Powered by Deep Web Technologies
Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Production of CO2 from Fossil Fuel Burning by Fuel Type, 1860...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions Historical Global Estimates Production of CO2 from Fossil Fuel Burning by Fuel Type, 1860-1982 (NDP-006) DOI: 10.3334CDIACffe.ndp006 image Data image...

2

Soot from the burning of fossil fuels and solid biofuels contributes far more to global  

E-Print Network (OSTI)

Soot from the burning of fossil fuels and solid biofuels contributes far more to global warming Researchers ScienceDaily (July 30, 2010) -- Soot from the burning of fossil fuels and solid biofuels biofuels, such as wood, manure, dung, and other solid biomass used for home heating and cooking in many

3

>Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (NDP-058a) Prepared by Antoinette L. Brenkert Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 Date Published: February 1998 (Revised for the Web: 2003) CONTENTS Abstract Documentation file for Data Base NDP-058a (2-1998) Data Base NDP-058a (2-1998) Abstract Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis. (March 1998) Antoinette L. Brenkert DOI: 10.3334/CDIAC/ffe.ndp058.2003 This data package presents the gridded (one degree latitude by one degree longitude) summed emissions from fossil-fuel burning, hydraulic cement

4

Fossil Fuel and Biomass Burning Effect on Climate—Heating or Cooling?  

Science Conference Proceedings (OSTI)

Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate chaw. Emitted trace gases heat the atmosphere through their greenhouse effect, while ...

Yoram J. Kaufman; Robert S. Fraser; Robert L. Mahoney

1991-06-01T23:59:59.000Z

5

Production of CO{sub 2} from fossil fuel burning by fuel type, 1860-1982  

SciTech Connect

Carbon dioxide emission calculations resulting from fossil fuel useage for the years 1860-1982 are presented.

Rotty, R.M.; Marland, G. [Oak Ridge Associated Universities, TN (United States). Institute for Energy Analysis

1984-09-01T23:59:59.000Z

6

Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning,  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (NDP-058) data Data image ASCII Text Documentation PDF file PDF file Contributors R. J. Andres, G. Marland, I. Fung, and E. Matthews (contributors) DOI DOI: 10.3334/CDIAC/ffe.ndp058 This data package presents data sets recording 1° latitude by 1° longitude CO2 emissions in units of thousand metric tons of carbon per year from anthropogenic sources for 1950, 1960, 1970, 1980, and 1990. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions.

7

Long-term tradeoffs between nuclear- and fossil-fuel burning  

SciTech Connect

A global energy/economics/environmental (E{sup 3}) model has been adapted with a nuclear energy/materials model to understand better {open_quotes}top-level{close_quotes}, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a {open_quotes}business-as-usual{close_quotes} (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year {approximately}2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations).

Krakowski, R.A.

1996-12-31T23:59:59.000Z

8

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

9

Fossil Fuels News  

Science Conference Proceedings (OSTI)

NIST Home > Fossil Fuels News. Fossil Fuels News. (showing 1 - 5 of 5). In Natural Gas Pipelines, NIST Goes with the Flow ...

2010-10-26T23:59:59.000Z

10

High resolution fossil fuel combustion CO2 emission fluxes for the United States  

E-Print Network (OSTI)

interannual variations in fossil fuel emissions. J. Geophys.Treat CO 2 from fossil fuel burning: global distribution ofdioxide emissions from fossil fuel consumption and cement

Gurney, Kevin R.

2010-01-01T23:59:59.000Z

11

Crop production without fossil fuel.  

E-Print Network (OSTI)

??With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this… (more)

Ahlgren, Serina

2009-01-01T23:59:59.000Z

12

Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992  

SciTech Connect

This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [University of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering

1995-12-01T23:59:59.000Z

13

India Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

India India India Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends India's 2008 total fossil-fuel CO2 emissions rose 8.1% over the 2007 level to 475 million metric tons of carbon. From 1950 to 2008, India experienced dramatic growth in fossil-fuel CO2 emissions averaging 5.7% per year and becoming the world's third largest fossil-fuel CO2-emitting country. Indian total emissions from fossil-fuel consumption and cement production have more than doubled since 1994. Fossil-fuel emissions in India continue to result largely from coal burning with India being the world's third largest producer of coal. Coal contributed 87% of the emissions in 1950 and 71% in 2008; at the same time, the oil fraction increased from 11% to 20%. Indian emissions data reveal little impact from the oil price increases that

14

Global Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Data (ASCII, Fixed Format) Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited) Trends Since 1751 approximately 337 billion metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these emissions have occurred since the mid 1970s. The 2007 global fossil-fuel carbon emission estimate, 8365 million metric tons of carbon, represents an all-time high and a 1.7% increase from 2006. Globally, liquid and solid fuels accounted for 76.3% of the emissions from fossil-fuel burning and cement production in 2007. Combustion of gas fuels (e.g., natural gas) accounted for 18.5% (1551 million metric tons of carbon) of the total emissions from fossil fuels in 2007 and reflects a gradually increasing global utilization of natural gas. Emissions from

15

No Fossils in This Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan for Environmental Teaching Plan for Environmental Teaching GM Environmental Science Club No Fossils in This Fuel Your PlanET Sixth through Eighth Grades (Can be easily adapted to any elementary/middle school level) Ingredients: Yeast, sugar ... what are you making? Sweet rolls? Not in Science Class! You're blending these ingredients to make an innovative form of fuel! That's right ... when these two simple ingredients are mixed, the yeast  a simple, living organism  breaks the sugar down into ethyl alcohol, or ethanol, and carbon dioxide. While you won't be burning the fuel to prove its usefulness, you can share with your students how ethanol is being used right now to power some of today's vehicles! Students will be able to experiment with the activity, and they will see how the fermentation that occurs can blow up a

16

Poland Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Europe Europe » Poland Poland Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Carbon dioxide emissions from Poland's use of fossil-fuels and cement production climbed at a remarkably steady rate of 3.9% per year from 1800 until 1980, when they dropped abruptly (11.7%). Fossil-fuel CO2 emissions crept back up throughout the 1980s peaking in 1987 at 127 million metric tons of carbon. Since the 1987 high, CO2 emissions have plummeted 32% to early 1970s levels while per capita emissions have dropped to late 1960s levels. Poland is the world's ninth largest producer of coal and emissions are predominantly from coal burning: 97% in 1950 and 68% in 2008. The drop following 1980 is apparent in rates of liquid fuel burning but releases from consumption of petroleum products have returned and surpassed 1980s

17

1 Characterization of carbonaceous aerosols outflow from India and 2 Arabia: Biomass/biofuel burning and fossil fuel combustion  

E-Print Network (OSTI)

1 Characterization of carbonaceous aerosols outflow from India and 2 Arabia: Biomass/biofuel tracer for biomass/biofuel burning, 16 number concentration of submicrometer carbon-containing particles and biomass/biofuel 22 burning are subject to long-range transport, thereby contributing to anthropogenic 23

Dickerson, Russell R.

18

World Fossil Fuel Economics - TMS  

Science Conference Proceedings (OSTI)

Jan 1, 1971 ... World Fossil Fuel Economics ... in world energy demand, particularly in the U. S. and Europe; the consumption patterns and cost patterns of oil, ...

19

Fossil-Fuel CO2 Emissions - Niue  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania Niue Graphics Fossil-Fuel CO2 Emissions from Niue Data graphic Data Total Fossil-Fuel CO2 Emissions from Niue image Per Capita...

20

Global Fossil Fuel Carbon Emissions - Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global Graphics Global Fossil-Fuel Carbon Emissions - Graphics Carbon Emission Estimates image image Global Per Capita Carbon Emission Estimates...

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Global Fossil Fuel Carbon Emissions - Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global Graphics Global Fossil-Fuel Carbon Emissions - Graphics Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited)...

22

Fossil fuel furnace reactor  

DOE Patents (OSTI)

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

23

fossil fuels | OpenEI  

Open Energy Info (EERE)

fossil fuels fossil fuels Dataset Summary Description Energy intensity data and documentation published by the U.S. DOE's office of Energy Efficiency and Renewable Energy (EERE). Energy intensity is defined as: amount of energy used in producing a given level of output or activity; expressed as energy per unit of output. This is the energy intensity of the the electricity sector, which is an energy consuming sector that generates electricity. Data are organized to separate electricity-only generators from combined heat and power (CHP) generators. Data is available for the period 1949 - 2004. Source EERE Date Released May 31st, 2006 (8 years ago) Date Updated Unknown Keywords Electricity Energy Consumption energy intensity fossil fuels renewable energy Data application/vnd.ms-excel icon electricity_indicators.xls (xls, 2.1 MiB)

24

Global Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these fossil-fuel CO2 emissions have occurred...

25

Liquid fossil fuel technology  

Science Conference Proceedings (OSTI)

Progress reports are presented under the following headings: (1) extraction (technology assessment, oil research, gas research); (2) liquid processing (characterization, thermodynamics, processing technology); (3) utilization (energy conservation); and (4) project integration and technology transfer. BETC publications are also listed. Some of the highlights for this period are: the Bartlesville Energy Technology Center was converted into NIPER, the National Institute for Petroleum and Energy Research on October 1, 1983; modelling of enthalpies, heat capacities and volumes of aqueous surfactant solutions began using a mass action model; a series of experiments were run on upgrading by hydrogenation SRC-II coal liquid at different degrees of severity and the products have been analyzed; heavy crude oil extracts were separated into fraction with high performance liquid chromatography by Lawrence Berkeley Laboratory and the mass spectra and electron spin resonance were determin ed; and particulates from exhaust gases of diesel engines using fire fuel types are being collected and will be analyzed by chemical methods and results will be compared with those obtained by biological assay. (ATT)

Not Available

1983-01-01T23:59:59.000Z

26

North Korea Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East » North Korea Far East » North Korea North Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The total fossil-fuel CO2 emissions for North Korea, or the Democratic People's Republic of Korea, averaged 11.2% growth from 1950-93, reaching 71 million metric tons of carbon. Since 1993 according to published UN energy statistics, fossil-fuel CO2 emissions have declined 70% to 21.4 million metric tons of carbon. As the world's 14th largest producer of coal, it is no surprise North Korea's fossil-fuel CO2 emissions record is dominated by emissions from coal burning. Coal consumption accounted for 93% of the 2008 CO2 emission total. With no natural gas usage, another 3.4% currently comes from liquid petroleum consumption, and the remainder is from cement

27

Definition: Fossil fuels | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Fossil fuels Jump to: navigation, search Dictionary.png Fossil fuels Fuels formed in the Earth's crust over millions of years from decomposed organic matter. Common fossil fuels include petroleum, coal, and natural gas.[1][2] View on Wikipedia Wikipedia Definition Fossil fuels are fuels formed by natural processes such as anaerobic decomposition of buried dead organisms. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years. Fossil fuels contain high percentages of carbon and include coal, petroleum, and natural gas. They range from volatile materials with low carbon:hydrogen ratios like methane, to liquid petroleum

28

HS_FossilFuels_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fuels Fossil Fuels Fossil Energy Study Guide: Fossil Fuels C ontrary to what many people believe, fossil fuels are not the remains of dead dinosaurs. In fact, most of the fossil fuels found today were formed millions of years before the fi rst dinosaurs. Fossil fuels, however, were once alive. Th ey were formed from prehistoric plants and animals that lived hundreds of millions of years ago. Th ink about what the Earth must have looked like 300 million years or so ago. Th e land masses we live on today were just forming. Th ere were swamps and bogs everywhere. Th e climate was warmer. Trees and plants grew everywhere. Strange looking animals walked on the land, and just as weird looking fi sh swam in the rivers and seas. Tiny one-celled organisms called protoplankton fl

29

No Fossil Fuel - Kingston | Open Energy Information  

Open Energy Info (EERE)

No Fossil Fuel - Kingston No Fossil Fuel - Kingston Jump to: navigation, search Name No Fossil Fuel - Kingston Facility No Fossil Fuel - Kingston Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner No Fossil Fuel LLC Developer No Fossil Fuel LLC Energy Purchaser Net-metered Location Kingston MA Coordinates 41.97388106°, -70.72577477° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.97388106,"lon":-70.72577477,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Disclosure of Permitted Communication Concerning Fossil Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No....

31

Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global, Regional, and National Annual Time Series (1751-2010) Latest Published Global Estimates (1751-2010) Preliminary 2011 Global & National Estimates...

32

OpenEI Community - fossil fuels  

Open Energy Info (EERE)

communityblogfour-new-publications-help-advance-renewable-energy-developmentcomments energy scenarios fossil fuels OECD OpenEI policy Renewable Energy Tue, 16 Jul 2013...

33

Fossil Fuels Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Study Guide - High School Fossil Fuels Study Guide - High School Fossil Fuels Study Guide - High School More Documents & Publications Coal Study Guide for Elementary School...

34

Hybrid solar-fossil fuel power generation  

E-Print Network (OSTI)

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

35

Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990  

SciTech Connect

Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

1997-03-01T23:59:59.000Z

36

FE annual Report Bioprocessing of Fossil Fuels  

E-Print Network (OSTI)

FE annual Report July 2004 Bioprocessing of Fossil Fuels Abhijeet Borole, Life Sciences Division The overall objective of this research program is to develop novel technologies for processing fossil fuels energy-efficient. Processes based on oxidative as well as reductive reactions are being investigated

37

Fossil-Fuel CO2 Emissions - American Samoa  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania American Samoa Graphics Fossil-Fuel CO2 Emissions from American Samoa Data graphic Data Total Fossil-Fuel CO2 Emissions from...

38

Fossil-Fuel CO2 Emissions - Marshall Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania Marshall Islands Graphics Fossil-Fuel CO2 Emissions from the Marshall Islands Data graphic Data Fossil-Fuel CO2 Emissions from...

39

High resolution fossil fuel combustion CO2 emission fluxes for...  

NLE Websites -- All DOE Office Websites (Extended Search)

High resolution fossil fuel combustion CO2 emission fluxes for the United States Title High resolution fossil fuel combustion CO2 emission fluxes for the United States Publication...

40

Office of Fossil Energy Fuel Cell Program 2012 Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

O ce of Fossil Energy Fuel Cell Program Portfolio 2012 Solid State Energy Conversion Alliance Office of Fossil Energy Fuel Cell Program 2012 Portfolio October 2012 DOE...

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

fossil fuels | OpenEI Community  

Open Energy Info (EERE)

fossil fuels Home Graham7781's picture Submitted by Graham7781(1992) Super contributor 16 July, 2013 - 14:37 Four new publications help advance renewable energy development energy...

42

Chemical Characterization of Fossil Fuel Combustion Wastes  

Science Conference Proceedings (OSTI)

Fossil fuel combustion wastes differ considerably in total composition and in the key chemical characteristics of their extracts, making leachate composition difficult to predict. A new mechanistic approach, however, shows promise for more-accurate prediction.

1987-08-26T23:59:59.000Z

43

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

44

Japan Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania » Japan Oceania » Japan Japan Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The history of fossil-fuel CO2 emissions from Japan is remarkable for the abrupt change that occurred in 1973. With postwar growth at 9.8% per year from 1950 to 1973, total emissions were virtually constant from 1974-1987. From 1987-96, emissions grew 25.3% reaching 329 million metric tons of carbon. Growth during this period was characterized by a return to mid-1970s consumption levels for liquid petroleum products and increased contributions from coal and natural gas use. Since 1996, Japan's fossil-fuel CO2 emissions have vacilated and now total 329 million metric tons of carbon in 2008. Based on United Nations energy trade data for 2008, Japan is the world's largest importer of coal (184 million metric tons) and

45

General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol  

Science Conference Proceedings (OSTI)

A new radiation code within a general circulation model is used to assess the direct solar and thermal radiative forcing by sulfate aerosol of anthropogenic origin and soot aerosol from fossil-fuel burning. The radiative effects of different ...

J. M. Haywood; D. L. Roberts; A. Slingo; J. M. Edwards; K. P. Shine

1997-07-01T23:59:59.000Z

46

Thermal dissolution of solid fossil fuels  

Science Conference Proceedings (OSTI)

The use of oil shales and coals in the processes of thermal dissolution is considered. It is shown that thermal dissolution is a mode of liquefaction of solid fossil fuels and can be used both independently and in combination with liquefaction of coals and processing of heavy petroleum residues.

E.G. Gorlov [Institute for Fossil Fuels, Moscow (Russian Federation)

2007-10-15T23:59:59.000Z

47

Fossil-Fuel CO2 Emissions from Africa  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Fossil-Fuel CO2 Emissions from Africa Graph graphic Graphics Data graphic Data What countries constitute Africa? Map of Africa Trends Africa's fossil-fuel CO2 emissions are...

48

Sales of Fossil Fuels Produced from Federal and Indian Lands...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 This...

49

Chapter 2. Consumption of Fossil Fuels - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

48 U.S. Energy Information Administration/Electric Power Monthly June 2012 Chapter 2. Consumption of Fossil Fuels

50

Fossil Fuel Prices to Electric Utilities - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Fossil Fuel Prices to Electric Utilities. Sources: History: EIA; Projections: Short-Term Energy Outlook, July 2000.

51

Fossil Energy-Developed Fuel Cell Technology Being Adapted by...  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2013 Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Solid Oxide Fuel Cell Technology Supported by Research Funding...

52

Clean Burn Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

developer planning to build a 60m gallons per year (227.12m litres per year) bioethanol plant in Raeford, North Carolina. References Clean Burn Fuels LLC1 LinkedIn...

53

Fossil-Fuel CO2 Emissions from Oceania  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Fossil-Fuel CO2 Emissions from Oceania Graph graphic Graphics Data graphic Data What countries constitute Oceania? Oceania map Trends Oceania consists of approximately...

54

Fossil-Fuel CO2 Emissions from North America  

NLE Websites -- All DOE Office Websites (Extended Search)

North America Fossil-Fuel CO2 Emissions from North America Graph graphic Graphics Data graphic Data What countries constitute North America? North America map Trends North America,...

55

Chapter 4. Receipts and Cost of Fossil Fuels  

U.S. Energy Information Administration (EIA)

74 U.S. Energy Information Administration/Electric Power Monthly June 2012 Chapter 4. Receipts and Cost of Fossil Fuels

56

Chapter 3. Fossil-Fuel Stocks for Electricity Generation  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Electric Power Monthly June 2012 69 Chapter 3. Fossil-Fuel Stocks for Electricity Generation

57

April 2013 Most Viewed Documents for Fossil Fuels | OSTI, US...  

Office of Scientific and Technical Information (OSTI)

Viewed Documents for Fossil Fuels EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Dr. Jorge Gabitto; Maria Barrufet (2003) 208 Fluid...

58

Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Brazil-NETL Advanced Fossil Fuels Partnerships Jump to: navigation, search Logo: Brazil-NETL...

59

Reference Materials and Standards for Fossil Fuels, Electric ...  

Science Conference Proceedings (OSTI)

... of the energy consumed by the US Along with ... from the specification of fossil fuel raw materials ... relevant reference materials to support the emerging ...

2012-10-01T23:59:59.000Z

60

Three essays on biofuel's and fossil fuel's stochastic prices.  

E-Print Network (OSTI)

??The dissertation consists of three essays on biofuel's and fossil fuel's stochastic prices focusing on the U.S. corn-based fuel-ethanol market. The research objectives include investigating… (more)

Zhang, Zibin

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility and initial development of an integrated, deterministic model of the various processes governing deposition in fossil boilers was assessed in the Electric Power Research Institute (EPRI) reports Boiler Water Deposition Model for Fossil Fuel Plants, Part 1: Feasibility Study (1004931), published in 2004; Boiler Water Deposition Model for Fossil Fuel Plants, Part 2: Initial Deterministic Model Development and Deposit Characterization (1012207) published in 2007; and Boiler Water Deposition ...

2009-03-12T23:59:59.000Z

62

SECA Fuel Processing Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

June 3, 2003 SECA Fuel Processing National Energy Technology Laboratory Office of Fossil Energy Strategic Center for Natural Gas REFORMING * Focus - Heavy hydrocarbons - Minimal use of water - Simplified system - Reduced cost - Sulfur tolerance with conversion to hydrogen sulfide * Challenges - Carbon deposition - Sulfur poisoning - Thermal gradients - Vaporization * Approaches - Metal oxide catalysts - Nobal metal cPox or ATR - Decorated nickel surface - Complete system interactions Tubular cPox Reformer Strategic Center for Natural Gas NETL Fuel Processing Budget Summary Proj. # PROJECT PERSONNEL KEY TASKS COST EST. 1 Diesel Reforming Kinetic Fundamentals *Shekhawat Gardner Berry 1.) Bring Reforming Lab Online 2.) Conduct Diesel Compound Interaction Study 3.) Level 1

63

Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants  

DOE Green Energy (OSTI)

Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

2001-11-06T23:59:59.000Z

64

Advanced Nuclear Fuel Concepts for Minor Actinide Burning  

Science Conference Proceedings (OSTI)

Abstract Scope, New fuel cycle strategies entail advanced nuclear fuel concepts. This especially applies for the burning of minor actinides in a fast reactor cycle ...

65

People's Republic of China Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Asia Asia » People's Republic of China People's Republic of China Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends According to reported energy statistics, coal production and use in China has increased ten-fold since the 1960s. As a result, Chinese fossil-fuel CO2 emissions have more than doubled 2000 alone. At 1.92 billion metric tons of carbon in 2008, the People's Republic of China is the world's largest emitter of CO2 due to fossil-fuel use and cement production. Even with the reported decline in Chinese emissions from 1997 to 1999, China's industrial emissions of CO2 have grown phenomenally since 1950, when China stood tenth among nations based on annual fossil-fuel CO2 emissions. From 1970 to 1997, China's fossil-fuel CO2 emissions grew at an annual rate of

66

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Can the envisaged reductions of fossil fuel CO2 emissions beGoulden. 2008. Where do Fossil Fuel Carbon Dioxide Emissionsof season-averaged fossil fuel CO 2 emissions (Riley et

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

67

Renewable hydrogen production for fossil fuel processing  

DOE Green Energy (OSTI)

The objective of this mission-oriented research program is the production of renewable hydrogen for fossil fuel processing. This program will build upon promising results that have been obtained in the Chemical Technology Division of Oak Ridge National Laboratory on the utilization of intact microalgae for photosynthetic water splitting. In this process, specially adapted algae are used to perform the light-activated cleavage of water into its elemental constituents, molecular hydrogen and oxygen. The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of their hydrogen-producing capability. These are: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the original development of an evacuated photobiological reactor for real-world engineering applications; (6) the potential for using modern methods of molecular biology and genetic engineering to maximize hydrogen production. The significance of each of these points in the context of a practical system for hydrogen production is discussed. This program will be enhanced by collaborative research between Oak Ridge National Laboratory and senior faculty members at Duke University, the University of Chicago, and Iowa State University. The special contribution that these organizations and faculty members will make is access to strains and mutants of unicellular algae that will potentially have useful properties for hydrogen production by microalgal water splitting.

Greenbaum, E.

1994-09-01T23:59:59.000Z

68

Sensors and Controls Research Combustion of fossil fuels currently  

E-Print Network (OSTI)

, aggressive environments and high temperatures. Sponsor: Department of Energy Fossil Energy Program. FeaturesSensors and Controls Research Combustion of fossil fuels currently generates most of the nation's energy, and 2008 forecasts by the Energy Information Agency predict this will continue to be the case

69

Kyoto-Related Fossil-Fuel CO2 Emission Totals  

NLE Websites -- All DOE Office Websites (Extended Search)

Kyoto-Related Emissions Kyoto-Related Emissions Kyoto-Related Fossil-Fuel CO2 Emission Totals DOI: 10.3334/CDIAC/ffe.007_V2012 world map Kyoto-Related Fossil-Fuel CO2 Emission Totals Year Annex B Countries Non Annex B Countries Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) 1990 3894 90 2111 46 1991 3801 94 2299 38 1992 3750 109 2263 44 1993 3685 107 2339 48 1994 3656 107 2469 54 1995 3681 110 2570 59 1996 3704 111 2657 72 1997 3727 114 2737 74 1998 3746 118 2698 82 1999 3678 124 2718 90 2000 3725 130 2821 90 2001 3781 120 2936 92 2002 3764 128 3013 94 2003 3853 123 3347 98 2004 3888 135 3683 107 2005 3933 142 3926 106

70

South Korea Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East » South Korea Far East » South Korea South Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends South Korea, or the Republic of Korea, is the world's tenth largest emitter of CO2 based on 2008 fossil-fuel consumption and cement production with 139 million metric tons of carbon. From 1946-1997 South Korea experienced phenomenal growth in fossil-fuel CO2 emissions with a growth rate that averaged 11.5%. Initial growth in emissions was due to coal consumption, which still accounts for 46.9% of South Korea's fossil-fuel CO2 emissions. Since the late 1960s oil consumption has been a major source of emissions. South Korea is the world's fifth largest importer of crude oil. Natural gas became a significant source of CO2 for the first time in 1987, as South

71

Fossil-Fuel CO2 Emissions by Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Fossil-Fuel CO2 Emissions by Region Map of the World Africa (1884-2008) Developing America (Central America, South America, and the Caribbean) (1884-2008) Centrally...

72

Production of fossil fuel from federal and Indian lands fell ...  

U.S. Energy Information Administration (EIA)

Sales of fossil fuels from production on federal and Indian lands in fiscal year (FY) 2012 dropped 4% from FY 2011, according to data from the Department of the ...

73

Optimization of fossil fuel sources: An exergy approach  

SciTech Connect

We performed linear programming for optimization of fossil fuel supply in 2000 in Turkey. For this, an exergy analysis is made because the second law of thermodynamics takes into account the quality of energy as well as quantity of energy. Our analyses showed that the interfuel substitution between different fossil fuels will lead to a best energy mix of the country. The total retail price of fossil fuels can be lowered to 11.349 billion US$ from 13.012 billion US$ by increasing the domestic production of oil, lignite, and hard coal and by decreasing imports. The remaining demand can be met by natural gas imports. In conclusion, our analysis showed that a reduction of 1.663 billion US$ in fossil fuel cost can be made possible by giving more emphasis on domestic production, particularly of oil, lignite and hard coal.

Camdali, U. [Development Bank of Turkey, Ankara (Turkey)

2007-02-15T23:59:59.000Z

74

Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy Information  

Open Energy Info (EERE)

Advanced Fossil Fuels Partnerships Advanced Fossil Fuels Partnerships (Redirected from Brazil-NETL Cooperation) Jump to: navigation, search Logo: Brazil-NETL Cooperation Name Brazil-NETL Cooperation Agency/Company /Organization National Energy Technology Laboratory Partner Brazil Sector Energy Topics Background analysis Website http://www.netl.doe.gov/techno Program Start 2007 Program End 2012 Country Brazil South America References NETL Technologies Programs[1] This article is a stub. You can help OpenEI by expanding it. Advanced Fossil Fuels Partnerships with Brazil ORD International Research Agreements Brazilian Coal Gasification and CCS MOUs References ↑ NETL Technologies Programs Retrieved from "http://en.openei.org/w/index.php?title=Brazil-NETL_Advanced_Fossil_Fuels_Partnerships&oldid=375248"

75

Fossil Fuel Emission Verification Modeling at LLNL  

SciTech Connect

We have an established project at LLNL to develop the tools needed to constrain fossil fuel carbon dioxide emissions using measurements of the carbon-14 isotope in atmospheric samples. In Figure 1 we show the fossil fuel plumes from Los Angeles and San Francisco for two different weather patterns. Obviously, a measurement made at any given location is going to depend on the weather leading up to the measurement. Thus, in order to determine the GHG emissions from some region using in situ measurements of those GHGs, we use state-of-the-art global and regional atmospheric chemistry-transport codes to simulate the plumes: the LLNL-IMPACT model (Rotman et al., 2004) and the WRFCHEM community code (http://www.wrf-model.org/index.php). Both codes can use observed (aka assimilated) meteorology in order to recreate the actual transport that occurred. The measured concentration of each tracer at a particular spatio-temporal location is a linear combination of the plumes from each region at that location (for non-reactive species). The challenge is to calculate the emission strengths for each region that fit the observed concentrations. In general this is difficult because there are errors in the measurements and modeling of the plumes. We solve this inversion problem using the strategy illustrated in Figure 2. The Bayesian Inference step combines the a priori estimates of the emissions, and their uncertainty, for each region with the results of the observations, and their uncertainty, and an ensemble of model predicted plumes for each region, and their uncertainty. The result is the mathematical best estimate of the emissions and their errors. In the case of non-linearities, or if we are using a statistical sampling technique such as a Markov Chain Monte Carlo technique, then the process is iterated until it converges (ie reaches stationarity). For the Bayesian inference we can use both a direct inversion capability, which is fast but requires assumptions of linearity and Gaussianity of errors, or one of several statistical sampling techniques, which are computationally slower but do not require either linearity or Gaussianity (Chow, et al., 2008; Delle Monache, et al., 2008). The emission regions we are using are based on the air-basins defined by the California Air Resources Board (CARB), see Figure 3. The only difference is that we have joined some of the smaller air basins together. The results of a test using 4 days of simulated observations using our ensemble retrieval system are shown in Figure 3 (right). The main source of the variation between the different model configurations arises from the uncertainty in the atmospheric boundary layer parameterization in the WRF model. We are currently developing a capability to constrain the boundary layer height in our carbon-14 work either by weighting the ensemble member results by the accuracy of their boundary layer height (using commercial aircraft observations), or as part of the retrieval process using an ensemble Kalman filter (EnKF) capability.

Cameron-Smith, P; Kosovic, B; Guilderson, T; Monache, L D; Bergmann, D

2009-08-06T23:59:59.000Z

76

Modeling Deep Burn TRISO Particle Nuclear Fuel  

Science Conference Proceedings (OSTI)

Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison

2012-01-01T23:59:59.000Z

77

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. Membranes testing during this reporting period were greater than 1 mm thick and had the general perovskite composition AB{sub 1-x}B'{sub x}O{sub 3-{delta}}, where 0.05 {<=} x {<=} 0.3. These materials demonstrated hydrogen separation rates between 1 and 2 mL/min/cm{sup 2}, which represents roughly 20% of the target goal for membranes of this thickness. The sintered membranes were greater than 95% dense, but the phase purity decreased with increasing dopant concentration. The quantity of dopant incorporated into the perovskite phase was roughly constant, with excess dopant forming an additional phase. Composite materials with distinct ceramic and metallic phases, and thin film perovskites (100 {micro}m) also were successfully prepared, but have not yet been tested for hydrogen transport. Finally, porous platinum was identified as a excellent catalyst for evaluation of membrane materials, however, lower cost nickel catalyst systems are being developed.

Shane E. Roark; Tony F. Sammells; Adam Calihman; Andy Girard; Pamela M. Van Calcar; Richard Mackay; Tom Barton; Sara Rolfe

2001-01-30T23:59:59.000Z

78

Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy System  

NLE Websites -- All DOE Office Websites (Extended Search)

Adaptable Sensor Packaging for High Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy Systems Background The Advanced Research Sensors and Controls Program is leading the effort to develop sensing and control technologies and methods to achieve automated and optimized intelligent power systems. The program is led by the U.S. Department of Energy (DOE) Office of Fossil Energy National Energy Technology Laboratory (NETL) and is implemented through research and development agreements with other

79

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility and initial development of an integrated, deterministic model of the various processes governing deposition in fossil boilers was assessed in the following Electric Power Research Institute (EPRI) reports: 1004931, Boiler Water Deposition Model: Part 1: Feasibility Study, published in 2004; 1012207, Boiler Water Deposition Model for Fossil Fuel Plants, Part 2: Initial Deterministic Model Development and Deposit Characterization, published in 2007; 1014128, Boiler Water Deposition Model fo...

2010-01-27T23:59:59.000Z

80

Table 3.7 Value of Fossil Fuel Imports, 1949-2011 (Billion Dollars)  

U.S. Energy Information Administration (EIA)

Table 3.7 Value of Fossil Fuel Imports, 1949-2011 (Billion Dollars) Year: Coal: Coal Coke: Natural Gas: Crude Oil 1: Petroleum ... Office of Fossil Energy.

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Disclosure of Permitted Communication Concerning Fossil Fuel Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Disclosure of Permitted Communication Concerning Fossil Fuel Energy Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 This memo provides an overview of communications made to DOE staff on the subject of the rulemaking referenced above. The communications occurred at a meeting held on February 13, 2013. DOE 433 ex parte memo.pdf More Documents & Publications Disclosure of Permitted Communication Concerning Regional Standards Enforcement Framework Document -- Docket No. EERE-2011-BT-CE-0077

82

The dilemma of fossil fuel use and global climate change  

SciTech Connect

The use of fossil fuels and relationship to climate change is discussed. As the use of fossil fuels has grown, the problems of protecting the environment and human health and safety have also grown, providing a continuing challenge to technological and managerial innovation. Today that challenge is to control atmospheric emissions from combustion, particularly those emissions that cause acidic deposition, urban pollution, and increasing concentrations of greenhouse gases. Technology for reducing acidic deposition is available and needs only to be adopted, and the remedies for urban pollution are being developed and tested. How effective or expensive these will be remains to be determined. The control of emissions of the greenhouse gas, CO{sub 2}, seems possible only be reducing the total amounts of fossil fuels used worldwide, and by substituting efficient natural gas technologies for coal. Long before physical depletion forces the transition away from fossil fuels, it is at least plausible and even likely that the greenhouse effect will impose a show-stopping constraint. If such a transition were soon to be necessary, the costs would be very high because substitute energy sources are either limited or expensive or undesirable for other reasons. Furthermore, the costs would be unevenly felt and would be more oppressive for developing nations because they would be least able to pay and, on average, their use rates of fossil fuels are growing much faster than those of many industrialized countries. It is prudent, therefore, to try to manage the use of fossil fuels as if a greenhouse constraint is an important possibility.

Judkins, R.R.; Fulkerson, W. (Oak Ridge National Lab., TN (USA)); Sanghvi, M.K. (Amoco Corp., Chicago, IL (USA))

1991-01-01T23:59:59.000Z

83

Fossil Fuel Prices to Electric Utilities  

U.S. Energy Information Administration (EIA)

Natural gas for power generation is projected to yield its apparent average price advantage over residual fuel oil by the fourth quarter of this year.

84

Geophysical consequences of carbon dioxide generation by fossil fuels. [Melting of polar icecaps  

SciTech Connect

The recent National Academy of Sciences Report ''Energy and Climate'' asserts that the greenhouse effect of CO/sub 2/ generated by the burning of fossil fuels would increase the temperature of the earth by 11/sup 0/F. It is argued and calculations have been carried out to show that the principal effect is the complete melting of the polar icecaps in a few centuries; the resulting inundation of the populated land areas and the coastal cities of the world is even more disastrous. The calculated increase of temperature is only 1.4/sup 0/C.

Fong, P.

1978-01-01T23:59:59.000Z

85

New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application  

DOE Green Energy (OSTI)

Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

2007-12-31T23:59:59.000Z

86

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis  

Science Conference Proceedings (OSTI)

For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer the potential for significant reductions in carbon dioxide (CO2) emissions. We examine the break-even value for CCS adoptions, that ... Keywords: accounting, cost--benefit analysis, energy, energy policies, environment, government, natural resources, pollution

Özge ??legen; Stefan Reichelstein

2011-01-01T23:59:59.000Z

87

Changing Biomass, Fossil, and Nuclear Fuel Cycles for Sustainability  

SciTech Connect

The energy and chemical industries face two great sustainability challenges: the need to avoid climate change and the need to replace crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically combining the fossil, biomass, and nuclear fuel cycles.

Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

88

Beef production options and requirements for fossil fuel  

SciTech Connect

A large percentage of the feed resources used in beef production cannot be used by man or most other animals. These noncompetitive feeds could be used in different ways to increase beef production, but fossil fuel consumption by the beef industry would not be greatly reduced.

Ward, G.M.; Knox, P.L.; Hobson, B.W.

1977-10-21T23:59:59.000Z

89

Thermal regimes of high burn-up nuclear fuel rod  

E-Print Network (OSTI)

The temperature distribution in the nuclear fuel rods for high burn-up is studied. We use the numerical and analytical approaches. It is shown that the time taken to have the stationary thermal regime of nuclear fuel rod is less than one minute. We can make the inference that the behavior of the nuclear fuel rod can be considered as a stationary task. Exact solutions of the temperature distribution in the fuel rods in the stationary case are found. Thermal regimes of high burn-up the nuclear fuel rods are analyzed.

Kudryashov, Nikolai A; Chmykhov, Mikhail A; 10.1016/j.cnsns.2009.05.063

2012-01-01T23:59:59.000Z

90

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program I. IntroductIon 2 Office of Fossil Energy Fuel Cell Program FY 2010 Annual Report 3 FY 2010 Annual Report Office of...

91

Figure 3.1 Fossil Fuel Production Prices - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Figure 3.1 Fossil Fuel Production Prices Prices, 1949-2011 Fossil Fuel Composite Price,˛ Change From Previous Year, 1950-2011 68 U.S. Energy Information ...

92

Fossil fuel combined cycle power generation method  

SciTech Connect

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D. (Knoxville, TN); Armstrong, Timothy R. (Clinton, TN); Judkins, Roddie R. (Knoxville, TN)

2008-10-21T23:59:59.000Z

93

Italy (including San Marino) Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe » Italy Western Europe » Italy (including San Marino) Italy (including San Marino) Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends As occurred in many industrialized nations, CO2 emissions from Italy rose steeply since the late 1940's until the growth was abruptly terminated in 1974. Since 1974, emissions from liquid fuels have vacillated, dropping from 76% to 46% of a static but varying total. Significant increases in natural gas consumption have compensated for the drop in oil consumption. In 2008, 35.8% of Italy's fossil-fuel CO2 emissions were due to natural gas consumption. Coal usage grew steadily until 1985 when CO2 emissions from coal consumption reached 16 million metric tons of carbon. Not until 2004 did coal usage exceed 1985 levels and now accounts for 13.9% of Italy's

94

Fossil fuel decarbonization technology for mitigating global warming  

SciTech Connect

It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

Steinberg, M.

1998-09-01T23:59:59.000Z

95

Local Burn-Up Effects in the NBSR Fuel Element  

SciTech Connect

This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peaking relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.

Brown N. R.; Hanson A.; Diamond, D.

2013-01-31T23:59:59.000Z

96

US fossil fuel technologies for Thailand  

SciTech Connect

The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite deposits that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.

Buehring, W.A.; Dials, G.E.; Gillette, J.L.; Szpunar, C.B.; Traczyk, P.A.

1990-10-01T23:59:59.000Z

97

Russia Federation Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Centrally Planned Europe » Russian Federation Russia Federation Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Since 1992 total fossil-fuel CO2 emissions from the Russian Federation have dropped 23% to 466 million metric tons of carbon, still the fourth largest emitting country in the world and the largest emitter of the republics comprising the former USSR. Emissions from gas consumption still represent the largest fraction (49.1%) of Russia's emissions and only recently have returned to the 1992 level. Emissions from coal consumption have dropped 25.5% since 1992 and presently account for 26.6% of Russia's emissions. Russia has the largest population of any Eastern European country with a population of 141 million people. From a per capita standpoint, Russia's

98

Justification of Simulators for Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

A cost benefit analysis of simulator use at fossil fuel power plants identifies benefits in four categories: availability savings, thermal performance savings, component life savings, and environmental compliance savings. The study shows that a 500 MW plant, over 15 years, can realize a total present value saving of over $24 million, easily justifying the purchase of a simulator that typically costs about $600,000.

1993-11-05T23:59:59.000Z

99

Decommissioning Process for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

This report describes a staged process for the decommissioning and possible demolition of fossil-fueled power generating facilities. Drawn from experience with power and major industrial facilities, the report provides the owner/operator of a plant that is approaching the end of its useful life with an overview of the key elements necessary to successfully implement decommissioning. The process is applicable to full decommissioning, demolition, and closure; to partial scenarios (that is, partial dismantl...

2010-01-22T23:59:59.000Z

100

DOE Hydrogen and Fuel Cells Program: Fossil Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Fossil Energy Nuclear Energy Science U.S. Department of Energy Search help Home > DOE Participants > Fossil Energy Printable Version Fossil...

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SECA Core Technology Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

June 3, 2003 June 3, 2003 National Energy Technology Laboratory Office of Fossil Energy SECA Core Technology IAPG, GPPD-DWC 4/30/03 SECA CORE TECHNOLOGY PROGRAM W. Nernst "Electrical Glow-Light" U.S. Patent 623,811 April 25, 1899 C C IAPG, GPPD-DWC 4/30/03 SECA SECA Program Structure Program Management Research Topics Needs Industry Integration Teams Technology Transfer Small Business University National Lab Industry Power Electronics Modeling & Simulation Materials Controls & Diagnostics Fuel Processing Fuel Processing Manufacturing Modeling & Simulation Power Electronics Controls & Diagnostics Manufacturing Materials Core Technology Program Fuel Cell Core Technology Project Management Industry Input IAPG, GPPD-DWC 4/30/03 Core Technology Program Powering All Ships Siemens Westinghouse

102

Figure 3.8 Value of Fossil Fuel Exports - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Figure 3.8 Value of Fossil Fuel Exports Total, 1949-2011 By Fuel, 1949-2011 By Fuel, 2011 82 U.S. Energy Information Administration / Annual Energy Review 2011

103

Large historical changes of fossil-fuel black carbon aerosols  

SciTech Connect

Anthropogenic emissions of fine black carbon (BC) particles, the principal light-absorbing atmospheric aerosol, have varied during the past century in response to changes of fossil-fuel utilization, technology developments, and emission controls. We estimate historical trends of fossil-fuel BC emissions in six regions that represent about two-thirds of present day emissions and extrapolate these to global emissions from 1875 onward. Qualitative features in these trends show rapid increase in the latter part of the 1800s, the leveling off in the first half of the 1900s, and the re-acceleration in the past 50 years as China and India developed. We find that historical changes of fuel utilization have caused large temporal change in aerosol absorption, and thus substantial change of aerosol single scatter albedo in some regions, which suggests that BC may have contributed to global temperature changes in the past century. This implies that the BC history needs to be represented realistically in climate change assessments.

Novakov, T.; Ramanathan, V.; Hansen, J.E.; Kirchstetter, T.W.; Sato, M.; Sinton, J.E.; Sathaye, J.A.

2002-09-26T23:59:59.000Z

104

Theory of Antineutrino Monitoring of Burning MOX Plutonium Fuels  

E-Print Network (OSTI)

This letter presents the physics and feasibility of reactor antineutrino monitoring to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected for different MOX fuels, for the purposes of nuclear accountability and safeguards. The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium. Thus, antineutrino monitoring could be used to verify the destruction of plutonium in reactors, though verifying the grade of the plutonium being burned is found to be more challenging.

Hayes, A C; Nieto, Michael Martin; WIlson, W B

2011-01-01T23:59:59.000Z

105

Theory of Antineutrino Monitoring of Burning MOX Plutonium Fuels  

E-Print Network (OSTI)

This letter presents the physics and feasibility of reactor antineutrino monitoring to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected for different MOX fuels, for the purposes of nuclear accountability and safeguards. The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium. Thus, antineutrino monitoring could be used to verify the destruction of plutonium in reactors, though verifying the grade of the plutonium being burned is found to be more challenging.

A. C. Hayes; H. R. Trellue; Michael Martin Nieto; W. B. WIlson

2011-10-03T23:59:59.000Z

106

Synthetic fossil fuel technologies: health problems and intersociety cooperation  

DOE Green Energy (OSTI)

The potential health impacts of synthetic fossil fuel products are considered mainly in terms of complex and potentially carcinogenic mixtures of polynuclear aromatic (PNA) compounds. These components of oils and tars present an especially perplexing range of problems to those concerned with health protection. The nature of these problems, such as multifactorial exposure, are discussed within a framework of current and future standards to regulate human exposure. Some activities of government agencies, national laboratories, and professional societies are described. A case can be made for pooling the resources of these groups to achieve better solutions for assessing the acceptability of the various technologies and safeguarding human health.

Gammage, R B; Turner, J E

1979-01-01T23:59:59.000Z

107

Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions  

DOE R&D Accomplishments (OSTI)

This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

Andres, R. J.; Marland, G.

1994-06-00T23:59:59.000Z

108

Historic patterns of CO{sub 2} emissions from fossil fuels: Implications for stabilization of emissions  

SciTech Connect

This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

Andres, R.J.; Marland, G.

1994-10-01T23:59:59.000Z

109

Fossil fuel-fired peak heating for geothermal greenhouses  

SciTech Connect

This report examines the capital and operating costs for fossil fuel-fired peak heating systems in geothermally (direct use) heated greenhouses. Issues covered include equipment capital costs, fuel requirements, maintenance and operating costs, system control and integration into conventional hot water greenhouse heating systems. Annual costs per square foot of greenhouse floor area are developed for three climates: Helena, MT; Klamath Falls, OR and San Bernardino, CA, for both boiler and individual unit heater peaking systems. In most applications, peaking systems sized for 60% of the peak load are able to satisfy over 95% of the annual heating requirements and cost less than $0.15 per square foot per year to operate. The propane-fired boiler system has the least cost of operation in all but Helena, MT climate.

Rafferty, K.

1996-12-01T23:59:59.000Z

110

Storage of burned PWR and BWR fuel  

SciTech Connect

In the last few years, credit for fuel burnup has been allowed in the design and criticality safety analysis of high-density spent-fuel storage racks. Design and operating philosophies, however, differ significantly between pressurized water reactor (PWR)- and boiling water reactor (BWR)-type plants because: (1) PWR storage pools generally use soluble boron, which provides backup criticality control under accident conditions; and (2) BWR fuel generally contains gadolinium burnable poison, which results in a characteristically peaked burnup-dependent reactivity variation. In PWR systems, the reactivity decreases monotonically with burnup in a nearly linear fashion (excluding xenon effects), and a two-region concept is feasible. In BWR systems, the reactivity is initially low, increases as fuel burnup progresses, and reaches a maximum at a burnup where the gadolinium is nearly depleted. In any spent-fuel storage rack design, uncertainties due to manufacturing tolerances and in calculational methods must be included to assure that the highest reactivity (k/sub eff/) is less than the 0.95 US Nuclear Regulatory Commission limit. In the absence of definitive critical experiment data with spent fuel, the uncertainty due to depletion calculations must be assumed on the basis of judgment. High-density spent-fuel storage racks may be designed for both PWR and BWR plants with credit for burnup. However, the design must be tailored to each plant with appropriate consideration of the preferences/specifications of the utility operating staff.

Turner, S.E.

1987-01-01T23:59:59.000Z

111

Table 3.1 Fossil Fuel Production Prices, 1949-2011 (Dollars per ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual ... excluding freight or shipping and insurance costs. ... 4 Derived by multiplying the price per Btu of each fossil fuel by the ...

112

June 2013 Most Viewed Documents for Fossil Fuels | OSTI, US Dept...  

Office of Scientific and Technical Information (OSTI)

Fossil Fuels Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 78 EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER...

113

Japan is the second largest net importer of fossil fuels in ...  

U.S. Energy Information Administration (EIA)

Japan ranked as the second largest net importer of fossil fuels in the world in 2012, trailing only China. This follows the Fukushima nuclear disaster in 2011, after ...

114

Table 1.14 Sales of Fossil Fuels Produced on Federal and ...  

U.S. Energy Information Administration (EIA)

Table 1.14 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011: Fiscal Year 7: Crude Oil and Lease Condensate

115

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam ...  

U.S. Energy Information Administration (EIA)

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)

116

Projection of world fossil fuel production with supply and demand interactions.  

E-Print Network (OSTI)

??Research Doctorate - Doctor of Philosophy (PhD) Historically, fossil fuels have been vital for our global energy needs. However climate change is prompting renewed interest… (more)

Mohr, Steve

2010-01-01T23:59:59.000Z

117

ENHANCING CARBON SEQUESTRATION AND RECLAMATION OF DEGRADED LANDS WITH FOSSIL-FUEL COMBUSTION BYPRODUCTS  

E-Print Network (OSTI)

represents an opportunity to couple carbon sequestration with the utilization of fossil fuel #12;and energy of fossil energy byproducts to stimulate carbon sequestration in those terrestrial ecosystems. GOALS C sequestration through optimal utilization of fossil energy byproducts and management of degraded

118

Fossil fuel derivatives with reduced carbon. Phase I final report  

Science Conference Proceedings (OSTI)

This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

1999-06-30T23:59:59.000Z

119

Key Technologies for the Development of Fossil Fuels in the 21st Century  

SciTech Connect

As the world faces growing economic and environmental challenges, the energy mix that fuels the global economy is undergoing rapid change. Yet how this change will evolve in the future is uncertain. What will be the sources of primary energy in twenty years? In fifty years? In different regions of the globe? How will this energy be utilized? Fossil energy currently supplies about ninety percent of the world's primary energy. In Japan this number is closer to eighty percent. It is clear that fossil energy will be a major supplier of global energy for some time to come, but what is not clear is the types of fossil energy and how it will be utilized. The degree to which the abundant supplies of fossil energy, especially coal, will continue to play a major role will depend on whether technology will provide safe, clean and affordable fuel for electricity and transportation. Technology will not only assist in finding more fossil energy in varying regions of the globe but, most importantly, will play a strong role in efficient utilization and in determining the cost of delivering that energy. Several important questions will have to be answered: (1) Will cost effective technologies be found to burn coal more cleanly? Can this be done with drastically reduced or no emitted carbon? (2) Can enough oil be found outside the Middle East to ensure more adequate and secure supplies to fuel the transportation and industrial needs? (3) Will the transportation sector, so heavily dependent on oil, be fueled on another source? (4) Can enough natural gas be assured from enough secure places to ensure investment in the utilization of this lowest-carbon fossil fuel? (5) What will these options cost in research and in the price of energy? The answers to these and other questions challenge leaders and researchers in the fossil energy industry. A World Energy Council (WEC) study of those technologies that might be key sheds some light on what might happen in terms of a wide range of possible scenarios. Also on what might be necessary in expenditure, time, and policies to help bring these technologies to market. This study should be helpful to energy executives in planning for future technologies, either as new ventures or as competition for existing technologies. The emphasis in this ongoing study is on what is possible from today's vantage, not what will happen--actual developments are unpredictable and it is, of course, impossible to foresee the course of actual technology development or economic growth. Nevertheless, it is possible to look at what could happen in a number of scenarios using (1) knowledge about current technologies and (2) their projected development, investment costs, and likely time to commercialization based on historical energy technology development. A comprehensive set of possible technologies was available from the WEC in conjunction with the International Institute for Applied Systems Analysis (IIASA) and studies as part of the Intergovernmental Panel on Climate Change (IPCC).

Schock, R

2002-11-22T23:59:59.000Z

120

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1985-02-12T23:59:59.000Z

122

Possible future environmental issues for fossil fuel technologies. Final report  

SciTech Connect

The work reported here was carried out for the Department of Energy's Office of Fossil Energy to identify and assess 15 to 20 major environmental issues likely to affect the implementation of fossil energy technologies between 1985 and 2000. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; and true and modified in situ oil shale retorting. Environmental analysis of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. The 16 environmental issues identified as those most likely for future regulatory actions and the main features of, and the possible regulatory actions associated with, each are as follows: disposal of solid waste from coal conversion and combustion technologies; water consumption by coal and oil shale conversion technologies; siting of coal conversion facilities; the carbon dioxide greenhouse effect; emission of polycyclic organic matter (POM); impacts of outer continental shelf (OCS) oil development; emission of trace elements; groundwater contamination; liquefied natural gas (LNG), safety and environmental factors; underground coal mining - health and safety; fugitive emissions from coal gasification and liquefaction - health and safety; boomtown effects; emission of fine particulates from coal, oil and oil shale technologies; emission of radioactivity from the mining and conversion of coal; emission of nitrogn oxides; and land disturbance from surface mining. (LTN)

Attaway, L.D.

1979-07-01T23:59:59.000Z

123

Viscosity virtual sensor to control combustion in fossil fuel power plants  

Science Conference Proceedings (OSTI)

Thermo-electrical power plants utilize fossil fuel oil to transform the calorific power of fuel into electric power. An optimal combustion in the boiler requires the fuel oil to be in its best conditions. One of fuel's most important properties to consider ... Keywords: Automatic learning, Bayesian networks, Fuel oil, Power plants, Virtual sensors

Pablo H. Ibargüengoytia, Miguel Angel Delgadillo, Uriel A. García, Alberto Reyes

2013-10-01T23:59:59.000Z

124

Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by...  

NLE Websites -- All DOE Office Websites (Extended Search)

is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over...

125

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1979  

Science Conference Proceedings (OSTI)

Activities and progress are reported in: liquid fossil fuel cycle, extraction (enhanced recovery of oil and gas), processing (of petroleum and alternate fuels), utilization (transportation and energy conversion), and systems integration. BETC publications and finances are listed in appendices. (DLC)

Not Available

1980-04-01T23:59:59.000Z

126

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

Science Conference Proceedings (OSTI)

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL

2011-01-01T23:59:59.000Z

127

Tracking the Origins of Fossil Fuels | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Tailoring the Properties of Magnetic Nanostructures Tailoring the Properties of Magnetic Nanostructures X-ray Holograms Expose Secret Magnetism How Dissolved Metal Ions Interact in Solution One Giant Leap for Radiation Biology? What's in the Cage Matters in Iron Antimonide Thermoelectric Materials Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Tracking the Origins of Fossil Fuels MAY 29, 2007 Bookmark and Share S-XANES absorbance and third derivative absorbance edge spectra of Duvernay (A) Type II kerogen and the results of curve fits using spectra from model compounds. Notice that sharp features appear in the thrid derivative spectrum that are easily associated with FeS2, aliphatic sulfur and

128

Reducing CO2 Emissions from Fossil Fuel Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Emissions From Fossil Fuel Power Plants Scott M. Klara - National Energy Technology Laboratory EPGA's 3 rd Annual Power Generation Conference October 16-17, 2002 Hershey, Pennsylvania EPGA - SMK - 10/17/02 * One of DOE's 17 national labs * Government owned/operated * Sites in Pennsylvania, West Virginia, Oklahoma, Alaska * More than 1,100 federal and support contractor employees * FY 02 budget of $750 million National Energy Technology Laboratory EPGA - SMK - 10/17/02 * Diverse research portfolio - 60 external projects - Onsite focus area * Strong industry support - 40% cost share * Portfolio funding $100M 0 10 20 30 40 50 60 1997 1998 1999 2000 2001 2002 2003 2003 2003 Budget (Million $) Fiscal Year Senate House Administration Request Carbon Sequestration: A Dynamic Program Separation & Capture From Power Plants Plays Key Role

129

Formulating Energy Policies Related to Fossil Fuel Use:  

NLE Websites -- All DOE Office Websites (Extended Search)

CONF-9 O O 255 --I CONF-9 O O 255 --I DE90 008741 Formulating Energy Policies Related to Fossil Fuel Use: i Critical Uncertainties in the Global Carbon Cycle. W. M. Post, V. H. Dale, D. L. DeAngelis, L. K. Mann, P. J. Mulholland, R. V. O'Neill, T. -H. Peng, M. P. Farrell Environmental Sciences Division Oak Ridge National Laboratory Post Office Box 2008 Oak Ridge, Tennessee 37831 The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Understanding the global carbon cycle requires knowledge of the carbon exchanges between major carbon reservoirs by various chemical, physical, geological, and biological processes (Bolin et al., 1979; Rosenberg, 1981; and Solomon et al., 1985). Four reservoirs can be identified, including the atmosphere, terrestrial biosphere (usually

130

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

2002-04-30T23:59:59.000Z

131

Aromatic nitrogen compounds in fossil fuels: a potential hazard  

DOE Green Energy (OSTI)

To achieve energy independence in the United States, converting coal to oil or extracting oil from shale will be required. Before commercial scale fossil fuel conversion facilities become a reality, chemical and biological studies of currently available synfuel samples derived from coal or shale are urgently needed in order to determine what the potential health problems, such as from occupational exposure, might be. Aromatic nitrogen compounds such as basic aza-arenes, neutral aza-arenes, and aromatic amines are considered environmentally important and several members of these classes of compounds possess biological activity. For example, dibenz(a,h)acridine, 7 H-dibenzo(c,g)carbazole, and 2-naphthylamine, are well known as carcinogens. The methods used to isolate the basic aromatic nitrogen compounds and neutral aza-arenes from one shale oil and one coal-derived oil are discussed. The mutagenic activities of these fractions, based on the Ames Salmonella typhimurium test, are compared.

Ho, C H; Clark, B R; Guerin, M R; Ma, C Y; Rao, T K

1979-01-01T23:59:59.000Z

132

New Optimal Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications  

DOE Green Energy (OSTI)

Accomplishments during Phase II of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring. During this program work period, major progress has been experienced in the development of the sensor hardware, and the planning of the system installation and operation. The major focus of the next work period will be the installation of sensors in the Hamilton, Ohio power plant, and demonstration of high-temperature strain gages during mechanical testing of SOFC components.

John Coggin; Jonas Ivasauskas; Russell G. May; Michael B. Miller; Rena Wilson

2006-09-30T23:59:59.000Z

133

Enabling the Use of Hydrogen as a Fuel  

Science Conference Proceedings (OSTI)

... While the burning of fossil fuels produces carbon ... powerful, efficient, and durable fuel-cell designs ... consensus standards that support model building ...

2010-10-05T23:59:59.000Z

134

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 This paper was prepared in response to recent requests that the U.S. Energy Information Administration (EIA) provide updated summary information regarding fossil fuel production on federal and Indian lands in the United States. It provides EIA's current best estimates of fossil fuels sales from production on federal and Indian lands for fiscal year 2003 through 2011. eia-federallandsales.pdf More Documents & Publications Testimony Before the House Natural Resources Subcommittee on Energy and Mineral Resources Before the House Natural Resources Committee Before the Energy and Power Subcommittee - House Energy and Commerce

135

Refractory failure in IGCC fossil fuel power systems  

DOE Green Energy (OSTI)

Current generation refractory materials used in slagging gasifiers employed in Integrated Gasification Combined Cycle (IGCC) fossil fuel power systems have unacceptably short service lives, limiting the reliability and cost effectiveness of gasification as a means to generate power. The short service life of the refractory lining results from exposure to the extreme environment inside the operating gasifier, where the materials challenges include temperatures to 1650 C, thermal cycling, alternating reducing and oxidizing conditions, and the presence of corrosive slags and gases. Compounding these challenges is the current push within the industry for fuel flexibility, which results in slag chemistries and operating conditions that can vary widely as the feedstock for the gasifier is supplemented with alternative sources of carbon, such as petroleum coke and biomass. As a step toward our goal of developing improved refractory materials for this application, we have characterized refractory-slag interactions, under a variety of simulated gasifier conditions, utilizing laboratory exposure tests such as the static cup test and a gravimetric test. Combining this information with that gained from the post-mortem analyses of spent refractories removed from working gasifiers, we have developed a better understanding of refractory failure in gasifier environments. In this paper, we discuss refractory failures in slagging gasifiers and possible strategies to reduce them. Emphasis focuses on the refractories employed in gasifier systems which utilize coal as the primary feedstock.

Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.

2001-01-01T23:59:59.000Z

136

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network (OSTI)

of radiocarbon and fossil fuel-derived CO2 in surface air2004), Estimates of annual fossil-fuel CO 2 emitted for eachindependent budgeting of fossil fuel CO2 over Europe by (

Riley, W.J.

2008-01-01T23:59:59.000Z

137

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network (OSTI)

independent budgeting of fossil fuel CO 2 over Europe by (COcontributions from fossil fuels, oceans, the stratosphere,15 of 16 G04002 RILEY ET AL. : FOSSIL FUEL CO 2 TRANSPORT IN

2008-01-01T23:59:59.000Z

138

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2010 Annual Report FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program I. IntroductIon 2 Office of Fossil Energy Fuel Cell Program FY 2010 Annual Report 3 FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program Competitive Innovation: Accelerating Technology Development The U.S. Department of Energy (DOE) Office of Fossil Energy, through the National Energy Technology Laboratory (NETL) and in collaboration with private industry, universities and national laboratories, has forged Government-industry partnerships under the Solid State Energy Conversion Alliance (SECA) to reduce the cost of solid oxide fuel cells (SOFCs). This fuel cell technology shall form the basis for integrated gasification fuel cell (IGFC) systems utilizing coal for clean and efficient

139

Structural changes between models of fossil-fuel demand by steam-electric power plants  

SciTech Connect

A consumption function for multi-fuel steam-electric power plants is used to investigate fossil-fuel demand behavior. The input consumption equations for a plant's primary and alternate fossil fuels are derived by Shepard's lemma from a generalized Cobb-Douglas cost function reflecting average variable cost minimization constrained by technology and the demand for electricity. These equations are estimated by primary and alternate fuel subsets with ordinary least squares and seemingly unrelated regression techniques for 1974, 1977, and 1980. The results of the regression analysis show the importance of consumer demand in the fossil fuel consumption decision; it has the only significant parameter in all of the estimated equations. The estimated own- and cross-price elasticities are small, when they are statistically significant. The results for the primary fuel equations are better than those for the alternate fuel equations in all of the fuel pair subsets.

Gerring, L.F.

1984-01-01T23:59:59.000Z

140

Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors  

DOE Green Energy (OSTI)

As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

David Petti; J. Stephen Herring

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUELS PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report presents hydrogen permeation data during long term tests and tests at high pressure in addition to progress with cermet, ceramic/ceramic, and thin film membranes.

Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart Schesnack; Scott Morrison; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-07-31T23:59:59.000Z

142

Modules for estimating solid waste from fossil-fuel technologies  

SciTech Connect

Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.

Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

1980-10-01T23:59:59.000Z

143

INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION  

SciTech Connect

This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

J. Hnat; L.M. Bartone; M. Pineda

2001-07-13T23:59:59.000Z

144

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

2006-04-30T23:59:59.000Z

145

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (i) mixed conducting ceramic/ceramic composites, (ii) mixed conducting ceramic/metal (cermet) composites, (iii) cermets with hydrogen permeable metals, and (iv) hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report describes resent results for long-term hydrogen permeation and chemical stability measurements, new mixed conducting cermets, progress in cermet, thin film, and thin-walled tube fabrication, hydrogen absorption measurements for selected compositions, and membrane facilitated alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-04-30T23:59:59.000Z

146

High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation  

SciTech Connect

Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

Steinberg, M; Cooper, J F; Cherepy, N

2002-01-02T23:59:59.000Z

147

Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Developed Fuel Cell Technology Being Adapted by Navy Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles January 31, 2013 - 12:00pm Addthis An unmanned undersea vehicle (UUV) being deployed during a U.S. Office of Naval Research demonstration near Panama City. Solid oxide fuel cell technology being developed by the Office of Fossil Energy for coal-fueled central power generation is being adapted to power UUVs. U.S. Navy photo by Mr. John F. Williams/Released. An unmanned undersea vehicle (UUV) being deployed during a U.S. Office of Naval Research demonstration near Panama City. Solid oxide fuel cell technology being developed by the Office of Fossil Energy for coal-fueled

148

Coated Particle and Deep Burn Fuels Monthly Highlights December 2010  

SciTech Connect

During FY 2011 the CP & DB Program will report Highlights on a monthly basis, but will no longer produce Quarterly Progress Reports. Technical details that were previously included in the quarterly reports will be included in the appropriate Milestone Reports that are submitted to FCRD Program Management. These reports will also be uploaded to the Deep Burn website. The Monthly Highlights report for November 2010, ORNL/TM-2010/323, was distributed to program participants on December 9, 2010. The final Quarterly for FY 2010, Deep Burn Program Quarterly Report for July - September 2010, ORNL/TM-2010/301, was announced to program participants and posted to the website on December 28, 2010. This report discusses the following: (1) Thermochemical Data and Model Development - (a) Thermochemical Modeling, (b) Core Design Optimization in the HTR (high temperature helium-cooled reactor) Pebble Bed Design (INL), (c) Radiation Damage and Properties; (2) TRISO (tri-structural isotropic) Development - (a) TRU (transuranic elements) Kernel Development, (b) Coating Development; (3) LWR Fully Ceramic Fuel - (a) FCM Fabrication Development, (b) FCM Irradiation Testing (ORNL); (4) Fuel Performance and Analytical Analysis - Fuel Performance Modeling (ORNL).

Snead, Lance Lewis [ORNL; Bell, Gary L [ORNL; Besmann, Theodore M [ORNL

2011-01-01T23:59:59.000Z

149

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility of modeling the various processes governing deposition in fossil boilers was assessed in EPRI report 1004931, Boiler Water Deposition Model: Part 1: Feasibility Study, published in 2004. This report presents findings of follow-up activities directed toward the ultimate goal of developing an aggregate model that is applicable to the important deposition phenomena in fossil drum-type boilers.

2007-03-26T23:59:59.000Z

150

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network (OSTI)

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

151

Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Wind and Solar on Fossil-Fueled Generators Preprint D. Lew and G. Brinkman National Renewable Energy Laboratory N. Kumar, P. Besuner, D. Agan, and S. Lefton Intertek...

152

Japan’s fossil-fueled generation remains high because of ...  

U.S. Energy Information Administration (EIA)

Japan's use of fossil-fueled generation—the combined amount of electricity generated from natural gas, oil, and coal—was up 21% in 2012, compared to the level in ...

153

Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)  

Science Conference Proceedings (OSTI)

Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

Brinkman, G.; Lew, D.; Denholm, P.

2012-09-01T23:59:59.000Z

154

Generic Guidelines for the Life Extension of Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

An increasing number of utilities are deciding to keep aging fossil fuel plants operating beyond their original economic lives. These guidelines provide a systematic approach to planning and implementing a life-extension program for such plants.

1986-12-04T23:59:59.000Z

155

Liquid fossil-fuel technology. Quarterly technical progress report, October-December 1982  

Science Conference Proceedings (OSTI)

Progress accomplished for the quarter ending December 1982 is reported for the following research areas: liquid fossil fuel cycle; extraction (technology assessment, gas research, oil research); liquid processing (characterization, thermodynamics, processing technology); utilization; and project integration and technology transfer. (ATT)

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

156

Fossil fuel potential of Turkey: A statistical evaluation of reserves, production, and consumption  

Science Conference Proceedings (OSTI)

Since Turkey is a developing country with tremendous economic growth, its energy demand is also getting increased. Of this energy, about 70% is supplied from fossil fuels and the remaining 30% is from renewable sources. Among the fossil fuels, 90% of oil, natural gas, and coal are imported, and only 10% is from domestic sources. All the lignite is supplied from domestic sources. The total share of renewable sources and lignite in the total energy production is 45%. In order for Turkey to have sufficient and reliable energy sources, first the renewable energy sources must be developed, and energy production from fossil fuels, except for lignite, must be minimized. Particularly, scarcity of fossil fuels and increasing oil prices have a strong effect on economic growth of the country.

Korkmaz, S.; Kara-Gulbay, R.; Turan, M. [Karadeniz Technical University, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

157

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

#12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than the ANL Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis

Patzek, Tadeusz W.

158

Operator Certification Standards for Fossil Fuel Fired Plants: Survey of State and Regional Requirements  

Science Conference Proceedings (OSTI)

The Environmental Protection Agency has only started addressing the issue of certification for fossil fuel power plant operators within the last two years. This report, which includes data collected from research of state and local authorities that currently require power plant operators to be certified or licensed, is the first phase of a certification program for Fossil Fuel Fired Power Plants. The report also addresses the possible future shortage of skilled workers needed by the power plants and the ...

1999-12-16T23:59:59.000Z

159

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Specific Considerations Fossil Fuel Coal r. a. b. Normalliquid dominated) and fossil-fuel fired (either coal, oil,Specific Cons iderations Fossil Fuel Coal Oil 1. 1. 3. L 1

Nero, A.V.

2010-01-01T23:59:59.000Z

160

A synthesis of carbon dioxide emissions from fossil-fuel combustion  

SciTech Connect

This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

Andres, Robert Joseph [ORNL; Boden, Thomas A [ORNL; Breon, F.-M. [CEA/DSM/LSCE, Gif sur Yvette, France; Ciais, P. [LSCE/CEA, Gif-sur-Yvette, France; Davis, S. [Carnegie Institution of Washington; Erickson, D [Oak Ridge National Laboratory (ORNL); Gregg, J. S. [Riso National Laboratory, Roskilde, Denmark; Jacobson, Andrew [NOAA ESRL and CIRES; Marland, Gregg [Appalachian State University; Miller, J. [NOAA ESRL and CIRES; Oda, T [NOAA ESRL/Boulder, CO/Cooperative Institute for Research in the Atmosphere, Colorado State Univ.; Oliver, J. G. J. [PBL Netherlands Environmental Assessment Agency, Bilthoven, The Netherlands; Raupach, Michael [CSIRO Marine and Atmospheric Research; Rayner, P [University of Melbourne, Australia; Treanton, K. [Energy Statistics Division, International Energy Agency, Paris, France

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Since the beginning of the commercial steam and power generation industry, deposits on heat transfer surfaces of the steam-water cycle equipment in fossil plant units have been a challenge. Deposits form at nearly all locations within the steam-water cycle, particularly in boiler tubes where failures can have substantial negative impacts on unit availability and reliability. Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-wat...

2012-01-23T23:59:59.000Z

162

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1984-01-01T23:59:59.000Z

163

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1982-01-01T23:59:59.000Z

164

Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Fossil Fuel Power Innovative Fossil Fuel Power Plants with CO 2 Removal Technical Report EPRI Project Manager N. A. H. Holt EPRI * 3412 Hillview Avenue, Palo Alto, California 94304 * PO Box 10412, Palo Alto, California 94303 * USA 800.313.3774 * 650.855.2121 * askepri@epri.com * www.epri.com Evaluation of Innovative Fossil Fuel Power Plants with CO 2 Removal 1000316 Interim Report, December 2000 Cosponsors U. S. Department of Energy - Office of Fossil Energy 19901 Germantown Road Germantown, Maryland 20874 U.S. Department of Energy/NETL 626 Cochrans Mill Road PO Box 10940 Pittsburgh, Pennsylvania 15236-0940 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH

165

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-10-30T23:59:59.000Z

166

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Over the past 12 months, this project has focused on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. The ceramic/ceramic composites demonstrate the lowest hydrogen permeation rates, with a maximum of approximately 0.1 mL/min/cm{sup 2} for 0.5-mm thick membranes at 800 to 950 C. Under equivalent conditions, cermets achieve a hydrogen permeation rate near 1 mL/min/cm{sup 2}, and the metal phase also improves structural stability and surface catalysis for hydrogen dissociation. Furthermore, if metals with high hydrogen permeability are used in cermets, permeation rates near 4 mL/min/cm{sup 2} are achievable with relatively thick membranes. Layered composite membranes have by far the highest permeation rates with a maximum flux in excess of 200 mL {center_dot} min{sup -1} {center_dot} cm{sup -2}. Moreover, these permeation rates were achieved at a total pressure differential across the membrane of 450 psi. Based on these results, effort during the next year will focus on this category of membranes. This report contains long-term hydrogen permeation data over eight-months of continuous operation, and permeation results as a function of operating conditions at high pressure for layered composite membranes. Additional progress with cermet and thin film membranes also is presented.

Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart R. Schesnack; Scott R. Morrison; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-10-30T23:59:59.000Z

167

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-01-30T23:59:59.000Z

168

2004 Office of Fossil Energy Fuel Cell Program Annual Report  

DOE Green Energy (OSTI)

Annual report of fuel cell projects sponsored by Department of Energy, National Energy Technology Laboratory.

NETL

2004-11-01T23:59:59.000Z

169

55Home Power #21 February / March 1991 ALTERNATIVES TO FOSSIL FUELED  

E-Print Network (OSTI)

be handled by the same devices that regulate natural gas and it will work in burners or as a fuel is a simple hydrocarbon gas which occurs in natural gas and can also be obtained from anaerobic bacterial replacement for fossil fuel gases (natural gas or liquified petroleum gases such as propane or butane). It can

170

Liquid fossil fuel technology. Quarterly technical progress report, July-September 1979  

Science Conference Proceedings (OSTI)

The in-house results at Bartlesville Energy Technology Center on the liquid fossil fuel cycle are presented. The cycle covers extraction, processing, utilization, and environmental technology of the liquid fuels derived from petroleum, heavy oils, tar sands, oil shale, and coal.

Linville, B. (ed.)

1980-02-01T23:59:59.000Z

171

FutureGen: Stepping-Stone to Sustainable Fossil-Fuel Power Generation  

SciTech Connect

This presentation will highlight the U.S. Department of Energy's FutureGen Initiative. The nearly $1 billion government-industry project is a stepping-stone toward future coal-fired power plants that will produce hydrogen and electricity with zero-emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. The initiative is a response to a presidential directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. The FutureGen plant will be based on cutting-edge power generation technology as well as advanced carbon capture and sequestration systems. The centerpiece of the project will be coal gasification technology that can eliminate common air pollutants such as sulfur dioxide and nitrogen oxides and convert them to useable by-products. Gasification will convert coal into a highly enriched hydrogen gas, which can be burned much more cleanly than directly burning the coal itself. Alternatively, the hydrogen can be used in a fuel cell to produce ultra-clean electricity, or fed to a refinery to help upgrade petroleum products. Carbon sequestration will also be a key feature that will set the Futuregen plant apart from other electric power plant projects. The initial goal will be to capture 90 percent of the plant's carbon dioxide, but capture of nearly 100 percent may be possible with advanced technologies. Once captured, the carbon dioxide will be injected as a compressed fluid deep underground, perhaps into saline reservoirs. It could even be injected into oil or gas reservoirs, or into unmineable coal seams, to enhance petroleum or coalbed methane recovery. The ultimate goal for the FutureGen plant is to show how new technology can eliminate environmental concerns over the future use of coal--the most abundant fossil fuel in the United States with supplies projected to last 250 years. FutureGen's co-production of power and hydrogen will also serve as a stepping-stone to an environmentally sustainable energy future.

Zitney, S.E.

2006-11-01T23:59:59.000Z

172

Fossil fuel gasification technical evaluation services. Topical report 1978-80  

SciTech Connect

The Exxon, Mountain Fuel, Cities Service/Rockwell, Westinghouse, BGC slagging Lurgi and Peatgas processes for fossil fuel gasification were evaluated. The Lurgi and HYGAS processes had been evaluated in earlier studies. For producing SNG from coal, only the Westinghouse conceptual design appeared competitive with HYGAS on eastern coal. All coal gasification processes were competitive with or better than Lurgi on eastern coal. The Mountain Fuel process was more costly than Lurgi or HYGAS on a western coal.

Detman, R.F.

1982-12-30T23:59:59.000Z

173

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

174

Electrochemical CO2 Capture and Instant Conversion into Fuels  

Science Conference Proceedings (OSTI)

However, burning fossil fuels produces CO2, emission of which to atmosphere causes global warming and climate change. A near-term realistic solution to ...

175

Sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

Vogt, Robert L. (Schenectady, NY)

1980-01-01T23:59:59.000Z

176

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-water cycles. Deposition in drum boilers has been identified as the area of broadest concern to the industry; therefore, an improved understanding of deposition in drum boilers is expected to represent the greatest source of benefits and value to end users. The overall objective of the modeling described here is to develop a comprehensive, integrated model for deposition process...

2011-12-16T23:59:59.000Z

177

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales of Fossil Fuels Produced Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 March 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

178

Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2  

Open Energy Info (EERE)

Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions Jump to: navigation, search Tool Summary Name: Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy, Climate Topics: GHG inventory, Background analysis Resource Type: Dataset Website: cdiac.ornl.gov/trends/emis/meth_reg.html Country: United States, Canada, Mexico, Argentina, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela, Austria, Azerbaijan, Belarus, Belgium, Luxembourg, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Kazakhstan, Lithuania, Netherlands, Norway, Poland, Portugal, Romania, Russia, Slovakia, Spain, Sweden, Switzerland, Turkey, Turkmenistan, Ukraine, United Kingdom, Uzbekistan, Iran, Kuwait, Qatar, Saudi Arabia, United Arab Emirates, Algeria, Egypt, South Africa, Australia, Bangladesh, China, India, Indonesia, Japan, Malaysia, New Zealand, Pakistan, Philippines, Singapore, South Korea, Taiwan, Thailand

179

renewable sources of power. Demand for fossil fuels surely will overrun supply s  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And they will be forced to embrace energy efficiencies - those that are within our reach today, and those that will be developed tomorrow. Precisely when they come lo grips with that reality - this year, 10 years from now, or 20 years from now - will determine bow smooth the transition will be for consumers and industry alike.

180

High Burn-Up Properties of the Fuel Variants Irradiated in IFA-649  

Science Conference Proceedings (OSTI)

The "standard product" uranium dioxide (UO2) fuel pellet has remained unchanged for many years and provides excellent performance in all but the most extreme reactor operation. The requirement to prolong fuel residence in commercial reactors, thus increasing discharge levels of burn-up, has led to a need for detailed measurements of high burn-up properties under a variety of normal and off-normal conditions. The changes in fuel material properties, such as density and swelling, ...

2013-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Commerce study looks at cost of pollution control for fossil-fuel power industry  

SciTech Connect

Environmental controls for fossil-fuel power plants consumed 1.3 percent of the national fuel used in 1974, with the largest demand going for sulfur dioxide emission control. Projections for power plant consumption to meet environmental standards range as high as eight percent in the 1980s. Less-energy-consuming systems include coal blending, tall stacks, and supplementary control systems; while high consumers are using coal washing operations in place of scrubbers, fuel transportation, conversion to acceptable fuels, waste heat disposal, and particulate controls. A summary table presents sulfur dioxide regulations in terms of their goals and their anticipated minimum and maximum fuel consumption. (DCK)

1977-06-01T23:59:59.000Z

182

Production of high density fuel through low temperature devolatilization of fossil fuels with hydrogen and iron oxides  

DOE Patents (OSTI)

A method is provided for producing high-energy high-density fuels and valuable co-products from fossil fuel sources which comprises the low temperature devolatilization of a fossil fuel such as coal in a moving fluid-bed reactor at a temperature of about 450-650C in the presence of hydrogen and iron oxides. The method is advantageous in that high quality liquid fuels are obtained in addition to valuable co-products such as elemental iron, elemental sulfur and carbon black, and the process is carried out efficiently with a large number of recyclable steps. In addition, the hydropyrolysis of the present invention can produce a highly reactive low-sulfur char which is convertible into a slurry fuel. 1 fig.

Khan, M.R.

1990-01-29T23:59:59.000Z

183

Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity  

DOE Green Energy (OSTI)

We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

2001-03-07T23:59:59.000Z

184

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2012 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2009. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

185

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2013 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2010. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

186

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2011 revision of this database contains estimates of the annual, global mean value of del 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2008. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric del 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

187

High resolution fossil fuel combustion CO2 emission fluxes for the United States  

SciTech Connect

Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

2009-03-19T23:59:59.000Z

188

High resolution fossil fuel combustion CO{sub 2} emission fluxes for the United States  

SciTech Connect

Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of about 100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach. 39 refs., 5 figs., 1 tab.

Kevin R. Gurney; Daniel L. Mendoza; Yuyu Zhou; Marc L. Fischer; Chris C. Miller; Sarath Geethakumar; Stephane de la Rue du Can [Purdue University, West Lafayette, IN (United States). Department of Earth and Atmospheric Sciences/Department of Agronomy

2009-07-15T23:59:59.000Z

189

High resolution fossil fuel combustion CO2 emission fluxes for the United States  

SciTech Connect

Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

2009-03-19T23:59:59.000Z

190

Western fossil fuels R and D public meeting: Summary proceedings  

SciTech Connect

A public meeting was convened by the Department of Energy (DOE) in Denver, Colorado, on Wednesday, July 26, 1989, at The Registry Hotel, in order to obtain public views and comments on the development of techniques which could offer the potential to improve the economic competitiveness and increased utilization of Western Fossil Energy Resources. In the sections that follow, brief descriptions are provided of background issues and how the meeting was conducted. Subsequent chapters of this report present the discussions that ensued at the meeting, and the views, recommendations, and concerns that were expressed by attendees. Finally, the report includes a summary of the written comments that were received, and an appendix which contains a list of the organizations that were represented at the public meeting.

1989-10-01T23:59:59.000Z

191

Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels - Technology Management, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Scale SOFC Demonstration Using Small Scale SOFC Demonstration Using Bio-based and Fossil Fuels-Technology Management, Inc. Background In this congressionally directed project, Technology Management, Inc. (TMI) will develop and demonstrate a residential scale prototype solid oxide fuel cell (SOFC) system at end-user sites. These small-scale systems would operate continuously on either conventional or renewable biofuels, producing cost effective, uninterruptible

192

Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1982  

Science Conference Proceedings (OSTI)

Highlights of research activities at Bartlesville Energy Technology Center for the quarter ending March 1982 are summarized. Major research areas are: liquid fossil fuel cycle; extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, processing technology); utilization; and product integration and technology transfer. Special reports include: EOR data base - major new industry tool; properties of crude oils available via telephone hookup; alternative fuels data bank stresses transportation. (ATT)

Linville, B. (ed.)

1982-07-01T23:59:59.000Z

193

Drum type fossil fueled power plant control based on fuzzy inverse MIMO model  

Science Conference Proceedings (OSTI)

In this paper, a new fuzzy controller is proposed based on inverse model of boiler-turbine system. Gain scheduling scheme is used to keep feedback rule as close as possible to optimal condition while generating plant Input/Output data. Interaction between ... Keywords: ANFIS, drum type fossil fueled power plant (FFPP), interaction, inverse model control, nonlinear model, robustness

Ali Ghaffari; Mansour Nikkhah Bahrami; Hesam Parsa

2006-06-01T23:59:59.000Z

194

The Iron Age & Coal-based Coke: A Neglected Case of Fossil-fuel Dependence  

E-Print Network (OSTI)

The Iron Age & Coal-based Coke: A Neglected Case of Fossil-fuel Dependence by Vaclav Smil September share of their primary energies from renewable sources. Steel & Coal-Derived Coke Here is another important: steel's fundamental dependence on coal-derived coke with no practical substitutes on any rational

Smil, Vaclav

195

Carbon capture technology: future fossil fuel use and mitigating climate change  

E-Print Network (OSTI)

Carbon capture technology: future fossil fuel use and mitigating climate change DR N FloRiN aND DR P FeNNell executive summary What is carbon capture and storage? Carbon Capture and Storage (CCS) refers to the set of technologies devel- oped to capture carbon dioxide (CO2) gas from the exhausts

196

New improved standard for electron probe determination of organic sulfur in fossil fuels  

Science Conference Proceedings (OSTI)

This paper reports on petroleum coke that is stable under an electron beam and contains a uniform sulfur content. Hence, it is a suitable standard for analysis of organic sulfur content of coal. It should be as applicable for analysis of organic sulfur in other fossil fuels. This standard is available for distribution.

Harris, L.A.; Raymond, R. Jr.; Gooley, R.

1980-01-01T23:59:59.000Z

197

2007-No54-BoilingPoint Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel  

E-Print Network (OSTI)

2007-No54-BoilingPoint Theme Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel Energy nations. In sub-Saharan Africa (SSA), biomass provides more than 90% of household energy needs in many nations. The combustion of biomass emits pollutants that currently cause over 1.6 million annual deaths

Kammen, Daniel M.

198

Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint  

DOE Green Energy (OSTI)

High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-state operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.

Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S.

2012-08-01T23:59:59.000Z

199

Inorganic and Organic Constituents in Fossil Fuel Combustion Residues, Volumes 1 and 2  

Science Conference Proceedings (OSTI)

Accurate prediction of groundwater contamination from solid-waste disposal sites requires leaching rates for fossil fuel combustion waste chemicals. In a wide-ranging literature review, this study obtained data on 28 inorganic constituents and identified the need for new data to improve leachate composition prediction models.

1987-08-01T23:59:59.000Z

200

Emission Factors Handbook: Guidelines for Estimating Trace Substance Emissions from Fossil Fuel Steam Electric Plants  

Science Conference Proceedings (OSTI)

The "Emission Factors Handbook" provides a tool for estimating trace substances emissions from fossil-fuel-fired power plants. The suggested emission factors are based on EPRI and Department of Energy (DOE) field measurements conducted at over 50 power plants using generally consistent sampling and analytical protocols. This information will help utility personnel estimate air toxic emissions for permitting purposes.

2002-04-10T23:59:59.000Z

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982  

SciTech Connect

This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

202

Liquid fossil fuel technology. Quarterly technical progress report, January-March 1981  

SciTech Connect

The Bartlesville Energy Technology Center's research activities are summarized under the following headings: liquid fossil fuel cycle; extraction which is subdivided into resource assessment and production; liquid processing which includes characterization of liquids from petroleum, coal, shale and other alternate sources, thermodynamics and process technology; utilization; and project integration and technology transfer. (ATT)

Not Available

1981-08-01T23:59:59.000Z

203

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1980  

Science Conference Proceedings (OSTI)

Highlights of research activities at BETC during the past quarter are summarized in this document. Major research areas include: liquid fossil fuel cycle, extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, and process technology); utilization; and product integration and technology transfer.

Not Available

1981-05-01T23:59:59.000Z

204

General analysis of breed-and-burn reactors and limited-separations fuel cycles  

E-Print Network (OSTI)

A new theoretical framework is introduced, the "neutron excess" concept, which is useful for analyzing breed-and-burn (B&B) reactors and their fuel cycles. Based on this concept, a set of methods has been developed which ...

Petroski, Robert C

2011-01-01T23:59:59.000Z

205

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

Science Conference Proceedings (OSTI)

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

206

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN

Nero, A.V.

2010-01-01T23:59:59.000Z

207

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-and RelatedStandards for Fossil-Fuel and Geothermal Power

Nero, jA.V.

2010-01-01T23:59:59.000Z

208

Fuel Supply Investigation for an Externally Fired Microturbine based Micro CHP System.  

E-Print Network (OSTI)

?? Sudden change on earth’s climate, which is a result of an increase in CO2 in the atmosphere, is mainlycaused by burning of fossil fuels… (more)

Aga, Aboma Emiru

2013-01-01T23:59:59.000Z

209

Technical considerations in repowering a nuclear plant for fossil fueled operation  

SciTech Connect

Repowering involves replacement of the reactor by a fossil fuel source of steam. This source can be a conventional fossil fueled boiler or the heat recovery steam generator (HRSG) on a gas turbine exhaust. The existing steam turbine plant is used to the extent possible. Alternative fuels for repowering a nuclear plant are coal, natural gas and oil. In today`s world oil is not usually an alternative. Selection of coal or natural gas is largely a matter of availability of the fuel near the location of the plant. Both the fossil boiler and the HRSG produce steam at higher pressures and temperatures than the throttle conditions for a saturated steam nuclear turbine. It is necessary to match the steam conditions from the new source to the existing turbine as closely as possible. Technical approaches to achieve a match range from using a topping turbine at the front end of the cycle to attemperation of the throttle steam with feedwater. The electrical output from the repowered plant is usually greater than that of the original nuclear fueled design. This requires consideration of the ability to use the excess electricity. Interfacing of the new facility with the existing turbine plant requires consideration of facility layout and design. Site factors must also be considered, especially for a coal fired boiler, since rail and coal handling facilities must be added to a site for which these were not considered. Additional site factors that require consideration are ash handling and disposal.

Patti, F.J.

1996-03-01T23:59:59.000Z

210

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

prevent serious damage to the nuclear fuel, since it is thetransportation: for nuclear plants, fuel handling is carriedSpecific Fossil Fuel Geothermal Nuclear Solid Waste Disposal

Nero, A.V.

2010-01-01T23:59:59.000Z

211

Method and apparatus for controlling fuel/air mixture in a lean burn engine  

DOE Patents (OSTI)

The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

Kubesh, John Thomas (San Antonio, TX); Dodge, Lee Gene (San Antonio, TX); Podnar, Daniel James (San Antonio, TX)

1998-04-07T23:59:59.000Z

212

Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission  

DOE Patents (OSTI)

An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

Kostiuk, Larry W. (Edmonton, CA); Cheng, Robert K. (Kensington, CA)

1996-01-01T23:59:59.000Z

213

Timing is everything : along the fossil fuel transition pathway.  

Science Conference Proceedings (OSTI)

People save for retirement throughout their career because it is virtually impossible to save all you'll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. Therefore, our research question is,To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades?' Existing models do not include full regulatory constraints due to their often complex, and inflexible approaches to solve foroptimal' engineering instead ofrobust' and multidisciplinary solutions. This project outlines the theory and then develops an applied software tool to model the laboratory-to-market transition using the traditional technology readiness level (TRL) framework, but develops subsequent and a novel regulatory readiness level (RRL) and market readiness level (MRL). This tool uses the ideally-suited system dynamics framework to incorporate feedbacks and time delays. Future energy-economic-environment models, regardless of their programming platform, may adapt this software model component framework ormodule' to further vet the likelihood of new or innovative technology moving through the laboratory, regulatory and market space. The prototype analytical framework and tool, called the Technology, Regulatory and Market Readiness Level simulation model (TRMsim) illustrates the interaction between technology research, application, policy and market dynamics as they relate to a new or innovative technology moving from the theoretical stage to full market deployment. The initial results that illustrate the model's capabilities indicate for a hypothetical technology, that increasing the key driver behind each of the TRL, RRL and MRL components individually decreases the time required for the technology to progress through each component by 63, 68 and 64%, respectively. Therefore, under the current working assumptions, to decrease the time it may take for a technology to move from the conceptual stage to full scale market adoption one might consider expending additional effort to secure regulatory approval and reducing the uncertainty of the technology's demand in the marketplace.

Kobos, Peter Holmes; Walker, La Tonya Nicole; Malczynski, Leonard A.

2013-10-01T23:59:59.000Z

214

Timing is everything : along the fossil fuel transition pathway.  

SciTech Connect

People save for retirement throughout their career because it is virtually impossible to save all you'll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. Therefore, our research question is,To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades?' Existing models do not include full regulatory constraints due to their often complex, and inflexible approaches to solve foroptimal' engineering instead ofrobust' and multidisciplinary solutions. This project outlines the theory and then develops an applied software tool to model the laboratory-to-market transition using the traditional technology readiness level (TRL) framework, but develops subsequent and a novel regulatory readiness level (RRL) and market readiness level (MRL). This tool uses the ideally-suited system dynamics framework to incorporate feedbacks and time delays. Future energy-economic-environment models, regardless of their programming platform, may adapt this software model component framework ormodule' to further vet the likelihood of new or innovative technology moving through the laboratory, regulatory and market space. The prototype analytical framework and tool, called the Technology, Regulatory and Market Readiness Level simulation model (TRMsim) illustrates the interaction between technology research, application, policy and market dynamics as they relate to a new or innovative technology moving from the theoretical stage to full market deployment. The initial results that illustrate the model's capabilities indicate for a hypothetical technology, that increasing the key driver behind each of the TRL, RRL and MRL components individually decreases the time required for the technology to progress through each component by 63, 68 and 64%, respectively. Therefore, under the current working assumptions, to decrease the time it may take for a technology to move from the conceptual stage to full scale market adoption one might consider expending additional effort to secure regulatory approval and reducing the uncertainty of the technology's demand in the marketplace.

Kobos, Peter Holmes; Walker, La Tonya Nicole; Malczynski, Leonard A.

2013-10-01T23:59:59.000Z

215

A Multi-Pollutant Framework for Evaluating CO2 Control Options for Fossil Fuel Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Pollutant Framework for Evaluating CO Multi-Pollutant Framework for Evaluating CO 2 Control Options for Fossil Fuel Power Plants Edward S. Rubin (rubin@cmu.edu; 412-268-5897) Anand B. Rao (abr@andrew.cmu.edu; 412-268-5605) Michael B. Berkenpas (mikeb@cmu.edu; 412-268-1088) Carnegie Mellon University EPP Department, Baker Hall 128A Pittsburgh, PA 15213 Abstract As part of DOE/NETL's Carbon Sequestration Program, we are developing an integrated, multi-pollutant modeling framework to evaluate the costs and performance of alternative carbon capture and sequestration technologies for fossil-fueled power plants. The model calculates emissions, costs, and efficiency on a systematic basis at the level of an individual plant or facility. Both new and existing facilities can be modeled, including coal-based or natural gas-based combustion or gasification systems using air or oxygen.

216

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2012  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 May 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2012 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other federal agencies. May 2013 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2012 1

217

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 March 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. March 2012 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 1

218

Progress in Direct Experiments on the Ocean Disposal of Fossil Fuel CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

for the First National Conference on Carbon Sequestration, Washington D.C. May 14-17, 2001 for the First National Conference on Carbon Sequestration, Washington D.C. May 14-17, 2001 US DoE-NETL Progress in Direct Experiments on the Ocean Disposal of Fossil Fuel CO 2 Peter G. Brewer (brpe@mbari.org; 831-626-6618) Monterey Bay Aquarium Research Institute 7700 Sandholdt Road Moss Landing CA 95039 Introduction. My laboratory has now been engaged in carrying out small scale controlled field experiments on the ocean sequestration of fossil fuel CO 2 for about five years, and the field has changed enormously in that time. We have gone from theoretical assessments to experimental results, and from cartoon sketches of imagined outcomes to high-resolution video images of experiments on the ocean floor shared around the world. It seems appropriate therefore to give a brief review, albeit one very much from a

219

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

Fossil Fuels Fossil Fuels Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abu-Khamsin, Sidqi (Sidqi Abu-Khamsin) - Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals Al-Khattaf, Sulaiman (Sulaiman Al-Khattaf) - Department of Chemical Engineering, King Fahd University of Petroleum and Minerals Al-Majed, Abdulaziz Abdullah (Abdulaziz Abdullah Al-Majed) - Center for Petroleum and Minerals at the Research Institute & Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals Ali, Mohammed (Mohammed Ali) - Petroleum Institute (Abu Dhabi) Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S

220

September 2013 Most Viewed Documents for Fossil Fuels | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

Fossil Fuels Fossil Fuels EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Dr. Jorge Gabitto; Maria Barrufet (2003) 42 Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. Yang, Shiyong; Stock, L.M. (1996) 36 Fluid Dynamics in Sucker Rod Pumps Cutler, R.P.; Mansure, A.J. (1999) 35 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 35 Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations Michael S. Bruno (2005) 35 Autothermal Reforming of Natural Gas to Synthesis Gas Steven F. Rice; David P. Mann (2007) 34 Evaluation of Wax Deposition and Its Control During Production of

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cycling Operation of Fossil-Fueled Plants: Volume 6: Evaluation and Strategy  

Science Conference Proceedings (OSTI)

This report, the sixth volume in a series (GS-7219), describes tools to help utilities define and evaluate strategies for cycling fossil-fueled power plants. To assist companies in their cycling decisions, the report describes far-reaching guidelines on cycling units, including economics, the effects on equipment life, and operations and maintenance. In developing a stepwise plant to cycling operation, EPRI investigators reviewed an extensive database of worldwide and U.S. experience with cycling. The re...

1993-10-01T23:59:59.000Z

222

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-01-01T23:59:59.000Z

223

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains a minimum of 92 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

224

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-05-01T23:59:59.000Z

225

3. Fossil-Fuel Subsidy Data from Other Sources Often Conflicts  

E-Print Network (OSTI)

A review of current gaps and needed changes to achieve success By Doug Koplow with contributions from Steve KretzmannAcknowledgments Thanks to Ronald Steenblik (Organisation for Economic Cooperation and Development) and Patricia Lerner (Greenpeace International) for their valuable suggestions and input on earlier drafts of this document. All remaining errors and omissions are the responsibility of the authors. © 2010, Earth Track, Inc., and Oil Change International For more information on fossil fuel subsidies please visit:

G Fossil-fuel

2010-01-01T23:59:59.000Z

226

Preliminary Guidelines for Integrated Controls and Monitoring for Fossil Fuel Plants  

Science Conference Proceedings (OSTI)

Modern digital distributed control systems offer a large number of advantages to operators of fossil fuel plants, and many utilities will be replacing their existing control systems with them. This report, consisting of the preliminary guidelines developed by the Southern California Edison Company during the first phase of its El Segundo power plant, units 3 and 4, retrofit project, offers advice applicable to other phased upgrades, complete changeouts, or new installations.

1990-07-09T23:59:59.000Z

227

Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal  

Science Conference Proceedings (OSTI)

This interim report presents initial results of an ongoing study of the potential cost of electricity (COE) produced in both conventional and innovative fossil fueled power plants that incorporate carbon dioxide (CO2) removal for subsequent sequestration or use. The baseline cases are natural gas combined cycle (NGCC) and ultra-supercritical pulverized coal (PC) plants, with and without post combustion CO2 removal, and integrated gasification combined cycle (IGCC) plants, with and without pre-combustion ...

2000-12-07T23:59:59.000Z

228

Liquid fossil fuel technology. Quarterly technical progress rport, April-June 1983  

Science Conference Proceedings (OSTI)

Highlights of research activities for the quarter ending June 1983 are summarized under the following headings: liquid fossil fuel; extraction; processing; utilization; and project integration and technology transfer. BETC publications are listed. Titles of featured articles are: (1) chemical flooding field test produces 975,000 barrels of oil; (2) chemicals boost recovery in steam-drive tests; (3) North Dakota carbon dioxide minitest successful; (4) carbon dioxide EOR reports issued; and (5) BETC slated for new management and new name. (ATT)

Linville, B. (ed.)

1983-10-01T23:59:59.000Z

229

Liquid-fossil-fuel technology. Quarterly technical progress report, July-September 1982  

SciTech Connect

Progress reports for the quarter ending September 1982 are presented for the following major tasks: liquid fossil fuel cycle; extraction (resource assessment, enhanced recovery); liquid processing (characterization of petroleum, coal liquids, thermodynamics, process technology); utilization; project integration and technology transfer. Feature articles for this quarter are: new laboratory enhances BETC capability in mass spectrometry; and BETC tests on diesel particulate extracts indicate potential health risks. (ATT)

Linville, B. (ed.)

1983-01-01T23:59:59.000Z

230

Recent world fossil-fuel and primary energy production and consumption trends  

SciTech Connect

Worldwide fossil fuel and primary electric power production figures since 1973 show a recent drop in oil production similar to the 1975 decline after recession. Crude oil consumption has declined since 1978, while production has increased. Natural gas production and consumption continue to increase as does power generation from all energy sources. Differences are noted between data sources and comparisons made of the validity of the data. 13 references, 7 figures, 12 tables. (DCK)

Parent, J.D.

1982-08-02T23:59:59.000Z

231

Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels  

E-Print Network (OSTI)

The escalating energy prices and the increasing environmental impact posed by the industrial usage of energy have spurred industry to adopt various approaches to conserving energy and mitigating negative environmental impact. This work aims at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels, process waste heat) to guarantee providing a stable energy supply, as industrial process energy sources must be a stable and reliable system. The thermal energy transform systems (turbines, refrigerators, heat exchangers) must be selected and designed carefully to provide the energy demand at the different forms (heat, cool, power). This dissertation introduces optimization-based approaches to address the following problems: • Design of cogeneration systems with solar and fossil systems • Design and integration of solar-biofuel-fossil cogeneration systems • Design of solar-assisted absorption refrigeration systems and integration with the processing facility • Development of thermally-coupled dual absorption refrigeration systems, and • Design of solar-assisted trigeneration systems Several optimization formulations are introduced to provide methodical and systematic techniques to solve the aforementioned problems. The approach is also sequenced into interacting steps. First, heat integration is carried out to minimize industrial heating and cooling utilities. Different forms of external-energy sources (e.g., solar, biofuel, fossil fuel) are screened and selected. To optimize the cost and to overcome the dynamic fluctuation of the solar energy and biofuel production systems, fossil fuel is used to supplement the renewable forms of energy. An optimization approach is adopted to determine the optimal mix of energy forms (fossil, bio fuels, and solar) to be supplied to the process, the system specifications, and the scheduling of the system operation. Several case studies are solved to demonstrate the effectiveness and applicability of the devised procedure. The results show that solar trigeneration systems have higher overall performance than the solar thermal power plants. Integrating the absorption refrigerators improves the energy usage and it provides the process by its cooling demand. Thermal coupling of the dual absorption refrigerators increases the coefficient of performance up to 33 percent. Moreover, the process is provided by two cooling levels.

Tora, Eman

2010-12-01T23:59:59.000Z

232

The Temporal and Spatial Distribution of Carbon Dioxide Emissions from Fossil-Fuel Use in North America  

Science Conference Proceedings (OSTI)

Refinements in the spatial and temporal resolution of North American fossil-fuel carbon dioxide (CO2) emissions provide additional information about anthropogenic aspects of the carbon cycle. In North America, the seasonal and spatial patterns ...

J. S. Gregg; L. M. Losey; R. J. Andres; T. J. Blasing; G. Marland

2009-12-01T23:59:59.000Z

233

EA-1778: Proposed Rule, 10 CFR 433 and 435, Energy Conservation and Fossil Fuel-Generated Energy  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of DOE's Proposed Rule, 10 CFR Part 433, “Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings” and 10 CFR Part 435, “Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings”.

234

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Electrical Workers in Fossil-Fueled Power Plan ts  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fourth EPRI ergonomics handbook; it specifically focuses on tasks performed by electricians who work in fossil-fueled electric power plants. Fossil-fueled power plant electrical work is physically strenuous and can expose workers to musculoskeletal disorders (MSDs), such as carpal tunnel syndrome, low-back pain, or shoulder tendonitis. In an e...

2008-01-11T23:59:59.000Z

235

Dynamic stability, blowoff, and flame characteristics of oxy-fuel combustion  

E-Print Network (OSTI)

Oxy-fuel combustion is a promising technology to implement carbon capture and sequestration for energy conversion to electricity in power plants that burn fossil fuels. In oxy-fuel combustion, air separation is used to ...

Shroll, Andrew Philip

2011-01-01T23:59:59.000Z

236

Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment  

SciTech Connect

The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

Sayer, J.H.

1995-06-01T23:59:59.000Z

237

REPORT: Inert-Matrix Fuel: Actinide ''Burning'' and Direct ... - TMS  

Science Conference Proceedings (OSTI)

Jun 27, 2007 ... Excess actinides result from the dismantlement of nuclear weapons (Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241 Am ...

238

Final Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL  

Office of Scientific and Technical Information (OSTI)

Project Report Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL Nuclear Engineering Education Research Program (grant # DE-FG07-99ID13767) Rodney C. Ewing (co-PI) Lumin Wang (co-PI) October 30,2002 For the Period of 07/01/1999 to 06/30/2002 Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor, MI 48109 1 1. Background Excess actinides result from the dismantlement of nuclear weapons (239Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241Am, Cm and 237Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burn- up of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-

239

Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1983  

DOE Green Energy (OSTI)

Accomplishments for the quarter ending March 1983 are presented under the following headings: liquid fossil fuel cycle, processing, utilization, and project integration and technology transfer. Feature articles for this quarter are: (1) abandoned oil field reports issued; (2) oilfield water data bank report published; (3) microbial enhanced recovery report issued; (4) polymer-augmented project could be economic today; (5) carbon dioxide EOR estimates given; (6) BETC passes 65th milestone; and (7) fifty achievements for fifty years (1918-1968). BETC publications are also listed. (ATT)

Linville, B. (ed.)

1983-07-01T23:59:59.000Z

240

Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan  

DOE Data Explorer (OSTI)

Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

Gurney, Kevin [PI and spokesperson for the Vulcan Collaboration

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Comparative analysis of monetary estimates of external environmental costs associated with combustion of fossil fuels  

SciTech Connect

Public utility commissions in a number of states have begun to explicitly treat costs of environmental externalities in the resource planning and acquisition process (Cohen et al. 1990). This paper compares ten different estimates and regulatory determinations of external environmental costs associated with fossil fuel combustion, using consistent assumptions about combustion efficiency, emissions factors, and resource costs. This consistent comparison is useful because it makes explicit the effects of various assumptions. This paper uses the results of the comparison to illustrate pitfalls in calculation of external environmental costs, and to derive lessons for design of policies to incorporate these externalities into resource planning. 38 refs., 2 figs., 10 tabs.

Koomey, J.

1990-07-01T23:59:59.000Z

242

Liquid fossil fuel technology. Quarterly technical progress report, July-September 1981  

Science Conference Proceedings (OSTI)

Progress accomplished during the quarter ending September 1981 is reported under the following headings: liquid fossil fuel cycle; extraction (reservoir characterization and evaluation, recovery projects, reservoir access, extraction technology, recovery processes and process implementation); liquid processing (characterization, thermodynamics, and process technology); utilization (energy conversion - adaptive engineering, combustion systems assessment, and heat engines/heat recovery); and project integration and technology transfer. Special reports include: air drilling research; fluid injection in reservoirs; target reservoirs in Permian Basin suitable for CO/sub 2/ flooding; heavy oil technology; and the fate of used motor oil/results of a survey.

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

243

A plot study of the potential for Navy utilization of solid waste derived fuels to offset fossil fuels consumption. Final report  

SciTech Connect

A brief study was made to define problems that would be encountered in estimating potential Navy markets for various forms of waste derived fuels. Fossil fuel consumption estimates for boiler plants at several Navy activities were converted to waste derived fuel (WDF) estimates using a set of assumed rules judged technically feasible regarding boiler conversions and confirming fossil fuels and WDF. The results of this first study are presented indicating Navy boilers might represent a significant market for all the WDF a region could produce if the WDF were available in liquid as well as solid forms. The economic feasibility of conversions and WDF production are not addressed in this brief paper.

Capps, A.G.; Duffey-Armstrong, M.; Freeman, R.E.

1978-06-01T23:59:59.000Z

244

Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Fossil Energy Below are resources for Tribes on fossil energy. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 This paper...

245

Ways Electricity Can Be Used To Replace Fossil Fuels in The French Chemical Industry  

E-Print Network (OSTI)

France energy policy for the year 1990 foresees the following breakdown between various energy sources : renewable sources (including hydraulic) : 11%, coal + natural gas : 30.5%, nuclear : 26.5%, oil : 32%. The electricity will be produced mainly by nuclear: 66 % and by hydraulic : 14%, coal : 15%, fuel oil : 5%. Electricity and coal will then be the two major energy sources at the disposal of the French Industry. The new tariff structure of electricity proposed by Electricite de France will be given briefly explaining why and how electricity used to replace fossil fuels are seriously considered by the French Chemical Industry and by Rhone-Poulenc. Examples of various new utilisations of electrical equipment in chemical processes (thermal, heat pumps, filtration, electrolysis . . .) will be given. Emphasis will be put on research and development for new equipment and on the importance of good information and relationship between utilities suppliers, manufacturers and industrial consumers.

Mongon, A.

1982-01-01T23:59:59.000Z

246

K Basins floor sludge retrieval system knockout pot basket fuel burn accident  

SciTech Connect

The K Basins Sludge Retrieval System Preliminary Hazard Analysis Report (HNF-2676) identified and categorized a series of potential accidents associated with K Basins Sludge Retrieval System design and operation. The fuel burn accident was of concern with respect to the potential release of contamination resulting from a runaway chemical reaction of the uranium fuel in a knockout pot basket suspended in the air. The unmitigated radiological dose to an offsite receptor from this fuel burn accident is calculated to be much less than the offsite risk evaluation guidelines for anticipated events. However, because of potential radiation exposure to the facility worker, this accident is precluded with a safety significant lifting device that will prevent the monorail hoist from lifting the knockout pot basket out of the K Basin water pool.

HUNT, J.W.

1998-11-11T23:59:59.000Z

247

Optimal design and integration of solar systems and fossil fuels for process cogeneration  

E-Print Network (OSTI)

Because of the fluctuations in incident solar power, outlet power also changes over time (e.g., on an hourly basis or seasonally). If there is a need for a stable power outlet, there are options towards a steady state output of the system. This work is aimed at the development of systematic design procedures for two solar-based power generation strategies. The first is integration of fossil-fuel with the solar system to provide a compensation effect (power backup to supplement the power main source from solar energy). The second is the use of thermal energy storage (TES) systems to save solar energy in a thermal form and use it when solar input decreases. A common TES configuration is the two-tank system which allows the use of the collector heat transfer fluid (HTF) as a storing medium. For the two tanks, one tank has the hot medium (e.g., a molten salt) and the second has the cold storage media. Specifically, the following design challenges are addressed: 1. What is the optimal mix of energy forms to be supplied to the process? 2. What are the optimal scenario and integration mode to deliver the selected energy forms? How should they be integrated among themselves and with the process? 3. What is the optimal design of the energy systems? 4. What is the optimal dynamic strategy for operating the various energy systems? 5. What is the feasibility of using thermal energy storage to this optimum fossil fuel system? The developed procedure includes gathering and generation of relevant solar and climatic data, modeling of the various components of the solar, fossil, and power generation systems, and optimization of several aspects of the hybrid system. A case study is solved to demonstrate the effectiveness and applicability of the devised procedure.

Tora, Eman Abdel-Hakim Aly Mohamed

2008-08-01T23:59:59.000Z

248

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

which steam is raised. nuclear fuel generates heat that isattention to nuclear and fossil-fuel plants, and these areFor all the fossil-fuel and nuclear (However, categories,

Nero, A.V.

2010-01-01T23:59:59.000Z

249

Health effects and related standards for fossil-fuel and geothermal power plants. Volume 6 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. [In California  

DOE Green Energy (OSTI)

This report reviews health effects and related standards for fossil-fuel and geothermal power plants, emphasizing impacts which may occur through emissions into the atmosphere, and treating other impacts briefly. Federal regulations as well as California state and local regulations are reviewed. Emissions are characterized by power plant type, including: coal-fired, oil-fired, gas-fired, combined cycle and advanced fossil-fuel plants; and liquid and vapor geothermal systems. Dispersion and transformation of emissions are treated. The state of knowledge of health effects, based on epidemiological, physiological, and biomedical studies, is reviewed.

Case, G.D.; Bertolli, T.A.; Bodington, J.C.; Choy, T.A.; Nero, A.V.

1977-01-01T23:59:59.000Z

250

An overview of alternative fossil fuel price and carbon regulation scenarios  

E-Print Network (OSTI)

Energy (EERE) and the Office of Fossil Energy (FE) have beenEERE) and the Office of Fossil Energy (FE) have been jointly

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

251

Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report  

SciTech Connect

The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.

William L. ROberts

2012-10-31T23:59:59.000Z

252

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel use and CO2 emissions, has resulted in  

E-Print Network (OSTI)

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel, combined with the expanded demand for biofuels, will result in higher food prices, since less land by using biofuels (vegetable oils). But the use of biofuels may not reduce CO2 emissions, even when

253

Effect of Fuel Fraction on Small Modified CANDLE Burn-up Based Gas Cooled Fast Reactors  

Science Conference Proceedings (OSTI)

A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE Burn-up has been performed. The objective of this research is to get optimal design parameters of such type reactors. The parameters of nuclear design including the critical condition, conversion ratio, and burn-up level were compared. These parameters are calculated by variation in the fuel fraction 47.5% up to 70%. Two dimensional full core multi groups diffusion calculations was performed by CITATION code. Group constant preparations are performed by using SRAC code system with JENDL-3.2 nuclear data library. In this design the reactor cores with cylindrical cell two dimensional R-Z core models are subdivided into several parts with the same volume in the axial directions. The placement of fuel in core arranged so that the result of plutonium from natural uranium can be utilized optimally for 10 years reactor operation. Modified CANDLE burn-up was established successfully in a core radial width 1.4 m. Total thermal power output for reference core is 550 MW. Study on the effect of fuel to coolant ratio shows that effective multiplication factor (k{sub eff}) is in almost linear relations with the change of the fuel volume to coolant ratio.

Ariani, Menik [Departmen of Physics Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40134 (Indonesia); Physics Department, Sriwijaya University, Kampus Indralaya, Ogan Ilir, Sumatera Selatan (Indonesia); Su'ud, Zaki; Waris, Abdul; Asiah, Nur [Departmen of Physics Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40134 (Indonesia); Shafii, M. Ali [Departmen of Physics Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40134 (Indonesia); Physics Department, Andalas University, Kampus Limau Manis, Padang, Sumatera Barat (Indonesia); Khairurrijal

2010-12-23T23:59:59.000Z

254

Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler  

Science Conference Proceedings (OSTI)

This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

Sharon Falcone Miller; Bruce G. Miller [Pennsylvania State University, University Park, PA (United States). Energy Institute

2007-12-15T23:59:59.000Z

255

Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels  

SciTech Connect

Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled â??Small Scale SOFC Demonstration using Bio-based and Fossil Fuels.â?ť Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

Michael Petrik; Robert Ruhl

2012-03-31T23:59:59.000Z

256

Effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic systems  

SciTech Connect

Progress is reported for the second year of this project to evaluate the effects of aqueous effluents from in-situ fossil fuel processing technologies on aquatic biota. The project objectives for Year 2 were pursued through five tasks: literature reviews on process water constituents, possible environmental impacts and potential control technologies; toxicity bioassays on the effects of coal gasification and oil shale retorting process waters and six process water constituents on aquatic biota; biodegradation studies on process water constituents; bioaccumulation factor estimation for the compounds tested in the toxicity bioassays; and recommendations on maximum exposure concentrations for process water constituents based on data from the project and from the literature. Results in each of the five areas of research are reported.

Bergman, H.L.

1978-12-01T23:59:59.000Z

257

Device for separating CO2 from fossil-fueled power plant emissions  

DOE Patents (OSTI)

A gas separation device includes an inner conduit, and a concentric outer conduit. An electrically conductive filter media, preferably a carbon fiber composite molecular sieve, is provided in the annular space between the inner conduit and the outer conduit. Gas flows through the inner conduit and the annular space between the inner conduit and the outer conduit, so as to contact the filter media. The filter media preferentially adsorbs at least one constituent of the gas stream. The filter media is regenerated by causing an electric current to flow through the filter media. The inner conduit and outer conduit are preferably electrically conductive whereby the regeneration of the filter media can be electrically stimulated. The invention is particularly useful for the removal of CO.sub.2 from the exhaust gases of fossil-fueled power plants.

Burchell, Timothy D [Oak Ridge, TN; Judkins, Roddie R [Knoxville, TN; Wilson, Kirk A [Knoxville, TN

2002-04-23T23:59:59.000Z

258

Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery  

DOE Patents (OSTI)

A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

2011-10-18T23:59:59.000Z

259

A compact breed and burn fast reactor using spent nuclear fuel blanket  

Science Conference Proceedings (OSTI)

A long-life breed-and-burn (B and B) type fast reactor has been investigated from the neutronics points of view. The B and B reactor has the capability to breed the fissile fuels and use the bred fuel in situ in the same reactor. In this work, feasibility of a compact sodium-cooled B and B fast reactor using spent nuclear fuel as blanket material has been studied. In order to derive a compact B and B fast reactor, a tight fuel lattice and relatively large fuel pin are used to achieve high fuel volume fraction. The core is initially loaded with an LEU (Low Enriched Uranium) fuel and a metallic fuel is used in the core. The Monte Carlo depletion has been performed for the core to see the long-term behavior of the B and B reactor. Several important parameters such as reactivity coefficients, delayed neutron fraction, prompt neutron generation lifetime, fission power, and fast neutron fluence, are analyzed through Monte Carlo reactor analysis. Evolution of the core fuel composition is also analyzed as a function of burnup. Although the long-life small B and B fast reactor is found to be feasible from the neutronics point of view, it is characterized to have several challenging technical issues including a very high fast neutron fluence of the structural materials. (authors)

Hartanto, D.; Kim, Y. [Korea Advanced Inst. of Science and Technology KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

2012-07-01T23:59:59.000Z

260

Results of emissions testing while burning densified refuse derived fuel, Dordt College, Sioux Center, Iowa  

DOE Green Energy (OSTI)

Pacific Environmental Services, Inc. provided engineering and source testing services to the Council of Great Lake Governors to support their efforts in promoting the development and utilization of densified refuse derived fuels (d-RDF) and pelletized wastepaper fuels in small steam generating facilities. The emissions monitoring program was designed to provide a complete air emissions profile while burning various refuse derived fuels. The specific goal of this test program was to conduct air emissions tests at Dordt College located in Sioux Center, Iowa and to identify a relationship between fuel types and emission characteristics. The sampling protocol was carried out June 12 through June 20, 1989 on boiler {number sign}4. This unit had been previously modified to burn d-RDF. The boiler was not equipped with any type of air pollution control device so the emissions samples were collected from the boiler exhaust stack on the roof of the boilerhouse. The emissions that were sampled included: particulates; PM{sub 10} particulates; hydrochloric acid; dioxins; furans; polychlorinated biphenyls (PCB); metals and continuous monitors for CO, CO{sub 2}O{sub 2}SO{sub x}NO{sub x} and total hydrocarbons. Grab samples of the fuels were collected, composited and analyzed for heating value, moisture content, proximate and ultimate analysis, ash fusion temperature, bulk density and elemental ash analysis. Grab samples of the boiler ash were also collected and analyzed for total hydrocarbons total dioxins, total furans, total PCBs and heavy metals. 77 figs., 20 tabs.

Not Available

1989-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel  

Science Conference Proceedings (OSTI)

A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

2012-11-20T23:59:59.000Z

262

Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel  

DOE Patents (OSTI)

A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

Steele, Robert C. (Woodinville, WA); Edmonds, Ryan G. (Renton, WA); Williams, Joseph T. (Kirkland, WA); Baldwin, Stephen P. (Winchester, MA)

2009-10-20T23:59:59.000Z

263

Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/03  

Science Conference Proceedings (OSTI)

This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions.

Not Available

1980-06-01T23:59:59.000Z

264

Emission Factors Handbook Addendum 2: Guidelines for Estimating Trace Substance Emissions from Fossil Fuel Steam Electric Power Plan ts  

Science Conference Proceedings (OSTI)

This handbook provides a tool for estimating trace substances emissions from fossil-fuel-fired power plants. The suggested emission factors are based on EPRI and U.S. Department of Energy (DOE) field measurements conducted at 51 power plants using generally consistent sampling and analytical protocols. This information will help utility personnel estimate air toxic emissions for permitting purposes.

2000-12-22T23:59:59.000Z

265

Quantification of fossil fuel CO2 emissions at the building/street scale for a large US city  

SciTech Connect

In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system and contribute to quantitatively-based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO2 emissions, the primary greenhouse gas, is essential. Called the ‘Hestia Project’, this research effort is the first to use bottom-up methods to quantify all fossil fuel CO2 emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. a large city (Indianapolis, Indiana USA). Here, we describe the methods used to quantify the on-site fossil fuel CO2 emissions across the city of Indianapolis, Indiana. This effort combines a series of datasets and simulation tools such as a building energy simulation model, traffic data, power production reporting and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare our estimate of fossil fuel emissions from natural gas to consumption data provided by the local gas utility. At the zip code level, we achieve a bias adjusted pearson r correlation value of 0.92 (p<0.001).

Gurney, Kevin R.; Razlivanov, I.; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul- Massih, Michel

2012-08-15T23:59:59.000Z

266

An overview of alternative fossil fuel price and carbon regulation scenarios  

SciTech Connect

The benefits of the Department of Energy's research and development (R&D) efforts have historically been estimated under business-as-usual market and policy conditions. In recognition of the insurance value of R&D, however, the Office of Energy Efficiency and Renewable Energy (EERE) and the Office of Fossil Energy (FE) have been exploring options for evaluating the benefits of their R&D programs under an array of alternative futures. More specifically, an FE-EERE Scenarios Working Group (the Working Group) has proposed to EERE and FE staff the application of an initial set of three scenarios for use in the Working Group's upcoming analyses: (1) a Reference Case Scenario, (2) a High Fuel Price Scenario, which includes heightened natural gas and oil prices, and (3) a Carbon Cap-and-Trade Scenario. The immediate goal is to use these scenarios to conduct a pilot analysis of the benefits of EERE and FE R&D efforts. In this report, the two alternative scenarios being considered by EERE and FE staff--carbon cap-and-trade and high fuel prices--are compared to other scenarios used by energy analysts and utility planners. The report also briefly evaluates the past accuracy of fossil fuel price forecasts. We find that the natural gas prices through 2025 proposed in the FE-EERE Scenarios Working Group's High Fuel Price Scenario appear to be reasonable based on current natural gas prices and other externally generated gas price forecasts and scenarios. If anything, an even more extreme gas price scenario might be considered. The price escalation from 2025 to 2050 within the proposed High Fuel Price Scenario is harder to evaluate, primarily because few existing forecasts or scenarios extend beyond 2025, but, at first blush, it also appears reasonable. Similarly, we find that the oil prices originally proposed by the Working Group in the High Fuel Price Scenario appear to be reasonable, if not conservative, based on: (1) the current forward market for oil, (2) current oil prices, (3) externally generated oil price forecasts, and (4) the historical difficulty in accurately forecasting oil prices. Overall, a spread between the FE-EERE High Oil Price and Reference scenarios of well over $8/bbl is supported by the literature. We conclude that a wide range of carbon regulation scenarios are possible, especially within the time frame considered by EERE and FE (through 2050). The Working Group's Carbon Cap-and-Trade Scenario is found to be less aggressive than many Kyoto-style targets that have been analyzed, and similar in magnitude to the proposed Climate Stewardship Act. The proposed scenario is more aggressive than some other scenarios found in the literature, however, and ignores carbon banking and offsets and does not allow nuclear power to expand. We are therefore somewhat concerned that the stringency of the proposed carbon regulation scenario in the 2010 to 2025 period will lead to a particularly high estimated cost of carbon reduction. As described in more detail later, we encourage some flexibility in the Working Group's ultimate implementation of the Carbon Cap-and-Trade Scenario. We conclude by identifying additional scenarios that might be considered in future analyses, describing a concern with the proposed specification of the High Fuel Price Scenario, and highlighting the possible difficulty of implementing extreme scenarios with current energy modeling tools.

Wiser, Ryan; Bolinger, Mark

2004-10-01T23:59:59.000Z

267

Coated Particle Fuel and Deep Burn Program Monthly Highlights January 2011  

Science Conference Proceedings (OSTI)

During FY 2011 the CP & DB Program will report Highlights on a monthly basis, but will no longer produce Quarterly Progress Reports. Technical details that were previously included in the quarterly reports will be included in the appropriate Milestone Reports that are submitted to FCRD Program Management. These reports will also be uploaded to the Deep Burn website. The Monthly Highlights report for December 2010, ORNL/TM-2011/10, was distributed to program participants on January 12, 2011. As reported last month, the final Quarterly for FY 2010, Deep Burn Program Quarterly Report for July - September 2010, ORNL/TM-2010/301, was announced to program participants and posted to the website on December 28, 2010. This report discusses the following: (1) Thermochemical Data and Model Development - (a) Thermochemical Modeling, (b) Actinide and Fission Product Transport, (c) Radiation Damage and Properties; (2) TRU (transuranic elements) TRISO (tri-structural isotropic) Development - (a) TRU Kernel Development, (b) Coating Development; (3) Advanced TRISO Applications - Metal Matrix Fuels for LWR; (4) LWR Fully Ceramic Fuel - (a) FCM Fabrication Development, (b) FCM Irradiation Testing; (5) Fuel Performance and Analytical Analysis - Fuel Performance Modeling.

Snead, Lance Lewis [ORNL; Bell, Gary L [ORNL; Besmann, Theodore M [ORNL

2011-02-01T23:59:59.000Z

268

Coated Particle Fuel and Deep Burn Program Monthly Highlights February 2011  

Science Conference Proceedings (OSTI)

During FY 2011 the CP & DB Program will report Highlights on a monthly basis, but will no longer produce Quarterly Progress Reports. Technical details that were previously included in the quarterly reports will be included in the appropriate Milestone Reports that are submitted to FCRD Program Management. These reports will also be uploaded to the Deep Burn website. The Monthly Highlights report for January 2010, ORNL/TM-2011/30, was distributed to program participants on February 8, 2011. As reported previously, the final Quarterly for FY 2010, Deep Burn Program Quarterly Report for July - September 2010, ORNL/TM-2010/301, was announced to program participants and posted to the website on December 28, 2010. This report discusses the following: (1) Thermochemical Data and Model Development - (a) Thermochemical Modeling, (b) Actinide and Fission Product Transport, (c) Radiation Damage and Properties; (2) TRU (transuranic elements) TRISO (tri-structural isotropic) Development - (a) TRU Kernel Development, (b) Coating Development; (3) Advanced TRISO Applications - Metal Matrix Fuels for LWR; (4) LWR Fully Ceramic Fuel - (a) FCM Fabrication Development, (b) FCM Irradiation Testing; and (5) Fuel Performance and Analytical Analysis - Fuel Performance Modeling.

Snead, Lance Lewis [ORNL; Bell, Gary L [ORNL; Besmann, Theodore M [ORNL

2011-03-01T23:59:59.000Z

269

Coated Particle Fuel and Deep Burn Program Monthly Highlights March 2011  

SciTech Connect

During FY 2011 the CP & DB Program will report Highlights on a monthly basis, but will no longer produce Quarterly Progress Reports. Technical details that were previously included in the quarterly reports will be included in the appropriate Milestone Reports that are submitted to FCRD Program Management. These reports will also be uploaded to the Deep Burn website. The Monthly Highlights report for February 2011, ORNL/TM-2011/71, was distributed to program participants on March 8, 2011. As reported previously, the final Quarterly for FY 2010, Deep Burn Program Quarterly Report for July - September 2010, ORNL/TM-2010/301, was announced to program participants and posted to the website on December 28, 2010. This report discusses the following: (1) Thermochemical Data and Model Development - (a) Thermochemical Modeling, (b) Thermomechanical Behavior, (c) Actinide and Fission Product Transport, (d) Radiation Damage and Properties; (2) TRU (transuranic elements) TRISO (tri-structural isotropic) Development - (a) TRU Kernel Development, (b) Coating Development; (3) Advanced TRISO Applications - Metal Matrix Fuels for LWR; (4) LWR Fully Ceramic Fuel - (a) FCM Fabrication Development, (b) FCM Irradiation Testing; and (5) Fuel Performance and Analytical Analysis - Fuel Performance Modeling.

Snead, Lance Lewis [ORNL; Bell, Gary L [ORNL; Besmann, Theodore M [ORNL

2011-04-01T23:59:59.000Z

270

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Fossil-Fuel-Fired Steam Generators," U.S. Environmentalbasin Boiler or PWR Steam Generator Blowdown Transmissionreactor coolant pumps, steam generators, piping, main stream

Nero, A.V.

2010-01-01T23:59:59.000Z

271

Deep Burn Fuel Cycle Integration: Evaluation of Two-Tier Scenarios  

Science Conference Proceedings (OSTI)

The use of a deep burn strategy using VHTRs (or DB-MHR), as a means of burning transuranics produced by LWRs, was compared to performing this task with LWR MOX. The spent DB-MHR fuel was recycled for ultimate final recycle in fast reactors (ARRs). This report summarizes the preliminary findings of the support ratio (in terms of MWth installed) between LWRs, DB-MHRs and ARRs in an equilibrium “two-tier” fuel cycle scenario. Values from literature were used to represent the LWR and DB-MHR isotopic compositions. A reactor physics simulation of the ARR was analyzed to determine the effect that the DB-MHR spent fuel cooling time on the ARR transuranic consumption rate. These results suggest that the cooling time has some but not a significant impact on the ARRs conversion ratio and transuranic consumption rate. This is attributed to fissile worth being derived from non-fissile or “threshold-fissioning” isotopes in the ARR’s fast spectrum. The fraction of installed thermal capacity of each reactor in the DB-MHR 2-tier fuel cycle was compared with that of an equivalent MOX 2-tier fuel cycle, assuming fuel supply and demand are in equilibrium. The use of DB-MHRs in the 1st-tier allows for a 10% increase in the fraction of fleet installed capacity of UO2-fueled LWRs compared to using a MOX 1st-tier. Also, it was found that because the DB-MHR derives more power per unit mass of transuranics charged to the fresh fuel, the “front-end” reprocessing demand is less than MOX. Therefore, more fleet installed capacity of DB-MHR would be required to support a given fleet of UO2 LWRs than would be required of MOX plants. However, the transuranic deep burn achieved by DB-MHRs reduces the number of fast reactors in the 2nd-tier to support the DB-MHRs “back-end” transuranic output than if MOX plants were used. Further analysis of the relative costs of these various types of reactors is required before a comparative study of these options could be considered complete.

S. Bays; H. Zhang; M. Pope

2009-05-01T23:59:59.000Z

272

Residential wood burning: Energy modeling and conventional fuel displacement in a national sample  

SciTech Connect

This research studied the natural, built, and behavioral factors predictive of energy consumption for residential space heating with wood or conventional fuels. This study was a secondary analysis of survey data from a nationwide representative sample of 5,682 households collected DOE in the 1984-1985 REC survey. Included were: weather, census division and utility data, interviewer-supplied dwelling measurements and respondent-reported energy-related family behaviors. Linear-regression procedures were used to develop a model that identified key determinants accounting for the variability in wood consumption. A nonlinear-regression model was employed to estimate the amount of conventional fuels used for space heating. The model was also used to estimate the amount of conventional fuels being displaced by wood-heating systems. There was a significant (p {le} .05) linear relationship between the dependent variable, square root of cords burned, various independent variables.

Warsco, K.S.

1988-01-01T23:59:59.000Z

273

Essays on Efficiency of the Farm Credit System and Dynamic Correlations in Fossil Fuel Markets  

E-Print Network (OSTI)

Markets have always changed in response to either exogenous or endogenous shocks. Many large events have occurred in financial and energy markets the last ten years. This dissertation examines market behavior and volatility in agricultural credit and fossil fuel markets under exogenous and endogenous changes in the last ten years. The efficiency of elements within the United States Farm Credit System, a major agricultural lender in the United States, and the dynamic correlation between coal, oil and natural gas prices, the three major fossil fuels, are examined. The Farm Credit system is a key lender in the U.S. agricultural sector, and its performance can influence the performance of the agricultural sector. However, its efficiency in providing credit to the agricultural sector has not been recently examined. The first essay of the dissertation provides assessments on the performance of elements within the Farm Credit System by measuring their relative efficiency using a stochastic frontier model. The second essay addresses the changes in relationship in coal, oil, and natural gas markets with respect to changes and turbulence in the last decade, which has also not been fully addressed in literature. The updated assessment on the relative performance of entities within the Farm Credit System provides information that the Farm Credit Administration and U.S. policy makers can use in their management of and policy toward the Farm Credit System. The measurement of the changes in fossil fuel markets’ relationships provides implications for energy investment, energy portfolio anagement, energy risk management, and energy security. It can also be used as a foundation for structuring forecasting models and other models related to energy markets. The dynamic correlations between coal, oil, and natural gas prices are examined using a dynamic conditional correlation multivariate autoregressive conditional heteroskedasticity (MGARCH DCC) model. The estimated results show that the FCS’s five banks and associations with large assets have more efficiently produced credit to the U.S. agricultural sector than smaller sized associations. Management compensation is found to be positively associated with the system’s efficiency. More capital investment and monitoring along with possible consolidation are implied for smaller sized associations to enhance efficiency. On average, the results show that the efficiency of the associations is increasing over time while the average efficiency of the five large banks is more stable. Overall, the associations exhibit a higher variation of efficiency than the five banks. In terms of energy markets the estimates from the MGARCH DCC model indicate significant and changing dynamic correlations and related volatility between the coal, oil, and natural gas prices. The coal price was found to experience more volatility and become more closely related to oil and natural gas prices in recent periods. The natural gas price was found to become more stable and drift away from its historical relationship with oil.

Dang, Trang Phuong Th 1977-

2012-12-01T23:59:59.000Z

274

Coated Particle Fuel and Deep Burn Program Monthly Highlights May 2011  

Science Conference Proceedings (OSTI)

During FY 2011 the CP & DB Program will report Highlights on a monthly basis, but will no longer produce Quarterly Progress Reports. Technical details that were previously included in the quarterly reports will be included in the appropriate Milestone Reports that are submitted to FCRD Program Management. These reports will also be uploaded to the Deep Burn website. The Monthly Highlights report for April 2011, ORNL/TM-2011/125, was distributed to program participants on May 10, 2011. As reported previously, the final Quarterly for FY 2010, Deep Burn Program Quarterly Report for July - September 2010, ORNL/TM-2010/301, was announced to program participants and posted to the website on December 28, 2010. This report discusses the following: (1) Fuel Performance Modeling - Fuel Performance Analysis; (2) Thermochemical Data and Model Development - (a) Thermochemical Modeling, (b) Thermomechanical Modeling, (c) Actinide and Fission Product Transport; (3) TRU (transuranic elements) TRISO (tri-structural isotropic) Development - (a) TRU Kernel Development, (b) Coating Development; and (4) LWR Fully Ceramic Fuel - (a) FCM Fabrication Development, (b) FCM Irradiation Testing.

Snead, Lance Lewis [ORNL; Bell, Gary L [ORNL; Besmann, Theodore M [ORNL

2011-06-01T23:59:59.000Z

275

Coated Particle Fuel and Deep Burn Program Monthly Highlights June 2011  

SciTech Connect

During FY 2011 the CP & DB Program will report Highlights on a monthly basis, but will no longer produce Quarterly Progress Reports. Technical details that were previously included in the quarterly reports will be included in the appropriate Milestone Reports that are submitted to FCRD Program Management. These reports will also be uploaded to the Deep Burn website. The Monthly Highlights report for May 2011, ORNL/TM-2011/126, was distributed to program participants on June 9, 2011. As reported previously, the final Quarterly for FY 2010, Deep Burn Program Quarterly Report for July - September 2010, ORNL/TM-2010/301, was announced to program participants and posted to the website on December 28, 2010. This report discusses the following: (1) Fuel Performance Modeling - Fuel Performance Analysis; (2) Thermochemical Data and Model Development - (a) Thermochemical Behavior, (b) Thermomechanical Modeling, (c) Actinide and Fission Product Transport; (3) TRU (transuranic elements) TRISO (tri-structural isotropic) Development - (a) TRU Kernel Development, (b) Coating Development; and (4) LWR Fully Ceramic Fuel - (a) FCM Fabrication Development, (b) FCM Irradiation Testing.

Snead, Lance Lewis [ORNL; Bell, Gary L [ORNL; Besmann, Theodore M [ORNL

2011-07-01T23:59:59.000Z

276

The Cellular Burning Regime in Type Ia Supernova Explosions - I. Flame Propagation into Quiescent Fuel  

E-Print Network (OSTI)

We present a numerical investigation of the cellular burning regime in Type Ia supernova explosions. This regime holds at small scales (i.e. below the Gibson scale), which are unresolved in large-scale Type Ia supernova simulations. The fundamental effects that dominate the flame evolution here are the Landau-Darrieus instability and its nonlinear stabilization, leading to a stabilization of the flame in a cellular shape. The flame propagation into quiescent fuel is investigated addressing the dependence of the simulation results on the specific parameters of the numerical setup. Furthermore, we investigate the flame stability at a range of fuel densities. This is directly connected to the questions of active turbulent combustion (a mechanism of flame destabilization and subsequent self-turbulization) and a deflagration-to-detonation transition of the flame. In our simulations we find no substantial destabilization of the flame when propagating into quiescent fuels of densities down to ~10^7 g/cm^3, corroborating fundamental assumptions of large-scale SN Ia explosion models. For these models, however, we suggest an increased lower cutoff for the flame propagation velocity to take the cellular burning regime into account.

F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

2003-12-03T23:59:59.000Z

277

The coprocessing of fossil fuels and biomass for CO{sub 2} emission reduction in the transportation sector  

DOE Green Energy (OSTI)

Research is underway to evaluate the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. These products are valuable in the market either as fuel or as chemical commodities. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat energies (turbines and internal combustion engines) for both mobile and stationary single and combined cycle power plants. When considering CO{sub 2} emission control in the utilization of fossil fuels, the copressing of those fossil fuels with biomass (which may include, wood, municipal solid waste and sewage sludge) is a viable mitigation approach. By coprocessing both types of feedstock to produce methanol and carbon while sequestering all or part of the carbon, a significant net CO{sub 2} reduction is achieved if the methanol is substituted for petroleum fuels in the transportation sector. The Hydrocarb process has the potential, if the R&D objectives are achieved, to produce alternative transportation fuel from indigenous resources at lower cost than any other biomass conversion process. These comparisons suggest the resulting fuel can significantly displace gasoline at a competitive price while mitigating CO{sub 2} emissions and reducing ozone and other toxics in urban atmospheres.

Steinberg, M. [Brookhaven National Lab., Upton, NY (United States); Dong, Yuanji [Hydrocarb Corp., New York, NY (United States); Borgwardt, R.H. [Environmental Protection Agency, Research Triangle Park, NC (United States)

1993-10-01T23:59:59.000Z

278

Method of burning sulfur-containing fuels in a fluidized bed boiler  

DOE Patents (OSTI)

A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

Jones, Brian C. (Windsor, CT)

1982-01-01T23:59:59.000Z

279

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents (OSTI)

The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

Yang, W.C.; Newby, R.A.; Lippert, T.E.

1997-08-05T23:59:59.000Z

280

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents (OSTI)

The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

Yang, Wen-Ching (Murrysville, PA); Newby, Richard A. (Pittsburgh, PA); Lippert, Thomas E. (Murrysville, PA)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

Science Conference Proceedings (OSTI)

Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

2008-08-13T23:59:59.000Z

282

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1981  

Science Conference Proceedings (OSTI)

Progress reports are presented for the following major areas of investigation: liquid fossil fuel cycle; extraction (resource assessment, enhanced recovery); liquid processing (characterization of petroleum and synthetic crude, thermodynamics; process technology); utilization; project integration and technology transfer. Highlights for this period in research studies are listed as those in extraction research and processing and thermodynamics research. Searches for microorganisms that will be useful in enhanced oil recovery have produced two promising leads. At Oklahoma State University, bacteria of the genus Clostridia have been found which can live in a brine solution as found in most petroleum reservoirs. These bacteria produce carbon dioxide, acetic acid, alcohols, and ketones as metabolic products. At the University of Georgia, a culture of bacteria has been found which will reduce the viscosity of a 10/sup 0/ API gravity oil by 95 percent. The analysis of heavy oils requires differentiation of sulfur, nitrogen, and oxygen-containing compounds from hydrocarbons. The most effective way to do this is with a high-resolution mass spectrometer that can distinguish between compounds having molecular weights only a fractional unit apart. These molecular weights are calculated from the computer acquired time-moments of the various ions in a mass spectrum. Thus, the accuracy of results reflects, in part, the numerical methods used in data processing. Consequently, the effect of the mathematical functions on the accuracy of mass measurement is being determined.

Not Available

1981-01-01T23:59:59.000Z

283

Coated Particle Fuel and Deep Burn Program Monthly Highlights April 2011  

SciTech Connect

The baseline change proposal BCP-FCRD-11026 submitted to change the due date for M21AF080202 'Demonstrate fabrication of Transuranic kernels of Plutonium-239/3.5at%Neptunium-237 using newly installed glove box facilities in ORNL 7930 hot cell complex' from 4/25/11 to 3/30/12 was approved this month. During FY 2011 the CP & DB Program will report Highlights on a monthly basis, but will no longer produce Quarterly Progress Reports. Technical details that were previously included in the quarterly reports will be included in the appropriate Milestone Reports that are submitted to FCRD Program Management. These reports will also be uploaded to the Deep Burn website. The Monthly Highlights report for March 2011, ORNL/TM-2011/96, was distributed to program participants on April 8, 2011. As reported previously, the final Quarterly for FY 2010, Deep Burn Program Quarterly Report for July - September 2010, ORNL/TM-2010/301, was announced to program participants and posted to the website on December 28, 2010. This report discusses the following: (1) Thermochemical Data and Model Development - (a) Thermochemical Modeling, (b) Thermomechanical Behavior, (c) Actinide and Fission Product Transport, (d) Radiation Damage and Properties; (2) TRU (transuranic elements) TRISO (tri-structural isotropic) Development - (a) TRU Kernel Development, (b) Coating Development; (3) Advanced TRISO Applications - Metal Matrix Fuels for LWR; (4) LWR Fully Ceramic Fuel - (a) FCM Fabrication Development, (b) FCM Irradiation Testing; (5) Fuel Performance and Analytical Analysis - Fuel Performance Modeling; and (6) ZrC Properties and Handbook - Properties of ZrC.

Snead, Lance Lewis [ORNL; Bell, Gary L [ORNL; Besmann, Theodore M [ORNL

2011-05-01T23:59:59.000Z

284

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Design Handbook for Fossil-Fueled Electric Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fifth EPRI ergonomics handbook; it provides a framework and specific guidelines for decisionmaking that will apply ergonomic principles to the design of electric generating stations. Fossil-fueled power plant operation and maintenance is physically strenuous, and it may contribute to development of musculoskeletal disorders (MSDs) such as carp...

2008-03-11T23:59:59.000Z

285

Toward a Common Method of Cost Estimation for CO2 Capture and Storage at Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

There are significant differences in the methods employed by various organizations to estimate the cost of carbon capture and storage (CCS) systems for fossil fuel power plants. Such differences often are not readily apparent in publicly reported CCS cost estimates. As a consequence, there is a significant degree of misunderstanding, confusion, and mis-representation of CCS cost information, especially among audiences not familiar with the details of CCS costing. Given the international importance ...

2013-03-18T23:59:59.000Z

286

Emissions of CO/sub 2/ to the atmosphere due to U. S. A. fossil fuel consumption  

SciTech Connect

Analysis and projection of carbon dioxide emitted to the atmosphere are estimated based on the Brookhaven reference energy system. Some new results are given on carbon dioxide contribution to the atmosphere from US fossil fuel consumption by different sectors including residential, commercial, industrial and transportation. The total weight of carbon as carbon dioxide emitted to the atmosphere and the additional CO/sub 2/ concentration over background by different subsectors in the years 1977, 1980, 1985, 1990, 2000 and 2020 are presented.

Dang, V.D.; Steinberg, M.

1980-06-01T23:59:59.000Z

287

Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950-1982. Tellus 36B  

E-Print Network (OSTI)

This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (C02) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: 1) updating the 1950 to present time series of C02 emissions from fossil fuel consumption and cement manufacture, 2) extending this time series back to 1751, 3) gridding the data at 1 ' by 1 ' resolution, and 4) estimating the isotopic signature of these emissions. In 1991, global emissions of C02 from fossil fuel and cement increased 1.5 % over 1990 levels to 6188 x lo6 metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement wit % two other, but shorter, energy time series. A latitudinal distriiution of carbon emissions is being completed. A southward shift in the major mass of C02 emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population

Robert J. Andres; Gregg Marl; Tom Boden; Steve Bischof

1984-01-01T23:59:59.000Z

288

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

with the more-polluting fossil fuels being consumed abroaddomestic fuel consumers and fossil fuel suppliers. Numericalequivalent quantity of fossil fuel but may replace more or

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

289

SPATIAL AND SEASONAL DISTRIBUTION OF CARBON DIOXIDE EMISSIONS FROM FOSSIL-FUEL COMBUSTION; GLOBAL, REGIONAL, AND NATIONAL POTENTIAL FOR SUSTAINABLE BIOENERGY FROM RESIDUE BIOMASS AND MUNICIPAL SOLID WASTE.  

E-Print Network (OSTI)

??Combustion of fossil fuels releases carbon dioxide (CO2) into the atmosphere, and has led to an increase in the atmospheric concentration of CO2. CO2 is… (more)

Gregg, Jay Sterling

2009-01-01T23:59:59.000Z

290

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Plant Operators and Mechanics in Fossil-Fueled Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Committee Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the sixth EPRI ergonomics handbook; it specifically focuses on tasks performed by plant operators and mechanics working in fossil-fueled generating stations and also addresses some tasks performed by steam services technicians. Fossil-fueled generating station operational and mechanical work is physically strenuous and can expose workers...

2008-12-15T23:59:59.000Z

291

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

292

Table 3.8 Value of Fossil Fuel Exports, 1949-2011 (Billion Dollars)  

U.S. Energy Information Administration (EIA)

Energy, Office of Fossil Energy. Crude Oil and Petroleum Products: - 1949-1988-Bureau of the Census, U.S. Exports, FT410. - 1989 forward-Bureau of the Census, Foreign ...

293

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the available data from laboratory, pilot and full-scale SCR units was reviewed, leading to hypotheses about the mechanism for mercury oxidation by SCR catalysts.

Constance Senior

2004-04-30T23:59:59.000Z

294

Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report  

SciTech Connect

Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500şC to 600şC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A—MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled “Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled “Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors” Appendix B—External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, “Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, “Uranium Powder Production Using a Hydride-Dehydride Process,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C—Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys” presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis by William Sames, Research Fellow, entitled “Uranium Metal Powder Production, Particle Dis

Sean M. McDeavitt

2011-04-29T23:59:59.000Z

295

TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS  

DOE Green Energy (OSTI)

With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easily processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined less by the needs of the plant than by the availability in the soil solution; in addition to occurring naturally, Cl is present in excess as the anion complement in K fertilizer applications. An analysis was performed on existing data for switchgrass samples from ten different farms in the south-central portion of Iowa, with the goal of determining correlations between switchgrass elemental composition and geographical and seasonal changes so as to identify factors that influence the elemental composition of biomass. The most important factors in determining levels of various chemical compounds were found to be seasonal and geographical differences related to soil conditions. Combustion testing was performed to obtain deposits typical of boiler fouling and slagging conditions as well as fly ash. Analysis methods using computer-controlled scanning electron microscopy and chemical fractionation were applied to determine the composition and association of inorganic materials in the biomass samples. Modified sample preparation techniques and mineral quantification procedures using cluster analysis were developed to characterize the inorganic material in these samples. Each of the biomass types exhibited different inorganic associations in the fuel as well as in the deposits and fly ash. Morphological analyses of the wheat straw show elongated 10-30-{micro}m amorphous silica particles or phytoliths in the wheat straw structure. Alkali such as potassium, calcium, and sodium is organically bound and dispersed in the organic structure of the biomass materials. Combustion test results showed that the blends fed quite evenly, with good burnout. Significant slag deposit formation was observed for the 100% wheat straw, compared to bituminous and subbituminous coals burned under similar conditions. Although growing rapidly, the fouling deposits of the biomass and coal-biomass blends were significantly weaker than those of the coals. Fouling was only slightly worse for the 100% wheat straw fuel compared to the coals. The wheat straw ash was found to show the greatest similar

Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands; Melanie D. Hetland; Mark A. Musich; Charlene R. Crocker; Jonas Dahl; Stacie Laducer

2001-08-01T23:59:59.000Z

296

Summary of research on hydrogen production from fossil fuels conducted at NETL  

DOE Green Energy (OSTI)

In this presentation we will summarize the work performed at NETL on the production of hydrogen via partial oxidation/dry reforming of methane and catalytic decomposition of hydrogen sulfide. We have determined that high pressure resulted in greater carbon formation on the reforming catalysts, lower methane and CO2 conversions, as well as a H2/CO ratio. The results also showed that Rh/alumina catalyst is the most resistant toward carbon deposition both at lower and at higher pressures. We studied the catalytic partial oxidation of methane over Ni-MgO solid solutions supported on metal foams and the results showed that the foam-supported catalysts reach near-equilibrium conversions of methane and H2/CO selectivities. The rates of carbon deposition differ greatly among the catalysts, varying from 0.24 mg C/g cat h for the dipped foams to 7.0 mg C/g cat h for the powder-coated foams, suggesting that the exposed Cr on all of the foam samples may interact with the Ni-MgO catalyst to kinetically limit carbon formation. Effects of sulfur poisoning on reforming catalysts were studies and pulse sulfidation of catalyst appeared to be reversible for some of the catalysts but not for all. Under pulse sulfidation conditions, the 0.5%Rh/alumina and NiMg2Ox-1100şC (solid solution) catalysts were fully regenerated after reduction with hydrogen. Rh catalyst showed the best overall activity, less carbon deposition, both fresh and when it was exposed to pulses of H2S. Sulfidation under steady state conditions significantly reduced catalyst activity. Decomposition of hydrogen sulfide into hydrogen and sulfur was studied over several supported metal oxides and metal oxide catalysts at a temperature range of 650-850°C. H2S conversions and effective activation energies were estimated using Arrhenius plots. The results of these studies will further our understanding of catalytic reactions and may help in developing better and robust catalysts for the production of hydrogen from fossil fuels

Shamsi, Abolghasem

2008-03-30T23:59:59.000Z

297

An overview of alternative fossil fuel price and carbon regulation scenarios  

E-Print Network (OSTI)

reaction of energy markets to higher fuel prices. Combinedreaction of energy markets to higher fuel prices. Other Highin spot market prices (note California Energy Commission.

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

298

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network (OSTI)

in the Manufacture of Corn Ethanol. St. Louis, National CornWetcake” is a form of corn ethanol co-product that requiresTypical dry-grind corn ethanol facilities burn fossil fuels

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

299

The Cellular Burning Regime in Type Ia Supernova Explosions - II. Flame Propagation into Vortical Fuel  

E-Print Network (OSTI)

We investigate the interaction of thermonuclear flames in Type Ia supernova explosions with vortical flows by means of numerical simulations. In our study, we focus on small scales, where the flame propagation is no longer dominated by the turbulent cascade originating from large-scale effects. Here, the flame propagation proceeds in the cellular burning regime, resulting from a balance between the Landau-Darrieus instability and its nonlinear stabilization. The interaction of a cellularly stabilized flame front with a vortical fuel flow is explored applying a variety of fuel densities and strengths of the velocity fluctuations. We find that the vortical flow can break up the cellular flame structure if it is sufficiently strong. In this case the flame structure adapts to the imprinted flow field. The transition from the cellularly stabilized front to the flame structure dominated by vortices of the flow proceeds in a smooth way. The implications of the results of our simulations for Type Ia Supernova explosion models are discussed.

F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

2003-12-08T23:59:59.000Z

300

Reactivity loss validation of high burn-up PWR fuels with pile-oscillation experiments in MINERVE  

Science Conference Proceedings (OSTI)

The ALIX experimental program relies on the experimental validation of the spent fuel inventory, by chemical analysis of samples irradiated in a PWR between 5 and 7 cycles, and also on the experimental validation of the spent fuel reactivity loss with bum-up, obtained by pile-oscillation measurements in the MINERVE reactor. These latter experiments provide an overall validation of both the fuel inventory and of the nuclear data responsible for the reactivity loss. This program offers also unique experimental data for fuels with a burn-up reaching 85 GWd/t, as spent fuels in French PWRs never exceeds 70 GWd/t up to now. The analysis of these experiments is done in two steps with the APOLLO2/SHEM-MOC/CEA2005v4 package. In the first one, the fuel inventory of each sample is obtained by assembly calculations. The calculation route consists in the self-shielding of cross sections on the 281 energy group SHEM mesh, followed by the flux calculation by the Method Of Characteristics in a 2D-exact heterogeneous geometry of the assembly, and finally a depletion calculation by an iterative resolution of the Bateman equations. In the second step, the fuel inventory is used in the analysis of pile-oscillation experiments in which the reactivity of the ALIX spent fuel samples is compared to the reactivity of fresh fuel samples. The comparison between Experiment and Calculation shows satisfactory results with the JEFF3.1.1 library which predicts the reactivity loss within 2% for burn-up of {approx}75 GWd/t and within 4% for burn-up of {approx}85 GWd/t. (authors)

Leconte, P.; Vaglio-Gaudard, C.; Eschbach, R.; Di-Salvo, J.; Antony, M.; Pepino, A. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

What are the likely roles of fossil fuels in the next 15, 50, and 100 years, with or without active controls on greenhouse gas emissions  

SciTech Connect

Since the industrial revolution, the production and utilization of fossil fuels have been an engine driving economic and industrial development in many countries worldwide. However, future reliance on fossil fuels has been questioned due to emerging concerns about greenhouse gas (GHG) emissions, particularly carbon dioxide (CO{sub 2}), and its potential contribution to global climate change (GCC). While substantial uncertainties exist regarding the ability to accurately predict climate change and the role of various greenhouse gases, some scientists and policymakers have called for immediate action. As a result, there have been many proposals and worldwide initiatives to address the perceived problem. In many of these proposals, the premise is that CO{sub 2} emissions constitute the principal problem, and, correspondingly, that fossil-fuel combustion must be curtailed to resolve this problem. This paper demonstrates that the worldwide fossil fuel resource base and infrastructure are extensive and thus, will continue to be relied on in developed and developing countries. Furthermore, in the electric generating sector (the focus of this paper), numerous clean coal technologies (CCTs) are currently being demonstrated (or are under development) that have higher conversion efficiencies, and thus lower CO{sub 2} emission rates than conventional coal-based technologies. As these technologies are deployed in new power plant or repowering applications to meet electrical load growth, CO{sub 2} (and other GHG) emission levels per unit of electricity generated will be lower than that produced by conventional fossil-fuel technologies. 37 refs., 14 figs., 11 tabs.

Kane, R.L. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (USA)); South, D.W. (Argonne National Lab., IL (USA))

1990-01-01T23:59:59.000Z

302

Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A.  

NLE Websites -- All DOE Office Websites (Extended Search)

State-Level Emission Estimates State-Level Emission Estimates Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A. and the District of Columbia for Each Year from 1960 through 2001 graphics Graphics data Data (ASCII comma-delimited) Investigators T.J. Blasing and Gregg Marland Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6335, U.S.A. Christine Broniak Department of Agricultural & Resource Economics, Oregon State University, Corvallis, Oregon 97331-3601 DOI 10.3334/CDIAC/00003 Period of Record 1960-2001 Methods Consumption data for coal, petroleum, and natural gas are multiplied by their respective thermal conversion factors, which are in units of heat energy per unit of fuel consumed (i.e., per cubic foot, barrel, or ton), to

303

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Fuel use, CO 2 emissions, and CO 2 emission factors of ten largest California electricity generatingFuel use, CO 2 emissions, and CO 2 emission factors of ten largest California electricity generating

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

304

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oil22 CHP plants. For petroleum coke, CALEB only reports final

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

305

Table 3.9 Value of Fossil Fuel Net Imports, 1949-2011 (Billion ...  

U.S. Energy Information Administration (EIA)

1 Includes petroleum preparations, liquefied propane and butane, and, beginning in 1997, other mineral fuels. R=Revised. P=Preliminary. E=Estimate.

306

An overview of alternative fossil fuel price and carbon regulation scenarios  

E-Print Network (OSTI)

3) inclusion of high coal prices within the High Fuel Pricegas prices (as well as coal prices, as substitutes for both

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

307

Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases  

SciTech Connect

This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project â??DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases.â?ť This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

Hai Xiao; Junhang Dong; Jerry Lin; Van Romero

2011-12-31T23:59:59.000Z

308

Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 1. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California  

DOE Green Energy (OSTI)

This report presents an overview of a project on the health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. In addition to presenting an executive summary of the project, it sets forth the main results of the four tasks of the project: to review the health impacts (and related standards) of these forms of power generation, to review the status of standards related to plant safety (with an emphasis on nuclear power), to consider the role of the California Energy Resources Conservation and Development Commission in selection of standards, and to set forth methodologies whereby that Commission may review the health and safety aspects of proposed sites and facilities.

Nero, A.V. Jr.

1977-01-01T23:59:59.000Z

309

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

Constance Senior

2004-12-31T23:59:59.000Z

310

Plasma Nanocrystalline Doped Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Advanced Research contacts Robert R. Romanosky Technology Manager Advanced Research National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov susan M. Maley Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1321 susan.maley@netl.doe.gov Hai Xiao University of Missouri-Rolla Electrical and Computer Engineering Department Rolla, MO 65409 573-341-6887 xiaoha@umr.edu Novel seNsors for high temperature iN-situ moNitoriNg of fossil fuel gases Description Novel types of sensors are needed to withstand the harsh environments characteristic of advanced power generation systems, particularly gasification-based systems.

311

High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor  

SciTech Connect

The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

2010-09-01T23:59:59.000Z

312

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

1A5) Nat Gas Petroleum Coal Source: CARB, 2007a Note: CodePetroleum and Coal Products Manufac. Refinery Fuel Sourceand total petroleum products. Data Sources In the CALEB

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

313

Fossil-Fuel CO2 Emissions from Central America, South America...  

NLE Websites -- All DOE Office Websites (Extended Search)

Venezuela (46.2), Chile (19.9), Columbia (18.5), Trinidad and Tobago (13.6), and Peru (11.1). This is a region of great diversity. Liquid fuels account for 60.8% of the 2008...

314

Cofiring: technological option in Romania for promoting cleaner fossil fuels usage.  

E-Print Network (OSTI)

??Co-firing refers to the simultaneous or alternative utilisation of two or more fuels in a combustion unit for the purpose of heat/power generation and it… (more)

Marin, Bogdan

2008-01-01T23:59:59.000Z

315

Direct Measurement of Initial Enrichment, Burn-up and Cooling Time of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument  

SciTech Connect

An outline of this presentation of what a Differential Die-Away (DDA) instrument can do are: (1) Principle of operation of DDA instrument; (2) Determination of initial enrichment (IE) ({sigma} < 5%); (3) Determination of burn up (BU) ({sigma} {approx} 6%); (4) Determination of cooling time (CT) ({sigma} {approx} 20-50%); and (5) DDA instrument as a standalone device. DDA response (fresh fuel vs. spent fuel) is: (1) Fresh fuel => DDA response increases (die-away time is longer) with increasing fissile content; and (2) Spent fuel => DDA response decreases (die-away time is shorter) with higher burn-up (i.e. more neutron absorbers present).

Henzl, Vladimir [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

316

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the second set of mercury measurements was made after the catalysts had been exposed to flue gas for about 2,000 hours. There was good agreement between the Ontario Hydro measurements and the SCEM measurements. Carbon trap measurements of total mercury agreed fairly well with the SCEM. There did appear to be some loss of mercury in the sampling system toward the end of the sampling campaign. NO{sub x} reductions across the catalysts ranged from 60% to 88%. Loss of total mercury across the commercial catalysts was not observed, as it had been in the March/April test series. It is not clear whether this was due to aging of the catalyst or to changes in the sampling system made between March/April and August. In the presence of ammonia, the blank monolith showed no oxidation. Two of the commercial catalysts showed mercury oxidation that was comparable to that in the March/April series. The other three commercial catalysts showed a decrease in mercury oxidation relative to the March/April series. Oxidation of mercury increased without ammonia present. Transient experiments showed that when ammonia was turned on, mercury appeared to desorb from the catalyst, suggesting displacement of adsorbed mercury by the ammonia.

Constance Senior; Temi Linjewile

2003-10-31T23:59:59.000Z

317

Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor  

Science Conference Proceedings (OSTI)

The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high TRU content and high burn-up).

B. Boer; A. M. Ougouag

2010-09-01T23:59:59.000Z

318

Fertile free fuels for plutonium and minor actinides burning in LWRs  

E-Print Network (OSTI)

The feasibility of using various uranium-free fuels for plutonium incineration in present light water reactors is investigated. Two major categories of inert matrix fuels are studied: composite ceramic fuel particles ...

Zhang, Yi, 1979-

2003-01-01T23:59:59.000Z

319

Direct electrochemical conversion of carbon: systems for efficient conversion of fossil fuels to electricity  

DOE Green Energy (OSTI)

The direct electrochemical conversion of carbon involves discharge of suspensions of reactive carbon particles in a molten salt electrolyte against an oxygen (air) cathode. (Figure 1). The free energy and the enthalpy of the oxidation reaction are nearly identical. This allows theoretical efficiencies ({Delta}G(T)/{Delta}H) to approach 100% at temperatures from 500 to 800 C. Entropy heat losses are therefore negligible. The activities of the elemental carbon and of the carbon dioxide product are uniform throughout the fuel cell and constant over discharge time. This stabilizes cell EMF and allows full utilization of the carbon fuel in a single pass. Finally, the energy cost for pyrolysis of hydrocarbons is generally very low compared with that of steam reforming or water gas reactions. Direct electrochemical conversion of carbon might be compared with molten carbonate fuel cell using carbon rather than hydrogen. However, there are important differences. There is no hydrogen involved (except from trace water contamination). The mixture of molten carbonate and carbon is not highly flammable. The carbon is introduced in as a particulate, rather than as a high volume flow of hydrogen. At the relatively low rates of discharge (about 1 kA/m{sup 2}), the stoichiometric requirements for carbon dioxide by the cathodic reaction may be met by diffusion across the thin electrolyte gap. We report recent experimental work at LLNL using melt slurries of reactive carbons produced by the thermal decomposition of hydrocarbons. We have found that anodic reactivity of carbon in mixed carbonate melts depends strongly on form, structure and nano-scale disorder of the materials, which are fixed by the hydrocarbon starting material and the conditions of pyrolysis. Thus otherwise chemically pure carbons made by hydrocarbon pyrolysis show rates at fixed potentials that span an order of magnitude, while this range lies 1-2 orders of magnitude higher than the current density of graphite plate electrodes. One carbon materials was identified which delivered anode current densities of 1 kA/m{sup 2} at 0.8 V (i.e., 80% efficiency, based on the standard enthalpy of carbon/oxygen reaction, and assuming full conversion), which we believe to be sufficiently great to allow practical application in fuel cell arrays. Since the hydrocarbon starting materials are ''ash free,'' entrainment of ash into the melt is not limiting. Finally, the use of fine carbon particulates in slurries avoids cost and logistics of carbon electrode manufacture and distribution.

Cooper, J F; Cherepy, N; Krueger, R

2000-08-10T23:59:59.000Z

320

www.fossil.energy.gov  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Office of Fossil Energy (FE) programs are focused on The Office of Fossil Energy (FE) programs are focused on activities related to the reliable, efficient, affordable and en- vironmentally sound use of fossil fuels which are essential to our Nation's security and economic prosperity. FE manages DOE's Fossil Energy Research and Development Program, which includes the CCS Dem- onstration Programs; Carbon Capture and Storage and Power Systems Program; and

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

this report was peer reviewed by these contributors and their comments have been incorporated. Among key findings is that, for all cases examined on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol utilized as both E85 and E10 outperforms that of conventional (current) and of reformulated (future) gasoline with respect to energy use and greenhouse gas production. In many cases, the superiority of the energy and GHG result is quite pronounced (i.e., well outside the range of model "noise")

Michael Wang Christopher; Michael Wang; Christopher Saricks

1997-01-01T23:59:59.000Z

322

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

Science Conference Proceedings (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

323

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

DOE Green Energy (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

324

Comparative analysis of structural concrete quality assurance practices on three fossil fuel power plant construction projects. Final report  

SciTech Connect

The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to criteria similar to those which apply on nuclear power plant projects. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards.

Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

1978-06-01T23:59:59.000Z

325

Apparatus and method for burning a lean, premixed fuel/air ...  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; ...

326

Advanced fossil energy utilization  

Science Conference Proceedings (OSTI)

This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

2010-01-01T23:59:59.000Z

327

Fossil fuel and hydrocarbon conversion using hydrogen-rich plasmas. Topical report February 1994--February 1995  

DOE Green Energy (OSTI)

Experiments were made on use of H and CH plasmas for converting waste materials and heavy oils to H-rich transportation fuels. Batch and continuous experiments were conducted with an industrial microwave generator and a commercial microwave oven. A continuously circulating reactor was constructed for conducting experiments on flowing oils. Experiments on decomposition of scrap tires showed that microwave plasmas can be used to decompose scrap tires into potentially useful liquid products. In a batch experiment using a commercial microwave oven, about 20% of the tire was converted to liquid products in about 9 minutes. Methane was decomposed in a microwave plasma to yield a liquid products composed of various compound types; GC/MS analyses identified unsaturated compounds including benzene, toluene, ethyl benzene, methyl and ethyl naphthalene, small amounts of larger aromatic rings, and olefinic compounds. Experiments on a crude oil in a continuously flowing reactor showed that distillate materials are produced using H and CH plasmas. Also, the recycle oils had an overall carbon aromaticity lower than that of starting feed material, indicating that some hydrogenation and methanation had taken place in the recycle oils.

NONE

1995-02-01T23:59:59.000Z

328

Review of air quality modeling techniques. Volume 8. [Assessment of environmental effects of nuclear, geothermal, and fossil-fuel power plants  

DOE Green Energy (OSTI)

Air transport and diffusion models which are applicable to the assessment of the environmental effects of nuclear, geothermal, and fossil-fuel electric generation are reviewed. The general classification of models and model inputs are discussed. A detailed examination of the statistical, Gaussian plume, Gaussian puff, one-box and species-conservation-of-mass models is given. Representative models are discussed with attention given to the assumptions, input data requirement, advantages, disadvantages and applicability of each.

Rosen, L.C.

1977-01-01T23:59:59.000Z

329

Comparison of Control System Performance for Fossil-Fuel Fired Power Plants Using Emission Measurement Data from the Utility Industr y Information Collection Request for Hazardous Air Pollutants  

Science Conference Proceedings (OSTI)

On On May 3, 2011, the U.S. Environmental Protection Agency (EPA) published a notice of proposed rulemaking (40 Code of Federal Regulations Parts 60 and 63: National Emission Standards for Hazardous Air Pollutants from Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-FuelFired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam-Generating Units). The intent of this rulemaking is to set Maximum Achiev...

2011-12-23T23:59:59.000Z

330

Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution  

SciTech Connect

This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (CO{sub 2}) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1{sup 0} by 1{sup 0} resolution, and (4) estimating the isotopic signature of these emissions. In 1991, global emissions of CO{sub 2} from fossil fuel and cement increased 1.5% over 1990 levels to 6188 {times} 10{sup 6} metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement with two other, but shorter, energy time series. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these emissions has been re-examined. The emissions of the last two decades are approximately 1{per_thousand} lighter than previously reported (Tans, 1981). This lightening of the emissions signature is due to fossil fuel gases and liquids, including a revision of their {delta}{sup 13}C isotopic signature and an increased production rate.

Andres, R.J.; Marland, G.; Boden, T.; Bischof, S.

1994-10-01T23:59:59.000Z

331

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fossil Fossil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Fossil energy sources, including oil, coal and natural gas, are non-renewable resources that formed when prehistoric plants and animals died and were gradually buried by layers of rock. Over millions of years, different types of fossil fuels formed -- depending on what combination of organic matter was present, how long it was buried and what temperature and pressure conditions existed as time passed.

332

Process for clean-burning fuel from low-rank coal  

SciTech Connect

A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

Merriam, Norman W. (Laramie, WY); Sethi, Vijay (Laramie, WY); Brecher, Lee E. (Laramie, WY)

1994-01-01T23:59:59.000Z

333

Deep Burn Develpment of Transuranic Fuel for High-Temperature Helium-Cooled Reactors - July 2010  

SciTech Connect

The DB Program Quarterly Progress Report for April - June 2010, ORNL/TM/2010/140, was distributed to program participants on August 4. This report discusses the following: (1) TRU (transuranic elements) HTR (high temperature helium-cooled reactor) Fuel Modeling - (a) Thermochemical Modeling, (b) 5.3 Radiation Damage and Properties; (2) TRU HTR Fuel Qualification - (a) TRU Kernel Development, (b) Coating Development, (c) ZrC Properties and Handbook; and (3) HTR Fuel Recycle - (a) Recycle Processes, (b) Graphite Recycle, (c) Pyrochemical Reprocessing - METROX (metal recovery from oxide fuel) Process Development.

Snead, Lance Lewis [ORNL; Besmann, Theodore M [ORNL; Collins, Emory D [ORNL; Bell, Gary L [ORNL

2010-08-01T23:59:59.000Z

334

P2-03: 3D Characterization of High Burn-up MOX Fuel  

Science Conference Proceedings (OSTI)

Currently fast reactor performance is largely defined by the limitations of the materials involved in reactors, especially the metallic or mixed oxide ((U, Pu)O2) fuel ...

335

Methods of economic analysis applied to fusion research: discount rate determination and the fossil fuel price effect  

SciTech Connect

In current and previous efforts, ECON has provided a preliminary economic assessment of a fusion research program. Part of this effort was the demonstration of a methodology for the estimation of reactor system costs and risk and for the treatment of program alternatives as a series of steps (tests) to buy information, thereby controlling program risk and providing a sound economic rationale for properly constructed research programs. The first phase of work also identified two areas which greatly affect the overall economic evaluation of fusion research and which warranted further study in the second phase. This led to the two tasks of the second phase reported herein: (1) discount rate determination and (2) evaluation of the effect of the expectation of the introduction of fusion power on current fossil fuel prices. In the first task, various conceptual measures of the social rate of discount were reviewed and critiqued. In the second task, a benefit area that had been called out by ECON was further examined. Long-range R and D yields short-term benefits in the form of lower nonrenewable energy resource prices because the R and D provides an expectation of future competition for the remaining reserves at the time of technology availability. ECON developed a model of optimal OPEC petroleum pricing as a function of the expectation of future competing technologies. It was shown that the existence of this expectation lowers the optimal OPEC export price and that accelerated technology R and D programs should provide further price decreases. These price reductions translate into benefits to the U.S. of at least a billion dollars.

1978-09-25T23:59:59.000Z

336

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

SciTech Connect

Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were observed. The southward fluxes over the Pacific Ocean were maintained in a relatively coherent flow within the marine boundary layer, while the eastward fluxes were more vertically dispersed. Our results indicate that state and continental scale atmospheric inversions need to consider areas where concentration measurements are sparse (e.g., over the ocean to the south and west of California), transport within and across the marine boundary layer, and terrestrial boundary layer dynamics. Measurements of {Delta}{sub g} can be very useful in constraining these estimates.

Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

2008-05-01T23:59:59.000Z

337

Monthly 2008 Utility and Nonutility Fuel Receipts and Fuel Quality...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tags fossil fuel receipts, coal receipts, oil receipts, gas receipts, fossil fuel consumption, electricity generating fuel Dataset Ratings Overall 0 No votes yet Data...

338

The closed cycle gas turbine, the most efficient turbine burning any fuel  

Science Conference Proceedings (OSTI)

There are two types of gas turbines. The open cycle is very well known as, for example, the JET. The closed cycle in the U.S.A. is just starting to be well known. In Europe, the closed cycle gas turbine has been used in power plants, especially in Germany, and have been very efficient in burning coal. Concentrated in this paper is the Closed Cycle Gas Turbine (CCGT) as it is the most efficient type of turbine. There are the following sections in this paper: closed cycle gas turbine in more detail; various advantages of the CCGT; Nuclear power; and three comments.

Sawyer, R.T.

1983-12-01T23:59:59.000Z

339

Process for clean-burning fuel from low-rank coal  

DOE Patents (OSTI)

A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

Merriam, N.W.; Sethi, V.; Brecher, L.E.

1994-06-21T23:59:59.000Z

340

Deep Burn: Development of Transuranic Fuel for High-Temperature Helium-Cooled Reactors- Monthly Highlights November 2010  

SciTech Connect

During FY 2011 the DB Program will report Highlights on a monthly basis, but will no longer produce Quarterly Progress Reports. Technical details that were previously included in the quarterly reports will be included in the appropriate Milestone Reports that are submitted to FCRD Program Management. These reports will also be uploaded to the Deep Burn website. The Monthly Highlights report for October 2010, ORNL/TM-2010/300, was distributed to program participants on November 29, 2010. This report discusses the following: (1) Thermochemical Data and Model Development; (2) TRU (transuranic elements) TRISO (tri-structural isotropic) Development - (a) TRU Kernel Development, (b) Coating Development; (3) LWR Fully Ceramic Fuel - (a) FCM Fabrication Development, (b) FCM Irradiation Testing.

Snead, Lance Lewis [ORNL; Bell, Gary L [ORNL; Besmann, Theodore M [ORNL

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fossil Fuels Portal  

Science Conference Proceedings (OSTI)

... Latest Publications. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1. ...

2012-12-26T23:59:59.000Z

342

Taxes on fossil fuels.  

E-Print Network (OSTI)

?? Efterfrĺgan pĺ biobränslen har ökat de 30 senaste ĺren och under samma tidsperiod har oljepriset stigit. I den här uppsatsen har vi undersökt i… (more)

Östman, Beata

2006-01-01T23:59:59.000Z

343

Los Alamos Lab: Fossil Energy & Environment, Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Jutta Kayser 505-663-5649 Program Manager Melissa Fox 505-663-5538 A New Era for Fossil Fuels The Office of Fossil Energy and Environment (FE) is the focal point for Los...

344

Comparative analysis of structural concrete Quality Assurance practices on nine nuclear and three fossil fuel power plant construction projects. Final summary report  

SciTech Connect

A summary of two reports, COO/4120-1 and COO/4120-2, is given. A comparative analysis was made of the Quality Assurance practices related to the structural concrete phase on nine nuclear and three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. For the nuclear projects the analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. For the fossil projects the analysis identified the response of each Quality Assurance program to criteria similar to those which were applicable in the nuclear situation. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects.

Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.J. Jr.

1978-12-01T23:59:59.000Z

345

Fossil energy use in conventional and low-external-input cropping systems.  

E-Print Network (OSTI)

??The production of fossil fuels will crest within the next decade and with reliance of modern conventional agriculture on fossil fuel energy inputs, food production… (more)

Cruse, Michael James

2009-01-01T23:59:59.000Z

346

Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

gas is a fossil fuel that generates less air pollutants and greenhouse gases. CNG Logo Propane, also called liquefied petroleum gas (LPG), is a domestically abundant fossil fuel...

347

Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Fossil Energy Research and Development Table of Contents Page Appropriation Language .................................................................................................................... FE-3 Overview ............................................................................................................................................ FE-4 Coal .................................................................................................................................................. FE-13

348

Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979  

SciTech Connect

This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

Bergman, H.L.

1980-01-04T23:59:59.000Z

349

Observing the Chemistry of Cities: Space-based Spectroscopy of NO2  

E-Print Network (OSTI)

roles of fossil fuel combustion, biomass burning and soilroles of fossil fuel combustion, biomass burning and soilroles of fossil fuel combustion, biomass burning and soil

Valin, Lukas Carl

2012-01-01T23:59:59.000Z

350

The Energy Return on Energy Investment (EROI) of Photovoltaics: Methodology and Comparisons with Fossil Fuel Life Cycles  

E-Print Network (OSTI)

may be rapidly approaching what is often referred to as peak oil , i.e. the absolute peak in global of fossil carbon, such as petroleum oil, natural gas and various grades of coal (Cleveland et al., 1984; Hall et al., 2008; Murphy and Hall, 2011). Conventional oil and gas reserves are being depleted

351

Burns Prevention  

NLE Websites -- All DOE Office Websites (Extended Search)

Burns Burns Burns can result from everyday things and activities in your home. The most common causes of burns are from scalds (steam, hot bath water, hot drinks and foods), fire, chemicals, electricity and overexposure to the sun. Some burns may be more serious than others. The severity of the burn is based on the depth of the burn. First degree burns are the least severe, and third degree burns are the most severe. Call 911 or seek medical attention if you are unsure of how severe your burn is. All burns are susceptible to tetanus (lockjaw). Get a tetanus shot every 10 years. If your last shot was 5 years ago, talk to your doctor - you may need a booster shot. Causes of Burns: Scalds Scalding injuries and burns are caused by hot tap water, hot beverages and food, and steam.

352

NETL: News Release - Six Minority Universities Win Fossil Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

May 24, 2000 May 24, 2000 Six Minority Universities Win Fossil Energy Research Grants to Advance Use of Oil, Coal, Gas Richardson, Browner Announce Government "Showcase" Project As part of the Department of Energy's continuing efforts to increase the involvement of the nation's minority institutions in energy research, Energy Secretary Bill Richardson today announced that six historically black universities and other minority institutions will share nearly $1 million in federal funding for fossil energy projects ranging from oil reservoir characterization to burner design for low-emission burners to pollution reduction from car engines. The winning schools are: Prairie View A&M University, Prairie View, TX, (2 projects): one for research into a new way of determining the geologic characteristics of complex oil reservoirs; the other for testing a new data analysis technique based on neural networks that could simplify modeling of the way fuel burns in a compression ignition engine, such as a diesel engine;

353

Feasibility of burning refuse derived fuel in institutional size oil-fired boilers. Final report  

DOE Green Energy (OSTI)

This study investigates the feasibility of retrofitting existing oil-fired boilers of institutional size, approximately 3.63 to 36.3 Mg steam/h (8000 to 80,000 lbs steam/h) for co-firing with refuse-derived fuel (RDF). Relevant quantities describing mixtures of oil and RDF and combustion products for various levels of excess air are computed. Savings to be realized from the use of RDF are derived under several assumptions and allowable costs for a retrofit are estimated. An extensive survey of manufacturers of burners, boilers, and combustion systems showed that no hardware or proven design is yet available for such retrofit. Approaches with significant promises are outlined: the slagging burner, and a dry ash double vortex burner for low heat input from RDF. These two systems, and an evaluation of a small separate RDF dedicated combustor in support of the oil-fired boiler, are recommended as topics for future study.

None

1980-10-01T23:59:59.000Z

354

Investments in fossil energy technology: How the government's fossil energy R&D program has made a difference  

Science Conference Proceedings (OSTI)

America has the technological capacity to change its energy future. There is no reason, for example, why our nation must continue following a path of rising oil imports when billions of barrels of crude oil remain in domestic oil fields. There is no reason why we cannot continue to use our abundant supplies of high-value, low-cost coal when we have the scientific know-how to remove virtually all of its pollutants and reduce greenhouse gas emissions. There is no reason why we cannot turn increasingly to clean-burning natural gas and tap the huge supplies we know exist within our borders. We remain a nation rich in the fuels that have powered economic growth. Today 85 percent of the energy we use to heat our homes and businesses, generate our electricity, and fuel our vehicles comes from coal, petroleum and natural gas. As we move toward a new century, the contributions of these fuels will grow. By 2015, the United States is likely to require nearly 20 percent more energy than it uses today, and fossil fuels are projected to supply almost 88 percent of the energy Americans will consume. We have the scientific know-how to continue using our fossil fuel wealth without fear of environmental damage or skyrocketing costs. The key is technology - developing cutting edge concepts that are beyond the private sector's current capabilities. Some of the most important innovations in America's energy industry are the results of investments in the Federal government's fossil energy research and development programs. Today, our air and water are cleaner, our economy is stronger, and our industries are more competitive in the global market because these programs have produced results. This booklet summarizes many of these achievements. It is not a comprehensive list by any means. Still, it provides solid evidence that the taxpayers' investment in government fossil energy research has paid real and measurable dividends.

None

1997-03-01T23:59:59.000Z

355

EMGeo: Risk Minimizing Software for Finding Offshore Fossil ...  

EMGeo: Risk Minimizing Software for Finding Offshore Fossil Fuels by Fluid Identification. CR-2418, CR-2688,CR-2981

356

High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities  

SciTech Connect

The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

Michael A. Pope

2011-10-01T23:59:59.000Z

357

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

358

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

359

The Monitor Blue Skies A future for fossil fuels http://www.epolitix.com/EN/Publications/Blue+Skies+Monitor/132... 1 of 2 30/10/05 11:40 pm  

E-Print Network (OSTI)

' production of carbon dioxide produced by all European power stations ­ some estimates state 500 years (CCS) hovers around two percent of the adult population. Yet many key players in the fossil fuel energy to miss its reduction targets in 2010 by 34 million tons per year. The rise of renewables is more than

Haszeldine, Stuart

360

Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy Headquaters Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy Headquaters Fossil Energy Web System (FEWEB)...

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Conceptual engineering design and economic evaluation of the burn-acid- leach aqueous process and of the burn-fluoride-volatility process for recovering spent Rover fuel at the Idaho Chemical Processing Plant  

SciTech Connect

Declassified 24 Sep 1973. Two detailed, conceptual process, equipment, and plant designs were prepared for facilities for recovering spent Rover fuel (highly enriched uranium-graphite) at the Idaho Chemical Processing Plart. The results of the study indicate that the fluoridevolatility process is preferred on both economic and technical grounds. Both processes employ a comnion fuel shipping, storage, and charging system and use continuous, fluidized-bed oxidation of the fuel as the first step of the head-end operation. Subsequent operations in the aqueous process include batch leaching the ash with 5 M HF--10 M HNO/sub 3/ in two parallel lines of Teflon-lined leaching and feed-preparation equipment, followed by solvent extraction to decontaminate and recover the uranium as uranyl nitrate. Post-burning operations in the fluoride-volatiiity process include the continuous fluidized-bed and moving-bed fluorination of the ash followed by partial condensation to remove niobium pentafluoride and passage of the UF/sub 6/ through heated sodium fluoride pellets to completely decontaminate the uranium. The uranium is recovered as uranium hexafluoride. (auth)

Nicholson, E.L.

1965-06-01T23:59:59.000Z

362

A Future for Fossil Fuel By JOHN DEUTCH and ERNEST MONIZ March 15, 2007; Page A17  

E-Print Network (OSTI)

of heat energy from coal is $1-$2 per million BTUs, compared to $6-$8 for natural gas and $8-$12 for oil of choice for new, electricity-generating power plants at today's fuel prices. What about coal: This involves capturing the gas produced by coal combustion and burying it in deep geological formations

Deutch, John

363

Fossil Energy RSS Feeds | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy RSS Feeds Fossil Energy RSS Feeds Fossil Energy RSS Feeds RSS, sometimes known as Really Simple Syndication, is a popular means of sharing content (such as news headlines) without requiring readers to constantly visit a Web site to see what's new. RSS feeds contain headlines and hyperlinks to longer articles or Web pages. RSS feeds from the Office of Fossil Energy provide updates of specific interest to the fossil fuel community. Fossil Energy RSS feeds are free of charge. RSS content can be read using software called an RSS reader, feed reader, or an aggregator, which can be web-based or desktop-based. Click on RSS button below to subscribe to Fossil Energy latest news. All Fossil Energy News Clean Coal Technology News Carbon Capture and Storage News Oil & Natural Gas News

364

Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Fossil Energy Natural gas production from "shale" formations (fine-grained sedimentary rocks with relatively low permeability that can be rich sources of petroleum and natural gas) is one of the most rapidly-growing trends in U.S. domestic energy exploration and production. In some cases, this fast expansion has resulted in natural gas drilling and production activity in parts of the country that have seen little or no activity of this type in the recent past. "Natural Gas from Shale" explains the basics, including what shale gas is, where it's found, why it's important, how it's produced, and challenges associated with production. Also included are a list of frequently asked questions, a glossary of major terms, and a list of

365

Program on Technology Innovation: Programmatic Risk Assessment Future Fossil- and Biomass-Fueled Power Generation System Configurations  

Science Conference Proceedings (OSTI)

Recent and upcoming regulatory activities will have a major impact on power plant design over the next few decades. To address various environmental concerns, including climate change, emissions of specific air toxics and waste-to-energy goals, a number of different power plant configurations have been proposed involving differences in fuel type, boiler designs and emissions control technology. The Electric Power Research Institute (EPRI) commissioned Gradient to evaluate risks associated with ...

2012-12-20T23:59:59.000Z

366

Deep Burn: Development of Transuranic Fuel for High-Temperature Helium-Cooled Reactors- Monthly Highlights October 2010  

Science Conference Proceedings (OSTI)

The DB Program monthly highlights report for September 2010, ORNL/TM-2010/252, was distributed to program participants by email on October 26. This report discusses: (1) Core and Fuel Analysis; (2) Spent Fuel Management; (3) Fuel Cycle Integration of the HTR (high temperature helium-cooled reactor); (4) TRU (transuranic elements) HTR Fuel Qualification; (5) HTR Spent Fuel Recycle - (a) TRU Kernel Development (ORNL), (b) Coating Development (ORNL), (c) Characterization Development and Support, (d) ZrC Properties and Handbook; and (6) HTR Fuel Recycle.

Snead, Lance Lewis [ORNL; Besmann, Theodore M [ORNL; Collins, Emory D [ORNL; Bell, Gary L [ORNL

2010-11-01T23:59:59.000Z

367

NETL: News Release - Office of Fossil Energy Develops Educational...  

NLE Websites -- All DOE Office Websites (Extended Search)

them, and the current research and technologies being developed to allow us to use the fossil fuels in a more efficient and environmentally-sound manner. The Office of Fossil...

368

Understanding the role of organic aerosol in the coastal and remote pacic marine boundary layer  

E-Print Network (OSTI)

Marine Fossil Fuel Combustion Biomass Burning Frequency (South Asia: Biomass or Fossil Fuel Combustion? Science 323 (whereas fossil fuel combustion and biomass burning emissions

Hawkins, Lelia Nahid

2010-01-01T23:59:59.000Z

369

Recharging U.S. Energy Policy: Advocating for a National Renewable Portfolio Standard  

E-Print Network (OSTI)

electricity comes from burning fossil fuels. 2 According toide from the burning of fossil fuels." Central Intelligenceof Energy, Office of Fossil Fuel Energy, National Energy

Lunt, Robin J.

2007-01-01T23:59:59.000Z

370

An integrated approach for techno-economic and environmental analysis of energy from biomass and fossil fuels  

E-Print Network (OSTI)

Biomass conversion into forms of energy is receiving current attention because of environmental, energy and agricultural concerns. The purpose of this thesis is to analyze the environmental, energy, economic, and technological aspects of using a form of biomass, switchgrass (panicum virgatum), as a partial or complete replacement for coal in power generation and cogeneration systems. To examine the effects of such a substitution, an environmental biocomplexity approach is used, wherein the agricultural, technological, economic, and environmental factors are addressed. In particular, lifecycle analysis (LCA) and a three-dimensional integrated economic, energy and environmental analysis is employed. The effectiveness of alternate technologies for switchgrass preparation, harvest and use in terms of greenhouse gas impact, cost and environmental implications is examined. Also, different scenarios of cofiring and biomass preparation pathways are investigated. Optimization of the total biomass power generation cost with minimum greenhouse gas effect is undertaken using mathematical programming for various alternate competitive biomass processing pathways. As a byproduct of this work a generic tool to optimize the cost and greenhouse gas emissions for allocation of fuel sources to the power generating sinks is developed. Further, this work discusses the sensitivity of the findings to varied cofiring ratios, coal prices, hauling distances, per acre yields, etc. Besides electricity generation in power plants, another viable alternative for reducing greenhouse gases (GHGs) is the utilization of biomass in conjunction with combined heat and power (CHP) in the process industries. This work addresses the utilization of biowaste or biomass source in a processing facility for CHP. A systematic algebraic procedure for targeting cogeneration potential ahead of detailed power generation network design is presented. The approach presented here effectively utilizes the biomass and biowaste sources as external fuel, and matches it with the use and dispatch of fuel sources within the process, heating and non-heating steam demands, and power generation. The concept of extractable energy coupled with flow balance via cascade diagram has been used as a basis to construct this approach. The work also discusses important economic factors and environmental policies required for the cost-effective utilization of biomass for electricity generation and CHP.

Mohan, Tanya

2005-12-01T23:59:59.000Z

371

Annual book of ASTM Standards 2008. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect

The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2008-09-15T23:59:59.000Z

372

Average effluent releases from U. S. nuclear power reactors, compared with those from fossil-fueled plants, in terms of currently applicable environmental standards  

SciTech Connect

From 3rd international congress of the International Radiation Protection Association meeting; Washington, District of Columbia, USA(9 Sep 1973). Between 1967 and 1972, eighteen second generation'' lightwater-cooled nuclear power plants, with capacities in the range of 500 to 800 MW(e) have been put into operation in the United States. These were in addition to ten smaller demonstration plants and one high-temperature gas-cooled nuclear power plant in operation at the start of this period. The reported yearly air effluent releases of radioactive gases, halogens and particulates, and liquid effluent fission and activation products and of tritium from these plants are evaluated on a Ci/10/sup 3/ MW(e) basis, and the overall yearly averages for the various types of reactors (boiling water (BWR), pressurized water (PWR) and high temperature gas-cooled (HTGR)! are compared. These and the amounts of effluents released from reference 1,000 MW(e) fossil-fueled plants are compared in terms of relative environmental concentrations and their relationship to the applicable U. S. environmental standards for the principal constituents in their respective plant air-effluent streams. 21 references. (auth)

Hull, A.P.

1973-09-19T23:59:59.000Z

373

Deep Burn: Development of Transuranic Fuel for High-Temperature Helium-Cooled Reactors- Monthly Highlights September 2010  

SciTech Connect

The DB Program monthly highlights report for August 2010, ORNL/TM-2010/184, was distributed to program participants by email on September 17. This report discusses: (1) Core and Fuel Analysis - (a) Core Design Optimization in the HTR (high temperature helium-cooled reactor) Prismatic Design (Logos), (b) Core Design Optimization in the HTR Pebble Bed Design (INL), (c) Microfuel analysis for the DB HTR (INL, GA, Logos); (2) Spent Fuel Management - (a) TRISO (tri-structural isotropic) repository behavior (UNLV), (b) Repository performance of TRISO fuel (UCB); (3) Fuel Cycle Integration of the HTR (high temperature helium-cooled reactor) - Synergy with other reactor fuel cycles (GA, Logos); (4) TRU (transuranic elements) HTR Fuel Qualification - (a) Thermochemical Modeling, (b) Actinide and Fission Product Transport, (c) Radiation Damage and Properties; (5) HTR Spent Fuel Recycle - (a) TRU Kernel Development (ORNL), (b) Coating Development (ORNL), (c) Characterization Development and Support, (d) ZrC Properties and Handbook; and (6) HTR Fuel Recycle - (a) Graphite Recycle (ORNL), (b) Aqueous Reprocessing, (c) Pyrochemical Reprocessing METROX (metal recovery from oxide fuel) Process Development (ANL).

Snead, Lance Lewis [ORNL; Besmann, Theodore M [ORNL; Collins, Emory D [ORNL; Bell, Gary L [ORNL

2010-10-01T23:59:59.000Z

374

Fossil-fuel processing technical/professional services: comparison of Fischer-Tropsch reactor systems. Phase I, final report  

DOE Green Energy (OSTI)

The Fischer-Tropsch reaction was commercialized in Germany and used to produce military fuels in fixed bed reactors. It was recognized from the start that this reactor system had severe operating and yield limitations and alternative reactor systems were sought. In 1955 the Sasol I complex, using an entrained bed (Synthol) reactor system, was started up in South Africa. Although this reactor was a definite improvement and is still operating, the literature is filled with proponents of other reactor systems, each claiming its own advantages. This report provides a summary of the results of a study to compare the development potential of three of these reactor systems with the commercially operating Synthol-entrained bed reactor system. The commercial Synthol reactor is used as a benchmark against which the development potential of the other three reactors can be compared. Most of the information on which this study is based was supplied by the M.W. Kellogg Co. No information beyond that in the literature on the operation of the Synthol reactor system was available for consideration in preparing this study, nor were any details of the changes made to the original Synthol system to overcome the operating problems reported in the literature. Because of conflicting claims and results found in the literature, it was decided to concentrate a large part of this study on a kinetic analysis of the reactor systems, in order to provide a theoretical analysis of intrinsic strengths and weaknesses of the reactors unclouded by different catalysts, operating conditions and feed compositions. The remainder of the study considers the physical attributes of the four reactor systems and compares their respective investment costs, yields, catalyst requirements and thermal efficiencies from simplified conceptual designs.

Thompson, G.J.; Riekena, M.L.; Vickers, A.G.

1981-09-01T23:59:59.000Z

375

EIA Short-Term Energy and Winter Fuels OutlookWinter Fuels Outlook  

U.S. Energy Information Administration (EIA)

Winter Fuels OutlookWinter Fuels Outlook ... for all fossil f elsMarch 31) for all fossil fuels Percent changg()e in fuel bills from last winter (forecast) Fuel bill ...

376

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Fossil Energy Reduction of Regulated Emissions in Coal and Refuse-Derived Fuel Operations. Related Patents: 7,384,615. Contact: David R. Anderson . Phone: (208) 526-0837

377

Office of Fossil Energy | Department of Energy  

NLE Websites -- All DOE Office Websites

Fossil Energy Fossil Energy Search Search form Search Office of Fossil Energy Office of Fossil Energy Services Services Home Petroleum Reserves Petroleum Reserves Home Strategic Petroleum Reserve Heating Oil Reserve Naval Reserves International Cooperation Natural Gas Regulation Advisory Committees Science & Innovation Science & Innovation Home Clean Coal Clean Coal Home Turbines Gasification Fuel Cells Hydrogen from Coal Coal to Liquids Major Demonstrations Crosscutting Research Carbon Capture and Storage Carbon Capture and Storage Home Capture Storage Utilization MVA Regional Partnerships Oil & Gas Oil & Gas Home Methane Hydrate LNG Offshore Drilling Enhanced Oil Recovery Shale Gas Mission About Us About Us Home News & Blog News & Blog Home FE Today Press Releases & Techlines

378

Chromium Alloys for More Efficient Fossil Energy Conversion ...  

Science Conference Proceedings (OSTI)

Abstract Scope, In order to improve efficiency and reduce environmental emissions in fossil energy conversion systems, new technologies such as oxy- fuel gas ...

379

Cost and Performance Comparison Baseline for Fossil Energy Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

for coal. Advances in technology are making it possible to generate power from fossil fuels with great improvements in the efficiency of energy use while at the same...

380

Cost and Performance Baseline for Fossil Energy Plants; Volume...  

NLE Websites -- All DOE Office Websites (Extended Search)

for coal. Advances in technology are making it possible to generate power from fossil fuels with great improvements in the efficiency of energy use while at the same...

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EMGeo: Risk Minimizing Software for Finding Offshore Fossil ...  

EMGeo: Risk Minimizing Software for Finding Offshore Fossil Fuels by Fluid Identification Lawrence Berkeley National Laboratory. Contact LBL About This Technology

382

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

2000. Total fuel mix is 11% MOX + 89% U0 fuel with PuRadionuclide H U0 Fuel U0 + MOX Fuel 14C Kr I llO Other

Nero, A.V.

2010-01-01T23:59:59.000Z

383

Uncertainty in future global energy use and fossil fuel CO{sub 2} emissions 1975 to 2075: Appendices A--B  

Science Conference Proceedings (OSTI)

Appendix A contains the Monte Carlo Data Set. The data sheets give the distribution for input variables used in Monte Carlo analysis of the IEA/ORAU Global Energy, CO{sub 2} Model. The data sheets include a discussion of data sources, bibliographic sources, and other considerations used in developing the particular data format and values for distributions. As much detail as possible about how distributions are related to published estimates is given but in most cases it was necessary to make a significant leap from available data to the quantified distribution. The distributions are meant to be roughly accurate and to the degree that uncertainty exists about the form and value of distributions, the authors have tended to opt for wider bounds. Appendix B contains The IEA/ORAU Long-Term Global Energy-CO{sub 2} Model, Version A.84 -- Model Improvements. The model was originally developed in 1982 in support of work conducted for the US Department of Energy Carbon Dioxide Research Division in the area of future global fossil fuel related CO emissions research. The uncertainty analysis, documented in this report, made demands on the model that had not previously been made, and in the process of operating the model much was learned about areas in which simplification or elaboration was justified, or in which a different approach was warranted. As a consequence of these criticisms, demands, and learning numerous model modifications were undertaken. Since two versions of the model now exist, version specifications have been adopted. The 1984 version is designated A.84, while the version completed in 1982 is designated B.82. Model changes fall into three categories: those which affect the theoretical structure of the model, those which affect the computational processes of the model, and those which affect only the model by which model inputs are entered.

Edmonds, J.A. [Oak Ridge Associated Universities, Washington, DC (United States). Inst. for Energy Analysis; Reilly, J.M. [Pacific Northwest Labs., Washington, DC (United States); Gardner, R.H. [Oak Ridge National Lab., TN (United States); Brenkert, A. [Science Applications International Corp., Oak Ridge, TN (United States)

1985-12-01T23:59:59.000Z

384

A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report  

SciTech Connect

This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

Not Available

1993-07-01T23:59:59.000Z

385

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels. Fuel cells have the potential to replace the internal-combustion engine in...

386

DOE - Fossil Energy:  

NLE Websites -- All DOE Office Websites (Extended Search)

and Trends Button National Security Button Safety and Health Button DOE Office of Fossil Energy Web Site Fossil Energy - Clean Coal Technologies - Carbon Capture,...

387

The Fuel Situation  

Science Conference Proceedings (OSTI)

The United States has an abundance of energy resources; fossil fuels (mostly coal and oil shale) adequate for centuries

J. C. Fisher

1974-01-01T23:59:59.000Z

388

Fossil Fuel Standard Reference Materials  

Science Conference Proceedings (OSTI)

... of greenhouse gases on climate change, there will be more focus in the future on the carbon budget and its role in the energy production cycle. ...

2012-10-01T23:59:59.000Z

389

Direct Measurement of Initial Enrichment and Burn-up of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument  

SciTech Connect

A key objective of the Next Generation Safeguards Initiative (NGSI) is to utilize non-destructive assay (NDA) techniques to determine the elemental plutonium (Pu) content in a commercial-grade nuclear spent fuel assembly (SFA). In the third year of the NGSI Spent Fuel NDA project, the research focus is on the integration of a few NDA techniques. One of the reoccurring challenges to the accurate determination of Pu content has been the explicit dependence of the measured signal on the presence of neutron absorbers which build up in the assembly in accordance with its operating and irradiation history. The history of any SFA is often summarized by the parameters of burn-up (BU), initial enrichment (IE) and cooling time (CT). While such parameters can typically be provided by the operator, the ability to directly measure and verify them would significantly enhance the autonomy of the IAEA inspectorate. Within this paper, we demonstrate that an instrument based on a Differential Die-Away technique is in principle capable of direct measurement of IE and, should the CT be known, also the BU.

Henzl, Vladimir [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

390

Test Burns of Torrefied Wood  

Science Conference Proceedings (OSTI)

Biomass fuel is an important option for mitigating the production of carbon dioxide emissions from generating units that are designed to fire conventional fossil fuels. The key attraction of biomass fuels is that they are carbon neutralthe carbon dioxide released by combustion was fixed or removed from the atmosphere by photosynthesis, so its return does not provide a net carbon addition. Utilities in the United States and Canada are considering options both for co-firing biomass with coal and for comple...

2010-06-24T23:59:59.000Z

391

Measurements of the chemical, physical, and optical properties of single aerosol particles  

E-Print Network (OSTI)

coal combustion,vegetative detritus, biomass burning,Arabia: Biomass/biofuel burning and fossil fuel combustion,Arabia: Biomass/biofuel burning and fossil fuel combustion,

Moffet, Ryan Christopher

2007-01-01T23:59:59.000Z

392

Anthropogenic particulate source characterization and source apportionment using aerosol time-of-flight mass spectrometry  

E-Print Network (OSTI)

vehicles, biomass burning, coal combustion, meat cooking,Arabia: biomass/biofuel burning and fossil fuel combustion,Arabia: biomass/biofuel burning and fossil fuel combustion,

Toner, Stephen Mark

2007-01-01T23:59:59.000Z

393

Investigations into the impact of transported particles on air pollution and climate using aerosol time-of-flight mass spectrometry  

E-Print Network (OSTI)

for fossil fuel combustion and biomass burning emissions [Arabia: Biomass/biofuel burning and fossil fuel combustion,Many K-Combustion particles are from biomass burning, but

Ault, Andrew Phillip

2010-01-01T23:59:59.000Z

394

Design and construction of a prototype advanced on-line fuel burn-up monitoring system for the modular pebble bed reactor  

Science Conference Proceedings (OSTI)

Modular Pebble Bed Reactor (MPBR) is a high temperature gas-cooled nuclear power reactor currently under study as a next generation reactor system. In addition to its inherently safe design, a unique feature of this reactor is its multi-pass fuel circulation in which the fuel pebbles are randomly loaded and continuously cycled through the core until they reach their prescribed End-of-Life burn-up limit. Unlike the situation with a conventional light water reactor, depending solely on computational methods to perform in-core fuel management for MPBR will be highly inaccurate. An on-line measurement system is needed to accurately assess whether a given pebble has reached its End-of-Life burn-up limit and thereby provide an on-line, automated go/no-go decision on fuel disposition on a pebble-by-pebble basis. This project investigated approaches to analyzing fuel pebbles in real time using gamma spectroscopy and possibly using passive neutron counting of spontaneous fission neutrons to provide the speed, accuracy, and burn-up range required for burnup determination of MPBR. It involved all phases necessary to develop and construct a burn-up monitor, including a review of the design requirements of the system, identification of detection methodologies, modeling and development of potential designs, and finally, the construction and testing of an operational detector system. Based upon the research work performed in this project, the following conclusions are made. In terms of using gamma spectrometry, two possible approaches were identified for burnup assay. The first approach is based on the measurement of the absolute activity of Cs-137. However, due to spectral interference and the need for absolute calibration of the spectrometer, the uncertainty in burnup determination using this approach was found to range from {approx} {+-}40% at beginning of life to {approx} {+-}10% at the discharge burnup. An alternative approach is to use a relative burnup indicator. In this case, a self-calibration method was developed to obtain the spectrometer's relative efficiency curve based upon gamma lines emitted from {sup 140}La. It was found that the ratio of {sup 239}Np/{sup 132}I can be used in burnup measurement with an uncertainty of {approx} {+-}3% throughout the pebble's lifetime. In addition, by doping the fuel with {sup 60}Co, the use of the {sup 60}Co/{sup 134}Cs and {sup 239}Np/{sup 132}I ratios can simultaneously yield the enrichment and burnup of each pebble. A functional gamma-ray spectrometry measurement system was constructed and tested with light water reactor fuels. Experimental results were observed to be consistent with the predictions. On using the passive neutron counting method for the on-line burnup measurement, it was found that neutron emission rate of an irradiated pebble is sensitive to its burnup history and the spectral-averaged cross sections used in the depletion calculations; thus a large uncertainty exists in the correlation between neutron emission and burnup. At low burnup levels, the uncertainty in the neutron emission/burnup correlation is too high and neutron emission rate is too low so that it is impossible to determine a pebble's burnup by on-line neutron counting. At high burnup levels, due to the decreasing of the uncertainty in neutron emission rate and the super-linear feature of the correlation, the uncertainty in burnup determination was found to be {approx}7% at the discharge burnup, which is acceptable for determining whether a pebble should be discharged or not. In terms of neutron detection, because an irradiated pebble is a weak neutron source and a much stronger gamma source, neutron detector system should have high neutron detection efficiency and strong gamma discrimination capability. Of all the commonly used neutron detectors, the He-3 and BF3 detector systems were found to be able to satisfy the requirement on detection efficiency; but their gamma discrimination capability is only marginal for this on-line application. Even with thick gamma shielding, these two types of detectors sha

Su, Bingjing; Hawari, Ayman, I.

2004-03-30T23:59:59.000Z

395

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

refabrication. through which nuclear fuel passes. Fusion.with the experience at the Nuclear Fuel Services Plant (seecommitment from the nuclear fuel cycle; see Section 3.2.3. )

Nero, A.V.

2010-01-01T23:59:59.000Z

396

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Interim Standard for Plutonium in Soils", Los Alamoson the Use of Recycle Plutonium in Mixed Oxide Fuel in LightCharacterization of Particulate Plutonium Released in Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

397

LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL  

E-Print Network (OSTI)

1 LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 (2014) 162-169" DOI : 10.1016/j.fuel.2013.07.015 #12;2 LAMINAR BURNING VELOCITY OF GASOLINES, Sweden Abstract The adiabatic laminar burning velocities of a commercial gasoline and of a model fuel (n

398

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fossil Fossil December 12, 2013 Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects The Energy Department published a solicitation today, making up to $8 billion in loan guarantee authority available to support innovative advanced fossil energy projects that avoid, reduce, or sequester greenhouse gases December 12, 2013 The National Energy Technology Laboratory's chemical looping reactor. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced fossil energy solicitation. | Photo courtesy of the National Energy Technology Laboratory.

399

Actinide Burning in CANDU Reactors  

Science Conference Proceedings (OSTI)

Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

Hyland, B.; Dyck, G.R. [Atomic Energy of Canada Limited, Chalk River, Ontario, K0J 1J0 (Canada)

2007-07-01T23:59:59.000Z

400

Response to several FOIA requests - Renewable Energy. Demand for Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response to several FOIA requests - Renewable Energy. Demand for Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. nepdg_251_500.pdf. Demand for Fossil Fuels. Renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And they will be

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

How much carbon dioxide is produced by burning gasoline and ...  

U.S. Energy Information Administration (EIA)

How much carbon dioxide is produced by burning gasoline and diesel fuel? About 19.64 pounds of carbon dioxide (CO 2) are produced from burning a gallon of gasoline ...

402

Number 158 June 1, 2002 Development of technically and economically viable processes for the conversion and utilization of fossil fuels is a major objective of both the DOE Fossil  

E-Print Network (OSTI)

ODS Alloy Heat Exchangers for Solid-Fuel Thermal Systems A high-efficiency coal-fired power plant and liquefaction, improved power generation and advanced combustion. As these processes evolve to the pilot plant. The power plant was commissioned during the springof1998andhasbeeninoperationsincethen.Allthree headers were

403

www.biosciencemag.org November 2006 / Vol. 56 No. 11 BioScience 875 Green Plants, Fossil Fuels, and Now Biofuels  

E-Print Network (OSTI)

, and coal. As the human population increases, so too does the consumption of soil and fossil energy use, the largest per capita consumption of any country. Between 1850 and 2000, 90 percent of the US hundred years. By 1850, when wood accounted for 91 percent of US energy consumption and the US population

Patzek, Tadeusz W.

404

Fossil | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fossil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel...

405

Fossil energy: From laboratory to marketplace  

SciTech Connect

Fossil Energy-From Laboratory to Marketplace is a compendium of progress--progress achieved by teams of university, industrial, and government researchers working through the federal program to develop new, cleaner and more effective ways to produce and use the nation`s abundant fossil fuel resources. Generally, this report concentrates on research and development efforts conducted during the 1980s. Where necessary to provide an historical context, information is also drawn from the fossil energy research, development and demonstration programs of the 1970s.

Not Available

1991-04-01T23:59:59.000Z

406

Fossil energy: From laboratory to marketplace  

DOE Green Energy (OSTI)

Fossil Energy-From Laboratory to Marketplace is a compendium of progress--progress achieved by teams of university, industrial, and government researchers working through the federal program to develop new, cleaner and more effective ways to produce and use the nation's abundant fossil fuel resources. Generally, this report concentrates on research and development efforts conducted during the 1980s. Where necessary to provide an historical context, information is also drawn from the fossil energy research, development and demonstration programs of the 1970s.

Not Available

1991-04-01T23:59:59.000Z

407

Fossil energy biotechnology: A research needs assessment. Final report  

SciTech Connect

The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

Not Available

1993-11-01T23:59:59.000Z

408

Superheater Corrosion Produced By Biomass Fuels  

Science Conference Proceedings (OSTI)

About 90% of the world's bioenergy is produced by burning renewable biomass fuels. Low-cost biomass fuels such as agricultural wastes typically contain more alkali metals and chlorine than conventional fuels. Although the efficiency of a boiler's steam cycle can be increased by raising its maximum steam temperature, alkali metals and chlorine released in biofuel boilers cause accelerated corrosion and fouling at high superheater steam temperatures. Most alloys that resist high temperature corrosion protect themselves with a surface layer of Cr{sub 2}O{sub 3}. However, this Cr{sub 2}O{sub 3} can be fluxed away by reactions that form alkali chromates or volatilized as chromic acid. This paper reviews recent research on superheater corrosion mechanisms and superheater alloy performance in biomass boilers firing black liquor, biomass fuels, blends of biomass with fossil fuels and municipal waste.

Sharp, William (Sandy) [SharpConsultant; Singbeil, Douglas [FPInnovations; Keiser, James R [ORNL

2012-01-01T23:59:59.000Z

409

Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

explored as a fuel for passenger vehicles. It can be used in fuel cells to power electric motors or burned in internal combustion engines (ICEs). It is an environmentally...

410

The burning bush  

E-Print Network (OSTI)

ISSN 1948-6596 The burning bush Fire in Mediterraneandiscussion. Pre- scription burning is used in many forest

Schwilk, Dylan W

2013-01-01T23:59:59.000Z

411

Prospects for increased low-grade bio-fuels use in home and commercial heating applications  

E-Print Network (OSTI)

Though we must eventually find viable alternatives for fossil fuels in large segments of the energy market, there are economically attractive fossil fuel alternatives today for niche markets. The easiest fossil fuels to ...

Pendray, John Robert

2007-01-01T23:59:59.000Z

412

Metabolic Engineering and Synthetic Biology in Strain Development Every year, we consume about 27 billion barrels of fossil oil.  

E-Print Network (OSTI)

billion barrels of fossil oil. This enormous amount of oil is used for fueling our cars and airplanes

413

EIA Short-Term Energy and Winter Fuels Outlook  

U.S. Energy Information Administration (EIA)

Winter Fuels Outlook ... (October 1– March 31) for all fossil fuels Percent change in fuel bills from last winter (forecast) Fuel bill . Base case . forecast :

414

EIA Short-Term and Winter Fuels Outlook  

U.S. Energy Information Administration (EIA)

EIA Short-Term and Winter Fuels Outlook ... March 31) for fossil fuels but not electricity . Percent change in fuel bills from last winter (forecast) Fuel .

415

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, ÂŤEnergy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsÂŽ  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

416

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, ÂŤEnergy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsÂŽ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

417

Observational constraints on the photochemistry of non-acyl peroxy nitrates and organic nitrates on regional and global scales  

E-Print Network (OSTI)

roles of fossil fuel combustion, biomass burning and soilin lightning, and combustion of fossil fuels and biomass.

Browne, Eleanor Carol

2012-01-01T23:59:59.000Z

418

Microbial Fuel Cells Offer Innovative Technology for Oil, Gas ...  

Microbial Fuel Cells Offer Innovative Technology ... where organics and salt contaminate water in significant amounts during fossil fuels production.

419

Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills  

Science Conference Proceedings (OSTI)

Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a marketable lightweight aggregate and recover a high-grade fuel product. Spiral concentration provided acceptable grade lightweight aggregate with yields of only 10 to 20%. Incorporating a sieve bend into the process to recover coarse, porous ash particles from the outside race of the spirals increased aggregate yield to as high as 75%, however, the carbon content of the aggregate also increased. An opening size of 28 mesh on the sieve bend appeared to be sufficient. Lightweight concrete blocks (28 to 32 lbs) were produced from bottom ash and results show that acceptable strength could be attained with a cement/concrete ratio as low as 1/4. A mobile Proof-of-Concept (POC) field unit was designed and fabricated to meet the processing objectives of the project. The POC plant consisted of two trailer-mounted modules and was completely self sufficient with respect to power and water requirements. The POC unit was hauled to Coleman Station and operated at a feed rate of 2 tph. Results showed that the spirals operated similarly to previous pilot-scale operations and a 500 lb composite sample of coarse carbon was collected with a grade of 51.7% C or 7279 Btu/lb. Flotation results compared favorably with release analysis and 500 lbs of composite froth product was collected with a grade of 35% C or 4925 Btu/lb. The froth product was dewatered to 39% moisture with vacuum filtration. Pan pelletization and briquetting were evaluated as a means of minimizing handling concerns. Rotary pan pelletization produced uniform pellets with a compressive strength of 4 lbf without the use of any binder. Briquettes were produced by blending the coarse and fine carbon products at a ratio of 1:10, which is the proportion that the two products would be produced in a commercial operation. Using 3% lime as a binder produced the most desirable briquettes with respect to strength, attrition and drop testing. Additionally, the POC carbon products compared favorably with commercial activated carbon when used for removal of mercury from simulated flue gas. A business model was generated to summarize anti

J.G. Groppo; T.L. Robl

2005-09-30T23:59:59.000Z

420

Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills  

SciTech Connect

Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (<70%). High airflow rate was required to achieve >50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a marketable lightweight aggregate and recover a high-grade fuel product. Spiral concentration provided acceptable grade lightweight aggregate with yields of only 10 to 20%. Incorporating a sieve bend into the process to recover coarse, porous ash particles from the outside race of the spirals increased aggregate yield to as high as 75%, however, the carbon content of the aggregate also increased. An opening size of 28 mesh on the sieve bend appeared to be sufficient. Lightweight concrete blocks (28 to 32 lbs) were produced from bottom ash and results show that acceptable strength could be attained with a cement/concrete ratio as low as 1/4. A mobile Proof-of-Concept (POC) field unit was designed and fabricated to meet the processing objectives of the project. The POC plant consisted of two trailer-mounted modules and was completely self sufficient with respect to power and water requirements. The POC unit was hauled to Coleman Station and operated at a feed rate of 2 tph. Results showed that the spirals operated similarly to previous pilot-scale operations and a 500 lb composite sample of coarse carbon was collected with a grade of 51.7% C or 7279 Btu/lb. Flotation results compared favorably with release analysis and 500 lbs of composite froth product was collected with a grade of 35% C or 4925 Btu/lb. The froth product was dewatered to 39% moisture with vacuum filtration. Pan pelletization and briquetting were evaluated as a means of minimizing handling concerns. Rotary pan pelletization produced uniform pellets with a compressive strength of 4 lbf without the use of any binder. Briquettes were produced by blending the coarse and fine carbon products at a ratio of 1:10, which is the proportion that the two products would be produced in a commercial operation. Using 3% lime as a binder produced the most desirable briquettes with respect to strength, attrition and drop testing. Additionally, the POC carbon products compared favorably with commercial activated carbon when used for removal of mercury from simulated flue gas. A business model was generated to summarize anti

J.G. Groppo; T.L. Robl

2005-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE Hydrogen and Fuel Cells Program: Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

America's dependence on imported oil and reduce the environmental impacts of fossil fuel combustion. Beginning in fiscal year 2004, the Hydrogen Fuel Initiative (HFI) increased...

422

Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex  

SciTech Connect

Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

Susan Stacy; Julie Braun

2006-12-01T23:59:59.000Z

423

Fossil Energy Research Efforts in Carbon Capture and Storage | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Research Efforts in Carbon Capture and Storage Fossil Energy Research Efforts in Carbon Capture and Storage Fossil Energy Research Efforts in Carbon Capture and Storage May 14, 2009 - 1:54pm Addthis Statement of Dr. Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Energy and Natural Resources Committee, United States Senate. Thank you, Mr. Chairman and members of the Committee. I appreciate this opportunity to provide testimony on the United States Department of Energy's (DOE's) research efforts in carbon capture and storage. The Department of Energy has not had an opportunity to fully analyze S. 1013, and therefore, cannot take a position on the bill at this time. Introduction Fossil fuel resources represent a tremendous national asset. An abundance of fossil fuels in North America has contributed to our Nation's economic

424

Illinois Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA)

1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; ... from fossil fuels, non-biogenic ...

425

Who Will Cry For the Ice? A Preliminary Sketch of Metaphorical Framing and Conceptual Understanding in Climate Change Terminology  

E-Print Network (OSTI)

about climate change—the  fossil  fuel  industry.     It record  that  the  fossil  fuel  industry  has  conducted to  the  burning  of  fossil  fuels,  which,  being  linked 

Brooks, Carter

2005-01-01T23:59:59.000Z

426

Burning plasmas  

SciTech Connect

The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R D areas that need to be addressed on the way to a fusion power demonstration.

Furth, H.P.; Goldston, R.J.; Zweben, S.J. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Sigmar, D.J. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

1990-10-01T23:59:59.000Z

427

Department of Energy - Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 en Department of Energy Releases $8 61 en Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects http://energy.gov/articles/department-energy-releases-8-billion-solicitation-advanced-fossil-energy-projects fossil-energy-projects" class="title-link">Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects

428

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy.govfe Important Fossil Links Managing the Strategic Petroleum Reserve Enhanced Oil Recovery R&D National Petroleum Council Energy in Brief How Dependent Are We on...

429

Fossil Energy Fiscal Year 2011 Budget Request | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Fiscal Year 2011 Budget Request Energy Fiscal Year 2011 Budget Request Fossil Energy Fiscal Year 2011 Budget Request March 17, 2010 - 1:12pm Addthis Mr. Chairman, Members of the Committee, it is my pleasure to appear before you today to present the Office of Fossil Energy's (FE) proposed Budget for Fiscal Year 2011 (FY 2011). The Office of Fossil Energy's primary objective is to ensure that we can continue to utilize our traditional fuel sources for clean, affordable, reliable energy. Fossil fuels are anticipated to play a critical role in meeting our Nation's future energy needs. Making use of the Nation's fossil fuel assets in an environmentally responsible manner will help the United States to meet its energy requirements, minimize detrimental environmental impacts, positively contribute to energy security and compete

430

Fossil-energy program. Progress report for June 1981  

SciTech Connect

This report - the eighty-third of series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component development and process evaluation, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, coal preparation waste utilization, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, generalized equilibrium models for liquid and gaseous fuel supplies, analyses of coal production goals, and fossil energy information center.

Not Available

1981-08-01T23:59:59.000Z

431

Fuel reforming for fuel cell application.  

E-Print Network (OSTI)

??xviii, 119 leaves : ill. ; 30 cm HKUST Call Number: Thesis CENG 2006 Hung Fossil fuels, such as natural gas, petroleum, and coal are… (more)

Hung, Tak Cheong

2006-01-01T23:59:59.000Z

432

Effects of Recent Fossil Energy Market Developments on  

E-Print Network (OSTI)

, fossil fuel prices decreased substantially in August and September of 2006 (figures 1 and 2). · Crude oil major storms threatening Gulf of Mexico oil production. The price of crude oil to be deliveredEffects of Recent Fossil Energy Market Developments on US Ethanol AFPC Briefing Paper 06

433

Considerations for Prescribed Burning  

E-Print Network (OSTI)

Considerations for Prescribed Burning NEW M EX ICO S TAE U N I V E R SI T YT Cooperative Extension prescribed burns ...................... 1 Fire effects ................................................ 3 Justification for burning ......................................... 3 Reclamation versus

Castillo, Steven P.

434

A Potential Path to Emissions-Free Fossil Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

may not be a household term just yet, it represents one promising path forward for using fossil fuels as part of a clean energy future. At most coal fired power plants, the coal...

435

Office of Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Fossil Energy Office of Fossil Energy Fossil Energy Office of Fossil Energy More Documents & Publications DOE-Idaho Operations Office Delaware DNRECEnergy Office Bechtel...

436

ARE Update Volume 10, Number 1  

E-Print Network (OSTI)

decrease in Biomass burning and fossil fuel combustion areBiomass burning and fossil Other pollutants which make up the fuel combustion

Auffhammer, Maximilian University of California Berkeley; Li, Lan; Carman, Hoy; Sexton, Richard J.; Zwane, Alix Peterson; mcmillan, margaret

2006-01-01T23:59:59.000Z

437

Couplings between changes in the climate system and biogeochemistry  

E-Print Network (OSTI)

roles of fossil fuel combustion, biomass burning and soil4 and VOC Fossil fuel combustion Biomass burning N 2 ?xationcombustion & industrial processes Aircraft Agriculture Biomass and

Canada, Kenneth L. Denman

2008-01-01T23:59:59.000Z

438

Sandia National Laboratories: Fossil Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities and Equipment Bureau of Land Management Fossil Energy Liquid Natural Gas (LNG) Clean Coal Fossil Energy Program Contact David J. Borns Deputy Program Manager (505)...

439

Fossil Energy Power Plant Desk  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Power Plant Desk Reference Revision 1: Bituminous Coal and Natural Gas to Electricity October 18, 2011 DOENETL-20111516 Preliminary - Do Not Cite or Quote Fossil...

440

Fossil Energy FY 2014 Appropriations Hearing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2014 Appropriations Hearing FY 2014 Appropriations Hearing Fossil Energy FY 2014 Appropriations Hearing March 14, 2013 - 1:36pm Addthis Statement of Christopher Smith, Acting Assistant Secretary for Fossil Energy before the House Committee on Appropriations, Subcommittee on Energy and Water Development. Mr. Chairman, Madam Ranking Member, and Members of the Committee, it is my pleasure to appear before you today to discuss the Department of Energy's (DOE) Office of Fossil Energy's (FE) programs. Our fossil fuel resources are essential to the Nation's security and economic prosperity. The Office of Fossil Energy's primary mission is to ensure that the U.S. can continue to utilize those traditional fuel sources for clean, affordable, reliable energy. Technology development is critical to this mission. FE's Research and Development (FER&D) program

Note: This page contains sample records for the topic "burn fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fossil Energy Fiscal Year 2012 Budget Request | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fiscal Year 2012 Budget Request Fiscal Year 2012 Budget Request Fossil Energy Fiscal Year 2012 Budget Request March 30, 2011 - 2:40pm Addthis Statement of Dr. Victor Der, Acting Assistant Secretary for Fossil Energy before the House Committee on Appropriations Subcommittee on Energy and Water Development. Mr. Chairman, Members of the Committee, it is my pleasure to appear before you today to present the Office of Fossil Energy's (FE) proposed Budget for Fiscal Year 2012. The Office of Fossil Energy's primary objective is to ensure that we can continue to utilize our traditional fuel sources for clean, affordable, reliable energy. Fossil fuels currently provide 83 percent of U.S. energy consumption and are expected to continue to play a critical role in meeting our Nation's energy needs for the foreseeable future. Making use of these

442

Micronized coal-fired retrofit system for SO{sub x} reduction Krakow clean fossil fuels and energy efficiency program. Final report  

SciTech Connect

This report describes results of a technical, financial and environmental assessment study for a project, which would have included a new TCS micronized coal-fired heating plant for the Produkcja I Hodowla Roslin Ogrodniczych (PHRO) Greenhouse Complex; Krzeszowice, Poland. Project site is about 20 miles west of Krakow, Poland. During the project study period, PHRO utilized 14 heavy oil-fired boilers to produce heat for its greenhouse facilities and also home heating to several adjacent apartment housing complexes. The boilers burn a high-sulfur content heavy crude oil, called mazute, The project study was conducted during a period extended from March 1996 through February 1997. For size orientation, the PHRO Greenhouse complex grows a variety of vegetables and flowers for the Southern Poland marketplace. The greenhouse area under glass is very large and equivalent to approximately 50 football fields, The new micronized coal fired boiler would have: (1) provided a significant portion of the heat for PHRO and a portion of the adjacent apartment housing complexes, (2) dramatically reduced sulfur dioxide air pollution emissions, while satisfying new Polish air regulations, and (3) provided attractive savings to PHRO, based on the quantity of displaced oil.

1997-04-01T23:59:59.000Z

443

Historically Black Colleges and Universities Receive Funds for Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historically Black Colleges and Universities Receive Funds for Historically Black Colleges and Universities Receive Funds for Fossil Energy Research Historically Black Colleges and Universities Receive Funds for Fossil Energy Research August 15, 2013 - 1:18pm Addthis Washington, D.C. - Five fossil energy-related projects that will help maintain the nation's energy portfolio while also providing educational and research training opportunities for tomorrow's scientists and engineers have been selected for funding by the U.S. Department of Energy (DOE). The funding opportunity to enhance scientific and technical understanding of conversion and utilization of fossil fuels is through the Office of Fossil Energy's National Energy Technology Laboratory (NETL). The DOE program involved is the Support of Advanced Fossil Resource Utilization

444

Human Performance - Fossil Operations  

Science Conference Proceedings (OSTI)

All humans make errors. Industrial human errors can result in a loss of life and can significantly impact the productivity and cost effectiveness of any facility or company. Several industries in which human error has had a significant impact (for example, airline, medical, military, nuclear power, aviation, and chemical) have implemented human performance programs with excellent results. Human errors by fossil plant operators can easily challenge plant safety and production. In the fossil operations are...

2007-02-28T23:59:59.000Z

445

EIA Short-Term Energy and Winter Fuels Outlook  

U.S. Energy Information Administration (EIA)

Winter Fuels Outlook for National Association of State Energy Officials . ... for all fossil fuels Percent change in fuel bills from last winter (forecast)

446

Technology Commercialization Showcase 2008: Hydrogen, Fuel ...  

Hydrogen, Fuel Cells & Infrastructure Technologies Program Sunita Satyapal ... fossil, nuclear, and renewable sources. 14%. Technology Validation. Validate complete

447

Neutronic Analysis of the Burning of Transuranics in Fully Ceramic Micro-Encapsulated Tri-Isotropic Particle-Fuel in a PWR  

SciTech Connect

Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU) – only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space available for fuel, the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO2 and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO2 and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior is dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint.

Michael A. Pope; R. Sonat Sen; Abderrafi M. Ougouag; Gilles Youinou; Brian Boer

2012-11-01T23:59:59.000Z

448

Cellular burning in lean premixed turbulent hydrogen-air flames: coupling experimental and  

E-Print Network (OSTI)

Cellular burning in lean premixed turbulent hydrogen-air flames: coupling experimental for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification, including those burning lean hydrogen at both at atmospheric and elevated pressures [6]. The low

Bell, John B.

449

PhD Thesis: Control issues in oxy-fuel combustion  

E-Print Network (OSTI)

Not original title pageSummary Combustion of fossil fuels is the major energy source in todays society. While the use of fossil fuels is a necessity for our society to function, there has been an increasing concern on the emissions of CO2 resulting from human activities. Emissions of CO2 are considered to be the main cause for the global warming and climate changes we have experienced in recent years. To ght the climate changes, the emissions of CO2 must be reduced in a timely fashion. Strategies to achieve this include switching to less carbon intensive fuels, renewable energy sources, nuclear energy and combustion with CO2 capture. The use of oxy-fuel combustion is among the alternative post- and precombustion capture concepts, a strategy to achieve power production from fossil fuels with CO2 capture. In an oxy-fuel process, the fuel is burned in a mixture of oxygen and CO2 (or steam), leaving the exhaust consisting mainly of CO2 and steam. The steam can be removed by use of a condenser,

Dag Nn Snarheim

2009-01-01T23:59:59.000Z

450

Fossil Energy Crossword Puzzle | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crossword Puzzle Fossil Energy Crossword Puzzle Fossil Energy Crossword Puzzle (including answer key)...

451

Fossil Energy FY 2009 Budget  

Energy.gov (U.S. Department of Energy (DOE))

Fossil Energy's FY 2009 budget, including request, House and Senate marks, and Omnibus appropriation.

452

Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season  

DOE Green Energy (OSTI)

Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

2002-06-17T23:59:59.000Z

453

Engineered Biosynthesis of Alternative Biodiesel Fuel - Energy ...  

While biodiesel may perform comparably to fossil-derived fuels, ... Fuel molecule size can be adjusted for either gasoline or diesel compatibility;

454

South Carolina Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA)

1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; ... from fossil fuels, non-biogenic ...

455

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Corn Ethanol.” Paper presented at the 8 th Bio-Energy Conference  

E-Print Network (OSTI)

This study has been undertaken at the request of the Illinois Department of Commerce and Community Affairs (DCCA) on the twin premises that (1) data and information essential to an informed choice about the corn-to-ethanol cycle are in need of updating, thanks to scientific and technological advances in both corn farming and ethanol production; and (2) generalized national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than estimates based specifically on activities and practices in the principal domestic corn production and milling region-- the upper Midwest. Argonne National Laboratory (ANL) contracted with DCCA to apply the ANL Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model with updated information appropriate to corn operations in America’s heartland in an effort to examine the role of corn-feedstock ethanol with respect to GHG emissions given present and near future production technology and practice. Information about these technologies and practices has been obtained from a panel of outside experts consisting of representatives of the U.S. Department of Agriculture, midwestern universities with expertise in corn production and soil emissions, and acknowledged authorities in the field of ethanol plant

Michael Wang; Christopher Saricks

1997-01-01T23:59:59.000Z