steam. Results achieved at various industrial plants under actual operating conditions are presented.

Miller, B.; Keon, E.

1980-01-01T23:59:59.000Z

424

Utilization of Partially Gasified Coal for Mercury Removal  

Science Conference Proceedings (OSTI)

In this project, General Electric Energy and Environmental Research Corporation (EER) developed a novel mercury (Hg) control technology in which the sorbent for gas-phase Hg removal is produced from coal in a gasification process in-situ at a coal burning plant. The main objective of this project was to obtain technical information necessary for moving the technology from pilot-scale testing to a full-scale demonstration. A pilot-scale gasifier was used to generate sorbents from both bituminous and subbituminous coals. Once the conditions for optimizing sorbent surface area were identified, sorbents with the highest surface area were tested in a pilot-scale combustion tunnel for their effectiveness in removing Hg from coal-based flue gas. It was determined that the highest surface area sorbents generated from the gasifier process ({approx}600 m{sup 2}/g) had about 70%-85% of the reactivity of activated carbon at the same injection rate (lb/ACF), but were effective in removing 70% mercury at injection rates about 50% higher than that of commercially available activated carbon. In addition, mercury removal rates of up to 95% were demonstrated at higher sorbent injection rates. Overall, the results of the pilot-scale tests achieved the program goals, which were to achieve at least 70% Hg removal from baseline emissions levels at 25% or less of the cost of activated carbon injection.

Chris Samuelson; Peter Maly; David Moyeda

2008-09-09T23:59:59.000Z

425

Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Report 2012 Annual Coal Report 2012 December 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. iii U.S. Energy Information Administration | Annual Coal Report 2012 Contacts This publication was prepared by the U.S. Energy Information Administration (EIA). General information about the data in this report can be obtained from:

426

Coal | Open Energy Information  

Open Energy Info (EERE)

Coal Coal Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 101. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 15. Coal Supply, Disposition and Price Table 21. Carbon Dioxide Emissions by Sector and Source - New England Table 22. Carbon Dioxide Emissions by Sector and Source- Middle Atlantic Table 23. Carbon Dioxide Emissions by Sector and Source - East North Central Table 24. Carbon Dioxide Emissions by Sector and Source - West North Central Table 25. Carbon Dioxide Emissions by Sector and Source - South Atlantic Table 26. Carbon Dioxide Emissions by Sector and Source - East South Central Table 27. Carbon Dioxide Emissions by Sector and Source - West South

427

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA) Indexed Site

reports reports Coal Transportation Rates to the Electric Power Sector With Data through 2010 | Release Date: November 16, 2012 | Next Release Date: December 2013 | Correction Previous editions Year: 2011 2004 Go Figure 1. Deliveries from major coal basins to electric power plants by rail, 2010 Background In this latest release of Coal Transportation Rates to the Electric Power Sector, the U.S. Energy Information Administration (EIA) significantly expands upon prior versions of this report with the incorporation of new EIA survey data. Figure 1. Percent of total U.S. rail shipments represented in data figure data Previously, EIA relied solely on data from the U.S. Surface Transportation Board (STB), specifically their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data,

428

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Georgia Railroad 9 - - - 9 Georgia Truck 7 - 5 - 12 Georgia Total 16 - 5 - 21 Indiana Railroad - 126 - - 126 Tennessee Truck - - 1 - 1 Origin State Total 2,320 353 325 - 2,998 Railroad 848 137 83 - 1,068

429

coal | OpenEI  

Open Energy Info (EERE)

coal coal Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 32.3 KiB)

430

COAL & POWER SYSTEMS  

NLE Websites -- All DOE Office Websites (Extended Search)

COAL & POWER SYSTEMS COAL & POWER SYSTEMS STRATEGIC & MULTI-YEAR PROGRAM PLANS U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY GREENER, SOONER... THROUGH TECHNOLOGY INTRODUCTION .......... i-1 STRATEGIC PLAN ........ 1-1 PROGRAM PLANS Vision 21 .......................... 2-1 Central Power Systems ...... 3-1 Distributed Generation ..... 4-1 Fuels ................................ 5-1 Carbon Sequestration ....... 6-1 Advanced Research ........... 7-1 TABLE OF CONTENTS STRATEGIC & MULTI-YEAR PROGRAM PLANS STRENGTH THROUGH SCIENCE... A "GREENER, SOONER" PHILOSOPHY Coal, natural gas, and oil fuel about 70 percent of the electricity generated in the United States. As promising as renewable and other alternative fuels are, it will be several decades before they can make significant energy contributions to the Nation's

431

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Florida Railroad - - 11 - 11 Georgia Railroad 52 - - - 52 Georgia Truck s - 5 - 5 Georgia Total 52 - 5 - 57 Indiana Railroad - 65 - - 65 Origin State Total 1,855 304 313 - 2,472 Railroad 996 81 89 - 1,165

432

Pyrolysis of coal  

SciTech Connect

A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

Babu, Suresh P. (Willow Springs, IL); Bair, Wilford G. (Morton Grove, IL)

1992-01-01T23:59:59.000Z

433

Catalytic Coal Gasification Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Coal Gasification Process Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas Opportunity Research is active on the patent pending technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Reducing pollution emitted by coal and waste power plants in an economically viable manner and building power plants that co-generate fuels and chemicals during times of low electricity demand are pressing goals for the energy industry. One way to achieve these goals in an economically viable manner is through the use of a catalytic gasifier that

434

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Florida Truck - - 3 - 3 Georgia Railroad 105 - 1 - 106 Georgia Truck s - 4 - 4 Georgia Total 105 - 5 - 110 Indiana Railroad - 106 - - 106 Tennessee Railroad - - 1 - 1 Origin State Total 2,065 259 321 - 2,644

435

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Georgia Total s - 3 - 3 Georgia Truck s - 3 - 3 Ohio Total - 3 - - 3 Ohio River - 3 - - 3 Origin State Total 1,942 163 338 - 2,443 Railroad 1,149 - 57 - 1,206 River 741 3 - - 745 Truck 52 160

436

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Georgia Truck s - 2 - 2 Indiana Railroad - 148 - - 148 Ohio Railroad - 25 - - 25 Ohio River - 18 - - 18 Ohio Total - 43 - - 43 Origin State Total 1,760 373 305 - 2,438 Railroad 1,040 191 80 - 1,311 River

437

Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 24, July 1, 1994--September 30, 1994  

SciTech Connect

A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

NONE

1995-04-01T23:59:59.000Z

438

Coal gasification apparatus. [Patent application  

DOE Patents (OSTI)

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, C.K.

1981-04-24T23:59:59.000Z

439

Sustainable development with clean coal  

SciTech Connect

This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

NONE

1997-08-01T23:59:59.000Z

440

PNNL Coal Gasification Research  

Science Conference Proceedings (OSTI)

This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

2010-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Clean Coal Power Initiative  

Science Conference Proceedings (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

442

Innovative coal gas cleaning at Sparrows Point Coal Chemical Plant, Maryland for Bethlehem Steel Corporation  

SciTech Connect

In response to the Clean Coal II solicitation, Bethlehem Steel Corporation (BSC) submitted a proposal to the DOE in May 1988. The proposal submitted by BSC describes a Unique integration of commercial technologies developed by Davy/Still Otto to clean coke oven gas being produced at its Sparrows Point, Maryland steel plant. This innovative coke oven gas cleaning system combines secondary gas cooling with hydrogen sulfide and ammonia removal, hydrogen sulfide and ammonia recovery, ammonia destruction and sulfur recovery to produce a cleaner fuel gas for plant use. The primary environmental benefit associated with employing this innovative coke oven gas cleaning system is realized when the fuel gas is burned within the steel plant. Emissions of sulfur dioxide are reduced by more than 60 percent. The removal, recovery and destruction of ammonia eliminates the disposal problems associated with an unmarketable ammonium sulfate by-product. Significant reduction in benzene and hydrogen cyanide emissions are also obtained.

Antrobus, K.; Platts, M. (Davy/Still Otto, Pittsburgh, PA (US)); Harbold, L. (Bethlehem Steel Corp., PA (USA)); Kornosky, R. (Office of Clean Coal Technology, US DOE, Pittsburgh, PA (US))

1990-01-01T23:59:59.000Z

443

Coal Gasification Report.indb  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Coal Integrated Coal Gasification Combined Cycle: Market Penetration Recommendations and Strategies Produced for the Department of Energy (DOE)/ National Energy Technology Laboratory (NETL) and the Gasification Technologies Council (GTC) September 2004 Coal-Based Integrated Gasification Combined Cycle: Market Penetration Strategies and Recommendations Final Report Study Performed by:

444

Utilization ROLE OF COAL COMBUSTION  

E-Print Network (OSTI)

Center for Products Utilization ROLE OF COAL COMBUSTION PRODUCTS IN SUSTAINABLE CONSTRUCTION and Applied Science THE UNIVERSITY OF WISCONSIN - MILWAUKEE #12;ROLE OF COAL COMBUSTION PRODUCTS, Federal Highway Administration, Washington, DC., U.S.A. SYNOPSIS Over one hundred million tonnes of coal

Wisconsin-Milwaukee, University of

445

EIA - AEO2010 - Coal projections  

Gasoline and Diesel Fuel Update (EIA)

Coal Projections Coal Projections Annual Energy Outlook 2010 with Projections to 2035 Coal Projections Figure 88. Coal production by region, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 89. U.S. coal production in six cases, 2008, 2020, and 2035 Click to enlarge » Figure source and data excel logo Figure 90. Average annual minemouth coal prices by region, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 91. Average annual delivered coal prices in four cases, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 92. Change in U.S. coal consumption by end use in two cases, 2008-2035 Click to enlarge » Figure source and data excel logo Coal production increases at a slower rate than in the past In the AEO2010 Reference case, increasing coal use for electricity generation, along with the startup of several CTL plants, leads to growth in coal production averaging 0.2 percent per year from 2008 to 2035. This is significantly less than the 0.9-percent average growth rate for U.S. coal production from 1980 to 2008.

446

Selenium Removal by Iron Cementation from a Coal-Fired Power Plant Flue Gas Desulfurization Wastewater in a Continuous Flow System-- a Pilot Study  

Science Conference Proceedings (OSTI)

This technical update describes work funded by the Electric Power Research Institute (EPRI) and performed by MSE Technology Applications, Inc. (MSE) at a coal-fired power plant burning Powder River Basin (PRB) coal (identified in this report as Plant E). This work was based on encouraging results obtained during previous EPRI-funded work on flue gas desulfurization (FGD) wastewater treatability testing by MSE, which focused on selenium removal from a variety of FGD wastewater sources. The results from th...

2009-07-29T23:59:59.000Z

447

Correlations between Optical, Chemical and Physical Properties of Biomass Burn Aerosols  

E-Print Network (OSTI)

laboratory measurements of biomass-burning emissions: 1.tar balls: Particles from biomass and biofuel burning, J.Eleuterio (2005), A review of biomass burning emissions part

2008-01-01T23:59:59.000Z

448

Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?  

E-Print Network (OSTI)

fication of drought-induced biomass burning in Indonesiavariability in global biomass burning emissions from 1997 toChemistry and Physics Do biomass burning aerosols intensify

Tosca, M. G; Randerson, J. T; Zender, C. S; Flanner, M. G; Rasch, P. J

2010-01-01T23:59:59.000Z

449

Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?  

E-Print Network (OSTI)

of drought-induced biomass burning in Indonesia since 1960,variability in global biomass burning emissions from 1997 toand Physics Do biomass burning aerosols intensify drought in

Tosca, M. G; Randerson, J. T; Zender, C. S; Flanner, M. G; Rasch, P. J

2010-01-01T23:59:59.000Z

450

A Hypothetical Burning-Velocity Formula for Very Lean Hydrogen-Air Mixtures  

E-Print Network (OSTI)

K. Fig. 2 Comparisons of burning-velocity predictions withcurve), when an experimental burning velocity (points) of 53and calculated laminar burning velocities of lean hydrogen-

Grcar, Joseph F

2008-01-01T23:59:59.000Z

451

NETL: Coal and Coal/Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

C&CBTL C&CBTL Coal and Power Systems Coal and Coal/Biomass to Liquids The Coal and Coal/Biomass to Liquids program effort is focused on technologies to foster the commercial adoption of coal and coal/biomass gasification and the production of affordable liquid fuels and hydrogen with excellent environmental performance. U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness Advanced Fuels Synthesis U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness Advanced Fuels Synthesis Systems Analyses Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits

452

Uncovering Coal's Secrets Through the University Coal Research Program  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2013 8, 2013 Uncovering Coal's Secrets Through the University Coal Research Program Uncovering Coal's Secrets Through the University Coal Research Program The challenges confronting the environmentally sound use of our country's fossil energy resources are best addressed through collaborative research and development. That's why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy's University Coal Research (UCR) Program. Managed by the National Energy Technology Laboratory (NETL), the UCR program funds university research to improve understanding of the chemical and physical properties of coal, one of our nation's most abundant resources. The program has forged partnerships between academia and the private sector that have led to advances not only in how we use coal, but

453

Process for coal liquefaction employing selective coal feed  

DOE Patents (OSTI)

An improved coal liquefaction process is provided whereby coal conversion is improved and yields of pentane soluble liquefaction products are increased. In this process, selected feed coal is pulverized and slurried with a process derived solvent, passed through a preheater and one or more dissolvers in the presence of hydrogen-rich gases at elevated temperatures and pressures, following which solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. The selected feed coals comprise washed coals having a substantial amount of mineral matter, preferably from about 25-75%, by weight, based upon run-of-mine coal, removed with at least 1.0% by weight of pyritic sulfur remaining and exhibiting vitrinite reflectance of less than about 0.70%.

Hoover, David S. (New Tripoli, PA); Givens, Edwin N. (Bethlehem, PA)

1983-01-01T23:59:59.000Z

454

Table 6. Coal production and number of mines by State and coal...  

U.S. Energy Information Administration (EIA) Indexed Site

Coal production and number of mines by State and coal rank, 2011" "(thousand short tons)" ,"Bituminous",,"Subbituminous",,"Lignite",,"Anthracite",,"Total" "Coal-Producing State and...

455

Reactive burn models and ignition & growth concept  

SciTech Connect

Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature). This leads to the Ignition and Growth concept, introduced by Lee and Tarver in 1980, as the basis for reactive burn models. A homogeneized burn rate needs to account for three mesoscale physical effects (i) the density of burnt hot spots, which depends on the lead shock strength; (ii) the growth of the burn fronts triggered by hot spots, which depends on the local deflagration speed; (iii) a geometric factor that accounts for the overlap of deflagration wavelets from adjacent hot spots. These effects can be combined and the burn model defined by specifying the reaction progress variable {lambda}(t) as a function of a dimensionless reaction length {tau}{sub hs}(t)/{ell}{sub hs}, rather than by xpecifying an explicit burn rate. The length scale {ell}{sub hs} is the average distance between hot spots, which is proportional to [N{sub hs}(P{sub s})]{sup -1/3}, where N{sub hs} is the number density of hot spots activated by the lead shock. The reaction length {tau}{sub hs}(t) = {line_integral}{sub 0}{sup t} D(P(t'))dt' is the distance the burn front propagates from a single hot spot, where D is the deflagration speed and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. They have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

Menikoff, Ralph S [Los Alamos National Laboratory; Shaw, Milton S [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

456

Pretreatment of coal during transport  

SciTech Connect

Many available coals are "caking coals" which possess the undesirable characteristic of fusing into a solid mass when heated through their plastic temperature range (about 400.degree. C.) which temperature range is involved in many common treatment processes such as gasification, hydrogenation, carbonization and the like. Unless the caking properties are first destroyed, the coal cannot be satisfactorily used in such processes. A process is disclosed herein for decaking finely divided coal during its transport to the treating zone by propelling the coal entrained in an oyxgen-containing gas through a heated transport pipe whereby the separate transport and decaking steps of the prior art are combined into a single step.

Johnson, Glenn E. (Pittsburgh, PA); Neilson, Harry B. (Clairton, PA); Forney, Albert J. (Coraopolis, PA); Haynes, William P. (Pittsburgh, PA)

1977-04-19T23:59:59.000Z

457

Permits handbook for coal development  

SciTech Connect

This coal permits handbook was prepared for Region VIII comprised of the states of Colorado, Utah, Montana, Wyoming, North Dakota, and South Dakota. The first part of the handbook provides the background and overview of information on coal with emphasis on federal and state regulatory authority and includes a status report on litigation affecting the coal industry. A discussion on specific analyses of the majority of environmental permits required to operate and develop coal mines comprises the second part of the book. Significant supportive information including the content of state regulations and standards, sample forms, guidelines, and a discussion of coal severance taxation are included on the appendices. (BLM)

Wayman, C.H.; Genasci, G.A.

1980-01-01T23:59:59.000Z

458

Coal liquefaction process  

DOE Patents (OSTI)

A process for liquefying a particulate coal feed to produce useful petroleum-like liquid products which comprises contacting; in a series of two or more coal liquefaction zones, or stages, graded with respect to temperature, an admixture of a polar compound; or compounds, a hydrogen donor solvent and particulate coal, the total effluent being passed in each instance from a low temperature zone, or stage to the next succeeding higher temperature zone, or stage, of the series. The temperature within the initial zone, or stage, of the series is maintained about 70.degree. F and 750.degree. F and the temperature within the final zone, or stage, is maintained between about 750.degree. F and 950.degree. F. The residence time within the first zone, or stage, ranges, generally, from about 20 to about 150 minutes and residence time within each of the remaining zones, or stages, of the series ranges, generally, from about 10 minutes to about 70 minutes. Further steps of the process include: separating the product from the liquefaction zone into fractions inclusive of a liquid solvent fraction; hydrotreating said liquid solvent fraction in a hydrogenation zone; and recycling the hydrogenated liquid solvent mixture to said coal liquefaction zones.

Maa, Peter S. (Baytown, TX)

1978-01-01T23:59:59.000Z

459

Healy clean coal project  

Science Conference Proceedings (OSTI)

The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and heat recovery system with both high and low temperature emission control processes. The emission levels of SO{sub 2}, NO{sub x}, and particulates are expected to be significantly better then the federal New Source Performance Standards. (VC)

Not Available

1992-05-01T23:59:59.000Z

460

Catalytic coal liquefaction process  

SciTech Connect

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

Garg, Diwakar (Macungie, PA); Sunder, Swaminathan (Allentown, PA)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Catalytic coal hydroliquefaction process  

SciTech Connect

A process is described for the liquefaction of coal in a hydrogen donor solvent in the presence of hydrogen and a co-catalyst combination of iron and a Group VI or Group VIII non-ferrous metal or compounds of the catalysts.

Garg, Diwakar (Macungie, PA)

1984-01-01T23:59:59.000Z

462

HYDROGEN FROM COAL  

NLE Websites -- All DOE Office Websites (Extended Search)

MT R 20 0 2- 31 M itr et ek T ec h n ic a l Pap e r HYDROGEN FROM COAL November 2001 D. Gray G. Tomlinson JULY 2002 ii Customer: U.S. DOE NETL Contract No.: DE-AM26-99FT40465 Dept....

463

European coal mining technology  

SciTech Connect

Most new developments in mechanized longwall coal technology have been pioneered by European mines and equipment manufacturers. But ironically, the most successful adaptations of European-inspired longwalling systems have occurred in North America, Australia, South Africa and elsewhere, enabling those mines to achieve even greater productivity and cost-effective utilization than the Europeans enjoy. This anomaly has little to do with mining talents, but arises instead from a pair of factors: 1) the extremely difficult mining and geological conditions of European coal basins; and 2) the profound differences between the management style and operating routines of the largely state-owned mines of Europe and the privately-owned, profit oriented mining companies abroad. Nevertheless, Europe continues to lead the way in new developments, driven by the chemistry of tough mining conditions and the commitments of its national mining industries to invest in new technology. As a third ingredient, the supra-national European Economic Community (EEC) plays an important role in promoting and funding new developments through its various agencies. A recent EEC information symposium on new methods of coal winning at Luxembourg focused on state-of-the-art longwall technology. Thus a look at current Euopean RandD programs yields pointers as to what the international coal industry may expect in the future.

Wyllie, B.

1986-06-01T23:59:59.000Z

464

Initiators of coal hydrogenation  

Science Conference Proceedings (OSTI)

The initiators examined include cyclic and linear silico-organic compounds, the effects of which on the hydrogenation process are studied. The substances not only localize the active radicals before these are stabilised by hydrogen, but actually activate the destruction reaction of the coal substance and in this way generate atomic hydrogen: radical polymerization inhibitors thus convert to activators and hydrogen transfer. (8 refs.)

Krichko, A.A.; Dembovskaya, E.A.; Gorlov, E.G.

1983-01-01T23:59:59.000Z

465

Catalytic coal liquefaction process  

DOE Patents (OSTI)

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

Garg, D.; Sunder, S.

1986-12-02T23:59:59.000Z

466

Biochemical transformation of coals  

DOE Patents (OSTI)

A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

Lin, M.S.; Premuzic, E.T.

1999-03-23T23:59:59.000Z

467

Kinetics of coal pyrolysis  

Science Conference Proceedings (OSTI)

This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))

1989-07-01T23:59:59.000Z

468

Method of recovery of alkali-metal constituents from coal-conversion residues. [Patent application  

DOE Patents (OSTI)

A coal gasification operation or similar conversion process is carried out in the presence of an alkali metal-containing catalyst producing char particles containing alkali metal residues. Alkali metal constituents are recovered from the particles by burning the particles to increase their size and density and then leaching the particles of increased size and density with water, to extract the water-soluble alkali metal constituents.

Not Available

1981-04-22T23:59:59.000Z

469

Biomass Burning and the Production of Greenhouse Gases  

Science Conference Proceedings (OSTI)

Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along ...

Levine J. S.

1994-01-01T23:59:59.000Z

470

How much carbon dioxide is produced by burning gasoline and ...  

U.S. Energy Information Administration (EIA)

How much carbon dioxide is produced by burning gasoline and diesel fuel? About 19.64 pounds of carbon dioxide (CO 2) are produced from burning a gallon of gasoline ...

471

Reflective Terahertz Imaging for early diagnosis of skin burn severity  

E-Print Network (OSTI)

97 Fig 7.3 ‘Cross shaped’ brass brand used for burnFig 7.21 3-D drawing of the brass brand used for controlledfor imaging burns[10]. A brass brand heated to 315°C was

TEWARI, PRIYAMVADA

2013-01-01T23:59:59.000Z

472

NETL: Releases & Briefs - Laser ignition for lean-burn engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Technology Laboratory have successfully operated a laser-spark lean-burn natural gas reciprocating engine. Development of lean-burn engines is driven by demand for higher...

473

Underground Coal Thermal Treatment  

Science Conference Proceedings (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

474

Lignin-assisted coal depolymerization  

SciTech Connect

Previous research has shown that addition of lignin-derived liquids to coal stirred in tetralin under mild reaction conditions (375{degree}C and 300--500 psig) results in a marked enhancement in the rate of coal depolymerization. A mathematical model was developed to study the kinetics of coal depolymerization in the presence of liquid-derived liquids. In the present study, a reaction pathway was formulated to explain the enhancement in coal depolymerization due to lignin (solid) addition. The model postulated assumes that the products of lignin obtained during thermolysis interact with the reactive moieties present in coal while simultaneous depolymerization of coal occurs. A good fit between the experimental data and the kinetic model was found. The results show that in addition to the enhancement in the rate of coal depolymerization, lignin also reacts (and enhances the extent of depolymerization of coal) with those reaction sites in coal that are not susceptible to depolymerization when coal alone is reacted in tetralin under identical reaction conditions. Additional work is being carried out to determine a thorough materials balance on the lignin-assisted coal depolymerization process. A number of liquid samples have been obtained which are being studied for their stability in various environments. 5 refs., 4 figs., 1 tab.

Lalvani, S.B.

1991-01-01T23:59:59.000Z

475

Definition: Coal | Open Energy Information  

Open Energy Info (EERE)

Coal Coal Jump to: navigation, search Dictionary.png Coal A combustible black or brownish-black sedimentary rock composed mostly of carbon and hydrocarbons. It is formed from plant remains that have been compacted, hardened, chemically altered, and metamorphosed by heat and pressure over geologic time (typically millions of years). It is the most abundant fossil fuel produced in the United States.[1][2] View on Wikipedia Wikipedia Definition Coal (from the Old English term col, which has meant "mineral of fossilized carbon" since the 13th century) is a combustible black or brownish-black sedimentary rock usually occurring in rock strata in layers or veins called coal beds or coal seams. The harder forms, such as anthracite coal, can be regarded as metamorphic rock because of later

476

International Energy Outlook 2000 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Although coal use is expected to be displaced by natural gas in some parts of the world, Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1997. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union (FSU). In Western Europe, coal consumption declined by 33 percent between 1985 and 1997, displaced in considerable measure by

477

International Energy Outlook 2001 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal picture of a printer Printer Friendly Version (PDF) Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. World coal consumption has been in a period of generally slow growth since the late 1980s, a trend that is expected to continue. Although 1999 world consumption, at 4.7 billion short tons,9 was 15 percent higher than coal use in 1980, it was lower than in any year since 1984 (Figure 51). The International Energy Outlook 2001 (IEO2001) reference case projects some growth in coal use between 1999 and 2020, at an average annual rate of 1.5 percent, but with considerable variation among regions.

478

Coal mine methane global review  

Science Conference Proceedings (OSTI)

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

479

Coal-oil slurry preparation  

DOE Patents (OSTI)

A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

Tao, John C. (Perkiomenville, PA)

1983-01-01T23:59:59.000Z

480

Coal Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide - High School Coal Study Guide - High School Coal Study Guide - High School More Documents & Publications Coal Study Guide - Middle School Coal Study Guide for...

Note: This page contains sample records for the topic "burn non-lignite coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Coal Study Guide - Middle School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Middle School Coal Study Guide - Middle School Coal Study Guide - Middle School More Documents & Publications Coal Study Guide for Elementary School Coal Study Guide - High...

482

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Coal Processing for Clean Fuels - Coal Preparation Technologies Self-Scrubbing Coal(tm): An Integrated Approach to Clean Air - Project Brief PDF-483KB Custom Coals...

483

Table F17: Coal Consumption Estimates and Imports and Exports ...  

U.S. Energy Information Administration (EIA)

Table F17: Coal Consumption Estimates and Imports and Exports of Coal Coke, 2011 State Coal Coal Coke Residential a Commercial Industrial Electric ...

484

Table F18: Coal Price and Expenditure Estimates and Imports ...  

U.S. Energy Information Administration (EIA)

Table F18: Coal Price and Expenditure Estimates and Imports and Exports of Coal Coke, 2011 State Coal Coal Coke Prices Expenditures Prices ...

485

Two-stage coal gasification and desulfurization apparatus  

DOE Patents (OSTI)

The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.

Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV)

1991-01-01T23:59:59.000Z

486

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

7/22/2011 7/22/2011 Table of Contents 1. Commentary Page 1 2. Key Indicators of Generation, Consumption & Stocks Page 2 3. Month-to-Month Comparisons: Generation, Consumption and Stocks (Total) Page 3 4. Net Generation Trends Page 4 5. Fossil Fuel Consumption Trends Page 5 6. Fossil Fuel Stock Trends Page 6 7. Average Number of Days of Burn Non-Lignite Coal Page 7 8. Month-to-Month Comparisons: Electric Power Retail Sales and Average Prices Page 8 9. Retail Sales Trends Page 9 10. Average Retail Price Trends Page 10 11. Heating and Cooling Degree Days Page 11 12. Documentation Page 12 Monthly Flash Estimates of Data for: May 2011 Section 1. Commentary Electric Power Data The contiguous United States experienced temperatures that were slightly below normal in May 2011.

487

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

9/20/2011 9/20/2011 Table of Contents 1. Commentary Page 1 2. Key Indicators of Generation, Consumption & Stocks Page 2 3. Month-to-Month Comparisons: Generation, Consumption and Stocks (Total) Page 3 4. Net Generation Trends Page 4 5. Fossil Fuel Consumption Trends Page 5 6. Fossil Fuel Stock Trends Page 6 7. Average Number of Days of Burn Non-Lignite Coal Page 7 8. Month-to-Month Comparisons: Electric Power Retail Sales and Average Prices Page 8 9. Retail Sales Trends Page 9 10. Average Retail Price Trends Page 10 11. Heating and Cooling Degree Days Page 11 12. Documentation Page 12 Monthly Flash Estimates of Data for: July 2011 Section 1. Commentary Electric Power Data The contiguous United States experienced temperatures

488