Powered by Deep Web Technologies
Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Marine and Hydrokinetic Technology Glossary  

Energy.gov (U.S. Department of Energy (DOE))

Learn about the basic technologies and key terms used to describe marine and hydrokinetic technologies.

2

Category:Marine and Hydrokinetic Technologies | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technologies Marine and Hydrokinetic Technologies Jump to: navigation, search Dictionary.png Looking for the Marine and Hydrokinetic Technology Database? Click here for a user-friendly list of Marine and Hydrokinetic Technologies. This category has the default of form Form:Marine and Hydrokinetic Technology. Pages in category "Marine and Hydrokinetic Technologies" The following 200 pages are in this category, out of 282 total. (previous 200) (next 200) 1 MHK Technologies/14 MW OTECPOWER A MHK Technologies/Aegir Dynamo MHK Technologies/AirWEC MHK Technologies/Anaconda bulge tube drives turbine MHK Technologies/AquaBuoy MHK Technologies/Aquanator MHK Technologies/Aquantis MHK Technologies/Archimedes Wave Swing MHK Technologies/Atlantis AN 150 MHK Technologies/Atlantis AR 1000

3

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY...  

Office of Scientific and Technical Information (OSTI)

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION Marine & Hydrokinetic Technology Readiness Initiative DE-EE0003636 TIDAL...

4

Marine and Hydrokinetic Technology Resources | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

hydrokinetic (MHK) energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101"...

5

Marine & Hydrokinetic Technologies (Fact Sheet) | Department...  

Energy Savers (EERE)

Sheet) Marine & Hydrokinetic Technologies (Fact Sheet) This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and...

6

Marine & Hydrokinetic Technologies (Fact Sheet)  

SciTech Connect

This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

Not Available

2010-04-01T23:59:59.000Z

7

MHK Technologies/In stream River Hydrokinetics | Open Energy Information  

Open Energy Info (EERE)

In stream River Hydrokinetics In stream River Hydrokinetics < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization ABS Alaskan Inc Technology Resource Click here Current Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description New Energy Corporation EnCurrent vertical axis turbine mounted on pontoon barge Technology Dimensions Device Testing Date Submitted 10:01.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/In_stream_River_Hydrokinetics&oldid=680959" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version

8

Form:Marine and Hydrokinetic Technology | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Marine and Hydrokinetic Technology Jump to: navigation, search Add a Marine and Hydrokinetic Technology Input the name of your Marine and Hydrokinetic Technology below to add it to the registry. If your technology is already in the registry, the form will be populated with that technology's fields and you may edit. MHK_Technologies/ Submit The text entered into this field will be used as the name of the project being defined. All projects are automatically prefixed with MHK_Technologies/. The field is case sensitive so be sure to capitalize in the correct areas and type the full title properly. << Return to the Marine and Hydrokinetic Database Retrieved from "http://en.openei.org/w/index.php?title=Form:Marine_and_Hydrokinetic_Technology&oldid=680669"

9

Category:Marine and Hydrokinetic Technology Projects | Open Energy  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Projects Marine and Hydrokinetic Technology Projects Jump to: navigation, search Dictionary.png Looking for the Marine and Hydrokinetic Technology Database? Click here for a user-friendly list of Marine and Hydrokinetic Technology Projects. This category has the default of form Form:Marine and Hydrokinetic Technology Project. Pages in category "Marine and Hydrokinetic Technology Projects" The following 200 pages are in this category, out of 379 total. (previous 200) (next 200) 4 MHK Projects/40MW Lewis project A MHK Projects/ADM 3 MHK Projects/ADM 4 MHK Projects/ADM 5 MHK Projects/Admirality Inlet Tidal Energy Project MHK Projects/Agucadoura MHK Projects/Alaska 1 MHK Projects/Alaska 13 MHK Projects/Alaska 17 MHK Projects/Alaska 18 MHK Projects/Alaska 24 MHK Projects/Alaska 25

10

Marine and Hydrokinetic Technology Database | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Database Marine and Hydrokinetic Technology Database Jump to: navigation, search Introduction The U.S. Department of Energy's Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Using the Database (1) Map illustrates marine & hydrokinetic demonstration projects around the

11

MHK Technologies/Finavera Buoy | Open Energy Information  

Open Energy Info (EERE)

Finavera Buoy Finavera Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Finavera Buoy.jpg Technology Profile Primary Organization Oregon Iron Works Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description MARINE DIVISION Oregon Iron Works Inc OIW has a globally recognized Marine Division with a wide range of advanced accomplishments from custom design prototype development Fabricate OPT Power Take Off 2007 Design Build Finavera Buoy 2007 Fabricate OPT Next Generation Buoy 2008 2009 large scale production outfitting electrical mechanical hydraulic pneumatic

12

Form:Marine and Hydrokinetic Technology Project | Open Energy Information  

Open Energy Info (EERE)

Form Form Edit History Facebook icon Twitter icon » Form:Marine and Hydrokinetic Technology Project Jump to: navigation, search Add a Marine and Hydrokinetic Technology Project Input the name of your Marine and Hydrokinetic Technology Project below to add it to the registry. If your project is already in the registry, the form will be populated with that project's fields and you may edit. MHK_Projects/ Submit The text entered into this field will be used as the name of the project being defined. All projects are automatically prefixed with MHK_Projects/. The field is case sensitive so be sure to capitalize in the correct areas and type the full title properly. << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=Form:Marine_and_Hydrokinetic_Technology_Project&oldid=688143"

13

Marine and Hydrokinetic (MHK) Technology Development Risk Management Framework Webinar  

Energy.gov (U.S. Department of Energy (DOE))

Over the years, the global marine and hydrokinetic (MHK) industry has suffered a number of technological and commercial setbacks, including some that resulted in bankruptcy. To help reduce the...

14

MHK Technologies/WAG Buoy | Open Energy Information  

Open Energy Info (EERE)

WAG Buoy WAG Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WAG Buoy.jpg Technology Profile Primary Organization Ryokuseisha Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Wave Activated Generator Buoy By using the wave activated generator as the power supply for a buoy excellent economic and maintenance power saving properties are realized There is a complete line from mid size models for use with harbor engineering works to large models for use as actual channel markers The solar cell and the all purpose type hybrid type can also be used Technology Dimensions

15

MHK Technologies/IPS OWEC Buoy | Open Energy Information  

Open Energy Info (EERE)

IPS OWEC Buoy IPS OWEC Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage IPS OWEC Buoy.jpg Technology Profile Primary Organization Interproject Service AB Technology Resource Click here Wave Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The IPS OWEC Offshore Wave Energy Converter Buoy is a system for generating electricity from ocean waves at a cost competitive with fossil fuel generated power Cluster of buoys gives energy and act as wave breaker Off shore wave energy converters and systems with great flexibility Units from 10 kW 150 kW annual mean power A new interesting alternative for the internal energy conversion is based on a set of hose pumps driven by the piston in the acceleration tube pumping water to a small turbine directly coupled to a special generator

16

MHK Technologies/Hydrokinetic Power Barge | Open Energy Information  

Open Energy Info (EERE)

Power Barge Power Barge < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hydrokinetic Power Barge.jpg Technology Profile Primary Organization Onsite Recovered Energy LP Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Vurbine proprietary technology design and assembly mounted on a horizontal shaft on a twin hull pontoon or barge CAT or SWATH combines reaction and impulse technologies which can efficiently harvest hydrokinetic energy from flowing water in a low impact application Technology Dimensions Device Testing Date Submitted 36:51.7 << Return to the MHK database homepage

17

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy  

Office of Energy Efficiency and Renewable Energy (EERE)

Columbia Power Technologies, Inc. is working to advance their wave energy buoy to commercial readiness.

18

MHK Technologies/Electric Buoy | Open Energy Information  

Open Energy Info (EERE)

Buoy Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electric Buoy.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description AMI s Ocean Swell and Wave Energy Conversion OSWEC device uses a patented linear generator to directly convert the motion of ocean swells and waves into electric power In our initial designs the generator mounts underneath a floating buoy or on the surface of a platform with the buoy below however it is possible to fit the generator on other types of wave motion energy extracting mechanisms Housing moves up and down with the motion of the Buoy on the ocean s surface while the Damping Plates hold the Generator Coil in a stable position The relative motion between the magnetic field in the generator housing and Generator Coil creates an electric voltage in the Generator Coil After four design evolutions Aqua Magnetics Inc has created our patented reciprocating linear generator Scalable for a wide range of applications and able to operate in a wide range of sea states Generator prototype will produce approximately 10 watts of power in 15 cm 6 inch wind chop in the intraco

19

MHK Technologies/The B1 buoy | Open Energy Information  

Open Energy Info (EERE)

buoy buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The B1 buoy.gif Technology Profile Primary Organization Fred Olsen Ltd Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Proprietary Mooring Configuration Proprietary Technology Dimensions Technology Nameplate Capacity (MW) Proprietary Device Testing Scale Test *Currently undergoing open sea testing scaled device Previous tests carried out in the sea with scaled devices 1 20 1 10 and 1 3 scale including the use of the research rig Buldra Lab Test *Various tests performed both in dry conditions and in wave test tanks 1 33 1 20 1 3

20

MHK Technologies/Direct Drive Power Generation Buoy | Open Energy  

Open Energy Info (EERE)

Power Generation Buoy Power Generation Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Drive Power Generation Buoy.jpg Technology Profile Primary Organization Columbia Power Technologies Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Direct drive point absorber In 2005 Oregon State University entered into an exclusive license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130 feet of water it uses the rise and fall of ocean waves to generate electricity Mooring Configuration Anchored

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

MHK Technologies/PowerBuoy | Open Energy Information  

Open Energy Info (EERE)

PowerBuoy PowerBuoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage PowerBuoy.jpg Technology Profile Primary Organization Oregon Wave Energy Partners LLC Project(s) where this technology is utilized *MHK Projects/Coos Bay OPT Wave Park *MHK Projects/Cornwall Wave Hub *MHK Projects/Griffin Project *MHK Projects/NJBPU 1 5 MW Demonstration Program *MHK Projects/Orkney *MHK Projects/Reedsport OPT Wave Park *MHK Projects/Reedsport OPT Wave Park Expanded Project *MHK Projects/Santona Wave Energy Park *MHK Projects/US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 9: Commercial-Scale Production / Application

22

MHK Technologies/Deep water capable hydrokinetic turbine | Open Energy  

Open Energy Info (EERE)

water capable hydrokinetic turbine water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Hills Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description It is an axial flow shrouded turbine direct connected to a water pump that delivers water to an on shore genetator Being completely water proof and submersible the device can operate at any water depth Mooring Configuration An array of turbines are teathered to a cable that is anchored via a dead weight Optimum Marine/Riverline Conditions This system is designed for use in Florida s Gulf Stream however any constant ocean current is suitable

23

Template:Marine and Hydrokinetic Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Jump to: navigation, search This is the Marine and Hydrokinetic Technology template. It is designed for use by MHK Technologies Pages. To define an MHK Technology, please use this form. Parameters Image - Associated image file. (optional) Primary Organization - Field def missing! Project(s) where this technology is utilized - Field def missing! Technology Resource - Field def missing! Technology Type - Field def missing! Technology Readiness Level - Field def missing! Technology Description - Field def missing! Designed to Operate with Shore Connection - Field def missing! Power Transfer Method - Field def missing! Water Column Location - Field def missing! Mooring Configuration - Field def missing! Optimum Marine/Riverline Conditions - Field def missing!

24

Marine and Hydrokinetic Technology Readiness Level | Open Energy  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Readiness Level Marine and Hydrokinetic Technology Readiness Level Jump to: navigation, search << Return to the MHK database homepage This field indicates the stage of development/deployment that technologies, which are undergoing partial or full-scale device testing, are currently in. Contents 1 TRL 1-3: Discovery / Concept Definition / Early Stage Development, Design, and Engineering 2 TRL 4: Proof of Concept 3 TRL 5/6: System Integration and Technology Laboratory Demonstration 4 TRL 7/8: Open Water System Testing, Demonstration, and Operation 5 TRL 9: Commercial-Scale Production / Application TRL 1-3: Discovery / Concept Definition / Early Stage Development, Design, and Engineering The purpose of this stage is to evaluate, to the largest extent possible, the scientific or technical merit and feasibility of ideas that appear to

25

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

26

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary (Redirected from Hybrid) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

27

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary (Redirected from Attenuator) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

28

MHK Technologies/OE Buoy OE 50 | Open Energy Information  

Open Energy Info (EERE)

OE Buoy OE 50 OE Buoy OE 50 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OE Buoy OE 50.jpg Technology Profile Primary Organization Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Ocean Energy Galway Bay IE *MHK Projects/OE Buoy OE 30 Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The OEBuoy device uses wave energy to compress air in a plenum chamber and pump it through an air turbine system. This isolates the power conversion system from the seawater and also provides a high-speed air flow to the turbine. The device is a floating system with the mouth of the OWC facing away from the wave direction. This results in high energy efficiencies at the operating point because of the motions of the float system relative to the waves.

29

MHK Technologies/AquaBuoy | Open Energy Information  

Open Energy Info (EERE)

AquaBuoy AquaBuoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage AquaBuoy.jpg Technology Profile Primary Organization Finavera Renewables Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Figueira da Foz Portugal *MHK Projects/Humboldt County Wave Project *MHK Projects/Makah Bay Offshore Wave Pilot Project *MHK Projects/South Africa *MHK Projects/Ucluelet BC Canada Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Aquabuoy 2.0 is a large 3 meter wide buoy tied to a 70-foot-long shaft. By bobbing up and down, the water is rushed into an acceleration tube, which in turn causes a piston to move. This moving of the piston causes a steel reinforced rubber hose to stretch, making it act as a pump. The water is then pumped into a turbine which in turns powers a generator. The electricity generated is brought to shore via a standard submarine cable.

30

2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy Water Power Program conducted the 2014 peer review meeting on marine and hydrokinetic technologies February 24–27.

31

Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Interior the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs OCS EIS/EA BOEM 2013-01140 Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf Offshore Florida Revised Environmental Assessment OCS EIS/EA BOEM 2013-01140 Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf Offshore Florida Revised Environmental Assessment Author Bureau of Ocean Energy Management Office of Renewable Energy Programs Published by U.S. Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs August 2013 iii FINDING OF NO SIGNIIFCANT IMPACT Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental

32

Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This report focuses on potential impacts of marine and hydrokinetic technologies to aquatic environments (i.e. rivers, estuaries, and oceans), fish and fish habitats, ecological relationships, and other marine and freshwater aquatic resources.

33

MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy  

Open Energy Info (EERE)

Spar Buoy Engine Spar Buoy Engine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Power Spar Buoy Engine.jpg Technology Profile Primary Organization Functional Design Engineering Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A long period spar buoy supports a subsurface flow augmentor The augmentor directs water from the wave s submarine flow field to a free prime mover piston The prime mover is decoupled from the machine s PTO during times in the wave s cycle when there is little power available for conversion Wave energy is stored in the device until the is enough flow magnetude that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity

34

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine and Hydrokinetic Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Technical Report NREL/TP-5000-57605 February 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Prepared under Task No. WA09.3406

35

Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures  

SciTech Connect

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-10T23:59:59.000Z

36

MHK Technologies/SeaRaser buoy seawater pump | Open Energy Information  

Open Energy Info (EERE)

SeaRaser buoy seawater pump SeaRaser buoy seawater pump < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaRaser buoy seawater pump.jpg Technology Profile Primary Organization Dartmouth Wave Energy Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description SEARASER uses wave displacement to lift a float attached to a piston and uses gravity in the wave s following trough to push the piston back down It is different from other wecs as it is tethered to a weight on the seabed by a single flexible tether but utilises a double acting piston thereby producing volumes of pressurised water in both directions of the piston

37

Potential Impacts of Hydrokinetic and Wave Energy Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

38

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Power Program Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The Water Power Program works with industry partners, universities, and the Department of Energy's national

39

Proceedings of the Hydrokinetic and Wave Energy Technologies...  

Energy Savers (EERE)

Energy Conversion Technologies on Aquatic Environments Before the House Science and Technology Subcommittee on Energy and Environment Water Power Program: 2011 Peer Review Report...

40

Marine and Hydrokinetic Energy Projects  

Energy.gov (U.S. Department of Energy (DOE))

This report covers the Wind and Water Power Technologies Office’s marine and hydrokinetic projects from fiscal years 2008 to 2014.

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Technology Glossary Technology Glossary (Redirected from Axial Flow Turbine) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

42

2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)  

SciTech Connect

This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

Not Available

2014-02-01T23:59:59.000Z

43

Marine and Hydrokinetic | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine and Hydrokinetic Marine and Hydrokinetic Marine and Hydrokinetic The Water Power Program's marine and hydrokinetic research and development (R&D) efforts focus on advancing technologies that capture energy from the nation's oceans and rivers. Unlike hydropower, marine and hydrokinetics represent an emerging industry with hundreds of potentially viable technologies. The program is therefore leading efforts to prove functionality; evaluate technical and economic viability; and generate cost, performance, and reliability data for a variety of devices. Marine and hydrokinetic energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101" video explains how these technologies work and highlights some of the Water Power Program's efforts

44

Tethys: The Marine and Hydrokinetic Technology Environmental Impacts Knowledge Management System -- Requirements Specification -- Version 1.0  

SciTech Connect

The marine and hydrokinetic (MHK) environmental impacts knowledge management system (KMS), dubbed Tethys after the mythical Greek goddess of the seas, is being developed for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program (WHTP) by Pacific Northwest National Laboratory (PNNL). This requirements specification establishes the essential capabilities required of Tethys and clarifies for WHTP and the Tethys development team the results that must be achieved by the system.

Butner, R. Scott; Snowden-Swan, Lesley J.; Ellis, Peter C.

2010-11-09T23:59:59.000Z

45

Energy 101: Marine and Hydrokinetic Energy  

SciTech Connect

See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

None

2013-04-29T23:59:59.000Z

46

Energy 101: Marine and Hydrokinetic Energy  

ScienceCinema (OSTI)

See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

None

2014-06-26T23:59:59.000Z

47

Siting Methodologies for Hydrokinetics  

Energy.gov (U.S. Department of Energy (DOE))

Report that provides an overview of the federal and state regulatory framework for hydrokinetic projects.

48

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...  

Office of Science (SC) Website

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in North America Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR...

49

Energy 101: Marine & Hydrokinetic Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine & Hydrokinetic Energy Marine & Hydrokinetic Energy Energy 101: Marine & Hydrokinetic Energy August 13, 2013 - 10:54am Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings, and cities. The oceans represent a largely untapped renewable energy resource with potential to provide clean electricity to coastal communities and cities across the United States. In this edition of Energy 101, learn how the Energy Department is supporting research on a range of innovative marine and hydrokinetic energy technologies to capture energy from waves and currents. For more information on marine and hydrokinetic energy from the Office of Energy Efficiency and Renewable Energy, visit the Water Power Program

50

Energy 101: Marine and Hydrokinetic Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine and Hydrokinetic Energy Marine and Hydrokinetic Energy Energy 101: Marine and Hydrokinetic Energy Addthis Below is the text version for the Energy 101: Marine & Hydrokinetic Energy video. The words "Energy 101: Marine & Hydrokinetic Energy" appear onscreen. Montage of renewable energy technologies ending with shots of ocean waves. We all know energy can come from the wind and the sun, but there's a plentiful renewable resource covering more than 75% of the planet that you might not have thought about: our water! The movement of the ocean's waves, tides, and currents carries energy that can be harnessed and converted into electricity to power our homes, buildings and cities. The words "Kinetic Energy" appear onscreen with shots of ocean scientists at sea. The words "Marine & Hydrokinetic" appear onscreen.

51

NOAA Data Buoy Office Programs  

Science Journals Connector (OSTI)

The NOAA Data Buoy Office (NDBO) buoys provide vital meteorological and oceanographic reports from data-sparse marine areas. To provide a better understanding of the scope and potential of the buoy system, the buoy network, monitoring ...

Glenn D. Hamilton

1980-09-01T23:59:59.000Z

52

Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review  

Science Journals Connector (OSTI)

The energy in flowing river streams, tidal currents or other artificial water channels is being considered as viable source of renewable power. Hydrokinetic conversion systems, albeit mostly at its early stage of development, may appear suitable in harnessing energy from such renewable resources. A number of resource quantization and demonstrations have been conducted throughout the world and it is believed that both in-land water resources and offshore ocean energy sector will benefit from this technology. In this paper, starting with a set of basic definitions pertaining to this technology, a review of the existing and upcoming conversion schemes, and their fields of applications are outlined. Based on a comprehensive survey of various hydrokinetic systems reported to date, general trends in system design, duct augmentation, and placement methods are deduced. A detailed assessment of various turbine systems (horizontal and vertical axis), along with their classification and qualitative comparison, is presented. In addition, the progression of technological advancements tracing several decades of R&D efforts are highlighted.

M.J. Khan; G. Bhuyan; M.T. Iqbal; J.E. Quaicoe

2009-01-01T23:59:59.000Z

53

Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop  

Energy.gov (U.S. Department of Energy (DOE))

This workshop focused on information about the technologies and identified potential environmental issues associated with deploying them, and outlined a list of research needs and possible approaches to addressing those issues.

54

DOE Announces Webinars on Residential Energy Efficiency, Marine and Hydrokinetic Technology Development Risk Management, and More  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are...

55

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop  

Energy.gov (U.S. Department of Energy (DOE))

The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry.

56

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

SciTech Connect

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

57

Marine & Hydrokinetic Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet describes the U.S. Department of Energy’s Wind and Water Power Program efforts to develop advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients.

58

MHK Technologies | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Click one of the following Marine Hydrokinetic Technologies for more information: Loading... 14 MW OTECPOWER Aegir Dynamo AirWEC Anaconda bulge tube drives turbine AquaBuoy Aquanator Aquantis Archimedes Wave Swing Atlantis AN 150 Atlantis AR 1000 Atlantis AS 400 Atlantisstrom BOLT Lifesaver Benkatina Turbine Blue Motion Energy marine turbine Bluetec Brandl Generator C Plane C Wave C5 CETO Wave Energy Technology Centipod Closed Cycle OTEC CoRMaT Cross Flow Turbine Current Catcher Current Electric Generator Current Power CurrentStar DEXA Wave Converter Davidson Hill Venturi DHV Turbine Deep Gen Tidal Turbines Deep Green Deep Ocean Water Application Facility DOWAF Deep Water Pipelines Deep water capable hydrokinetic turbine

59

Marine and Hydrokinetic Energy Research & Development | Department...  

Energy Savers (EERE)

Energy Research & Development Marine and Hydrokinetic Energy Research & Development The Water Power Program's marine and hydrokinetic research and development (R&D) efforts focus...

60

Sandia National Laboratories: marine hydrokinetic  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrokinetic Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter On September 16, 2014, in Computational Modeling & Simulation, Energy, News, News & Events,...

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$37 Million for Marine and Hydrokinetic $37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to generate renewable electricity from the nation's oceans and free-flowing rivers and streams. The 27 projects range from concept studies and component design research to prototype development and in-water device testing. This unprecedented level of funding will advance the ability of marine and hydrokinetic energy technologies to

62

Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Awards $37 Million for Marine and Hydrokinetic Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to generate renewable electricity from the nation's oceans and free-flowing rivers and streams. The 27 projects range from concept studies and component design research to prototype development and in-water device testing. This unprecedented level of funding will advance the ability of marine and hydrokinetic energy technologies to

63

EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center’s Offshore Marine Hydrokinetic Technology Testing Project, Florida  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University’s South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC’s experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

64

Multnomah County Hydrokinetic Feasibility Study: Final Feasibility Study Report  

SciTech Connect

HDR has completed a study of the technical, regulatory, and economic feasibility of installing hydrokinetic turbines under the Morrison, Broadway, and Sellwood bridges. The primary objective of installing hydrokinetic turbines is a demonstration of in-stream hydrokinetic technologies for public education and outreach. Due to the low gradient of the Lower Willamette and the effects of the tide, velocities in the area in consideration are simply not high enough to economically support a commercial installation. While the velocities in the river may at times provide enough energy for a commercial turbine to reach capacity, the frequency and duration of high flow events which provide suitable velocities is not sufficient to support a commercial hydrokinetic installation. We have observed that over an 11 year period, daily average velocities in the Lower Willamette exceeded a nominal cut-in speed of 0.75 m/s only 20% of the time, leaving net zero power production for the remaining 80% of days. The Sellwood Bridge site was estimated to have the best hydrokinetic resource, with an estimated average annual production of about 9,000 kWh. The estimated production could range from 2,500 kWh to 15,000 kWh. Based on these energy estimates, the amount of revenue generated through either a power purchase agreement (PPA) or recovered through net metering is not sufficient to repay the project costs within the life of the turbine. The hydrokinetic resource at the Morrison and Broadway Bridges is slightly smaller than at the Sellwood Bridge. While the Broadway and Morrison Bridges have existing infrastructure that could be utilized, the project is not expected to generate enough revenue to repay the investment. Despite low velocities and energy production, the sites themselves are favorable for installation of a demonstration or experimental project. With high public interest in renewable energy, the possibility exists to develop a hydrokinetic test site which could provide developers and scientists a location to temporarily deploy and test hydrokinetic devices, and also function as an educational tool for the general public. Bridge piers provide an excellent pre-existing anchor point for hydrokinetic devices, and existing infrastructure at the Morrison and Broadway Bridges may reduce installation costs. Opportunity exists to partner with local universities with engineering and environmental interest in renewable energy. A partnership with Portland State University�¢����s engineering school could provide students with an opportunity to learn about hydrokinetics through senior design projects. Oregon State University and University of Washington, which are partnered through the Northwest National Marine Renewable Energy Center (NNMREC) to study and test hydrokinetic technology, are also relatively local to the site. In addition to providing an opportunity for both public and private entities to learn technically about in-stream kinetics, this approach will encourage grant funding for outreach, education, and product development, while also serving as a positive community relations opportunity for the County and its partners.

Stephen Spain

2012-03-15T23:59:59.000Z

65

Marine & Hydrokinetic Technologies (Fact Sheet)  

SciTech Connect

This document described the U.S. Department of Energy's Water Power Program efforts to promote the development and deployment of advanced water power devices.

Not Available

2011-07-01T23:59:59.000Z

66

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies This...

67

Massachusetts: New Report States That Hydrokinetic Turbines Have...  

Energy Savers (EERE)

New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish Massachusetts: New Report States That Hydrokinetic Turbines Have Minimal Environmental...

68

Sandia National Laboratories: Sandia Releases Open-Source Hydrokinetic...  

NLE Websites -- All DOE Office Websites (Extended Search)

ateECEnergyComputational Modeling & SimulationSandia Releases Open-Source Hydrokinetic Turbine Design Model, CACTUS Sandia Releases Open-Source Hydrokinetic Turbine Design Model,...

69

Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic...  

Energy Savers (EERE)

for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK)...

70

New Report States That Hydrokinetic Turbines Have Minimal Environmenta...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish August...

71

Marine and Hydrokinetic Resource Assessment and Characterization...  

Energy Savers (EERE)

Characterization Marine and Hydrokinetic Resource Assessment and Characterization The Water Power Program has released reports and maps that assess the resource potential of the...

72

Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures  

SciTech Connect

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-01T23:59:59.000Z

73

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

74

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources (Redirected from Wave) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

75

Property:Project(s) where this technology is utilized | Open Energy  

Open Energy Info (EERE)

Project(s) where this technology is utilized Project(s) where this technology is utilized Jump to: navigation, search Property Name Project(s) where this technology is utilized Property Type Page Marine and Hydrokinetic Technology Project Pages using the property "Project(s) where this technology is utilized" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/AirWEC + MHK Projects/Ocean Trials Ver 2 + MHK Technologies/AquaBuoy + MHK Projects/Figueira da Foz Portugal +, MHK Projects/Humboldt County Wave Project +, MHK Projects/Makah Bay Offshore Wave Pilot Project +, ... MHK Technologies/Archimedes Wave Swing + MHK Projects/AWS II +, MHK Projects/Portugal Pre Commercial Pilot Project + MHK Technologies/Atlantis AN 150 + MHK Projects/Gujarat + MHK Technologies/Atlantis AR 1000 + MHK Projects/Castine Harbor Badaduce Narrows +, MHK Projects/Gujarat +, MHK Projects/Tidal Energy Device Evaluation Center TIDEC +

76

Simulating Collisions for Hydrokinetic Turbines  

SciTech Connect

Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

2013-10-01T23:59:59.000Z

77

SeaVolt Technologies formerly Sea Power Associates | Open Energy  

Open Energy Info (EERE)

SeaVolt Technologies formerly Sea Power Associates SeaVolt Technologies formerly Sea Power Associates Jump to: navigation, search Name SeaVolt Technologies (formerly Sea Power & Associates) Place San Francisco, California Zip CA 94111 Sector Ocean Product The company's Wave Rider system, which is still in prototype stages, uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity. References SeaVolt Technologies (formerly Sea Power & Associates)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeaVolt Technologies (formerly Sea Power & Associates) is a company located in San Francisco, California .

78

Accelerating Climate Technologies: Innovative Market Strategies...  

Open Energy Info (EERE)

proposes a similar approach to accelerate hydrokinetic marine energy technology in global energy markets. For each case study, we show the gaps to scaling up technology...

79

River Hydrokinetic Resource Atlas | Open Energy Information  

Open Energy Info (EERE)

River Hydrokinetic Resource Atlas River Hydrokinetic Resource Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: River Hydrokinetic Resource Atlas Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Water Power Resource Type: Maps, Software/modeling tools User Interface: Website Website: maps.nrel.gov/river_atlas Country: United States Web Application Link: maps.nrel.gov/river_atlas Cost: Free UN Region: Northern America Coordinates: 39.7412019515°, -105.172290802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7412019515,"lon":-105.172290802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

80

Sandia National Laboratories: Marine Hydrokinetics Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

assessments. Laboratory-scale testing will be done to investigate materials and coatings, hydrofoil performance, and small-scale array effects. Test and evaluation is initially...

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement...  

Energy Savers (EERE)

verification and validation o Environmental monitoring and permitting o Wave energy conversion (WEC) devices * How can future events of a similar nature be improved? The remainder...

82

Marine and Hydrokinetic Technology Development and Testing |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

floating, metal test unit floating in the ocean. Northwest National Marine Renewable Energy Center: Advanced Assessment and Device Testing NNMREC is designing, installing, and...

83

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement...  

Energy Savers (EERE)

Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review 2014 Water Power Program Peer Review Compiled Presentations: Marine and...

84

Sandia National Laboratories: Marine Hydrokinetics Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

85

Scientific Solutions (TRL 5 6 Component)- Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy  

Energy.gov (U.S. Department of Energy (DOE))

Scientific Solutions (TRL 5 6 Component) - Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy

86

Teamwork Technology See Tocardo | Open Energy Information  

Open Energy Info (EERE)

Tocardo Jump to: navigation, search Name: Teamwork Technology See Tocardo Region: Netherlands Sector: Marine and Hydrokinetic Website: http:http:www.tocardo.com This...

87

Muroran Institute of Technology | Open Energy Information  

Open Energy Info (EERE)

Institute of Technology Address: 27 1 Mizumoto cho Place: Muroran Zip: 050-8585 Region: Japan Sector: Marine and Hydrokinetic Phone Number: 81 143 46 5200 Website: http:...

88

Wave Energy Technology New Zealand | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Technology New Zealand Address: PO Box 25456 Panama St Place: Wellington Zip: 6146 Region: New Zealand Sector: Marine and Hydrokinetic Year Founded: 2003 Phone Number:...

89

Request for Information for Marine and Hydrokinetic Field Measurements  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department’s Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry regarding the verification and validation of advanced open source MHK design tools and models.

90

DOE Announces Marine and Hydrokinetic Open Data Effort | Department...  

Office of Environmental Management (EM)

Open Data Effort April 10, 2014 - 3:39pm Addthis In an effort to improve future data management and access, DOE's Water Power Program is standing up a Marine and Hydrokinetics...

91

Massachusetts: New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE has released a report assessing likelihood of fish injury and mortality from the operation of hydrokinetic turbines.

92

New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE has released a report assessing likelihood of fish injury and mortality from the operation of hydrokinetic turbines.

93

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...  

Energy Savers (EERE)

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am...

94

Scaled modeling and simulation of ocean wave linear generator buoy systems.  

E-Print Network (OSTI)

??Accurate scaled modeling and simulation are critical to advancing ocean wave linear generator buoys. A 100th scaled model of ocean wave generator buoy systems is… (more)

Gore, Ganesh P.

2006-01-01T23:59:59.000Z

95

Before the House Science and Technology Subcommittee on Energy and Environment  

Energy.gov (U.S. Department of Energy (DOE))

Subject: Marine and Hydrokinetic Energy Technology: Finding the Path to Commercialization By: Jacques Beaudry-Losique, Deputy Assistant Secretary for Renewable Energy

96

Preliminary Screening Analysis for the Environmental Risk Evaluation System: Task 2.1.1: Evaluating Effects of Stressors – Fiscal Year 2010 Progress Report: Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

Possible environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term effects. An understanding of risk associated with likely interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help reduce the level of uncertainty and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases - a tidal project in Puget Sound using Open Hydro turbines, a wave project off the coast of Oregon using Ocean Power Technologies point attenuator buoys, and a riverine current project in the Mississippi River using Free Flow turbines. Through an iterative process, the screening analysis revealed that top-tier stressors in all three cases were the effects of the dynamic physical presence of the device (e.g., strike), accidents, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the four highest tiers of risk were dominated by marine mammals (cetaceans and pinnipeds) and birds (diving and non-diving); only the riverine case (Free Flow) included different receptors in the third tier (fish) and the fourth tier (benthic invertebrates). Although this screening analysis provides a preliminary analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis, especially of risk associated with chemical toxicity and accidents such as oil spills or lost gear, will be necessary to further understand high-priority risks. Subject matter expert review of this process and results is required and is planned for the first quarter of FY11. Once expert review is finalized, the screening analysis phase of ERES will be complete.

Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

2010-11-15T23:59:59.000Z

97

Assessment and Mapping of the Riverine Hydrokinetic Resource in the  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Abstract This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the

98

Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait  

SciTech Connect

The U.S. Department of Energy (DoE) is assessing and mapping the potential off-shore ocean current hydrokinetic energy resources along the U.S. coastline, excluding tidal currents, to facilitate market penetration of water power technologies. This resource assessment includes information on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled historical simulations spanning a 7-year period of record using HYCOM-GOM, an ocean current observation assimilation model that generates a spatially distributed three-dimensional representation of daily averaged horizontal current magnitude and direction time series from which power density time series and their statistics can be derived. This study ascertains the deviation of HYCOM-GOM outputs, including transport (flow) and power density, from outputs based on three independent observation sources to evaluate HYCOM-GOM performance. The three independent data sources include NOAA s submarine cable data of transport, ADCP data at a high power density location, and HF radar data in the high power density region of the Florida Strait. Comparisons with these three independent observation sets indicate discrepancies with HYCOM model outputs, but overall indicate that the HYCOM-GOM model can provide an adequate assessment of the ocean current hydrokinetic resource in high power density regions like the Florida Strait. Additional independent observational data, in particular stationary ADCP measurements, would be useful for expanding this model performance evaluation study. ADCP measurements are rare in ocean environments not influenced by tides, and limited to one location in the Florida Strait. HF radar data, although providing great spatial coverage, is limited to surface currents only.

Neary, Vincent S [ORNL; Gunawan, Budi [ORNL; Ryou, Albert S [ORNL

2012-06-01T23:59:59.000Z

99

Autonomous buoy for seismic reflection data acquisition in the inaccessible parts of the Arctic Ocean  

E-Print Network (OSTI)

Autonomous buoy for seismic reflection data acquisition in the inaccessible parts of the Arctic Instrumentation, Bergen, Norway An autonomous buoy which collects seismic reflection data and transmits to shore of the seismic buoy (thick red, green and black lines). - we have successfully developed an autonomous buoy

Kristoffersen, Yngve

100

Direct - drive permanent magnet synchronous generator design for hydrokinetic energy extraction .  

E-Print Network (OSTI)

??"Hydrokinetic turbines deliver lower shaft speeds when compared to both steam and wind turbines. Hence, a water wheel generator must operate at speeds as low… (more)

Kashyap, Amshumaan Raghunatha

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Piscataqua Tidal Hydrokinetic Energy Project Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

102

MHK Projects/Passamaquoddy Tribe Hydrokinetic Project | Open Energy  

Open Energy Info (EERE)

Passamaquoddy Tribe Hydrokinetic Project Passamaquoddy Tribe Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

103

MHK Projects/Atchafalaya River Hydrokinetic Project II | Open Energy  

Open Energy Info (EERE)

Atchafalaya River Hydrokinetic Project II Atchafalaya River Hydrokinetic Project II < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.9828,"lon":-91.7994,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

104

MHK Projects/Sakonnet River Hydrokinetic Project | Open Energy Information  

Open Energy Info (EERE)

Sakonnet River Hydrokinetic Project Sakonnet River Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6224,"lon":-71.2153,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

105

MHK Projects/Yukon River Hydrokinetic Turbine Project | Open Energy  

Open Energy Info (EERE)

Yukon River Hydrokinetic Turbine Project Yukon River Hydrokinetic Turbine Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.7883,"lon":-141.198,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

106

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power  

Energy.gov (U.S. Department of Energy (DOE))

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power

107

Title: Sustainable Communities Based on a New Clean Energy Source -Marine & Hydrokinetic Power: Roosevelt Island and Beyond  

E-Print Network (OSTI)

Title: Sustainable Communities Based on a New Clean Energy Source - Marine & Hydrokinetic Power Earth Hour "a symbol of our commitment to sustainable energy for all," and underscored the need to "fuel hydrokinetic farm in the U.S. Verdant envisions marine & hydrokinetic (MHK) power as the basis of a new local

Angenent, Lars T.

108

Small Buoys for Energy Harvesting : Experimental and Numerical Modeling Studies  

E-Print Network (OSTI)

of a permanent magnet, suspended to a spring, oscillating within a (two-phase) coil), whose armature motion. A rod, attached to the LEG magnetic armature, exits through the bottom of the canister and connects to its bottom, oscillates as a result of buoy heave through coupled resonance. Hence, LEG oscillations

Grilli, Stéphan T.

109

Comparing TRMM rainfall retrieval with NOAA buoy rain gauge data  

E-Print Network (OSTI)

to December of 2001. TRMM's 3G68 product provides instantaneous rain rate data averaged over 0.5? x 0.5? latitude-longitude grid boxes for the TRMM Microwave Imager (TMI), Precipitation Radar (PR), and a combined algorithm (COMB). The buoy's rain rate data...

Phillips, Amy Blackmore

2002-01-01T23:59:59.000Z

110

2011 Marine and Hydrokinetic Device Modeling Workshop: Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

PROGRAM PROGRAM � 2011 Marine Hydrokinetic Device Modeling Workshop: Final Report March 1, 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

111

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water...  

Energy Savers (EERE)

Department of Energy's Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and...

112

Marine and Hydrokinetic (MHK) Technology Development Risk Management...  

Energy Savers (EERE)

1800-111-42436 POLAND 00-800-1213476 PORTUGAL 8008-14928 ROMANIA 40-31-630-01-38 RUSSIA 8-10-8002-5594011 SAUDI ARABIA 800-8-110062 SINGAPORE 65-6517-0502 800-120-5213 SLOVAK...

113

Proceedings of the Hydrokinetic and Wave Energy Technologies...  

Energy Savers (EERE)

no one-stop shopping. You have to brainstorm to come up with multiple funding sources, patch the resources together. It is hard to get money, but if you can get a half a dozen...

114

Marine and Hydrokinetic (MHK) Technology Development Risk Management...  

Office of Environmental Management (EM)

UNITED KINGDOM MANCHESTER 44-161-601-0113 0808-238-9817 URUGUAY 000-413-598-3832 USA 1-203-607-0666 877-951-7311 VENEZUELA 0800-1-00-3644 VIETNAM 120-11747 Contact...

115

MHK Projects/OE Buoy OE 30 | Open Energy Information  

Open Energy Info (EERE)

OE Buoy OE 30 OE Buoy OE 30 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8037,"lon":-124.76,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

116

Assessment of hydrokinetic energy near Rose Dhu Island, Georgia  

Science Journals Connector (OSTI)

The presented study reports on numerical simulations of flows in tidal channels near Rose Dhu Island GA which is used to identify hotspots of hydrokinetic energy and to assess the tidal stream energy potential at this site. The numerical simulations are complemented with field measurements of local currentvelocities and water surface heights which are used to validate the simulations. Both velocity distributions and water surface heights as predicted by the numerical model are in good agreement with observed data. The simulations reveal a tidal asymmetry in the encompassing Ogeechee estuary with the ebb tidecurrents dominating over the floodtide ones. The model is able to successfully predict the distribution of discharge into the smaller creeks around Rose Dhu Island and thereby capturing the location of local hotspots of hydrokinetic energy. It is found that local hotspots do exist near the island and the analysis suggests the maximum available annual power of 4.75?MW with a peak estimated extraction surpassing 4?KW during Spring tides.

Sandeep Bomminayuni; Brittany Bruder; Thorsten Stoesser; Kevin Haas

2012-01-01T23:59:59.000Z

117

Failure analysis of a Calm buoy anchor chain system  

SciTech Connect

In 1982, Philippines-Cities Service experienced a wear failure of a cateneary anchor chain mooring used to moor a CALM type buoy. In order to explain the failure, Cities Service conducted a comprehensive failure analysis and model basin test of the failed system, and in addition, performed comparative wear tests on U3 and U4 chain. The results of the investigation indicate that interlink motion and resulting wear are an important design criteria for mooring lines.

Shoup, G.J.; Mueller, R.A.

1984-05-01T23:59:59.000Z

118

MHK Technologies/Underwater Electric Kite Turbines | Open Energy  

Open Energy Info (EERE)

Underwater Electric Kite Turbines Underwater Electric Kite Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Underwater Electric Kite Turbines.jpg Technology Profile Primary Organization UEK Corporation Project(s) where this technology is utilized *MHK Projects/Atchafalaya River Hydrokinetic Project II *MHK Projects/Chitokoloki Project *MHK Projects/Coal Creek Project *MHK Projects/Half Moon Cove Tidal Project *MHK Projects/Indian River Tidal Hydrokinetic Energy Project *MHK Projects/Luangwa Zambia Project *MHK Projects/Minas Basin Bay of Fundy Commercial Scale Demonstration *MHK Projects/Passamaquoddy Tribe Hydrokinetic Project *MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project *MHK Projects/UEK Yukon River Project Technology Resource

119

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies  

Energy.gov (U.S. Department of Energy (DOE))

This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments.

120

Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

Energy.gov (U.S. Department of Energy (DOE))

Report that describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters.

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Evaluation of wave energy generation from buoy heave response based on linear generator concepts  

Science Journals Connector (OSTI)

Previous studies of linear generator power extraction from ocean waves have usually ignored the buoy heave dynamics and taken the linear generator movement to coincide with the wave motion. Here the actual buoy motion is first determined and then used to solve the coupled hydrodynamic and electromagnetic problem of electrical power generation for both regular and irregular waves. Several buoy sizes are modeled to exploit the buoys' natural frequency in an attempt to create a greater heave response for a given sea state. Power output ranging from 75 to 375?W is predicted for the dimensions chosen.

M. A. Stelzer; R. P. Joshi

2012-01-01T23:59:59.000Z

122

AUTONOMOUS MOBILE BUOY (A-M-B) COASTAL & LAGOON: autonomous monitoring and sampling  

E-Print Network (OSTI)

AUTONOMOUS MOBILE BUOY (A-M-B) COASTAL & LAGOON: autonomous monitoring and sampling PI: Stephen, goals and objectives The project objective of this proposal is to develop an Autonomous Mobile Buoy student built instrumentation and autonomous/remotely operated vehicles that will be deployed, monitored

Wood, Stephen L.

123

Simulating environmental changes due to marine hydrokinetic energy installations.  

SciTech Connect

Marine hydrokinetic (MHK) projects will extract energy from ocean currents and tides, thereby altering water velocities and currents in the site's waterway. These hydrodynamics changes can potentially affect the ecosystem, both near the MHK installation and in surrounding (i.e., far field) regions. In both marine and freshwater environments, devices will remove energy (momentum) from the system, potentially altering water quality and sediment dynamics. In estuaries, tidal ranges and residence times could change (either increasing or decreasing depending on system flow properties and where the effects are being measured). Effects will be proportional to the number and size of structures installed, with large MHK projects having the greatest potential effects and requiring the most in-depth analyses. This work implements modification to an existing flow, sediment dynamics, and water-quality code (SNL-EFDC) to qualify, quantify, and visualize the influence of MHK-device momentum/energy extraction at a representative site. New algorithms simulate changes to system fluid dynamics due to removal of momentum and reflect commensurate changes in turbulent kinetic energy and its dissipation rate. A generic model is developed to demonstrate corresponding changes to erosion, sediment dynamics, and water quality. Also, bed-slope effects on sediment erosion and bedload velocity are incorporated to better understand scour potential.

Jones, Craig A. (Sea Engineering Inc., Santa Cruz, CA); James, Scott Carlton; Roberts, Jesse Daniel (Sandia National Laboratories, Albuquerque, NM); Seetho, Eddy

2010-08-01T23:59:59.000Z

124

MHK Technologies/Seahorse | Open Energy Information  

Open Energy Info (EERE)

Seahorse Seahorse < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Seahorse.jpg Technology Profile Primary Organization E CO Energi Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A main buoy on the surface and a submerged torpedo buoy are connected to the submerged generator unit by separate cords The wave motion will move the surface buoy up and down while the torpedo buoy will move in the opposite direction This rotates the permanent magnet generator and produces electricity The cords and the generator can be described as a two drum two cord system In this way two drums have different sizes for the two cords to get correct speeds and force

125

Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound  

SciTech Connect

Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy proj

Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

2012-03-30T23:59:59.000Z

126

regulation. Buoys and ship-based sensors are normally used to measure the amount of  

E-Print Network (OSTI)

regulation. Buoys and ship-based sensors are normally used to measure the amount of water the concept by building electronic components such as field-effect transistors. MATERIALS SCIENCE Bettercoats

Heller, Eric

127

Quantifying the Hygroscopic Growth of Marine Boundary Layer Aerosols by Satellite-base and Buoy Observations  

Science Journals Connector (OSTI)

In this study, collocated satellite and buoy observations as well as satellite observations over an extended region during 2006-2010 were used to quantify the humidity effects on marine boundary layer (MBL) aerosols. Although the near-surface ...

Tao Luo; Renmin Yuan; Zhien Wang; Damao Zhang

128

Experimental analysis of an energy self sufficient ocean buoy utilizing a bi-directional turbine  

E-Print Network (OSTI)

An experimental analysis of a Venturi shrouded hydro turbine for wave energy conversion. The turbine is designed to meet the specific power requirements of a, Woods Hole Oceanographic Institute offshore monitoring buoy ...

Gruber, Timothy J. (Timothy James)

2012-01-01T23:59:59.000Z

129

Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement  

Energy.gov (U.S. Department of Energy (DOE))

On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

130

Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy’s Wave Energy Test Site (WETS)  

Energy.gov (U.S. Department of Energy (DOE))

On March 24, 2014, the U.S. Department of Energy (DOE) announced a Notice of Intent to issue a funding opportunity titled “Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy’s Wave Energy Test Site (WETS).”

131

US Synthetic Corp (TRL 4 Component)- The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines  

Energy.gov (U.S. Department of Energy (DOE))

US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

132

GCK Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name GCK Technology Inc Place San Antonio, Texas Zip 78205 Sector Hydro, Marine and Hydrokinetic Product Designer and manufacturer of marine turbine technology. Has patented the Gorlov Helical Turbine (GHT), designed for hydroelectric applications in free flowing low head water courses. References GCK Technology Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: GCK Technology Amazon River Brazil GCK Technology Cape Cod Canal MA US GCK Technology Merrimack River Amesbury MA US GCK Technology Shelter Island NY US GCK Technology Uldolmok Strait South Korea GCK Technology Vinalhaven ME US

133

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinetic  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine & Hydrokinetic Data Marine & Hydrokinetic Data This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices. The total available energy resource along the U.S. continental shelf edge,

134

MHK Projects/Indian River Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Hydrokinetic Energy Project Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6853,"lon":-75.0694,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

135

Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE))

The following online information resources are designed to provide the public access to information pertaining to MHK technologies, projects, and research.

136

Assessment and Mapping of the Riverine Hydrokinetic Resource...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

termed the technically recoverable resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The technically...

137

In situ Monitoring of Cyanobacterial HABs in Western Lake Erie using Buoy-mounted Sensors  

E-Print Network (OSTI)

In situ Monitoring of Cyanobacterial HABs in Western Lake Erie using Buoy-mounted Sensors Primary for the rest of the western basin of Lake Erie. We propose to deploy environmental sensors at these sites. The first sensor is a fluorescence-based detector of phycocyanin, a pigment found predominantly

138

Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys  

E-Print Network (OSTI)

for large scale grid power applications, but rather for relatively low-power ocean sensor and communicationsExperimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys Douglas A. Gemme1 Island Department of Ocean Engineering Narragansett, RI 02882, USA Abstract-- Methodology and results

Grilli, Stéphan T.

139

Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2011: Annual Progress Report  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL), in collaboration with the Applied Physics Laboratory at the University of Washington (APL-UW), has carried out a detailed preliminary fluid flow field study at site selected for testing of marine and hydrokinetic turbines using Acoustic Doppler Velocimetry (ADV) measurements, Acoustic Doppler Current Profiler (ADCP) measurements, and Conductivity, Temperature and Depth (CTD) measurements. In FY-2011 these measurements were performed continuously for two weeks, in order to collect data during neap and spring tides, as well as during diurnal tidal variations.

Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

2011-06-09T23:59:59.000Z

140

2011 Marine Hydrokinetic Device Modeling Workshop: Final Report; March 1, 2011  

SciTech Connect

This report summarizes the NREL Marine and Hydrokinetic Device Modeling Workshop. The objectives for the modeling workshop were to: (1) Review the designs of existing MHK device prototypes and discuss design and optimization procedures; (2) Assess the utility and limitations of modeling techniques and methods presently used for modeling MHK devices; (3) Assess the utility and limitations of modeling methods used in other areas, such as naval architecture and ocean engineering (e.g., oil & gas industry); and (4) Identify the necessary steps to link modeling with other important components that analyze MHK devices (e.g., tank testing, PTO design, mechanical design).

Li, Y.; Reed, M.; Smith, B.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

MHK Projects/OSU Direct Drive Power Generation Buoys | Open Energy  

Open Energy Info (EERE)

OSU Direct Drive Power Generation Buoys OSU Direct Drive Power Generation Buoys < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6472,"lon":-124.127,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

142

Detiding DART buoy data for real-time extraction of source coefficients for operational tsunami forecasting  

E-Print Network (OSTI)

U.S. Tsunami Warning Centers use real-time bottom pressure (BP) data transmitted from a network of buoys deployed in the Pacific and Atlantic Oceans to tune source coefficients of tsunami forecast models. For accurate coefficients and therefore forecasts, tides at the buoys must be accounted for. In this study, five methods for coefficient estimation are compared, each of which accounts for tides differently. The first three subtract off a tidal prediction based on (1) a localized harmonic analysis involving 29 days of data immediately preceding the tsunami event, (2) 68 pre-existing harmonic constituents specific to each buoy, and (3) an empirical orthogonal function fit to the previous 25 hrs of data. Method (4) is a Kalman smoother that uses method (1) as its input. These four methods estimate source coefficients after detiding. Method (5) estimates the coefficients simultaneously with a two-component harmonic model that accounts for the tides. The five methods are evaluated using archived data from eleven...

Percival, Donald B; Eble, Marie C; Gica, Edison; Huang, Paul Y; Mofjeld, Harold O; Spillane, Michael C; Titov, Vasily V; Tolkova, Elena I

2014-01-01T23:59:59.000Z

143

Effects of Electromagnetic Fields on Fish and Invertebrates Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2012 Progress Report Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

Energy generated by the world’s oceans and rivers offers the potential to make substantial contributions to the domestic and global renewable energy supply. However, the marine and hydrokinetic (MHK) energy industry faces challenges related to siting, permitting, construction, and operation of pilotand commercial-scale facilities. One of the challenges is to understand the potential effects to marine organisms from electromagnetic fields, which are produced as a by-product of transmitting power from offshore to onshore locations through underwater transmission cables. This report documents the progress of the third year of research (fiscal year 2012) to investigate environmental issues associated with marine and hydrokinetic energy (MHK) generation. This work was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Technologies Office. The report addresses the effects of electromagnetic fields (EMFs) on selected marine species where significant knowledge gaps exist. The species studied this fiscal year included one fish and two crustacean species: the Atlantic halibut (Hippoglossus hippoglossus), Dungeness crab (Metacarcinus magister), and American lobster (Homarus americanus).

Woodruff, Dana L.; Cullinan, Valerie I.; Copping, Andrea E.; Marshall, Kathryn E.

2013-05-20T23:59:59.000Z

144

MHK Technologies/Hydroomel | Open Energy Information  

Open Energy Info (EERE)

Hydroomel Hydroomel < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Eco cinetic Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Hydroomel r composed of little modules that perfectly fits into natural and urban environments and on existing structures where it could be located Technology Dimensions Device Testing Date Submitted 59:09.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Hydroomel&oldid=680955" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link

145

SITING PROTOCOLS FOR MARINE AND HYDROKINETIC ENERGY PROJECTS  

SciTech Connect

Project Objective: The purpose of this project is to identify and address regulatory issues that affect the cost, time and the management of potential effects as it relates to siting and permitting advanced water power technologies. Background: The overall goal of this effort is to reduce the cost, time and effort of managing potential effects from the development advanced water power projects as it relates to the regulatory process in siting and permitting. To achieve this goal, a multi-disciplinary team will collect and synthesize existing information regarding regulatory processes into a user-friendly online format. In addition, the team will develop a framework for project planning and assessment that can incorporate existing and new information. The team will actively collaborate and coordinate with other efforts that support or influence regulatory process. Throughout the process, the team will engage in an iterative, collaborative process for gathering input and testing ideas that involves the relevant stakeholders across all sectors at the national, regional, and all state levels.

Kopf, Steven; Klure, Justin; Hofford, Anna; McMurray, Greg; Hampton, Therese

2012-07-15T23:59:59.000Z

146

MHK Technologies/Oregon State University Columbia Power Technologies Direct  

Open Energy Info (EERE)

State University Columbia Power Technologies Direct State University Columbia Power Technologies Direct Drive Point Absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oregon State University Columbia Power Technologies Direct Drive Point Absorber.jpg Technology Profile Primary Organization Oregon State University OSU Project(s) where this technology is utilized *MHK Projects/OSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description When the coil experiences a changing magnetic field created by the heaving magnets voltage is generated Technology Dimensions

147

MHK Technologies/NAREC | Open Energy Information  

Open Energy Info (EERE)

NAREC NAREC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage NAREC.jpg Technology Profile Primary Organization NaRec New and Renewable Energy Centre Technology Resource Click here Wave Technology Description The in house engineering and prototype testing capabilities of Narec are assisting wave and tidal stream marine developers move their innovative design concepts towards commercialisation Where the Evopod was tested Technology Dimensions Device Testing Date Submitted 04:07.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/NAREC&oldid=681614" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version

148

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

NLE Websites -- All DOE Office Websites (Extended Search)

5021 5021 August 2009 Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors D. Sale University of Tennessee J. Jonkman and W. Musial National Renewable Energy Laboratory Presented at the ASME 28 th International Conference on Ocean, Offshore, and Arctic Engineering Honolulu, Hawaii May 31-June 5, 2009 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

149

Assessing the Effects of Marine and Hydrokinetic Energy Development on Marine and Estuarine Resources  

SciTech Connect

The world’s oceans and estuaries offer an enormous potential to meet the nation’s growing demand for energy. The use of marine and hydrokinetic (MHK) devices to harness the power of wave and tidal energy could contribute significantly toward meeting federal- and state-mandated renewable energy goals while supplying a substantial amount of clean energy to coastal communities. Locations along the eastern and western coasts of the United States between 40° and 70° north latitude are ideal for MHK deployment, and recent estimates of energy potential for the coasts of Washington, Oregon, and California suggest that up to 25 gigawatts could be generated from wave and tidal devices in these areas. Because energy derived from wave and tidal devices is highly predictable, their inclusion in our energy portfolio could help balance available sources of energy production, including hydroelectric, coal, nuclear, wind, solar, geothermal, and others.

Ward, Jeffrey A.; Schultz, Irvin R.; Woodruff, Dana L.; Roesijadi, Guritno; Copping, Andrea E.

2010-07-30T23:59:59.000Z

150

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

SciTech Connect

This report describes the adaptation of a wind turbine performance code for use in the development of a general use design code and optimization method for stall-regulated horizontal-axis hydrokinetic turbine rotors. This rotor optimization code couples a modern genetic algorithm and blade-element momentum performance code in a user-friendly graphical user interface (GUI) that allows for rapid and intuitive design of optimal stall-regulated rotors. This optimization method calculates the optimal chord, twist, and hydrofoil distributions which maximize the hydrodynamic efficiency and ensure that the rotor produces an ideal power curve and avoids cavitation. Optimizing a rotor for maximum efficiency does not necessarily create a turbine with the lowest cost of energy, but maximizing the efficiency is an excellent criterion to use as a first pass in the design process. To test the capabilities of this optimization method, two conceptual rotors were designed which successfully met the design objectives.

Sale, D.; Jonkman, J.; Musial, W.

2009-08-01T23:59:59.000Z

151

Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades  

SciTech Connect

A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.

J.L. Rovey

2012-09-21T23:59:59.000Z

152

Simulating Blade-Strike on Fish passing through Marine Hydrokinetic Turbines  

SciTech Connect

The study reported here evaluated the occurrence, frequency, and intensity of blade strike of fish on an axial-flow marine hydrokinetic turbine by using two modeling approaches: a conventional kinematic formulation and a proposed Lagrangian particle- based scheme. The kinematic model included simplifying assumptions of fish trajectories such as distribution and velocity. The proposed method overcame the need for such simplifications by integrating the following components into a computational fluid dynamics (CFD) model: (i) advanced eddy-resolving flow simulation, (ii) generation of ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The test conditions to evaluate the blade-strike probability and fish survival rate were: (i) the turbulent environment, (ii) the fish size, and (iii) the approaching flow velocity. The proposed method offered the ability to produce potential fish trajectories and their interaction with the rotating turbine. Depending upon the scenario, the percentile of particles that registered a collision event ranged from 6% to 19% of the released sample size. Next, by using a set of experimental correlations of the exposure-response of living fish colliding with moving blades, the simulated collision data were used as input variables to estimate the survival rate of fish passing through the operating turbine. The resulting survival rates were greater than 96% in all scenarios, which is comparable to or better than known survival rates for conventional hydropower turbines. The figures of strike probability and mortality rate were amplified by the kinematic model. The proposed method offered the advantage of expanding the evaluation of other mechanisms of stress and injury on fish derived from hydrokinetic turbines and related devices.

Romero Gomez, Pedro DJ; Richmond, Marshall C.

2014-06-16T23:59:59.000Z

153

Hydra Tidal Energy Technology AS | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Technology AS Tidal Energy Technology AS Jump to: navigation, search Name Hydra Tidal Energy Technology AS Address PO Box 399 Place Harstad Zip 9484 Sector Marine and Hydrokinetic Year founded 2001 Phone number (+47) 77 06 08 08 Website http://http://www.hydratidal.i Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: MORILD Demonstration Plant Morild 2 This company is involved in the following MHK Technologies: MORILD 2 Floating Tidal Power System Morild Power Plant This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Hydra_Tidal_Energy_Technology_AS&oldid=678333

154

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments  

Energy.gov (U.S. Department of Energy (DOE))

The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

155

MHK Technologies/Tidal Barrage | Open Energy Information  

Open Energy Info (EERE)

Barrage Barrage < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Barrage.jpg Technology Profile Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description No information provided Technology Dimensions Device Testing Date Submitted 01:04.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Barrage&oldid=681672" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

156

MHK Technologies/Closed Cycle OTEC | Open Energy Information  

Open Energy Info (EERE)

Closed Cycle OTEC Closed Cycle OTEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Closed Cycle OTEC.jpg Technology Profile Primary Organization Marine Development Associates Inc Technology Resource Click here OTEC Technology Type Click here OTEC - Closed Cycle Technology Description Closed Cycle System Technology Dimensions Device Testing Date Submitted 02:50.8 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Closed_Cycle_OTEC&oldid=681555" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

157

Property:ProjectTechnology | Open Energy Information  

Open Energy Info (EERE)

ProjectTechnology ProjectTechnology Jump to: navigation, search Property Name ProjectTechnology Property Type Page Has Default form Marine and Hydrokinetic Technology Pages using the property "ProjectTechnology" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + MHK Technologies/Oyster + MHK Projects/ADM 3 + MHK Technologies/Wavebob + MHK Projects/ADM 4 + MHK Technologies/Wavebob + MHK Projects/AW Energy EMEC + MHK Technologies/Wave Roller + MHK Projects/Alaska 35 + MHK Technologies/Ocean +, MHK Technologies/Kensington + MHK Projects/BW2 Tidal + MHK Technologies/RED HAWK + MHK Projects/BioSTREAM Pilot Plant + MHK Technologies/bioSTREAM + MHK Projects/Bluemill Sound + MHK Technologies/Exim + MHK Projects/Bondurant Chute + MHK Technologies/SmarTurbine +

158

Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy Annette R. Grilli  

E-Print Network (OSTI)

Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy at least one short-stroke linear generator (SSLG), made of a magnet, suspended to a spring, and oscillating within a coil. This system is aimed at producing low and renewable wave power (up to ¢ £ ¤ ¥ k

Grilli, Stéphan T.

159

Ice Mass Balance Buoys: A tool for measuring and attributing changes in the thickness of the Arctic sea ice cover  

E-Print Network (OSTI)

Ice Mass Balance Buoys: A tool for measuring and attributing changes in the thickness of the Arctic sea ice cover Jacqueline A. Richter-Menge1 , Donald K. Perovich1 , Bruce C. Elder1 , Keran Claffey1 Abstract Recent observational and modeling studies indicate that the Arctic sea ice cover is undergoing

Rigor, Ignatius G.

160

Attraction to and Avoidance of instream Hydrokinetic Turbines by Freshwater Aquatic Organisms  

SciTech Connect

The development of hydrokinetic (HK) energy projects is under consideration at over 150 sites in large rivers in the United States, including the Mississippi, Ohio, Tennessee, and Atchafalaya Rivers. These waterbodies support numerous fish species that might interact with the HK projects in a variety of ways, e.g., by attraction to or avoidance of project structures. Although many fish species inhabit these rivers (about 172 species in the Mississippi River alone), not all of them will encounter the HK projects. Some species prefer low-velocity, backwater habitats rather than the high-velocity, main channel areas that would be the best sites for HK. Other, riverbank-oriented species are weak swimmers or too small to inhabit the main channel for significant periods of time. Some larger, main channel fish species are not known to be attracted to structures. Based on a consideration of habitat preferences, size/swim speed, and behavior, fish species that are most likely to be attracted to HK structures in the main channel include carps, suckers, catfish, white bass, striped bass, smallmouth bass, spotted bass, and sauger. Proper siting of the project in order to avoid sensitive fish populations, backwater and fish nursery habitat areas, and fish migration corridors will likely minimize concerns about fish attraction to or avoidance of HK structures.

Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

MHK Technologies/SPERBOY | Open Energy Information  

Open Energy Info (EERE)

SPERBOY SPERBOY < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SPERBOY.jpg Technology Profile Primary Organization Embley Energy Project(s) where this technology is utilized *MHK Projects/Plymouth Sound Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description SPERBOY is a floating buoy Oscillating Water Column (OWC) device consisting of a buoyant structure with a submerged, enclosed column. Housed above the OWC on top of the buoy is the plant: turbines, generators and associated system facilities. The principle of operation is similar to that of fixed OWCs designed for shoreline and fixed installations, except that the device is capable of deployment in deep water to maximize greatest energy source; and the entire body floats and maintains optimum hydrodynamic interactions for the prevailing wave spectrum, producing high energy capture at minimal cost.

162

MHK Technologies/Neptune Triton Wave | Open Energy Information  

Open Energy Info (EERE)

Triton Wave Triton Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Neptune Triton Wave.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test *MHK Projects/Humber St Andrews Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Triton operates in the near-shore and consists of an axi-asymmetrical buoy attached to an A-frame piled into the sea bed. The axi-asymmetrical buoy is designed to generate a counter-phase upstream wave and a much reduced downstream wave, which maximizes capture from the wave and improves overall efficiency. In order to tune the buoy to the incident wave regime, the mass can be controlled by pumping sea water into and out of the hollow cavity inside the buoy. Power take-off is achieved via a piston and hydraulic arrangement.

163

DISCRETE ELEMENT MODELING OF BLADE–STRIKE FREQUENCY AND SURVIVAL OF FISH PASSING THROUGH HYDROKINETIC TURBINES  

SciTech Connect

Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energy device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric aspects of the passage event ---which the probabilistic method does--- as well as the fluid-particle interactions ---which the Lagrangian particle method does. The DEM-based survival rates were comparable to laboratory results for small fish but not for mid-size fish because of the considerably different turbine diameters. The modeling framework can be used for applications that aim at evaluating the biological performance of MHK turbine units during the design phase and to provide information to regulatory agencies needed for the environmental permitting process.

Romero Gomez, Pedro DJ; Richmond, Marshall C.

2014-04-17T23:59:59.000Z

164

Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

SciTech Connect

The U.S. Department of Energy (DOE) funded the Electric Power Research Institute and its collaborative partners, University of Alaska ? Anchorage, University of Alaska ? Fairbanks, and the National Renewable Energy Laboratory, to provide an assessment of the riverine hydrokinetic resource in the continental United States. The assessment benefited from input obtained during two workshops attended by individuals with relevant expertise and from a National Research Council panel commissioned by DOE to provide guidance to this and other concurrent, DOE-funded assessments of water based renewable energy. These sources of expertise provided valuable advice regarding data sources and assessment methodology. The assessment of the hydrokinetic resource in the 48 contiguous states is derived from spatially-explicit data contained in NHDPlus ?a GIS-based database containing river segment-specific information on discharge characteristics and channel slope. 71,398 river segments with mean annual flow greater than 1,000 cubic feet per second (cfs) mean discharge were included in the assessment. Segments with discharge less than 1,000 cfs were dropped from the assessment, as were river segments with hydroelectric dams. The results for the theoretical and technical resource in the 48 contiguous states were found to be relatively insensitive to the cutoff chosen. Raising the cutoff to 1,500 cfs had no effect on estimate of the technically recoverable resource, and the theoretical resource was reduced by 5.3%. The segment-specific theoretical resource was estimated from these data using the standard hydrological engineering equation that relates theoretical hydraulic power (Pth, Watts) to discharge (Q, m3 s-1) and hydraulic head or change in elevation (??, m) over the length of the segment, where ? is the specific weight of water (9800 N m-3): ??? = ? ? ?? For Alaska, which is not encompassed by NPDPlus, hydraulic head and discharge data were manually obtained from Idaho National Laboratory?s Virtual Hydropower Prospector, Google Earth, and U.S. Geological Survey gages. Data were manually obtained for the eleven largest rivers with average flow rates greater than 10,000 cfs and the resulting estimate of the theoretical resource was expanded to include rivers with discharge between 1,000 cfs and 10,000 cfs based upon the contribution of rivers in the latter flow class to the total estimate in the contiguous 48 states. Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate

Jacobson, Paul T. [Electric Power Research Institute; Ravens, Thomas M. [University of Alaska Anchorage; Cunningham, Keith W. [University of Alaska Fairbanks; Scott, George [National Renewable Energy Laboratory

2012-12-14T23:59:59.000Z

165

MHK Technologies/Osprey | Open Energy Information  

Open Energy Info (EERE)

Osprey Osprey < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Osprey.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Osprey is a vertical axis turbine mounted to the bottom of a 30 aluminium catamaran test rig float Technology Dimensions Device Testing Date Submitted 57:37.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Osprey&oldid=681630" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link

166

Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency  

Science Journals Connector (OSTI)

Abstract Power and drag (or thrust) measurements were performed in a towing tank for two different helical cross-flow marine hydrokinetic energy conversion devices—a cylindrical Gorlov Helical Turbine (GHT) and a Lucid Spherical Turbine (LST). The turbines are compared with respect to their various design parameters, with the GHT overall operating at higher power and drag coefficients. An estimate for the exergy efficiency of a turbine in free flow is formulated using momentum theory, and this quantity is computed for both devices. The GHT's exergy efficiency advantage over the LST was higher than that based on the power coefficient. Momentum theory-based blockage corrections were applied to the measurements and compared with the non-corrected data. The results presented here will help increase the amount of experimental data for helical devices in the literature, which is necessary for the development of more accurate engineering tools that take into account the unique three-dimensional nature of these devices.

Peter Bachant; Martin Wosnik

2015-01-01T23:59:59.000Z

167

Property:Technology Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Technology Nameplate Capacity (MW) Property Type String Pages using the property "Technology Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 100kW built and tested with 45kW 200kW and 1 4MW designs in development + MHK Technologies/AirWEC + 5kW + MHK Technologies/Aquantis + Proprietary + MHK Technologies/Atlantis AN 150 + 0 15 + MHK Technologies/Atlantis AR 1000 + 1 + MHK Technologies/Atlantis AS 400 + 0 4 + MHK Technologies/Bluetec + 1 + MHK Technologies/Current Power + from 10 kW and up + MHK Technologies/CurrentStar + 1 + MHK Technologies/Deep Green + 500 kW + MHK Technologies/Deep water capable hydrokinetic turbine + 30MW +

168

MHK Technologies/Wave Catcher | Open Energy Information  

Open Energy Info (EERE)

Wave Catcher.png Wave Catcher.png Technology Profile Primary Organization Offshore Islands Ltd Technology Resource Click here Current Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Wave Catcher can be orientated to take advantage of the most numerous prevailing waves to generate power It is a long surface buoy cylinder that is lifted by each passing wave As the cylinder is lifted it pulls on its anchor lines which in turn pulls on a support pulley This support pulley turns the generator s rotor and flywheel The generator s flywheel keeps the rotor turning until the next wave lifts up the cylinder and the anchor line once again turns the pulley The cylinder will also be lifted by waves from all directions As a result the anchor cables at each end of the buoy may either pull together or at slightly different times The gears the pulleys the rotor and flywheel are turned when the anchor cable s tension is high The uni direction pulley s re coil spring re winds the anchor cable back around the pulley when the buoy moves down with the trough of the wave and the anchor cable tension is low The wave generator can be in a surface buoy or mounted sub

169

NREL: National Wind Technology Center Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

National Wind Technology Center National Wind Technology Center National Wind Technology Center NREL's National Wind Technology Center (NWTC) is the nation's premier wind energy technology research facility. The NWTC advances the development of innovative land-based and offshore wind energy technologies through its research and testing facilities. Researchers draw on years of experience and their wealth of expertise in fluid dynamics and structural testing to also advance marine and hydrokinetic water power technologies. At the NWTC researchers work side-by-side with industry partners to develop new technologies that can compete in the global market and to increase system reliability and reduce costs. Learn more about the facilities and capabilities at the NWTC by viewing our fact sheet.

170

FFP/NREL Collaboration on Hydrokinetic River Turbine Testing: Cooperative Research and Development Final Report, CRADA Number CRD-12-00473  

SciTech Connect

This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory (NREL) and Free Flow Power (FFP) set forth in the following Joint Work Statement. Under the terms and conditions described in this CRADA, NREL and FFP will collaborate on the testing of FFP's hydrokinetic river turbine project on the Mississippi River (baseline location near Baton Rouge, LA; alternate location near Greenville, MS). NREL and FFP will work together to develop testing plans, instrumentation, and data acquisition systems; and perform field measurements.

Driscoll, F.

2013-04-01T23:59:59.000Z

171

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

172

MHK Technologies/Platform generators | Open Energy Information  

Open Energy Info (EERE)

generators generators < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Platform generators.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Reciprocating Device Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description In the platform configuration the generators sit on a platform and buoy floats move the generator s coil up and down as waves and swell pass underneath Technology Dimensions Device Testing Date Submitted 06:09.4 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Platform_generators&oldid=681636

173

Property:Technology Resource | Open Energy Information  

Open Energy Info (EERE)

Resource Resource Jump to: navigation, search Property Name Technology Resource Property Type Text Pages using the property "Technology Resource" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Anaconda bulge tube drives turbine + Wave MHK Technologies/AquaBuoy + Wave MHK Technologies/Aquanator + Current/Tidal MHK Technologies/Aquantis + Current MHK Technologies/Archimedes Wave Swing + Wave MHK Technologies/Atlantis AN 150 + Current/Tidal MHK Technologies/Atlantis AR 1000 + Current/Tidal MHK Technologies/Atlantis AS 400 + Current/Tidal MHK Technologies/Atlantisstrom + Current MHK Technologies/Benkatina Turbine + Current MHK Technologies/Blue Motion Energy marine turbine + Current MHK Technologies/Bluetec + Current MHK Technologies/Brandl Generator + Wave

174

Property:Technology Type | Open Energy Information  

Open Energy Info (EERE)

Technology Type Technology Type Property Type Text Pages using the property "Technology Type" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/14 MW OTECPOWER + OTEC - Closed Cycle MHK Technologies/Aegir Dynamo + Point Absorber - Floating MHK Technologies/Anaconda bulge tube drives turbine + Oscillating Wave Surge Converter MHK Technologies/AquaBuoy + Point Absorber MHK Technologies/Aquanator + Cross Flow Turbine MHK Technologies/Aquantis + Axial Flow Turbine MHK Technologies/Archimedes Wave Swing + Point Absorber MHK Technologies/Atlantis AN 150 + Axial Flow Turbine MHK Technologies/Atlantis AR 1000 + Axial Flow Turbine MHK Technologies/Atlantis AS 400 + Axial Flow Turbine MHK Technologies/Atlantisstrom + Cross Flow Turbine MHK Technologies/BOLT Lifesaver + Oscillating Wave Surge Converter

175

Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents  

Energy.gov (U.S. Department of Energy (DOE))

Laboratory testing of new hydrokinetic energy device to harness energy in slow-moving water currents.

176

Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main  

E-Print Network (OSTI)

). In contrast, recent advances in electronic data storage technology have made it possible to construct devices, but the length of observation (usually no longer than 60 h) is limited by ship time, crew fatigue, or battery

Hawai'i at Manoa, University of

177

National Wind Technology Center (Fact Sheet), National Wind Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrokinetic (MHK) energy devices are high-force, low-speed machines, similar to wind turbines that convert the kinetic energy of a moving fluid into electrical energy....

178

MHK Technologies/Ocean Treader floating | Open Energy Information  

Open Energy Info (EERE)

Treader floating Treader floating < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Treader floating.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Ocean Treader is comprised of two sponsons at the fore and aft of the device and a spar buoy in the center. As a wave passes along the device, first the fore sponson lifts and falls, then the spar buoy, and then the aft sponson, respectively. The relative motion between these three floating bodies is harvested by hydraulic cylinders mounted between the tops of the arms and the spar buoy. The cylinders pressurize hydraulic fluid that spins hydraulic motors and an electric generator. The electricity is exported via a cable piggy-backed to the anchor cable. Ocean Treader is designed to passively weather-vane to face the wave direction; and in addition, the device has active onboard adjustment to allow for offset due to the effects of current.

179

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

180

MHK Technologies/Uppsala Seabased AB Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

AB Wave Energy Converter AB Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Seabased AB Wave Energy Converter.jpg Technology Profile Primary Organization Uppsala University Division for Electricity Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The system consists of a linear permanent magnet synchronous generator located on the sea floor The generator is connected directly via a line to a buoy on the surface There are no intermediate energy conversion steps thus the generator motion is the same as the buoy motion Several generators 3 today are connected to a marine substation where the voltage is converted to grid frequency transformed to higher voltage and transmitted to shore All electrical cables throughout the system are fixed i e there are no motions that subject the cables to bending moments

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code  

SciTech Connect

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

Maniaci, D. C.; Li, Y.

2011-10-01T23:59:59.000Z

182

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint  

SciTech Connect

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

Maniaci, D. C.; Li, Y.

2012-04-01T23:59:59.000Z

183

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating the Influence of Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code D.C. Maniaci Pennsylvania State University Y. Li National Renewable Energy Laboratory Presented at the Oceans 11 Conference Kona, Hawaii September 19-21, 2011 Conference Paper NREL/CP-5000-52306 October 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

184

MHK Technologies/Hidroflot | Open Energy Information  

Open Energy Info (EERE)

< MHK Technologies < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hidroflot.jpg Technology Profile Primary Organization Hidroflot S L Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Hidroflot is a floating platform with 16 wave captors floats The wave action moves the floaters through the columns The up and down movement of each two buoys drives an electromechanical system The design allows the system to gather each unit s individual push into a single output line Each platform acts as an independent power station producer of 6MW A wave power park consisting of 8 10 platforms in a one square mile area could generate an electrical output of 50 MW All the platforms are connected to a single output point from where the energy produced is delivered to onshore transmission

185

Property:Technology Readiness Level | Open Energy Information  

Open Energy Info (EERE)

Readiness Level Readiness Level Jump to: navigation, search Property Name Technology Readiness Level Property Type Text Pages using the property "Technology Readiness Level" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/14 MW OTECPOWER + TRL 5 6 System Integration and Technology Laboratory Demonstration MHK Technologies/Aegir Dynamo + TRL 5 6 System Integration and Technology Laboratory Demonstration MHK Technologies/AirWEC + TRL 5/6: System Integration and Technology Laboratory Demonstration MHK Technologies/Anaconda bulge tube drives turbine + TRL 4 Proof of Concept MHK Technologies/AquaBuoy + TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering MHK Technologies/Aquantis + TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering

186

Atlantisstrom | Open Energy Information  

Open Energy Info (EERE)

Atlantisstrom Region: Germany Sector: Marine and Hydrokinetic Website: http:http:www.atlantisstro This company is listed in the Marine and Hydrokinetic Technology Database....

187

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

21 - 30 of 175 results. Video Energy 101: Marine and Hydrokinetic Energy See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents...

188

Euro Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Euro Wave Energy Region: Norway Sector: Marine and Hydrokinetic Website: http:www.eurowaveenergy.com This company is listed in the Marine and Hydrokinetic Technology Database....

189

Green Cat Renewables | Open Energy Information  

Open Energy Info (EERE)

Green Cat Renewables Region: Scotland Sector: Marine and Hydrokinetic Website: http:http:www.greencatrene This company is listed in the Marine and Hydrokinetic Technology...

190

Blue Motion Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Region: Netherlands Sector: Marine and Hydrokinetic Website: http:http:www.bluemotionen This company is listed in the Marine and Hydrokinetic Technology Database. This...

191

Oregon State University OSU | Open Energy Information  

Open Energy Info (EERE)

OSU OSU Jump to: navigation, search Name Oregon State University OSU Address 1148 Kelley Engineering Center Place Corvallis Zip 97331 Sector Marine and Hydrokinetic Phone number 541-737-2995 Website http://www.eecs.orst.edu/msrf Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: OSU Direct Drive Power Generation Buoys This company is involved in the following MHK Technologies: Oregon State University Columbia Power Technologies Direct Drive Point Absorber This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Oregon_State_University_OSU&oldid=678417

192

Finavera Renewables Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Renewables Ocean Energy Ltd Renewables Ocean Energy Ltd Jump to: navigation, search Name Finavera Renewables Ocean Energy Ltd Address 595 Burrard Street Suite 3113 Three Bentall Centre PO Box 49071 Place Vancouver Zip V7X 1G4 Sector Marine and Hydrokinetic Phone number 604-288-9051 Website http://www.finavera.com Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Coos County Offshore Wave Energy Power Plant Figueira da Foz Portugal Humboldt County Wave Project Makah Bay Offshore Wave Pilot Project South Africa Ucluelet BC Canada This company is involved in the following MHK Technologies: AquaBuoy This article is a stub. You can help OpenEI by expanding it.

193

MHK Technologies/Ocean | Open Energy Information  

Open Energy Info (EERE)

Ocean Ocean < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean.jpg Technology Profile Primary Organization Hydro Green Energy LLC Project(s) where this technology is utilized *MHK Projects/Alaska 35 *MHK Projects/Maine 1 Project *MHK Projects/Mississippi 6 *MHK Projects/Mississippi 7 *MHK Projects/New York 1 *MHK Projects/New York 2 Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description Hydro Green Energy's HydroKinetic Turbine Arrays operate differently than a traditional hydropower plant. Like a traditional hydropower station, the electricity that we produce is clean and renewable, however, there are significant differences. Hydro Green Energy's Krouse Turbines are kinetic turbines. This means that the renewable power that is generated comes from the energy in the "motion" of the moving water, i.e. the velocity of the moving water be it river, tidal or ocean current to generate river, tidal energy or ocean energy, respectively.

194

MHK Technologies/Wave Rider | Open Energy Information  

Open Energy Info (EERE)

Rider Rider < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rider.jpg Technology Profile Primary Organization Seavolt Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The company s Wave Rider system uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity Electricity is generated via small turbines powered by hydraulic circuits which captures the energy of the wave and converts it into high pressure hydraulic fluid flow spinning the turbines to generate electricity Technology Dimensions Device Testing Date Submitted 19:42.1 << Return to the MHK database homepage

195

Instrumentation of Current Technology Testing and Replicating Harsh Environments  

NLE Websites -- All DOE Office Websites (Extended Search)

Abrasion Testing of Critical Components Abrasion Testing of Critical Components of Hydrokinetic Devices 10/17/2012 University of Alaska Anchorage 2 Project Team o Ocean Renewable Power Company (ORPC) o Jarlath McEntee o Monty Worthington o University of Alaska Anchorage (UAA) o Faculty o Thomas Ravens o Todd Petersen o Muhammad Ali o Research Assistants o Tim Kirk o Jacob Clark o Angus Bromaghin 10/17/2012 University of Alaska Anchorage 3 ORPC Technology o TideGen Power System (TGU) o Designed to generate electricity at water depths of 50 to 100 feet 10/17/2012 University of Alaska Anchorage 4 ORPC Technology 10/17/2012 University of Alaska Anchorage 5 TGU Performance Test Results o ORPC field testing on TGU prototype in 2008 showed significant wear on bearings and seals. 10/17/2012 University of Alaska Anchorage 6

196

Live Webinar on the Funding Opportunity for Environmental Stewardship for Renewable Energy Technologies: MHK Environmental and Resource Characterization Instrumentation  

Energy.gov (U.S. Department of Energy (DOE))

This FOA will support the development of instrumentation, associated signal processing algorithms or software, and integration of instrumentation packages for monitoring the environmental impacts of marine and hydrokinetic technologies. It will also support the development and testing of sensors, instrumentation, or processing techniques to collect physical data on ocean waves (e.g., height, period, directionality, steepness). Join us for an informational webinar on March 20, 2014. The purpose of this webinar will be to give applicants a chance to ask questions about the FOA process generally. Reserve your webinar seat now at: https://www1.gotomeeting.com/register/553062432

197

Property:Width (m) | Open Energy Information  

Open Energy Info (EERE)

Width (m) Width (m) Jump to: navigation, search Property Name Width (m) Property Type Number Pages using the property "Width (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 4.5 + MHK Technologies/AirWEC + 2.5 + MHK Technologies/CurrentStar + 30.5 + MHK Technologies/Deep Green + 12 + MHK Technologies/Deep water capable hydrokinetic turbine + 10 + MHK Technologies/ECO Auger + 4.877 + MHK Technologies/Electric Buoy + 10 + MHK Technologies/European Pico Pilot Plant + 14 + MHK Technologies/Evopod E35 + 4.5 + MHK Technologies/Float Wave Electric Power Station + 2.5 + MHK Technologies/Floating anchored OTEC plant + 60 + MHK Technologies/HyPEG + 50 + MHK Technologies/HydroGen 10 + 2 + MHK Technologies/Hydroflo + 5 +

198

Property:Length (m) | Open Energy Information  

Open Energy Info (EERE)

(m) (m) Jump to: navigation, search Property Name Length (m) Property Type Number Pages using the property "Length (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/AirWEC + 0 + MHK Technologies/CurrentStar + 30.5 + MHK Technologies/Deep Green + 4 + MHK Technologies/Deep water capable hydrokinetic turbine + 5 + MHK Technologies/Electric Buoy + 10 + MHK Technologies/European Pico Pilot Plant + 20 + MHK Technologies/Evopod E35 + 12.5 + MHK Technologies/Float Wave Electric Power Station + 12 + MHK Technologies/Floating anchored OTEC plant + 60 + MHK Technologies/HyPEG + 50 + MHK Technologies/HydroGen 10 + 4.5 + MHK Technologies/Hydroflo + 7 + MHK Technologies/ITRI WEC + 6 + MHK Technologies/IVEC Floating Wave Power Plant + 150 +

199

Property:Freeboard (m) | Open Energy Information  

Open Energy Info (EERE)

Freeboard (m) Freeboard (m) Jump to: navigation, search Property Name Freeboard (m) Property Type Number Pages using the property "Freeboard (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 4 + MHK Technologies/AirWEC + 0.25 + MHK Technologies/CurrentStar + 3.65 + MHK Technologies/Deep Green + 0 + MHK Technologies/Deep water capable hydrokinetic turbine + 0 + MHK Technologies/Electric Buoy + 3 + MHK Technologies/European Pico Pilot Plant + 15 + MHK Technologies/Evopod E35 + 1.5 + MHK Technologies/Float Wave Electric Power Station + 5 + MHK Technologies/Floating anchored OTEC plant + 10 + MHK Technologies/GyroWaveGen + 3 + MHK Technologies/HydroGen 10 + 2.5 + MHK Technologies/Hydroflo + 2 + MHK Technologies/ITRI WEC + 4.9 +

200

Property:Draft (m) | Open Energy Information  

Open Energy Info (EERE)

Draft (m) Draft (m) Jump to: navigation, search Property Name Draft (m) Property Type String Pages using the property "Draft (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 8 + MHK Technologies/Deep Green + 40 + MHK Technologies/Deep water capable hydrokinetic turbine + 5 + MHK Technologies/Electric Buoy + 7 + MHK Technologies/European Pico Pilot Plant + 7 + MHK Technologies/Evopod E35 + 5 + MHK Technologies/Float Wave Electric Power Station + 7 + MHK Technologies/Floating anchored OTEC plant + 530 + MHK Technologies/HyPEG + 20 + MHK Technologies/HydroGen 10 + 1 + MHK Technologies/Hydroflo + 2 + MHK Technologies/ITRI WEC + 13 + MHK Technologies/Microturbine River In Stream + 0.7 + MHK Technologies/OCEANTEC Wave Energy Converter + 5.25 +

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MHK Technologies/Trondheim Point Absorber | Open Energy Information  

Open Energy Info (EERE)

Trondheim Point Absorber Trondheim Point Absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Trondheim Point Absorber.jpg Technology Profile Primary Organization Norwegian University of Science and Technology CONWEC AS Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The floating buoy can oscillate along a strut that at its lower end is connected to a universal joint on an anchor on the sea bed The water depth which depends on the tide is in the range of 4 to 7 m On the top of the hull the latching mechanism and one of the guiding roller units are visible As the bottom of the hull is open sea water is flowing into and out from an inner chamber where the water surface acts as the piston of an air pump

202

MHK Technologies/Hybrid System | Open Energy Information  

Open Energy Info (EERE)

System System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid System.jpg Technology Profile Primary Organization Ryokuseisha Corporation Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description To take advantage of wave power and solar power to provide a stable power source a Wave Activated Generator was combined with a solar battery In stormy the wave activated generator is used and in fair weather solar battery is used to provide a power supply with a high output This is used as the power source for measuring instruments on the islands off the power source for measuring instruments on the islands off the southernmost coast of Japan and for the buoy of the United States Coast Guard and TRINITY HOUSE LIGHTHOUSES SERVICE

203

Deployment Effects of Marin Renewable Energy Technologies  

SciTech Connect

Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nom

Brian Polagye; Mirko Previsic

2010-06-17T23:59:59.000Z

204

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

Technology Research Institute Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name Industrial Technology Research Institute Address Rm. 112, Bldg. 24, 195, Sec. 4, Chung Hsing Rd., Place Chutung, Hsinchu Zip 31040 Country Taiwan Sector Marine and Hydrokinetic Company Type Non Profit Technology Point absorber Project ITRI WEC Phone number +886-3-5918579 Website http://www.itri.org.tw Coordinates 24.776467696266°, 121.04182720184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.776467696266,"lon":121.04182720184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

DOE Announces Webinars on Better Buildings Challenge K-12 Education Partners, a Marine and Hydrokinetic Funding Opportunity, and More  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts.

206

MHK Technologies/THOR Ocean Current Turbine | Open Energy Information  

Open Energy Info (EERE)

THOR Ocean Current Turbine THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary Organization THOR Turner Hunt Ocean Renewable LLC Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The THOR ocean current turbine ROCT is a tethered fully submersible hydrokinetic device with a single horizontal axis rotor that operates at constant speed by varying the depth of operation using a patented power feedback control technology Rotor diameters can reach 60 meters for a 2 0MW class turbine and operations can be conducted as deep as 250 meters Arrays of THOR s ROCTs can be located in outer continental shelf areas 15 to 100 miles offshore in well established ocean currents such as the Gulf Stream or the Kuroshio and deliver electrical power to onshore load centers via submarine transmission line

207

MHK Technologies/Vortex Induced Vibrations Aquatic Clean Energy VIVACE |  

Open Energy Info (EERE)

Vortex Induced Vibrations Aquatic Clean Energy VIVACE Vortex Induced Vibrations Aquatic Clean Energy VIVACE < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Vortex Induced Vibrations Aquatic Clean Energy VIVACE.jpg Technology Profile Primary Organization Vortex Hydro Energy LLC Project(s) where this technology is utilized *MHK Projects/Marine Hydrodynamics Laboratory at the University of Michigan Technology Resource Click here Current/Tidal Technology Type Click here Reciprocating Device Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The VIVACE (Vortex Induced Vibrations Aquatic Clean Energy) device is based on the extensively studied phenomenon of Vortex Induced Vibrations (VIV), which was first observed five-hundred years ago by Leonardo DaVinci in the form of 'Aeolian Tones.' VIV results from vortices forming and shedding on the downstream side of a bluff body in a current. Vortex shedding alternates from one side to the other, thereby creating a vibration or oscillation. The VIV phenomenon is non-linear, which means it can produce useful energy at high efficiency over a wide range of current speeds and directions.This converter is unlike any existing technology, as it does not use turbines, propellers, or dams. VIVACE converts the horizontal hydrokinetic energy of currents into cylinder mechanical energy. The latter is then converted to electricity through electric power generators.

208

MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy Information  

Open Energy Info (EERE)

Converter OWEC Converter OWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Energy Converter OWEC.jpg Technology Profile Primary Organization Ocean Wave Energy Company Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Neutrally suspended and positively buoyant modules are quick connected into open frame networks Submerged portions are stabilized by variable ballast buoyancy chambers and optional damper sheets situated at a relatively calm depth Frame members carry shaft components of linear rotary converters associated with large point absorber buoys Both directions of reciprocal wave motion i e vertical and horizontal motion directly drive components of counter rotating electrical generators Compared to standard generators wherein one is associated with upstroke and another of smaller proportion with downstroke this configuration increases relative speed with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following buoys Electrical conductors are series connected and further quick connected with those of other modules via upper frame members Through implementation of rep

209

MHK Technologies/TUVALU | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » MHK Technologies/TUVALU < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage TUVALU.jpg Technology Profile Primary Organization Arlas Invest Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The chain or cable coils in each of the floating cylinders These cylinders rotate inside the main structure The effect would be similar to an inverted Yo Yo when stretching the cord the Yo Yo turns At the other end of the chain or cable a weight or ballast is attached to anchor the system to the sea bed In the case of the buoy both cylinders and the main structure when it rises with the wave the cables stretch the cylinders and cause them to rotate The mechanical energy obtain in the cylinders is converted to electrical energy by means of a generator connected to the transmission

210

MHK Technologies/Wavebob | Open Energy Information  

Open Energy Info (EERE)

Wavebob Wavebob < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wavebob.jpg Technology Profile Primary Organization Wavebob Project(s) where this technology is utilized *MHK Projects/ADM 4 *MHK Projects/ADM 3 *MHK Projects/ADM 5 *MHK Projects/WEC 1 Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wavebob is an axi-symmetric, self-reacting point absorber, primarily operating in the heave mode. It is specifically designed to recover useful power from ocean wave energy and to be deployed in large arrays offshore. Unlike all other self-reacting heaving buoys, the WaveBob's natural frequency may be set to match the typical ocean swell (Atlantic 10m, or Pacific 15m), facilitating good energy absorption. It can ride very large waves and still recover useful power. The WaveBob typically carries three or four motor-alternator sets, all or some of which may be entrained, depending on incident wave energy. Built-in redundancy facilitates remote switching and high availability when weather conditions might preclude maintenance visits.

211

MHK Technologies/HyPEG | Open Energy Information  

Open Energy Info (EERE)

HyPEG HyPEG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HyPEG.jpg Technology Profile Primary Organization Hydrokinetic Laboratory Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Their Hydro kinetically Powered Electrical Generators HyPEGs converts the unimpeded flow and the massive current of large deep rivers and ocean currents into useful electrical power on a large scale 4 to 8MW each This innovative system design approach is viable because of the unique power head cup design and location in which the unit is placed Unlike conventional turbine type or propeller type current generators being tested today HyPEGs can operate in fairly shallow rivers since they rotate in the horizontal plane rather than the vertical Turbine propeller type generators can only operate in water that is sufficiently deep that it is not a hazard to navigation worse they are greatly limited in power output due to a limited sized power head Once a suitable location is found a HyPEG can be made in any diameter and are limited only by their side to side clearance Additionally they need far less support structure than vertical generators

212

Energy Department Announces Funding for Demonstration and Testing of Advanced Wave and Tidal Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $10 million to strengthen the U.S. marine and hydrokinetic (MHK) energy industry, including wave and tidal energy sources.

213

Projects selected in todays announcement will focus on updating technologies and methods to improve the performance of conventional hydropower plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in today's announcement will focus on updating technologies in today's announcement will focus on updating technologies and methods to improve the performance of conventional hydropower plants. The projects selected for negotiation of awards include: Dehlsen Associates, LLC (Carpinteria, CA) will further develop and validate the Aquantis Current Plane ocean current turbine technology. The project will validate analytical design tools and develop the technology's direct drive component. DOE share: up to $750,000; Duration: up to 2 years Dehlsen Associates, LLC (Carpinteria, CA) will first develop a bottom habitat survey methodology and siting study approach in accordance with all relevant regulatory agencies in the southeast Florida region; then they will determine the most suitable areas for mooring marine and hydrokinetic facilities based on the

214

Direct Drive Wave Energy Buoy  

SciTech Connect

The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

215

Wave Energy Extraction from buoys  

E-Print Network (OSTI)

Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...

Garnaud, Xavier

2009-01-01T23:59:59.000Z

216

MHK Technologies/Wave Treader fixed | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies/Wave Treader fixed MHK Technologies/Wave Treader fixed < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Treader fixed.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Wave Treader concept utilises the arms and sponsons from Ocean Treader and instead of reacting against a floating Spar Buoy, will react through an Interface Structure onto the Foundation of an Offshore Wind Turbine. Between the Arms and the Interface Structure hydraulic cylinders are mounted and as the wave passes the machine first the forward Sponson will lift and fall and then the aft Sponson will lift and fall each stroking their hydraulic cylinder in turn. This pressurises hydraulic fluid which is then smoothed by hydraulic accumulators before driving a hydraulic motor which in turn drives an electricity generator. The electricity is then exported through the cable shared with the Wind Turbine.

217

BOEM Issues First Renewable Energy Lease for MHK Technology Testing...  

Office of Environmental Management (EM)

3rd, 2014 the Bureau of Ocean Energy Management (BOEM) issued the first ever lease to test marine and hydrokinetic (MHK) energy devices in federal waters to Florida Atlantic...

218

Float Inc | Open Energy Information  

Open Energy Info (EERE)

and Hydrokinetic Year Founded: 1992 Phone Number: 858-866-0816 Website: http:www.floatinc.com This company is listed in the Marine and Hydrokinetic Technology Database. This...

219

MHK Technologies/Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

Stream Stream < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream.jpg Technology Profile Primary Organization Tidal Stream Project(s) where this technology is utilized *MHK Projects/Thames at Chiswick Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The TidalStream SST (Semi-Submersible Turbine) is designed for deep water, typically 60m+ (e.g., Pentland Firth) where it is too deep to mount turbines rigidly to the seabed and too rough for surface floaters to survive. Tidal Stream SST consists of turbines connected to unique semi-submersible spar buoys that are moored to the seabed using anchors through swing-arms. This ensures automatic alignment to the tidal flow to maximize energy capture. By blowing the water ballast, the device will rise, rotate, and float to the surface still tethered to the base to allow for on- or off-site maintenance. By releasing the tether arm the device can be towed to a harbor at the end of its life or for major repair or exchange.

220

MHK Technologies/Pelagic Power 1 | Open Energy Information  

Open Energy Info (EERE)

1 1 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Pelagic Power 1.jpg Technology Profile Primary Organization Pelagic Power AS Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The technology of Pelagic Power has on a simple working principle based on a wave pump In its simplest form the wave pump consists of thre components a linear piston pump a water anchor and a surface bouy Pumps that are afloat 20 40 meters under the surface of the sea are key elements in Pelagic Power s wave energy concept In a submerged position the pumps are not at risk of being exposed to storm waves Within the new installations lie either so called absorbers or buoys upon the surface These devices gather energy from the waves and send it to the pumps located further down The pumps movement occurs between the absorber and a water anchor placed on each pump These pumps are called pelagic wave pumps and are not anchored to the seabed

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network (OSTI)

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

222

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network (OSTI)

: business administration, energy management, wind farm management, automation and controls, aircraft, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four students must talk to their advisor about transferring their courses over for WSU credit. Laboratory

223

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

224

MHK Technologies/Nesheim Oscillating Device | Open Energy Information  

Open Energy Info (EERE)

Nesheim Oscillating Device Nesheim Oscillating Device < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Nesheim Oscillating Device.jpg Technology Profile Primary Organization Ing Arvid Nesheim Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Nesheim osillating device is composed of an annular shaped floater a floating column a universal joint mechanism and an electrical generator The universal joint mechanism enables relative upwards downwards and pivotal movement between the floater and column The column is provided with an air chamber to provide buoyancy The lower end of the column is connected to an anchor on the seafloor The design of the device enables both vertical and pivotal movement between the floater and the column These features facilitate high efficiency energy capture as the device can capture different forms of motion e g vertical and horizontal The device is attached to a modular buoy system that can be arranged to minimize the mooring line forces and horizontal displacement of the device The performance of the device may be remotely monitored and controlled via a subsea cable

225

Aqua Magnetics Inc | Open Energy Information  

Open Energy Info (EERE)

Magnetics Inc Magnetics Inc Jump to: navigation, search Name Aqua-Magnetics Inc Place Satellite Beach, Florida Zip 32937 Sector Ocean Product Manufactures patented system that converts ocean wave energy into electric power. References Aqua-Magnetics Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Electric Buoy Mobil Stabilized Energy Conversion Platform Platform generators This article is a stub. You can help OpenEI by expanding it. Aqua-Magnetics Inc is a company located in Satellite Beach, Florida . References ↑ "Aqua-Magnetics Inc" Retrieved from "http://en.openei.org/w/index.php?title=Aqua_Magnetics_Inc&oldid=678881"

226

Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not statistically significant. Additional species are currently planned for laboratory testing in the next fiscal year (e.g. an elasmobranch, American lobster) to provide a broader assessment of species important to stakeholders. The collective responses of all species will be assessed in terms of life stage, exposure scenarios, and biological relevance, to address current uncertainties related to effects of EMF on aquatic organisms.

Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

2012-05-01T23:59:59.000Z

227

U.S. Department of Energy Wind and Water Power Program Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office Funding in the United States: MARINE AND HYDROKINETIC ENERGY PROJECTS Fiscal Years 2008 - 2014 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER...

228

BOEM Issues First Renewable Energy Lease for MHK Technology Testing in Federal Waters  

Energy.gov (U.S. Department of Energy (DOE))

On June 3rd, 2014 the Bureau of Ocean Energy Management (BOEM) issued the first ever lease to test marine and hydrokinetic (MHK) energy devices in federal waters to Florida Atlantic University (FAU...

229

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

230

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

231

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

232

Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE))

The Emerging Technologies (ET) Program of the Building Technologies Office (BTO) supports applied research and development (R&D) for technologies, systems, and models that contribute to building energy consumption.

233

Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government...

234

Tools & Technologies  

Energy.gov (U.S. Department of Energy (DOE))

We provide leadership for transforming workforce development through the power of technology. It develops corporate educational technology policy and enables the use of learning tools and...

235

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

236

Heaving buoys, point absorbers and arrays  

Science Journals Connector (OSTI)

...09576509JPE751 ) 52 Hals, J. SubmittedPractical limits to the power that can be captured from ocean waves by oscillating bodies 53 Rademakers, L. W. M. M. , R. G. van Schie, R. Schuitema, B. Vriesema, and F. Gardner2000Physical model testing for characterising...

2012-01-01T23:59:59.000Z

237

Marine and Hydrokinetic Market Acceleration and Deployment |...  

Energy Savers (EERE)

the Navy, U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, and U.S. Fish and Wildlife Service. These agencies share information on a large range of issues,...

238

Sandia National Laboratories: Investigations on Marine Hydrokinetic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbine Foil Structural Health Monitoring Presented at GMREC METS On June 26, 2014, in Energy, News, News & Events, Renewable Energy, Systems Analysis, Water Power...

239

Sandia National Laboratories: Numerical Simulations of Hydrokinetics...  

NLE Websites -- All DOE Office Websites (Extended Search)

study, three grids were generated, all of which use the same bathymetric data for the Roza Canal. Converged results were achieved with the 19,777-cell grid. Because...

240

Sandia National Laboratories: marine hydrokinetic reference models  

NLE Websites -- All DOE Office Websites (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Exploration Technologies Technology Needs Assessment  

Energy.gov (U.S. Department of Energy (DOE))

The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development.

242

Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Best practices, project resources, and other tools on energy efficiency and renewable energy technologies.

243

Report to Congress on the Potential Environmental Effects of...  

Energy Savers (EERE)

hydrokinetic technologies to aquatic environments (i.e. rivers, estuaries, and oceans), fish and fish habitats, ecological relationships, and other marine and freshwater aquatic...

244

Calling All Coders: Help Advance America's Wave Power Industry...  

Office of Environmental Management (EM)

Resource Assessment and Characterization maps and tools Watch the Energy 101 video on Marine and Hydrokinetic technology With more than 50% of the nation's population...

245

ARPA-E Technical Support Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX rulemaking files More Documents & Publications Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Report to Congress on the...

246

Memorandum of Understanding between the Dept. of Interior and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by the U.S. Department of Energy and the U.S. Department of the Interior to support offshore wind and marine and hydrokinetic technologies. mouoffshorewindhydrokineticdeploym...

247

Memorandum of Understanding between the Dept. of Interior and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY for the COORDINATED DEPLOYMENT OF OFFSHORE WIND AND MARINE AND HYDROKINETIC ENERGY TECHNOLOGIES ON THE UNITED STATES OUTER...

248

Golden Reading Room: Environmental Assessments | Department of...  

Office of Environmental Management (EM)

Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida August 8, 2013 EA-1925: Final...

249

Energy Department Announces $7.25 Million for Projects to Advance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and hydrokinetic (MHK) technologies convert the energy of waves, tides, rivers, and ocean currents into electricity that can be used by homes and businesses, especially in...

250

Development of Reference Models and Design Tools (LCOE Models...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality...

251

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and...

252

Technology Roadmaps  

Energy.gov (U.S. Department of Energy (DOE))

This page contains links to DOE's Technology Roadmaps, multi-year plans outlining solid-state lighting goals, research and development initiatives aimed at accelerating technology advances and...

253

Technology Development  

Science Journals Connector (OSTI)

In presenting this chapter on technology development, it must be stated that attempts to make an up-to-date technology survey are restricted, unfortunately, by the proprietary nature of recent advances, detail...

B. E. Conway

1999-01-01T23:59:59.000Z

254

Department of Engineering Technology Technology Education  

E-Print Network (OSTI)

Department of Engineering Technology Technology Education A Teacher Education Program New Jersey Institute of Technology #12;WHAT WILL YOU LEARN? Technology teachers teach problem-based learning utilizing math, science and technology principles. Technological studies involve students: · Designing

Bieber, Michael

255

Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

6 News Stories (and older) 6 News Stories (and older) 12.21.2005___________________________________________________________________ Genzyme acquires gene therapy technology invented at Berkeley Lab. Read more here. 07.19.2005 _________________________________________________________________ Symyx, a start up company using Berkeley Lab combinatorial chemistry technology licensed by the Technology Transfer Department and developed by Peter Schultz and colleagues in the Materials Sciences Division, will be honored with Frost & Sullivan's 2005 Technology Leadership Award at their Excellence in Emerging Technologies Awards Banquet for developing enabling technologies and methods to aid better, faster and more efficient R&D. Read more here. 07.11.2005 _________________________________________________________________ Nanosys, Inc., a Berkeley Lab startup, is among the solar nanotech companies investors along Sand Hill Road in Menlo Park hope that thinking small will translate into big profits. Read more here.

256

Fuel Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

257

Layering Technologies  

Science Journals Connector (OSTI)

Planar technology requires that thin layers of materials be formed and patterned sequentially, commencing with a flat rigid substrate. The key aspects of each layer are its Thi...

Ivor Brodie; Julius J. Muray

1992-01-01T23:59:59.000Z

258

MHK Technologies/Kinetic Hydropower System KHPS | Open Energy Information  

Open Energy Info (EERE)

Kinetic Hydropower System KHPS Kinetic Hydropower System KHPS < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Verdantpower.jpg Technology Profile Primary Organization Verdant Power Project(s) where this technology is utilized *MHK Projects/Roosevelt Island Tidal Energy RITE *MHK Projects/Cornwall Ontario River Energy CORE Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Verdant Power's central technology is the Kinetic Hydropower System (KHPS), a water-to-wire system that consists of three main components: 1) KHPS TURBINE: a three-bladed horizontal-axis turbine with four major assemblies: a) Composite rotor with 3-fixed blades that rotate at the relatively slow and constant speed of approximately 40 RPM, with tip-speeds of 35 feet per second. This is well below normal water vessel propeller speeds and conventional hydropower turbine blade speeds. b) Sealed nacelle, pylon and passive yaw mechanism that is hydrodynamically designed to allow the turbine to self-rotate into the prevailing current (like a weathervane) so that the blades are optimally aligned to generate energy. c) Custom-designed drivetrain unit (with induction generator) enclosed within the nacelle that integrates the bearing housing with a special long-life planetary gearbox, with mechanical shaft seals and a minimum of sealed lubricants. d) Streambed mounting system that can vary depending on site conditions as a single drilled monopile, a single gravity-based structure, or a gravity-based triframe mount that supports 3 turbines. 2) UNDERWATER CABLING: low-voltage shielded cable of short distance; and shoreline switchgear vaults, control room, and interconnection point(s). 3) APPURTENANT FACILITIES: for navigation safety, such as Public Aides to Navigation (PATON) buoys and lighted warning signs, as well as instrumentation including Acoustic Doppler Current Profilers (ADCPs). In order to maximize the application of the KHPS within the global MHK resource, Verdant Power has designed the technology as a simple and uniquely scalable system that can be operated in tidal, river and ocean current settings. Possible KHPS installations range from distributed generation arrangements in near-shore urban and village settings to base power generation at offshore deepwater locales.

259

Glass Technology  

Science Journals Connector (OSTI)

... WE have received from the Department of Glass Technology, University of Sheffield, a copy of vol. ii. of “Experimental Researches ... that department. The papers included have already appeared in the Journal of the Society of Glass Technology. They range over a somewhat wide field of the ...

1920-08-23T23:59:59.000Z

260

NREL: Technology Deployment - Technology Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas:...

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

262

Vehicle Technologies Office: Graduate Automotive Technology Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) to someone by E-mail Share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Facebook Tweet about Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Twitter Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Google Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Delicious Rank Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Digg Find More places to share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on AddThis.com...

263

Building Technologies Office: Emerging Technologies Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Activities to someone by E-mail Share Building Technologies Office: Emerging Technologies Activities on Facebook Tweet about Building Technologies Office: Emerging Technologies Activities on Twitter Bookmark Building Technologies Office: Emerging Technologies Activities on Google Bookmark Building Technologies Office: Emerging Technologies Activities on Delicious Rank Building Technologies Office: Emerging Technologies Activities on Digg Find More places to share Building Technologies Office: Emerging Technologies Activities on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research

264

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Creating the Next Generation of Energy Efficient Technology Creating the Next Generation of Energy Efficient Technology The Emerging Technologies team partners with national laboratories, industry, and universities to advance research, development, and commercialization of energy efficient and cost effective building technologies. These partnerships help foster American ingenuity to develop cutting-edge technologies that have less than 5 years to market readiness, and contribute to the goal to reduce energy consumption by at least 50%. Sandia Cooler's innovative, compact design combines a fan and a finned metal heat sink into a single element, efficiently transferring heat in microelectronics and reducing energy use. Supporting Innovative Research to Help Reduce Energy Use and Advance Manufacturing Learn More

265

Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

* Heavy Vehicle Technologies * Heavy Vehicle Technologies * Multi-Path Transportation Futures * Idling Studies * EDrive Vehicle Monthly Sales Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Technology Analysis truck Heavy vehicle techologies are one subject of study. Research Reducing Greenhouse Gas Emissions from U.S. Transportation Heavy Vehicle Technologies Multi-Path Transportation Futures Study Idling Studies Light Duty Electric Drive Vehicles Monthly Sales Updates Lithium-Ion Battery Recycling and Life Cycle Analysis Reports Propane Vehicles: Status, Challenges, and Opportunities (pdf; 525 kB) Natural Gas Vehicles: Status, Barriers, and Opportunities (pdf; 696 kB) Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles (pdf; 1.02 MB)

266

Coal Technology  

Science Journals Connector (OSTI)

Several large demonstrations of FBC technology for electrical power generation have proven ... -MW(e) atmospheric pressure circulating fluidized-bed boiler at the Colorado–Ute Electric Association's...14 ...

2003-01-01T23:59:59.000Z

267

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network (OSTI)

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division to them in California. TECHNOLOGY TRANSFER PROGRAM MAY 2011, VOL. 3, NO. 1 California's Transition

California at Berkeley, University of

268

Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

269

Technology Application Centers: Facilitating Technology Transfer  

E-Print Network (OSTI)

transfer plus technology application. A&C Enercom has learned from experience that technology deployment will not occur unless utilities achieve both technology transfer (e.g, the dissemination of information) and technology application (e.g., the direct...

Kuhel, G. J.

270

Manufacturing technology  

SciTech Connect

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

271

FEMP/NTDP Technology Focus New Technology  

E-Print Network (OSTI)

FEMP/NTDP Technology Focus New Technology Demonstration Program Technology Focus FEMPFederal Energy Management Program Trends in Energy Management Technology: BCS Integration Technologies ­ Open Communications into a complete EMCIS. The first article [1] covered enabling technologies for emerging energy management systems

272

(Environmental technology)  

SciTech Connect

The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

Boston, H.L.

1990-10-12T23:59:59.000Z

273

COMMERCIALIZING TECHNOLOGIES &  

E-Print Network (OSTI)

measurement." Dan Gillings President Applied Technology Associates NMSBA reduced my manufacturing costs by 20 a patent for a revolutionary new, even more shock absorbent mouthguard they will manufacture from material including a new additive. 2 Animated Talking Toys Heilbron Associates had acquired rights to a fiber optic

274

Vacuum Technology  

SciTech Connect

The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

Biltoft, P J

2004-10-15T23:59:59.000Z

275

2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)  

SciTech Connect

This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

Not Available

2014-02-01T23:59:59.000Z

276

TECHNOLOGY TRANSFER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

277

Emerging technologies  

SciTech Connect

The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

Lu, Shin-yee

1993-03-01T23:59:59.000Z

278

Building Technologies Office: About Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies The Emerging Technologies team funds the research and development of cost-effective, energy-efficient building technologies within five years of commercialization. Learn more about the: Key Technologies Benefits Results Key Technologies Specific technologies pursued within the Emerging Technologies team include: Lighting: advanced solid-state lighting systems, including core technology research and development, manufacturing R&D, and market development Heating, ventilation, and air conditioning (HVAC): heat pumps, heat exchangers, and working fluids Building Envelope: highly insulating and dynamic windows, cool roofs, building thermal insulation, façades, daylighting, and fenestration Water Heating: heat pump water heaters and solar water heaters

279

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

280

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

LTCC multi-chip module LTCC multi-chip module A high density LTCC multi-chip module Electronic Packaging PDF format (150 kb) The Electronic Packaging technologies in the Thin Film, Vacuum, & Packaging Department are a resource for all aspects of microelectronic packaging. From design and layout to fabrication of prototype samples, the staff offers partners the opportunity for concurrent engineering and development of a variety of electronic packaging concepts. This includes assistance in selecting the most appropriate technology for manufacturing, analysis of performance characteristics and development of new and unique processes. Capabilities: Network Fabrication Low Temperature Co-Fired Ceramic (LTCC) Thick Film Thin Film Packaging and Assembly Chip Level Packaging MEMs Packaging

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer  

E-Print Network (OSTI)

Page 1 TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer UT-Battelle, LLC (UT. One of the functions of UT-BATTELLE's Office of Technology Transfer is to negotiate license agreements

Pennycook, Steve

282

Hydrogen Technologies Group  

SciTech Connect

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

283

Information Technology and Libraries  

E-Print Network (OSTI)

Sue Chesley Perry 196 INFORMATION TECHNOLOGY AND LIBRARIES |LITA - Library & Information Technology Association). ”Two of the 190 INFORMATION TECHNOLOGY AND LIBRARIES |

Hubble, Ann; Murphy, Deborah A.; Perry, Susan Chesley

2011-01-01T23:59:59.000Z

284

Technology Transfer: Success Stories: Licensed Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Licensed Technologies Licensed Technologies Here are some of our licensees and the technologies they are commercializing; see our Start-Up Company page for more of our technology licenses. Company (Licensee) Technology Life Technologies Corp. Cell lines for breast cancer research Bristol Myers Squibb; Novartis; Plexxikon Inc.; Wyeth Research; GlaxoSmithKline; Johnson & Johnson; Boehringer Ingelheim Pharmaceuticals, Inc.; Genzyme Software for automated macromolecular crystallography Shell International Exploration and Production; ConnocoPhillips Company; StatOil ASA; Schlumburger Technology Corportation; BHP Billiton Ltd.; Chevron Energy Technology Company; EniTecnologie S.p.A. Geo-Hydrophysical modeling software Microsoft Home Energy Saver software distribution Kalinex Colorimetric bioassay

285

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced...

286

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Office of Environmental Management (EM)

Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle...

287

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Films Thin Films PDF format (189 kb) Multi Layer Thin Films Multi Layer Thin Films Planetary Sputtering SystemsPlanetary Sputtering Systems Planetary Sputtering Systems The Thin Film laboratory within Manufacturing Science & Technology provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposition processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials.

288

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Molding, Thermoforming & Compounding Molding, Thermoforming & Compounding PDF format (89 kb) The Manufacturing Science & Technology Center helps customers choose the best materials and techniques for their product by providing a variety of conformal coatings, thermoforming, and compounding materials using established or custom designed processes. The department provides consulting services for injection molding and rubber compounding projects. Capabilities: Thermoforming: Processing thermoplastics such as polycarbonate, polymethyl methacrylate, polypropylene polystyrene, and ABS; producing holding trays, protective caps, and custom covers Injection Molding Consultation: Designing your part to be injection molded, helping you choose the best material for your application, and supporting your interface with injection molding companies

289

Technology Name  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To prevent the D&D knowledge and expertise from being lost over time an approach is needed to capture and maintain this valuable information in a universally available and easily usable system. Technical Solution The D&D KM-IT serves as a centralized repository

290

CSIR TECHNOLOGY AWARDS -2013  

E-Print Network (OSTI)

CSIR TECHNOLOGY AWARDS - 2013 GUIDELINES & PROFORMAE FOR NOMINATIONS Planning and Performance 2013 #12;CSIR TECHNOLOGY AWARDS BRIEF DETAILS ,,CSIR Technology Awards were instituted in 1990 to encourage multi-disciplinary in- house team efforts and external interaction for technology development

Jayaram, Bhyravabotla

291

Lab Visits on DOE Technology Roadmap and the Technology Advisory...  

Office of Environmental Management (EM)

DOE Technology Roadmap and the Technology Advisory Board OCIO Technology Summit: High Performance Computing Lab Visits on DOE Technology Roadmap and the Technology Advisory Board...

292

12-3-09_Beaudry-Losique_Final_testimony.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

JACQUES BEAUDRY-LOSIQUE DEPUTY ASSISTANT SECRETARY FOR RENEWABLE ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY U.S. DEPARTMENT OF ENERGY BEFORE THE COMMITTEE ON SCIENCE AND TECHNOLOGY SUBCOMMITTEE ON ENERGY AND ENVIRONMENT U.S. HOUSE OF REPRESENTATIVES HEARING EXAMINING MARINE AND HYDROKINETIC ENERGY TECHNOLOGY: FINDING THE PATH TO COMMERCIALIZATION DECEMBER 3, 2009 Chairman Baird, Ranking Member Inglis, Members of the Committee, thank you for the opportunity to appear before you today to discuss the U.S. Department of Energy's Water Power Program and its activities related to marine and hydrokinetic energy generation technologies. The global marine and hydrokinetic industry consists of energy extraction technologies

293

INL Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Through collaboration with industry partners, INL's Technology Deployment office makes available to American agencies and international organizations unique...

294

Energy Technology Solutions  

Energy.gov (U.S. Department of Energy (DOE))

Public-private partnerships transforming industry and list of commercialized technologies, knowledge-based results, and promising technologies

295

California Institute of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

California Institute of Technology o Ivan Celanovic, Principal Research Scientist, Massachusetts Institute of Technology o Geoffrey Kinsey, Director, Photovoltaic...

296

Technology Validation Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen and fuel cell technology validation efforts.

297

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network (OSTI)

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division of asphalt pavements. TECHNOLOGY TRANSFER PROGRAM JULY 2010, VOL. 2, NO. 1 Warm Mix Asphalt Hits the Road, and California LTAP Field Engineer, Technology Transfer Program, Institute of Transportation Studies, UC Berkeley

California at Berkeley, University of

298

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network (OSTI)

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division solve the very serious problem of waste tire disposal. TECHNOLOGY TRANSFER PROGRAM SEPTEMBER 2009, VOL, University of California Pavement Research Center, and California LTAP Field Engineer, Technology Transfer

California at Berkeley, University of

299

Venus Technology Plan Venus Technology Plan  

E-Print Network (OSTI)

Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration a Roadmap for Venus Exploration (RVE) that is consistent with VEXAG priorities as well as Planetary Decadal Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology

Rathbun, Julie A.

300

NREL: Technology Transfer - Technology Partnership Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Partnership Agreements Technology Partnership Agreements Through technology partnership agreements, NREL provides partners with technical support to help commercialize and deploy energy technologies and products. We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and covers our costs of providing technical services. NREL does provide funding opportunities through competitively placed contracts. For more information, see our business opportunities. Process The technology partnership agreement process basically includes 11 steps. See the NREL Technology Partnership Agreement Process flowchart. We are committed to working through these steps in a timely manner. Experience suggests that the fastest means to reach an agreement is through

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sol-Gel Glasses Sol-Gel Glasses PDF format (74 kb) Sol Gel Sol Gel Coating with Sol-Gel Glasses Coating with Sol-Gel Glasses The Manufacturing Science & Technology Center conducts process development and scale-up of ceramic and glass materials prepared by the sol-gel process. Sol-gel processing uses solutions prepared at low temperature rather than high temperature powder processing to make materials with controlled properties. A precursor sol-gel solution (sol) is either poured into a mold and allowed to gel or is diluted and applied to a substrate by spinning, dipping, spraying, electrophoresis, inkjet printing or roll coating. Controlled drying of the wet gel results in either a ceramic or glass bulk part or a thin film on a glass, plastic, ceramic or metal substrate.

302

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Manufacture Ion Beam Manufacture PDF format (113 kb) Example sine wave FIB sputtered into initially planar Si substrate Example sine wave FIB sputtered into initially planar Si substrate Sandia Manufacturing Science & Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are developing methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geometrically-complex features and substrates. This includes the ability to sputter predetermined curved shapes of various symmetries and

303

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

3 foot diameter cyanate ester / fiberglass laminated antenna 3 foot diameter cyanate ester / fiberglass laminated antenna 3 foot diameter cyanate ester / fiberglass laminated antenna Composites PDF format (145 kb) Polymer composite materials are composed of fibers in an organic matrix and can be useful in applications that require a high strength-to-weight ratio. Sandia's MS&T staff will work with you from part design, through mold and tooling design, and on through fabrication. The department is capable of fabricating small and large complex parts and will help you choose the most economical technique for your composite needs. Capabilities: The Center has a comprehensive program on the mechanical engineering design, tooling and fixturing, lay-out, complete processing of the composite structure, and technology transfer of composite structures for a

304

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Engineered Net Shaping(tm) Laser Engineered Net Shaping(tm) PDF format (140 kb) picture of processing blade Processing Blade Sandia National Laboratories has developed a new technology to fabricate three-dimensional metallic components directly from CAD solid models. This process, called Laser Engineered Net ShapingT (LENS®), exhibits enormous potential to revolutionize the way in which metal parts, such as complex prototypes, tooling, and small-lot production items, are produced. The process fabricates metal parts directly from the Computer Aided Design (CAD) solid models using a metal powder injected into a molten pool created by a focused, high-powered laser beam. Simultaneously, the substrate on which the deposition is occurring is scanned under the beam/powder interaction zone to fabricate the desired

305

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect

Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

Not Available

2010-07-01T23:59:59.000Z

306

UEK Corporation | Open Energy Information  

Open Energy Info (EERE)

UEK Corporation UEK Corporation Jump to: navigation, search Name UEK Corporation Place Annapolis, Maryland Zip 21403 Sector Hydro, Ocean Product Annapolis-based developer & manufacturer of hydro-kinetic turbines to harness river, tidal and ocean currents. References UEK Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Atchafalaya River Hydrokinetic Project II Chitokoloki Project Coal Creek Project Half Moon Cove Tidal Project Indian River Tidal Hydrokinetic Energy Project Luangwa Zambia Project Minas Basin Bay of Fundy Commercial Scale Demonstration Old River Outflow Channel Project Passamaquoddy Tribe Hydrokinetic Project

307

Name Address Place Zip Sector Product Stock Symbol Year founded Number  

Open Energy Info (EERE)

Address Place Zip Sector Product Stock Symbol Year founded Number Address Place Zip Sector Product Stock Symbol Year founded Number of employees Number of employees Telephone number Website Coordinates Region ABS Alaskan Inc Van Horn Rd Fairbanks Alaska Gateway Solar Wind energy Marine and Hydrokinetic Solar PV Solar thermal Wind Hydro Small scale wind turbine up to kW and solar systems distributor http www absak com United States AER NY Kinetics LLC PO Box Entrance Avenue Ogdensburg Marine and Hydrokinetic United States AW Energy Lars Sonckin kaari Espoo FI Marine and Hydrokinetic http www aw energy com Finland AWS Ocean Energy formerly Oceanergia Redshank House Alness Point Business Park Alness Ross shire IV17 UP Marine and Hydrokinetic http www awsocean com United Kingdom Able Technologies Audubon Road Englewood Marine and Hydrokinetic http

308

NETL Technologies Recognized for Technology Development, Transfer |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recognized for Technology Development, Transfer Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of 1986 and related federal policy, the mission of the FLC is to promote and facilitate the rapid movement of federal laboratory research results and technologies into the mainstream of the U.S. economy. Learn more about the FLC. A great invention that sits on a shelf, gathering dust, benefits no one.

309

NREL: Technology Transfer - Technologies Available for Licensing  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Available for Licensing Technologies Available for Licensing Photo of NREL scientist in the NREL Hydrogen Lab. NREL's scientists and engineers develop award-winning technologies available for licensing. NREL scientists and engineers produce breakthrough and award-winning renewable energy and energy efficiency technologies that are available for licensing. We have many licensing opportunities for NREL-developed technologies, including our featured LED technologies. To see all our technologies available for licensing, visit the EERE Innovation Portal and search for NREL. Learn about our licensing agreement process. Contact For more information about licensing NREL-developed technologies, contact Eric Payne, 303-275-3166. Ombuds NREL strives to quickly resolve any issue or concern you may have regarding

310

Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology  

E-Print Network (OSTI)

Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology Fujita LaboratoryTokyo Institute of Technology Tokyo Institute of Technology 231 #12;Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology 2 IT #12;Fujita LaboratoryTokyo Instituteof

311

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

312

Building Technologies Research and  

E-Print Network (OSTI)

Building Technologies Research and Integration Center Breaking new ground in energy efficiency #12;Building Technologies Research To enjoy a sustainable energy and environmental future, America must these enormous challenges. Today, through the Building Technologies and Research Integration Center (BTRIC

Oak Ridge National Laboratory

313

Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Presentation given...

314

Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Technologies Technologies October 7, 2013 - 10:20am Addthis The Federal Energy Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find energy-efficient product requirements and technology, purchasing specifications, energy cost savings calculators, model contract language, and resources. Technology Deployment: Look up information about developing, measuring, and implementing new and underutilized technologies for energy management in the Federal Government. Renewable Energy: Read about renewable energy requirements, resources and technologies, project planning, purchasing renewable power, and more. See FEMP's other program areas. Addthis FEMP Home

315

Emerging Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies Program Emerging Technologies Program Pat Phelan Program Manager patrick.phelan@ee.doe.gov (202)287-1906 April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov How ET Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers * Solve technical barriers and test innovations to prove effectiveness * Measure and validate energy savings ET Mission: Accelerate the research, development and commercialization of emerging, high impact building technologies that are five years or less to market ready. 3 | Building Technologies Office eere.energy.gov

316

Partnerships and Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships and Technology Transfer User Facilities Visiting Us Contact Us Home About Us Success Stories Events News ORNL Inventors (internal only) Find a Technology Search go...

317

Technology Transfer Ombudsman Program  

Energy.gov (U.S. Department of Energy (DOE))

The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000.  Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national...

318

Vehicle Technologies Office: News  

Energy.gov (U.S. Department of Energy (DOE))

EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

319

Sandia Science & Technology Park  

NLE Websites -- All DOE Office Websites (Extended Search)

search this site Sandia Science & Technology Park An internationally recognized technology community Home Properties Center for Collaboration & Commercialization (C3) Available...

320

Window industry technology roadmap  

SciTech Connect

Technology roadmap describing technology vision, barriers, and RD and D goals and strategies compiled by window industry stakeholders and government agencies.

Brandegee

2000-04-27T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Technology Partnering Mechanisms  

NLE Websites -- All DOE Office Websites (Extended Search)

expand a business with INL technologies, or require business support our Technology Transfer team is available to discuss the following contractual mechanisms: Cooperative...

322

Hydropower Program Technology Overview  

SciTech Connect

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-10-01T23:59:59.000Z

323

Green Purchasing & Green Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

324

Technology and energy supply  

U.S. Energy Information Administration (EIA) Indexed Site

2010 Energy Conference Energy and the Economy Technology and Energy Transformation Science and Technology + Economics and Business + Society and Environment + Policy and...

325

Building Technologies Office Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

data * Utilize energy performance data to inform decision making * Improve measurement and track and analyze results TECHNOLOGY TO MARKET TECHNOLOGY DEVELOPMENT 5...

326

Geothermal Technologies Subject Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

alike at: Introducing The Geothermal Technologies Subject Portal is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and is...

327

Geothermal Technologies Legacy Collection  

NLE Websites -- All DOE Office Websites (Extended Search)

sponsored by DOE The Geothermal Technologies Subject Portal founding sponsorship by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and...

328

Technology Readiness Assessment Report  

Energy.gov (U.S. Department of Energy (DOE))

This document has been developed to guide individuals and teams that will be involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the...

329

Technology Integration Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Integration Overview Dennis A. Smith - Clean Cities Deployment Connie Bezanson - Vehicle Education June 17, 2014 VEHICLE TECHNOLOGIES OFFICE This presentation does not...

330

Integrated Technology Deployment  

Office of Energy Efficiency and Renewable Energy (EERE)

Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

331

Morgantown Energy Technology Center, technology summary  

SciTech Connect

This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

Not Available

1994-06-01T23:59:59.000Z

332

Chevron, GE form Technology Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevron, GE form Technology Alliance Chevron, GE form Technology Alliance The Chevron GE Technology Alliance will develop and commercialize valuable technologies to solve critical...

333

Dynamic response analysis of spar buoy floating wind turbine systems  

E-Print Network (OSTI)

The importance of alternative energy development has been dramatically increased by the dwindling supplies of oil and gas, and our growing efforts to protect our environment. A variety of meaningful steps have been taken ...

Lee, Sungho, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

334

Development, Operation, and Results From the Texas Automated Buoy System  

E-Print Network (OSTI)

of the Gulf of Mexico Coastal Ocean Observing System (GCOOS) regional association and the primary source of near-surface current measurements in the northwestern Gulf of Mexico. This article describes the origin of Angolan crude, exploded and caught fire while lightering its cargo about 60 nautical miles south

335

Free Flow Power Partners to Improve Hydrokinetic Turbine Performance...  

Office of Environmental Management (EM)

as the device performed as expected, with no discernible harm to river-dwelling fish. Free Flow has also completed preliminary designs of utility-scale installations at a...

336

Request for Information Regarding the Testing of Marine and Hydrokinet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program is seeking to better understand the current state of development of existing wave energy converter systems and current energy converter systems nearing one of two...

337

Funding Opportunity Announcement for a Marine and Hydrokinetic...  

Energy Savers (EERE)

necessary for enabling arrays: e.g. moorings and foundations, transmission, and other offshore grid components. * Array performance testing and evaluation. * In-water testing and...

338

Upcoming Funding Opportunity for Marine and Hydrokinetic Development...  

Office of Environmental Management (EM)

necessary for enabling arrays: e.g. moorings and foundations, transmission, and other offshore grid components. * Array performance testing and evaluation. * In-water testing and...

339

Department of Energy Awards $37 Million for Marine and Hydrokinetic...  

Office of Environmental Management (EM)

and free-flowing rivers represent a promising energy source located close to centers of electricity demand. The Department of Energy is working with industry, universities,...

340

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinet...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy's Water Power Program site. For Geographic Information System (GIS) MHK resource data, access the Data Resources page. If you have difficulty accessing...

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Additive Manufacturing Technologies  

Science Journals Connector (OSTI)

Rapid Prototyping is the construction of complex three-dimensional parts using additive manufacturing technology.

Jürgen Stampfl; Markus Hatzenbichler

2014-01-01T23:59:59.000Z

342

Calculus For Technology II  

E-Print Network (OSTI)

MA 22200, Spring 2012. Calculus For Technology II ... Other Information. Emergency procedures · Exam info (A Hoffman) ...

343

Tracers and Exploration Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Below are the project presentations and respective peer review results for Tracers and Exploration Technologies.

344

The Technology & Innovation Centre  

E-Print Network (OSTI)

The Technology & Innovation Centre #12;The Technology and Innovation Centre revolutionises the way in Scotland and further afield ­ including power and energy, renewable technologies, photonics and sensors, for industry, the Technology and Innovation Centre has already attracted major partners including Scottish

Mottram, Nigel

345

UNIVERSITY of STRATHCLYDE TECHNOLOGY &  

E-Print Network (OSTI)

UNIVERSITY of STRATHCLYDE TECHNOLOGY & INNOVATION CENTRE #12;#12;#12;The Technology and Innovation HEALTH TECHNOLOGIES ADVANCED MANUFACTURING #12;Inspiring research and innovation with industry-by-side on innovative technology programmes aimed at addressing major challenges in: Low Carbon Power and Energy

Mottram, Nigel

346

General com Technology community  

E-Print Network (OSTI)

Campus IT General com m unity Technology community ITsystem owners Campus Council for Information Technology (CCFIT) · ~30 members · Advisory evaluation and review role · Input from faculty, staff, students formal representation on steering team and subcommittees Technology Support Program · Technology support

Ferrara, Katherine W.

347

Predictive Maintenance Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Several diagnostic technologies and best practices are available to assist Federal agencies with predictive maintenance programs.

348

Technology Transfer: About the Technology Transfer Department  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Technology Transfer and Intellectual Property Management About the Technology Transfer and Intellectual Property Management Department The Technology Transfer Department helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. We accomplish this through developing and managing an array of partnerships with the private and public sectors. What We Do We license a wide range of cutting-edge technologies to companies that have the financial, R & D, manufacturing, marketing, and managerial capabilities to successfully commercialize Lab inventions. In addition, we manage lab-industry research partnerships, ensure that inventions receive appropriate patent or copyright protection, license technology to start-up companies, distribute royalties to the Lab and to inventors and serve as

349

NREL: Technology Transfer - About Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

About Technology Transfer About Technology Transfer Through technology partnerships, NREL seeks to reduce private sector risk and enable investment in the adoption of renewable energy and energy efficiency technologies. The transfer of these technologies to the marketplace helps displace oil, reduce carbon emissions, and increase U.S. industry competitiveness. Principles NREL develops and implements technology partnerships based on the standards established by the following principles: Balancing Public and Private Interest Form partnerships that serve the public interest and advance U.S. Department of Energy goals. Demonstrate appropriate stewardship of publicly funded assets, yielding national benefits. Provide value to the commercial partner. Focusing on Outcomes Develop mutually beneficial collaborations through processes, which are

350

Building Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

351

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

352

Soil washing technology evaluation  

SciTech Connect

Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis.

Suer, A.

1995-04-01T23:59:59.000Z

353

Pretreatment Technology Plan  

SciTech Connect

This technology plan presents a strategy for the identification, evaluation, and development of technologies for the pretreatment of radioactive wastes stored in underground storage tanks at the Hanford Site. This strategy includes deployment of facilities and process development schedules to support the other program elements. This document also presents schedule information for alternative pretreatment systems: (1) the reference pretreatment technology development system, (2) an enhanced pretreatment technology development system, and (3) alternative pretreatment technology development systems.

Barker, S.A. [Westinghouse Hanford Co., Richland, WA (US); Thornhill, C.K.; Holton, L.K. Jr. [Pacific Northwest Lab., Richland, WA (US)

1993-03-01T23:59:59.000Z

354

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary stent is a small,...

355

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Immobilized Amine Sorbent (BIAS) Process Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Capturing carbon dioxide (CO 2 ) from the flue or...

356

Ryan Sun Chee Fore | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ryan Sun Chee Fore About Us Ryan Sun Chee Fore - Marine and Hydrokinetic Technology Manager Most Recent Riding the Clean Energy Wave: New Projects Aim to Improve Water Power...

357

Vehicle Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

358

NREL: Technology Transfer - Agreements for Commercializing Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Agreements for Commercializing Technology Agreements for Commercializing Technology NREL uses Agreements for Commercializing Technology (ACT) when a partner seeks highly-specialized or technical services to complete a project. An ACT agreement also authorizes participating contractor-operated DOE laboratories, such as NREL, to partner with businesses using more flexible terms that are aligned with industry practice. The agreement type used depends on the business, and the specific partnership selected is determined on a case-by-case basis. Benefits The benefits of Agreements for Commercializing Technology include: Intellectual Property Rights. ACT provides a more flexible framework for negotiation of intellectual property rights to facilitate moving technology from the laboratory to the marketplace as quickly as possible.

359

Nuclear Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science & Technology Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. /No/ Nuclear Science & Technology Some of these resources are LANL-only and will require Remote Access. Key Resources Databases Organizations Journals Key Resources International Atomic Energy Agency IAEA scientific and technical publications cover areas of nuclear power, radiation therapy, nuclear security, nuclear law, and emergency repose. Search under Publications/Books and Reports for scientific books, standards, technical guides and reports National Nuclear Data Center Nuclear physics data for basic nuclear research and for applied nuclear technologies, operated by Brookhaven.

360

Building Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

362

CX-008207: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination CX-008207: Categorical Exclusion Determination Field Evaluation and Validation of Remote Wind Sensing Technologies - Shore-Based and Buoy...

363

E-Print Network 3.0 - acoustic transfer functions Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Technologies and Information Sciences 3 The Acoustic Oceanographic Buoy A Light Acoustic Data Acquisition System Summary: : The AOB functionality allows for the...

364

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions  

E-Print Network (OSTI)

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 Advisor Center Navigation: Login #12;Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training

Johnson Jr.,, Ray

365

Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Technologies Technologies November 1, 2013 - 11:40am Addthis Distributed energy (DE) technologies consist primarily of energy generation and storage systems placed at or near the point of use. DE provides consumers with greater reliability, adequate power quality, and the possibility to participate in competitive electric power markets. DE also has the potential to mitigate congestion in transmission lines, control price fluctuations, strengthen energy security, and provide greater stability to the electricity grid. The use of DE technologies can lead to lower emissions and, particularly in combined heat and power (CHP) applications, to improved efficiency. Example of a thermally activated energy conversion technology (TAT) -- a type of distributed energy technology. Distributed energy technologies consist primarily of energy generation and storage systems placed at or near the point of use. This gas engine-driven heat pump is operating on a rooftop.

366

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

367

Diversity and Technological Progress  

E-Print Network (OSTI)

This paper proposes a tractable model to study the equilibrium diversity of technological progress and shows that equilibrium technological progress may exhibit too little diversity (too much conformity), in particular ...

Acemoglu, Daron

2011-12-15T23:59:59.000Z

368

Technology Readiness Assessment Guide  

Directives, Delegations, and Requirements

The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Cancels DOE G 413.3-4.

2011-09-15T23:59:59.000Z

369

Review: Web Server Technology  

Science Journals Connector (OSTI)

......The introduction to this section discusses artificial intelligent and object technology. Two applications, both from the Boeing Defense and Space Group, were large complex developments which combined object technology and artificial intelligence. The......

Jon Crowcroft

1997-02-01T23:59:59.000Z

370

Technology Performance Exchange  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Performance Exchange Technology Performance Exchange TDM - Jason Koman (BTO) TDM - Dave Catarious (FEMP) William Livingood National Renewable Energy Laboratory William.Livingood@nrel.gov 303-384-7490 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem: Perceived fiscal risk associated with the installation of unfamiliar technologies impedes adoption rates for cost-effective, energy-saving products. Impact of Project: Enable end users to quickly and

371

Safeguards over sensitive technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safeguards Over Sensitive Technology Safeguards Over Sensitive Technology DOE/IG-0635 January 2004 Program Results and Cost Details of Finding ....................................................................... 1 Recommendations and Comments ........................................... 6 Appendices Prior Reports .............................................................................. 9 Objective, Scope, and Methodology ........................................ 11 Management Comments .......................................................... 12 SAFEGUARDS OVER SENSITIVE TECHNOLOGY TABLE OF CONTENTS Page 1 Background Aspects of sensitive technology protection, along with related impacts on national security, have been addressed in various formats by the Department of Energy and several other Federal agencies. For example:

372

Long Term Innovative Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Bryan Pivovar on DOE's Hydrogen and Fuel Cell Technologies, Fuel Cell Presolicitation Workshop - Lakewood, CO March 16, 2010

373

Consumer Vehicle Technology Data  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

374

Geothermal drilling technology update  

SciTech Connect

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

375

Membrane Technology Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

376

Technology and Terrorism  

Science Journals Connector (OSTI)

Technology and Terrorism ... The linkage of chemistry and terrorism is an uncomfortable bond for members of the chemical profession. ...

MADELEINE JACOBS

1995-07-24T23:59:59.000Z

377

Deployment of Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the FUPWG Deployment of Emerging Technologies. Presented by Brad Gustafson, Department of Energy, held on November 1, 2006.

378

Carbon Fiber Technology Facility  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

379

States & Emerging Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on States & Emerging Energy Technologies.

380

Energy Technology Engineering Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Engineering Center Technology Engineering Center 41 00 Guardian Street, Suite # 160 Simi Valley, CA 93063 Memorandum for: Gregory H. Woods General Council January 30, 2013 FROM: John Jones EL\= Federal Proje� irector Energy Technology Engineering Center (ETEC) Project Office SUBJECT: Annual National Environmental Policy Act {NEPA) Planning Summary Attached is the 2013 Annual NEPA Planning Summary for the ETEC Project Office.

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Argonne superconductor technology licensed  

Science Journals Connector (OSTI)

Argonne superconductor technology licensed ... American Superconductor Corp. of Cambridge, Mass., has obtained the exclusive rights to develop and market high-temperature superconductor technology developed at the Department of Energy's Argonne National Laboratory. ... The Argonne technology produces superconducting ceramic coatings by oxidizing an appropriate metallic precursor. ...

RON DAGANI

1988-10-17T23:59:59.000Z

382

Federal Laboratory Technology Transfer  

E-Print Network (OSTI)

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

383

Federal Laboratory Technology Transfer  

E-Print Network (OSTI)

Federal Laboratory Technology Transfer Fiscal Year 2009 Prepared by: National Institute to submit this fiscal year 2009 Technology Transfer Summary Report to the President and the Congress in accordance with 15 USC Sec 3710(g)(2) for an annual summary on the implementation of technology transfer

Perkins, Richard A.

384

Federal Laboratory Technology Transfer  

E-Print Network (OSTI)

Federal Laboratory Technology Transfer Fiscal Year 2008 Prepared by: National Institute to submit this fiscal year 2008 Technology Transfer Summary Report to the President and the Congress transfer authorities established by the Technology Transfer Commercialization Act of 2000 (P.L. 106

Perkins, Richard A.

385

Science, Technology and Civilization  

Science Journals Connector (OSTI)

... THE rise of science and technology is a unique element of our civilization. In earlier times, technology played ... element of our civilization. In earlier times, technology played a relatively small part, and science almost none; and it is worth briefly looking at the two ancient civilizations, those ...

R. V. JONES

1962-06-30T23:59:59.000Z

386

Science &Technology Facilities Council  

E-Print Network (OSTI)

and Science & Technology Facilities Council invite you to The ESA Technology Transfer Network SpaceTech2012Science &Technology Facilities Council Innovations Issue 31 October 2012 This issue: 1 STFC International prize for `no needles' breast cancer diagnosis technique 6 CEOI Challenge Workshop ­ Current

387

Department of Energy Technology  

E-Print Network (OSTI)

Reservoir Models 42 #12;Page 2.21. Energy Storage 43 2.22. Focusing Solar Collector 43 2.23. Digitizing technology towa^ls energy technology problems in general, at Risø and in the Depart- ment, was made manifestRisa-R-482 Department of Energy Technology Annual Progress Report 1 January - 31 December 1982 Ris

388

Review: LAN Technologies Explained  

Science Journals Connector (OSTI)

...Book Review Review: LAN Technologies Explained Reviewed by Peter...Glamorgan University LAN Technologies Explained Philip Miller and...data to HTML, building an intranet, creating a single and multi-source...Networks Star rating ??? LAN Technologies Explained Philip Miller and......

Peter Hodson

2001-01-01T23:59:59.000Z

389

SPACE TECHNOLOGY Actual Estimate  

E-Print Network (OSTI)

SPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY.7 247.0 Exploration Technology Development 144.6 189.9 202.0 215.5 215.7 214.5 216.5 Notional SPACE TECHNOLOGY OVERVIEW .............................. TECH- 2 SBIR AND STTR

390

Department of Science, Technology, &  

E-Print Network (OSTI)

Developing Leaders of Innovation Department of Science, Technology, & Society #12;Understanding the relationship between technology and society is crucial to becoming a successful leader in any field. #12;Our Students The University of Virginia Department of Science, Technology, and Society offers a comprehensive

Acton, Scott

391

New Technology Demonstration Program  

E-Print Network (OSTI)

New Technology Demonstration Program Technical Brief FEMPFederal Energy Management Program Tom for saving energy in refrigerated walk-in coolers, and to evaluate the potential for this technology in Federal facilities. The focus of this study was on a single manufacturer of the technology, Nevada Energy

392

Technology Forecasting Scenario Development  

E-Print Network (OSTI)

Technology Forecasting and Scenario Development Newsletter No. 2 October 1998 Systems Analysis was initiated on the establishment of a new research programme entitled Technology Forecasting and Scenario and commercial applica- tion of new technology. An international Scientific Advisory Panel has been set up

393

Building Technologies Office: Subscribe to Building Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

394

Vehicle Technologies Office Merit Review 2014: Technology and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and System Level...

395

EM Engineering & Technology Roadmap and Major Technology Demonstration...  

Office of Environmental Management (EM)

Steven L. Krahn Director, Waste Processing Office of Engineering and Technology April 2008 EM Engineering & Technology Roadmap and Major Technology Demonstrations Introduction ...

396

Technology Readiness Assessment (TRA)/Technology Maturation Plan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This document is a guide for those...

397

Technology, legal knowledge and citizenship   

E-Print Network (OSTI)

through adjustment. Science, Technology and Human Values 31(3 Technology, legal knowledge and citizenship On the care ofhelp of these adaptive technologies, Jose had become able to

Dominguez Rubio, Fernando; Lezaun, Javier

2014-01-01T23:59:59.000Z

398

2012 Wind Technologies Market Report  

E-Print Network (OSTI)

Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

Wiser, Ryan

2014-01-01T23:59:59.000Z

399

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Department of Energy. Solar Technologies Program and LoanRenewable Energy 2008 SOLAR TECHNOLOGIES MARKET REPORTinvestments by solar technology 108 Figure 5.4.

Price, S.

2010-01-01T23:59:59.000Z

400

Development of Additive Manufacturing Technology  

Science Journals Connector (OSTI)

Additive Manufacturing (AM) technology came about as a ... of different technology sectors. Like with many manufacturing technologies, improvements in computing power and reduction...

Dr. Ian Gibson; Dr. David W. Rosen…

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fuel Cell Technologies Office: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office HOME ABOUT PROGRAM AREAS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES TECHNOLOGIES MARKET TRANSFORMATION NEWS EVENTS EERE Fuel Cell Technologies...

402

Technology Validation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Validation Technology Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 --...

403

Technology Benchmarking | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Benchmarking Technology Benchmarking Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland....

404

Technology Integration | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary vtpn02smithti2011o.pdf More Documents & Publications Technology Integration Overview Technology...

405

NIST's Advanced Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

NIST's Advanced NIST's Advanced Technology Program NIST's Advanced Technology Program DOE Workshop on Hydrogen Separation and Purification Technologies Arlington, VA, Sept. 8-9, 2004 Jason Huang 301-975-4197 National Institute of Standards and Technology 100 Bureau Drive Stop 4730 Gaithersburg, MD 20899-4730 http://www.atp.nist.gov National Institute of Standards and Technology * Technology Administration * U.S. Department of Commerce ATP is part of NIST Helping America Measure Up NIST Mission ATP is part of NIST NIST Mission: Strengthen the U.S. economy and improve the quality of life by working with industry to develop and apply technology, measurements, and standards. * * * * * * 3,000 employees $771 million annual budget 2,000 field agents 1,800 guest researchers $2.2 billion co-funding of

406

Energy Efficient Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficient Technologies Energy Efficient Technologies Energy efficient technologies are available now! Many of the vehicles currently on display in dealer showrooms boast new performance-enhancing, fuel-saving technologies that can save you money. Engine Technologies Transmission Technologies All Engine Technology Average Efficiency Increase Variable Valve Timing & Lift improve engine efficiency by optimizing the flow of fuel & air into the engine for various engine speeds. 5% Cylinder Deactivation saves fuel by deactivating cylinders when they are not needed. 7.5% Turbochargers & Superchargers increase engine power, allowing manufacturers to downsize engines without sacrificing performance or to increase performance without lowering fuel economy. 7.5% Integrated Starter/Generator (ISG) Systems automatically turn the engine on/off when the vehicle is stopped to reduce fuel consumed during idling. 8%

407

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

408

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

409

Environmental Technology Verification of Mobile Sources Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Environmental Technology Verification of Mobile Sources Control Technologies Environmental Technology Verification of Mobile Sources Control Technologies 2005 Diesel Engine...

410

Solar Energy Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies.

411

Strategic Technology JET PROPULSION LABORATORY  

E-Print Network (OSTI)

Strategic Technology Directions JET PROPULSION LABORATORY National Aeronautics and Space Administration 2 0 0 9 #12;© 2009 California Institute of Technology. Government sponsorship acknowledged. #12;Strategic Technology Directions 2009 offers a distillation of technologies, their links to space missions

Waliser, Duane E.

412

IIT SCHOOL OF APPLIED TECHNOLOGY  

E-Print Network (OSTI)

INDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY PREPARING SKILLED INDIVIDUALS, INDUSTRIAL FACILITIES, SUPPLY CHAIN MANAGEMENT, SUSTAINABILITY AND MANUFACTURING TECHNOLOGY. #12;BE ONE to assess, implement, and utilize current technologies, and to learn how to manage industrial operations

Heller, Barbara

413

Technology Assistance Program | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Assistance Program Technology Assistance Program Licensing Staff Search For Technologies Available Technologies Licensing Opportunity Announcements Partnerships Home | Connect with ORNL | For Industry | Partnerships | Technology Licensing | Technology Assistance Program SHARE Technology Assistance Program Electronics Research Assistance is available for small business licensees of ORNL technologies to leverage ORNL's expertise and capabilities to accelerate the commercialization of licensed technologies. The Technology Assistance Program (TAP) provides funds for ORNL science & technology staff members to consult with licensees, performing work on the company's behalf that may include such activities as the following. Production of sample materials for evaluation

414

FCT Hydrogen Production: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to Current Technology to someone by E-mail Share FCT Hydrogen Production: Current Technology on Facebook Tweet about FCT Hydrogen Production: Current Technology on Twitter Bookmark FCT Hydrogen Production: Current Technology on Google Bookmark FCT Hydrogen Production: Current Technology on Delicious Rank FCT Hydrogen Production: Current Technology on Digg Find More places to share FCT Hydrogen Production: Current Technology on AddThis.com... Home Basics Current Technology Thermal Processes Electrolytic Processes Photolytic Processes R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology The development of clean, sustainable, and cost-competitive hydrogen

415

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Learn More. Warming Up to Pump Heat. Learn More. Cut Refrigerator Energy Use to Save Money. Learn More. News DOE Publishes Petition of CSA Group for Classification as a Nationally

416

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

417

technologies | OpenEI  

Open Energy Info (EERE)

technologies technologies Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

418

Vehicle Technologies Office: Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

419

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

420

Geothermal innovative technologies catalog  

SciTech Connect

The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

Kenkeremath, D. (ed.)

1988-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Memory Technologies Vivek Asthana  

E-Print Network (OSTI)

Memory Technologies Vivek Asthana 13th Mar 2013 #12;13-Mar-13 2 Memory Usage (2025) #12;13-Mar-13 3 Outline What is a Memory Current Memory technologies · SRAM · DRAM · Flash Upcoming Memory technologies · MRAM · PCRAM · FeRAM · ... #12;13-Mar-13 4 What is a Memory Memory cell: Binary data storage element

Kumar, M. Jagadesh

422

Bioconversion Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

BSD BSD EESD ORNL Bioconversion Science and Technology BioSciences Division Home Resources Publications People BST Students Former Members Links Contact Us Research Areas Production of Fuels and Chemicals Genomes to Life Biofuel Cells Bioprocessing of Fossil Fuels Biotreatment and Bioremediation Jonathan Mielenz, leader of the Bioconversion Science and Technology Group in ORNL's Biosciences Division, is studying a microbe that could prove more cost effective than current methods in transforming cellulose from sources such as switchgrass and poplar trees into ethanol. Bioconversion Science & Technology The Bioconversion Science and Technology group performs multidisciplinary R&D for the Department of Energy's (DOE) relevant applications of bioprocessing, especially with biomass. Bioprocessing combines the

423

Vendor / Technology A  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Machines Corporation Electronic Machines Corporation Smart Infrared Inspection System Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor Smart Infrared Inspection System (SIRIS) * Grant for a demonstration of thermal imaging technologies - Identify, in real time, faults and failures in tires, brakes and bearings mounted on commercial motor vehicles - Employ system along the interstate - Explore whether statistical tools can be developed that can predict impending tire, brake, or bearing failures SIRIS - Details * $1.4 M Research Grant * 3-year Project * Grant competitively awarded September 2006 to IEM, Inc. of Troy, NY * Supplemental $500K from NYSERDA for improved high

424

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

425

Vendor / Technology A  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Radio Mobile Radio Service (WRI - CMRS) Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor Universal ID Pilot Test WRI Overview * The goal: Improved motor carrier safety due to increased compliance caused by higher frequency of roadside safety inspections using wireless technologies. * Benefits * Improved safety of CMVs and their operation * Reductions in accidents * Increased productivity and mobility of the transportation system * Increased security and livability Universal ID Pilot Test The CMRS Platform for WRI * CMRS - Commercial Mobile Radio Services * Includes telematics devices (such as electronic on-board recorders) Universal ID Pilot Test

426

Navy Technology Evaluation Update  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Navy Technology Evaluation update at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

427

Geothermal Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

428

Benchmarking of Competitive Technologies  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

429

Biogas Production Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biogas Production Technologies Ruihong Zhang, Professor Biological and Agricultural Engineering University of California, Davis Email: rhzhang@ucdavis.edu Biogas and Fuel Cell...

430

Mirror Technology Roadmap  

Science Journals Connector (OSTI)

NASA’s Mirror Technology Roadmap identifies specific capabilities requiring significant advances in optical fabrication and testing to enable the next generation of...

Stahl, H Philip

431

Sorption Storage Technology Summary  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

432

Technology Selection Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Energy Efficiency Emerging Technologies Current Research Portfolio Behavior Based...

433

New and Emerging Technologies  

Office of Energy Efficiency and Renewable Energy (EERE)

This power point presentation provides an overview of CHP technologies and how they can be used in industrial manufacturing plants to increase productivity and reduce energy and costs.

434

The Geothermal Technologies Office  

Energy Savers (EERE)

Geothermal Technologies Office (GTO) funded and launched the NGDS and the DOE Geothermal Data Repository node to facilitate a seamless delivery of geotherm- al data for a variety...

435

Technology and Policy  

Science Journals Connector (OSTI)

The DHS Science and Technology Directorate defines the IED threat into three categories: aviation, suicide/leave behind and vehicle-borne. The needs for countermeasures are based...

Sherbondy, Roshni

436

TECHNOLOGY PROGRAM PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

remains available to power a sustainable economy. Program efforts have positioned the United States as the global leader in clean coal technologies. This document serves as a...

437

Solar Energy Technologies Office  

Energy.gov (U.S. Department of Energy (DOE))

In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

438

Vehicle Technologies Office: Conferences  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office supports and sponsors conferences related to the Office's goals and objectives. When such conferences are planned and conference information becomes available, it...

439

Photovoltaic Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of photovoltaic (PV) technologies supplemented by specific information to apply PV within the Federal sector.

440

HVAC Maintenance and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the HVAC maintenance and technologies, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Science & Technology Review Articles  

NLE Websites -- All DOE Office Websites (Extended Search)

NIF & Photon Science News Press Releases Experimental Highlights Efficiency Improvements Science & Technology Meetings and Workshops Papers and Presentations NIF&PS People In the...

442

Flexible Assembly Solar Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

field and secured on steel pylons. PROJECT DESCRIPTION The research team is applying automation processes to the design of a Flexible Assembly Solar Technology (FAST). FAST is an...

443

Advanced Technologies and Practices  

Energy.gov (U.S. Department of Energy (DOE))

Top Innovations in this category encompass research in specific technologies and construction practices that improve the building envelope, HVAC components, ventilation, and health and safety issues.

444

Technology Deployment List  

Energy.gov (U.S. Department of Energy (DOE))

Spreadsheet details new and underutilized technologies ranked for Federal deployment by the Federal Energy Management Program. The list was last updated in 2012.

445

Overview: STEEL Enabling Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

446

Recycling Technology Validation  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

447

Benchmarking of Competitive Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

confidential, or otherwise restricted information 2011 U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

448

Technology Integration Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portfolio of Technologies Eliminate Alternative Fuels Electric Vehicles Biodiesel Ethanol Hydrogen Propane Natural Gas Fuel Economy More Fuel efficient vehicles, adopting smarter...

449

Benchmarking of Competitive Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

confidential, or otherwise restricted information 2012 U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

450

Carbon Fiber Technology Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 4M AMO - 1.5M VTP - Remainder covered by carry- over and ARRA project contingency * Cost of carbon fiber * Technology scaling * Market development * Workforce development * Oak...

451

Technology Integration Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-Technology Integration Overview - Dennis A. Smith Connie Bezanson U. S. Department of Energy Headquarters Office - Washington, D.C. May 2013 Project ID: TI000 2013 Department of...

452

States & Emerging Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

States & Emerging Energy Technologies August 15, 2013 DOE's State and Local Technical Assistance Program 2 DOE's Technical Assistance Program * Strategic Energy Planning * Program...

453

SRNL LDRD - Developed Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Developed Technologies Porous Wall Hollow Glass Microspheres Porous Wall Hollow Glass Microspheres Tiny Glass Spheres for Energy Storage, Medical Applications and Other Uses...

454

Promising Technologies List  

Energy.gov (U.S. Department of Energy (DOE))

Document provides information about promising new and underutilized energy-saving technologies that are commercially available for deployment in the federal and commercial building sectors.

455

Benchmarking of Competitive Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

evaluations and assessments * Compare results with other HEV technologies * Identify new areas of interest * Evaluate advantages and disadvantages of design changes - Example:...

456

Launching a Technology Revolution  

SciTech Connect

This paper describes the technological challenges and opportunities that spring from the goal of stabilizing the concentration of greenhouse gases particularly as they affect energy systems.

Edmonds, James A.; Stokes, Gerald M.

2003-02-02T23:59:59.000Z

457

Massachusetts Institute of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

132011 Teppei Katori, MIT 1 Teppei Katori for MiniBooNE collaboration Massachusetts Institute of Technology Short baseline neutrino workshop, Fermilab, Batavia, IL, May 13, 2011...

458

Science & Technology RoadmapScience & Technology Roadmap 03/24/20063:03 PMSOCD Science & Technology Roadmap  

E-Print Network (OSTI)

Science & Technology RoadmapScience & Technology Roadmap #12;03/24/20063:03 PMSOCD Science & Technology Roadmap 2 TABLE OF CONTENTS EXECUTIVE SUMMARY......................................................................................63 #12;03/24/20063:03 PMSOCD Science & Technology Roadmap 3 Executive Summary The Satellite

Kuligowski, Bob

459

Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies to someone by E-mail Share Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Facebook Tweet about Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Twitter Bookmark Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Google Bookmark Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Delicious Rank Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Digg Find More places to share Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on AddThis.com... Early Adoption of Fuel Cells Early Market Applications for Fuel Cells

460

An Open Ocean Trial of Controlled Upwelling Using Wave Pump Technology  

Science Journals Connector (OSTI)

In 1976, John D. Isaacs proposed to use wave energy to invert the density structure of the ocean and pump deep, nutrient-rich water into the sunlit surface layers. The basic principle is simple: a length of tubing attached to a surface buoy at ...

Angelicque White; Karin Björkman; Eric Grabowski; Ricardo Letelier; Steve Poulos; Blake Watkins; David Karl

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Robotics Technology Crosscutting Program. Technology summary  

SciTech Connect

The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had common (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

NONE

1995-06-01T23:59:59.000Z

462

Digital Actuator Technology  

SciTech Connect

There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.

Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

2014-09-01T23:59:59.000Z

463

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions  

E-Print Network (OSTI)

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 CUNYfirst Faculty Center Navigation;Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology

Johnson Jr.,, Ray

464

Technology Innovation Program 2010ANNUAL REPORT  

E-Print Network (OSTI)

Technology Innovation Program 2010ANNUAL REPORT 2010ANNUAL REPORT Technology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology

465

Technology Innovation Program | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofermentation System Technology Assistance Program Licensing Staff Search For Technologies Available Technologies Licensing Opportunity Announcements Partnerships Home | Connect with ORNL | For Industry | Partnerships | Technology Licensing | Technology Innovation Program SHARE Technology Innovation Program The Technology Innovation Program (TIP) is a 1-year program designed to accelerate selected technologies to commercial readiness. TIP projects are proposed by ORNL scientists and engineers and selected competitively based on their potential for near-term societal or economic impact. TIP technologies are advanced through research and development and outreach to industry. TIP is funded by UT-Battelle licensing royalties. When a technology enters the TIP process, it is initially made unavailable

466

Synchrophasor Technologies Page ii  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 2013 August 2013 Synchrophasor Technologies Page ii Table of Contents 1. Introduction ................................................................................................................... 1 2. Synchrophasor Technologies .......................................................................................... 1 3. Advanced Applications Software and their Benefits ........................................................ 4 3.1 Online (Near Real-Time Applications) ........................................................................... 5 3.2 Offline (Not real-time) Applications ............................................................................. 8 4. Recovery Act Synchrophasor Projects ............................................................................. 8

467

Technology Transfer Overview  

Energy.gov (U.S. Department of Energy (DOE))

DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans.

468

Gasification: A Cornerstone Technology  

ScienceCinema (OSTI)

NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

Gary Stiegel

2010-01-08T23:59:59.000Z

469

9. Technology Validation Introduction  

E-Print Network (OSTI)

.20 2.20 2.25 2.20 2.20 2.22 Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure and the corresponding hydrogen infrastructure that can be addressed only by integrating the components into complete infrastructure). Technology validation confirms that component technologies can be incorporated into a complete

470

Science, technology and innovation  

E-Print Network (OSTI)

's three core pillars of expertise: · science and technology · innovation · sustainability. YouScience, technology and innovation Taught degrees MSc in Innovation and Sustainability of strategies to achieve sustainable growth and well-being in developing countries. However, the impact of new

Sussex, University of

471

Gasification: A Cornerstone Technology  

SciTech Connect

NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

Gary Stiegel

2008-03-26T23:59:59.000Z

472

Energy Efficiency Technologies  

Energy.gov (U.S. Department of Energy (DOE))

State, local, and tribal governments can work with building and facility owners, homeowners, industry, and city energy managers to implement cost-effective energy efficiency technologies that provide the same energy requirements and services as current technologies—but with less energy demand.

473

Final Technical Report Advanced Anchoring Technology DOE Award Number DE-EE0003632 Project Period 09/10 -Ã?Â?Ã?Â?Ã?Â?Ã?Â? 09/12  

SciTech Connect

It is generally conceded that the costs associated with current practices for the mooring, anchoring, or foundation systems of Marine HydroKinetic (MHK) and Deepwater Floating Wind systems are a disproportionate portion of the total cost of an installed system. Reducing the cost of the mooring and anchoring components for MHK systems can contribute substantially to reducing the levelized cost of electricity (LCOE). Micropile anchors can reduce the LCOE both directly, because the anchors, associated mooring hardware and installation costs are less than conventional anchor and mooring systems, but also because micropile anchors require less extensive geotechnical surveys for confident design and proper implementation of an anchor or foundation system. This report presents the results of the development of critical elements of grouted marine micropile anchor (MMA) technology for application to MHK energy conversion systems and other ocean engineering applications that require fixing equipment to the seafloor. Specifically, this project identified grout formulations and developed designs for grout dispensing systems suitable for use in a seawater environment as a critical development need for successful implementation of practical MMA systems. The project conducted a thorough review of available information on the use of cement-based grouts in seawater. Based on this review and data available from commercial sources, the project selected a range of grout formulations for testing as part of a micropile system. The project also reviewed instrumentation for measuring grout density, pressure and flow rate, and integrated an instrumentation system suitable for use with micropile installation. The grout formulations and instrumentation system were tested successfully and demonstrated the suitability of MMA technology for implementation into anchor systems for MHK and other marine renewable energy systems. In addition, this project developed conceptual designs for micropile anchor systems and the associated drilling and grouting systems to demonstrate the feasibility and practicality of micropile anchors. This report presents several conceptual system designs for different applications. This project has concluded that grouted marine micropile anchor technology is practical and very attractive technically and financially for marine renewable energy applications. This technology is considered to be at a Technology Readiness Level 5.

Meggitt, Dallas J.

2012-11-09T23:59:59.000Z

474

Partnerships and Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooperative Research and Development Agreement Cooperative Research and Development Agreement visualization scientist A Cooperative Research and Development Agreement (CRADA) is a mechanism whereby non-federal entities (industry, universities, non-profits, etc.) can collaborate with federal laboratories on research and development projects. CRADAs are specifically technology transfer agreements; technologies developed under CRADAs are expected to be transferred to the private sector for commercial exploitation, either by the non-federal partner or another licensee of such technologies. CRADAs were authorized by the Stevenson-Wydler Technology Innovation Act of 1980 (Public Law 96-480); the authority for government-owned, contractor-operated laboratories such as ORNL to enter into CRADAs was granted by the National Competitiveness Technology Transfer Act of 1989

475

Navy Technology Evaluation Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Techval Program Techval Program y g FUPWG FUPWG November 19, 2009 Ontario, CA Paul Kistler, PE CEM NAVFAC Engineering Service Center Port Hueneme CA Techval Navy Energy Techval Purpose Use the data collected by Techval to transition newer technologies into Navy wide use technologies into Navy wide use Use the data collected by Techval to prevent the Navy from investing in technologies that do not work investing in technologies that do not work Tech Assistance Help the Navy to meet increasingly tougher energy goals 2 * * * Navy Techval Green Light Technologies *Oil Free Magnetic Bearing Chiller Compressor *Spectrally Enhanced Lighting *Heat Pipes *Vending Machine Occupancy Sensor *Thermal Destratifiers Heat Pipes *Duct Sealants *HID Dimming Thermal Destratifiers

476

Technology Transfer: Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Site Map About Us About Technology Transfer Contact Us Available Technologies Advanced Materials Biofuels Biotechnology and Medicine Developing World Energy Environmental Technologies Imaging and Lasers Ion Sources and Beam Technologies Nanotechnology and Microtechnology Software and Information Technology For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Licensing Interest Form Receive New Tech Alerts For Researchers What You Need to Know and Do The Tech Transfer Process Forms Record of Invention (Word doc -- please do not use earlier PDF version of the form) Software Disclosure and Abstract (PDF, use Adobe Acrobat or Adobe Reader 9 and up ONLY to complete the form) Policies Conflict of Interest Outside Empolyment Export Control FAQs for Researchers

477

Forecasting wireless communication technologies  

Science Journals Connector (OSTI)

The purpose of the paper is to present a formal comparison of a variety of multiple regression models in technology forecasting for wireless communication. We compare results obtained from multiple regression models to determine whether they provide a superior fitting and forecasting performance. Both techniques predict the year of wireless communication technology introduction from the first (1G) to fourth (4G) generations. This paper intends to identify the key parameters impacting the growth of wireless communications. The comparison of technology forecasting approaches benefits future researchers and practitioners when developing a prediction of future wireless communication technologies. The items of focus will be to understand the relationship between variable selection and model fit. Because the forecasting error was successfully reduced from previous approaches, the quadratic regression methodology is applied to the forecasting of future technology commercialisation. In this study, the data will show that the quadratic regression forecasting technique provides a better fit to the curve.

Sabrina Patino; Jisun Kim; Tugrul U. Daim

2010-01-01T23:59:59.000Z

478

PRESSURE ACTIVATED SEALANT TECHNOLOGY  

SciTech Connect

The objective of this project is to develop new, efficient, cost effective methods of internally sealing natural gas pipeline leaks through the application of differential pressure activated sealants. In researching the current state of the art for gas pipeline sealing technologies we concluded that if the project was successful, it appeared that pressure activated sealant technology would provide a cost effective alternative to existing pipeline repair technology. From our analysis of current field data for a 13 year period from 1985 to 1997 we were able to identify 205 leaks that were candidates for pressure activated sealant technology, affirming that pressure activated sealant technology is a viable option to traditional external leak repairs. The data collected included types of defects, areas of defects, pipe sizes and materials, incident and operating pressures, ability of pipeline to be pigged and corrosion states. This data, and subsequent analysis, was utilized as a basis for constructing applicable sealant test modeling.

Michael A. Romano

2004-04-01T23:59:59.000Z

479

Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2008 DOE Vehicle FY 2008 DOE Vehicle Technologies Office Annual Merit Review to someone by E-mail Share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Facebook Tweet about Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Twitter Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Google Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Delicious Rank Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Digg Find More places to share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on AddThis.com... Publications

480

Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and  

Open Energy Info (EERE)

Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Year End Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Year End Results Authors Ormat Technologies and Inc. Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Year End Results Citation Ormat Technologies, Inc.. Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Year End Results [Internet]. [updated 2013;cited 2013]. Available from: http://www.ormat.com/news/latest-items/ormat-technologies-reports-2012-fourth-quarter-and-year-end-results

Note: This page contains sample records for the topic "buoy hydrokinetic technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Roadmap: Technology Technology Education Licensure Bachelor of Science  

E-Print Network (OSTI)

Roadmap: Technology ­ Technology Education Licensure ­ Bachelor of Science [AT Core Summary on page 2 #12;Roadmap: Technology ­ Technology Education Licensure ­ Bachelor of Science-BS-TECH-TEDL] College of Applied Engineering, Sustainability and Technology Education Minor [EDUC] College of Education

Sheridan, Scott

482

NREL: Technology Transfer Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Technology Transfer Search More Search Options Site Map The National Renewable Energy Laboratory (NREL) works with industry and organizations to transfer renewable energy and energy efficiency technologies into the marketplace. Working with Us We offer many opportunities and ways for you to partner with us. Learn more about our technology partnership agreements and services: Agreements for Commercializing Technology Cooperative Research and Development Agreements Technologies Available for Licensing Technology Partnerships Work for Others Research Facilities NREL follows its principles for establishing mutually beneficial technology partnerships. Through our commercialization programs, we work to stimulate the market for clean energy technologies and foster the growth of clean energy start-ups.

483

Available Technologies | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Portal Innovation Portal Search for Argonne technologies available for licensing, emerging technologies, patents and patent applications through the U.S. Department of Energy's Innovation Portal. Available Technologies Argonne's Technology Development and Commercialization division helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. Technology Development and Commercialization (TDC) grants licenses for Argonne-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage technology into commercial products. We are committed to negotiating fair and reasonable license agreements that are beneficial to both parties. Technologies by Subject Area Battery Technology

484

Federal Technology Portal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

eere.energy.gov eere.energy.gov BTP and FEMP Technology Portal March 15, 2012 2 eere.energy.gov Background * This presentation was developed by the National Renewable Energy Laboratory at the request of the U.S. Department of Defense Tri-Services and the Federal Energy Management Program. * It incorporates initial feedback from representatives of the Interagency Task Force Technology Deployment Working Group. 3 eere.energy.gov Technology Readiness Levels 9. Actual system "flight proven" through successful mission operations 8. Actual system completed and "flight qualified" through test and demonstration 7. System prototype demonstration in a operational environment

485

Federal Technology Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

BTP and FEMP Technology Portal March 15, 2012 2 eere.energy.gov Background * This presentation was developed by the National Renewable Energy Laboratory at the request of the U.S. Department of Defense Tri-Services and the Federal Energy Management Program. * It incorporates initial feedback from representatives of the Interagency Task Force Technology Deployment Working Group. 3 eere.energy.gov Technology Readiness Levels 9. Actual system "flight proven" through successful mission operations 8. Actual system completed and "flight qualified" through test and demonstration 7. System prototype demonstration in a operational environment

486

Vendor / Technology A  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky WRI Pilot Test - Kentucky WRI Pilot Test - Universal ID Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 *Utilizes existing automated screening system *Uses assorted technologies to identify commercial vehicles, i.e., ALPR, USDOTR, DSRC *Commercial vehicles are screened for safety and credential violations *Automated screening system currently undergoing testing and evaluation Universal ID Pilot Test Kentucky Pilot Test Kentucky Pilot Test (Not to Scale) Sorter WIM USDOT Reader LPR Sorter Sign Screening Computer (in scale house) 2 nd LPR DSRC Reader Static scale Through lane >>>> Park/Proceed Signs Mainline >>>> Kentucky Pilot Test * Information is captured from the commercial vehicle,

487

Technology Innovation Program Advisory Board  

E-Print Network (OSTI)

Technology Innovation Program Advisory Board 2009 Annual Report of the #12;2009 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology Technology Innovation Program February 2010 #12;For Information regarding the Technology

Magee, Joseph W.

488

The IDA Technology Stan Franklin  

E-Print Network (OSTI)

The IDA Technology Stan Franklin and the `Conscious' Software Research Group #12;FedEx Institute of Technology--The IDA Technology 2 Introducing IDA An intelligent software agent capable of entirely of Technology--The IDA Technology 3 IDA Negotiates IDA negotiates with clients in natural language

Memphis, University of

489

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

490

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2013 to someone by E-mail August 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

491

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

October 2012 to someone by E-mail October 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

492

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2012 to someone by E-mail April 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives

493

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

494

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

495

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

September/October 2013 to someone by E-mail September/October 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on AddThis.com... Publications

496

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2012 to someone by E-mail August 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

497

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

498

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

499

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2012 to someone by E-mail September 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

500

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the