Powered by Deep Web Technologies
Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Category:Marine and Hydrokinetic Technologies | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technologies Marine and Hydrokinetic Technologies Jump to: navigation, search Dictionary.png Looking for the Marine and Hydrokinetic Technology Database? Click here for a user-friendly list of Marine and Hydrokinetic Technologies. This category has the default of form Form:Marine and Hydrokinetic Technology. Pages in category "Marine and Hydrokinetic Technologies" The following 200 pages are in this category, out of 282 total. (previous 200) (next 200) 1 MHK Technologies/14 MW OTECPOWER A MHK Technologies/Aegir Dynamo MHK Technologies/AirWEC MHK Technologies/Anaconda bulge tube drives turbine MHK Technologies/AquaBuoy MHK Technologies/Aquanator MHK Technologies/Aquantis MHK Technologies/Archimedes Wave Swing MHK Technologies/Atlantis AN 150 MHK Technologies/Atlantis AR 1000

2

NOAA Data Buoy Office Programs  

Science Conference Proceedings (OSTI)

The NOAA Data Buoy Office (NDBO) buoys provide vital meteorological and oceanographic reports from data-sparse marine areas. To provide a better understanding of the scope and potential of the buoy system, the buoy network, monitoring ...

Glenn D. Hamilton

1980-09-01T23:59:59.000Z

3

Freeze resistant buoy system  

DOE Patents (OSTI)

A freeze resistant buoy system includes a tail-tube buoy having a thermally insulated section disposed predominantly above a waterline, and a thermo-siphon disposed predominantly below the waterline.

Hill, David E. (Knoxville, TN); Rodriguez, Jr., Miguel (Oak Ridge, TN); Greenbaum, Elias (Knoxville, TN); Klett, James W. (Knoxville, TN)

2007-08-21T23:59:59.000Z

4

National Data Buoy Center Programs  

Science Conference Proceedings (OSTI)

The National Data Buoy Center(NDBC) operates ocean and coastal buoys and coastal land stations that report hourly through the Geostationary Operational Environmental Satellite (GOES) system. In addition, NDBC maintains drifting-buoy networks that ...

Glenn D. Hamilton

1986-04-01T23:59:59.000Z

5

Marine & hydrokinetic technology development.  

DOE Green Energy (OSTI)

The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

LiVecchi, Al (National Renewable Energy Laboratory); Jepsen, Richard Alan

2010-06-01T23:59:59.000Z

6

NREL: Water Power Research - Marine and Hydrokinetic Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and...

7

Attraction to and Avoidance of instream Hydrokinetic Turbines by Freshwater Aquatic Organisms  

Science Conference Proceedings (OSTI)

The development of hydrokinetic (HK) energy projects is under consideration at over 150 sites in large rivers in the United States, including the Mississippi, Ohio, Tennessee, and Atchafalaya Rivers. These waterbodies support numerous fish species that might interact with the HK projects in a variety of ways, e.g., by attraction to or avoidance of project structures. Although many fish species inhabit these rivers (about 172 species in the Mississippi River alone), not all of them will encounter the HK projects. Some species prefer low-velocity, backwater habitats rather than the high-velocity, main channel areas that would be the best sites for HK. Other, riverbank-oriented species are weak swimmers or too small to inhabit the main channel for significant periods of time. Some larger, main channel fish species are not known to be attracted to structures. Based on a consideration of habitat preferences, size/swim speed, and behavior, fish species that are most likely to be attracted to HK structures in the main channel include carps, suckers, catfish, white bass, striped bass, smallmouth bass, spotted bass, and sauger. Proper siting of the project in order to avoid sensitive fish populations, backwater and fish nursery habitat areas, and fish migration corridors will likely minimize concerns about fish attraction to or avoidance of HK structures.

Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2011-05-01T23:59:59.000Z

8

Marine and Hydrokinetic | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine and Hydrokinetic Marine and Hydrokinetic Marine and Hydrokinetic The Water Power Program's marine and hydrokinetic research and development (R&D) efforts focus on advancing technologies that capture energy from the nation's oceans and rivers. Unlike hydropower, marine and hydrokinetics represent an emerging industry with hundreds of potentially viable technologies. The program is therefore leading efforts to prove functionality; evaluate technical and economic viability; and generate cost, performance, and reliability data for a variety of devices. Marine and hydrokinetic energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101" video explains how these technologies work and highlights some of the Water Power Program's efforts

9

Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines  

DOE Green Energy (OSTI)

Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects to animal populations could occur directly (e.g., from strike mortality of individuals) or indirectly (e.g., if the loss of prey species to strike reduces food for predators). Although actively swimming or passively drifting animals may collide with any of the physical structures associated with hydrokinetic devices, turbine rotors are the most likely sources for risk of strike or significant collision (DOE 2009). It is also possible that during a close encounter with a HK device no physical contact will be made between the device and the organism, either because the animal avoids the device by successfully changing its direction of movement, or by successfully evading any moving parts of the device. Oak Ridge National Laboratory (ORNL) has been funded by the US Department of Energy (DOE) Waterpower Program to evaluate strike potential and consequences for Marine and Hydrokinetic (MHK) technologies in rivers and estuaries of the United States. We will use both predictive models and laboratory/field experiments to evaluate the likelihood and consequences of strike at HK projects in rivers. Efforts undertaken at ORNL address three objectives: (1) Assess strike risk for marine and freshwater organisms; (2) Develop experimental procedures to assess the risk and consequences of strike; and (3) Conduct strike studies in experimental flumes and field installations of hydrokinetic devices. During the first year of the study ORNL collected information from the Federal Energy Regulatory Commission (FERC) MHK database about geographical distribution of proposed hydrokinetic projects (what rivers or other types of systems), HK turbine design (horizontal axis, vertical axis, other), description of proposed axial turbine (number of blades, size of blades, rotation rate, mitigation measures), and number of units per project. Where site specific information was available, we compared the location of proposed projects rotors within the channel (e.g., along cutting edge bank, middle of thalweg, near bottom or in midwater) to the general locations of fish in the river (shoreline,

Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2010-05-01T23:59:59.000Z

10

Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines  

Science Conference Proceedings (OSTI)

Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects to animal populations could occur directly (e.g., from strike mortality of individuals) or indirectly (e.g., if the loss of prey species to strike reduces food for predators). Although actively swimming or passively drifting animals may collide with any of the physical structures associated with hydrokinetic devices, turbine rotors are the most likely sources for risk of strike or significant collision (DOE 2009). It is also possible that during a close encounter with a HK device no physical contact will be made between the device and the organism, either because the animal avoids the device by successfully changing its direction of movement, or by successfully evading any moving parts of the device. Oak Ridge National Laboratory (ORNL) has been funded by the US Department of Energy (DOE) Waterpower Program to evaluate strike potential and consequences for Marine and Hydrokinetic (MHK) technologies in rivers and estuaries of the United States. We will use both predictive models and laboratory/field experiments to evaluate the likelihood and consequences of strike at HK projects in rivers. Efforts undertaken at ORNL address three objectives: (1) Assess strike risk for marine and freshwater organisms; (2) Develop experimental procedures to assess the risk and consequences of strike; and (3) Conduct strike studies in experimental flumes and field installations of hydrokinetic devices. During the first year of the study ORNL collected information from the Federal Energy Regulatory Commission (FERC) MHK database about geographical distribution of proposed hydrokinetic projects (what rivers or other types of systems), HK turbine design (horizontal axis, vertical axis, other), description of proposed axial turbine (number of blades, size of blades, rotation rate, mitigation measures), and number of units per project. Where site specific information was available, we compared the location of proposed projects rotors within the channel (e.g., along cutting edge bank, middle of thalweg, near bottom or in midwater) to the general locations of fish in the river (shoreline,

Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2010-05-01T23:59:59.000Z

11

Marine and Hydrokinetic Technology Database  

DOE Data Explorer (OSTI)

Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database is currently (2009) being updated to include ocean thermal energy technologies, companies, and projects.[Taken from http://www2.eere.energy.gov/windandhydro/hydrokinetic/

12

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

13

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources (Redirected from Wave) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

14

Southern Ocean Surface Characteristics from FGGE Buoys  

Science Conference Proceedings (OSTI)

In this analysis of satellite-tracked drifting surface buoys released in the Southern Ocean, buoy velocities are averaged along trajectories for 90 days to determine the mean circulation, and eddy kinetic energy is computed using perturbations ...

Mark Andrew Johnson

1989-05-01T23:59:59.000Z

15

Marine & Hydrokinetic Technologies (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

Not Available

2010-04-01T23:59:59.000Z

16

Simulating Collisions for Hydrokinetic Turbines  

SciTech Connect

Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

2013-10-01T23:59:59.000Z

17

Submersible Generator for Marine Hydrokinetics  

SciTech Connect

A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: � Identified the conditions and requirements for MHK generators. � Defined a methodology for sizing and rating MHK systems. � Selected an MHK generator topology and form factor. � Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. � Investigated MHK generator manufacturing requirements. � Reviewed cost implications and financial viability. � Completed final reporting and deliverables

Robert S. Cinq-Mars; Timothy Burke; Dr. James Irish; Brian Gustafson; Dr. James Kirtley; Dr. Aiman Alawa

2011-09-01T23:59:59.000Z

18

The FGGE Arctic Data Buoy Program  

Science Conference Proceedings (OSTI)

An array of about 20 drifting data buoys was established in the Arctic Ocean during the early months of 1979. The position of each buoy and the surface pressure and temperature are measured several times daily. The program expands our capability ...

A. S. Thorndike

1980-12-01T23:59:59.000Z

19

Laboratory Experiments on the Effects of Blade Strike from Hydrokinetic Energy Technologies on Larval and Juvenile Freshwater Fishes  

DOE Green Energy (OSTI)

There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed current-based projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the risk for blade strike to aquatic organisms. In conventional hydropower generation, research on fish passage through reaction turbines at low-head dams suggested that strike and mortality for small fish could be low. As a consequence of the large surface area to mass ratio of small fish, the drag forces in the boundary layer flow at the surface of a rotor blade may pull small fish around the leading edge of a rotor blade without making physical contact (Turnpenny 1998, Turnpenny et al. 2000). Although there is concern that small, fragile fish early life stages may be unable to avoid being struck by the blades of hydrokinetic turbines, we found no empirical data in the published literature that document survival of earliest life-stage fish in passage by rotor blades. In addition to blade strike, research on passage of fish through conventional hydropower turbines suggested that fish mortalities from passage through the rotor swept area could also occur due to shear stresses and pressure chances in the water column (Cada et al. 1997, Turnpenny 1998). However, for most of the proposed HK turbine designs the rotors are projected to operate a lower RPM (revolutions per minute) than observed from conventional reaction turbines; the associated shear stress and pressure changes are expected to be lower and pose a smaller threat to fish survival (DOE 2009). Only a limited number of studies have been conducted to examine the risk of blade strike from hydrokinetic technologies to fish (Turnpenny et al. 1992, Normandeau et al. 2009, Seitz et al. 2011, EPRI 2011); the survival of drifting or weakly swimming fish (especially early life stages) that encounter rotor blades from hydrokinetic (HK) devices is currently unknown. Our study addressed this knowledge gap by testing how fish larvae and juveniles encountered different blade profiles of hydrokinetic devices and how such encounters influenced survivorship. We carried out a laboratory study designed to improve our understanding of how fish larvae and juvenile fish may be affected by encounters with rotor blades from HK turbines in the water column of river and ocean currents. (For convenience, these early life stages will be referred to as young of the year, YOY). The experiments developed information needed to quantify the risk (both probability and consequences) of rotor-blade strike to YOY fish. In particular, this study attempted to determine whether YOY drifting in a high-velocity flow directly in the path of the blade leading edge will make contact with the rotor blade or will bypass the blade while entrained in the boundary l

Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2012-03-01T23:59:59.000Z

20

Marine and Hydrokinetic Technology Database | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Database Marine and Hydrokinetic Technology Database Jump to: navigation, search Introduction The U.S. Department of Energy's Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Using the Database (1) Map illustrates marine & hydrokinetic demonstration projects around the

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy 101: Marine and Hydrokinetic Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine and Hydrokinetic Energy Marine and Hydrokinetic Energy Energy 101: Marine and Hydrokinetic Energy Addthis Below is the text version for the Energy 101: Marine & Hydrokinetic Energy video. The words "Energy 101: Marine & Hydrokinetic Energy" appear onscreen. Montage of renewable energy technologies ending with shots of ocean waves. We all know energy can come from the wind and the sun, but there's a plentiful renewable resource covering more than 75% of the planet that you might not have thought about: our water! The movement of the ocean's waves, tides, and currents carries energy that can be harnessed and converted into electricity to power our homes, buildings and cities. The words "Kinetic Energy" appear onscreen with shots of ocean scientists at sea. The words "Marine & Hydrokinetic" appear onscreen.

22

Category:Marine and Hydrokinetic Technology Projects | Open Energy  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Projects Marine and Hydrokinetic Technology Projects Jump to: navigation, search Dictionary.png Looking for the Marine and Hydrokinetic Technology Database? Click here for a user-friendly list of Marine and Hydrokinetic Technology Projects. This category has the default of form Form:Marine and Hydrokinetic Technology Project. Pages in category "Marine and Hydrokinetic Technology Projects" The following 200 pages are in this category, out of 379 total. (previous 200) (next 200) 4 MHK Projects/40MW Lewis project A MHK Projects/ADM 3 MHK Projects/ADM 4 MHK Projects/ADM 5 MHK Projects/Admirality Inlet Tidal Energy Project MHK Projects/Agucadoura MHK Projects/Alaska 1 MHK Projects/Alaska 13 MHK Projects/Alaska 17 MHK Projects/Alaska 18 MHK Projects/Alaska 24 MHK Projects/Alaska 25

23

Form:Marine and Hydrokinetic Technology | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Marine and Hydrokinetic Technology Jump to: navigation, search Add a Marine and Hydrokinetic Technology Input the name of your Marine and Hydrokinetic Technology below to add it to the registry. If your technology is already in the registry, the form will be populated with that technology's fields and you may edit. MHK_Technologies/ Submit The text entered into this field will be used as the name of the project being defined. All projects are automatically prefixed with MHK_Technologies/. The field is case sensitive so be sure to capitalize in the correct areas and type the full title properly. << Return to the Marine and Hydrokinetic Database Retrieved from "http://en.openei.org/w/index.php?title=Form:Marine_and_Hydrokinetic_Technology&oldid=680669"

24

Energy 101: Marine & Hydrokinetic Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine & Hydrokinetic Energy Marine & Hydrokinetic Energy Energy 101: Marine & Hydrokinetic Energy August 13, 2013 - 10:54am Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings, and cities. The oceans represent a largely untapped renewable energy resource with potential to provide clean electricity to coastal communities and cities across the United States. In this edition of Energy 101, learn how the Energy Department is supporting research on a range of innovative marine and hydrokinetic energy technologies to capture energy from waves and currents. For more information on marine and hydrokinetic energy from the Office of Energy Efficiency and Renewable Energy, visit the Water Power Program

25

Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines  

Science Conference Proceedings (OSTI)

Considerable efforts have been underway to develop hydrokinetic energy resources in tidal and riverine environments throughout North America. Potential for fish to be injured or killed if they encounter hydrokinetic turbines is an issue of significant interest to resource and regulatory agencies. To address this issue, flume studies were conducted that exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral reactions and avoidance. Also, a theoreti...

2011-11-29T23:59:59.000Z

26

MHK Technologies/In stream River Hydrokinetics | Open Energy Information  

Open Energy Info (EERE)

In stream River Hydrokinetics In stream River Hydrokinetics < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization ABS Alaskan Inc Technology Resource Click here Current Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description New Energy Corporation EnCurrent vertical axis turbine mounted on pontoon barge Technology Dimensions Device Testing Date Submitted 10:01.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/In_stream_River_Hydrokinetics&oldid=680959" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version

27

Form:Marine and Hydrokinetic Technology Test | Open Energy Information  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Form:Marine and Hydrokinetic Technology Test Jump to: navigation, search Retrieved from "http:en.openei.orgw...

28

Category:Marine and Hydrokinetic Technology Tests | Open Energy...  

Open Energy Info (EERE)

Technology Tests Jump to: navigation, search Marine and Hydrokinetic Technology Test This category currently contains no pages or media. Retrieved from "http:...

29

Programs of the National Data Buoy Center  

Science Conference Proceedings (OSTI)

Platforms of the National Data Buoy Center provide vital meteorological and oceanographic observations from data-sparse marine areas worldwide. The data are essential for real-time weather forecasting and research programs. This paper provides ...

Eric A. Meindl; Glenn D. Hamilton

1992-07-01T23:59:59.000Z

30

River Hydrokinetic Resource Atlas | Open Energy Information  

Open Energy Info (EERE)

River Hydrokinetic Resource Atlas River Hydrokinetic Resource Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: River Hydrokinetic Resource Atlas Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Water Power Resource Type: Maps, Software/modeling tools User Interface: Website Website: maps.nrel.gov/river_atlas Country: United States Web Application Link: maps.nrel.gov/river_atlas Cost: Free UN Region: Northern America Coordinates: 39.7412019515°, -105.172290802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7412019515,"lon":-105.172290802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

HYDROKAL: A module for in-stream hydrokinetic resource assessment  

Science Conference Proceedings (OSTI)

A new tool for hydrokinetic energy potential assessment in rivers-HYDROKAL, which stands for a ''hydrokinetic calculator''-is presented. This tool was developed in the Fortran 90 programming language as an external module for the CCHE2D application, ... Keywords: Instantaneous power density, Numerical modeling, Resource assessment, Stream

Paul Duvoy; Horacio Toniolo

2012-02-01T23:59:59.000Z

32

A Novel and Low Cost Sea Ice Mass Balance Buoy.  

Science Conference Proceedings (OSTI)

The understanding of sea ice mass balance processes requires continuous monitoring of the seasonal evolution of the ice thickness. While autonomous ice mass balance buoys (IMB buoys) deployed over the past two decades have contributed to our ...

Keith Jackson; Jeremy Wilkinson; Ted Maksym; Justin Beckers; Christian Haas; David Meldrum; David Mackenzie

33

Observing Ocean Surface Waves with GPS-Tracked Buoys  

Science Conference Proceedings (OSTI)

Surface-following buoys are widely used to collect routine ocean wave measurements. While accelerometer and tilt sensors have been used for decades to measure the wave-induced buoy displacements, alternative global positioning system (GPS) sensor ...

T. H. C. Herbers; P. F. Jessen; T. T. Janssen; D. B. Colbert; J. H. MacMahan

2012-07-01T23:59:59.000Z

34

A Piezoelectrical Rain Gauge for Application on Buoys  

Science Conference Proceedings (OSTI)

Rain gauge systems are required to measure rainfall data on buoys at oceanic sites that are not suited for conventional rain sensors. A piezoelectrical rain gauge has been developed for use on buoys, to provide rain measurements just above the ...

Jörg Förster; Giselher Gust; Siegfried Stolte

2004-02-01T23:59:59.000Z

35

MHK Technologies/Finavera Buoy | Open Energy Information  

Open Energy Info (EERE)

Finavera Buoy Finavera Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Finavera Buoy.jpg Technology Profile Primary Organization Oregon Iron Works Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description MARINE DIVISION Oregon Iron Works Inc OIW has a globally recognized Marine Division with a wide range of advanced accomplishments from custom design prototype development Fabricate OPT Power Take Off 2007 Design Build Finavera Buoy 2007 Fabricate OPT Next Generation Buoy 2008 2009 large scale production outfitting electrical mechanical hydraulic pneumatic

36

Form:Marine and Hydrokinetic Technology Project | Open Energy Information  

Open Energy Info (EERE)

Form Form Edit History Facebook icon Twitter icon » Form:Marine and Hydrokinetic Technology Project Jump to: navigation, search Add a Marine and Hydrokinetic Technology Project Input the name of your Marine and Hydrokinetic Technology Project below to add it to the registry. If your project is already in the registry, the form will be populated with that project's fields and you may edit. MHK_Projects/ Submit The text entered into this field will be used as the name of the project being defined. All projects are automatically prefixed with MHK_Projects/. The field is case sensitive so be sure to capitalize in the correct areas and type the full title properly. << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=Form:Marine_and_Hydrokinetic_Technology_Project&oldid=688143"

37

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinet...  

NLE Websites -- All DOE Office Websites (Extended Search)

easier. A screen capture of the MapSearch Map view option Marine & Hydrokinetic Maps Hydropower already provides 6-7% of the nation's electricity, and the ocean represents a...

38

Abrasion Testing of Critical Components of Hydrokinetic Devices  

SciTech Connect

The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

Worthington, Monty [ORPC Alaska] [ORPC Alaska; Ali, Muhammad [Ohio University] [Ohio University; Ravens, Tom [University of Alaska Anchorage] [University of Alaska Anchorage

2013-12-06T23:59:59.000Z

39

Assessment and Mapping of the Riverine Hydrokinetic Resource in the  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Abstract This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the

40

Gulf Stream Trajectories Measured with Free-Drifting Buoys  

Science Conference Proceedings (OSTI)

During 1975–78, 35 free-drifting buoys measured surface currents in the Gulf Stream region. The buoy trajectories trace numerous paths of the Stream and show that the Stream is strongly influenced by the New England Seamounts. This influence is ...

P. L. Richardson

1981-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MHK Technologies/WAG Buoy | Open Energy Information  

Open Energy Info (EERE)

WAG Buoy WAG Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WAG Buoy.jpg Technology Profile Primary Organization Ryokuseisha Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Wave Activated Generator Buoy By using the wave activated generator as the power supply for a buoy excellent economic and maintenance power saving properties are realized There is a complete line from mid size models for use with harbor engineering works to large models for use as actual channel markers The solar cell and the all purpose type hybrid type can also be used Technology Dimensions

42

MHK Technologies/IPS OWEC Buoy | Open Energy Information  

Open Energy Info (EERE)

IPS OWEC Buoy IPS OWEC Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage IPS OWEC Buoy.jpg Technology Profile Primary Organization Interproject Service AB Technology Resource Click here Wave Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The IPS OWEC Offshore Wave Energy Converter Buoy is a system for generating electricity from ocean waves at a cost competitive with fossil fuel generated power Cluster of buoys gives energy and act as wave breaker Off shore wave energy converters and systems with great flexibility Units from 10 kW 150 kW annual mean power A new interesting alternative for the internal energy conversion is based on a set of hose pumps driven by the piston in the acceleration tube pumping water to a small turbine directly coupled to a special generator

43

Multnomah County Hydrokinetic Feasibility Study: Final Feasibility Study Report  

Science Conference Proceedings (OSTI)

HDR has completed a study of the technical, regulatory, and economic feasibility of installing hydrokinetic turbines under the Morrison, Broadway, and Sellwood bridges. The primary objective of installing hydrokinetic turbines is a demonstration of in-stream hydrokinetic technologies for public education and outreach. Due to the low gradient of the Lower Willamette and the effects of the tide, velocities in the area in consideration are simply not high enough to economically support a commercial installation. While the velocities in the river may at times provide enough energy for a commercial turbine to reach capacity, the frequency and duration of high flow events which provide suitable velocities is not sufficient to support a commercial hydrokinetic installation. We have observed that over an 11 year period, daily average velocities in the Lower Willamette exceeded a nominal cut-in speed of 0.75 m/s only 20% of the time, leaving net zero power production for the remaining 80% of days. The Sellwood Bridge site was estimated to have the best hydrokinetic resource, with an estimated average annual production of about 9,000 kWh. The estimated production could range from 2,500 kWh to 15,000 kWh. Based on these energy estimates, the amount of revenue generated through either a power purchase agreement (PPA) or recovered through net metering is not sufficient to repay the project costs within the life of the turbine. The hydrokinetic resource at the Morrison and Broadway Bridges is slightly smaller than at the Sellwood Bridge. While the Broadway and Morrison Bridges have existing infrastructure that could be utilized, the project is not expected to generate enough revenue to repay the investment. Despite low velocities and energy production, the sites themselves are favorable for installation of a demonstration or experimental project. With high public interest in renewable energy, the possibility exists to develop a hydrokinetic test site which could provide developers and scientists a location to temporarily deploy and test hydrokinetic devices, and also function as an educational tool for the general public. Bridge piers provide an excellent pre-existing anchor point for hydrokinetic devices, and existing infrastructure at the Morrison and Broadway Bridges may reduce installation costs. Opportunity exists to partner with local universities with engineering and environmental interest in renewable energy. A partnership with Portland State University�¢����s engineering school could provide students with an opportunity to learn about hydrokinetics through senior design projects. Oregon State University and University of Washington, which are partnered through the Northwest National Marine Renewable Energy Center (NNMREC) to study and test hydrokinetic technology, are also relatively local to the site. In addition to providing an opportunity for both public and private entities to learn technically about in-stream kinetics, this approach will encourage grant funding for outreach, education, and product development, while also serving as a positive community relations opportunity for the County and its partners.

Stephen Spain

2012-03-15T23:59:59.000Z

44

Identifying How Marine and Hydrokinetic Devices Affect Aquatic Environments  

Science Conference Proceedings (OSTI)

Significant research is under way to determine the potential environmental effects of marine and hydrokinetic energy systems. This research, being guided and funded by the U.S. Department of Energy, is intended to address knowledge gaps and facilitate installation and operation of these systems.

Cada, G. F.; Copping, Andrea E.; Roberts, Jesse

2011-04-24T23:59:59.000Z

45

Evaluation of Cracks in ABB HK Arc Chutes  

Science Conference Proceedings (OSTI)

The nuclear power industry has a number of medium voltage (5 Kv-15 Kv) ABB HK air-magnetic circuit breakers with cracks in various places on the ceramic liner plate and cold-molded asbestos portions of the arc chutes. These cracks may or may not be cosmetic. This "jump gap crack" issue has been discussed in several ABB circuit breaker users group meetings. Five utilities (Brunswick, Seabrook, TVA, Duke, and Vogtle) have previously expressed interest in this issue. The present ABB Quality Assurance Proced...

2005-05-03T23:59:59.000Z

46

Evaluation of Sea Surface Temperature Measurements from Drifting Buoys  

Science Conference Proceedings (OSTI)

Three drift-buoy designs have been deployed since 1988 in substantial numbers in the tropical Pacific Ocean by United States participants as part of the Tropical Ocean Global Atmosphere (TOGA) Pan Pacific Surface Current Study. These include the ...

David S. Bitterman; Donald V. Hansen

1993-02-01T23:59:59.000Z

47

The IMET (Improved Meteorology) Ship and Buoy Systems  

Science Conference Proceedings (OSTI)

The recently developed IMET (improved meteorology) system for ships and buoys and the key elements of the program that led to its development are described. The system improves the ability to measure mean meteorological variables, including wind ...

David S. Hosom; Robert A. Weller; Richard E. Payne; Kenneth E. Prada

1995-06-01T23:59:59.000Z

48

MHK Technologies/Electric Buoy | Open Energy Information  

Open Energy Info (EERE)

Buoy Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electric Buoy.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description AMI s Ocean Swell and Wave Energy Conversion OSWEC device uses a patented linear generator to directly convert the motion of ocean swells and waves into electric power In our initial designs the generator mounts underneath a floating buoy or on the surface of a platform with the buoy below however it is possible to fit the generator on other types of wave motion energy extracting mechanisms Housing moves up and down with the motion of the Buoy on the ocean s surface while the Damping Plates hold the Generator Coil in a stable position The relative motion between the magnetic field in the generator housing and Generator Coil creates an electric voltage in the Generator Coil After four design evolutions Aqua Magnetics Inc has created our patented reciprocating linear generator Scalable for a wide range of applications and able to operate in a wide range of sea states Generator prototype will produce approximately 10 watts of power in 15 cm 6 inch wind chop in the intraco

49

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary (Redirected from Hybrid) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

50

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary (Redirected from Attenuator) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

51

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

52

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Piscataqua Tidal Hydrokinetic Energy Project Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

53

MHK Projects/Passamaquoddy Tribe Hydrokinetic Project | Open Energy  

Open Energy Info (EERE)

Passamaquoddy Tribe Hydrokinetic Project Passamaquoddy Tribe Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

54

MHK Projects/Atchafalaya River Hydrokinetic Project II | Open Energy  

Open Energy Info (EERE)

Atchafalaya River Hydrokinetic Project II Atchafalaya River Hydrokinetic Project II < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.9828,"lon":-91.7994,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

55

MHK Projects/Sakonnet River Hydrokinetic Project | Open Energy Information  

Open Energy Info (EERE)

Sakonnet River Hydrokinetic Project Sakonnet River Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6224,"lon":-71.2153,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

56

MHK Technologies/Deep water capable hydrokinetic turbine | Open Energy  

Open Energy Info (EERE)

water capable hydrokinetic turbine water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Hills Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description It is an axial flow shrouded turbine direct connected to a water pump that delivers water to an on shore genetator Being completely water proof and submersible the device can operate at any water depth Mooring Configuration An array of turbines are teathered to a cable that is anchored via a dead weight Optimum Marine/Riverline Conditions This system is designed for use in Florida s Gulf Stream however any constant ocean current is suitable

57

MHK Technologies/Hydrokinetic Power Barge | Open Energy Information  

Open Energy Info (EERE)

Power Barge Power Barge < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hydrokinetic Power Barge.jpg Technology Profile Primary Organization Onsite Recovered Energy LP Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Vurbine proprietary technology design and assembly mounted on a horizontal shaft on a twin hull pontoon or barge CAT or SWATH combines reaction and impulse technologies which can efficiently harvest hydrokinetic energy from flowing water in a low impact application Technology Dimensions Device Testing Date Submitted 36:51.7 << Return to the MHK database homepage

58

Hydro-kinetic approach to relativistic heavy ion collisions  

E-Print Network (OSTI)

We develop a combined hydro-kinetic approach which incorporates hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support ...

Akkelin, S V; Karpenko, Iu A; Sinyukov, Yu M

2008-01-01T23:59:59.000Z

59

MHK Projects/Yukon River Hydrokinetic Turbine Project | Open Energy  

Open Energy Info (EERE)

Yukon River Hydrokinetic Turbine Project Yukon River Hydrokinetic Turbine Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.7883,"lon":-141.198,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

60

Marine and Hydrokinetic Technology Readiness Level | Open Energy  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Readiness Level Marine and Hydrokinetic Technology Readiness Level Jump to: navigation, search << Return to the MHK database homepage This field indicates the stage of development/deployment that technologies, which are undergoing partial or full-scale device testing, are currently in. Contents 1 TRL 1-3: Discovery / Concept Definition / Early Stage Development, Design, and Engineering 2 TRL 4: Proof of Concept 3 TRL 5/6: System Integration and Technology Laboratory Demonstration 4 TRL 7/8: Open Water System Testing, Demonstration, and Operation 5 TRL 9: Commercial-Scale Production / Application TRL 1-3: Discovery / Concept Definition / Early Stage Development, Design, and Engineering The purpose of this stage is to evaluate, to the largest extent possible, the scientific or technical merit and feasibility of ideas that appear to

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$37 Million for Marine and Hydrokinetic $37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to generate renewable electricity from the nation's oceans and free-flowing rivers and streams. The 27 projects range from concept studies and component design research to prototype development and in-water device testing. This unprecedented level of funding will advance the ability of marine and hydrokinetic energy technologies to

62

Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Awards $37 Million for Marine and Hydrokinetic Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to generate renewable electricity from the nation's oceans and free-flowing rivers and streams. The 27 projects range from concept studies and component design research to prototype development and in-water device testing. This unprecedented level of funding will advance the ability of marine and hydrokinetic energy technologies to

63

MHK Technologies/The B1 buoy | Open Energy Information  

Open Energy Info (EERE)

buoy buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The B1 buoy.gif Technology Profile Primary Organization Fred Olsen Ltd Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Proprietary Mooring Configuration Proprietary Technology Dimensions Technology Nameplate Capacity (MW) Proprietary Device Testing Scale Test *Currently undergoing open sea testing scaled device Previous tests carried out in the sea with scaled devices 1 20 1 10 and 1 3 scale including the use of the research rig Buldra Lab Test *Various tests performed both in dry conditions and in wave test tanks 1 33 1 20 1 3

64

MHK Technologies/Direct Drive Power Generation Buoy | Open Energy  

Open Energy Info (EERE)

Power Generation Buoy Power Generation Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Drive Power Generation Buoy.jpg Technology Profile Primary Organization Columbia Power Technologies Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Direct drive point absorber In 2005 Oregon State University entered into an exclusive license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130 feet of water it uses the rise and fall of ocean waves to generate electricity Mooring Configuration Anchored

65

MHK Technologies/PowerBuoy | Open Energy Information  

Open Energy Info (EERE)

PowerBuoy PowerBuoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage PowerBuoy.jpg Technology Profile Primary Organization Oregon Wave Energy Partners LLC Project(s) where this technology is utilized *MHK Projects/Coos Bay OPT Wave Park *MHK Projects/Cornwall Wave Hub *MHK Projects/Griffin Project *MHK Projects/NJBPU 1 5 MW Demonstration Program *MHK Projects/Orkney *MHK Projects/Reedsport OPT Wave Park *MHK Projects/Reedsport OPT Wave Park Expanded Project *MHK Projects/Santona Wave Energy Park *MHK Projects/US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 9: Commercial-Scale Production / Application

66

Radiative Heating Errors in Naturally Ventilated Air Temperature Measurements Made from Buoys*  

Science Conference Proceedings (OSTI)

Solar radiative heating errors in buoy-mounted, naturally ventilated air temperature sensors are examined. Data from sensors with multiplate radiation shields and collocated, fan-aspirated air temperature sensors from three buoy deployments ...

Steven P. Anderson; Mark F. Baumgartner

1998-02-01T23:59:59.000Z

67

Technology, Design, and Operation of an Autonomous Buoy System in the Western English Channel  

Science Conference Proceedings (OSTI)

A buoy system has been developed to continually monitor the operationally demanding coastal and open-shelf environment of the western English Channel. The buoys measure a range of physical and biogeochemical parameters on an hourly basis at two ...

T. J. Smyth; J. R. Fishwick; C. P. Gallienne; J. A. Stephens; A. J. Bale

2010-12-01T23:59:59.000Z

68

ASIS—A New Air–Sea Interaction Spar Buoy: Design and Performance at Sea  

Science Conference Proceedings (OSTI)

This paper describes a new, compact buoy, the Air–Sea Interaction Spar (ASIS), capable of reliably and accurately measuring directional wave spectra, atmospheric surface fluxes, and radiation in the the open ocean. The ASIS buoy is a stable ...

Hans C. Graber; Eugene A. Terray; Mark A. Donelan; William M. Drennan; John C. Van Leer; Donald B. Peters

2000-05-01T23:59:59.000Z

69

A Comparison of Directional Buoy and Fixed Platform Measurements Of Pacific Swell  

Science Conference Proceedings (OSTI)

The performance of the Datawell Directional Waverider and the National Data Buoy Center (NDBC) 3-m discus buoy, widely used to measure the directional properties of surface gravity waves, are evaluated through comparisons to an array of six ...

W. C. O'Reilly; T. H. C. Herbers; R. J. Seymour; R. T. Guza

1996-02-01T23:59:59.000Z

70

JEDI Marine and Hydrokinetic Model: User Reference Guide  

SciTech Connect

The Jobs and Economic Development Impact Model (JEDI) for Marine and Hydrokinetics (MHK) is a user-friendly spreadsheet-based tool designed to demonstrate the economic impacts associated with developing and operating MHK power systems in the United States. The JEDI MHK User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the sources and parameters used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

Goldberg, M.; Previsic, M.

2011-04-01T23:59:59.000Z

71

2011 Marine and Hydrokinetic Device Modeling Workshop: Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

PROGRAM PROGRAM � 2011 Marine Hydrokinetic Device Modeling Workshop: Final Report March 1, 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

72

Template:Marine and Hydrokinetic Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Jump to: navigation, search This is the Marine and Hydrokinetic Technology template. It is designed for use by MHK Technologies Pages. To define an MHK Technology, please use this form. Parameters Image - Associated image file. (optional) Primary Organization - Field def missing! Project(s) where this technology is utilized - Field def missing! Technology Resource - Field def missing! Technology Type - Field def missing! Technology Readiness Level - Field def missing! Technology Description - Field def missing! Designed to Operate with Shore Connection - Field def missing! Power Transfer Method - Field def missing! Water Column Location - Field def missing! Mooring Configuration - Field def missing! Optimum Marine/Riverline Conditions - Field def missing!

73

JEDI Marine and Hydrokinetic Model: User Reference Guide  

SciTech Connect

The Jobs and Economic Development Impact Model (JEDI) for Marine and Hydrokinetics (MHK) is a user-friendly spreadsheet-based tool designed to demonstrate the economic impacts associated with developing and operating MHK power systems in the United States. The JEDI MHK User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the sources and parameters used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

Goldberg, M.; Previsic, M.

2011-04-01T23:59:59.000Z

74

MHK Technologies/AquaBuoy | Open Energy Information  

Open Energy Info (EERE)

AquaBuoy AquaBuoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage AquaBuoy.jpg Technology Profile Primary Organization Finavera Renewables Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Figueira da Foz Portugal *MHK Projects/Humboldt County Wave Project *MHK Projects/Makah Bay Offshore Wave Pilot Project *MHK Projects/South Africa *MHK Projects/Ucluelet BC Canada Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Aquabuoy 2.0 is a large 3 meter wide buoy tied to a 70-foot-long shaft. By bobbing up and down, the water is rushed into an acceleration tube, which in turn causes a piston to move. This moving of the piston causes a steel reinforced rubber hose to stretch, making it act as a pump. The water is then pumped into a turbine which in turns powers a generator. The electricity generated is brought to shore via a standard submarine cable.

75

MHK Technologies/OE Buoy OE 50 | Open Energy Information  

Open Energy Info (EERE)

OE Buoy OE 50 OE Buoy OE 50 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OE Buoy OE 50.jpg Technology Profile Primary Organization Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Ocean Energy Galway Bay IE *MHK Projects/OE Buoy OE 30 Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The OEBuoy device uses wave energy to compress air in a plenum chamber and pump it through an air turbine system. This isolates the power conversion system from the seawater and also provides a high-speed air flow to the turbine. The device is a floating system with the mouth of the OWC facing away from the wave direction. This results in high energy efficiencies at the operating point because of the motions of the float system relative to the waves.

76

Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Interior the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs OCS EIS/EA BOEM 2013-01140 Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf Offshore Florida Revised Environmental Assessment OCS EIS/EA BOEM 2013-01140 Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf Offshore Florida Revised Environmental Assessment Author Bureau of Ocean Energy Management Office of Renewable Energy Programs Published by U.S. Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs August 2013 iii FINDING OF NO SIGNIIFCANT IMPACT Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental

77

Hydro-kinetic approach to relativistic heavy ion collisions  

E-Print Network (OSTI)

We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.

S. V. Akkelin; Y. Hama; Iu. A. Karpenko; Yu. M. Sinyukov

2008-04-25T23:59:59.000Z

78

Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies  

Science Conference Proceedings (OSTI)

The potential for fish populations to be negatively impacted by hydrokinetic turbines is a major issue associated with the development and licensing of this type of renewable energy source. Such impacts may include habitat alteration, disruptions in migrations and movements, and injury and mortality to fish that encounter turbines. In particular, there is considerable concern for fish and other aquatic organisms to interact with hydrokinetic turbines in a manner that could lead to alterations in normal b...

2011-10-31T23:59:59.000Z

79

MHK Projects/OE Buoy OE 30 | Open Energy Information  

Open Energy Info (EERE)

OE Buoy OE 30 OE Buoy OE 30 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8037,"lon":-124.76,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

80

Marine and Hydrokinetic Energy Development Technical Support and General Environmental Studies Report on Outreach to Stakeholders for Fiscal Year 2009  

DOE Green Energy (OSTI)

Report on activities working with stakeholders in the emerging marine and hydrokinetic energy industry during FY09, for DOE EERE Office of Waterpower.

Copping, Andrea E.; Geerlofs, Simon H.

2010-01-22T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

THORs Power Method for Hydrokinetic Devices - Final Report  

DOE Green Energy (OSTI)

Ocean current energy represents a vast untapped source of renewable energy that exists on the outer continental shelf areas of the 5 major continents. Ocean currents are unidirectional in nature and are perpetuated by thermal and salinity sea gradients, as well as coriolis forces imparted from the earth's rotation. This report details THORs Power Method, a breakthrough power control method that can provide dramatic increases to the capacity factor over and above existing marine hydrokinetic (MHK) devices employed in the extraction of energy from ocean currents. THORs Power Method represents a constant speed, variable depth operational method that continually locates the ocean current turbine at a depth at which the rated power of the generator is routinely achieved. Variable depth operation is achieved by using various vertical force effectors, including ballast tanks for variable weight, a hydrodynamic wing for variable lift or down force and drag flaps for variable vehicle drag forces.

J. Turner Hunt; Joel Rumker

2012-08-08T23:59:59.000Z

82

Simulating Collisions for Hydrokinetic Turbines. FY2010 Annual Progress Report.  

DOE Green Energy (OSTI)

Computational fluid dynamics (CFD) simulations of turbulent flow and particle motion are being conducted to evaluate the frequency and severity of collisions between marine and hydrokinetic (MHK) energy devices and debris or aquatic organisms. The work is part of a collaborative research project between Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories , funded by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program. During FY2010 a reference design for an axial flow MHK turbine was used to develop a computational geometry for inclusion into a CFD model. Unsteady simulations of turbulent flow and the moving MHK turbine blades are being performed and the results used for simulation of particle trajectories. Preliminary results and plans for future work are presented.

Richmond, Marshall C.; Rakowski, Cynthia L.; Perkins, William A.; Serkowski, John A.

2010-11-30T23:59:59.000Z

83

Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures  

DOE Green Energy (OSTI)

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-01T23:59:59.000Z

84

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine and Hydrokinetic Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Technical Report NREL/TP-5000-57605 February 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Prepared under Task No. WA09.3406

85

Variations of Sensible and Latent Heat Fluxes from a Great Lakes Buoy and Associated Synoptic Weather Patterns  

Science Conference Proceedings (OSTI)

An investigation of sensible and latent heat fluxes and their relation to synoptic weather events was performed using hourly meteorological measurements from National Data Buoy Center buoy 45003, located in northern Lake Huron, during April–...

Neil F. Laird; David A. R. Kristovich

2002-02-01T23:59:59.000Z

86

Scaling properties of sea ice deformation from buoy dispersion P. Rampal,1,2  

E-Print Network (OSTI)

in a gas or two people in a crowd, two nearby pieces of sea ice gradually move apart and disperse [MartinScaling properties of sea ice deformation from buoy dispersion analysis P. Rampal,1,2 J. Weiss,1 D. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic

Lindsay, Ron

87

Hurricane Katrina Winds Measured by a Buoy-Mounted Sonic Anemometer  

Science Conference Proceedings (OSTI)

The eye of Hurricane Katrina passed within 49 n mi of an oceanographic observing system buoy in the Mississippi Bight that is part of the Central Gulf of Mexico Ocean Observing System. Although a mechanical anemometer failed on the buoy during ...

Stephan Howden; David Gilhousen; Norman Guinasso; John Walpert; Michael Sturgeon; Les Bender

2008-04-01T23:59:59.000Z

88

Obtaining Smooth Hydrographic Profiles from a Buoy Deployed in Sea Ice  

Science Conference Proceedings (OSTI)

SALARGOS buoys that measure upper-ocean temperature and salinity in ice-covered seas have been collecting data in the Arctic basin for several years. The buoys consist of a 300-m-long string of six temperature-conductivity sensors at fixed depths,...

Michael Steele; James H. Morison

1992-12-01T23:59:59.000Z

89

Semisubmersible LNG plant design uses concrete storage buoy  

SciTech Connect

The ARGE '76 consortium, which includes Bilfinger and Berger, Blohm and Voss A.G., Dyckerhoff and Widmann A.G., Kabelmetal, Linde A.G., and Preussag A.G., has designed a system for exploiting marginal-sized offshore gasfields comprising an LNG liquefaction plant on a steel semisubmersible, a complete transfer system, and a concrete LNG storage buoy with a capacity of 125,000 cu m. The plant can handle 15.36 million cu m/day of natural gas production using a modified mixed refrigerant cycle with precooling from four nearly identical lines of the same capacity. The semisubmersible deck is 124 m square and 12 m deep. Quarters would be built for 160 men. The plant can continue to operate up to an inclination of 5/sup 0/. The storage buoy features a 64 m dia spherical concrete storage tank surrounded by 20 cylindrical ballast tanks. A 10 m dia center column rising from the tank supports a steel deck 20 m above sea level and also houses the transfer and ballast pipes and pumps. A flexible length of Flexwell-LNG transfer pipes 700 m long connects the semisubmersible and the storage tank, which will be 600 m apart.

1978-02-01T23:59:59.000Z

90

A. Y. T. Leung1 e-mail: bcaleung@cityu.edu.hk  

E-Print Network (OSTI)

X. Guo A. Y. T. Leung1 e-mail: bcaleung@cityu.edu.hk Department of Building and Construction, City, Arizona State University, Tempe, AZ 85287-6106 X. Q. He Department of Building and Construction, City of Carbon Nanotubes: An Atomic-Scale Finite Element Study This paper employs the atomic-scale finite element

Jiang, Hanqing

91

Optimal Tracking of Distributed Heavy Hitters and Quantiles yike@cse.ust.hk  

E-Print Network (OSTI)

Optimal Tracking of Distributed Heavy Hitters and Quantiles Ke Yi HKUST yike@cse.ust.hk Qin Zhang MADALGO§ Aarhus University qinzhang@cs.au.dk Abstract We consider the the problem of tracking heavy hitters and quantiles in the distributed streaming model. The heavy hitters and quantiles are two

Yi, Ke "Kevin"

92

Direct Measurements of Current Shear in the Tropical Pacific Ocean and Its Effect on Drift Buoy Performance  

Science Conference Proceedings (OSTI)

Measurements of ocean surface currents derived from drift buoy trajectories are subject to errors caused by slippage of the buoy relative to the surrounding water. This slippage error is caused by a number of forces acting on the buoy and drogue ...

David S. Bitterman; Donald V. Hansen

1989-04-01T23:59:59.000Z

93

Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures  

DOE Green Energy (OSTI)

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-10T23:59:59.000Z

94

Transformation from SDSS Photometric System to Johnson-Morgan-Cousins System in HK Survey  

E-Print Network (OSTI)

We calculate the transformation from the Sloan Digital Sky Survey (SDSS) photometric system to the Johnson-Morgan-Cousins System in the HK Survey. This research was done in late 2001, so the SDSS photometry was taken from the database prior to the release of DR1. This paper is being posted because it is referenced in other papers in the literature, but will not be submitted to a refereed journal because it uses unpublished versions of the catalogs.

Chongshan Zhao; Heidi Jo Newberg

2006-12-01T23:59:59.000Z

95

Factors Affecting Ship and Buoy Data Quality: A Data Assimilation Perspective  

Science Conference Proceedings (OSTI)

Ship and buoy reports of wind, air pressure, temperature, humidity, and sea temperature for 2007 and 2008 have been compared with values from the operational Met Office global numerical weather prediction (NWP) system. Ship reports have been ...

Bruce Ingleby

2010-09-01T23:59:59.000Z

96

The MR: a Meteorological Data Sensing, Recording and Telemetering Package for Use on Moored Buoys  

Science Conference Proceedings (OSTI)

A new meteorological sensing, recording, and telemetering package based on digital data processing techniques has been developed for long-term (6-month) deployments on surface buoys moored in the ocean. Data are recorded on magnetic cassette ...

Richard E. Payne

1988-04-01T23:59:59.000Z

97

Surface Heat Flux Variations across the Kuroshio Extension as Observed by Surface Flux Buoys  

Science Conference Proceedings (OSTI)

Wintertime sea surface heat flux variability across the Kuroshio Extension (KE) front is analyzed using data from the Kuroshio Extension Observatory (KEO) buoy in the Kuroshio recirculation gyre south of the KE front and from the Japan Agency for ...

Masanori Konda; Hiroshi Ichikawa; Hiroyuki Tomita; Meghan F. Cronin

2010-10-01T23:59:59.000Z

98

A Novel and Low-Cost Sea Ice Mass Balance Buoy  

Science Conference Proceedings (OSTI)

The understanding of sea ice mass balance processes requires continuous monitoring of the seasonal evolution of the ice thickness. While autonomous ice mass balance (IMB) buoys deployed over the past two decades have contributed to scientists' ...

Keith Jackson; Jeremy Wilkinson; Ted Maksym; David Meldrum; Justin Beckers; Christian Haas; David Mackenzie

2013-11-01T23:59:59.000Z

99

MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy  

Open Energy Info (EERE)

Spar Buoy Engine Spar Buoy Engine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Power Spar Buoy Engine.jpg Technology Profile Primary Organization Functional Design Engineering Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A long period spar buoy supports a subsurface flow augmentor The augmentor directs water from the wave s submarine flow field to a free prime mover piston The prime mover is decoupled from the machine s PTO during times in the wave s cycle when there is little power available for conversion Wave energy is stored in the device until the is enough flow magnetude that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity

100

Experimental analysis of an energy self sufficient ocean buoy utilizing a bi-directional turbine  

E-Print Network (OSTI)

An experimental analysis of a Venturi shrouded hydro turbine for wave energy conversion. The turbine is designed to meet the specific power requirements of a, Woods Hole Oceanographic Institute offshore monitoring buoy ...

Gruber, Timothy J. (Timothy James)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

An Investigation of the Consistency of TAO–TRITON Buoy-Mounted Capacitance Rain Gauges  

Science Conference Proceedings (OSTI)

The common use of remotely located, buoy-mounted capacitance rain gauges in the tropical oceans for satellite rainfall verification studies provides motivation for an in situ gauge bias assessment. A comparison of the biases in rainfall catchment ...

Mark L. Morrissey; Howard J. Diamond; Michael J. McPhaden; H. Paul Freitag; J. Scott Greene

2012-06-01T23:59:59.000Z

102

Surface Circulation and Kinetic Energy Distributions in the Southern Hemisphere Oceans from FGGE Drifting Buoys  

Science Conference Proceedings (OSTI)

Trajectories of approximately 300 satellite-tracked drifting buoys deployed throughout the Southern Hemisphere oceans during the Fiat GARP Global Experiment (FGGE) have been analyzed to infer the mean surface circulation and kinetic energy ...

Steven L. Patterson

1985-07-01T23:59:59.000Z

103

Comparison of Four ERS-1 Scatterometer Wind Retrieval Algorithms with Buoy Measurements  

Science Conference Proceedings (OSTI)

Wind velocity retrievals from the ERS-1 scatterometer are compared with extensive high-quality hourly buoy winds using four different algorithms in two oceanic regions during 1994. The retrieved winds exhibit significantly different wind velocity ...

Clifford Rufenach

1998-02-01T23:59:59.000Z

104

Intercomparison of Aircraft and Surface Buoy Meteorological Data during CODE-1  

Science Conference Proceedings (OSTI)

Intercomparisons of meteorological data—wind speed and direction, surface temperature and surface pressure—were obtained for NCAR Queen Air overflights of four buoys during the CODE-1 experiment. The overflights were at a nominal altitude of 33 ...

Carl A. Friehe; Robert C. Beardsley; Clinton D. Winant; Jerome P. Dean

1984-03-01T23:59:59.000Z

105

Estimating Surface Divergence of Ocean Eddies Using Observed Trajectories from a Surface Drifting Buoy  

Science Conference Proceedings (OSTI)

A method is described that estimates the time evolution of surface divergence and other secondary circulation properties of an ocean eddy. The method is novel because it is applied to the observations of a single surface drifting buoy. Surface ...

Gary B. Brassington

2010-04-01T23:59:59.000Z

106

Scales of Variability in the Equatorial Pacific Inferred form Tropical Atmosphere-Ocean Buoy Array  

Science Conference Proceedings (OSTI)

The highly temporally resolved time series from the Tropical Atmosphere-Ocean moored buoy array are used to evaluate the scales of thermal variability in the upper equatorial Pacific. The TAO array consists of nearly 70 deep-ocean moorings ...

William S. Kessler; M. C. Spillane; Michael J. McPhaden; D. E. Harrison

1996-12-01T23:59:59.000Z

107

Intercomparison of the Performance of Operational Ocean Wave Forecasting Systems with Buoy Data  

Science Conference Proceedings (OSTI)

The monthly exchange of ocean wave model data has successfully been taking place among five operational weather centers. The data are compared with observations obtained from moored buoys and platforms. The analysis of 3 yr of data has helped to ...

Jean-Raymond Bidlot; Damian J. Holmes; Paul A. Wittmann; Roop Lalbeharry; Hsuan S. Chen

2002-04-01T23:59:59.000Z

108

Multimodal Properties of the Surface-Wave Field Observed with Pitch-Roll Buoys During GATE  

Science Conference Proceedings (OSTI)

A sophisticated analysis technique is applied to a subset of pitch-roll buoy data collected by the research vessels Gilliss and Quadra during the GARP Tropical Atlantic Experiment (GATE) in September 1974. The procedure enables the examination of ...

Linda Marie Lawson; Robert Bryan Long

1983-03-01T23:59:59.000Z

109

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies  

SciTech Connect

This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory

2012-12-31T23:59:59.000Z

110

MHK Projects/Indian River Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Hydrokinetic Energy Project Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6853,"lon":-75.0694,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

111

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinetic  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine & Hydrokinetic Data Marine & Hydrokinetic Data This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices. The total available energy resource along the U.S. continental shelf edge,

112

Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

Science Conference Proceedings (OSTI)

This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the theoretical resource, as well as estimates, termed the technically recoverable resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The ...

2012-12-12T23:59:59.000Z

113

MHK Technologies/SeaRaser buoy seawater pump | Open Energy Information  

Open Energy Info (EERE)

SeaRaser buoy seawater pump SeaRaser buoy seawater pump < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaRaser buoy seawater pump.jpg Technology Profile Primary Organization Dartmouth Wave Energy Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description SEARASER uses wave displacement to lift a float attached to a piston and uses gravity in the wave s following trough to push the piston back down It is different from other wecs as it is tethered to a weight on the seabed by a single flexible tether but utilises a double acting piston thereby producing volumes of pressurised water in both directions of the piston

114

Design, construction, and initial operation of the BNL-coastal transport and diffusion, Air/Sea Interaction research buoy. Data report  

SciTech Connect

Design features of the Brookhaven National Laboratory (BNL) Air/Sea Interaction (A/S-I) buoy are described, and construction, testing, and deployment experiences are related. This two-attitude buoy is similar to the MIT/Navy buoy which it replaces, but it accommodates more instruments and can be towed through shallower water. The BNL A/S-I buoy can be broken down into two, three, or four sections to facilitate overland transport. Compressed air is stored aboard and the controls for deploying, trimming, and recovering the buoy are centralized on the superstructure and are perpetually above water level. The ballast control plumbing is entirely within the hull for maximum protection. The buoy also has a propane storage and distribution system and a 40-watt thermoelectric generator for powering instruments. Two buoys were built and tested in 1978, and one buoy was deployed in 1979 and is in operation off the south coast of Long Island.

Huszagh, D; Ripperger, W; Fink, S

1979-10-01T23:59:59.000Z

115

A Comparison of Methods for Determining Significant Wave Heights—Applied to a 3-m Discus Buoy during Hurricane Katrina  

Science Conference Proceedings (OSTI)

In August 2005, the eye of Hurricane Katrina passed 90 km to the west of a 3-m discus buoy deployed in the Mississippi Sound and operated by the Central Gulf of Mexico Ocean Observing System (CenGOOS). The buoy motions were measured with a ...

L. C. Bender III; N. L. Guinasso Jr.; J. N. Walpert; S. D. Howden

2010-06-01T23:59:59.000Z

116

Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait  

SciTech Connect

The U.S. Department of Energy (DoE) is assessing and mapping the potential off-shore ocean current hydrokinetic energy resources along the U.S. coastline, excluding tidal currents, to facilitate market penetration of water power technologies. This resource assessment includes information on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled historical simulations spanning a 7-year period of record using HYCOM-GOM, an ocean current observation assimilation model that generates a spatially distributed three-dimensional representation of daily averaged horizontal current magnitude and direction time series from which power density time series and their statistics can be derived. This study ascertains the deviation of HYCOM-GOM outputs, including transport (flow) and power density, from outputs based on three independent observation sources to evaluate HYCOM-GOM performance. The three independent data sources include NOAA s submarine cable data of transport, ADCP data at a high power density location, and HF radar data in the high power density region of the Florida Strait. Comparisons with these three independent observation sets indicate discrepancies with HYCOM model outputs, but overall indicate that the HYCOM-GOM model can provide an adequate assessment of the ocean current hydrokinetic resource in high power density regions like the Florida Strait. Additional independent observational data, in particular stationary ADCP measurements, would be useful for expanding this model performance evaluation study. ADCP measurements are rare in ocean environments not influenced by tides, and limited to one location in the Florida Strait. HF radar data, although providing great spatial coverage, is limited to surface currents only.

Neary, Vincent S [ORNL; Gunawan, Budi [ORNL; Ryou, Albert S [ORNL

2012-06-01T23:59:59.000Z

117

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Power Program Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The Water Power Program works with industry partners, universities, and the Department of Energy's national

118

Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model  

DOE Green Energy (OSTI)

Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

2012-01-01T23:59:59.000Z

119

Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2011: Annual Progress Report  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL), in collaboration with the Applied Physics Laboratory at the University of Washington (APL-UW), has carried out a detailed preliminary fluid flow field study at site selected for testing of marine and hydrokinetic turbines using Acoustic Doppler Velocimetry (ADV) measurements, Acoustic Doppler Current Profiler (ADCP) measurements, and Conductivity, Temperature and Depth (CTD) measurements. In FY-2011 these measurements were performed continuously for two weeks, in order to collect data during neap and spring tides, as well as during diurnal tidal variations.

Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

2011-06-09T23:59:59.000Z

120

Effects of Large Energetic Vortices on Axial-Flow Hydrokinetic Turbines  

DOE Green Energy (OSTI)

Large scale coherent motions around marine and hydrokinetic (MHK) machines can significantly increase the structural loading and affect the overall performance of the machines. Characterization of the approach turbulence and their impact on the instantaneous response of MHK devices is essential for improving their design and performance. This preliminary study investigates the effect of turbulence and dominant energetic coherent structures induced by a vertical cylinder on the structural load and energy production in a model MHK turbine. Results show that the power generated by the turbine is significantly reduced by the presence of the cylinder. This reduction depends on the distance from the cylinder and the level of turbulence around the rotor area.

Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

2011 Marine Hydrokinetic Device Modeling Workshop: Final Report; March 1, 2011  

SciTech Connect

This report summarizes the NREL Marine and Hydrokinetic Device Modeling Workshop. The objectives for the modeling workshop were to: (1) Review the designs of existing MHK device prototypes and discuss design and optimization procedures; (2) Assess the utility and limitations of modeling techniques and methods presently used for modeling MHK devices; (3) Assess the utility and limitations of modeling methods used in other areas, such as naval architecture and ocean engineering (e.g., oil & gas industry); and (4) Identify the necessary steps to link modeling with other important components that analyze MHK devices (e.g., tank testing, PTO design, mechanical design).

Li, Y.; Reed, M.; Smith, B.

2011-10-01T23:59:59.000Z

122

Eddy-Correlation Measurements of Air-Sea Fluxes from a Discus Buoy  

Science Conference Proceedings (OSTI)

This paper demonstrates that it is practical to measure turbulent air-sea fluxes from a discus buoy. It proposes a method to correct the measured wind flow, for velocities induced by angular and axial movements of the anemometer, allowing the ...

François Anctil; Mark A. Donelan; William M. Drennan; Hans C. Graber

1994-08-01T23:59:59.000Z

123

The Maximum-Likelihood Property of Estimators of Wave Parameters from Heave, Pitch, and Roll Buoys  

Science Conference Proceedings (OSTI)

It is shown that ocean-wave spectrum parameters obtained from spectra of time series measured with heave, pitch, and roll data buoys are maximum-likelihood (ML) estimators under certain assumptions about the wave field. A modified set of ML ...

Ingrid K. Glad; Harald E. Krogstad

1992-04-01T23:59:59.000Z

124

Observation of the Power Spectrum of Ocean Waves Using a Cloverleaf Buoy  

Science Conference Proceedings (OSTI)

The power spectra of typical sets of ocean wave data obtained in the open ocean using a cloverleaf buoy are analyzed to determine an idealized form for the spectrum of ocean surface waves. It is shown that most of the single-peaked spectra ...

Hisashi Mitsuyasu; Fukuzo Tasai; Toshiro Suhara; Shinjiro Mizuno; Makoto Ohkusu; Tadao Honda; Kunio Rikiishi

1980-02-01T23:59:59.000Z

125

Tropical Moored Buoy Implementation Panel (TIP) Report M. J. McPhaden, NOAA/PMEL  

E-Print Network (OSTI)

Hole technical report in December 2002. Barometric pressure and downwelling long wave radiation fromTropical Moored Buoy Implementation Panel (TIP) Report M. J. McPhaden, NOAA/PMEL Prepared. This year, field testing of sonic anemometers has begun in the hopes of reducing wind data loss from

126

New Ozone Measurement Systems for Autonomous Operation on Ocean Buoys and Towers  

Science Conference Proceedings (OSTI)

Two autonomous ozone measurement systems for use on ocean buoys and towers have been built and are discussed herein. They are based on low-power atmospheric ozone sensors from Physical Sciences Inc. (PSI) and 2B Technologies. The PSI sensor ...

E. J. Hintsa; G. P. Allsup; C. F. Eck; D. S. Hosom; M. J. Purcell; A. A. Roberts; D. R. Scott; E. R. Sholkovitz; W. T. Rawlins; P. A. Mulhall; K. Lightner; W. W. McMillan; J. Song; M. J. Newchurch

2004-07-01T23:59:59.000Z

127

An Eigenvector Method for the Calculation of Directional Spectra from Heave, Pitch and Roll Buoy Data  

Science Conference Proceedings (OSTI)

An eigenvector (EV) method for the determination of directional spectra from heave, pitch and roll buoy data is presented. Both a direct and an iterative form (based on an algorithm by Pawka) of this data-adaptive procedure are developed. The ...

R. F. Marsden; B. A. Juszko

1987-12-01T23:59:59.000Z

128

A Gas-Capture Buoy for Measuring Bubbling Gas Flux in Oceans and Lakes  

Science Conference Proceedings (OSTI)

The design, calibration, and deployment of a buoy and gas-capture assembly for measuring bubbling gas flux in oceans and lakes are described. The assembly collects gas in a chamber while continuously measuring the position of the gas–water ...

Libe Washburn; Cyril Johnson; Chris C. Gotschalk; E. Thor Egland

2001-08-01T23:59:59.000Z

129

Position-logging Drifting Buoys Using Decca Navigator and Argos for High-Resolution Spatial Sampling  

Science Conference Proceedings (OSTI)

The need for a precision current-tracking system that could he deployed for up to 12 months as part of the U.K. Natural Environment Research Council's North Sea Project led to the development of a position-logging drifting buoy, which employs ...

G. Roberts; J. D. Last; E. W. Roberts; A. E. Hill

1991-10-01T23:59:59.000Z

130

Assessment of a New Anemometry System for the Met Office’s Moored Buoy Network  

Science Conference Proceedings (OSTI)

Since the late 1980s the Met Office has operated a network of Marine Automatic Weather Stations (MAWS) around the United Kingdom. The network includes a number of instrumented moored buoys, which are mainly in exposed open-ocean locations. The ...

Jon Turton; Charlie Pethica

2010-12-01T23:59:59.000Z

131

Preliminary Screening Analysis for the Environmental Risk Evaluation System: Task 2.1.1: Evaluating Effects of Stressors – Fiscal Year 2010 Progress Report: Environmental Effects of Marine and Hydrokinetic Energy  

Science Conference Proceedings (OSTI)

Possible environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term effects. An understanding of risk associated with likely interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help reduce the level of uncertainty and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases - a tidal project in Puget Sound using Open Hydro turbines, a wave project off the coast of Oregon using Ocean Power Technologies point attenuator buoys, and a riverine current project in the Mississippi River using Free Flow turbines. Through an iterative process, the screening analysis revealed that top-tier stressors in all three cases were the effects of the dynamic physical presence of the device (e.g., strike), accidents, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the four highest tiers of risk were dominated by marine mammals (cetaceans and pinnipeds) and birds (diving and non-diving); only the riverine case (Free Flow) included different receptors in the third tier (fish) and the fourth tier (benthic invertebrates). Although this screening analysis provides a preliminary analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis, especially of risk associated with chemical toxicity and accidents such as oil spills or lost gear, will be necessary to further understand high-priority risks. Subject matter expert review of this process and results is required and is planned for the first quarter of FY11. Once expert review is finalized, the screening analysis phase of ERES will be complete.

Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

2010-11-15T23:59:59.000Z

132

International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status  

DOE Green Energy (OSTI)

This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at www.TC114.us

Rondorf, Neil E.; Busch, Jason; Kimball, Richard

2011-10-29T23:59:59.000Z

133

Climatology of Surface Meteorology, Surface Fluxes, Cloud Fraction, and Radiative Forcing over the Southeast Pacific from Buoy Observations  

Science Conference Proceedings (OSTI)

A 5-yr climatology of the meteorology, including boundary layer cloudiness, for the southeast Pacific region is presented using observations from a buoy located at 20°S, 85°W. The sea surface temperature and surface air temperature exhibit a ...

Virendra P. Ghate; Bruce A. Albrecht; Christopher W. Fairall; Robert A. Weller

2009-10-01T23:59:59.000Z

134

MHK Projects/OSU Direct Drive Power Generation Buoys | Open Energy  

Open Energy Info (EERE)

OSU Direct Drive Power Generation Buoys OSU Direct Drive Power Generation Buoys < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6472,"lon":-124.127,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

135

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

NLE Websites -- All DOE Office Websites (Extended Search)

5021 5021 August 2009 Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors D. Sale University of Tennessee J. Jonkman and W. Musial National Renewable Energy Laboratory Presented at the ASME 28 th International Conference on Ocean, Offshore, and Arctic Engineering Honolulu, Hawaii May 31-June 5, 2009 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

136

Assessing the Effects of Marine and Hydrokinetic Energy Development on Marine and Estuarine Resources  

SciTech Connect

The world’s oceans and estuaries offer an enormous potential to meet the nation’s growing demand for energy. The use of marine and hydrokinetic (MHK) devices to harness the power of wave and tidal energy could contribute significantly toward meeting federal- and state-mandated renewable energy goals while supplying a substantial amount of clean energy to coastal communities. Locations along the eastern and western coasts of the United States between 40° and 70° north latitude are ideal for MHK deployment, and recent estimates of energy potential for the coasts of Washington, Oregon, and California suggest that up to 25 gigawatts could be generated from wave and tidal devices in these areas. Because energy derived from wave and tidal devices is highly predictable, their inclusion in our energy portfolio could help balance available sources of energy production, including hydroelectric, coal, nuclear, wind, solar, geothermal, and others.

Ward, Jeffrey A.; Schultz, Irvin R.; Woodruff, Dana L.; Roesijadi, Guritno; Copping, Andrea E.

2010-07-30T23:59:59.000Z

137

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

DOE Green Energy (OSTI)

This report describes the adaptation of a wind turbine performance code for use in the development of a general use design code and optimization method for stall-regulated horizontal-axis hydrokinetic turbine rotors. This rotor optimization code couples a modern genetic algorithm and blade-element momentum performance code in a user-friendly graphical user interface (GUI) that allows for rapid and intuitive design of optimal stall-regulated rotors. This optimization method calculates the optimal chord, twist, and hydrofoil distributions which maximize the hydrodynamic efficiency and ensure that the rotor produces an ideal power curve and avoids cavitation. Optimizing a rotor for maximum efficiency does not necessarily create a turbine with the lowest cost of energy, but maximizing the efficiency is an excellent criterion to use as a first pass in the design process. To test the capabilities of this optimization method, two conceptual rotors were designed which successfully met the design objectives.

Sale, D.; Jonkman, J.; Musial, W.

2009-08-01T23:59:59.000Z

138

Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades  

Science Conference Proceedings (OSTI)

A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.

J.L. Rovey K. Chandrashekhara

2012-09-21T23:59:59.000Z

139

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies  

DOE Green Energy (OSTI)

Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory

2012-12-31T23:59:59.000Z

140

Tethys: The Marine and Hydrokinetic Technology Environmental Impacts Knowledge Management System -- Requirements Specification -- Version 1.0  

SciTech Connect

The marine and hydrokinetic (MHK) environmental impacts knowledge management system (KMS), dubbed Tethys after the mythical Greek goddess of the seas, is being developed for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program (WHTP) by Pacific Northwest National Laboratory (PNNL). This requirements specification establishes the essential capabilities required of Tethys and clarifies for WHTP and the Tethys development team the results that must be achieved by the system.

Butner, R. Scott; Snowden-Swan, Lesley J.; Ellis, Peter C.

2010-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida  

SciTech Connect

Dehlsen Associates, LLC was awarded a grant by the United States Department of Energy (DOE) Golden Field Office for a project titled 'Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida,' corresponding to DOE Grant Award Number DE-EE0002655 resulting from DOE funding Opportunity Announcement Number DE-FOA-0000069 for Topic Area 2, and it is referred to herein as 'the project.' The purpose of the project was to enhance the certainty of the survey requirements and regulatory review processes for the purpose of reducing the time, efforts, and costs associated with initial siting efforts of marine and hydrokinetic energy conversion facilities that may be proposed in the Atlantic Ocean offshore Southeast Florida. To secure early input from agencies, protocols were developed for collecting baseline geophysical information and benthic habitat data that can be used by project developers and regulators to make decisions early in the process of determining project location (i.e., the siting process) that avoid or minimize adverse impacts to sensitive marine benthic habitat. It is presumed that such an approach will help facilitate the licensing process for hydrokinetic and other ocean renewable energy projects within the study area and will assist in clarifying the baseline environmental data requirements described in the U.S. Department of the Interior Bureau of Ocean Energy Management, Regulation and Enforcement (formerly Minerals Management Service) final regulations on offshore renewable energy (30 Code of Federal Regulations 285, published April 29, 2009). Because projects generally seek to avoid or minimize impacts to sensitive marine habitats, it was not the intent of this project to investigate areas that did not appear suitable for the siting of ocean renewable energy projects. Rather, a two-tiered approach was designed with the first step consisting of gaining overall insight about seabed conditions offshore southeastern Florida by conducting a geophysical survey of pre-selected areas with subsequent post-processing and expert data interpretation by geophysicists and experienced marine biologists knowledgeable about the general project area. The second step sought to validate the benthic habitat types interpreted from the geophysical data by conducting benthic video and photographic field surveys of selected habitat types. The goal of this step was to determine the degree of correlation between the habitat types interpreted from the geophysical data and what actually exists on the seafloor based on the benthic video survey logs. This step included spot-checking selected habitat types rather than comprehensive evaluation of the entire area covered by the geophysical survey. It is important to note that non-invasive survey methods were used as part of this study and no devices of any kind were either temporarily or permanently attached to the seabed as part of the work conducted under this project.

Vinick, Charles; Riccobono, Antonino, MS; Messing, Charles G., Ph.D.; Walker, Brian K., Ph.D.; Reed, John K., Ph.D.

2012-02-28T23:59:59.000Z

142

Environmentally Benign and Permanent Modifications to Prevent Biofouling on Marine and Hydrokinetic Devices  

DOE Green Energy (OSTI)

Semprus Biosciences is developing environmentally benign and permanent modifications to prevent biofouling on Marine and Hydrokinetic (MHK) devices. Biofouling, including growth on external surfaces by bacteria, algae, barnacles, mussels, and other marine organisms, accumulate quickly on MHK devices, causing mechanical wear and changes in performance. Biofouling on crucial components of hydrokinetic devices, such as rotors, generators, and turbines, imposes substantial mass and hydrodynamic loading with associated efficiency loss and maintenance costs. Most antifouling coatings leach toxic ingredients, such as copper and tributyltin, through an eroding process, but increasingly stringent regulation of biocides has led to interest in the development of non-biocidal technologies to control fouling. Semprus Biosciences research team is developing modifications to prevent fouling from a broad spectrum of organisms on devices of all shapes, sizes, and materials for the life of the product. The research team designed and developed betaine-based polymers as novel underwater coatings to resist the attachment of marine organisms. Different betaine-based monomers and polymers were synthesized and incorporated within various coating formulations. The formulations and application methods were developed on aluminum panels with required adhesion strength and mechanical properties. The coating polymers were chemically stable under UV, hydrolytic and oxidative environments. The sulfobetaine formulations are applicable as nonleaching and stable underwater coatings. For the first time, coating formulations modified with highly packed sulfobetaine polymers were prepared and demonstrated resistance to a broad spectrum of marine organisms. Assays for comparing nonfouling performance were developed to evaluate protein adsorption and bacteria attachment. Barnacle settlement and removal were evaluated and a 60-day field test was performed. Silicone substrates including a commercial fouling release coating were used for comparison. Compared with the unmodified silicone substrates, the sulfobetaine-modified formulations were able to exhibit a 98% reduction in fibrinogen adsorption, 97.0% (E. coli), 99.6% (S. aureus), and 99.5% (C. lytica) reduction in bacteria attachment, and 100% reduction in barnacles cyprid attachment. In addition to the significant improvement in fouling resistance of various organisms, the 60-day field test also showed an evident efficacy from visual assessment, foul rating, and fouling removal test. The research confirmed that the novel antifouling mechanism of betaine polymers provides a new avenue for marine coating development. The developed coatings out-performed currently used nontoxic underwater coatings in a broad spectrum of fouling resistance. By further developing formulations and processing methods for specific devices, the technology is ready for the next stage of development with demonstration in MHK systems.

Zheng Zhang

2012-04-19T23:59:59.000Z

143

Offshore refrigerated LPG loading/unloading terminal using a CALM buoy  

SciTech Connect

In existing Liquefied Petroleum Gases terminals, the transfer of liquefied gases to the tanker is performed via articulated loading arms or flexible hoses, working under quasistatic conditions. The tanker has to be firmly moored alongside a jetty or a process barge in a protected area (such as a harbour in most cases). This paper gives the main results of the development of an offshore refrigerated LPG (-48/sup 0/C) loading/unloading system, using a CALM buoy and LPG floating hoses working under dynamic conditions. The aim of this new concept is to replace the standard harbour structure for loading/unloading refrigerated LPG and to provide a considerable reduction in investments and a greater flexibility regarding the terminal location. The main components of that terminal have been designed so as to enable the loading of a 75 000 cubic meter LPG carrier in 15 hours. The results of static and dynamic low temperature tests on a LPG swivel joint for CALM buoy and LPG floating hoses show that such a SPM terminal is now a realistic solution.

Bonjour, E.L.; Simon, J.M.

1985-03-01T23:59:59.000Z

144

US Department of Energy National Lab Activities in Marine Hydrokinetics: Machine Performance Testing  

Science Conference Proceedings (OSTI)

Marine and hydrokinetic (MHK) technology performance testing in the laboratory and field supports the US Department of Energy s MHK program goals to advance the technology readiness levels of MHK machines, to ensure environmentally responsible designs, to identify key cost drivers, and to reduce the cost of energy of MHK technologies. Laboratory testing results from scaled model machine testing at the University of Minnesota s St. Anthony Falls Laboratory (SAFL) main channel flume are presented, including simultaneous machine power and inflow measurements for a 1:10 scale three-bladed axial flow turbine used to assess machine performance in turbulent flows, and detailed measurements of inflow and wake flow velocity and turbulence, including the assessment of the effects of large energetic organized vortex shedding on machine performance and wake turbulence downstream. Scaled laboratory testing provides accurate data sets for near- and far-field hydrodynamic models, and useful information on technology and environmental readiness levels before full-scale testing and demonstration in open water. This study validated turbine performance for a technology in order to advance its technology readiness level. Synchronized ADV measurements to calculate spatio-temporal characteristics of turbulence supported model development of the inflow turbulence model, Hydro-TurbSim, developed by the National Renewable Energy Laboratory (NREL) to evaluate unsteady loading on MHK machines. Wake flow measurements supported model development of the far-field model, SNL-EFDC, developed by Sandia National Laboratory (SNL) to optimize spacing for MHK machine arrays.

Neary, Vincent S [ORNL; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Gunawan, Budi [Oak Ridge National Laboratory (ORNL); Sotiropoulos, Fotis [University of Minnesota

2012-01-01T23:59:59.000Z

145

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop  

DOE Green Energy (OSTI)

The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9-10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts and discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest how the U.S. Department of Energy and national laboratory resources can be utilized to most effectively assist the marine energy industry.

Musial, W.; Lawson, M.; Rooney, S.

2013-02-01T23:59:59.000Z

146

Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual  

SciTech Connect

In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

2011-09-01T23:59:59.000Z

147

Wind Driven Flow in the Mixed Layer Observed by Drifting Buoys during Autumn–Winter in the Midlatitude North Pacific  

Science Conference Proceedings (OSTI)

Wind-driven flow in the upper 90 meters during autumn–winter in the midlatitude North Pacific is investigated using satellite-traced drifting buoys (i.e., drifters) deployed nearly simultaneously but drogued at different depths. The difference in ...

G. J. McNally; W. B. White

1985-06-01T23:59:59.000Z

148

Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound  

SciTech Connect

Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy proj

Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

2012-03-30T23:59:59.000Z

149

The formation of IRIS diagnostics I. A quintessential model atom of Mg II and general formation properties of the Mg II h&k lines  

E-Print Network (OSTI)

NASA's Interface Region Imaging Spectrograph (IRIS) space mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations will require forward modeling of Mg II h&k line formation from 3D radiation-MHD models. This paper is the first in a series where we undertake this forward modeling. We discuss the atomic physics pertinent to h&k line formation, present a quintessential model atom that can be used in radiative transfer computations and discuss the effect of partial redistribution (PRD) and 3D radiative transfer on the emergent line profiles. We conclude that Mg II h&k can be modeled accurately with a 4-level plus continuum Mg II model atom. Ideally radiative transfer computations should be done in 3D including PRD effects. In practice this is currently not possible. A reasonable compromise is to use 1D PRD computations to model the line profile up ...

Leenaarts, J; Carlsson, M; Uitenbroek, H; de Pontieu, B

2013-01-01T23:59:59.000Z

150

A Comparison of ECMWF, NCEP–NCAR, and SOC Surface Heat Fluxes with Moored Buoy Measurements in the Subduction Region of the Northeast Atlantic  

Science Conference Proceedings (OSTI)

The accuracy of surface heat flux estimates from the NCEP–NCAR and ECMWF atmospheric model reanalyses is assessed by comparison with Woods Hole Oceanographic Institute research buoy measurements made during the Subduction Experiment in the ...

S. A. Josey

2001-04-01T23:59:59.000Z

151

The “BOUSSOLE” Buoy—A New Transparent-to-Swell Taut Mooring Dedicated to Marine Optics: Design, Tests, and Performance at Sea  

Science Conference Proceedings (OSTI)

A new concept of oceanographic data buoy is described, which couples a taut mooring and a “transparent-to-swell” superstructure, and is specifically designed for the collection of radiometric quantities in offshore environments. The design of the ...

David Antoine; Pierre Guevel; Jean-François Desté; Guislain Bécu; Francis Louis; Alec J. Scott; Philippe Bardey

2008-06-01T23:59:59.000Z

152

Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

SciTech Connect

The U.S. Department of Energy (DOE) funded the Electric Power Research Institute and its collaborative partners, University of Alaska ? Anchorage, University of Alaska ? Fairbanks, and the National Renewable Energy Laboratory, to provide an assessment of the riverine hydrokinetic resource in the continental United States. The assessment benefited from input obtained during two workshops attended by individuals with relevant expertise and from a National Research Council panel commissioned by DOE to provide guidance to this and other concurrent, DOE-funded assessments of water based renewable energy. These sources of expertise provided valuable advice regarding data sources and assessment methodology. The assessment of the hydrokinetic resource in the 48 contiguous states is derived from spatially-explicit data contained in NHDPlus ?a GIS-based database containing river segment-specific information on discharge characteristics and channel slope. 71,398 river segments with mean annual flow greater than 1,000 cubic feet per second (cfs) mean discharge were included in the assessment. Segments with discharge less than 1,000 cfs were dropped from the assessment, as were river segments with hydroelectric dams. The results for the theoretical and technical resource in the 48 contiguous states were found to be relatively insensitive to the cutoff chosen. Raising the cutoff to 1,500 cfs had no effect on estimate of the technically recoverable resource, and the theoretical resource was reduced by 5.3%. The segment-specific theoretical resource was estimated from these data using the standard hydrological engineering equation that relates theoretical hydraulic power (Pth, Watts) to discharge (Q, m3 s-1) and hydraulic head or change in elevation (??, m) over the length of the segment, where ? is the specific weight of water (9800 N m-3): ??? = ? ? ?? For Alaska, which is not encompassed by NPDPlus, hydraulic head and discharge data were manually obtained from Idaho National Laboratory?s Virtual Hydropower Prospector, Google Earth, and U.S. Geological Survey gages. Data were manually obtained for the eleven largest rivers with average flow rates greater than 10,000 cfs and the resulting estimate of the theoretical resource was expanded to include rivers with discharge between 1,000 cfs and 10,000 cfs based upon the contribution of rivers in the latter flow class to the total estimate in the contiguous 48 states. Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate

Jacobson, Paul T. [Electric Power Research Institute; Ravens, Thomas M. [University of Alaska Anchorage; Cunningham, Keith W. [University of Alaska Fairbanks; Scott, George [National Renewable Energy Laboratory

2012-12-14T23:59:59.000Z

153

Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint  

SciTech Connect

Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

2013-02-01T23:59:59.000Z

154

Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint  

DOE Green Energy (OSTI)

Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

2012-04-01T23:59:59.000Z

155

FFP/NREL Collaboration on Hydrokinetic River Turbine Testing: Cooperative Research and Development Final Report, CRADA Number CRD-12-00473  

DOE Green Energy (OSTI)

This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory (NREL) and Free Flow Power (FFP) set forth in the following Joint Work Statement. Under the terms and conditions described in this CRADA, NREL and FFP will collaborate on the testing of FFP's hydrokinetic river turbine project on the Mississippi River (baseline location near Baton Rouge, LA; alternate location near Greenville, MS). NREL and FFP will work together to develop testing plans, instrumentation, and data acquisition systems; and perform field measurements.

Driscoll, F.

2013-04-01T23:59:59.000Z

156

The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Marine and Hydrokinetic Devices  

Science Conference Proceedings (OSTI)

Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale, and for commercial arrays. This work is carried out under the U.S. Department of Energy reference model project, with the costs for engineering, deployment strategies, mooring and anchoring configurations, and maintenance operations, being developed by a consortium of Department of Energy national laboratories and universities. The goal of the reference model is to assist the MHK industry to become a cost-competitive contributor of renewable energy, by identifying those aspects of MHK projects that contribute significantly to the cost of energy, and directing research funding towards lowering those costs.

Copping, Andrea E.; Geerlofs, Simon H.

2011-05-09T23:59:59.000Z

157

Upper-Ocean Salinity Variability in the Tropical Pacific: Case Study for Quasi-Decadal Shift during the 2000s Using TRITON Buoys and Argo Floats  

Science Conference Proceedings (OSTI)

Upper-ocean salinity variation in the tropical Pacific is investigated during the 2000s, when TRITON buoys and Argo floats were deployed and more salinity data were observed than in previous periods. We focus on upper-ocean salinity variability ...

Takuya Hasegawa; Kentaro Ando; Iwao Ueki; Keisuke Mizuno; Shigeki Hosoda

158

Subinertial Frequency Response of Wind-Driven Currents in the Mixed layer Measured by Drifting Buoys in the Midlatitude North Pacific  

Science Conference Proceedings (OSTI)

Previous analyses of satellite-tracked drifting buoy data (30 m drogue depth) and Fleet Numerical Ocean Center (FNOC) surface wind stress in the midlatitude North Pacific during autumn/winter have shown near-surface current vectors 25° to the ...

Gerard J. McNally; Douglas S. Luther; Warren B. White

1989-03-01T23:59:59.000Z

159

A Climatology of Diurnal and Semidiurnal Surface Wind Variations over the Tropical Pacific Ocean Based on the Tropical Atmosphere Ocean Moored Buoy Array  

Science Conference Proceedings (OSTI)

Hourly measurements from 51 moored buoys in the Tropical Atmosphere Ocean array (9°N–8°S, 165°E–95°W) during 1993–2004 are used to document the climatological seasonal and annual mean patterns of diurnal and semidiurnal near-surface wind ...

Rei Ueyama; Clara Deser

2008-02-01T23:59:59.000Z

160

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code  

DOE Green Energy (OSTI)

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

Maniaci, D. C.; Li, Y.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint  

DOE Green Energy (OSTI)

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

Maniaci, D. C.; Li, Y.

2012-04-01T23:59:59.000Z

162

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating the Influence of Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code D.C. Maniaci Pennsylvania State University Y. Li National Renewable Energy Laboratory Presented at the Oceans 11 Conference Kona, Hawaii September 19-21, 2011 Conference Paper NREL/CP-5000-52306 October 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

163

INL - Hydrokinetic & Wave Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Open-Center Turbine (790KB PDF) Hydromatrix - Innovative Solution For Low Impact Hydropower at Existing Engineered Structures (2.2MB PDF) Hydraulic Cross-Flow Turbines (3.5MB...

164

Effects of Electromagnetic Fields on Fish and Invertebrates Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2012 Progress Report Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

Energy generated by the world’s oceans and rivers offers the potential to make substantial contributions to the domestic and global renewable energy supply. However, the marine and hydrokinetic (MHK) energy industry faces challenges related to siting, permitting, construction, and operation of pilotand commercial-scale facilities. One of the challenges is to understand the potential effects to marine organisms from electromagnetic fields, which are produced as a by-product of transmitting power from offshore to onshore locations through underwater transmission cables. This report documents the progress of the third year of research (fiscal year 2012) to investigate environmental issues associated with marine and hydrokinetic energy (MHK) generation. This work was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Technologies Office. The report addresses the effects of electromagnetic fields (EMFs) on selected marine species where significant knowledge gaps exist. The species studied this fiscal year included one fish and two crustacean species: the Atlantic halibut (Hippoglossus hippoglossus), Dungeness crab (Metacarcinus magister), and American lobster (Homarus americanus).

Woodruff, Dana L.; Cullinan, Valerie I.; Copping, Andrea E.; Marshall, Kathryn E.

2013-05-20T23:59:59.000Z

165

Marine & Hydrokinetic Technologies (Fact Sheet)  

DOE Green Energy (OSTI)

This document described the U.S. Department of Energy's Water Power Program efforts to promote the development and deployment of advanced water power devices.

Not Available

2011-07-01T23:59:59.000Z

166

Wave Energy Extraction from buoys  

E-Print Network (OSTI)

Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...

Garnaud, Xavier

2009-01-01T23:59:59.000Z

167

Direct Drive Wave Energy Buoy  

SciTech Connect

The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

168

Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

Science Conference Proceedings (OSTI)

This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not statistically significant. Additional species are currently planned for laboratory testing in the next fiscal year (e.g. an elasmobranch, American lobster) to provide a broader assessment of species important to stakeholders. The collective responses of all species will be assessed in terms of life stage, exposure scenarios, and biological relevance, to address current uncertainties related to effects of EMF on aquatic organisms.

Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

2012-05-01T23:59:59.000Z

169

Screening Analysis for the Environmental Risk Evaluation System Task 2.1.1.2: Evaluating Effects of Stressors Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases. During FY 2011, two additional cases were added: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. Through an iterative process, the screening analysis revealed that top-tier stressors in the two FY 2011 cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted in early FY 2012. The ERES screening analysis provides an analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis is needed to determine specific risk levels to receptors. “Risk” has two components: (1) The likelihood, or “probability”, of the occurrence of a given interaction or event, and (2) the potential “consequence” if that interaction or event were to occur. During FY 2011, the ERES screening analysis focused primarily on the second component of risk, “consequence”, with focused probability analysis for interactions where data was sufficient for probability modeling. Consequence analysis provides an assessment of vulnerability of environmental receptors to stressors associated with MHK installations. Probability analysis is needed to determine specific risk levels to receptors and requires significant data inputs to drive risk models. During FY 2011, two stressor-receptor interactions were examined for the probability of occurrence. The two interactions (spill probability due to an encounter between a surface vessel and an MHK device; and toxicity from anti-biofouling paints on MHK devices) were seen to present relatively low risks to marine and freshwater receptors of greatest concern in siting and permitting MHK devices. A third probability analysis was scoped and initial steps taken to understand the risk of encounter between marine animals and rotating turbine blades. This analysis will be completed in FY 2012.

Copping, Andrea E.; Blake, Kara M.; Anderson, Richard M.; Zdanski, Laura C.; Gill, Gary A.; Ward, Jeffrey A.

2011-09-01T23:59:59.000Z

170

Reserves hike to buoy Bontang LNG  

SciTech Connect

This paper reports that a redetermination of reserves in an Indonesian production sharing contract (PSC) will boost liquefied natural gas sales for an Indonesian joint venture (IJV) of Lasmo plc, Union Texas (South East Asia) Inc., Chinese Petroleum Corp. (CPC), and Japex Rantau Ltd. The Indonesian reserves increase involves the Sanga PSC operated by Virginia Indonesia Co., a 50-50 joint venture of Lasmo and Union Texas. Union Texas holds a 38% interest in the IJV and Lasmo 37.8%, with remaining interests held by CPC and Japex. meantime, in US LNG news: Shell LNG Co. has shelved plans to buy an added interest in the LNG business of Columbia Gas System Inc. Panhandle Eastern Corp. units Trunkline Gas Co., Trunkline LNG Co., and Panhandle Eastern Pipe Line Co. (PEPL) filed settlement agreements with the Federal Energy Regulatory Commission to recover from customers $243 million in costs associated with Panhandle's Trunkline LNG operation at Lake Charles, Louisiana.

Not Available

1992-07-27T23:59:59.000Z

171

Design of a mobile coastal communications buoy  

E-Print Network (OSTI)

In response to a growing interest in networked communications at sea as well as the needs of our vital commercial fishing industry, the Northeast Consortium funded a novel research initiative to establish wireless acoustic ...

Hendry-Brogan, Meghan

2004-01-01T23:59:59.000Z

172

On the Strengthening of the Centrifugally Cast HK40 Tube  

Science Conference Proceedings (OSTI)

D. J. Cox and D. E. Jordan: Ibid,- p.121. 5. J. F. B. Jackson,. D. Slater and D. W. 0. Dawson: Ibid, p.153. 6. J. A. Van Echo, D. B. Roach and A. M. Hall: Journal.

173

Water Power Program: Marine and Hydrokinetic Resource Assessment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Tidal Streams Resource Map. Tidal Streams Resource Assessment The Assessment of the Energy Production from Tidal Streams in the United States report, created by Georgia Tech,...

174

Assessment and Mapping of the Riverine Hydrokinetic Resource...  

Open Energy Info (EERE)

resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The technically recoverable resource does not account...

175

Dynamic Modeling and Environmental Analysis of Hydrokinetic Energy Extraction.  

E-Print Network (OSTI)

??The world is facing an imminent energy supply crisis. Our well-being is linked to the energy supply, and energy is in high demand in both… (more)

Miller, Veronica Bree

2010-01-01T23:59:59.000Z

176

Implementation of control system for hydrokinetic energy converter  

Science Conference Proceedings (OSTI)

At Uppsala University, a research group is investigating a system for converting the power in freely flowing water using a verticalaxis turbine directly connected to a permanent magnet generator. An experimental setup comprising a turbine, a generator, ...

Katarina Yuen, Senad Apelfröjd, Mats Leijon

2013-01-01T23:59:59.000Z

177

Regulators approve first commercial hydrokinetic projects in the ...  

U.S. Energy Information Administration (EIA)

When the tube sections flex, hydraulic arms move in opposite directions and turn a generator that produces power. Sea snakes are being tested in Scotland and Portugal.

178

Department of Energy Awards $37 Million for Marine and Hydrokinetic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than 37 million...

179

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...  

Office of Science (SC) Website

Image courtesy of Ocean Renewable Power Company ORPC's TidGen(tm) turbine generator unit. R&D Opportunity Advanced water power technologies include devices capable of extracting...

180

Microsoft PowerPoint - MVD Hydrokinetics, SW Regional Hydropower...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects on the Mississippi River Mississippi River Southwestern Federal Hydropower Conference 10 June 2010 Jeff Artman, P.E. MVD Hydropower Business Line Manager Line Manager...

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy 101: Marine and Hydrokinetic Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

--Construction --Commercial Weatherization --Commercial Heating & Cooling --Commercial Lighting --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar --Wind...

182

SITING PROTOCOLS FOR MARINE AND HYDROKINETIC ENERGY PROJECTS  

Science Conference Proceedings (OSTI)

Project Objective: The purpose of this project is to identify and address regulatory issues that affect the cost, time and the management of potential effects as it relates to siting and permitting advanced water power technologies. Background: The overall goal of this effort is to reduce the cost, time and effort of managing potential effects from the development advanced water power projects as it relates to the regulatory process in siting and permitting. To achieve this goal, a multi-disciplinary team will collect and synthesize existing information regarding regulatory processes into a user-friendly online format. In addition, the team will develop a framework for project planning and assessment that can incorporate existing and new information. The team will actively collaborate and coordinate with other efforts that support or influence regulatory process. Throughout the process, the team will engage in an iterative, collaborative process for gathering input and testing ideas that involves the relevant stakeholders across all sectors at the national, regional, and all state levels.

Kopf, Steven; Klure, Justin; Hofford, Anna; McMurray, Greg; Hampton, Therese

2012-07-15T23:59:59.000Z

183

JEDI Marine and Hydrokinetic Model: User Reference Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

reductions in the short term. For the purpose of this assessment, it was assumed that no learning curve effects are present. Only effects of manufacturing multiple units for the...

184

NREL Developing Numerical Simulation Tool to Study Hydrokinetic...  

NLE Websites -- All DOE Office Websites (Extended Search)

M.; Li, Y.; Moriarty, P. (2012). "A Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines." Accepted by Proceedings of the...

185

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Technology Glossary Technology Glossary (Redirected from Axial Flow Turbine) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

186

Microsoft PowerPoint - MVD Hydrokinetics, SW Regional Hydropower...  

NLE Websites -- All DOE Office Websites (Extended Search)

* Free Flow Power Corporation (generators mounted on poles placed in the river bottom) * Hydro Green Energy (barge mounted generators) * MarMC Enterprises (generators submerged in...

187

Hybrid Renewable Energy Systems for a Dynamically Positioned Buoy  

E-Print Network (OSTI)

course assignments. From left to right, the 2012 Fellows: Laryssa Galvez, Ariel Pacific, Chelsea Maccani

Wood, Stephen L.

188

Dynamic response analysis of spar buoy floating wind turbine systems  

E-Print Network (OSTI)

The importance of alternative energy development has been dramatically increased by the dwindling supplies of oil and gas, and our growing efforts to protect our environment. A variety of meaningful steps have been taken ...

Lee, Sungho, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

189

Demand for petrochem feedstock to buoy world LPG industry  

Science Conference Proceedings (OSTI)

This paper reports that use of liquefied petroleum gas as petrochemical feedstock will increase worldwide, providing major growth opportunities for LPG producers. World exports of liquefied petroleum gas will increase more slowly than production as producers choose to use LPG locally as chemical feedstock and export in value added forms such as polyethylene. So predicts Poten and Partners Inc., New York. Poten forecasts LPG production in exporting countries will jump to 95 million tons in 2010 from 45 million tons in 1990. However, local and regional demand will climb to 60 million tons/year from 23 million tons/year during the same period. So supplies available for export will rise to 35 million tons in 2010 from 22 million tons in 1990.

Not Available

1992-05-18T23:59:59.000Z

190

Direct Drive Wave Energy Buoy – Intermediate scale experiment  

SciTech Connect

Columbia Power Technologies deployed a scaled prototype wave energy converter (WEC) in the Puget Sound in February 2011. Other than a brief period (10 days) in which the WEC was removed for repair, it was in the water from Feb. 15, 2011 until Mar. 21, 2012. The SeaRay, as this WEC is known, consists of three rigid bodies which are constrained to move in a total of eight degrees of freedom (DOF). The SeaRay is kept on station with a spread, three-point mooring system. This prototype WEC is heavily instrumented, including but not limited to torque transducers and encoders reporting generator torque applied to and relative pitch of the floats, an inertial measurement unit (IMU) reporting translational acceleration and rotational position of the spar/nacelle, a GPS sensor reporting position, load cells reporting mooring loads at the WEC connection points and a number of strain gauges embedded in the fiberglass reinforced plastic (FRP) hull. Additionally, wave and current data are collected using an Acoustic Wave And Current Profiler (AWAC), allowing performance and design data to be correlated to environmental input conditions. This data – quality controlled, processed and analyzed – is used to characterize the metocean conditions (i.e. sea states). The WEC response will be correlated to the metocean conditions. These results will primarily be used to validate numerical models. The validated numerical models will be used optimize the commercial scale WEC and inform the design process. This document details the SeaRay experiment, including the quality control, processing and subsequent analysis of the data. Furthermore, the methodology and the results of numerical model validation will be described.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

191

Analysis and Prediction of Ocean Swell Using Instrumented Buoys  

Science Conference Proceedings (OSTI)

During the period 20–23 September 1990, the remnants of Supertyphoon Flo moved into the central North Pacific Ocean with sustained wind speeds of 28 m s?1. The strong wind and large fetch area associated with this storm generated long-period ...

Theodore Mettlach; David Wang; Paul Wittmann

1994-04-01T23:59:59.000Z

192

Buoy-Calibrated Winds over the Gulf of Mexico  

Science Conference Proceedings (OSTI)

The large variability of the Gulf of Mexico wind field indicates that high-resolution wind data will be required to represent the weather systems affecting ocean circulation. This report presents methods and results of the calculation of a ...

Robert C. Rhodes; J. Dana Thompson; Alan J. Wallcraft

1989-08-01T23:59:59.000Z

193

Oregon State University OSU | Open Energy Information  

Open Energy Info (EERE)

OSU OSU Jump to: navigation, search Name Oregon State University OSU Address 1148 Kelley Engineering Center Place Corvallis Zip 97331 Sector Marine and Hydrokinetic Phone number 541-737-2995 Website http://www.eecs.orst.edu/msrf Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: OSU Direct Drive Power Generation Buoys This company is involved in the following MHK Technologies: Oregon State University Columbia Power Technologies Direct Drive Point Absorber This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Oregon_State_University_OSU&oldid=678417

194

MHK Technologies | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Click one of the following Marine Hydrokinetic Technologies for more information: Loading... 14 MW OTECPOWER Aegir Dynamo AirWEC Anaconda bulge tube drives turbine AquaBuoy Aquanator Aquantis Archimedes Wave Swing Atlantis AN 150 Atlantis AR 1000 Atlantis AS 400 Atlantisstrom BOLT Lifesaver Benkatina Turbine Blue Motion Energy marine turbine Bluetec Brandl Generator C Plane C Wave C5 CETO Wave Energy Technology Centipod Closed Cycle OTEC CoRMaT Cross Flow Turbine Current Catcher Current Electric Generator Current Power CurrentStar DEXA Wave Converter Davidson Hill Venturi DHV Turbine Deep Gen Tidal Turbines Deep Green Deep Ocean Water Application Facility DOWAF Deep Water Pipelines Deep water capable hydrokinetic turbine

195

Finavera Renewables Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Renewables Ocean Energy Ltd Renewables Ocean Energy Ltd Jump to: navigation, search Name Finavera Renewables Ocean Energy Ltd Address 595 Burrard Street Suite 3113 Three Bentall Centre PO Box 49071 Place Vancouver Zip V7X 1G4 Sector Marine and Hydrokinetic Phone number 604-288-9051 Website http://www.finavera.com Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Coos County Offshore Wave Energy Power Plant Figueira da Foz Portugal Humboldt County Wave Project Makah Bay Offshore Wave Pilot Project South Africa Ucluelet BC Canada This company is involved in the following MHK Technologies: AquaBuoy This article is a stub. You can help OpenEI by expanding it.

196

Hydro-Kansas (HK) Research Project: Tests of a Physical Basis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Krajewski, Witold University of Iowa Kruger, Anton The University of Iowa Clayton, Jordan US Geological Survey and University of Iowa Category: Atmospheric State and Surface...

197

PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power Projects in the United States  

E-Print Network (OSTI)

hydroelectric, and marine and hydrokinetic power, are notmarine and hydrokinetic facilities. For wind, closed-loop biomass, and geothermal power,

Bolinger, Mark

2009-01-01T23:59:59.000Z

198

Laboratory Studies of the Effects of Static and Variable Magnetic Fields on Freshwater Fish  

DOE Green Energy (OSTI)

There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the effect on aquatic organisms of electromagnetic fields (EMF) created by the projects. The submerged electrical generator will emit an EMF into the surrounding water, as will underwater cables used to transmit electricity from the generator to the shore, between individual units in an array (inter-turbine cables), and between the array and a submerged step-up transformer. The electric current moving through these cables will induce magnetic fields in the immediate vicinity, which may affect the behavior or viability of fish and benthic invertebrates (Gill et al. 2005, 2009). It is known that numerous marine and freshwater organisms are sensitive to electrical and magnetic fields, often depending on them for such diverse activities as prey location and navigation (DOE 2009; Normandeau et al. 2011). Despite the wide range of aquatic organisms that are sensitive to EMF and the increasing numbers of underwater electrical transmitting cables being installed in rivers and coastal waters, little information is available to assess whether animals will be attracted, repelled, or unaffected by these new sources of EMF. This knowledge gap is especially significant for freshwater systems, where electrosensitive organisms such as paddlefish and sturgeon may interact with electrical transmission cables. We carried out a series of laboratory experiments to test the sensitivity of freshwater fish and invertebrates to the levels of EMF that are expected to be produced by HK projects in rivers. In this context, EM fields are likely to be emitted primarily by generators in the water column and by transmission cables on or buried in the substrate. The HK units will be located in areas of high-velocity waters that are used as only temporary habitats for most riverine species, so long-term exposure of fish and benthic invertebrates to EMF is unlikely. Rather, most aquatic organisms will be briefly exposed to the fields as they drift downstream or migrate upstream. Because the exposure of most aquatic organisms to EMF in a river would be relatively brief and non-lethal, we focused our investigations on detecting behavioral effects. For example, attraction to the EM fields could result in prolonged exposures to the fields or the HK rotor. On the other hand, avoidance reactions might hinder upstream migrations of fish. The experiments reported here are a continuation of studies begun in FY 2010, which focused on the potential effects of static magnetic fields on snails, clams, and fathead minnows (Cada et al. 2011). Those experiments found little indication that the behaviors of these freshwater species were a

Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL; Fortner, Allison M [ORNL; Riemer, Kristina P [ORNL; Schweizer, Peter E [ORNL

2012-04-01T23:59:59.000Z

199

Effects on Freshwater Organisms of Magnetic Fields Associated with Hydrokinetic Turbines  

SciTech Connect

Underwater cables will be used to transmit electricity between turbines in an array (interturbine cables), between the array and a submerged step-up transformer (if part of the design), and from the transformer or array to shore. All types of electrical transmitting cables (as well as the generator itself) will emit EMF into the surrounding water. The electric current will induce magnetic fields in the immediate vicinity, which may affect the behavior or viability of animals. Because direct electrical field emissions can be prevented by shielding and armoring, we focused our studies on the magnetic fields that are unavoidably induced by electric current moving through a generator or transmission cable. These initial experiments were carried out to evaluate whether a static magnetic field, such as would be produced by a direct current (DC) transmitting cable, would affect the behavior of common freshwater fish and invertebrates.

Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL; Riemer, Kristina P [ORNL; Turner, Julie W [ORNL

2011-07-01T23:59:59.000Z

200

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

Science Conference Proceedings (OSTI)

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydrokinetic Oscillators for Energy Harvesting via Coupling Polyvinylidene Fluoride (PVDF) and Electromagnetics.  

E-Print Network (OSTI)

??Sustainable energy generation has received a great deal of interest recently because the presence of greenhouse gases in our atmosphere is at an unprecedented high.… (more)

Hudzik II, Alan Michael

2009-01-01T23:59:59.000Z

202

Design, build and test of an axial flow hydrokinetic turbine with fatigue analysis  

E-Print Network (OSTI)

OpenProp is an open source propeller and turbine design and analysis code that has been in development since 2007 by MIT graduate students under the supervision of Professor Richard Kimball. In order to test the performance ...

Ketcham, Jerod W

2010-01-01T23:59:59.000Z

203

On freeze-out problem in hydro-kinetic approach to A+A collisions  

E-Print Network (OSTI)

A new method for evaluating spectra and correlations in the hydrodynamic approach is proposed. It is based on an analysis of Boltzmann equations (BE) in terms of probabilities for constituent particles to escape from the interacting system. The conditions of applicability of Cooper-Frye freeze-out prescription are considered within the method. The results are illustrated with a non-relativistic exact solution of BE for expanding spherical fireball as well as with approximate solutions for ellipsoidally expanding ones.

Yu. M. Sinyukov; S. V. Akkelin; Y. Hama

2002-01-07T23:59:59.000Z

204

NREL Developing a Numerical Simulation Tool to Study Hydrokinetic Energy Conversion Devices and Arrays (Fact Sheet)  

Science Conference Proceedings (OSTI)

New code will help accelerate design improvements by providing a high-fidelity simulation tool to study power performance, structural loading, and the interactions between devices in arrays.

Not Available

2012-02-01T23:59:59.000Z

205

Wave and Hydrokinetics Interest Group 1st Meeting of 2009/2010 Year  

E-Print Network (OSTI)

.S. wave power plant license issued by FERC for the 1-MW Makah Bay, WA project was surrendered by Finavera Status ­ Wave power plant projects are being permitted in Europe ­ The time, cost and complexity of the U five years . · Economic Status: The first U.S. commercial wave plant project in Reedsport, OR, was made

206

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

SciTech Connect

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

207

Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

DOE Green Energy (OSTI)

Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate

Jacobson, Paul T. [Electric Power Research Institute; Ravens, Thomas M. [University of Alaska Anchorage; Cunningham, Keith W. [University of Alaska Fairbanks; Scott, George [National Renewable Energy Laboratory

2012-12-14T23:59:59.000Z

208

Developing an Instrumentation Package for in-Water Testing of Marine Hydrokinetic Energy Devices: Preprint  

DOE Green Energy (OSTI)

The ocean-energy industry is still in its infancy and device developers have provided their own equipment and procedures for testing. Currently, no testing standards exist for ocean energy devices in the United States. Furthermore, as prototype devices move from the test tank to in-water testing, the logistical challenges and costs grow exponentially. Development of a common instrumentation package that can be moved from device to device is one means of reducing testing costs and providing normalized data to the industry as a whole. As a first step, the U.S. National Renewable Energy Laboratory (NREL) has initiated an effort to develop an instrumentation package to provide a tool to allow common measurements across various ocean energy devices. The effort is summarized in this paper. First, we present the current status of ocean energy devices. We then review the experiences of the wind industry in its development of the instrumentation package and discuss how they can be applied in the ocean environment. Next, the challenges that will be addressed in the development of the ocean instrumentation package are discussed. For example, the instrument package must be highly adaptable to fit a large array of devices but still conduct common measurements. Finally, some possible system configurations are outlined followed by input from the industry regarding its measurement needs, lessons learned from prior testing, and other ideas.

Nelson, E.

2010-08-01T23:59:59.000Z

209

Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2010 Annual Progress Report  

DOE Green Energy (OSTI)

Marine and Hydro Kinetic devices (MHK) are being widely studied as a source of renewable energy. The Marrowstone Island site is a potential location for installing MHK devices because the tidal currents observed that are sufficient for power generation. In order to quantify the effects of turbulence on MHK devices and the surrounding environment at this site, a prelimi- nary fluid flow field study was conducted here by the Pacific Northwest National Lab (PNNL) in collaboration with the Applied Physics Lab at the University of Washington (APL-UW). This study entailed continuous The Acoustic Doppler Velocimetry (ADV), Acoustic Doppler Current Profiler (ADCP) and Conductivity, Temperature and Depth (CTD) measurements from May 4, 2010 to May 22, 2010, in order to obtain information about turbulence effects during different tidal conditions. The instruments used for collecting the above measurements were deployed at the Marrowstone site using a R/V Jack Robertson provided by the University of Washington (APL-UW). All the measurements were taken at the site with an average depth of 22 m below the sea surface. ADV acquired velocity data at 32 Hz sampling frequency at 4.6 m above the seabed, and ADCP acquired velocity profile data at a sampling frequency of 2 Hz, from a height of 2.6 m above the seabed to the surface with a bin resolution of 0.5 m. The ADV and ADCP measurements showed that the horizontal velocity had a turbulence intensity of 10%. Further- more, the spectral analysis from ADV measurements showed that the flow is fully turbulent with -5/3 slope in the inertial sub-range of the spectra. Moreover, the temporal-frequency analysis showed presence of ”eddies” at high frequencies. These preliminary studies provided initial flow field and site characteristics, showed the limitations of the instruments used and highlighted changes that need to be made in the experimental setup for deployment in FY-2011 studies.

Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

2011-01-31T23:59:59.000Z

210

Changes in TRMM Rainfall due to the Orbit Boost Estimated from Buoy Rain Gauge Data  

Science Conference Proceedings (OSTI)

During the first three-and-a-half years of the Tropical Rainfall Measuring Mission (TRMM), the TRMM satellite operated at a nominal altitude of 350 km. To reduce drag, save maneuvering fuel, and prolong the mission lifetime, the orbit was boosted ...

Jeremy D. DeMoss; Kenneth P. Bowman

2007-09-01T23:59:59.000Z

211

Evaluation of Various Surface Wind Products with OceanSITES Buoy Measurements  

Science Conference Proceedings (OSTI)

To facilitate evaluation and monitoring of numerical weather prediction model forecasts and satellite-based products against high quality in-situ observations, a data repository for collocated model forecasts, a satellite product, and in-situ ...

Ge Peng; Huai-Min Zhang; Helmut P. Frank; Jean-Raymond Bidlot; Masakazu Higaki; Scott Stevens; William R. Hankins

212

Determination of Longwave Heat Flux at the Air-Sea Interface Using Measurements from Buoy Platforms  

Science Conference Proceedings (OSTI)

A theory for pyrgeometer operation is utilized for determining downwelling longwave radiation. Errors in downwelling longwave radiation measurements are due to differences in pyrgeometer body and dome temperatures compared to that of the ...

T. D. Dickey; D. V. Manov; R. A. Weller; D. A. Siegel

1994-08-01T23:59:59.000Z

213

Calibration and Validation of Remotely Sensed Observations of Ocean Color from a Moored Data Buoy  

Science Conference Proceedings (OSTI)

Satellite remote sensing of ocean color has the potential to map global surface phytoplankton concentrations at rates of up to once per day, providing wide-area data on a number of fundamental ocean processes relating to biological production, ...

M. H. Pinkerton; J. Aiken

1999-07-01T23:59:59.000Z

214

An Evaluation of Environment Canada's Operational Ocean Wave Model Based on Moored Buoy Data  

Science Conference Proceedings (OSTI)

An operational ocean wave model called the Canadian Spectral Ocean Wave Model (CSOWM) has been implemented in the operational forecasting system of the Atmospheric Environment Service, Environment Canada, since early 1991. The present operational ...

M. L. Khandekar; R. Lalbeharry

1996-06-01T23:59:59.000Z

215

Expected Structure of Extreme Waves in a Gaussian Sea. Part I: Theory and SWADE Buoy Measurements  

Science Conference Proceedings (OSTI)

This paper is concerned with the expected configuration in space and time surrounding extremely high crests in a random wave field, or, equivalently, the mean configuration averaged over realizations of extreme events. A simple, approximate ...

O. M. Phillips; Daifang Gu; Mark Donelan

1993-05-01T23:59:59.000Z

216

Error in Measurements of Incoming Shortwave Radiation Made from Ships and Buoys  

Science Conference Proceedings (OSTI)

Errors in shortwave solar radiation measurements resulting from mean tils and rocking motions, as well as from the response time of the sensors, are determined experimentally. The magnitude of the mean tilt error can be large and lead to errors ...

M. A. MacWhorter; R. A. Weller

1991-02-01T23:59:59.000Z

217

Spar buoy construction having production and oil storage facilities and method of operation  

SciTech Connect

This patent describes a floating structure including oil storage capacity and production facilities and adapted to be anchored by catenary mooring lines at a subsea well location, the combination of: a vertical elongated hull means having means to maintain the hull means in vertical position; the hull means including a vertical oil storage chamber means for storing oil and extending for a major portion of the height of the floating structure; vertical variable ballast chamber means extending from the bottom of the storage chamber means to above the top of the oil storage chamber means and selectively filled with ballast to maintain the center of gravity of the structure a selected distance from the center of buoyancy of the structure; work chamber means in the hull means above the oil storage chamber means; means in the work chamber means and in the variable ballast chamber means for controlling the amount of ballast in the variable ballast means; means in the oil storage chamber means and in the work chamber means for feeding oil to the oil storage chamber means and for removing water therefrom as oil is introduced therein; a central longitudinal passageway through the hull means; a riser means extending into the passageway from the subsea well location and terminating at the work chamber means; means on the riser buoyant tank means and on the hull means in the central passageway for guiding relative movement between the hull means and the riser means.

Daniell, A.F.

1986-08-19T23:59:59.000Z

218

SeaVolt Technologies formerly Sea Power Associates | Open Energy  

Open Energy Info (EERE)

SeaVolt Technologies formerly Sea Power Associates SeaVolt Technologies formerly Sea Power Associates Jump to: navigation, search Name SeaVolt Technologies (formerly Sea Power & Associates) Place San Francisco, California Zip CA 94111 Sector Ocean Product The company's Wave Rider system, which is still in prototype stages, uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity. References SeaVolt Technologies (formerly Sea Power & Associates)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeaVolt Technologies (formerly Sea Power & Associates) is a company located in San Francisco, California .

219

Property:Draft (m) | Open Energy Information  

Open Energy Info (EERE)

Draft (m) Draft (m) Jump to: navigation, search Property Name Draft (m) Property Type String Pages using the property "Draft (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 8 + MHK Technologies/Deep Green + 40 + MHK Technologies/Deep water capable hydrokinetic turbine + 5 + MHK Technologies/Electric Buoy + 7 + MHK Technologies/European Pico Pilot Plant + 7 + MHK Technologies/Evopod E35 + 5 + MHK Technologies/Float Wave Electric Power Station + 7 + MHK Technologies/Floating anchored OTEC plant + 530 + MHK Technologies/HyPEG + 20 + MHK Technologies/HydroGen 10 + 1 + MHK Technologies/Hydroflo + 2 + MHK Technologies/ITRI WEC + 13 + MHK Technologies/Microturbine River In Stream + 0.7 + MHK Technologies/OCEANTEC Wave Energy Converter + 5.25 +

220

Aqua Magnetics Inc | Open Energy Information  

Open Energy Info (EERE)

Magnetics Inc Magnetics Inc Jump to: navigation, search Name Aqua-Magnetics Inc Place Satellite Beach, Florida Zip 32937 Sector Ocean Product Manufactures patented system that converts ocean wave energy into electric power. References Aqua-Magnetics Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Electric Buoy Mobil Stabilized Energy Conversion Platform Platform generators This article is a stub. You can help OpenEI by expanding it. Aqua-Magnetics Inc is a company located in Satellite Beach, Florida . References ↑ "Aqua-Magnetics Inc" Retrieved from "http://en.openei.org/w/index.php?title=Aqua_Magnetics_Inc&oldid=678881"

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Property:Width (m) | Open Energy Information  

Open Energy Info (EERE)

Width (m) Width (m) Jump to: navigation, search Property Name Width (m) Property Type Number Pages using the property "Width (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 4.5 + MHK Technologies/AirWEC + 2.5 + MHK Technologies/CurrentStar + 30.5 + MHK Technologies/Deep Green + 12 + MHK Technologies/Deep water capable hydrokinetic turbine + 10 + MHK Technologies/ECO Auger + 4.877 + MHK Technologies/Electric Buoy + 10 + MHK Technologies/European Pico Pilot Plant + 14 + MHK Technologies/Evopod E35 + 4.5 + MHK Technologies/Float Wave Electric Power Station + 2.5 + MHK Technologies/Floating anchored OTEC plant + 60 + MHK Technologies/HyPEG + 50 + MHK Technologies/HydroGen 10 + 2 + MHK Technologies/Hydroflo + 5 +

222

Property:Length (m) | Open Energy Information  

Open Energy Info (EERE)

(m) (m) Jump to: navigation, search Property Name Length (m) Property Type Number Pages using the property "Length (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/AirWEC + 0 + MHK Technologies/CurrentStar + 30.5 + MHK Technologies/Deep Green + 4 + MHK Technologies/Deep water capable hydrokinetic turbine + 5 + MHK Technologies/Electric Buoy + 10 + MHK Technologies/European Pico Pilot Plant + 20 + MHK Technologies/Evopod E35 + 12.5 + MHK Technologies/Float Wave Electric Power Station + 12 + MHK Technologies/Floating anchored OTEC plant + 60 + MHK Technologies/HyPEG + 50 + MHK Technologies/HydroGen 10 + 4.5 + MHK Technologies/Hydroflo + 7 + MHK Technologies/ITRI WEC + 6 + MHK Technologies/IVEC Floating Wave Power Plant + 150 +

223

Property:Freeboard (m) | Open Energy Information  

Open Energy Info (EERE)

Freeboard (m) Freeboard (m) Jump to: navigation, search Property Name Freeboard (m) Property Type Number Pages using the property "Freeboard (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 4 + MHK Technologies/AirWEC + 0.25 + MHK Technologies/CurrentStar + 3.65 + MHK Technologies/Deep Green + 0 + MHK Technologies/Deep water capable hydrokinetic turbine + 0 + MHK Technologies/Electric Buoy + 3 + MHK Technologies/European Pico Pilot Plant + 15 + MHK Technologies/Evopod E35 + 1.5 + MHK Technologies/Float Wave Electric Power Station + 5 + MHK Technologies/Floating anchored OTEC plant + 10 + MHK Technologies/GyroWaveGen + 3 + MHK Technologies/HydroGen 10 + 2.5 + MHK Technologies/Hydroflo + 2 + MHK Technologies/ITRI WEC + 4.9 +

224

Property:Project(s) where this technology is utilized | Open Energy  

Open Energy Info (EERE)

Project(s) where this technology is utilized Project(s) where this technology is utilized Jump to: navigation, search Property Name Project(s) where this technology is utilized Property Type Page Marine and Hydrokinetic Technology Project Pages using the property "Project(s) where this technology is utilized" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/AirWEC + MHK Projects/Ocean Trials Ver 2 + MHK Technologies/AquaBuoy + MHK Projects/Figueira da Foz Portugal +, MHK Projects/Humboldt County Wave Project +, MHK Projects/Makah Bay Offshore Wave Pilot Project +, ... MHK Technologies/Archimedes Wave Swing + MHK Projects/AWS II +, MHK Projects/Portugal Pre Commercial Pilot Project + MHK Technologies/Atlantis AN 150 + MHK Projects/Gujarat + MHK Technologies/Atlantis AR 1000 + MHK Projects/Castine Harbor Badaduce Narrows +, MHK Projects/Gujarat +, MHK Projects/Tidal Energy Device Evaluation Center TIDEC +

225

NREL: Jobs and Economic Development Impacts (JEDI) Models - About...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine & Hydrokinetic Power Model The Jobs and Economic Development Impacts (JEDI) Marine and Hydrokinetic (MHK) model allows users to estimate economic development impacts from...

226

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

and Tidal Stream Energy Conversion Devices * Ocean Energy - HydroKinetic Energy - Marine Energy Terminology 4 Terminology: HydroKinetic * Hydro Greek word for water (hydor) *...

227

Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices Task 2.1.3: Effects on Aquatic Organisms – Fiscal Year 2011 Progress Report Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

A literature search was conducted by using the Web of Science® Databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on marine mammals, seabirds, and fish. Several relatively recent general review articles that included possible effects of marine renewable energy devices on marine mammals and seabirds were examined to begin the search process (e.g., Boehlert et al. 2008; Thompson et al. 2008; Simas et al. 2009). From these articles, several general topics of potential environmental effects on marine mammals, seabirds, and fish were derived. These topics were used as the primary search factors. Searches were conducted with reference to the potential effects of offshore wind farms and MHK devices on marine mammals, seabirds, and fish. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that often the potential effects were offered as hypotheses that often were not supported by the presentation of appropriate documentation. Therefore, the search was refined and focused on trying to obtain the necessary information to support or challenge a proposed potential effect to a specific concern. One of the expressed concerns regarding MHK devices is that placing wave parks in coastal waters could compromise the migration patterns of whales. Disruption of the annual migration of the gray whale (Eschrichtius robustus), which swims at least 30,000 km on its round trip from breeding grounds in Baja California to feeding areas in the Bering Sea, is of particular concern. Among the hypothesized effects on the migrating gray whales are increased predation risk by constricting migration corridor to between array and shore or by forcing the whales to swim into deeper waters, increased metabolic energy costs and delays in reaching the destinations, and interrupting feeding by blocking access to benthic areas under arrays. The literature search focused on identifying published studies that could provide information to evaluate these concerns. The results were developed into a case study that evaluated the potential effects of the placement of wave parks in coastal waters along the migration route of the gray whale. Wave parks and other MHK arrays may have additional effects on gray whales and other marine mammals, including entanglement in mooring lines and interference with communications among other effects, that were not included in this case study. The case study results were rewritten into a simpler form that would be suitable for placement on a web blog

Kropp, Roy K.

2011-09-30T23:59:59.000Z

228

Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy  

Science Conference Proceedings (OSTI)

Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

2011-09-30T23:59:59.000Z

229

Sudden freeze-out vs continuous emission: duality in hydro-kinetic approach to A+A collisions  

E-Print Network (OSTI)

The problem of spectra formation in hydrodynamic approach to A+A collisions is discussed. It is analyzed in terms of the two different objects: distribution and emission functions. We show that though the process of particle liberation, described by the emission function, is, usually, continuous in time, the observable spectra can be also expressed by means of the Landau/Cooper-Frye prescription. We argue that such an approximate duality results from some symmetry properties that systems in A+A collisions reach to the end of hydrodynamic evolution and reduction of the collision rate at post hydrodynamic stage

S. V. Akkelin; M. S. Borysova; Yu. M. Sinyukov

2004-03-26T23:59:59.000Z

230

The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines  

Science Conference Proceedings (OSTI)

Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

2012-11-28T23:59:59.000Z

231

QuikSCAT Satellite Comparisons with Nearshore Buoy Wind Data off the U.S. West Coast  

Science Conference Proceedings (OSTI)

To determine the accuracy of nearshore winds from the QuikSCAT satellite, winds from three satellite datasets (scientifically processed swath, gridded near-real-time, and gridded science datasets) were compared to those from 12 nearshore and 3 ...

Mark H. Pickett; Wenqing Tang; Leslie K. Rosenfeld; Carlyle H. Wash

2003-12-01T23:59:59.000Z

232

Mean Dynamic Topography of the Ocean Derived from Satellite and Drifting Buoy Data Using Three Different Techniques  

Science Conference Proceedings (OSTI)

Presented here are three mean dynamic topography maps derived with different methodologies. The first method combines sea level observed by the high-accuracy satellite radar altimetry with the geoid model of the Gravity Recovery and Climate ...

Nikolai Maximenko; Peter Niiler; Luca Centurioni; Marie-Helene Rio; Oleg Melnichenko; Don Chambers; Victor Zlotnicki; Boris Galperin

2009-09-01T23:59:59.000Z

233

Comparison of Synthetic Aperture Radar–Derived Wind Speeds with Buoy Wind Speeds along the Mountainous Alaskan Coast  

Science Conference Proceedings (OSTI)

Satellite-borne synthetic aperture radar (SAR) offers the potential for remotely sensing surface wind speed both over the open sea and in close proximity to the coast. The resolution improvement of SAR over scatterometers is of particular ...

C. M. Fisher; G. S. Young; N. S. Winstead; J. D. Haqq-Misra

2008-05-01T23:59:59.000Z

234

A Spar Buoy for High-Frequency Wave Measurements and Detection of Wave Breaking in the Open Ocean  

Science Conference Proceedings (OSTI)

Waves and wave breaking play a significant role in the air–sea exchanges of momentum, sea spray aerosols, and trace gases such as CO2, but few direct measurements of wave breaking have been obtained in the open ocean (far from the coast). This ...

Robin W. Pascal; Margaret J. Yelland; Meric A. Srokosz; Bengamin I. Moat; Edward M. Waugh; Daniel H. Comben; Alex G. Cansdale; Mark C. Hartman; David G. H. Coles; Ping Chang Hsueh; Timothy G. Leighton

2011-04-01T23:59:59.000Z

235

Large Scale, Low Frequency Variability of the 1979 FGGE Surface Buoy Drifts and Winds over the Southern Hemisphere  

Science Conference Proceedings (OSTI)

The surface response of the Southern Hemisphere's oceans to the large spatial scale, interseasonal changes in wind forcing during the FGGE year of 1979 is investigated. The primary data are the analyzed daily wind fields, and the trajectories of ...

W. G. Large; H. Van Loon

1989-02-01T23:59:59.000Z

236

Comparison of Buoy-Mounted 75-kHz Acoustic Doppler Current Profilers with Vector-Measuring Current Meters  

Science Conference Proceedings (OSTI)

Long time series of atmospheric parameters and limited oceanographic parameters such as near-surface temperature and wave statistics have been available for some time. There is, however, a need for similar observations of currents in the coastal ...

Clinton Winant; Theodore Mettlach; Sigurd Larson

1994-10-01T23:59:59.000Z

237

* Corresponding author. Tel.: #852-2788-7831; fax: #852-2788-7830. E-mail address: peter.yu@cityu.edu.hk (K.N. Yu)  

E-Print Network (OSTI)

lightweight concrete in the building industry (Yu, Guan, Liu, Young, 0265-931X/99/$- see front matter 1999 materials were wall paper, plaster, ceramic mosaics and glazed ceramic. It was found that some covering

Yu, K.N.

238

* Corresponding author. Tel.: #852-2788-7812; fax: #852-2788-7830. E-mail address: peter.yu@cityu.edu.hk (K.N. Yu)  

E-Print Network (OSTI)

. Radiological Assessment: A Textbook on Environmental Dose Analysis. NUREG/CR-3332. U.S. Nu- clear Regulatory

Yu, K.N.

239

Idaho National Laboratory - Hydropower Program: Bibliography  

NLE Websites -- All DOE Office Websites (Extended Search)

Aspects General Environmental Research Hydrokinetic & Wave Technologies Hydropower Facts Research and Development Resource Assessment Technology Transfer Virtual...

240

OES-IA Annex IV: Environmental Effects of Marine and Hydrokinetic Devices - Report from the Experts’ Workshop September 27th – 28th 2010 Clontarf Castle, Dublin Ireland  

SciTech Connect

An experts' workshop was convened in Dublin Ireland September 27th – 28th 2010 in support of IEA Ocean Energy Systems Implementing Agreement Annex IV. PNNL was responsible for organizing the content of the workshop, overseeing the contractors (Irish Marine Institute) hosting the event, presenting material on Annex IV and materials applicable to the workshop intent. PNNL is also overseeing a contractor (Wave Energy Center/University of Plymouth – WEC/UP) in the collection and analysis of the Annex IV data. Fifty-eight experts from 8 countries attended the workshop by invitation, spending two days discussing the needs of Annex IV. Presentations by DOE (background on Annex IV), PNNL (process for developing Annex IV; presentation of the draft database for PNNL project, plans for incorporating Annex IV data), WEC/UP on the environmental effect matrix, and four MHK developers (two from the UK, one from Ireland and one from Sweden; each discussing their own projects and lessons learned for measuring and mitigating environmental effects, as well as interactions with consenting [permitting] processes) helped provide background. The workshop participants worked part of the time in the large group and most of the time in four smaller breakout groups. Participants engaged in the process and provided a wealth of examples of MHK environmental work, particularly in the European nations. They provided practical and actionable advice on the following: • Developing the Annex IV database, with specific uses and audiences • Strong consensus that we should collect detailed metadata on available data sets, rather than attempting to draw in copious datasets. The participants felt there would then be an opportunity to then ask for specific set of data as needed, with specific uses and ownership of the data specified. This is particularly important as many data collected, particularly in Europe but also in Canada, are proprietary; developers were not comfortable with the idea of handing over all their environmental effects data, but all said they would entertain the request if they specifics were clear. • The recommendation was to collect metadata via an online interactive form, taking no more than one hour to complete. • Although the idea of cases representing the “best practices” was recognized as useful, the participants pointed out that there are currently so few MHK projects in the water, that any and all projects were appropriate to highlight as “cases”. There was also discomfort at the implication that “best practices” implied “lesser practices”; this being unhelpful to a new and emerging industry. • Workshop participants were asked if they were willing to continue to engage in the Annex IV process; all expressed willingness. The workshop was successful in adequately addressing its objectives and through participation and interaction in the breakout sessions around the various topics. As a result of the workshop, many delegates are now better informed and have a greater understanding of the potential environmental effects of MHK devices on the marine environment. There is now a greater sense of understanding of the issues involved and consensus by those regulators, developers and scientists who attended the workshop. A strong network has also been built over the two days between European and US/Canadian technical experts in wave and tidal energy.

Copping, Andrea E.; O'Toole, Michael J.

2010-12-02T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.  

SciTech Connect

This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake [Oregon State University, Corvallis, OR

2013-05-01T23:59:59.000Z

242

Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.  

Science Conference Proceedings (OSTI)

This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake [Oregon State University, Corvallis, OR

2013-05-01T23:59:59.000Z

243

Validation of the ATSR Reprocessing for Climate (ARC) Dataset Using Data from Drifting Buoys and a Three-Way Error Analysis  

Science Conference Proceedings (OSTI)

The Along-Track Scanning Radiometer (ATSR) Reprocessing for Climate (ARC) project aims to create an independent climate data record of sea surface temperatures (SSTs) covering recent decades that can be used for climate change analysis. Here, the ...

Katie Lean; Roger W. Saunders

2013-07-01T23:59:59.000Z

244

Available online at www.sciencedirect.com RNA dynamics: it is about time  

E-Print Network (OSTI)

regulatory role in the cell (Grundy and Henkin, 2006; Schroeder et al., 2004; Tucker and Breaker, 2005; Ying+1 2c Fk 2c Fk 1c Hk 2 Hk 1 Fk+1 1c Hk+1 2 Jk Hk+1 1 (a) kbody body k+1 Fk 1c Hk 1 Hk+1 2 Fk+1 2c (b. 12, 655­666. Tucker, B., and Breaker, R. (2005). Riboswitches as versatile gene control elements

Walter, Nils G.

245

Maryland | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Production Tax Credit (Corporate) Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic,...

246

Maryland | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit (Personal) Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid...

247

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit (Corporate) Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid...

248

Interproject Service AB | Open Energy Information  

Open Energy Info (EERE)

Interproject Service AB Jump to: navigation, search Name Interproject Service AB Sector Marine and Hydrokinetic Website http:www.ips-ab.com Region Sweden LinkedIn Connections...

249

Clean Energy Production Tax Credit (Corporate)  

Energy.gov (U.S. Department of Energy (DOE))

Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources. Eligible biomass...

250

Clean Energy Production Tax Credit (Personal)  

Energy.gov (U.S. Department of Energy (DOE))

Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources. Eligible biomass...

251

Before the House Science and Technology Subcommittee on Energy and Environment  

Energy.gov (U.S. Department of Energy (DOE))

Subject: Marine and Hydrokinetic Energy Technology: Finding the Path to Commercialization By: Jacques Beaudry-Losique, Deputy Assistant Secretary for Renewable Energy

252

Offshore Islands Ltd | Open Energy Information  

Open Energy Info (EERE)

Islands Ltd Jump to: navigation, search Name Offshore Islands Ltd Sector Marine and Hydrokinetic Website http:http:www.offshoreisla Region United States LinkedIn Connections...

253

Offshore Infrastructure Associates Inc | Open Energy Information  

Open Energy Info (EERE)

Infrastructure Associates Inc Jump to: navigation, search Name Offshore Infrastructure Associates Inc Sector Marine and Hydrokinetic Website http:http:www.offinf.com Region...

254

Uppsala University Division for Electricity | Open Energy Information  

Open Energy Info (EERE)

Division for Electricity Jump to: navigation, search Name Uppsala University Division for Electricity Sector Marine and Hydrokinetic Website http:www.el.angstrom.uu.sef Region...

255

Alison Labonte | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alison Labonte About Us Alison Labonte - Marine and Hydrokinetic Technology Manager Most Recent Ocean Energy Projects Developing On and Off America's Shores January 22...

256

Green Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Inc Jump to: navigation, search Name Green Energy Industries Inc Sector Marine and Hydrokinetic Website http:http:www.gecorpusa.co Region United States...

257

Green Cat Renewables | Open Energy Information  

Open Energy Info (EERE)

Green Cat Renewables Jump to: navigation, search Name Green Cat Renewables Sector Marine and Hydrokinetic Website http:http:www.greencatrene Region Scotland LinkedIn...

258

Green Wave Energy Corp GWEC | Open Energy Information  

Open Energy Info (EERE)

Green Wave Energy Corp GWEC Jump to: navigation, search Name Green Wave Energy Corp GWEC Sector Marine and Hydrokinetic Website http:http:greenwaveenergyc Region United States...

259

Green Ocean Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Ocean Wave Energy Jump to: navigation, search Name Green Ocean Wave Energy Sector Marine and Hydrokinetic Website http:http:www.greenoceanwa Region United States LinkedIn...

260

Green Heat Solutions Limited | Open Energy Information  

Open Energy Info (EERE)

Heat Solutions Limited Jump to: navigation, search Name Green Heat Solutions Limited Sector Marine and Hydrokinetic Website http:http:www.greenheating Region Scotland LinkedIn...

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CFC Photo Gallery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Energy 101: Concentrating Solar Power Science Lecture: Talking the Higgs Boson with Dr. Joseph Incandela Energy 101: Marine and Hydrokinetic Energy Energy 101:...

262

Renewable Portfolio Standard (Massachusetts) | Open Energy Information  

Open Energy Info (EERE)

or waste from agricultural crops, food or vegetative material, energy crops, algae, biogas, liquid biofuels;** marine or hydrokinetic energy; and geothermal energy....

263

Tidal Hydraulic Generators Ltd | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Generators Ltd Jump to: navigation, search Name Tidal Hydraulic Generators Ltd Address 14 Thislesboon Drive Place Mumbles Zip SA3 4HY Sector Marine and Hydrokinetic Phone...

264

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources....

265

Wave Dragon  

NLE Websites -- All DOE Office Websites (Extended Search)

Overtopping Wave Devices Wave Dragon ApSLtd HWETTEI - Workshop October 26-28, 2005, Washington, DC Hydrokinetic Technologies Technical and Environmental Issues Workshop the Wave...

266

Pelagic Power AS | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Pelagic Power AS Address LIV bygget Place Vanvikan Zip N-7125 Sector Marine and Hydrokinetic Website http:www.pelagicpower.com Region Norway...

267

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-010572: Categorical Exclusion Determination Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems CX(s) Applied: B3.6 Date: 02042013...

268

CX-000900: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-000900: Categorical Exclusion Determination An Assessment of Projected Life-Cycle Cost for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power in the...

269

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources....

270

Microsoft PowerPoint - Sale at SWPA workshop June-09 v3mjs.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

to reestablish a water power program: - EPAct 2005 addressed both conventional hydro (CH) plus marine and hydrokinetic technologies (MHK) - EISA 2007 emphasizing MHK * 10...

271

Marine Hydroelectric Company | Open Energy Information  

Open Energy Info (EERE)

Marine Hydroelectric Company Jump to: navigation, search Name Marine Hydroelectric Company Address 24040 Camino Del Avion A 107 Place Monarch Beach Sector Marine and Hydrokinetic...

272

Atlantisstrom | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Atlantisstrom Sector Marine and Hydrokinetic Website http:http:www.atlantisstro Region Germany LinkedIn Connections CrunchBase Profile No...

273

Modeling options for Current Energy Convertor Systems and Associated...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Associated Challenges Marine and Hydrokinetic Instrumentation, Measurement & Computer Modeling Workshop Allie Cribbs Ocean Engineer Ecomerit Technologies, LLC July 10 th ,...

274

Congeneration Technologies | Open Energy Information  

Open Energy Info (EERE)

Name Congeneration Technologies Sector Marine and Hydrokinetic Website http:www.cogeneration.net Region United States LinkedIn Connections CrunchBase Profile No CrunchBase...

275

Teamwork Technology See Tocardo | Open Energy Information  

Open Energy Info (EERE)

Teamwork Technology See Tocardo Jump to: navigation, search Name Teamwork Technology See Tocardo Sector Marine and Hydrokinetic Website http:http:www.tocardo.com Region...

276

Chevron Technology Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

Chevron Technology Ventures LLC Jump to: navigation, search Name Chevron Technology Ventures LLC Address 3901 Briarpark Drive Place Houston Zip 77042 Sector Marine and Hydrokinetic...

277

Energy Information Administration  

U.S. Energy Information Administration (EIA)

New hydrokinetic energy technologies that generate electricity by harnessing the energy from ocean waves, tides, and river currents are advancing toward commercial ...

278

Norwegian University of Science and Technology CONWEC AS | Open...  

Open Energy Info (EERE)

Name Norwegian University of Science and Technology CONWEC AS Address Department of Physics Realfagbygget Place Trondheim Zip N-7491 Sector Marine and Hydrokinetic Website...

279

RECIPIENT:Dehlsen Associates STATE: CA PROJECT TITLE:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATE: CA PROJECT TITLE: Marine & Hydrokinetic Energy System Development of the Aquantis 2.5MW Ocean-Current Electricity Generation Device Funding Opportunity Announcement...

280

Category:Sectors | Open Energy Information  

Open Energy Info (EERE)

Biofuels Biomass Buildings C Carbon E Efficiency G Geothermal energy H Hydro Hydrogen M Marine and Hydrokinetic O Ocean R Renewable Energy S Services Solar V Vehicles W...

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ical-exclusion-determination Download CX-005561: Categorical Exclusion Determination Underwater Active Acoustic Monitoring Support for Marine Hydrokinetic Energy Projects CX(s)...

282

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable 3. Near-isothermal 4. Liquid Air Energy Storage 5. Transportable CAES 6. Underwater CAES 7. Other: Adsorption Enhanced 8. Other: Hydrokinetic 9. Other: Vehicle...

283

Wavebob | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Wavebob Address H3 Maynooth Business Campus Place Maynooth Sector Marine and Hydrokinetic Phone number +353 (0)1 651 0177 Website http:...

284

Aquaphile sarl Hydro Gen | Open Energy Information  

Open Energy Info (EERE)

Aquaphile sarl Hydro Gen Jump to: navigation, search Name Aquaphile sarl Hydro Gen Address 210 Le Vrennic Place Landda Zip 29870 Sector Marine and Hydrokinetic Phone number...

285

FEMP Renewable Energy Project Assistance Application  

NLE Websites -- All DOE Office Websites (Extended Search)

considered (select all that apply) Solar PV Solar (other) Wind Biomass Incremental Hydro Hydrokinetic Ocean Geothermal Waste-to-energy Other: ...

286

Name Address Place Zip Sector Product Stock Symbol Year founded...  

Open Energy Info (EERE)

Coordinates Region ABS Alaskan Inc Van Horn Rd Fairbanks Alaska Gateway Solar Wind energy Marine and Hydrokinetic Solar PV Solar thermal Wind Hydro Small scale wind turbine...

287

HYDROMATRIX? Product Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential and Known Environmental Concerns Low Impact Hydro at Existing Structures Presentation at Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues...

288

User:GregZiebold/Sector test | Open Energy Information  

Open Energy Info (EERE)

types for Companies: Bioenergy Biofuels Biomass Buildings Carbon Efficiency Geothermal energy Hydro Hydrogen Marine and Hydrokinetic Ocean Renewable Energy Services Vehicles...

289

HYDROMATRIX? Product Information  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 VA TECH HYDRO Presentation at Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop October 26-28, 2005 Alexander Bihlmayer Innovative...

290

Voith Hydro Wavegen Limited | Open Energy Information  

Open Energy Info (EERE)

Voith Hydro Wavegen Limited Jump to: navigation, search Name Voith Hydro Wavegen Limited Sector Marine and Hydrokinetic Website http:www.wavegen.co.uk Region United Kingdom...

291

Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

Science Conference Proceedings (OSTI)

Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

2011-09-30T23:59:59.000Z

292

Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices; Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2012 Progress Report  

SciTech Connect

A literature search was conducted by using the Web of Science® databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on seabirds and fish. Several relatively recent general review articles that included possible effects on seabirds and fish were examined to begin the search process. From these articles, several general topics of potential environmental effects on seabirds and fish were derived. These topics were used as the primary search factors. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that the potential effects frequently w

Kropp, Roy K.

2013-01-01T23:59:59.000Z

293

OPT's Reedsport Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 Single PowerBuoy and DOE Project The scope of the DOE Reedsport Deployment and Ocean Test project (DE-EE0003646) is the installation of a single autonomous PowerBuoy at...

294

Finding of No Significant Impacts  

NLE Websites -- All DOE Office Websites (Extended Search)

PowerBuoys attached to seabed anchors, tendon lines, subsurface floats, catenary mooring lines, and subsea transmission line. The PowerBuoy units would be deployed in an array of...

295

Vertical Circulation Revealed by Diurnal Heating of the Upper Ocean in Late Winter. Part II: Modeling  

Science Conference Proceedings (OSTI)

A heat budget for observations at current meters in the mixing layer beneath a freely drifting spar buoy showed that the buoy must be in a convergence zone, where transport of warm water downwards enhances the diurnal heating effect. The ...

Karen J. H. Thomas

1989-03-01T23:59:59.000Z

296

Statistics of Breaking Waves Observed as Whitecaps in the Open Sea  

Science Conference Proceedings (OSTI)

Conventional observations of waves carried out with a buoy in open sea conditions were supplemented with simultaneous visual observations of whitecaps to identify breaking events in the buoy records. A statistical wave-by-wave analysis of these ...

L. H. Holthuijsen; T. H. C. Herbers

1986-02-01T23:59:59.000Z

297

Preliminary Results from Long-Term Measurements of Atmospheric Moisture in the Marine Boundary Layer in the Gulf of Mexico*  

Science Conference Proceedings (OSTI)

Measurements of boundary layer moisture have been acquired from Rotronic MP-100 sensors deployed on two National Data Buoy Center (NDBC) buoys in the northern Gulf of Mexico from June through November 1993. For one sensor that was retrieved ...

Laurence C. Breaker; David B. Gilhousen; Lawrence D. Burroughs

1998-06-01T23:59:59.000Z

298

NOTICE OF DECISION BY THE CALIFORNIA ENERGY COMMISSION To: California Resources Agency  

E-Print Network (OSTI)

of the 2012 Regular Session has requested LADOTD to study the effects of hydrokinetic turbines as hydrokinetic power, through the installation of turbines on riverbeds, bridge piers, or beneath barges there are about 82 permits to install such turbines in different locations in the United States with 43 of those

299

UEK Corporation | Open Energy Information  

Open Energy Info (EERE)

UEK Corporation UEK Corporation Jump to: navigation, search Name UEK Corporation Place Annapolis, Maryland Zip 21403 Sector Hydro, Ocean Product Annapolis-based developer & manufacturer of hydro-kinetic turbines to harness river, tidal and ocean currents. References UEK Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Atchafalaya River Hydrokinetic Project II Chitokoloki Project Coal Creek Project Half Moon Cove Tidal Project Indian River Tidal Hydrokinetic Energy Project Luangwa Zambia Project Minas Basin Bay of Fundy Commercial Scale Demonstration Old River Outflow Channel Project Passamaquoddy Tribe Hydrokinetic Project

300

Name Address Place Zip Sector Product Stock Symbol Year founded Number  

Open Energy Info (EERE)

Address Place Zip Sector Product Stock Symbol Year founded Number Address Place Zip Sector Product Stock Symbol Year founded Number of employees Number of employees Telephone number Website Coordinates Region ABS Alaskan Inc Van Horn Rd Fairbanks Alaska Gateway Solar Wind energy Marine and Hydrokinetic Solar PV Solar thermal Wind Hydro Small scale wind turbine up to kW and solar systems distributor http www absak com United States AER NY Kinetics LLC PO Box Entrance Avenue Ogdensburg Marine and Hydrokinetic United States AW Energy Lars Sonckin kaari Espoo FI Marine and Hydrokinetic http www aw energy com Finland AWS Ocean Energy formerly Oceanergia Redshank House Alness Point Business Park Alness Ross shire IV17 UP Marine and Hydrokinetic http www awsocean com United Kingdom Able Technologies Audubon Road Englewood Marine and Hydrokinetic http

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Conic separation of finite sets  

E-Print Network (OSTI)

fashion in a number of areas of applied mathematics. There is ...... The combination of (51) and the above inequality ensures that h(k+1) < h(k) ? ?, that is

302

Under consideration for publication in Theory and Practice of Logic Programming 1 Temporalized logics and automata  

E-Print Network (OSTI)

protection systems are passive devices such as fuses, overload relays, and circuit breakers to protect is for even-numbered elements of fn, whereas Hk is for odd-number elements of fn. Gk and Hk can be computed

Franceschet, Massimo

303

C o l l e g e o f A g r i C u lt u r A l S C i e n C e S P E N N S Y L V A N I A 2 0 1 2 2 0 1 3  

E-Print Network (OSTI)

acknowledged. References Bakshi, H.K. 1950. Fungi associated with ambrosia beetles in Great Britain. Trans. Hr

Guiltinan, Mark

304

Comparison of ground motion attributes from 2011 Tohoku-oki mainshock and two subsequent events  

E-Print Network (OSTI)

H Ogawa, K Irikura, HK Thio, PG Somerville, Y Fukushima, andY Fukushima (2006). Attenuation relations of strong ground

2013-01-01T23:59:59.000Z

305

On the (Im)Possibility of Key Dependent Encryption Iftach Haitner  

E-Print Network (OSTI)

, queries h(k ), encrypt this with k itself, and gives the resulting ciphertext to Breaker. We prove for every key. In this case, Breaker finds a key k such that fk,r (h(k)) = c, where f is the pseudorandom given by Halevi and Krawczyk [HK07]), is that Breaker as defined above does not seem to give useful

International Association for Cryptologic Research (IACR)

306

Introduction to Ocean Waves Rick Salmon  

E-Print Network (OSTI)

Kong bjiang@cs.hku.hk W. K. Chan City University of Hong Kong Tat Chee Avenue, Hong Kong wkchan@cs.cityu.edu.hk T. H. Tse The University of Hong Kong Pokfulam, Hong Kong thtse@cs.hku.hk Abstract--An effective [14], further uses a tie- breaker to resolve statements having the same suspiciousness values so

Salmon, Rick

307

Int. Symp. on Shallow Flows, Iowa City, USA, June 4 -6, 2012 A Hamiltonian Boussinesq model with horizontally sheared currents  

E-Print Network (OSTI)

as tie-breakers for students in the borderline with exactly the same total score in their DSE resultsHKALE results ## Scholarship amount (HK$)Scholarship amount (HK$) Grade A in at least 2AL subjects-rounded Education #12;#12;http://www.scifac.hku.hk/community/enrichment/jsi http://www.facebook.com/jsi.hku #12;www

Al Hanbali, Ahmad

308

Resonances in long time integration of semi linear Hamiltonian PDEs  

E-Print Network (OSTI)

- surements, status information, and circuit-breaker signals to and from Remote Terminal Units (RTUs phase angles from power ows measure- ments z, ^xk+1 = ^xk + (HT k R-1 Hk)-1 HT k R-1 (z - h(^xk )), (4) where ^xk Rn , k denotes iteration number, and Hk is the Jacobian evaluated at ^xk , Hk := h x (^xk

Faou, Erwan

309

12-3-09_Beaudry-Losique_Final_testimony.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

JACQUES BEAUDRY-LOSIQUE DEPUTY ASSISTANT SECRETARY FOR RENEWABLE ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY U.S. DEPARTMENT OF ENERGY BEFORE THE COMMITTEE ON SCIENCE AND TECHNOLOGY SUBCOMMITTEE ON ENERGY AND ENVIRONMENT U.S. HOUSE OF REPRESENTATIVES HEARING EXAMINING MARINE AND HYDROKINETIC ENERGY TECHNOLOGY: FINDING THE PATH TO COMMERCIALIZATION DECEMBER 3, 2009 Chairman Baird, Ranking Member Inglis, Members of the Committee, thank you for the opportunity to appear before you today to discuss the U.S. Department of Energy's Water Power Program and its activities related to marine and hydrokinetic energy generation technologies. The global marine and hydrokinetic industry consists of energy extraction technologies

310

Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics  

SciTech Connect

In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

Yang, Zhaoqing; Wang, Taiping

2011-09-01T23:59:59.000Z

311

E3Tec service LLC | Open Energy Information  

Open Energy Info (EERE)

E3Tec service LLC Jump to: navigation, search Name E3Tec service LLC Sector Marine and Hydrokinetic Website http:http:www.crrc.unh.edu Region United States LinkedIn Connections...

312

Motor Wave Group | Open Energy Information  

Open Energy Info (EERE)

Wave Group Jump to: navigation, search Name Motor Wave Group Place Hong Kong Sector Marine and Hydrokinetic Website http:www.motorwavegroup.com Region China LinkedIn Connections...

313

Brandl Motor | Open Energy Information  

Open Energy Info (EERE)

Motor Jump to: navigation, search Name Brandl Motor Address Calvinstr 24 Place Berlin Zip 10557 Sector Marine and Hydrokinetic Phone number +49 30 39 48 06 38 Website http:http:...

314

MHK Technologies/Underwater Electric Kite Turbines | Open Energy  

Open Energy Info (EERE)

Underwater Electric Kite Turbines Underwater Electric Kite Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Underwater Electric Kite Turbines.jpg Technology Profile Primary Organization UEK Corporation Project(s) where this technology is utilized *MHK Projects/Atchafalaya River Hydrokinetic Project II *MHK Projects/Chitokoloki Project *MHK Projects/Coal Creek Project *MHK Projects/Half Moon Cove Tidal Project *MHK Projects/Indian River Tidal Hydrokinetic Energy Project *MHK Projects/Luangwa Zambia Project *MHK Projects/Minas Basin Bay of Fundy Commercial Scale Demonstration *MHK Projects/Passamaquoddy Tribe Hydrokinetic Project *MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project *MHK Projects/UEK Yukon River Project Technology Resource

315

Ocean Energy Company LLC | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Company LLC Address 505 Fifth Ave 800 Place Des Moines Zip 50309-2426 Sector Marine and Hydrokinetic Year founded 2011 Phone number (515) 246-1500 Region United States...

316

Ocean Wave Wind Energy Ltd OWWE | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Ltd OWWE Jump to: navigation, search Name Ocean Wave Wind Energy Ltd OWWE Sector Marine and Hydrokinetic Website http:www.owwe.net Region Norway LinkedIn Connections...

317

Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Ltd Address 3 Casement Square Place Cobh Sector Marine and Hydrokinetic Phone number 00353-21-4816779 Website http:www.oceanenergy.ie Region Ireland LinkedIn...

318

Ocean Engineering and Energy Systems | Open Energy Information  

Open Energy Info (EERE)

and Energy Systems Jump to: navigation, search Name Ocean Engineering and Energy Systems Sector Marine and Hydrokinetic Website http:www.ocees.com Region United States LinkedIn...

319

Open Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Energy Ltd Jump to: navigation, search Name Open Ocean Energy Ltd Sector Marine and Hydrokinetic Website http:http:www.open-ocean-e LinkedIn Connections CrunchBase Profile No...

320

Poseidon Energy | Open Energy Information  

Open Energy Info (EERE)

Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now This company is listed in the Marine and Hydrokinetic Technology...

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wave Energy Centre | Open Energy Information  

Open Energy Info (EERE)

search Name Wave Energy Centre Address Wave Energy Centre Av Manuela da Maia 36 R C Dto Place Lisboa Zip 1000-201 Sector Marine and Hydrokinetic Phone number (+351) 21...

322

FRI EL Sea Power S r l | Open Energy Information  

Open Energy Info (EERE)

EL Sea Power S r l Jump to: navigation, search Name FRI EL Sea Power S r l Address Piazza del Grano 3 Place Bolzano Zip 39100 Sector Marine and Hydrokinetic Phone number +39 0471...

323

Renewable Energy Research | Open Energy Information  

Open Energy Info (EERE)

Research Jump to: navigation, search Name Renewable Energy Research Address 2113 C Boulevard St Regis Place Dollard des Ormeaux Zip H9B 2M9 Sector Marine and Hydrokinetic Year...

324

Sea for Life | Open Energy Information  

Open Energy Info (EERE)

Life Jump to: navigation, search Name Sea for Life Address Travessa da Paraventa Place n 1 Gaeiras Zip 2510 Sector Marine and Hydrokinetic Year founded 2007 Phone number (+ 351)...

325

Carmelo Vell n | Open Energy Information  

Open Energy Info (EERE)

Carmelo Vell n Jump to: navigation, search Name Carmelo Vell n Sector Marine and Hydrokinetic Region Spain LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one...

326

Kinetic Wave Power | Open Energy Information  

Open Energy Info (EERE)

Kinetic Wave Power Jump to: navigation, search Name Kinetic Wave Power Address 2861 N Tupelo St Place Midland Zip 48642 Sector Marine and Hydrokinetic Phone number 989-839-9757...

327

Water Wall Turbine | Open Energy Information  

Open Energy Info (EERE)

Wall Turbine Jump to: navigation, search Name Water Wall Turbine Sector Marine and Hydrokinetic Website http:www.wwturbine.com Region Canada LinkedIn Connections CrunchBase...

328

Aquantis Inc | Open Energy Information  

Open Energy Info (EERE)

Aquantis Inc Jump to: navigation, search Name Aquantis Inc Address 6340 Via Real Suite 8 Place Carpinteria Zip 93013 Sector Marine and Hydrokinetic Phone number 805.679.3072...

329

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Marine and Hydrokinetic Energy System Development of the Aquantis 2.5 Megawatt Ocean-Current Electricity Generation Device CX(s) Applied: A9, B3.6...

330

Free Flow 69 | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Free Flow 69 Address Unit 9 Windmill Ind Est Windmill Place Fowey Zip PL23 1HB Sector Marine and Hydrokinetic Phone number 01726 833337 Website...

331

Wind Waves and Sun | Open Energy Information  

Open Energy Info (EERE)

Waves and Sun Jump to: navigation, search Name Wind Waves and Sun Sector Marine and Hydrokinetic Website http:www.windwavesandsun.com Region United States LinkedIn Connections...

332

CX-009160: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy Projects CX(s) Applied: B3.3 Date: 09/24/2012 Location(s): Maine Offices(s): Golden Field Office

333

Daedalus Informatics Ltd | Open Energy Information  

Open Energy Info (EERE)

and Hydrokinetic Phone number +30 210 9643 355 Website http:www.daedalus.gr Region Greece LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now This...

334

CX-010572: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-010572: Categorical Exclusion Determination Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems CX(s) Applied: B3.6 Date: 02...

335

Wave Energy Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name Wave Energy Technologies Inc Address 270 Sandy Cove Rd Place Ketch Harbour Zip B3V 1K9 Sector Marine and Hydrokinetic Website http:...

336

CONTENTS  

Science Conference Proceedings (OSTI)

... 6 can be obtained with little difficulty with this bridge. ... position of the buoy and the support coil, and ... induced motion of a solid in partially filled pipes. ...

2003-07-03T23:59:59.000Z

337

MHK Projects/US Navy Wave Energy Technology WET Program at Marine...  

Open Energy Info (EERE)

of Devices Deployed 6 Number of Build Out Units Deployed 7 Main Overseeing Organization Ocean Power Technologies Project Technology *MHK TechnologiesPowerBuoy Project Timeline and...

338

Posters Comparison Between General Circulation Model Simulation...  

NLE Websites -- All DOE Office Websites (Extended Search)

triangulation interpolation. For the GCM simulation, the monthly mean surface latent heat flux is sampled at the grid points closest to the buoy sites, then interpolated the...

339

Teaching Estuarine Hydrology with Online Data  

E-Print Network (OSTI)

2007). Diurnal wind variation offshore can be up to 30 mph (Mean annual wind speed at an offshore buoy and in the delta

Schoellhamer, David H.

2009-01-01T23:59:59.000Z

340

Ken Talley  

Science Conference Proceedings (OSTI)

... Employment History: 1989-1999 NIST-Microwave Metrology Lab. 1999-2010 SAIC/NOAA Electronic tech on weather buoys. Education: ...

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Method and apparatus for production of subsea hydrocarbon formations  

DOE Patents (OSTI)

A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external flotation tanks located below the water surface. The surface buoy is secured to the sea bed by one or more tendons which are anchored to a foundation with piles imbedded in the sea bed. The system accommodates multiple versions on the surface buoy configuration. 20 figures.

Blandford, J.W.

1995-01-17T23:59:59.000Z

342

Method and apparatus for production of subsea hydrocarbon formations  

DOE Patents (OSTI)

A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external floatation tanks located below the water surface. The surface buoy is secured to the seabed by one or more tendons which are anchored to a foundation with piles imbedded in the seabed. The system accommodates multiple versions on the surface buoy configuration.

Blandford, Joseph W. (15 Mott La., Houston, TX 77024)

1995-01-01T23:59:59.000Z

343

MITIGATED FINDING OF NO SIGNIFICANT IMPACT OREGON STATE UNIVERSITY...  

NLE Websites -- All DOE Office Websites (Extended Search)

The TRIAXYS(tm) wave measurement buoy will weigh approximately 440 pounds (220 kilograms), including batteries. It will measure approximately 3 feet (0.9 meter) in diameter...

344

Key changes in 2010 data collection cycle for Form EIA?860  

U.S. Energy Information Administration (EIA)

Distinguish the reporting of offshore wind turbines (WS). Modified Part B line 14 to allow number of Buoys or Inverters in array application similar to wind.

345

Letter Spirit part two: Modeling Creativity  

E-Print Network (OSTI)

) is Breaker's win. We distinguish between the same two cases as before. Case 1: r Hk · m. Note that for 1 i i=1 (Hk · m - Hk-i · m) = km , and thus Breaker wins by the induction hypothesis. If, on the other might vary in size. The game is played by two players, Maker and Breaker. Maker claims m board elements

Indiana University

346

Treatment of Light Metal Wastes - TMS  

Science Conference Proceedings (OSTI)

... for the Treatment and Minimization of Wastes: Treatment of Light Metal Wastes ... A Decade of Gestation: S. Street, G. Brooks and H.K. Worner, Materials Eng.

347

A dual Newton strategy for the efficient solution of sparse quadratic ...  

E-Print Network (OSTI)

The cost function on each stage consists of a positive definite second-order term 0 ? Hk ...... Control in Offshore Oil and Gas Production, Trondheim, Norway,.

348

National Diversity Under Pressure: Group Composition and Expedition Success inHimalayan Mountaineering  

E-Print Network (OSTI)

Processes, 103: 214-224. Makela, K. , H.K. Kalla, and R.information with colleagues (Makela, Kalla, and Piekkari,

Sherman, Eliot L.; Chatman, Jennifer A.

2013-01-01T23:59:59.000Z

349

Representing the "butterfly" projection in FITS - projection code XPH  

E-Print Network (OSTI)

The "butterfly" projection is constructed as the polar layout of the HEALPix projection with (H,K) = (4,3). This short article formalises its representation in FITS.

Calabretta, Mark R

2013-01-01T23:59:59.000Z

350

Circulation in the Bering Sea Basin Observed by Satellite-Tracked Drifters: 1986–1993  

Science Conference Proceedings (OSTI)

From 1986 through April 1993, 86 satellite-tracked buoys were deployed in the North Pacific and Bering Sea. Most of the buoys were drogued at 40 m. A composite current pattern is derived using these data. The two principal currents (the Alaskan ...

P. J. Stabeno; R. K. Reed

1994-04-01T23:59:59.000Z

351

The Surface Wave Environment In the GATE B/C Scale—Phase III  

Science Conference Proceedings (OSTI)

The surface wave environment in the GATE B/C scale is described from wave measurements made from buoys and aircraft during Phase III (September 1974). Particular emphasis is given to the wave measurements made from the pitch-roll buoy deployed in ...

V. Cardone; H. Carlson; J. A. Ewing; K. Hasselmann; S. Lazanoff; W. McLeish; D. Ross

1981-09-01T23:59:59.000Z

352

Wave Heights during Hurricane Katrina: An Evaluation of PPP and PPK Measurements of the Vertical Displacement of the GPS Antenna  

Science Conference Proceedings (OSTI)

In August 2005 the eye of Hurricane Katrina passed 49 n mi to the west of a 3-m discus buoy operated by the Central Gulf of Mexico Ocean Observing System (CenGOOS). Buoy motions were measured with a strapped-down 6 degrees of freedom ...

L. C. Bender III; S. D. Howden; D. Dodd; N. L. Guinasso Jr.

2010-10-01T23:59:59.000Z

353

Gulf Stream Ring Trajectories  

Science Conference Proceedings (OSTI)

During the period 1976–78, the movement of 14 Gulf Stream rings, including two anticyclonic and 12 cyclonic rings, was measured with satellite-tracked free-drifting buoys. The buoys in the cyclonic rings showed a tendency to move out toward the ...

Philip L. Richardson

1980-01-01T23:59:59.000Z

354

Framework for Identifying Key Environmental Concerns in Marine Renewable Energy Projects- Appendices  

SciTech Connect

Marine wave and tidal energy technology could interact with marine resources in ways that are not well understood. As wave and tidal energy conversion projects are planned, tested, and deployed, a wide range of stakeholders will be engaged; these include developers, state and federal regulatory agencies, environmental groups, tribal governments, recreational and commercial fishermen, and local communities. Identifying stakeholders’ environmental concerns in the early stages of the industry’s development will help developers address and minimize potential environmental effects. Identifying important concerns will also assist with streamlining siting and associated permitting processes, which are considered key hurdles by the industry in the U.S. today. In September 2008, RE Vision consulting, LLC was selected by the Department of Energy (DoE) to conduct a scenario-based evaluation of emerging hydrokinetic technologies. The purpose of this evaluation is to identify and characterize environmental impacts that are likely to occur, demonstrate a process for analyzing these impacts, identify the “key” environmental concerns for each scenario, identify areas of uncertainty, and describe studies that could address that uncertainty. This process is intended to provide an objective and transparent tool to assist in decision-making for siting and selection of technology for wave and tidal energy development. RE Vision worked with H. T. Harvey & Associates, to develop a framework for identifying key environmental concerns with marine renewable technology. This report describes the results of this study. This framework was applied to varying wave and tidal power conversion technologies, scales, and locations. The following wave and tidal energy scenarios were considered: ? 4 wave energy generation technologies ? 3 tidal energy generation technologies ? 3 sites: Humboldt coast, California (wave); Makapu’u Point, Oahu, Hawaii (wave); and the Tacoma Narrows, Washington (tidal) ? 3 project sizes: pilot, small commercial, and large commercial The possible combinations total 24 wave technology scenarios and 9 tidal technology scenarios. We evaluated 3 of the 33 scenarios in detail: 1. A small commercial OPT Power Buoy project off the Humboldt County, California coast 2. A small commercial Pelamis Wave Power P-2 project off Makapu’u Point, Oahu, Hawaii 3. A pilot MCT SeaGen tidal project, sited in the Tacoma Narrows, Washington This framework document used information available from permitting documents that were written to support actual wave or tidal energy projects, but the results obtained here should not be confused with those of the permitting documents1. The main difference between this framework document and permitting documents of currently proposed pilot projects is that this framework identifies key environmental concerns and describes the next steps in addressing those concerns; permitting documents must identify effects, find or declare thresholds of significance, evaluate the effects against the thresholds, and find mitigation measures that will minimize or avoid the effects so they can be considered less-than-significant. Two methodologies, 1) an environmental effects analysis and 2) Raptools, were developed and tested to identify potential environmental effects associated with wave or tidal energy conversion projects. For the environmental effects analysis, we developed a framework based on standard risk assessment techniques. The framework was applied to the three scenarios listed above. The environmental effects analysis addressed questions such as: ? What is the temporal and spatial exposure of a species at a site? ? What are the specific potential project effects on that species? ? What measures could minimize, mitigate, or eliminate negative effects? ? Are there potential effects of the project, or species’ response to the effect, that are highly uncertain and warrant additional study? The second methodology, Raptools, is a collaborative approach useful for evaluating multiple characteristi

Sharon Kramer; Mirko Previsic; Peter Nelson; Sheri Woo

2010-06-17T23:59:59.000Z

355

ARM XDC Datastreams  

NLE Websites -- All DOE Office Websites (Extended Search)

StreamsTropical Atmosphere Ocean StreamsTropical Atmosphere Ocean from Buoys Documentation TAO Instrument External Datastream Descriptions ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Tropical Atmosphere Ocean from Buoys (TAO) Information updated on February 3, 2005, 3:19 pm GMT General Data Description These data files contain 2 minute average radiation and 10 minute average meteorology, precipitation, salinity and sea surface temperature data from the seven TAO buoys located on the 165E line (8n, 5n, 2n, 0n, 2s, 5s, 8s) of the TAO Buoy Array. The radiation data were obtained from TAO Array moorings through a collaborative effort between NOAA/PMEL/TAO and DOE/ARM. Data from these buoys are stored in monthly netCDF files that are generated

356

Offshore wind project surges ahead in South Carolina | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore wind project surges ahead in South Carolina Offshore wind project surges ahead in South Carolina Offshore wind project surges ahead in South Carolina October 12, 2010 - 10:00am Addthis Researchers pull buoys from waters off South Carolina's coast. The buoys collected wind speed measurements for the past year. | Photo courtesy of the Center for Marine and Wetland Studies Researchers pull buoys from waters off South Carolina's coast. The buoys collected wind speed measurements for the past year. | Photo courtesy of the Center for Marine and Wetland Studies Stephen Graff Former Writer & editor for Energy Empowers, EERE 6 buoys collected wind speeds off South Carolina coast Data collected helps determine possible location for an offshore wind farm DOE funded research for early stage of project In the parking lot of Coastal Carolina University's Center for Marine and

357

On Security Indices for State Estimators in Power Networks Henrik Sandberg, Andre Teixeira, and Karl H. Johansson  

E-Print Network (OSTI)

-Packard Labs, Filton Road, Stoke Gifford, Bristol BS12 6QZ, United Kingdom y ) e-mail: hfchau@hkusua.hku.hk z represents a major victory of quantum cryptanalysts (i.e., code-breakers) over quantum cryptographers (i quant- ph/9603015, to be published. [19] H.-K. Lo and H. F. Chau, Phys. Rev. Lett. 78, 3410 (1997). [20

Johansson, Karl Henrik

358

Continuous Box game Dan Hefetz  

E-Print Network (OSTI)

scores will be used as tie-breakers Other tie-breakers may be employed #12;FACULTY OF EDUCATIONFACULTY Contacts and useful links Admissions matters Faculty of Social Sciences Email : socsc@hkucc.hku.hk Telephone : 2859 2981 Programme matters Faculty of Education Email : edfac@hku.hk Telephone : 2219 4659 #12

Krivelevich, Michael

359

The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea  

E-Print Network (OSTI)

.3% Italian 46.5% 52.4% 5.9% Romanian 70.1% 73.2% 3.1% Table 2: Using simple tie-breakers in voting submitted under the label "Swat". The "Swat-HK" and "Swat HK-Bo" en- tries were submitted by Swarthmore

Cosgrove, Daniel J.

360

`-== TRANSACTIONS ON CIRCUITS' AND SYSTEMS, VOL. CAS-23,NO. 12, DECEMBER 1976 791lDOZ G. Guardabassi and A. Sangiovanni-Vincentelli, "A Two Levels  

E-Print Network (OSTI)

by training GIZA++ on multiple sources including the Foreign Broadcast Information Service (FBIS) corpus, HK News and HK Law, UN corpus, and Sinorama, et al [28]. The dictionary contains 126,320 English entries breaker to identify sentence boundaries in order to achieve sentence alignment. The breaker uses

Gross, George

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

553.ps  

E-Print Network (OSTI)

with penalty term. .... global convergence, filter methods evaluate the quality of a search direction ... below, and (hk;fk) is entered to the filter, it follows that hk ! 0. ... Enter restoration phase to find a point xk acceptable to the filter Fk such that.

362

Evaluation and Testing of ABB Circuit Breakers with Mobilgrease 28  

Science Conference Proceedings (OSTI)

The information in this document is intended to assist plants in evaluating the use of Mobilgrease 28 in ABB K-Line and HK circuit breakers and determining the maintenance intervals of these circuit breakers. The information in this document is applicable to both ABB K-Line and HK (air-blast) circuit breakers.

2001-10-30T23:59:59.000Z

363

CX-002452: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

452: Categorical Exclusion Determination 452: Categorical Exclusion Determination CX-002452: Categorical Exclusion Determination Assessment of the Environmental Effects of Hydrokinetic Turbines on Fish CX(s) Applied: B3.3 Date: 06/02/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Electric Power Research Institute (EPRI) is proposing to use Department of Energy and cost-share funding to conduct research activities to determine injury and survival rates for fish passing through hydrokinetic turbines. Research would be accomplished by: (1) Conducting a review of existing information on injury mechanisms associated with fish passage through conventional hydro turbines and determine its relevance and applicability to fish passage through hydrokinetic turbines; (2) Developing theoretical

364

Microsoft Word - FINAL Hydro Workshop Proceedings - Rev. 1 - FINAL.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Proceedings Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop October 26-28, 2005 Washington, D.C. Sponsored by: U.S. Department of Energy OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY Wind and Hydropower Technologies Program March 24, 2006 To access this document and presentations made at the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop visit: http://hydropower.inl.gov/hydrokinetic_wave/ The production of this document was supported by the National Renewable Energy Laboratory under the subcontract YAM-4-33-217-01. Financial support by the National Renewable Energy Laboratory and the Department of Energy does not constitute an endorsement by these

365

Calling All Coders: Help Advance America's Ocean Power Industry |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling All Coders: Help Advance America's Ocean Power Industry Calling All Coders: Help Advance America's Ocean Power Industry Calling All Coders: Help Advance America's Ocean Power Industry December 10, 2013 - 3:57pm Addthis The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder Alison LaBonte Marine and Hydrokinetic Technology Manager Brooke White Oceanographer, Water Power Program

366

EA-1890: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact EA-1890: Finding of No Significant Impact Reedsport PB150 Deployment and Ocean Test Project, Oregon The U.S. Department of Energy has selected Ocean Power Technologies (OPT) for approximately $2.4 million in financial assistance and proposes to authorize the expenditure of federal funding to OPT for the construction, deployment, and ocean testing of a single, full scale 150kW PB150 PowerBuoy. The funding would support Phase 1 of OPT's proposed 3-phase project. At the end of the Phase 1 period, the buoy would be retrieved, undergo maintenance, and be redeployed as part of Phase 2 activities. Phase 2 would consist of installing ten PowerBuoys and interconnections to the electrical power grid. In Phase 3, OPT plans to reapply to FERC to amend the 10-PowerBuoy license to allow expansion of the

367

MHK Technologies/Seahorse | Open Energy Information  

Open Energy Info (EERE)

Seahorse Seahorse < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Seahorse.jpg Technology Profile Primary Organization E CO Energi Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A main buoy on the surface and a submerged torpedo buoy are connected to the submerged generator unit by separate cords The wave motion will move the surface buoy up and down while the torpedo buoy will move in the opposite direction This rotates the permanent magnet generator and produces electricity The cords and the generator can be described as a two drum two cord system In this way two drums have different sizes for the two cords to get correct speeds and force

368

A System for Remote Measurements of the Wind Stress over the Ocean  

Science Conference Proceedings (OSTI)

The DISSTRESS system for remote measurements of the surface wind stress over the ocean from ships and buoys is described. It is fully digital, utilizing the inertial dissipation technique. Parallel processing allows anemometer data to be filtered ...

W. G. Large; J. A. Businger

1988-04-01T23:59:59.000Z

369

Comparisons of Daily Sea Surface Temperature Analyses for 2007–08  

Science Conference Proceedings (OSTI)

Six different SST analyses are compared with each other and with buoy data for the period 2007–08. All analyses used different combinations of satellite data [for example, infrared Advanced Very High Resolution Radiometer (AVHRR) and microwave ...

Richard W. Reynolds; Dudley B. Chelton

2010-07-01T23:59:59.000Z

370

Changes in the Low-Level Kinematic and Thermodynamic Structure of Hurricane Alicia (1983) at Landfall  

Science Conference Proceedings (OSTI)

Aircraft, land station, and buoy data were composited with respect to the center of Hurricane Alicia (1983) for three 8-h periods corresponding to prelandfall in the open Gulf of Mexico, landfall in the Galveston area, and postlandfall in the ...

Mark D. Powell

1987-01-01T23:59:59.000Z

371

Navy Catching Waves in Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii June 2, 2010 - 11:56am Addthis This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. To a casual observer, the buoy off the shore of Marine Corps Base Hawaii (MCBH) might look like nothing more than a bright yellow spot in a blue ocean. But this isn't an ordinary buoy - it's a small electrical generator, creating renewable electricity as it bobs up and down on the waves. It's also a test project by the U.S. Navy to see whether a wider

372

OPT's Reedsport Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPT's Reedsport Project OPT's Reedsport Project Summary of Licensing and Permitting As of April 13, 2011 Single PowerBuoy ® and DOE Project The scope of the DOE Reedsport Deployment and Ocean Test project (DE-EE0003646) is the installation of a single autonomous PowerBuoy at Reedsport, Oregon followed by two (2) years of operation in the Oregon Territorial Sea (TRL 7/8 Relevant Environment). Since the single PowerBuoy will not be grid connected, the lead Federal Agency for this effort is the U.S. Army Corps of Engineers. OPT filed a Joint Permit Application and draft Biological Assessment with the Corps and has secured the following permits and/or authorizations for the single PowerBuoy deployment which are posted on the DOE's NEPA EF1 website: o Corps Permit NWP-2007-62, which includes conditions from National Marine Fisheries

373

Working Group Reports A Short-Wave Radiometer Array Across  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Working Group Reports A Short-Wave Radiometer Array Across the Tropical Pacific Ocean as a Component of the TOGA-TAO Buoy Array R. M. Reynolds Brookhaven National Laboratory Upton, New York Introduction The purpose of this document is to bring together pertinent information concerning the NOAA TOGA-TAO buoy array so that a decision can be made for the following questions: 1. Are the scientific gains from an array of short-wave radiation sensors in the equatorial Pacific Ocean sufficiently impelling that DOE/ARM should provide financial and material support to NOAA/PMEL to install and operate this array? 2. What scientists and/or scientific studies would directly benefit from such a data set? 3. What should that array look like? That is, what sub-set of buoys should be so implemented given the per-buoy

374

Removing Spurious Low-Frequency Variability in Drifter Velocities  

Science Conference Proceedings (OSTI)

Satellite-tracked drifting buoys of the Global Drifter Program have drogues, centered at 15-m depth, to minimize direct wind forcing and Stokes drift. Drogue presence has historically been determined from submergence or tether strain records. ...

Rick Lumpkin; Semyon A. Grodsky; Luca Centurioni; Marie-Helene Rio; James A. Carton; Dongkyu Lee

2013-02-01T23:59:59.000Z

375

Potential Benefits of Using Probabilistic Forecasts for Waves and Marine Winds Based on the ECMWF Ensemble Prediction System  

Science Conference Proceedings (OSTI)

The potential benefits of using the ECMWF Ensemble Prediction System (EPS) for waves and marine surface winds are demonstrated using buoy and platform data as well as altimeter data.

Øyvind Saetra; Jean-Raymond Bidlot

2004-08-01T23:59:59.000Z

376

Measuring Near-Surface Meteorology over the Ocean from an Array of Surface Moorings in the Subtropical Convergence Zone  

Science Conference Proceedings (OSTI)

An array of five surface moorings was set in the subtropical convergence zone southwest of Bermuda with spacings of 16 to 53 km. Meteorological instrumentation on each of the surface buoys recorded wind velocity, barometric pressure, solar ...

Robert A. Weller; Daniel L. Rudnick; Richard E. Payne; Jerome P. Dean; Nancy J. Pennington; Richard P. Trask

1990-02-01T23:59:59.000Z

377

Seasonal Gyres in the Northern Gulf of California  

Science Conference Proceedings (OSTI)

The circulation pattern in the northern Gulf of California, based on drifting buoys and hydrographic observations, can be explained using the results of a linear two-layer primitive equations model forced, at the annual frequency, by the Pacific ...

E. Beier; P. Ripa

1999-02-01T23:59:59.000Z

378

Observations of Air–Sea Interaction and Intensity Change in Hurricanes  

Science Conference Proceedings (OSTI)

Recent enhancements to the tropical cyclone-buoy database (TCBD) have incorporated data from the Extended Best Track (EBT) and the Statistical Hurricane Intensity Prediction Scheme (SHIPS) archive for tropical cyclones between 1975 and 2007. This ...

Joseph J. Cione; Evan A. Kalina; Jun A. Zhang; Eric W. Uhlhorn

2013-07-01T23:59:59.000Z

379

Evaluating Where and Why Drifters Die  

Science Conference Proceedings (OSTI)

NOAA ’s Global Drifter Program (GDP) manages a global array of ~1250 active satellite-tracked surface drifting buoys (“drifters”) in collaboration with numerous national and international partners. To better manage the drifter array and to assess ...

Rick Lumpkin; Nikolai Maximenko; Mayra Pazos

2012-02-01T23:59:59.000Z

380

The Value of NDBC Observations during March 1993's “Storm of the Century”  

Science Conference Proceedings (OSTI)

National Data Buoy Center (NDBC) observations from the western Gulf of Mexico provided several early indications of more rapid cyclogenesis on 12 March 1993 than was forecast by numerical weather prediction (NWP) models. Observations demonstrated ...

David B. Gilhousen

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Four Current Meter Models Compared in Strong Currents in Drake Passage  

Science Conference Proceedings (OSTI)

Seven current meters representing four models on a stiffly buoyed mooring were placed for an 11-month deployment to intercompare their velocity measurements: two vector-measuring current meters (VMCMs), two Aanderaa recording current meter (RCM) ...

D. Randolph Watts; Maureen A. Kennelly; Kathleen A. Donohue; Karen L. Tracey; Teresa K. Chereskin; Robert A. Weller; Ivan Victoria

2013-10-01T23:59:59.000Z

382

Errors of Five-Day Mean Surface Wind and Temperature Conditions due to Inadequate Sampling  

Science Conference Proceedings (OSTI)

Surface meteorological reports of wind components, wind speed, air temperature, and sea surface temperature from buoys located in equatorial and midlatitude regions are used in a simulation of random sampling to determine errors of the calculated ...

David M. Legler

1991-10-01T23:59:59.000Z

383

Radar Imaging Mechanism of the Seabed: Results of the C-STAR Experiment in 1996 with Special Emphasis on the Relaxation Rate of Short Waves due to Current Variations  

Science Conference Proceedings (OSTI)

During the field experiment of the Coastal Sediment Transport Assessment using SAR imagery project of the Marine Science and Technology program of the European Commission an Air–Sea Interaction Drift Buoy (ASIB) system was equipped with special ...

Ingo Hennings; Blandine Lurin; Norbert Didden

2001-07-01T23:59:59.000Z

384

Atmosphere and Marginal-Sea Interaction Leading to an Interannual Variation in Cold-Air Outbreak Activity over the Japan Sea  

Science Conference Proceedings (OSTI)

The interannual variation in cold-air outbreak activity over the Japan Sea is investigated using Japan Meteorological Agency buoy 21002 and Quick Scatterometer (QuikSCAT) wind data, Japan Oceanographic Data Center sea surface temperature (SST) ...

Atsuhiko Isobe; Robert C. Beardsley

2007-12-01T23:59:59.000Z

385

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

The TAO Buoy Solar Radiation Array - Implementation, Calibration, and Results Reynolds, R.M.(a), McPhaden, M.(b), and Freitag, P.(b), Brookhaven National Laboratory (a), NOAA...

386

Functional Design Engineering Inc | Open Energy Information  

Open Energy Info (EERE)

Technology Database. This company is involved in the following MHK Technologies: Ocean Wave Power Spar Buoy Engine This article is a stub. You can help OpenEI by expanding...

387

Two Severe Freezes in Brazil: Precursors and Synoptic Evolution  

Science Conference Proceedings (OSTI)

Two freezes with repercussions on world coffee markets struck Brazil in recent years, one during FGGE in 1979, the other in 1981. Data from multiple sources including satellites and drifting buoys were analyzed for early warning signs and ...

Michael A. Fortune; Vernon E. Kousky

1983-01-01T23:59:59.000Z

388

Long Period Swell Wave Events on the Norwegian Shelf  

Science Conference Proceedings (OSTI)

Wave records obtained by Waverider and heave/pitch/roll data buoys on the Norwegian continental shelf have been analysed in order to gain information on spectral characteristics (bandwidth, peak frequency, significant wave height and direction) ...

B. Gjevik; O. Rygg; H. E. Krogstad; A. Lygre

1988-05-01T23:59:59.000Z

389

Vol. 45, No. 3 December 2001 Mariners Weather Log  

E-Print Network (OSTI)

. The British METOFFICE has offered us a story on the EGOS buoy programme, and the Miami Herald has given ........................................... 61 Coastal Forecast Office News oceanographer and a computer specialist, four officers, one yeoman, and ten marine science technicians located

390

ATLAS Self-Siphoning Rain Gauge Error Estimates  

Science Conference Proceedings (OSTI)

This report describes sampling and error characteristics of self-siphoning rain gauges used on moored buoys designed and assembled at NOAA's Pacific Marine Environmental Laboratory (PMEL) for deployment in the tropical Pacific and Atlantic Oceans ...

Yolande L. Serra; Patrick A'Hearn; H. Paul Freitag; Michael J. McPhaden

2001-12-01T23:59:59.000Z

391

Observations of Persistent Mixing and Near-Inertial Internal Waves  

Science Conference Proceedings (OSTI)

Repeated profiles of microstructure and shear alongside a drogued buoy show a 10 m thick mixing zone at the same depth as a near-inertial feature. Because the profile was diffusively stable and free of thermohaline intrusions, internal wave ...

M. C. Gregg; E. A. D'Asaro; T. J. Shay; N. Larson

1986-05-01T23:59:59.000Z

392

1  

NLE Websites -- All DOE Office Websites (Extended Search)

Tenth ARM Science Team Meeting Proceedings, San Antonio, Texas, March 13-17, 2000 1 Nauru99 Ship and Buoy Intercomparison J. E. Hare and A. A. Grachev Cooperative Institute for...

393

Accelerations in Steep Gravity Waves  

Science Conference Proceedings (OSTI)

Surface accelerations can be measured in at least two ways: 1) by a fixed vertical wave guage, 2) by a free-floating buoy. This gives rise to two different vertical accelerations, called respectively “apparent” and “real”, or Langrangian. This ...

M. S. Longuet-Higgins

1985-11-01T23:59:59.000Z

394

The Fleet Numerical Oceanography Center Global Spectral Ocean Wave Model  

Science Conference Proceedings (OSTI)

The Spectral Ocean Wave Model (SOWM) has been an operational product at Fleet Numerical Oceanography Center since the mid 1970s; the Global Spectral Ocean Wave Model (GSOWM) was developed to replace it. An operational test of GSOWM, using buoy, ...

R. M. Clancy; J. E. Kaitala; L. F. Zambresky

1986-05-01T23:59:59.000Z

395

Weather Classification Using Passive Acoustic Drifters  

Science Conference Proceedings (OSTI)

Weather observations are needed in remote oceanic regions to support numerical weather forecast models, to provide surface truth for satellite sensors, and to help understand global weather patterns. An acoustic mini-drifting buoy using no moving ...

Jeffrey A. Nystuen; Harry D. Selsor

1997-06-01T23:59:59.000Z

396

Airborne Measurements of Wave Growth for Stable and Unstable Atmospheres in Lake Michigan  

Science Conference Proceedings (OSTI)

This paper presents the results of a joint program combining airborne laser profilometer and Waverider buoy measurements of synoptic wave conditions in Lake Michigan during the passage of an intense cold front. Measurements were made both before ...

Paul C. Liu; Duncan B. Ross

1980-11-01T23:59:59.000Z

397

Quality Control and Interpolations of WOCE-TOGA Drifter Data  

Science Conference Proceedings (OSTI)

Satellite-tracked drifting buoy data are being collected by numerous investigators and agencies in several countries for the World Ocean Circulation Experiment-Tropical Oceans Global Atmosphere (WOCE-TOGA) Surface Velocity Program. By the end of ...

Donald V. Hansen; Pierre-Marie Poulain

1996-08-01T23:59:59.000Z

398

Effects of a Thermistor String Mounted between the Acoustic Beams of an Acoustic Doppler Current Profiler  

Science Conference Proceedings (OSTI)

A useful extension of upward-looking buoy-mounted acoustic Doppler current profilers (ADCPs), in particular for studying surface-mixed-layer dynamics from underneath, would be to combine them with a thermistor cable for obtaining simultaneous ...

Friedrich Schott

1988-02-01T23:59:59.000Z

399

A Synthesis of Antarctic Temperatures  

Science Conference Proceedings (OSTI)

Monthly surface air temperatures from land surface stations, automatic weather stations, and ship/buoy observations from the high-latitude Southern Hemisphere are synthesized into gridded analyses at a resolution appropriate for applications ...

William L. Chapman; John E. Walsh

2007-08-01T23:59:59.000Z

400

A Study of the Wavenumber Spectra of Short Water Waves in the Ocean  

Science Conference Proceedings (OSTI)

Spatial measurements of capillary-gravity waves in the ocean were obtained using a scanning slope sensor mounted on a free-drifting buoy intended to minimize the flow disturbance. The data provide direct calculation of the wavenumber spectra of ...

Paul A. Hwang; Serhad Atakturk; A. Sletten; Dennis B. Trizna

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modeling the High-Frequency Component of Arctic Sea Ice Drift and Deformation  

Science Conference Proceedings (OSTI)

Buoy observations of sea ice drift show that sea ice motion and deformation contain substantial high-frequency variability at subdaily timescales. However, numerical simulations of the sea ice dynamics normally do not include processes on such ...

Petra Heil; William D. Hibler III

2002-11-01T23:59:59.000Z

402

Enhancement of Tropical Ocean Evaporation and Sensible Heat Flux by Atmospheric Mesoscale Systems  

Science Conference Proceedings (OSTI)

The enhancement of monthly averaged evaporation by atmospheric mesoscale systems is estimated from long-term hourly observations of surface meteorological data from the Tropical Ocean Global Atmosphere (TOGA) Tropical Atmosphere Ocean (TAO) buoy ...

Steven K. Esbensen; Michael J. McPhaden

1996-10-01T23:59:59.000Z

403

Scatterometer Observations at High Wind Speeds  

Science Conference Proceedings (OSTI)

Satellite scatterometer winds are commonly validated by comparing them to buoy observations and/or numerical model surface wind analyses. However, the empirical scatterometer algorithm (geophysical model function) has been calibrated against a ...

Lixin Zeng; Robert A. Brown

1998-11-01T23:59:59.000Z

404

On the Influence of Buoyancy Fluxes on Wind Drift Currents  

Science Conference Proceedings (OSTI)

Data from a moored buoy in the Baltic proper have been analyzed to study the ageostrophic wind-driven (Ekman) transport accounting for buoyancy fluxes in a stratified ocean. A model considering different dynamical regimes governed by wind stress ...

Signild Nerheim; Anders Stigebrandt

2006-08-01T23:59:59.000Z

405

Next Century Challenges: Mobile Networking for "Smart Dust"  

E-Print Network (OSTI)

Next Century Challenges: Mobile Networking for "Smart Dust" J. M. Kahn, R. H. Katz (ACM Fellow), K be small enough to remain suspended in air, buoyed by air currents, sensing and communicating for hours

Kahn, Joseph M.

406

Long-Term Observations of Tropical Instability Waves  

Science Conference Proceedings (OSTI)

Reynolds sea surface temperature (SST) data showing tropical instability waves (TIWs) in the tropical Pacific are analyzed along with current measurements from the Tropical Atmosphere–Ocean (TAO) buoy array and wind speeds from the European ...

Robert F. Contreras

2002-09-01T23:59:59.000Z

407

Long-Term Sea Surface Temperature Variability along the U.S. East Coast  

Science Conference Proceedings (OSTI)

Sea surface temperature variations along the entire U.S. East Coast from 1875 to 2007 are characterized using a collection of historical observations from lighthouses and lightships combined with recent buoy and shore-based measurements. Long-...

R. Kipp Shearman; Steven J. Lentz

2010-05-01T23:59:59.000Z

408

Impact of TRMM SSTs on a Climate-Scale SST Analysis  

Science Conference Proceedings (OSTI)

Prior efforts have produced a sea surface temperature (SST) optimum interpolation (OI) analysis that is widely used, especially for climate purposes. The analysis uses in situ (ship and buoy) and infrared (IR) satellite data from the Advanced ...

Richard W. Reynolds; Chelle L. Gentemann; Frank Wentz

2004-08-01T23:59:59.000Z

409

Power Plant Options Report for Thompson Island prepared by the  

E-Print Network (OSTI)

of weather data at nearby sites, including Logan airport and offshore buoys, the long term mean wind demand. #12;23 8. References Bundesverband WindEnergie e.V., WindEnergie 1999, Bundesverband WindEnergie

Massachusetts at Amherst, University of

410

WRITTEN TESTIMONY OF DR. ALEXANDER E. MACDONALD  

E-Print Network (OSTI)

of weather data at nearby sites, including Logan airport and offshore buoys, the long term mean wind demand. #12;23 8. References Bundesverband WindEnergie e.V., WindEnergie 1999, Bundesverband WindEnergie

411

Comparison of Profiling Current Meter and Shipboard ADCP Measurements in the Western Equatorial Pacific  

Science Conference Proceedings (OSTI)

Profiling current meter (PCM) measurements under a drifting buoy are compared with concurrent shipboard acoustic Doppler current profiler (ADCP) measurements carried out in the western equatorial Pacific in March 1991, from 10°S to 7°N along the ...

Thierry Delcroix; François Masia; Gérard Eldin

1992-12-01T23:59:59.000Z

412

A New GPS Data Processing Algorithm for the Positioning of Oceanographic Experiments  

Science Conference Proceedings (OSTI)

In this paper, the authors present a Global Positioning System (GPS) algorithm for medium accuracy (1-m rms) positioning of ocean buoys. The application addressed in this paper is that of the Fast Pegasus experiments that require the positioning ...

Kevin W. Key; George H. Born; Kevin D. Leaman; Peter Vertes

1999-08-01T23:59:59.000Z

413

Mesoscale Correlation Length Scales from NSCAT and Minimet Surface Wind Retrievals in the Labrador Sea  

Science Conference Proceedings (OSTI)

Observations of the surface wind speed and direction in the Labrador Sea for the period October 1996–May 1997 were obtained by the NASA scatterometer (NSCAT), and by 21 newly developed Minimet drifting buoys. Minimet wind speeds are inferred, ...

R. F. Milliff; P. P. Niiler; J. Morzel; A. E. Sybrandy; D. Nychka; W. G. Large

2003-04-01T23:59:59.000Z

414

Observations of Directional Relaxation of Wind Sea Spectra  

Science Conference Proceedings (OSTI)

Two-dimensional wave spectra were acquired through a NOAA Experimental Research Buoy in 34 m of water off the North Carolina coast (Atlantic Ocean). These are analyzed in ideal wave-growth situations and under rapidly turning winds. The ...

J. H. Allender; J. Albrecht; G. Hamilton

1983-08-01T23:59:59.000Z

415

The Signature of Inertial and Tidal Currents in Offshore Wave Records  

Science Conference Proceedings (OSTI)

The roughness of the sea surface can be affected by strong currents. Here, long records of surface wave heights from buoy observations in the northeastern Pacific Ocean are examined. The data show the influence of tidal currents, but the first ...

Johannes Gemmrich; Chris Garrett

2012-06-01T23:59:59.000Z

416

Surface Fluxes and Boundary Layer Recovery in TOGA COARE: Sensitivity to Convective Organization  

Science Conference Proceedings (OSTI)

Shipboard radar data collected during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) are used in conjunction with surface meteorological data from the Woods Hole Oceanographic Institute’s IMET buoy ...

Thomas R. Saxen; Steven A. Rutledge

1998-09-01T23:59:59.000Z

417

An Application of Potential Vorticity Inversion to Improving the Numerical Prediction of the March 1993 Superstorm  

Science Conference Proceedings (OSTI)

In this study, a methodology is proposed to improve the model initial conditions, based on available surface temperature observations from ships, buoys, and drifters. It is tested with the numerical prediction of the 12–14 March 1993 superstorm ...

Zonghui Huo; Da-Lin Zhang; John Gyakum

1998-02-01T23:59:59.000Z

418

TROPICAL CYCLONE WINDS AT LANDFALL: The ASOS–C-MAN Wind Exposure Documentation Project  

Science Conference Proceedings (OSTI)

Photographs describing the wind exposure at automatic weather stations susceptible to tropical cyclones are now available on Web pages at the National Climatic Data Center and the National Data Buoy Center. Given the exposure for one of eight ...

Mark Powell; David Bowman; David Gilhousen; Shirley Murillo; Nick Carrasco; Russell St. Fleur

2004-06-01T23:59:59.000Z

419

Observations of the Response of Sea Waves to Veering Winds  

Science Conference Proceedings (OSTI)

A data-adaptive technique, the iterative maximum likelihood method, is used to estimate directional wave spectra from data collected by three pitch-and-roll buoys, during two turning wind events of the CASP 86 experiment. A relaxation coefficient ...

Diane Masson

1990-12-01T23:59:59.000Z

420

Signal Sampling Impacts on HF Radar Wave Measurement  

Science Conference Proceedings (OSTI)

Averaging is required for the measurement of ocean surface wave spectra and parameters with any measurement system in order to reduce the variance in the estimates. Sampling theory for buoy measurements is well known. The same theory can be ...

Lucy R. Wyatt; J. Jim Green; Andrew Middleditch

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Dynamics of Seasonal and Intraseasonal Variability in the Eastern Equatorial Pacific  

Science Conference Proceedings (OSTI)

Time series measurements from surface moored buoys in the eastern equatorial Pacific are analyzed for the period 1983–86. The data, collected as part of the EPOCS and TROPIC HEAT programs, consist of currents, temperatures, and winds on the ...

Michael J. McPhaden; Bruce A. Taft

1988-11-01T23:59:59.000Z

422

ARM - Instrument - tao  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentstao govInstrumentstao Documentation TAO : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Tropical Atmosphere Ocean from Buoys (TAO) Instrument Categories Radiometric, Ocean Observations, Surface Meteorology General Overview These data files contain 2-minute average radiation and 10-minute average meteorology, precipitation, salinity and sea surface temperature data from the seven TAO buoys located on the 165E line (8n, 5n, 2n, 0n, 2s, 5s, 8s) of the TAO Buoy Array. Data from these buoys are stored in monthly netCDF files that are generated by PMEL. The radiation data were obtained from TAO Array moorings through a collaborative effort between NOAA/PMEL/TAO and

423

EA-1890: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact EA-1890: Finding of No Significant Impact Reedsport PB150 Deployment and Ocean Test Project, Oregon The U.S. Department of Energy has selected Ocean Power Technologies (OPT) for approximately $2.4 million in financial assistance and proposes to authorize the expenditure of federal funding to OPT for the construction, deployment, and ocean testing of a single, full scale 150kW PB150 PowerBuoy. The funding would support Phase 1 of OPT's proposed 3-phase project. At the end of the Phase 1 period, the buoy would be retrieved, undergo maintenance, and be redeployed as part of Phase 2 activities. Phase 2 would consist of installing ten PowerBuoys and interconnections to the electrical power grid. In Phase 3, OPT plans to reapply to FERC to amend the 10-PowerBuoy license to allow expansion of the

424

Variations in Surface Air Temperature Observations in the Arctic, 1979–97  

Science Conference Proceedings (OSTI)

The statistics of surface air temperature observations obtained from buoys, manned drifting stations, and meteorological land stations in the Arctic during 1979–97 are analyzed. Although the basic statistics agree with what has been published in ...

Ignatius G. Rigor; Roger L. Colony; Seelye Martin

2000-03-01T23:59:59.000Z

425

Anomalously warm July 2005 in the northern California Current: Historical context and the significance of cumulative wind stress  

E-Print Network (OSTI)

, and equator- ward currents associated with strong horizontal density gradients develop [Huyer et al., 1979 transition was unusually late: by inspection of buoy wind records it was 24 May 2005, about five weeks later

Pierce, Stephen

426

High-Height Long-Period Ocean Waves Generated by a Severe Storm in the Northeast Pacific Ocean during February 1983  

Science Conference Proceedings (OSTI)

Unusally severe storms occurred in the northeast Pacific Ocean between January and March 1983, and waves from these storms caused extensive erosion and damage along the U.S. west coast. Wave conditions as measured by eight data buoys are ...

Marshall D. Earle; Kathryn A. Bush; Glenn D. Hamilton

1984-08-01T23:59:59.000Z

427

CX-008207: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Validation of Remote Wind Sensing Technologies - Shore-Based and Buoy Mounted Light LIDAR Systems CX(s) Applied: A9, A11, B3.1, B3.16 Date: 03262012 Location(s): New Jersey...

428

Categorical Exclusion Determinations: A11 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Validation of Remote Wind Sensing Technologies - Shore-Based and Buoy Mounted Light LIDAR Systems CX(s) Applied: A9, A11, B3.1, B3.16 Date: 03262012 Location(s): New Jersey...

429

Final Technical Report: The Water-to-Wire (W2W) Project  

SciTech Connect

The purpose of the Free Flow Power (FFP) Water-to-Wire Project (Project) was to evaluate and optimize the performance, environmental compatibility, and cost factors of FFP hydrokinetic turbines through design analyses and deployments in test flumes and riverine locations.

Lissner, Daniel N.; Edward, Lovelace C.

2013-12-24T23:59:59.000Z

430

WRITTEN TESTIMONY OF JANE LUBCHENCO, Ph.D.  

E-Print Network (OSTI)

-ranging. NOAA works with the following energy sectors: offshore oil and gas (exploration and production); liquefied natural gas (LNG); hydropower; offshore and land-based wind power; hydrokinetic ocean energy (wave decisions for these renewable energy industries. NOAA's mission includes ensuring that energy exploration

431

ùg4{?3?ë!Öáeà5*?¿?A?Ç3rl*m^?¢e  

Science Conference Proceedings (OSTI)

x???}î*?*?±gg÷??÷û?Hk.WbÜ?ñ??*b*?*?*cZ[? *cá????????s*?ô ...

2005-06-09T23:59:59.000Z

432

Processing Private Queries over Untrusted Data Cloud through Privacy Homomorphism  

E-Print Network (OSTI)

Tong, Hong Kong SAR, China {haibo,xujl,csren,bchoi}@comp.hkbu.edu.hk Abstract--Query processing directory and another on anti-diabetic drugs, together give a higher confidence that the user is probably

Xu, Jianliang

433

Superconductivity in compressed iron: Role of spin fluctuations I. I. Mazin, D. A. Papaconstantopoulos, and M. J. Mehl  

E-Print Network (OSTI)

downloaded about 300,000 URLs of Chinese websites from the web directories at cn.yahoo.com, hk parallelism verification, sentence breaker, Chinese word breaker, etc. To further measure the quality

Mazin, Igor

434

Selected peer-reviewed publications (in chronological order). Total number of publications from 1988 to 2010 is 71.  

E-Print Network (OSTI)

.yahoo.com, hk.yahoo.com and tw.yahoo.com. And each website is sent to the mining system for English parallelism verification, sentence breaker, Chinese word breaker, etc. To further measure the quality

435

Sequential Aggregate Signatures and Multisignatures without Random Oracles  

E-Print Network (OSTI)

, in practice one could apply a collision-resistant hash function Hk : {0, 1} {0, 1} k to sign messages to a WVES opacity breaker of this sort: simulate a W signing oracle by a call to the verifiably encrypted

International Association for Cryptologic Research (IACR)

436

Letter Spirit (part one): Emergent HighLevel Perception of Letters  

E-Print Network (OSTI)

@uclouvain.be. Department of Computer Science, East China Normal University. Email: yuyu@yuyu.hk. #12;1 Introduction, especially in the asymptotic sense. However, in practical situations it often becomes a deal-breaker

Indiana University

437

Letter Spirit (part one): Emergent HighLevel Perception of Letters  

E-Print Network (OSTI)

@uclouvain.be. ## Department of Computer Science, East China Normal University. Email: yuyu@yuyu.hk. #12; 1 Introduction, in practical situations it often becomes a deal­breaker, especially when applied to the setting of key

Indiana University

438

Duality in quasi–Newton methods and new variational ...  

E-Print Network (OSTI)

“secant condition” Hyk = sk and the symmetry condition HT = H on Hk+1, see [5]. ... Our basic idea is simply to work directly in the vector space SRn×n of n × n.

439

Is the environmental Kuznets curve an empirical regularity?  

E-Print Network (OSTI)

U.K. T*** U.S. T*** T*** Venezuela P*** Yugoslavia T*** T***Yugoslavia, Canada Japan, Venezuela Australia, Belgium,Poland, H.K. , Thailand, Venezuela Brazil, India, Israel,

Deacon, Robert; Norman, Catherine S

2004-01-01T23:59:59.000Z

440

Is the environmental Kuznets curve an empirical regularity?  

E-Print Network (OSTI)

New Zealand -1.50*** T*** T*** Poland T*** Spain T*** T**Chile, India, Israel, Poland, Yugoslavia, Canada Japan,China, Chile, Ireland, Poland, H.K. , Thailand, Venezuela

Deacon, Robert; Norman, Catherine S

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

C. R. Biologies 327 (2004) 10371057 http://france.elsevier.com/direct/CRASS3/  

E-Print Network (OSTI)

1131 1600 2263 3200 4 6 8 10 12 14 5 10 15 20 A B C )zH(etaregrahcsidegarevA)zH(etaregrahcsiD)zHk(.qer

Jost, Christian

442

Radiation exposure in X-ray-based imaging techniques used in osteoporosis  

E-Print Network (OSTI)

to low levels of ionizing radiation: BEIR VII Phase 2. TheBlake G, Genant HK (1999) Radiation exposure in bone mineralGuglielmi Thomas M. Link Radiation exposure in X-ray-based

Damilakis, John; Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.

2010-01-01T23:59:59.000Z

443

The Mining Life : : A Transnational History of Race and Family in the U.S.-Mexico Borderlands, 1890-1965  

E-Print Network (OSTI)

Mexican Mining Department, Mexico, City, Dec. 1, 1961; Lic.de 1949; L. Vega Lavin, Mexico City, letter marked “personalChihuahua City, Chihuahua, Mexico, July 17, 1962; H.K.

Maiorana, Juliette Charlie

444

A Survey of Chromospheric Activity in the Solar-Type Stars in the Open Cluster M67  

E-Print Network (OSTI)

We present the results of a spectroscopic survey of the Ca II H & K core strengths in a sample of 60 solar-type stars that are members of the solar-age and solar-metallicity open cluster M67. We adopt the HK index, defined as the summed H+K core strengths in 0.1 nm bandpasses centered on the H and K lines, respectively, as a measure of the chromospheric activity that is present. We compare the distribution of mean HK index values for the M67 solar-type stars with the variation of this index as measured for the Sun during the contemporary solar cycle. We find that the stellar distribution in our HK index is broader than that for the solar cycle. Approximately 17% of the M67 sun-like stars exhibit average HK indices that are less than solar minimum. About 7%-12% are characterized by relatively high activity in excess of solar maximum values while 72%-80% of the solar analogs exhibit Ca II H+K strengths within the range of the modern solar cycle. The ranges given reflect uncertainties in the most representative value of the maximum in the HK index to adopt for the solar cycle variations observed during the period A.D. 1976--2004. Thus, ~ 20% - 30% of our homogeneous sample of sun-like stars have mean chromospheric H+K strengths that are outside the range of the contemporary solar cycle. Any cycle-like variability that is present in the M67 solar-type stars appears to be characterized by periods greater than ~ 6 years. Finally, we estimate a mean chromospheric age for M67 in the range of 3.8--4.3 Gyr.

Mark S. Giampapa; Jeffrey C. Hall; Richard R. Radick; Sallie L. Baliunas

2006-07-13T23:59:59.000Z

445

Assessment of MTI Water Temperature Thermal Discharge Retrievals with Ground Truth  

Science Conference Proceedings (OSTI)

Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at a mid-latitude cold-water site along the Atlantic coast near Plymouth, MA. In contrast to the relative uniformity of the sea-surface temperature in the open ocean the water temperature near Pilgrim exhibits strong spatial gradients and temporal variability. This made it critical that all images be accurately registered in order to extract temperature values at the six buoy locations. Sixteen images during a one-year period from August 2000 to July 2001 were selected for the study. The RMS error of Pilgrim water temperature is about 3.5 C for the 4 buoys located in open water. The RMS error of the combined temperatures from 3 of the open-water buoys is 2.8 C. The RMS error includes errors in the ground truth. The magnitude of this error is estimated to range between 0.8 and 2.3 C. The two main components of this error are warm-layer effect and spatial variability. The actual error in the MTI retrievals for Pilgrim daytime conditions is estimated to be between 2.7 and 3.4 C for individual buoys and between 1.7 and 2.7 C for the combined open-water buoys.

Kurzeja, R.J.

2002-12-06T23:59:59.000Z

446

CX-005561: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5561: Categorical Exclusion Determination 5561: Categorical Exclusion Determination CX-005561: Categorical Exclusion Determination Underwater Active Acoustic Monitoring Support for Marine Hydrokinetic Energy Projects CX(s) Applied: A9, B3.6 Date: 04/06/2011 Location(s): New Hampshire Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Scientific Solutions, Incorporated (SSI) is proposing to use Department of Energy and cost-share funding to further advance its existing Swimmer Detection Sonar Network (SDSN) system in a joint effort with Ocean Renewable Power Company (ORPC) to fully develop, Integrate, test, and operate a full-scale active acoustic monitoring system for Marine Hydrokinetic (MHK) and other offshore renewable energy projects; specifically for monitoring the region surrounding a tidal turbine. The

447

CX-001841: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41: Categorical Exclusion Determination 41: Categorical Exclusion Determination CX-001841: Categorical Exclusion Determination A First Assessment of U.S. In-stream Hydrokinetic Energy Resources Since the 1986 New York University Study CX(s) Applied: B3.1, A9, A11 Date: 04/23/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Electric Power Research Institute will use federal funds to perform surveying and data collection to determine the hydro-kinetic potential for remote rivers and streams in Alaska. The surveying will consist of installing small monitors along the shores to measure height change/frequency, water flow, and Doppler radar measurements to determine depths of the riverbeds. This information will be collected as part of an assessment for hydro-power feasibility in remote locations. All information

448

Dexawave | Open Energy Information  

Open Energy Info (EERE)

Dexawave Dexawave Jump to: navigation, search Name Dexawave Sector Marine and Hydrokinetic Phone number + 45 8651 8690 Website http://http://www.dexawave.com Region Denmark LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: The DEXAWAVE wave energy converter This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Dexawave&oldid=678285" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

449

CX-002145: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

145: Categorical Exclusion Determination 145: Categorical Exclusion Determination CX-002145: Categorical Exclusion Determination Acoustic Effects of Hydrokinetic Tidal Turbines CX(s) Applied: B3.1, B3.3, A9 Date: 04/29/2010 Location(s): Snohomish County, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Snohomish County Public Utility District (PUD) is proposing to use Department of Energy and cost-share funding to study of the acoustic effects of hydrokinetic tidal turbines at the site of the District's Admiralty Inlet pilot project. Activities would include the purchase and configuration of instrumentation, the deployment and retrieval of the instrumentation packages on the seabed, the simulation and measurement of sound propagation by a tidal turbine, and experimentation (conducted at

450

Swell Fuel | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Swell Fuel Place Houston, Texas Zip 77072 Sector Marine and Hydrokinetic Product Texas-based developer of small-scale wave energy devices. Website http://www.swellfuel.com References Swell Fuel LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Lever Operated Pivoting Float Swell Fuel This article is a stub. You can help OpenEI by expanding it. Swell Fuel is a company located in Houston, Texas . References Retrieved from "http://en.openei.org/w/index.php?title=Swell_Fuel&oldid=680057" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies

451

WaveCatcher Inc | Open Energy Information  

Open Energy Info (EERE)

WaveCatcher Inc WaveCatcher Inc Jump to: navigation, search Name WaveCatcher Inc Address 2307 Robincrest Ln Sector Marine and Hydrokinetic Year founded 2006 Phone number 1-847-764-9106 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=WaveCatcher_Inc&oldid=678511" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863326429 Varnish cache server

452

Tidal Sails AS | Open Energy Information  

Open Energy Info (EERE)

Sails AS Sails AS Jump to: navigation, search Name Tidal Sails AS Address Standgaten 130 Place Haugesund Zip 5531 Sector Marine and Hydrokinetic Phone number +32 474 98 06 16 Website http://www.tidalsails.com Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Tidal Sails This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Tidal_Sails_AS&oldid=678479" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties

453

Vortex Hydro Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Hydro Energy LLC Hydro Energy LLC Jump to: navigation, search Name Vortex Hydro Energy LLC Address 4870 West Clark Rd Suite 108 Place Ypsilanti Zip 48197 Sector Marine and Hydrokinetic Phone number 734.971.4020 Website http://www.vortexhydroenergy.c Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Marine Hydrodynamics Laboratory at the University of Michigan This company is involved in the following MHK Technologies: Vortex Induced Vibrations Aquatic Clean Energy VIVACE This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Vortex_Hydro_Energy_LLC&oldid=678497

454

HydroVenturi Ltd previously RV Power Company Ltd | Open Energy Information  

Open Energy Info (EERE)

HydroVenturi Ltd previously RV Power Company Ltd HydroVenturi Ltd previously RV Power Company Ltd Jump to: navigation, search Name HydroVenturi Ltd (previously RV Power Company Ltd) Place London, Greater London, United Kingdom Zip SW7 1NA Sector Marine and Hydrokinetic Product String representation "Established tho ... ating stations." is too long. Website http://www.hydroventuri.com References HydroVenturi Ltd (previously RV Power Company Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. HydroVenturi Ltd (previously RV Power Company Ltd) is a company located in London, Greater London, United Kingdom . References ↑ "[ HydroVenturi Ltd (previously RV Power Company Ltd)]"

455

CX-004836: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

836: Categorical Exclusion Determination 836: Categorical Exclusion Determination CX-004836: Categorical Exclusion Determination Marine and Hydrokinetic Technology Readiness Advancement Initiative CX(s) Applied: A9, B3.6 Date: 12/16/2010 Location(s): Lynnwood, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Sound & Sea Technology, Incorporated (SST), in Lynnwood, Washington, is proposing to use Department of Energy funding to study wave energy device anchoring and mooring techniques applicable for the full range of marine and hydrokinetic (MHK) technologies. SST would develop a remotely controlled grouting procedure suitable for deepwater anchor installations to securely and cost-effectively anchor ocean energy devices to seabed's, while reducing the capital and installation costs of MHK systems.

456

Resolute Marine Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Resolute Marine Energy Inc Resolute Marine Energy Inc Jump to: navigation, search Name Resolute Marine Energy Inc Address 3 Post Office Square 3rd floor Place Massachusetts Zip 02109-3905 Country United States Sector Marine and Hydrokinetic Product Resolute is a wave-power technology developer operating in Massachusetts. Year founded 2007 Number of employees 12 Phone number 917-626-6790 Website http://www.resolutemarine.com References Resolute Marine Energy LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Ocean Trials Ver 2 SurgeWEC Ocean Testing 1 This company is involved in the following MHK Technologies: AirWEC SurgeWEC

457

Fiscal Year 2011 Water Power Program Peer Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Review » Fiscal Peer Review » Fiscal Year 2011 Water Power Program Peer Review Fiscal Year 2011 Water Power Program Peer Review In November 2011, the Water Power Program held their Annual Peer Review Meeting in Alexandria, Virginia. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives. At the review, approximately 85 projects were presented, representing a DOE investment of over $100 million over the last few years. In addition to the formal review, this event was an excellent opportunity for the water power community to share ideas and solutions to address challenges facing the hydropower and marine and hydrokinetic energy industries.

458

Hammerfest Strom UK co owned by StatoilHydro | Open Energy Information  

Open Energy Info (EERE)

Hammerfest Strom UK co owned by StatoilHydro Hammerfest Strom UK co owned by StatoilHydro Jump to: navigation, search Name Hammerfest Strom UK co owned by StatoilHydro Address The Innovation Centre 1 Ainslie Road Hillington Business Park Place Glasgow Zip G52 4RU Sector Marine and Hydrokinetic Phone number +44 141 585 6447 Website http://www.hammerfeststrom.com Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Hammerfest Strom UK Tidal Stream Kvalsundet This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Hammerfest_Strom_UK_co_owned_by_StatoilHydro&oldid=678328"

459

Energy Department Releases New Energy 101 Video on Ocean Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101 Video on Ocean Power Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity at dams and other hydropower facilities in your region. But an emerging clean energy technology called marine and hydrokinetic (MHK) energy -- or ocean power -- uses water to generate electricity in a different way, and has yet to get

460

CX-005112: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

112: Categorical Exclusion Determination 112: Categorical Exclusion Determination CX-005112: Categorical Exclusion Determination Environmentally Benign and Permanent Surface Modifications to Prevent Biofueling on Marine and Hydrokinetic Devices CX(s) Applied: A9, B3.6 Date: 01/25/2011 Location(s): Cambridge, Massachusetts Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Semprus BioSciences, in Cambridge, Massachusetts, is proposing to use Department of Energy funding to develop an innovative, nontoxic surface coating that would prevent the growth of aquatic organisms on marine and hydrokinetic (MHK) energy devices. This research into underwater coatings that prevent biofueling would have the potential to positively impact all MHK systems and improve the conversion efficiency for MHK systems.

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

New Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

New Energy Corp. New Energy Corp. Address Suite 473 3553 31 St NW Place South Bend, Indiana Zip 46613-1010 Sector Marine and Hydrokinetic Product 102mmgy (386.1m litres/y) ethanol producer. Year founded 2003 Phone number (403) 260-5248 Website http://www.newenergycorp.ca Region Canada References New Energy Corp.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Bonnybrook Wastewater Facility Project 1 Bonnybrook Wastewater Facility Project 2 Canoe Pass Galena ABS Alaskan Great River Journey Miette River Pointe du Bois Ruby ABS Alaskan Western Irrigation District This company is involved in the following MHK Technologies:

462

Arlas Invest | Open Energy Information  

Open Energy Info (EERE)

Arlas Invest Arlas Invest Jump to: navigation, search Name Arlas Invest Sector Marine and Hydrokinetic Website http://www.capricornioct.com Region Spain LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: TUVALU This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Arlas_Invest&oldid=678244" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

463

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 22020 of 29,416 results. 11 - 22020 of 29,416 results. Download CX-004548: Categorical Exclusion Determination Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic Applications CX(s) Applied: A9 Date: 11/30/2010 Location(s): Davis, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-004548-categorical-exclusion-determination Download CX-004529: Categorical Exclusion Determination Abrasion Testing of Critical Components of Hydrokinetic Devices CX(s) Applied: A9, B3.6 Date: 11/29/2010 Location(s): Anchorage, Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-004529-categorical-exclusion-determination Download CX-004532: Categorical Exclusion Determination

464

Northland Power Mississippi River LLC | Open Energy Information  

Open Energy Info (EERE)

Northland Power Mississippi River LLC Northland Power Mississippi River LLC Jump to: navigation, search Name Northland Power Mississippi River LLC Address 30 St Clair Avenue West 17th Floor Place Toronto Sector Marine and Hydrokinetic Phone number (416) 820-9521 Website http://http://www.northlandpow Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: NPI 01 NPI 013 NPI 014 NPI 015 NPI 016A NPI 016B NPI 017 NPI 018 NPI 019 NPI 020 NPI 021 NPI 022 NPI 023 NPI 024 NPI 025 NPI 027 NPI 055 This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Northland_Power_Mississippi_River_LLC&oldid=678391

465

Verdant Power | Open Energy Information  

Open Energy Info (EERE)

Verdant Power Verdant Power Jump to: navigation, search Name Verdant Power Place New York, New York Zip 10044 Sector Marine and Hydrokinetic Product A systems integrator and a developer of free-flow turbine systems that generates utility and village scale electric power from natural underwater currents. References Verdant Power[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Cornwall Ontario River Energy CORE Roosevelt Island Tidal Energy RITE This company is involved in the following MHK Technologies: Kinetic Hydropower System KHPS This article is a stub. You can help OpenEI by expanding it. Verdant Power is a company located in New York, New York .

466

Public Utility District No 1 of Snohomish County | Open Energy Information  

Open Energy Info (EERE)

District No 1 of Snohomish County District No 1 of Snohomish County Jump to: navigation, search Name Public Utility District No 1 of Snohomish County Address 2320 California Street PO Box 1107 Place Everett Zip 98206 Sector Marine and Hydrokinetic Phone number 425-783-1825 Website http://www.snopud.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Admirality Inlet Tidal Energy Project Deception Pass Tidal Energy Hydroelectric Project Guemes Channel Tidal Energy Project San Juan Channel Tidal Energy Project Spieden Channel Tidal Energy Project This article is a stub. You can help OpenEI by expanding it. Retrieved from

467

STATEMENT OF CONSIDERATIONS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. SYNTHETIC CORPORATION (US SYNTHETIC) FOR AN ADVANCE U.S. SYNTHETIC CORPORATION (US SYNTHETIC) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE AWARD NO. DE-EE0003633; W(A)-2011-026 The Petitioner, US Synthetic, has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above referenced cooperative agreement entitled "The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for Use in Marine Hydrokinetic Energy Machines." The goal of the Marine Hydrokinetic Technology (MHK) Readiness Advancement Initiative is to accelerate the development of supporting technologies that are necessary for the eventual use of MHK for energy production. A key design element in most MHK strategies will

468

Water News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water News and Blog Water News and Blog Water News and Blog Blog The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder Calling All Coders: Help Advance America's Ocean Power Industry December 10, 2013 3:57 PM The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. Read The Full Story Tacoma Power's Cushman Hydroelectric Project installed a new two-generator powerhouse that increases electric generation capacity by 3.6 megawatts and captures energy from previously untapped water flows. | Photo courtesy of Tacoma Power.

469

CX-004529: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4529: Categorical Exclusion Determination 4529: Categorical Exclusion Determination CX-004529: Categorical Exclusion Determination Abrasion Testing of Critical Components of Hydrokinetic Devices CX(s) Applied: A9, B3.6 Date: 11/29/2010 Location(s): Anchorage, Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office ORPC Alaska is proposing to use Department of Energy funding to understand the impacts of sediment abrasion on marine hydrokinetic (MHK) device components. Testing would assess the vulnerability of technology components to sediment-induced abrasion; it would determine the impact and wear rate that sediment may have on bearings and seals; and it would identify which configurations best resist degradation from suspended sediment conditions. The proposed project would provide valuable information to the MHK

470

Seawood Designs Inc | Open Energy Information  

Open Energy Info (EERE)

Seawood Designs Inc Seawood Designs Inc Jump to: navigation, search Name Seawood Designs Inc Address 201 Marine Drive Cobble Hill Place Vancouver Island Zip V0R 1L1 Sector Marine and Hydrokinetic Phone number 250-743-7107 Website http://www.surfpower.ca Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Lake Huron This company is involved in the following MHK Technologies: SurfPower This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Seawood_Designs_Inc&oldid=678455" Categories: Clean Energy Organizations Companies Organizations Stubs

471

Atlantis Resources Corporation | Open Energy Information  

Open Energy Info (EERE)

Resources Corporation Resources Corporation Jump to: navigation, search Name Atlantis Resources Corporation Address 1 Martime Square Zip 99253 Sector Marine and Hydrokinetic Year founded 2002 Website http://www.atlantisresourcesco Region Singapore LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Gujarat This company is involved in the following MHK Technologies: Aquanator Atlantis AN 150 Atlantis AR 1000 Atlantis AS 400 This article is a stub. You can help OpenEI by expanding it. This company is involved in the following MHK Projects: Gujarat and the following MHK Technologies: Aquanator Atlantis AN 150 Atlantis AR 1000 Atlantis AS 400

472

Carnegie Wave Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Carnegie Wave Energy Limited Carnegie Wave Energy Limited Jump to: navigation, search Name Carnegie Wave Energy Limited Address 1 124 Stirling Highway Place North Fremantle Zip 6159 Sector Marine and Hydrokinetic Year founded 1993 Number of employees 25 Website http://www.carnegiewave.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: CETO La Reunion CETO3 Garden Island Perth Wave Energy Project PWEP This company is involved in the following MHK Technologies: CETO Wave Energy Technology This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Carnegie_Wave_Energy_Limited&oldid=678263

473

GCK Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name GCK Technology Inc Place San Antonio, Texas Zip 78205 Sector Hydro, Marine and Hydrokinetic Product Designer and manufacturer of marine turbine technology. Has patented the Gorlov Helical Turbine (GHT), designed for hydroelectric applications in free flowing low head water courses. References GCK Technology Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: GCK Technology Amazon River Brazil GCK Technology Cape Cod Canal MA US GCK Technology Merrimack River Amesbury MA US GCK Technology Shelter Island NY US GCK Technology Uldolmok Strait South Korea GCK Technology Vinalhaven ME US

474

Whitestone Power Communications | Open Energy Information  

Open Energy Info (EERE)

Whitestone Power Communications Whitestone Power Communications Jump to: navigation, search Name Whitestone Power Communications Address 931 Westside Lp Place Delta Junction Zip 99737-1630 Sector Marine and Hydrokinetic Year founded 2003 Number of employees 10 Phone number 907-895-4770 Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Microturbine River In Stream This company is involved in the following MHK Technologies: Microturbine River In Stream This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Whitestone_Power_Communications&oldid=678517

475

NREL: Water Power Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications Access NREL publications on water power research. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop Report. Driscoll, R.; NREL Report No. MP-5000-51584. 2011 Marine and Hydrokinetic Device Modeling Workshop: Final Report. Li, Y.; NREL Report No. TP-5000-51421; DOE/GO-102011-3374. "Commercialization Path and Challenges for Marine Hydrokinetic Renewable Energy." 2011 IEEE PES (Power and Energy Society) General Meeting: The Electrification of Transportation and the Grid of the Future, 24-28 July 2011, Detroit, Michigan. Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE) 8 pp.; NREL Report No. CP-5000-49959. Conventional Hydropower Technologies (Fact Sheet). Wind and Water Power Program (WWPP). (2011). 2 pp.; NREL Report No. FS-5000-52168;

476

SEEWEC Consortium lead partner Ghent University | Open Energy Information  

Open Energy Info (EERE)

SEEWEC Consortium lead partner Ghent University SEEWEC Consortium lead partner Ghent University Jump to: navigation, search Name SEEWEC Consortium lead partner Ghent University Address Sint Pietersnieuwstraat 41 Place Gent Zip 9000 Sector Marine and Hydrokinetic Website http://www.seewec.org Region Belgium LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: SEEWEC Consortium Brevik NO This company is involved in the following MHK Technologies: FO This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=SEEWEC_Consortium_lead_partner_Ghent_University&oldid=678456" Categories: Clean Energy Organizations

477

Oceanflow Development Ltd | Open Energy Information  

Open Energy Info (EERE)

Oceanflow Development Ltd Oceanflow Development Ltd Address 12 Yeoman Street Place North Shields Zip NE29 6NL Sector Marine and Hydrokinetic Year founded 2010 Number of employees 1 Phone number +44 191 296 6339 Website http://www.oceanflowenergy.com Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Evopod E1 1 10 scale grid connected demonstrator Evopod E35 35kW grid connected demonstrator This company is involved in the following MHK Technologies: Evopod E35 This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Oceanflow_Development_Ltd&oldid=678405

478

Maine Maritime Academy | Open Energy Information  

Open Energy Info (EERE)

Academy Academy Jump to: navigation, search Name Maine Maritime Academy Address Engineering Department Pleasant Street Place Castine Zip 4420 Sector Marine and Hydrokinetic Phone number 207-326-2365 Website http://http://www.mainemaritim Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Castine Harbor Badaduce Narrows Tidal Energy Device Evaluation Center TIDEC This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Maine_Maritime_Academy&oldid=678366" Categories: Clean Energy Organizations Companies Organizations Stubs

479

SeaNergy Electric Ltd | Open Energy Information  

Open Energy Info (EERE)

SeaNergy Electric Ltd SeaNergy Electric Ltd Jump to: navigation, search Name SeaNergy Electric Ltd Sector Marine and Hydrokinetic Website http://http://www.greenprophet Region Israel LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Turbo Ocean Power Generator MadaTech 17 This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=SeaNergy_Electric_Ltd&oldid=678451" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

480

Natural Currents Energy Services | Open Energy Information  

Open Energy Info (EERE)

Natural Currents Energy Services Natural Currents Energy Services Jump to: navigation, search Name Natural Currents Energy Services Address 24 Roxanne Blvd Place Highland Zip 12528 Sector Marine and Hydrokinetic Phone number 845-691-4008 Website http://www.naturalcurrents.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Angoon Tidal Energy Plant Avalon Tidal BW2 Tidal Cape Cod Tidal Energy Project Cape May Tidal Energy Cohansey River Tidal Energy Cuttyhunk Tidal Energy Plant Dorchester Maurice Tidal Fishers Island Tidal Energy Project Gastineau Channel Tidal Highlands Tidal Energy Project Housatonic Tidal Energy Plant

Note: This page contains sample records for the topic "buoy hk hydrokinetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

CX-004548: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

548: Categorical Exclusion Determination 548: Categorical Exclusion Determination CX-004548: Categorical Exclusion Determination Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic Applications CX(s) Applied: A9 Date: 11/30/2010 Location(s): Davis, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The University of California, Davis (UCD) is proposing to use Department of Energy funding for computer modeling to improve the design of the bidirectional rotor tidal turbine (BRTT) for tidal marine hydrokinetic applications. The BRTT design, an already established and commercially applied technology, has disadvantages. Although the simpler design reduces energy costs, without pitch-adjustment and optimally cambered blades, the BRTT rotor is relatively inefficient. UCD is proposing to recapture some of

482

Water Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Water Blog RSS December 10, 2013 The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder Calling All Coders: Help Advance America's Ocean Power Industry The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. August 14, 2013 Tacoma Power's Cushman Hydroelectric Project installed a new two-generator powerhouse that increases electric generation capacity by 3.6 megawatts and captures energy from previously untapped water flows. | Photo courtesy of Tacoma Power.

483

NREL: Water Power Research - Economic and Power System Modeling and  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic and Power System Modeling and Analysis Economic and Power System Modeling and Analysis NREL's Economic Analysis and power system modeling integrates data from device deployment and programmatic research into deployment and scenario models to quantify the economic and societal benefits of developing cost-competitive marine and hydrokinetic systems. It also identifies policy mechanisms, market designs, and supply chain needs to support various deployment scenarios, provide information and training to potential members of the marine and hydrokinetic (MHK) industry and effectively collaborate with all associated stakeholders. JEDI Modeling NREL worked with industry members to develop and provide public access to an easy-to-use input-output model that estimates the jobs and economic development impacts (JEDI) of MHK projects in the United States. The JEDI

484

SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie  

Open Energy Info (EERE)

SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie Corporation Ltd Jump to: navigation, search Name SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie Corporation Ltd Address 1 16 Ord Street PO Box 1902 Place West Perth Zip 6872 Sector Marine and Hydrokinetic Phone number 61 8 9486 4466 Website http://www.carnegiecorp.com.au Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: CETO Precommercial Pilot Project This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=SeaPower_Pacific_subsidiary_of_Renewable_Energy_Holdings_Plc_Carnegie_Corporation_Ltd&oldid=67845

485

Seabased AB | Open Energy Information  

Open Energy Info (EERE)

Seabased AB Seabased AB Jump to: navigation, search Name Seabased AB Address Dag Hammarskjlds vg 52B Place Uppsala Zip S-75183 Sector Marine and Hydrokinetic Phone number 46,705,325,560 Website http://www.seabased.com Region Sweden LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Uppsala University Seabased AB Lysekil Sweden This company is involved in the following MHK Technologies: Seabased This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Seabased_AB&oldid=678449" Categories: Clean Energy Organizations Companies Organizations Stubs

486

Oceanlinx | Open Energy Information  

Open Energy Info (EERE)

Oceanlinx Oceanlinx Jump to: navigation, search Name Oceanlinx Address PO Box 116 Place Botany Zip 1455 Sector Marine and Hydrokinetic Phone number 61 (0) 2 9549 6300 Website http://www.oceanlinx.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: GPP Namibia Greenwave Rhode Island Ocean Wave Energy Project Hawaii Oceanlinx Maui Port Kembla Portland This company is involved in the following MHK Technologies: Denniss Auld Turbine Oceanlinx Mark 3 Wave Energy Converter This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Oceanlinx&oldid=678407

487

Scientific Applications Research Associates Inc SARA | Open Energy  

Open Energy Info (EERE)

Scientific Applications Research Associates Inc SARA Scientific Applications Research Associates Inc SARA Jump to: navigation, search Name Scientific Applications Research Associates Inc SARA Address 6300 Gateway Dr Place Cypress Zip 90630 Sector Marine and Hydrokinetic Phone number 714-224-4410 x 274 Website http://www.sara.com/rae/ocean_ Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Magnetohydrodynamic MHD Wave Energy Converter MWEC This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Scientific_Applications_Research_Associates_Inc_SARA&oldid=678443"

488

CX-006029: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6029: Categorical Exclusion Determination 6029: Categorical Exclusion Determination CX-006029: Categorical Exclusion Determination Acoustic Effects of Hydrokinetic Tidal Turbines CX(s) Applied: B3.3, B3.6 Date: 05/25/2011 Location(s): Snohomish County, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Snohomish County Public Utility District (PUD) is proposing to use Department of Energy and cost-share funding to study of the acoustic effects of hydrokinetic tidal turbines at the site of the District's Admiralty Inlet pilot project. Activities would include the purchase and configuration of instrumentation, the deployment and retrieval of the instrumentation packages on the seabed, the simulation and measurement of sound propagation by a tidal turbine, and experimentation (conducted at

489

RDZ Renewables | Open Energy Information  

Open Energy Info (EERE)

RDZ Renewables RDZ Renewables Jump to: navigation, search Name RDZ Renewables Sector Marine and Hydrokinetic Phone number (442) 210 45-85 Website http://www.rdz-r.com/new/engli LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: UFCAP This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=RDZ_Renewables&oldid=678432" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

490

Tillamook Intergovernmental Development Entity | Open Energy Information  

Open Energy Info (EERE)

Intergovernmental Development Entity Intergovernmental Development Entity Jump to: navigation, search Name Tillamook Intergovernmental Development Entity Address Tillamook People s Utility District 1115 Pacific Avenue Place Tillamook Zip 97141 Sector Marine and Hydrokinetic Phone number 503-842-2535 Website http://www.tpud.org Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Oregon Coastal Wave Energy This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Tillamook_Intergovernmental_Development_Entity&oldid=678482" Categories: Clean Energy Organizations

491

Hydra Tidal Energy Technology AS | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Technology AS Tidal Energy Technology AS Jump to: navigation, search Name Hydra Tidal Energy Technology AS Address PO Box 399 Place Harstad Zip 9484 Sector Marine and Hydrokinetic Year founded 2001 Phone number (+47) 77 06 08 08 Website http://http://www.hydratidal.i Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: MORILD Demonstration Plant Morild 2 This company is involved in the following MHK Technologies: MORILD 2 Floating Tidal Power System Morild Power Plant This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Hydra_Tidal_Energy_Technology_AS&oldid=678333

492

EA-1965: Florida Atlantic University Southeast National Marine Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Florida Atlantic University Southeast National Marine 5: Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida SUMMARY The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University's South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC's experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida.

493

CX-005128: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28: Categorical Exclusion Determination 28: Categorical Exclusion Determination CX-005128: Categorical Exclusion Determination The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic (MHK) Energy Machines CX(s) Applied: A9, B3.6 Date: 01/25/2011 Location(s): Orem, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office United States Synthetic Corporation is proposing to use federal funding to design, fabricate and test polycrystalline diamond (PCD) thrust bearings for marine hydrokinetic (MHK) systems. A key design element in most MHK strategies would be robust bearings, which can operate for extended periods of time in the harsh marine environments. The goal of the proposed project is to demonstrate how PCD thrust bearings would reduce the cost of

494

Minesto AB | Open Energy Information  

Open Energy Info (EERE)

Minesto AB Minesto AB Jump to: navigation, search Name Minesto AB Sector Marine and Hydrokinetic Website http://http://www.minesto.com/ Region Sweden LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Deep Green This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Minesto_AB&oldid=678379" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

495

MHK Projects | Open Energy Information  

Open Energy Info (EERE)

MHK Projects MHK Projects Jump to: navigation, search << Return to the MHK database homepage Click one of the following Marine Hydrokinetic Projects for more information: Loading... 40MW Lewis project ADM 3 ADM 4 ADM 5 AW Energy EMEC AWS II Admirality Inlet Tidal Energy Project Agucadoura Alaska 1 Alaska 13 Alaska 17 Alaska 18 Alaska 24 Alaska 25 Alaska 28 Alaska 31 Alaska 33 Alaska 35 Alaska 36 Alaska 7 Algiers Cutoff Project Algiers Light Project Amity Point Anconia Point Project Angoon Tidal Energy Plant Aquantis Project Ashley Point Project Astoria Tidal Energy Atchafalaya River Hydrokinetic Project II Avalon Tidal Avondale Bend Project BW2 Tidal Bar Field Bend Barfield Point Bayou Latenache Belair Project Belleville BioSTREAM Pilot Plant Bluemill Sound Bondurant Chute Bonnybrook Wastewater Facility Project 1

496

THOR Turner Hunt Ocean Renewable LLC | Open Energy Information  

Open Energy Info (EERE)

Turner Hunt Ocean Renewable LLC Turner Hunt Ocean Renewable LLC Jump to: navigation, search Name THOR Turner Hunt Ocean Renewable LLC Address 3814 West St Place Cincinnati Zip 45227 Sector Marine and Hydrokinetic Year founded 2007 Phone number 513-527-4924 Website http://http://www.thorocean.co Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: THOR Ocean Current Turbine This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=THOR_Turner_Hunt_Ocean_Renewable_LLC&oldid=678473" Categories: Clean Energy Organizations Companies Organizations

497

BioPower Systems Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

Systems Pty Ltd Systems Pty Ltd Jump to: navigation, search Name BioPower Systems Pty Ltd Address Suite 145 National Innovation Centre Australian Technology Park Place Eveleigh Zip 1430 Sector Marine and Hydrokinetic Phone number +61 2 9209 4237 Website http://www.biopowersystems.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: BioSTREAM Pilot Plant bioWAVE Pilot Plant This company is involved in the following MHK Technologies: bioBase bioSTREAM bioWave This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=BioPower_Systems_Pty_Ltd&oldid=678254

498

Mananook Associates | Open Energy Information  

Open Energy Info (EERE)

Mananook Associates Mananook Associates Jump to: navigation, search Name Mananook Associates Address PO Box 69 Place Perry Zip 4667 Sector Marine and Hydrokinetic Phone number 207-733-5513 Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Grand Manan Channel Project This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Mananook_Associates&oldid=678368" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

499

Energy Department Releases New Energy 101 Video on Ocean Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity at dams and other hydropower facilities in your region. But an emerging clean energy technology called marine and hydrokinetic (MHK) energy -- or ocean power -- uses water to generate electricity in a different way, and has yet to get

500

CX-006520: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20: Categorical Exclusion Determination 20: Categorical Exclusion Determination CX-006520: Categorical Exclusion Determination High Energy Density Distributed Hydrostatic Direct Drive for Large Wind Turbine and Marine Hydro-Kinetic Device Applications CX(s) Applied: A9 Date: 08/16/2011 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Department of Energy is proposing to provide federal funding to Dehlsen Associates, LLC to develop and refine a high energy Hydrostatic Direct Drivetrain (HOD) for large wind turbine (1.5+ megawatt) and marine hydro-kinetic energy technology application. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-006520.pdf More Documents & Publications CX-005670: Categorical Exclusion Determination CX-001841: Categorical Exclusion Determination