Sample records for burdensome making wind

  1. Methods of making wind turbine rotor blades

    DOE Patents [OSTI]

    Livingston, Jamie T. (Pensacola, FL); Burke, Arthur H. E. (Gulf Breeze, FL); Bakhuis, Jan Willem (Nijverdal, NL); Van Breugel, Sjef (Enschede, NL); Billen, Andrew (Daarlerveen, NL)

    2008-04-01T23:59:59.000Z

    A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.

  2. Wind blade spar cap and method of making

    DOE Patents [OSTI]

    Mohamed, Mansour H. (Raleigh, NC)

    2008-05-27T23:59:59.000Z

    A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

  3. Wind turbine/generator set and method of making same

    DOE Patents [OSTI]

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04T23:59:59.000Z

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  4. Method of making a wooden wind turbine blade

    DOE Patents [OSTI]

    Coleman, C.

    1984-08-14T23:59:59.000Z

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis. 8 figs.

  5. Method of making a wooden wind turbine blade

    DOE Patents [OSTI]

    Coleman, Clint (Warren, VT)

    1984-01-01T23:59:59.000Z

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

  6. Making Offshore Wind Areas Available for Leasing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |PrepareMOJAVEDevelopingMakingMakingMaking

  7. Making european-style community wind power development work in theUnited States

    SciTech Connect (OSTI)

    Bolinger, Mark A.

    2004-04-26T23:59:59.000Z

    Once primarily a European phenomenon, community wind power development--defined here as one or more locally owned, utility-scale wind turbines interconnected on either the customer or utility side of the meter--is gaining a foothold in an increasing number of states throughout the United States. This article describes the various policies and incentives that Minnesota, Wisconsin, Iowa, and Massachusetts are using to support community wind power development, and how state and federal support influences the types of projects and ownership structures that are being developed. Experience in these states demonstrates that, with an array of incentives and creative financing schemes targeted at community-scale projects, there are opportunities to make community wind work in the United States.

  8. Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint

    SciTech Connect (OSTI)

    Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

    2007-06-01T23:59:59.000Z

    This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

  9. et al. 2003). Seasonal drought and extreme wind events make the WUI especially susceptible to fire. In late October, 2003, Southern California experienced the worst

    E-Print Network [OSTI]

    Moritz, Max A.

    #12;et al. 2003). Seasonal drought and extreme wind events make the WUI especially susceptible. Multiple large wildfires driven by Santa Ana winds consumed more than 300,000 ha. These fires were moisture and high wind speeds that cause large wildfires in Southern California may not be predictable

  10. Where Are We Now: The U.S. Department of Energy Makes Strides to Advance Offshore Wind in the United States, Wind Program Newsletter: October 2012 Edition (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01T23:59:59.000Z

    This newsletter describes the U.S. Department of Energy Wind Program's recent wind energy research and development efforts.

  11. Using supply chain management techniques to make wind plant and energy storage operation more profitable

    E-Print Network [OSTI]

    Saran, Prashant

    2009-01-01T23:59:59.000Z

    Our research demonstrates that supply chain management techniques can improve the incremental gross profits of wind plant and storage operations by up to five times. Using Monte-Carlo simulation we create and test scenarios ...

  12. Iowa NSF EPSCoR is a statewide program funded by NSF and the State of Iowa dedicated to making Iowa a leader in advanced biofuels, wind energy and energy

    E-Print Network [OSTI]

    Casavant, Tom

    to making Iowa a leader in advanced biofuels, wind energy and energy efficiency. Summer internships are open

  13. Estimation of Wind Speed in Connection to a Wind Turbine

    E-Print Network [OSTI]

    Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

  14. Wind turbine rotor blade with in-plane sweep and devices using same, and methods for making same

    DOE Patents [OSTI]

    Wetzel, Kyle Kristopher (Lawrence, KS)

    2008-03-18T23:59:59.000Z

    A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

  15. Wind turbine rotor blade with in-plane sweep and devices using the same, and methods for making the same

    DOE Patents [OSTI]

    Wetzel, Kyle Kristopher

    2014-06-24T23:59:59.000Z

    A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

  16. Sandia National Laboratories: Offshore Wind Energy Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Energy Simulation Toolkit Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference On July 8, 2014, in Computational...

  17. The Inside of a Wind Turbine

    Office of Energy Efficiency and Renewable Energy (EERE)

    Wind turbines harness the power of the wind and use it to generate electricity. Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan,...

  18. Web tool for energy policy decision-making through geo-localized LCA models: A focus on offshore wind farms in Northern Europe

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . To illustrate this issue, a web map service enabling "geolocalized life cycle assessment" of offshore wind farms makers in assess- ing the global environmental impacts caused by an offshore wind farm in Northern Europe of configurations and locations of offshore wind farms. A special interest is given to Northern Europe as offshore

  19. Distributed Compression for Condition Monitoring of Wind Farms

    E-Print Network [OSTI]

    Cheng, Samuel

    wind generation is high due to high wind speeds and import of power where the speeds are low. To make

  20. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make States Cape Wind PPA at 18 c/kWh #12;The cycle of non-innova?on Offshore

  1. Responses of floating wind turbines to wind and wave excitation

    E-Print Network [OSTI]

    Lee, Kwang Hyun

    2005-01-01T23:59:59.000Z

    The use of wind power has recently emerged as a promising alternative to conventional electricity generation. However, space requirements and public pressure to place unsightly wind turbines out of visual range make it ...

  2. Testing of a 50-kW Wind-Diesel Hybrid System at the National Wind Technology Center

    SciTech Connect (OSTI)

    Corbus, D. A.; Green, H. J.; Allderdice, A.; Rand, K.; Bianchi, J.; Linton, E.

    1996-07-01T23:59:59.000Z

    In remote off-grid villages and communities, a reliable power source is important in improving the local quality of life. Villages often use a diesel generator for their power, but fuel can be expensive and maintenance burdensome. Including a wind turbine in a diesel system can reduce fuel consumption and lower maintenance, thereby reducing energy costs. However, integrating the various components of a wind-diesel system, including wind turbine, power conversion system, and battery storage (if applicable), is a challenging task. To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this report include component characterization, such as power conversion losses for the rotary converter system and battery round trip efficiencies. In addition, system operation over the test period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

  3. Advancing Wind Technology, One Massive Blade at a Time | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the German government to renewable energy, with wind playing a pivotal role. While offshore wind usually makes the headlines here, low wind, onshore installations are...

  4. The Effect of Wind Speed and Electric Rates On Wind Turbine Economics

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    The Effect of Wind Speed and Electric Rates On Wind Turbine Economics Economics of wind power depends mainly on the wind speeds and the turbine make and model. Definition: Simple Payback The "Simple period of a small wind power project. All the figures are per turbine, so it can be used for a one, two

  5. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01T23:59:59.000Z

    loads from the wind inflow through rotor aerodynamics, drive train and power electronics is stillWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wächter ForWind-Center for Wind

  6. Dynamic valuation model For wind development in regard to land value, proximity to transmission lines, and capacity factor

    E-Print Network [OSTI]

    Nikandrou, Paul

    2009-01-01T23:59:59.000Z

    Developing a wind farm involves many variables that can make or break the success of a potential wind farm project. Some variables such as wind data (capacity factor, wind rose, wind speed, etc.) are readily available in ...

  7. Sandia National Laboratories: vertical-axis wind turbine research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vertical-axis wind turbine research Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference On July 8, 2014, in Computational Modeling...

  8. Theoretical Developments and Practical Aspects of Dynamic Systems in Wind Energy Applications

    E-Print Network [OSTI]

    Owens, Brian C

    2013-11-07T23:59:59.000Z

    for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a viable option. Vertical-axis wind turbines (VAWTs) are potentially ideal candidates for large offshore wind energy applications, and may...

  9. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  10. Commonwealth Wind Commercial Wind Program

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program – Commercial Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers site assessment grants of services, feasibility study grants, a...

  11. Blades of Glory: Wind Technology Bringing Us Closer To a Clean Energy Future

    Broader source: Energy.gov [DOE]

    Making sure the best, most efficient wind energy technologies are developed and manufactured here in America.

  12. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

  13. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    et al. (1998). Wind Generation in the Future Competitivegeneration system, as well as computational resources that would make it prohibitive for estimating the capacity value of wind

  14. Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE)

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  15. Wind Energy

    Broader source: Energy.gov [DOE]

    Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  16. Permitting of Wind Energy Facilities: A Handbook

    SciTech Connect (OSTI)

    NWCC Siting Work Group

    2002-08-01T23:59:59.000Z

    This handbook has been written for individuals and groups involved in evaluating wind projects: decision-makers and agency staff at all levels of government, wind developers, interested parties and the public. Its purpose is to help stakeholders make permitting wind facility decisions in a manner which assures necessary environmental protection and responds to public needs.

  17. Sandia National Laboratories: Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Grid System Planning for Wind: Wind Generator Modeling On June 11, 2014, in Wind generation continues to dominate the interconnection queues and the need for generic,...

  18. Harvesting the wind

    SciTech Connect (OSTI)

    Kahn, R.D.

    1984-11-01T23:59:59.000Z

    This paper describes the wind farms in the Altamont Pass, the Tehachapi Mountains, and the San Gorgonio pass, all in California. The threat by Congress to eliminate federal tax credits could put the fledgling industry in the doldrums. The author shows how the selection of the right wind site can make the difference between a profitable venture and an expensive kinetic sculpture. To improve reliability wind-farm developers have turned to more durable Danish turbines from Zond, Windmatic, and Bonus. Recent research under DOE sponsorship has studied large-scale MOD-2 machines built by Boeing, several of which are now operating at a PGandL site north of San Francisco. The result of recent new standards may require the filing of quarterly reports on machine capacity, performance, and the amounts of electricity produced from the installation.

  19. Feasibility analysis of coordinated offshore wind project development in the U.S.

    E-Print Network [OSTI]

    Zhang, Mimi Q

    2008-01-01T23:59:59.000Z

    Wind energy is one of the cleanest and most available resources in the world, and advancements in wind technology are making it more cost effective. Though wind power is rapidly developing in many regions, its variable ...

  20. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  1. Meteorological aspects of siting large wind turbines

    SciTech Connect (OSTI)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01T23:59:59.000Z

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  2. 20% Wind Energy 20% Wind Energy

    E-Print Network [OSTI]

    Powell, Warren B.

    (government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

  3. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  4. Improved diagnostic model for estimating wind energy

    SciTech Connect (OSTI)

    Endlich, R.M.; Lee, J.D.

    1983-03-01T23:59:59.000Z

    Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

  5. Subhourly wind forecasting techniques for wind turbine operations

    SciTech Connect (OSTI)

    Wegley, H.L.; Kosorok, M.R.; Formica, W.J.

    1984-08-01T23:59:59.000Z

    Three models for making automated forecasts of subhourly wind and wind power fluctuations were examined to determine the models' appropriateness, accuracy, and reliability in wind forecasting for wind turbine operation. Such automated forecasts appear to have value not only in wind turbine control and operating strategies, but also in improving individual wind turbine control and operating strategies, but also in improving individual wind turbine operating strategies (such as determining when to attempt startup). A simple persistence model, an autoregressive model, and a generalized equivalent Markhov (GEM) model were developed and tested using spring season data from the WKY television tower located near Oklahoma City, Oklahoma. The three models represent a pure measurement approach, a pure statistical method and a statistical-dynamical model, respectively. Forecasting models of wind speed means and measures of deviations about the mean were developed and tested for all three forecasting techniques for the 45-meter level and for the 10-, 30- and 60-minute time intervals. The results of this exploratory study indicate that a persistence-based approach, using onsite measurements, will probably be superior in the 10-minute time frame. The GEM model appears to have the most potential in 30-minute and longer time frames, particularly when forecasting wind speed fluctuations. However, several improvements to the GEM model are suggested. In comparison to the other models, the autoregressive model performed poorly at all time frames; but, it is recommended that this model be upgraded to an autoregressive moving average (ARMA or ARIMA) model. The primary constraint in adapting the forecasting models to the production of wind turbine cluster power output forecasts is the lack of either actual data, or suitable models, for simulating wind turbine cluster performance.

  6. Primer on Wind Power for Utility Applications

    SciTech Connect (OSTI)

    Wan, Y.

    2005-12-01T23:59:59.000Z

    The wind industry still faces many market barriers, some of which stem from utilities' lack of experience with the technology. Utility system operators and planners need to understand the effects of fluctuating wind power on system regulation and stability. Without high-frequency wind power data and realistic wind power plant models to analyze the problem, utilities often rely on conservative assumptions and worst-case scenarios to make engineering decisions. To remedy the situation, the National Renewable Energy Laboratory (NREL) has undertaken a project to record long-term, high-resolution (1-hertz [Hz]) wind power output data from large wind power plants in various regions. The objective is to systematically collect actual wind power data from large commercial wind power plants so that wind power fluctuations, their frequency distribution, the effects of spatial diversity, and the ancillary services of large commercial wind power plants can be analyzed. It also aims to provide the industry with nonproprietary wind power data in different wind regimes for system planning and operating impact studies. This report will summarize the results of data analysis performed at NREL and discuss the wind power characteristics related to power system operation and planning.

  7. Winding Trail 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    During the past decade, the demand for clean renewable energy continues to rise drastically in Europe, the US, and other countries. Wind energy in the ocean can possibly be one of those future renewable clean energy sources as long...

  8. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

  9. Pitch-controlled variable-speed wind turbine generation

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.

    2000-03-01T23:59:59.000Z

    Wind energy is a viable option to complement other types of pollution-free generation. In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines installed in wind farms has increased and more wind turbine manufacturers are making variable-speed wind turbines. This paper covers the operation of variable-speed wind turbines with pitch control. The system the authors considered is controlled to generate maximum energy while minimizing loads. The maximization of energy was only carried out on a static basis and only drive train loads were considered as a constraint. In medium wind speeds, the generator and power converter control the wind turbine to capture maximum energy from the wind. In the high wind speed region, the wind turbine is controlled to maintain the aerodynamic power produced by the wind turbine. Two methods to adjust the aerodynamic power were investigated: pitch control and generator load control, both of which are employed to control the operation of the wind turbine. The analysis and simulation shows that the wind turbine can be operated at its optimum energy capture while minimizing the load on the wind turbine for a wide range of wind speeds.

  10. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  11. WIND DATA REPORT Mattapoisett

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Mattapoisett Mattapoisett, Massachusetts December 1, 2006 ­ February 28, 2007...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  12. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  13. Sandia National Laboratories: DOE/Sandia Scaled Wind Farm Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Scaled Wind Farm Technology New Facility Tool at SWiFT Makes Rotor Work More Efficient On January 22, 2014, in Energy, Facilities, News, News & Events, Partnership,...

  14. New Framework Transforms FAST Wind Turbine Modeling Tool (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    A recent overhaul of the tool makes it a powerful, robust, and flexible modeling software to aid the development of innovative wind and water power technologies.

  15. GE, Sandia National Lab Improve Wind Turbines | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in our ability to conduct these experiments and make discoveries that will bolster wind power's potential. Access and availability to HPC resources offers a critical...

  16. Wind power and Wind power and

    E-Print Network [OSTI]

    Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jřrgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

  17. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01T23:59:59.000Z

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  18. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind Industry SoarsWind

  19. Ris-R-1334(EN) Identification of Damage to Wind

    E-Print Network [OSTI]

    Risř-R-1334(EN) Identification of Damage to Wind Turbine Blades by Modal Parameter Estimation April 2002 #12;Risř-R-1334(EN) Identification of Damage to Wind Turbine Blades by Modal Parameter condition monitoring of wind turbine blades (Phase I)". The goal of Phase I is to make a pre

  20. Wind-Wave Probabilistic Forecasting based on Ensemble

    E-Print Network [OSTI]

    have to be jointly taken into account in some decision-making problems, e.g. offshore wind farmWind-Wave Probabilistic Forecasting based on Ensemble Predictions Maxime FORTIN Kongens Lyngby 2012.imm.dtu.dk IMM-PhD-2012-86 #12;Summary Wind and wave forecasts are of a crucial importance for a number

  1. Vortex Lattice Modelling of Winglets on Wind Turbine Blades

    E-Print Network [OSTI]

    Vortex Lattice Modelling of Winglets on Wind Turbine Blades Mads Døssing Risø-R-1621(EN) Risø Title: Vortex Lattice Modelling of Winglets on Wind Turbine Blades Departments: Wind Energy Department turbines can be increased by the use of winglets without increasing the swept area. This makes them

  2. Offshore wind profile measurements from remote sensing instruments

    E-Print Network [OSTI]

    Offshore wind profile measurements from remote sensing instruments Ioannis Antoniou (1) , Hans E) have been mounted on top of a transformer platform situated offshore close to the Nysted wind farm offshore wind energy potential depends greatly on the ability to make offshore windfarms economically

  3. Amplitude modulation of wind turbine noise

    E-Print Network [OSTI]

    Makarewicz, Rufin

    2013-01-01T23:59:59.000Z

    Due to swish and thump amplitude modulation, the noise of wind turbines cause more annoyance than other environmental noise of the same average level. The wind shear accounts for the thump modulation (van den Berg effect). Making use of the wind speed measurements at the hub height, as well as at the top and the bottom of the rotor disc (Fig.1), the non-standard wind profile is applied. It causes variations in the A-weighted sound pressure level, LpA. The difference between the maximum and minimum of LpA characterizes thump modulation (Fig.2).

  4. Wind turbines convert the kinetic energy in moving air into rotational energy, which in turn is converted

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind turbines convert the kinetic energy in moving air into rotational energy, which in turn is converted to electricity. Since wind speeds vary from month to month and second to second, the amount of electricity wind can make varies constantly. Sometimes a wind turbine will make no power at all

  5. Avian interactions with wind energy facilities: A summary

    SciTech Connect (OSTI)

    Colson, E.W. [Colson & Associates, Alamo, CA (United States)

    1995-12-31T23:59:59.000Z

    Currently, wind energy plants have been constructed or plans are being developed for projects in at least 13 states within the United States, also Canada, Sweden, Denmark, Germany, Netherlands, United Kingdom, Spain and Scotland (EPRI 1994, Winkelman 1994). Approximately, 16,000 wind turbines currently operate in California, making this area the largest concentration of wind energy development in the world. Notwithstanding its positive social values, wind energy has been shown to cause avian mortalities. Since the 1970`s many studies have been done to understand the interaction between wind energy development and birds. However our knowledge and understanding of bird interactions with wind energy development is incomplete.

  6. Growing a Wind Workforce: The National Wind Energy Skills Assessment Report (Poster)

    SciTech Connect (OSTI)

    Tegen, S.

    2014-05-01T23:59:59.000Z

    This poster summarizes results from the first published investigation into the detailed makeup of the wind energy workforce as well as a glance at the educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce allow the private sector, educational institutions, and federal and state governments to make better informed workforce-related decisions based on the current data and future projections.

  7. Main Coast Winds - Final Scientific Report

    SciTech Connect (OSTI)

    Jason Huckaby; Harley Lee

    2006-03-15T23:59:59.000Z

    The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

  8. Mid-Atlantic Regional Wind Energy Institute

    SciTech Connect (OSTI)

    Courtney Lane

    2011-12-20T23:59:59.000Z

    As the Department of Energy stated in its 20% Wind Energy by 2030 report, there will need to be enhanced outreach efforts on a national, state, regional, and local level to communicate wind development opportunities, benefits and challenges to a diverse set of stakeholders. To help address this need, PennFuture was awarded funding to create the Mid-Atlantic Regional Wind Energy Institute to provide general education and outreach on wind energy development across Maryland, Virginia, Delaware, Pennsylvania and West Virginia. Over the course of the two-year grant period, PennFuture used its expertise on wind energy policy and development in Pennsylvania and expanded it to other states in the Mid-Atlantic region. PennFuture accomplished this through reaching out and establishing connections with policy makers, local environmental groups, health and economic development organizations, and educational institutions and wind energy developers throughout the Mid-Atlantic region. PennFuture conducted two regional wind educational forums that brought together wind industry representatives and public interest organizations from across the region to discuss and address wind development in the Mid-Atlantic region. PennFuture developed the agenda and speakers in collaboration with experts on the ground in each state to help determine the critical issue to wind energy in each location. The sessions focused on topics ranging from the basics of wind development; model ordinance and tax issues; anti-wind arguments and counter points; wildlife issues and coalition building. In addition to in-person events, PennFuture held three webinars on (1) Generating Jobs with Wind Energy; (2) Reviving American Manufacturing with Wind Power; and (3) Wind and Transmission. PennFuture also created a web page for the institute (http://www.midatlanticwind.org) that contains an online database of fact sheets, research reports, sample advocacy letters, top anti-wind claims and information on how to address them, wind and wildlife materials and sample model ordinances. Video and presentations from each in-person meeting and webinar recordings are also available on the site. At the end of the two-year period, PennFuture has accomplished its goal of giving a unified voice and presence to wind energy advocates in the Mid-Atlantic region. We educated a broad range of stakeholders on the benefits of wind energy and gave them the tools to help make a difference in their states. We grew a database of over 500 contacts and hope to continue the discussion and work around the importance of wind energy in the region.

  9. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30T23:59:59.000Z

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

  10. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01T23:59:59.000Z

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  11. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Energy Savers [EERE]

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  12. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook WindTurbine-icon.png...

  13. American Wind Energy Association Wind Energy Finance and Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Energy Association Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT...

  14. Manzanita Wind Energy Feasibility Study

    SciTech Connect (OSTI)

    Trisha Frank

    2004-09-30T23:59:59.000Z

    The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit. Manzanita has explored the wind resource potential on tribal land and developed a business plan by means of this wind energy feasibility project, which enables Manzanita to make informed decisions when considering the benefits and risks of encouraging large-scale wind power development on their lands. Technical consultant to the project has been SeaWest Consulting, LLC, an established wind power consulting company. The technical scope of the project covered the full range of feasibility assessment activities from site selection through completion of a business plan for implementation. The primary objectives of this feasibility study were to: (1) document the quality and suitability of the Manzanita Reservation as a site for installation and long-term operation of a commercially viable utility-scale wind power project; and, (2) develop a comprehensive and financeable business plan.

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

  16. University of Delaware -Tribology Laboratory Atlantic Advanced O shore Wind Energy Consortium

    E-Print Network [OSTI]

    Firestone, Jeremy

    substantially increased the cost of wind power; improvements are needed to make the technology economically for analysis by the group. Downtime hours accumulated from 2003 to 2007 for wind turbines in Germany #12 Wind Energy Consortium Assessing Tribological Aspects of Gearbox Reliability in Wind Turbines Prof

  17. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  18. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedinstalled wind power project costs, wind turbine transactionand components and wind turbine costs. Excluded from all

  19. Sandia National Laboratories: wind energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

  20. Module Handbook Specialisation Wind Energy

    E-Print Network [OSTI]

    Habel, Annegret

    ;Specialisation Wind Energy, NTU Athens, 2nd Semester Module 1/Wind Energy: Wind potential, Aerodynamics & Loading of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines

  1. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to global warmingGlobal »Wind

  2. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEurekaWeekly UserWhat's New Today aboutWind

  3. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    E-Print Network [OSTI]

    Kay, J.

    2009-01-01T23:59:59.000Z

    as a Because this wind private cost with which to evaluateAllow 1 percent of wind machine costs for O&M: The averagein turn will make wind machines cost effective for investors

  4. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  5. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  6. Sunflower Wind Farm EA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunflower Wind Farm EA Sunflower Wind Farm Draft EA (25mb pdf) Note: If you have problems downloading this file, pelase contact Lou Hanebury at (406) 255-2812 Sunflower Wind Farm...

  7. Wind/Hydro Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

  8. Wind energy bibliography

    SciTech Connect (OSTI)

    None

    1995-05-01T23:59:59.000Z

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  9. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  10. Commonwealth Wind Incentive Program – Micro Wind Initiative

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program – Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

  11. Hualapai Wind Project Feasibility Report

    SciTech Connect (OSTI)

    Davidson, Kevin [Hualapai Tribe] [Hualapai Tribe; Randall, Mark [Daystar Consulting] [Daystar Consulting; Isham, Tom [Power Engineers] [Power Engineers; Horna, Marion J [MJH Power Consulting LLC] [MJH Power Consulting LLC; Koronkiewicz, T [SWCA Environmental, Inc.] [SWCA Environmental, Inc.; Simon, Rich [V-Bar, LLC] [V-Bar, LLC; Matthew, Rojas [Squire Sanders Dempsey] [Squire Sanders Dempsey; MacCourt, Doug C. [Ater Wynne, LLP] [Ater Wynne, LLP; Burpo, Rob [First American Financial Advisors, Inc.] [First American Financial Advisors, Inc.

    2012-12-20T23:59:59.000Z

    The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

  12. Hydrodynamics and drive-train dynamics of a direct-drive floating wind turbine 

    E-Print Network [OSTI]

    Sethuraman, Latha

    2014-06-30T23:59:59.000Z

    Floating wind turbines (FWTs) are considered a new lease of opportunity for sustaining growth from offshore wind energy. In recent years, several new concepts have emerged, with only a few making it to demonstration or ...

  13. Potential of wind-powered renewable energy membrane systems for Ghana 

    E-Print Network [OSTI]

    Park, G.L.; Schäfer, Andrea; Richard, B.S.

    2009-01-01T23:59:59.000Z

    Areas of the world that lack fresh water often have an ample supply of wind or solar energy, making renewable energy an attractive option as a power source for desalination systems. Particularly, wind energy is attractive because of its relatively...

  14. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    States. Specifically, Bluewater Wind and Delmarva PowerLLC Babcock & Brown Acquisition Bluewater Wind Good Energies

  15. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    policy support for other renewable energy sources, wind mayrenewable energy and climate policy initiatives. With wind

  16. Wind Power Reliability: Breaking Down a Barrier

    Broader source: Energy.gov [DOE]

    The steady increase of wind power on the grid presents new challenges for power system operators charged with making sure the grid stays up and running. "We need to ensure that we are going down a path that will lead to better reliability [with wind power]," said Bob Zavadil, an executive vice president at EnerNex Corporation in Knoxville, Tenn., a firm specializing in renewable energy grid interconnection and integration. "If this piece isn't done, there will be problems." EnerNex has spent the last decade perfecting wind turbine and plant models that test a wind plant's influence on the grid and its ability to provide grid support. In its latest effort, the company is using American Recovery and Reinvestment Act funds worth $750,000 to develop documentation and validations of computer wind turbine models.

  17. Studying Wind Energy/Bird Interactions: A Guidance Document

    SciTech Connect (OSTI)

    Anderson, R. [California Energy Commission (US); Morrison, M. [California State Univ., Sacramento, CA (US); Sinclair, K. [Dept. of Energy/National Renewable Energy Lab. (US); Strickland, D. [WEST, Inc. (US)

    1999-12-01T23:59:59.000Z

    This guidance document is a product of the Avian Subcommittee of the National Wind Coordinating Committee (NWCC). The NWCC was formed to better understand and promote responsible, credible, and comparable avian/wind energy interaction studies. Bird mortality is a concern and wind power is a potential clean and green source of electricity, making study of wind energy/bird interactions essential. This document provides an overview for regulators and stakeholders concerned with wind energy/bird interactions, as well as a more technical discussion of the basic concepts and tools for studying such interactions.

  18. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    SciTech Connect (OSTI)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01T23:59:59.000Z

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  19. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

  20. WindWaveFloat Final Report

    SciTech Connect (OSTI)

    Alla Weinstein, Dominique Roddier, Kevin Banister

    2012-03-30T23:59:59.000Z

    Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

  1. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Wind Generation2006. “ Integrating Wind Generation into Utility Systems”.Stand-Alone Wind Generation . 60

  2. Howard County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

  3. Wind energy offers considerable promise; the wind itself is free,

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

  4. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01T23:59:59.000Z

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  5. Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...

    Office of Environmental Management (EM)

    Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014 Collegiate Teams Boise State...

  6. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Energy Savers [EERE]

    : Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply...

  7. National Wind Technology Center (Fact Sheet), National Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL WIND TECHNOLOGY CENTER www.nrel.govwind Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center...

  8. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  9. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Environmental Management (EM)

    a new vision for wind energy through 2050. Taking into account all facets of wind energy (land-based, offshore, distributed), the new Wind Vision Report defines the...

  10. Where Are We Now: The U.S. Department of Energy Makes Strides...

    Energy Savers [EERE]

    Where Are We Now: The U.S. Department of Energy Makes Strides to Advance Offshore Wind in the United States Where Are We Now: The U.S. Department of Energy Makes Strides to Advance...

  11. Sandia Energy - Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wind Turbine Loads Database Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Software Downloads Sandia Wind Turbine Loads Database Sandia Wind...

  12. Spatial and Temporal Patterns of Global Onshore Wind Speed Distribution

    SciTech Connect (OSTI)

    Zhou, Yuyu; Smith, Steven J.

    2013-09-09T23:59:59.000Z

    Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high spatial and temporal resolution are often ultimately used for detailed planning, simpler assumptions are often used in analysis work. An accurate representation of the wind speed frequency distribution is needed in order to properly characterize wind energy potential. Using a power density method, this study estimated global variation in wind parameters as fitted to a Weibull density function using NCEP/CFSR reanalysis data. The estimated Weibull distribution performs well in fitting the time series wind speed data at the global level according to R2, root mean square error, and power density error. The spatial, decadal, and seasonal patterns of wind speed distribution were then evaluated. We also analyzed the potential error in wind power estimation when a commonly assumed Rayleigh distribution (Weibull k = 2) is used. We find that the assumption of the same Weibull parameter across large regions can result in substantial errors. While large-scale wind speed data is often presented in the form of average wind speeds, these results highlight the need to also provide information on the wind speed distribution.

  13. Sandia National Laboratories: Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant Opt. Rotor Innovation Materials, Reliability & Standards Siting & Barrier Mitigation...

  14. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  15. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's2008. Analysis of Wind Generation Impact on ERCOT Ancillary

  16. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  17. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power'sthe Impact of Significant Wind Generation Facilities on Bulk

  18. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  19. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  20. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  1. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  3. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  4. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  5. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  6. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  7. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  8. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  9. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  10. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  11. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Table 8 Figure 30. Wind Integration Costs at Various LevelsOperations and Maintenance Costs Wind project operations andPublic Service Wind Integration Cost Impact Study. Prepared

  12. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

  13. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    with the section on offshore wind; Donna Heimiller and Billyof 2012, global cumulative offshore wind capacity stood ats (DOE’s) investments in offshore wind energy research and

  14. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    charging wind power projects for balancing services. 81 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    charging wind power projects for balancing services. 88 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  16. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    Xcel Energy. 2011. Wind Induced Coal Plant Cyclingand the Implications of Wind Curtailment for Public Serviceof Colorado 2 GW and 3 GW Wind Integration Cost Study.

  17. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.Newark, DE. 16 pages. Global Wind Energy Council (GWEC) (

  18. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    2011. In March 2011, NRG Bluewater Wind?s Delaware projectPurchaser Delmarva NRG Bluewater Wind (Delaware) Universitythe project, while NRG Bluewater would retain the remaining

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty –cost, performance, and price of wind energy, some of these

  20. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2004 ­ February 28, 2005 Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distribution

  1. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA March 26th 2005 to May 31st 2005. Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  2. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June 1st 2004- May 31st 2005 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Distributions......................................................................................................... 11 Monthly Average Wind Speeds

  3. WIND DATA REPORT Kingston, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Kingston, MA March 1, 2006 - May 31, 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions.......

  4. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA September 1st 2005 to November 30th 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  5. WIND DATA REPORT Wellfleet, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Wellfleet, MA December 1st , 2006 ­ February 28th , 2007 Prepared...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  6. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA June 1st 2006 to August 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed D

  7. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts March 24th to May 31st , 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  8. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA December 2006 ­ February 2007 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  9. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts December 1, 2005 - February 28, 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 12 Wind Speed Di

  10. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts December, 2006 1st to February 28th , 2007 Prepared...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  11. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts June 1, 2006 - August 31, 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Di

  12. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA March 2007 ­ May 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  13. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA September ­ November 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  14. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA September 1st 2005 to November 30th 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  15. WIND DATA REPORT Kingston, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Kingston, MA December 1, 2005 - February 28, 2006 Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  16. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts September 1, 2006 - November 30, 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions..................

  17. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA December 1st 2005 to February 28th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  18. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI March 1, 2007 ­ May 31, 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  19. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA Sep 1st 2004 to Nov 30th 2004. Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  20. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA June ­ August 2006 Prepared for Massachusetts Technology Collaborative.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  1. WIND DATA REPORT September 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Lynn, MA September 2005 Prepared for Massachusetts Technology Collaborative 75.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Monthly Average Wind Speeds

  2. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA June 1st 2005 to August 31st 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  3. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts September 1st to November 30th , 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  4. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts June 1st to August 31st , 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  5. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA June 1st 2005 to August 31st 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  6. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts March 1, 2006 - May 31, 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributi

  7. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2004 ­ November 30, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution.............

  8. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA December 1st 2005 to February 28th 2006. Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  9. WIND DATA REPORT Dartmouth, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Dartmouth, MA March 1st 2006 to May 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  10. WIND DATA REPORT Wellfleet, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Wellfleet, MA March 1st , 2007 ­ May 31st , 2007 Prepared for Massachusetts...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  11. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI September 1, 2007 ­ November 30, 2007 Prepared for Massachusetts...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  12. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2005 ­ May 31, 2005 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distribution

  13. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA April 14 ­ May 31, 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  14. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA Dec 1st 2004 to Feb 28th 2005. Prepared for Massachusetts Technology ...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  15. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA March 1st 2005 to May 31st 2005. Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  16. WIND DATA REPORT Dartmouth, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Dartmouth, MA June 1st 2006 to July 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  17. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI June 1, 2007 ­ August 31, 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  18. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    studies show that wind energy integration costs are below $do not represent wind energy generation costs. This sectioncomponent of the overall cost of wind energy, but can vary

  19. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    do not represent wind energy generation costs. Based on thisproduction-cost reduction value of wind energy, without anwith wind energy. Generally, these costs are associated with

  20. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    performance, and price of wind energy, policy uncertainty –The wind energy integration, transmission, and policyand absent supportive policies for wind energy. That said,

  1. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    The wind energy integration, transmission, and policy2012, however, federal policy towards wind energy remainsin federal policy towards wind energy after 2012 places such

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    The wind energy integration, transmission, and policyPTC. Moreover, federal policy towards wind energy remainsand policy announcements demonstrate accelerated activity in the offshore wind energy

  3. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA March 1st 2006 to May 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribut

  4. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

  5. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

  6. Q-Winds satellite hurricane wind retrievals and H*Wind comparisons

    E-Print Network [OSTI]

    Hennon, Christopher C.

    of the hurricane surface winds from NOAA and U.S. Air Force Weather Squadron aircraft flights. Further, results1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W This paper presents a new hurricane ocean vector wind (OVW) product known as Q-Winds produced from the SeaWinds

  7. Small Wind Electric Systems: A Maryland Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  8. Small Wind Electric Systems: A Pennsylvania Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2004-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Pennsylvania Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  9. Small Wind Electric Systems: A New York Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-02-01T23:59:59.000Z

    Small Wind Electric Systems: A New York Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  10. Small Wind Electric Systems: A Montana Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2004-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  11. Small Wind Electric Systems: An Idaho Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2004-08-01T23:59:59.000Z

    Small Wind Electric Systems: An Idaho Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  12. Small Wind Electric Systems: A Maryland Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2004-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  13. Small Wind Electric Systems: A New Mexico Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2004-08-01T23:59:59.000Z

    Small Wind Electric Systems: A New Mexico Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  14. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: An Oregon Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  15. Wind Power Career Chat

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  16. Wind energy information guide

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  17. Wind power today

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  18. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

  19. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  20. Overcoming Barriers to Wind Development in Appalachian Coal Country

    SciTech Connect (OSTI)

    Brent Bailey; Evan Hansen

    2012-10-09T23:59:59.000Z

    This research project synthesizes existing data and communication from experts to assess barriers to wind development in Pennsylvania, Maryland, West Virginia, Virginia, and Kentucky, and makes recommendations where feasible to reduce or eliminate those barriers.

  1. axis wind energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magueijo 2005-02-11 366 Web tool for energy policy decision-making through geo-localized LCA models: A focus on offshore wind farms in Northern Europe Physics Websites Summary: 1...

  2. Performance Study and Optimization of the Zephergy Wind Turbine

    E-Print Network [OSTI]

    Soodavi, Moein

    2013-12-04T23:59:59.000Z

    There are many problems associated with small wind turbines, such as small Reynolds number and poor starting performance, that make them much more expensive than the large ones per unit power. New technologies are needed to improve the quality...

  3. Performance Study and Optimization of the Zephergy Wind Turbine 

    E-Print Network [OSTI]

    Soodavi, Moein

    2013-12-04T23:59:59.000Z

    There are many problems associated with small wind turbines, such as small Reynolds number and poor starting performance, that make them much more expensive than the large ones per unit power. New technologies are needed to improve the quality...

  4. Wind Energy Guide for County Commissioners

    SciTech Connect (OSTI)

    Costanti, M.

    2006-10-01T23:59:59.000Z

    One of the key stakeholders associated with economic development are local government officials, who are often required to evaluate and vote on commercial wind energy project permits, as well as to determine and articulate what wind energy benefits accrue to their counties. Often these local officials lack experience with large-scale wind energy and need to make important decisions concerning what may be a complicated and controversial issue. These decisions can be confounded with diverse perspectives from various stakeholders. This project is designed to provide county commissioners, planners, and other local county government officials with a practical overview of information required to successfully implement commercial wind energy projects in their county. The guidebook provides readers with information on the following 13 topics: Brief Wind Energy Overview; Environmental Benefits; Wind Energy Myths and Facts; Economic Development Benefits; Wind Economics; The Development Process; Public Outreach; Siting Issues; Property Tax Incentives; Power System Impacts; Permitting, Zoning, and Siting Processes; Case Studies; and Further Information. For each of the above topics, the guidebook provides an introduction that identifies the topic, why local government should care, a topic snapshot, how the topic will arise, and a list of resources that define and assess the topic.

  5. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    AWEA?s Wind Energy Weekly, DOE/EPRI?s Turbine Verification10% Wind Energy Penetration New large-scale 9 wind turbineswind energy continues to decline as a result of lower wind turbine

  6. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbinesTurbine Market Report. Washington, D.C. : American Wind Energy

  7. Sandia Energy - Wind Plant Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Plant Optimization Home Stationary Power Energy Conversion Efficiency Wind Energy Wind Plant Optimization Wind Plant OptimizationTara Camacho-Lopez2015-05-29T21:33:21+00:00...

  8. Wind Wave Float

    Broader source: Energy.gov (indexed) [DOE]

    Water Power Peer Review WindWaveFloat Alla Weinstein Principle Power, Inc. aweinstein@principlepowerinc.com November 1, 2011 2 | Wind and Water Power Program eere.energy.gov...

  9. Wind Energy Act (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the...

  10. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  11. Airplane and the wind

    E-Print Network [OSTI]

    Airplane and the wind. An airplane starts from the point A and flies to B. The speed of the airplane with respect to the air is v (constant). There is also a wind of

  12. See the Wind

    Broader source: Energy.gov (indexed) [DOE]

    See the Wind Grades: 5-8 , 9-12 Topic: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency...

  13. Wind JOC Conference - Wind Control Changes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Wind Control Changes JOC August 10, 2012 Presentation updated on July 30, 2012 at 11:00 AM B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 2 Wind Control Changes B O N...

  14. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Prospects for Offshore Wind Farms. ” Wind Engineering, 28:Techniques for Offshore Wind Farms. ” Journal of Solar

  15. Kent County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

  16. Wind Webinar Text Version

    Broader source: Energy.gov [DOE]

    Download the text version of the audio from the DOE Office of Indian Energy webinar on wind renewable energy.

  17. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    regulation and frequency response services charge to wind energyRegulation and Frequency Response Service rate for wind energy

  18. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.

  19. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    space constraints. Ohio: The Lake Erie Energy DevelopmentGreat Lakes Ohio Wind, and Great Lakes Wind Energy LLC. In

  20. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    of larger balancing areas, the use of regional wind powerbalancing areas. The successful use of regional wind power

  1. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    directly charging wind power projects for balancing servicesin smaller balancing areas. The successful use of wind power

  2. Economic and Financial Feasibility of Wind Energy -Case Study of Philippines

    E-Print Network [OSTI]

    Economic and Financial Feasibility of Wind Energy - Case Study of Philippines Jyoti Prasad Painuly), can help project make viable in this case. 1 Introduction Wind energy has been one of the most., indicating viability of wind energy for entrepreneurs in developing countries as well. There are varying

  3. Powering Up With Space-Time Wind Forecasting Amanda S. HERING and Marc G. GENTON

    E-Print Network [OSTI]

    Genton, Marc G.

    Powering Up With Space-Time Wind Forecasting Amanda S. HERING and Marc G. GENTON The technology to harvest electricity from wind energy is now advanced enough to make entire cities powered by it a reality be more realistically assessed with a loss measure that depends upon the power curve relating wind speed

  4. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  5. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04T23:59:59.000Z

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  6. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15T23:59:59.000Z

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  7. Wind Turbine Competition Introduction

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

  8. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  9. Mt. Wachusett Community College Makes Huge Investment in Wind Power |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the NationalPennsylvania |FebruaryEnergy5, 20148,

  10. Wind pressure distribution on shell structures 

    E-Print Network [OSTI]

    Yancey, Kenneth Earl, Jr

    1963-01-01T23:59:59.000Z

    One of the most important loads that an architect or engineer is concerned with in the structural design of buildings is wind pressure, and it is one of the most difficult structural loads to estimate. The necessity of making a close estimate...

  11. Modeling T Tauri Winds from He I 10830 Profiles

    E-Print Network [OSTI]

    John Kwan; Suzan Edwards; William Fischer

    2006-11-17T23:59:59.000Z

    The high opacity of He I 10830 makes it an exceptionally sensitive probe of the inner wind geometry of accreting T Tauri stars. In this line blueshifted absorption below the continuum results from simple scattering of stellar photons, a situation which is readily modeled without definite knowledge of the physical conditions and recourse to multi-level radiative transfer. We present theoretical line profiles for scattering in two possible wind geometries, a disk wind and a wind emerging radially from the star, and compare them to observed He I 10830 profiles from a survey of classical T Tauri stars. The comparison indicates that subcontinuum blueshifted absorption is characteristic of disk winds in ~30% of the stars and of stellar winds in ~40%. We further conclude that for many stars the emission profile of helium likely arises in stellar winds, increasing the fraction of accreting stars inferred to have accretion-powered stellar winds to ~60%. Stars with the highest disk accretion rates are more likely to have stellar wind than disk wind signatures and less likely to have redshifted absorption from magnetospheric funnel flows. This suggests the possibility that when accretion rates are high, disks can extend closer to the star, magnetospheric accretion zones can be reduced in size and conditions arise that favor radially outflowing stellar winds.

  12. Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

  13. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01T23:59:59.000Z

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  14. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13T23:59:59.000Z

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  15. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01T23:59:59.000Z

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  16. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff,Holt WindInformationWestWinds Wind

  17. Wind Generation on Winnebago Tribal Lands

    SciTech Connect (OSTI)

    Multiple

    2009-09-30T23:59:59.000Z

    The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 – 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining months of the twelve-month collection period is consistent with that collected in the first seven months, the Western Winnebago site may present an interesting opportunity for Winnebago. Given the distance to nearby substations, and high cost of interconnection at higher voltage transmission lines, Winnebago would likely need to be part of a larger project in order to reduce power costs to more attractive levels. Another alternative would be to pursue grant funding for a portion of development or equipment costs, which would also help reduce the cost of power produced. The NREL tower from the WinnaVegas site was taken down in late 2008, re-instrumented and installation attempted on the Thunderway site south of the Winnebago community. Based on projected wind speeds, current equipment costs, and the project’s proximity to substations for possible interconnection, a Thunderway community-scale wind project could also be feasible.

  18. the risk issue of wind measurement for wind turbine operation

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Sciences, National Taiwan University #12;outline · Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3.brainybetty.com 11 wind farm at ChangHwa Coastal Industrial Park 70m wind tower 70m 50m 30m 10m #12;1 2 3 4 5 1 (70M

  19. Small Wind Electric Systems: A U.S. Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  20. Small Wind Electric Systems: A South Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: A South Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  1. Small Wind Electric Systems: An Alaska Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  2. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  3. Small Wind Electric Systems: A Vermont Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: A Vermont Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  4. Small Wind Electric Systems: A Maryland Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-01-01T23:59:59.000Z

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  5. Small Wind Electric Systems: A Washington Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Washington Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  6. Small Wind Electric Systems: A North Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: A North Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  7. Small Wind Electric Systems: A Minnesota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: A Minnesota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  8. Small Wind Electric Systems: An Illinois Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: An Illinois Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  9. Small Wind Electric Systems: A Pennsylvania Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Pennsylvania Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  10. Small Wind Electric Systems: A Maine Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Maine Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  11. Small Wind Electric Systems: A Montana Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  12. Small Wind Electric Systems: A Colorado Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2006-12-01T23:59:59.000Z

    Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  13. Small Wind Electric Systems: A Kansas Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Kansas Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  14. Small Wind Electric Systems: A Michigan Consumer's Guide (revised)

    SciTech Connect (OSTI)

    Not Available

    2007-01-01T23:59:59.000Z

    Small Wind Electric Systems: A Michigan Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  15. Small Wind Electric Systems: A U.S. Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  16. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: A Utah Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  17. Small Wind Electric Systems: An Ohio Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: An Ohio Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  18. Small Wind Electric Systems: A Michigan Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: A Michigan Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  19. Small Wind Electric Systems: A Nevada Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: A Nevada Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  20. Small Wind Electric Systems: A Nebraska Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-12-01T23:59:59.000Z

    Small Wind Electric Systems: A Nebraska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  1. Small Wind Electric Systems: A North Carolina Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: A North Carolina Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  2. Small Wind Electric Systems: An Oklahoma Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: An Oklahoma Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  3. Small Wind Electric Systems: A Missouri Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: A Missouri Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  4. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  5. Small Wind Electric Systems: An Indiana Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: An Indiana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  6. Small Wind Electric Systems: A Virginia Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-01-01T23:59:59.000Z

    Small Wind Electric Systems: A Virginia Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  7. Small Wind Electric Systems: A Montana Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2006-04-01T23:59:59.000Z

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  8. Small Wind Electric Systems: An Ohio Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: An Ohio Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  9. Small Wind Electric Systems: An Oklahoma Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: An Oklahoma Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  10. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  11. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: An Oregon Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  12. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    Wind energy assessment and wind farm simulation in Triunfo- Pernambuco, Brazil,wind resources for electrical energy production. Wind resources as- sessment of Brazil

  13. Sandia Energy - Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind & Water Power Newsletter Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind & Water Power Newsletter Wind & Water Power NewsletterTara...

  14. Wind Tunnel Building - 3 

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    1 Energy Systems Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles... on Sweetwater I Wind Farm Capacity Factor Analysis Application to All Wind Farms Uncertainty Analysis Emissions Reduction Summary Energy Systems Laboratory 3 SUMMARYEMISSIONS REDUCTION UNCERTAINTY ANALYSIS APPLICATIONMETHODOLOGYINTRODUCTION Background...

  15. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  16. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Denham, Graham

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  17. Proceedings Nordic Wind Power Conference

    E-Print Network [OSTI]

    Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

  18. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    hub heights of 110 meters (m) (which are already in wide commercial deployment in Germany and other European countries), the technical potential for wind deployment is...

  19. Allegany County Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance sets requirements for industrial wind energy conversion systems. These requirements include minimum separation distances, setback requirements, electromagnetic interference analysis ...

  20. Talkin’ Bout Wind Generation

    Broader source: Energy.gov [DOE]

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  1. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    including natural gas, and competing renewable power resources such as solar photovoltaics. Figure 4-3. Wind turbine hub height trends in Germany from 2007 to 2014 Source:...

  2. Accelerating Offshore Wind Development

    Broader source: Energy.gov [DOE]

    Today the Energy Department announced investments in seven offshore wind demonstration projects. Check out our map to see where these projects will be located.

  3. wind_guidance

    Broader source: Energy.gov [DOE]

    Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

  4. Barstow Wind Turbine Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  5. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08T23:59:59.000Z

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  6. Wind | Department of Energy

    Office of Environmental Management (EM)

    in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job...

  7. Northern Wind Farm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities to accommodate the interconnection. The EA also includes a review of the potential environmental impacts of Northern Wind, LLC, constructing, operating, and...

  8. Wind-To-Hydrogen Energy Pilot Project

    SciTech Connect (OSTI)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24T23:59:59.000Z

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation o

  9. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  10. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    step toward issuing a 150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The...

  11. Wind turbulence characterization for wind energy development

    SciTech Connect (OSTI)

    Wendell, L.L.; Gower, G.L.; Morris, V.R.; Tomich, S.D.

    1991-09-01T23:59:59.000Z

    As part of its support of the US Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites. 9 refs., 10 figs.,

  12. Kahuku Wind Power (First Wind) | Department of Energy

    Office of Environmental Management (EM)

    The project employs the integration of Clipper LibertyTM wind turbine generators and a control system to more efficiently integrate wind power with the utility's power grid....

  13. American Wind Energy Association Wind Energy Finance and Investment Seminar

    Broader source: Energy.gov [DOE]

    The American Wind Energy Association Wind Energy Finance and Investment Seminar will be attended by representatives in the financial sector, businesses, bankers, government and other nonprofit...

  14. WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department...

    Office of Environmental Management (EM)

    capturing more wind than ever before through the installation of innovative offshore wind turbines and systems in U.S. waters, the Atmosphere to Electrons initiative which...

  15. Public Acceptance of Wind: Foundational Study Near US Wind Facilities

    Wind Powering America (EERE)

    Group * Energy Analysis and Environmental Impacts Department Public Acceptance of Wind Power Ben Hoen Lawrence Berkeley National Laboratory WindExchange Webinar June 17, 2015...

  16. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Energy Savers [EERE]

    Wind Energy's Contribution to U.S. Electricity Supply Testing, Manufacturing, and Component Development Projects U.S. Offshore Wind Manufacturing and Supply Chain Development...

  17. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01T23:59:59.000Z

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  18. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

  20. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

  1. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedused to estimate wind integration costs and the ability toColorado 2 GW and 3 GW Wind Integration Cost Study. Denver,

  3. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Economic Analysis of a Wind Farm in Nantucket Sound. BeaconP. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &

  4. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    to natural gas. 2008 Wind Technologies Market Report 1% windforward gas market. 2008 Wind Technologies Market Report 4.Market Report Wind Penetration (Capacity Basis) Arizona Public Service Avista Utilities California RPS Idaho Power Xcel-PSCo-2008 at 2006 Gas

  5. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    forward gas market. 2009 Wind Technologies Market Report TheMarket Report Wind Penetration (Capacity Basis) Xcel-PSCo-2008 at 2006 Gasgas facilities run at even lower capacity factors. 2009 Wind Technologies Market Report

  6. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Technologies Market Report Wind Gas Coal Other Renewablethe forward gas market. 2011 Wind Technologies Market ReportMarket Report Nameplate Capacity (GW) Entered queue in 2011 Total in queue at end of 2011 Wind Natural Gas

  7. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

  8. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    P. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &Economic Analysis of a Wind Farm in Nantucket Sound. Beacon

  9. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy from the bottom toover the cost and price of wind energy that it receives. Asweighted-average price of wind energy in 1999 was $65/MWh (

  10. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    natural gas prices, though the economic value of wind energyenergy and climate policy initiatives. With wind turbine pricesprices reported here would be at least $20/MWh higher without the PTC), they do not represent wind energy

  11. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    weighted-average price of wind energy in 1999 was roughly $reduced near-term price expectations, wind energy?s primaryelectricity prices in 2009 pushed wind energy to the top of

  12. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

  13. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    shows that 8.5% of potential wind energy generation withinin GWh (and as a % of potential wind generation) Electricreport also laid out a potential wind power deployment path

  14. For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen andMeetingonup onFood

  15. For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOE AcquisitionActivitiesDates: July

  16. PowerJet Wind Turbine Project

    SciTech Connect (OSTI)

    Bartlett, Raymond J

    2008-11-30T23:59:59.000Z

    PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energy�s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJet�s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assembly�including the electronic and mechanical controls designed, manufactured and field tested during the course of this project�proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOE�s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

  17. Carbon smackdown: wind warriors

    SciTech Connect (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-07-21T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  18. VARIABLE SPEED WIND TURBINE

    E-Print Network [OSTI]

    Chatinderpal Singh

    Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

  19. Small Wind Information (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

  20. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  1. Diablo Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs TypeWinds Wind Farm Jump to:

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    regulation and frequency response services charge for wind energyRegulation and Frequency Response Service that charges a higher rate for wind energy

  3. Wind Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. IEA Wind Task 34 (WREN) Quarterly Webinar 3:...

  4. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    forward gas market. 2010 Wind Technologies Market Report 4.Market Report Entered queue in 2010 Total in queue at end of 2010 Nameplate Capacity (GW) Wind Natural Gas

  5. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine VerificationTurbine Global Market Study: Year Ending 2008. Washington, DC: American Wind Energy

  6. Wind Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

  7. Large Wind Property Tax Reduction

    Broader source: Energy.gov [DOE]

    In 2001, North Dakota established property tax reductions for commercial wind turbines constructed before 2011. Originally, the law reduced the taxable value of centrally-assessed* wind turbines...

  8. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    wind power projects in the United States to date have been installed on land,on developing wind power projects on public lands. State

  9. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind power projects in the United States to date have been installed on land,of developing wind power projects on public lands. State

  10. Space-time forecasting and evaluation of wind speed with statistical tests for comparing accuracy of spatial predictions

    E-Print Network [OSTI]

    Hering, Amanda S.

    2010-10-12T23:59:59.000Z

    High-quality short-term forecasts of wind speed are vital to making wind power a more reliable energy source. Gneiting et al. (2006) have introduced a model for the average wind speed two hours ahead based on both spatial and temporal information...

  11. Wind Fins: Novel Lower-Cost Wind Power System

    SciTech Connect (OSTI)

    David C. Morris; Dr. Will D. Swearingen

    2007-10-08T23:59:59.000Z

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

  12. Ris National Laboratory DTU Wind Energy Department

    E-Print Network [OSTI]

    wind speed, wind direction relative to the spinner and flow inclination angle. A wind tunnel concept anemometer is a wind measurement concept in which measurements of wind speed in the flow over a wind turbine on a modified 300kW wind turbine spinner, was mounted with three 1D sonic wind speed sensors. The flow around

  13. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    potential on Hong Kong islands - an analysis of wind power and wind turbine characteristics, Renewable Energy,

  14. Organizational and Individual Decision Making Organizational and Individual Decision Making

    E-Print Network [OSTI]

    Sadeh, Norman M.

    Organizational and Individual Decision Making Organizational and Individual Decision Making Citation: Kathleen M. Carley & Dean Behrens, 1999, "Organizational and Individual Decision Making." Ch. 18, Inc. #12;Organizational and Individual Decision Making Organizational and Individual Decision Making

  15. Wind Energy Program: Top 10 Program Accomplishments

    Broader source: Energy.gov [DOE]

    Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

  16. Saturation wind power potential and its implications for wind energy

    E-Print Network [OSTI]

    Saturation wind power potential and its implications for wind energy Mark Z. Jacobsona,1 at 10 km above ground in the jet streams assuming airborne wind energy devices ("jet stream the theoretical limit of wind energy available at these altitudes, particularly because some recent studies

  17. Reference wind farm selection for regional wind power prediction models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

  18. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  19. Quantifying Offshore Wind Resources from Satellite Wind Maps

    E-Print Network [OSTI]

    Pryor, Sara C.

    the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, LtdQuantifying Offshore Wind Resources from Satellite Wind Maps: Study Area the North Sea C. B National Laboratory, Roskilde, Denmark Offshore wind resources are quantified from satellite synthetic

  20. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  1. WIND ENERGY Wind Energ. 2013; 16:7790

    E-Print Network [OSTI]

    Papalambros, Panos

    energy industry lags far behind the wind energy industry, it has the potential to become a role player is equal to the long-term potential of onshore wind energy.1,2 Therefore, the utilisation of marineWIND ENERGY Wind Energ. 2013; 16:77­90 Published online 19 March 2012 in Wiley Online Library

  2. Improved Superconducting Wire for Wind Generators: Superconducting Wires for Direct-Drive Wind Generators

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: Brookhaven National Laboratory will develop a low-cost superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. Brookhaven National Laboratory will develop a high-performance superconducting wire that can handle significantly more electrical current, and will demonstrate an advanced manufacturing process that has the potential to yield a several-fold reduction in wire costs while using a using negligible amount of rare earth material. This design has the potential to make a wind turbine generator lighter, more powerful, and more efficient, particularly for offshore applications.

  3. Wind | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacksof EnergyWhenWindWind ResearchWind

  4. Small Wind Guidebook/What are the Basic Parts of a Small Wind...

    Open Energy Info (EERE)

    What are the Basic Parts of a Small Wind Electric System < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind...

  5. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...

    Energy Savers [EERE]

    6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and...

  6. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Looking forward, offshore wind costs are generally expectedachieving the U.S. 20% wind cost and performance trajectoryDissecting Wind Turbine Costs. ” WindStats Newsletter (21:

  7. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Carbon Trust. (2008). Offshore Wind Power: Big Challenge,Financial Support for Offshore Wind. The UK Department ofCost Reduction Prospects for Offshore Wind Farms. ” Wind

  8. analytic-deliberative policy making: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Handy, Susan L. 49 Web tool for energy policy decision-making through geo-localized LCA models: A focus on offshore wind farms in Northern Europe Physics Websites Summary: 1...

  9. wind engineering & natural disaster mitigation

    E-Print Network [OSTI]

    Denham, Graham

    wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

  10. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    some wind turbine manufacturers experienced blade andwind turbine manufacturers: Vestas (nacelles, blades, and

  11. Community Wind Benefits (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    This fact sheet explores the benefits of community wind projects, including citations to published research.

  12. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Cost Analysis: Multi-Year Analysis Results and Recommendations. Consultant report prepared by the California Wind

  13. Kentish Flats Offshore Wind Farm

    E-Print Network [OSTI]

    Firestone, Jeremy

    Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30 of the wind farm could be up to 90 MW. For the benefit of the environment The British Government has set

  14. Optimization of Wind Turbine Operation

    E-Print Network [OSTI]

    Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

  15. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01T23:59:59.000Z

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  16. Wind Plant Ramping Behavior

    SciTech Connect (OSTI)

    Ela, E.; Kemper, J.

    2009-12-01T23:59:59.000Z

    With the increasing wind penetrations, utilities and operators (ISOs) are quickly trying to understand the impacts on system operations and planning. This report focuses on ramping imapcts within the Xcel service region.

  17. Wind Energy Systems Exemption

    Broader source: Energy.gov [DOE]

    Tennessee House Bill 809, enacted into law in Public Chapter 377, Acts of 2003 and codified under Title 67, Chapter 5, states that wind energy systems operated by public utilities, businesses or...

  18. Wind Energy Permitting Standards

    Broader source: Energy.gov [DOE]

    All wind facilities larger than 0.5 megawatts (MW) that begin construction after July 1, 2010, must obtain a permit from any county in which the facility is located. Facilities must also obtain...

  19. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01T23:59:59.000Z

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  20. Wind Agreements (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations address leases or lease options securing land for the study or production of wind-generated energy. The regulations describe agreement terms, compliance, and a prohibition on land...

  1. Suite for Wind Ensemble

    E-Print Network [OSTI]

    Oliver, Theodore

    2014-05-31T23:59:59.000Z

    "Suite for Wind Ensemble" consists of three movements, each of which contains a main theme and several smaller themes. Each main theme is introduced within the first minute of the movement, and the main themes from the ...

  2. Airborne Wind Turbine

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  3. Wind Turbines Benefit Crops

    SciTech Connect (OSTI)

    Takle, Gene

    2010-01-01T23:59:59.000Z

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  4. After the Wind Storm 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    Solar and wind power can be economical and environmentally friendly ways to pump water for homes, irrigation and/or livestock water wells. This publication explains how these pumps work, the advantages and disadvantages of using renewable energy...

  5. Wind Tunnel Building - 1 

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

  6. Wind Tunnel Building - 7 

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    DETERMINATION OF WIND FROM NIMBUS-6 SATELLITE SOUNDING DATA A Thesis by WILLIAM EVERETT CARLE Submitted to the Graduate College of Texas A&M University in partial fulfil!. ment of the requirement for the deg. . ec of MASTER OF SCIENCE... December 1979 Major Subject: Meteorology DETEIQ&INATION OE WIND PROS1 NINEDS-6 SATELLITE SOUNDING DATA A Thesis WILLIA11 EVERETT CARLE Aporoved as to style and content by: (Chairman of Commi tee) Nember) (Head of Department) December 1979...

  7. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergyEnergytransmission-rates Sign In About |Wind

  8. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting (Ames, IA)

    1984-01-01T23:59:59.000Z

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  9. Winding for linear pump

    DOE Patents [OSTI]

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22T23:59:59.000Z

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  10. Winding for linear pump

    DOE Patents [OSTI]

    Kliman, Gerald B. (Schenectady, NY); Brynsvold, Glen V. (San Jose, CA); Jahns, Thomas M. (Schenectady, NY)

    1989-01-01T23:59:59.000Z

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  11. Wind energy: Program overview, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  12. WINS: Market Simulation Tool for Facilitating Wind Energy Integration

    SciTech Connect (OSTI)

    Shahidehpour, Mohammad [Illinois Institute of Technology

    2012-10-30T23:59:59.000Z

    Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities: (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC). (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision results are often text-based demonstrations. WINS includes a powerful visualization tool and user interface capability for transmission analyses, planning, and assessment, which will be of great interest to power market participants, power system planners and operators, and state and federal regulatory entities. (3) WINS can handle extended transmission models for wind integration studies. WINS models include limitations on transmission flow as well as bus voltage for analyzing power system states. The existing decision tools often consider transmission flow constraints (dc power flow) alone which could result in the over-utilization of existing resources when analyzing wind integration. WINS can be used to assist power market participants including transmission companies, independent system operators, power system operators in vertically integrated utilities, wind energy developers, and regulatory agencies to analyze economics, security, and reliability of various options for wind integration including transmission upgrades and the planning of new transmission facilities. WINS can also be used by industry for the offline training of reliability and operation personnel when analyzing wind integration uncertainties, identifying critical spots in power system operation, analyzing power system vulnerabilities, and providing credible decisions for examining operation and planning options for wind integration. Researches in this project on wind integration included (1) Development of WINS; (2) Transmission Congestion Analysis in the Eastern Interconnection; (3) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (4) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection. The research resulted in 33 papers, 9 presentations, 9 PhD degrees, 4 MS degrees, and 7 awards. The education activities in this project on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development.

  13. Essays in decision making

    E-Print Network [OSTI]

    Chang, Tom Y., 1976-

    2009-01-01T23:59:59.000Z

    This thesis explores the impact of individual decision making on the functioning of firms and markets. The first chapter examines how deviations from strict rationality by individuals impact the market for consumer goods. ...

  14. Industrial Decision Making 

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    and industrial investment decision-making. The paper will also address several important questions: • Why has industrial investment declined? • What is the outlook for industrial investment? • How can programs engage industry for future opportunities?...

  15. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01T23:59:59.000Z

    and Scope Wind energy is growing and turbines are regularlyfor Design of Wind Turbines. Wind Energy Department of Risřloads on wind turbines. ” European Wind Energy Conference

  16. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  17. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    SciTech Connect (OSTI)

    Caroline Draxl: NREL

    2014-01-01T23:59:59.000Z

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  18. NREL Innovations Contribute to an Award-Winning Small Wind Turbine (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    The Skystream 3.7 wind turbine is the result of a decade-long collaboration between the National Renewable Energy Laboratory (NREL) and Southwest Windpower, a commercially successful small wind turbine manufacturer. NREL drew heavily on its research experience to incorporate innovations into the Skystream 3.7, including a unique blade design that makes the wind turbine more efficient and quieter than most.

  19. Robi, Robichaud, Wind Technologies and Evolving Opportunities

    Broader source: Energy.gov (indexed) [DOE]

    RPS * Wind Technology Overview * Larger Rotors * Taller Towers * Improved Controls * Wind Resource * Improved Assessment 2 Innova+on for Our Energy Future National Wind Technology...

  20. ANNUAL WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    ANNUAL WIND DATA REPORT Thompson Island March 1, 2002 ­ February 28, 2003 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  1. Correlations in thermal comfort and natural wind

    E-Print Network [OSTI]

    Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    Chaotic ?uctuation in natural wind and its application toof natural and mechanical wind in built environment usingcharacteristics of natural wind. Refrigeration 71 (821),

  2. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  3. WIND DATA REPORT January -December, 2003

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Vinalhaven January - December, 2003 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  4. Strong wind forcing of the ocean

    E-Print Network [OSTI]

    Zedler, Sarah E.

    2007-01-01T23:59:59.000Z

    of mesoscale and steady wind driven 1. Introduction 2. Modelparameterization at high wind speeds 1. Introduction 2. DataSupplementary Formulae 1. Wind Stress 2. Rankine Vortex A .

  5. WIND DATA REPORT January -March, 2004

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Vinalhaven January - March, 2004 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  6. WIND DATA REPORT Deer Island Outfall

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Outfall August 18, 2003 ­ December 4, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  7. WIND DATA REPORT Deer Island Parking Lot

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Parking Lot May 1, 2003 ­ July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  8. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Wind Integration Costs ..adequacy costs. Wind generation costs are also significantlyvalue. 3. We add wind integration cost to the levelized cost

  9. Wavelet Analysis for Wind Fields Estimation

    E-Print Network [OSTI]

    Leite, Gladeston C.

    2013-01-01T23:59:59.000Z

    resource assessment and wind farm development in the UK. Inevaluation of oil spills and wind farms. Keywords: SAR; Winddata to characterize wind farms and their potential energy

  10. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of the Northern Europe offshore wind resource, Journal ofof theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction and

  11. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Coal Wind Hybrid: Economic Analysis additional cost of fuelWind Hybrid: Economic Analysis Levelized Generation CostCoal Wind Hybrid: Economic Analysis Notes: All Cost are in

  12. Wind Webinar Presentation Slides | Department of Energy

    Office of Environmental Management (EM)

    Wind Webinar Presentation Slides Wind Webinar Presentation Slides Download presentation slides from the DOE Office of Indian Energy webinar on wind renewable energy. DOE Office of...

  13. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  14. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction andof theoretical offshore wind farm on Jacksonville, Florida

  15. WIND DATA REPORT Quincy DPW, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy DPW, MA September 1st 2006 to November 30th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  16. WIND DATA REPORT Bishop and Clerks

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Bishop and Clerks March 1, 2005 ­ May 31, 2005 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  17. WIND DATA REPORT Quincy Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy Quarry Hills December 2006 to February 2007 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  18. WIND DATA REPORT Quincy DPW, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy DPW, MA June 1st 2006 to August 31st 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  19. WIND DATA REPORT Quincy Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy Quarry Hills March 2007 to May 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  20. WIND DATA REPORT Rockport School Complex

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Rockport School Complex Rockport, Massachusetts March 1, 2006 ­ May 31, 2007...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  1. WIND DATA REPORT Quincy DPW, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy DPW, MA March 1st 2007 to May 31st 2007 Prepared for Massachusetts...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  2. WIND DATA REPORT Tisbury, Martha's Vineyard,

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Tisbury, Martha's Vineyard, Massachusetts September 1, 2007 ­ November 30, 2007...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  3. WIND DATA REPORT Rockport School Complex

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Rockport School Complex Rockport, Massachusetts December 1st , 2007 ­ February 29...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  4. WIND DATA REPORT Rockport School Complex

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Rockport School Complex Rockport, Massachusetts September 1, 2005 - November 31.................................................................................................................... 12 Wind Speed Time Series........................................................................................................... 12 Wind Speed Distributions

  5. WIND DATA REPORT Rockport School Complex

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Rockport School Complex Rockport, Massachusetts June 1, 2007 ­ August 31, 2007...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  6. WIND DATA REPORT December, 2004 28th

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Orleans 1st December, 2004 ­28th February, 2005 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions.......................................................................................................

  7. WIND DATA REPORT Rockport School Complex

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Rockport School Complex Rockport, Massachusetts December 1, 2006 ­ February 28...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  8. Helping Policymakers Evaluate Distributed Wind Options | Department...

    Energy Savers [EERE]

    distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to generate their own clean electricity and cut their energy bills,...

  9. Sandia Energy - Continuous Reliability Enhancement for Wind ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhancement for Wind (CREW): Project Update Home Renewable Energy Energy News Wind Energy News & Events Systems Analysis Continuous Reliability Enhancement for Wind (CREW):...

  10. Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-06-01T23:59:59.000Z

    Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  11. Economic Development Impact of 1,000 MW of Wind Energy in Texas

    SciTech Connect (OSTI)

    Reategui, S.; Hendrickson, S.

    2011-08-01T23:59:59.000Z

    Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

  12. Small Wind Electric Systems: A U.S. Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2004-08-01T23:59:59.000Z

    Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  13. Analysis of Optimal Stator Concentric Winding Patterns University of Wisconsin-Madison

    E-Print Network [OSTI]

    Lipo, Thomas

    2005-02 Analysis of Optimal Stator Concentric Winding Patterns Design isconsin lectric achines Motive Force (MMF) harmonics of electrical machine created by the stator concentric windings.e., with equal turns for each coil. However, the automation process nowadays makes it quite easy for the coils

  14. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being drivenandWebmasterWind

  15. Wind Vision Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to:Wilson Hot

  16. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power Rental MarketEthanol LLC JumpWinds ND

  17. High Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy Resources JumpSheldon Energy Wind

  18. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6 DecemberWind Resource

  19. NREL: Wind Research - Site Wind Resource Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6Site Wind Resource

  20. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6Site Wind ResourceSmall

  1. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01T23:59:59.000Z

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  2. Chaninik Wind Group Wind Heat Smart Grids Final Report

    SciTech Connect (OSTI)

    Meiners, Dennis [Technical Contact

    2013-06-29T23:59:59.000Z

    Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

  3. Wind Powering America Webinar Series (Postcard), Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    Wind Powering America offers a free monthly webinar series that provides expert information on today?s key wind energy topics. This postcard is an outreach tool that provides a brief description of the webinars as well as the URL.

  4. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect (OSTI)

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01T23:59:59.000Z

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  5. Development of Regional Wind Resource and Wind Plant Output Datasets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50-47676 March 2010 Development of Regional Wind Resource and Wind Plant Output Datasets Final Subcontract Report 15 October 2007 - 15 March 2009 3TIER Seattle, Washington National...

  6. Wind for Schools: A Wind Powering America Project (Brochure)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-08-01T23:59:59.000Z

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  7. Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01T23:59:59.000Z

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  8. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Broader source: Energy.gov (indexed) [DOE]

    0% Wind Energy by 2030 Increasing Wind Energy's Contribution to U.S. Electricity Supply DOEGO-102008-2578 * December 2008 More information is available on the web at:...

  9. Wind motor applications for transportation

    SciTech Connect (OSTI)

    Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B. [Moscow Aviation Inst. (Russian Federation)

    1996-12-31T23:59:59.000Z

    Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

  10. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01T23:59:59.000Z

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  11. The divergent wind component in data sparse tropical wind fields 

    E-Print Network [OSTI]

    Snyder, Bruce Alan

    1985-01-01T23:59:59.000Z

    boundary data were estimated by linear extrapolation from inner to outer grid points. Comparisons of level Illb wind data and cloud drift winds were made using Geostationary Operational Environmental Satelhte (GOES) West observed winds obtained from... for 0000 GMT 25 January 1979 were drawn and subjectively compared. Claudy regions viewed in enhanced GOES West imagery were superimposed on these streamline fields to determine whether the aliased wind fields correlated well with the convective activity...

  12. The feasibility of sodar wind profile measurements from an oceanographic buoy

    E-Print Network [OSTI]

    Berg, Allison M. (Allison May)

    2006-01-01T23:59:59.000Z

    This thesis explores the feasibility of making wind speed profile measurements from an oceanographic buoy using a Doppler sodar. In the fall of 2005, we deployed a Scintec SFAS sodar on an ASIS buoy. Roughly one week of ...

  13. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect (OSTI)

    Turtle Mountain Community College

    2003-12-30T23:59:59.000Z

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

  14. Winds of Education

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to:Wilson HotWalkersWindridge Wind Farm

  15. Wind Vision: Impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to globalWindWind Vision: Impacts

  16. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS SeptemberRenewableAbout Key ActivitiesWhy EnergyWindPeer06 WindScience &

  17. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01T23:59:59.000Z

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  18. WIND ENERGY Wind Energ. 2013; 00:112

    E-Print Network [OSTI]

    that by a novel change of variables, which focuses on power flows, we can transform the problem to one with linear rejection, model predictive control, convex optimization, wind power control, energy storage, power output to reliable operation of power systems due to the fluctuating nature of wind power. Thus, modern wind power

  19. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01T23:59:59.000Z

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  20. Utilizing Wind: Optimal Wind Farm Placement in the United States

    E-Print Network [OSTI]

    Powell, Warren B.

    Utilizing Wind: Optimal Wind Farm Placement in the United States By: Yintao Sun Advisor: Professor . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.1 Carbon-based Fuels . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4.2 Solar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 iv #12;CONTENTS v 3 Designing Wind Farm Portfolios 27 3.1 Applying Markowitz Portfolio Theory

  1. Wind Technologies and Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robi Robichaud

    2014-03-01T23:59:59.000Z

    This presentation provides an overview of wind energy research being conducted at the National Wind Technology Center, market and technology trends in wind energy, and opportunities for wind technology.

  2. Variables Affecting Economic Development of Wind Energy

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2008-07-01T23:59:59.000Z

    NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

  3. Cost of Offshore Wind Energy Charlene Nalubega

    E-Print Network [OSTI]

    Mountziaris, T. J.

    water as well as on land based wind farms. The specific offshore wind energy case under consideration, most of the offshore wind farms are in Europe, which started being developed in the early 1990's Cost of Offshore Wind Energy

  4. WindSENSE Project Summary: FY2009-2011

    SciTech Connect (OSTI)

    Kamath, C

    2011-09-25T23:59:59.000Z

    Renewable resources, such as wind and solar, are providing an increasingly larger percentage of our energy needs. To successfully integrate these intermittent resources into the power grid while maintaining its reliability, we need to better understand the characteristics and predictability of the variability associated with these power generation resources. WindSENSE, a three year project at Lawrence Livermore National Laboratory, considered the problem of scheduling wind energy on the grid from the viewpoint of the control room operator. Our interviews with operators at Bonneville Power Administration (BPA), Southern California Edison (SCE), and California Independent System Operator (CaISO), indicated several challenges to integrating wind power generation into the grid. As the percentage of installed wind power has increased, the variable nature of the generation has become a problem. For example, in the Bonneville Power Administration (BPA) balancing area, the installed wind capacity has increased from 700 MW in 2006-2007 to over 1300 MW in 2008 and more than 2600 MW in 2009. To determine the amount of energy to schedule for the hours ahead, operators typically use 0-6 hour ahead forecasts, along with the actual generation in the previous hours and days. These forecasts are obtained from numerical weather prediction (NWP) simulations or based on recent trends in wind speed in the vicinity of the wind farms. However, as the wind speed can be difficult to predict, especially in a region with complex terrain, the forecasts can be inaccurate. Complicating matters are ramp events, where the generation suddenly increases or decreases by a large amount in a short time (Figure 1, right panel). These events are challenging to predict, and given their short duration, make it difficult to keep the load and the generation balanced. Our conversations with BPA, SCE, and CaISO indicated that control room operators would like (1) more accurate wind power generation forecasts for use in scheduling and (2) additional information that can be exploited when the forecasts do not match the actual generation. To achieve this, WindSENSE had two areas of focus: (1) analysis of historical data for better insights, and (2) observation targeting for improved forecasts. The goal was to provide control room operators with an awareness of wind conditions and energy forecasts so they can make well-informed scheduling decisions, especially in the case of extreme events such as ramps.

  5. 20% Wind Energy by 2030

    SciTech Connect (OSTI)

    Not Available

    2008-07-01T23:59:59.000Z

    This analysis explores one clearly defined scenario for providing 20% of our nations electricity demand with wind energy by 2030 and contrasts it to a scenario of no new wind power capacity.

  6. The Solar Wind Energy Flux

    E-Print Network [OSTI]

    Chat, G Le; Meyer-Vernet, N

    2012-01-01T23:59:59.000Z

    The solar-wind energy flux measured near the ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high speed solar-wind (VSW > 700 km/s) has the same mean energy flux as the slower wind (VSW < 700 km/s), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities.

  7. Commercial Scale Wind Incentive Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon’s Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up...

  8. Sandia National Laboratories: Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    known that large amounts of wind energy are not effectively harvested in large wind farms because the turbines "shadow" each other and reduce the output of the turbines located...

  9. AWEA Wind Project Siting Seminar

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AWEA Wind Project Siting Seminar takes an in-depth look at the latest siting challenges and identify opportunities to reduce risks associated with the siting and operation of wind farms to...

  10. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    generating sets. Wind turbine blades, hubs, generators,wind turbine components that include towers (trade category is “towers and lattice masts”), generators (“AC generators from 750 to 10,000 kVA”), blades

  11. San Diego County- Wind Regulations

    Broader source: Energy.gov [DOE]

    The County of San Diego has established zoning guidelines for wind turbine systems of varying sizes in the unincorporated areas of San Diego County. Wind turbine systems can be classified as small,...

  12. Sandia National Laboratories: wind energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Energy with Less Weight On May 18, 2011, in Energy, News, Renewable Energy, Wind Energy The following is from an article published in WindStats Newsletter Vol. 19, No. 4. The...

  13. Wind Measurement Equipment: Registration (Nebraska)

    Broader source: Energy.gov [DOE]

    All wind measurement equipment associated with the development or study of wind-powered electric generation, whether owned or leased, shall be registered with the Department of Aeronautics if the...

  14. Solar and Wind Permitting Laws

    Broader source: Energy.gov [DOE]

    New Jersey has enacted three separate laws addressing local permitting practices for solar and wind energy facilities. The first deals with solar and wind facilities located in industrial-zoned...

  15. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01T23:59:59.000Z

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  16. October 11, 2011 Wind Generation

    E-Print Network [OSTI]

    Ford, Andrew

    ;#12;#12;#12;#12;#12;RPS: Renewable Portfolio Standard · Renewable: solar, biomass, geothermal, hydro, wind · 75% expected

  17. DWEA SMART Wind Composites Subgroup

    Broader source: Energy.gov [DOE]

    Monday, February 16, 6:00 PMOpen to all SMART Wind participants: “Dutch Treat” group dinner, RSVP required | Location: TBD

  18. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Wind Report, Actual Installations, Projected Growth As with other forms of energy development, a variety of concerns about public acceptance

  19. Low-Maintenance Wind Power System

    E-Print Network [OSTI]

    Rasson, Joseph E

    2010-01-01T23:59:59.000Z

    Improved Vertical Axis Wind Turbine and Aerodynamic ControlDarrieus Vertical Axis Wind Turbines and Aerodynamic Control

  20. SPRING 2014 wind energy's impact

    E-Print Network [OSTI]

    Tullos, Desiree

    SPRING 2014 wind energy's impact on birds, bats......... 2-3 school news........... 4-5 alumni news measurable benefits reaped by the use of wind energy. But, it is a fact: all energy sources, alternative Interactions with Offshore Wind Energy Facilities," involves the design, deployment and testing

  1. CCPExecutiveSummary Storing Wind

    E-Print Network [OSTI]

    Feigon, Brooke

    CCPExecutiveSummary July 2011 Storing Wind for a Rainy Day W: www.uea.ac.uk/ccp T: +44 (0)1603 593715 A: UEA, Norwich, NR4 7TJ Storing Wind for a Rainy Day: What kind of electricity does Denmark export? BACKGROUND The last decade has seen a remarkable increase in the number of wind installations

  2. Bird orientation: compensation for wind

    E-Print Network [OSTI]

    Thorup, Kasper

    Bird orientation: compensation for wind drift in migrating raptors is age dependent Kasper Thorup1 14.04.03 Despite the potentially strong effect of wind on bird orientation, our understanding of how wind drift affects migrating birds is still very limited. Using data from satellite-based radio

  3. PRINCETON UNIVERSITY Wind Farm Valuation

    E-Print Network [OSTI]

    Powell, Warren B.

    PRINCETON UNIVERSITY Wind Farm Valuation Kimlee Wong 13th April 2009 Professor Warren B. Powell was generous and encouraged me to participate in the group to perform research pertaining to wind farm, and has helped me think of hedging strategies for wind farm operations. I have learnt a lot from my

  4. Wind Turbine Blockset General Overview

    E-Print Network [OSTI]

    Wind Turbine Blockset in Saber General Overview and Description of the Models Florin Iov, Adrian Turbine Blockset in Saber Abstract. This report presents a new developed Saber Toolbox for wind turbine, optimize and design wind turbines". The report provides a quick overview of the Saber and then explains

  5. Model Predictive Control Wind Turbines

    E-Print Network [OSTI]

    Model Predictive Control of Wind Turbines Martin Klauco Kongens Lyngby 2012 IMM-MSc-2012-65 #12;Summary Wind turbines are the biggest part of the green energy industry. Increasing interest control strategies. Control strategy has a significant impact on the wind turbine operation on many levels

  6. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    wind power installations in the United States have been located on land,wind power projects in the United States to date have been installed on land,wind power projects built in the United States to date have been sited on land.

  7. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04T23:59:59.000Z

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

  8. Version:April 2014 Wind Energy EFA

    E-Print Network [OSTI]

    Kusiak, Andrew

    Version:April 2014 Wind Energy EFA Wind energy has become a major source of clean energy. Wind backgrounds and knowledge of wind energy fundamentals are needed to fill these jobs. The Wind Energy EFA prepares students for a career in wind energy, and allows for completing all requirements

  9. Windings and Axes 1.0 Introduction

    E-Print Network [OSTI]

    McCalley, James D.

    on a synchronous machine: · 3 stator windings (aphase, bphase, and cphase) · 1 main field winding · Amortissuer windings on the polefaces The stator windings and the field winding is familiar to you based will model a total of 7, with associated currents as designated below. · 3 stator windings: ia, ib

  10. Energy 101: Wind Turbines - 2014 Update

    SciTech Connect (OSTI)

    None

    2014-05-06T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  11. Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its

    E-Print Network [OSTI]

    Stanford University

    ABSTRACT Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its variations is essential not only for designing, but also for cost-efficiently managing wind turbines. Wind field monitoring

  12. Energy 101: Wind Turbines - 2014 Update

    ScienceCinema (OSTI)

    None

    2014-06-05T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  13. The Future of Offshore Wind Energy

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

  14. Wind/Hybrid Electricity Applications

    SciTech Connect (OSTI)

    McDaniel, Lori

    2001-03-31T23:59:59.000Z

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  15. Method for making nanomaterials

    DOE Patents [OSTI]

    Fan, Hongyou; Wu, Huimeng

    2013-06-04T23:59:59.000Z

    A method of making a nanostructure by preparing a face centered cubic-ordered metal nanoparticle film from metal nanoparticles, such as gold and silver nanoparticles, exerting a hydrostatic pressure upon the film at pressures of several gigapascals, followed by applying a non-hydrostatic stress perpendicularly at a pressure greater than approximately 10 GPA to form an array of nanowires with individual nanowires having a relatively uniform length, average diameter and density.

  16. Wind shear climatology for large wind turbine generators

    SciTech Connect (OSTI)

    Elliott, D.L.; Wendell, L.L.; Heflick, S.K.

    1982-10-01T23:59:59.000Z

    Climatological wind shear analyses relevant to the design and operation of multimegawatt wind turbines are provided. Insight is provided for relating the wind experienced by a rotating blade in a shear flow to the analysis results. A simple analysis of the wind experienced by a rotating blade for three types of wind shear profiles under steady-state conditions is presented in graphical form. Comparisons of the magnitude and frequency of the variations in 1) the wind sensed by a single blade element, 2) the sum, and 3) the difference of the winds sensed by opposite blade elements show strong sensitivity to profile shape. These three items represent forcing functions that can be related to 1) flatwise bending moment, 2) torque on the shaft, and 3) teeter angle. A computer model was constructed to simulate rotational sampling of 10-s sampled winds from a tall tower for three different types of large wind turbines. Time series produced by the model indicated that the forcing functions on a rotating blade vary according to the shear profile encountered during each revolution as opposed to a profile derived from average wind conditions, e.g., hourly average winds. An analysis scheme was developed to establish a climatology of wind shear profiles derived from 10-s sampled winds and hourly average winds measured over a one-year period at several levels on a tall tower. Because of the sensitivity of the forcing function variability to profile shape, the analyses performed and presented are in the form of joint frequency distributions of velocity differences of the the top-to-hub versus the hub-to-bottom portion of disks of rotation for the three turbine configurations.

  17. 2013 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

    2014-08-01T23:59:59.000Z

    This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

  18. Lower Sioux Wind Feasibility & Development

    SciTech Connect (OSTI)

    Minkel, Darin

    2012-04-01T23:59:59.000Z

    This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

  19. Stellar Winds on the Main-Sequence I: Wind Model

    E-Print Network [OSTI]

    Johnstone, C P; Lüftinger, T; Toth, G; Brott, I

    2015-01-01T23:59:59.000Z

    Aims: We develop a method for estimating the properties of stellar winds for low-mass main-sequence stars between masses of 0.4 and 1.1 solar masses at a range of distances from the star. Methods: We use 1D thermal pressure driven hydrodynamic wind models run using the Versatile Advection Code. Using in situ measurements of the solar wind, we produce models for the slow and fast components of the solar wind. We consider two radically different methods for scaling the base temperature of the wind to other stars: in Model A, we assume that wind temperatures are fundamentally linked to coronal temperatures, and in Model B, we assume that the sound speed at the base of the wind is a fixed fraction of the escape velocity. In Paper II of this series, we use observationally constrained rotational evolution models to derive wind mass loss rates. Results: Our model for the solar wind provides an excellent description of the real solar wind far from the solar surface, but is unrealistic within the solar corona. We run ...

  20. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Renewable Energy, Wind and HydropowerSpeed Sites. ” European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. ” Energy

  1. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Speed Sites. ” European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. ” EnergyThe Economics of Wind Energy. ” Renewable and Sustainable

  2. 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environment...

    Energy Savers [EERE]

    5: Wind Power Siting and Environmental Effects Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting...

  3. Wind Energy's New Role in Supplying the World's Energy: What Role Will Structural Health Monitoring Play?

    SciTech Connect (OSTI)

    Butterfield, S.; Sheng, S.; Oyague, F.

    2009-12-01T23:59:59.000Z

    Wind energy installations are leading all other forms of new energy installations in the United States and Europe. In Europe, large wind plants are supplying as much as 25% of Denmark's energy needs and 8% of the electric needs for Germany and Spain, who have more ambitious goals on the horizon. Although wind energy only produces about 2% of the current electricity demand in the United States, the U.S. Department of Energy, in collaboration with wind industry experts, has drafted a plan that would bring the U.S. installed wind capacity up to 20% of the nation's total electrical supply. To meet these expectations, wind energy must be extremely reliable. Structural health monitoring will play a critical role in making this goal successful.

  4. National Skills Assessment of the U.S. Wind Industry in 2012

    SciTech Connect (OSTI)

    Levanthal, M.; Tegen, S.

    2013-06-01T23:59:59.000Z

    A robust workforce is essential to developing domestic wind power projects, including manufacturing, siting, operations, maintenance, and research capabilities. The purpose of our research is to better understand today's domestic wind workforce, projected workforce needs as the industry grows, and how existing and new programs can meet the wind industry's future education and training needs. Results presented in this report provide the first published investigation into the detailed makeup of the wind energy workforce, educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce will allow the private sector, educational institutions, and federal and state governmental organizations to make workforce-related decisions based on the current employment and training data and future projections in this report.

  5. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, William N. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  6. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

    1996-01-01T23:59:59.000Z

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  7. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, J.L.; Somers, D.M.

    1996-10-08T23:59:59.000Z

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  8. Beatty Wind Monitoring Project

    SciTech Connect (OSTI)

    Hurt, Rick

    2009-06-01T23:59:59.000Z

    The UNLV Center for Energy Research (CER) and Valley Electric Association (VEA) worked with Kitty Shubert of the Beatty Economic Redevelopment Corporation (BERC) to install two wind monitoring stations outside the town of Beatty, Nevada. The following is a description of the two sites. The information for a proposed third site is also shown. The sites were selected from previous work by the BERC and Idaho National Laboratory. The equipment was provided by the BERC and installed by researchers from the UNLV CER.

  9. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  10. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  11. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  12. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  13. CgWind: A high-order accurate simulation tool for wind turbines and wind farms

    SciTech Connect (OSTI)

    Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

    2010-02-22T23:59:59.000Z

    CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

  14. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    SciTech Connect (OSTI)

    Blair, N.; Dobos, A.; Ferguson, T.; Freeman, J.; Gilman, P.; Whitmore, J.

    2014-05-01T23:59:59.000Z

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysis and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.

  15. Wind Power Price Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the true cost of wind generation (which would be at least $and wind’s competitive position among generation resources.

  16. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01T23:59:59.000Z

    Why offshore wind energy? Offshore wind turbines have theturbine will also uncover potential problems that exist with offshore wind energy.

  17. Shaping Tomorrow's Wind Energy Leaders | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shaping Tomorrow's Wind Energy Leaders Shaping Tomorrow's Wind Energy Leaders Addthis Duration 2:22 Topic Wind Science Education...

  18. Community Wind: Once Again Pushing the Envelope of Project Finance

    E-Print Network [OSTI]

    bolinger, Mark A.

    2011-01-01T23:59:59.000Z

    Wind Power Projects in the United States. ” Energy Policy.Wind Energy Association (AWEA). 2010. Community Wind Policy

  19. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31T23:59:59.000Z

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  20. Appendix I1-2 to Wind HUI Initiative 1: Field Campaign Report

    SciTech Connect (OSTI)

    John Zack; Deborah Hanley; Dora Nakafuji

    2012-07-15T23:59:59.000Z

    This report is an appendix to the Hawaii WindHUI efforts to dev elop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET field campaign deployment experiences and challenges. As part of the WindNET project on the Big Island of Hawaii, AWS Truepower (AWST) conducted a field campaign to assess the viability of deploying a network of monitoring systems to aid in local wind energy forecasting. The data provided at these monitoring locations, which were strategically placed around the Big Island of Hawaii based upon results from the Oahu Wind Integration and Transmission Study (OWITS) observational targeting study (Figure 1), provided predictive indicators for improving wind forecasts and developing responsive strategies for managing real-time, wind-related system events. The goal of the field campaign was to make measurements from a network of remote monitoring devices to improve 1- to 3-hour look ahead forecasts for wind facilities.