Sample records for buoy hk hydrokinetic

  1. Freeze resistant buoy system

    DOE Patents [OSTI]

    Hill, David E [Knoxville, TN; Greenbaum, Elias [Knoxville, TN

    2007-08-21T23:59:59.000Z

    A freeze resistant buoy system includes a tail-tube buoy having a thermally insulated section disposed predominantly above a waterline, and a thermo-siphon disposed predominantly below the waterline.

  2. Sandia National Laboratories: Investigations on Marine Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECEnergyInvestigations on Marine Hydrokinetic Turbine Foil Structural Health Monitoring Presented at GMREC METS Investigations on Marine Hydrokinetic Turbine Foil Structural...

  3. Sandia National Laboratories: marine hydrokinetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrokinetic Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter On September 16, 2014, in Computational Modeling & Simulation, Energy, News, News & Events,...

  4. Energy 101: Marine & Hydrokinetic Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings, and cities.

  5. Upcoming Funding Opportunity for Marine and Hydrokinetic Development...

    Energy Savers [EERE]

    Upcoming Funding Opportunity for Marine and Hydrokinetic Development University Consortium Upcoming Funding Opportunity for Marine and Hydrokinetic Development University...

  6. Attraction to and Avoidance of instream Hydrokinetic Turbines by Freshwater Aquatic Organisms

    SciTech Connect (OSTI)

    Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

    2011-05-01T23:59:59.000Z

    The development of hydrokinetic (HK) energy projects is under consideration at over 150 sites in large rivers in the United States, including the Mississippi, Ohio, Tennessee, and Atchafalaya Rivers. These waterbodies support numerous fish species that might interact with the HK projects in a variety of ways, e.g., by attraction to or avoidance of project structures. Although many fish species inhabit these rivers (about 172 species in the Mississippi River alone), not all of them will encounter the HK projects. Some species prefer low-velocity, backwater habitats rather than the high-velocity, main channel areas that would be the best sites for HK. Other, riverbank-oriented species are weak swimmers or too small to inhabit the main channel for significant periods of time. Some larger, main channel fish species are not known to be attracted to structures. Based on a consideration of habitat preferences, size/swim speed, and behavior, fish species that are most likely to be attracted to HK structures in the main channel include carps, suckers, catfish, white bass, striped bass, smallmouth bass, spotted bass, and sauger. Proper siting of the project in order to avoid sensitive fish populations, backwater and fish nursery habitat areas, and fish migration corridors will likely minimize concerns about fish attraction to or avoidance of HK structures.

  7. Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

    2010-05-01T23:59:59.000Z

    Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects to animal populations could occur directly (e.g., from strike mortality of individuals) or indirectly (e.g., if the loss of prey species to strike reduces food for predators). Although actively swimming or passively drifting animals may collide with any of the physical structures associated with hydrokinetic devices, turbine rotors are the most likely sources for risk of strike or significant collision (DOE 2009). It is also possible that during a close encounter with a HK device no physical contact will be made between the device and the organism, either because the animal avoids the device by successfully changing its direction of movement, or by successfully evading any moving parts of the device. Oak Ridge National Laboratory (ORNL) has been funded by the US Department of Energy (DOE) Waterpower Program to evaluate strike potential and consequences for Marine and Hydrokinetic (MHK) technologies in rivers and estuaries of the United States. We will use both predictive models and laboratory/field experiments to evaluate the likelihood and consequences of strike at HK projects in rivers. Efforts undertaken at ORNL address three objectives: (1) Assess strike risk for marine and freshwater organisms; (2) Develop experimental procedures to assess the risk and consequences of strike; and (3) Conduct strike studies in experimental flumes and field installations of hydrokinetic devices. During the first year of the study ORNL collected information from the Federal Energy Regulatory Commission (FERC) MHK database about geographical distribution of proposed hydrokinetic projects (what rivers or other types of systems), HK turbine design (horizontal axis, vertical axis, other), description of proposed axial turbine (number of blades, size of blades, rotation rate, mitigation measures), and number of units per project. Where site specific information was available, we compared the location of proposed projects rotors within the channel (e.g., along cutting edge bank, middle of thalweg, near bottom or in midwater) to the general locations of fish in the river (shoreline,

  8. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE’s Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  9. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Broader source: Energy.gov (indexed) [DOE]

    Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United...

  10. New Report States That Hydrokinetic Turbines Have Minimal Environmenta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish August...

  11. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Energy Savers [EERE]

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

  12. Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic...

    Office of Environmental Management (EM)

    Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK)...

  13. Energy 101: Marine and Hydrokinetic Energy

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  14. Energy 101: Marine and Hydrokinetic Energy

    ScienceCinema (OSTI)

    None

    2014-06-26T23:59:59.000Z

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  15. Sandia National Laboratories: marine hydrokinetic reference models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  16. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01T23:59:59.000Z

    This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

  17. Simulating Collisions for Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01T23:59:59.000Z

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  18. Submersible Generator for Marine Hydrokinetics

    SciTech Connect (OSTI)

    Robert S. Cinq-Mars; Timothy Burke; Dr. James Irish; Brian Gustafson; Dr. James Kirtley; Dr. Aiman Alawa

    2011-09-01T23:59:59.000Z

    A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: � Identified the conditions and requirements for MHK generators. � Defined a methodology for sizing and rating MHK systems. � Selected an MHK generator topology and form factor. � Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. � Investigated MHK generator manufacturing requirements. � Reviewed cost implications and financial viability. � Completed final reporting and deliverables

  19. Laboratory Experiments on the Effects of Blade Strike from Hydrokinetic Energy Technologies on Larval and Juvenile Freshwater Fishes

    SciTech Connect (OSTI)

    Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

    2012-03-01T23:59:59.000Z

    There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed current-based projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the risk for blade strike to aquatic organisms. In conventional hydropower generation, research on fish passage through reaction turbines at low-head dams suggested that strike and mortality for small fish could be low. As a consequence of the large surface area to mass ratio of small fish, the drag forces in the boundary layer flow at the surface of a rotor blade may pull small fish around the leading edge of a rotor blade without making physical contact (Turnpenny 1998, Turnpenny et al. 2000). Although there is concern that small, fragile fish early life stages may be unable to avoid being struck by the blades of hydrokinetic turbines, we found no empirical data in the published literature that document survival of earliest life-stage fish in passage by rotor blades. In addition to blade strike, research on passage of fish through conventional hydropower turbines suggested that fish mortalities from passage through the rotor swept area could also occur due to shear stresses and pressure chances in the water column (Cada et al. 1997, Turnpenny 1998). However, for most of the proposed HK turbine designs the rotors are projected to operate a lower RPM (revolutions per minute) than observed from conventional reaction turbines; the associated shear stress and pressure changes are expected to be lower and pose a smaller threat to fish survival (DOE 2009). Only a limited number of studies have been conducted to examine the risk of blade strike from hydrokinetic technologies to fish (Turnpenny et al. 1992, Normandeau et al. 2009, Seitz et al. 2011, EPRI 2011); the survival of drifting or weakly swimming fish (especially early life stages) that encounter rotor blades from hydrokinetic (HK) devices is currently unknown. Our study addressed this knowledge gap by testing how fish larvae and juveniles encountered different blade profiles of hydrokinetic devices and how such encounters influenced survivorship. We carried out a laboratory study designed to improve our understanding of how fish larvae and juvenile fish may be affected by encounters with rotor blades from HK turbines in the water column of river and ocean currents. (For convenience, these early life stages will be referred to as young of the year, YOY). The experiments developed information needed to quantify the risk (both probability and consequences) of rotor-blade strike to YOY fish. In particular, this study attempted to determine whether YOY drifting in a high-velocity flow directly in the path of the blade leading edge will make contact with the rotor blade or will bypass the blade while entrained in the boundary l

  20. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop...

    Broader source: Energy.gov (indexed) [DOE]

    provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river...

  1. Proceedings of the Hydrokinetic and Wave Energy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    techenviroworkshop More Documents & Publications Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Before the House Science and...

  2. Evaluating Effects of Stressors from Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Copping, Andrea E.; Blake, Kara M.; Hanna, Luke A.; Brandt, Charles A.; Ward, Jeffrey A.; Brandenberger, Jill M.; Gill, Gary A.; Carlson, Thomas J.; Elster, Jennifer L.; Jones, Mark E.; Watson, Bruce E.; Jepsen, Richard A.; Metzinger, Kurt

    2012-09-30T23:59:59.000Z

    Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2012, Pacific Northwest National Laboratory (PNNL) continued to follow project developments on the two marine and hydrokinetic projects reviewed for Environmental Risk Evaluation System (ERES) screening analysis in FY 2011: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. The ERES project in FY 2012 also examined two stressor–receptor interactions previously identified through the screening process as being of high importance: 1) the toxicity effects of antifouling coatings on MHK devices on aquatic resources and 2) the risk of a physical strike encounter between an adult killer whale and an OpenHydro turbine blade. The screening-level assessment of antifouling paints and coatings was conducted for two case studies: the Snohomish County Public Utility District No. 1 (SnoPUD) tidal turbine energy project in Admiralty Inlet, Puget Sound, Washington, and the Ocean Power Technologies (OPT) wave buoy project in Reedsport, Oregon. Results suggest minimal risk to aquatic biota from antifouling coatings used on MHK devices deployed in large estuaries or open ocean environments. For the strike assessment of a Southern Resident Killer Whale (SRKW) encountering an OpenHydro tidal turbine blade, PNNL teamed with colleagues from Sandia National Laboratories (SNL) to carry out an analysis of the mechanics and biological consequences of different blade strike scenarios. Results of these analyses found the following: 1) a SRKW is not likely to experience significant tissue injury from impact by an OpenHydro turbine blade; and 2) if whale skin behaves similarly to the materials considered as surrogates for the upper dermal layers of whale skin, it would not be torn by an OpenHydro blade strike. The PNNL/SNL analyses could not provide insight into the potential for more subtle changes to SRKWs from an encounter with a turbine, such as changes in behavior, or inform turbine interactions for other whales or other turbines. These analyses were limited by the available time frame in which results were needed and focused on the mechanical response of whale tissues and bone to blade strike. PNNL proposes that analyses of additional turbine designs and interactions with other marine mammals that differ in size, body conformation, and mass be performed.

  3. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Open Energy Info (EERE)

    and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment and Mapping...

  4. NATIONAL DATA BUOY CAPABILITIES AND REQUIREMENTS 8.1. General.

    E-Print Network [OSTI]

    CHAPTER 8 NATIONAL DATA BUOY CAPABILITIES AND REQUIREMENTS 8.1. General. 8.1.1. Automated Reporting Stations. The National Data Buoy Center (NDBC) maintains automated reporting stations in the coastal and deep ocean areas of the Gulf of Mexico, the Atlantic and Pacific Oceans, and in the Great Lakes

  5. Abrasion Testing of Critical Components of Hydrokinetic Devices

    SciTech Connect (OSTI)

    Worthington, Monty [ORPC Alaska] [ORPC Alaska; Ali, Muhammad [Ohio University] [Ohio University; Ravens, Tom [University of Alaska Anchorage] [University of Alaska Anchorage

    2013-12-06T23:59:59.000Z

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  6. Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    harvesting buoy systems, using the heave motion of the buoys to produce useful electrical power. Two energy that can be used to indefinitely power remote buoys, equipped with sensors arrays, as well as electronics for processing and communications. These power sources can be integrated with buoy systems

  7. Multnomah County Hydrokinetic Feasibility Study: Final Feasibility Study Report

    SciTech Connect (OSTI)

    Stephen Spain

    2012-03-15T23:59:59.000Z

    HDR has completed a study of the technical, regulatory, and economic feasibility of installing hydrokinetic turbines under the Morrison, Broadway, and Sellwood bridges. The primary objective of installing hydrokinetic turbines is a demonstration of in-stream hydrokinetic technologies for public education and outreach. Due to the low gradient of the Lower Willamette and the effects of the tide, velocities in the area in consideration are simply not high enough to economically support a commercial installation. While the velocities in the river may at times provide enough energy for a commercial turbine to reach capacity, the frequency and duration of high flow events which provide suitable velocities is not sufficient to support a commercial hydrokinetic installation. We have observed that over an 11 year period, daily average velocities in the Lower Willamette exceeded a nominal cut-in speed of 0.75 m/s only 20% of the time, leaving net zero power production for the remaining 80% of days. The Sellwood Bridge site was estimated to have the best hydrokinetic resource, with an estimated average annual production of about 9,000 kWh. The estimated production could range from 2,500 kWh to 15,000 kWh. Based on these energy estimates, the amount of revenue generated through either a power purchase agreement (PPA) or recovered through net metering is not sufficient to repay the project costs within the life of the turbine. The hydrokinetic resource at the Morrison and Broadway Bridges is slightly smaller than at the Sellwood Bridge. While the Broadway and Morrison Bridges have existing infrastructure that could be utilized, the project is not expected to generate enough revenue to repay the investment. Despite low velocities and energy production, the sites themselves are favorable for installation of a demonstration or experimental project. With high public interest in renewable energy, the possibility exists to develop a hydrokinetic test site which could provide developers and scientists a location to temporarily deploy and test hydrokinetic devices, and also function as an educational tool for the general public. Bridge piers provide an excellent pre-existing anchor point for hydrokinetic devices, and existing infrastructure at the Morrison and Broadway Bridges may reduce installation costs. Opportunity exists to partner with local universities with engineering and environmental interest in renewable energy. A partnership with Portland State University�¢����s engineering school could provide students with an opportunity to learn about hydrokinetics through senior design projects. Oregon State University and University of Washington, which are partnered through the Northwest National Marine Renewable Energy Center (NNMREC) to study and test hydrokinetic technology, are also relatively local to the site. In addition to providing an opportunity for both public and private entities to learn technically about in-stream kinetics, this approach will encourage grant funding for outreach, education, and product development, while also serving as a positive community relations opportunity for the County and its partners.

  8. 2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  9. The feasibility of sodar wind profile measurements from an oceanographic buoy

    E-Print Network [OSTI]

    Berg, Allison M. (Allison May)

    2006-01-01T23:59:59.000Z

    This thesis explores the feasibility of making wind speed profile measurements from an oceanographic buoy using a Doppler sodar. In the fall of 2005, we deployed a Scintec SFAS sodar on an ASIS buoy. Roughly one week of ...

  10. DOE Launches High-Tech Research Buoys to Advance U.S. Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launches High-Tech Research Buoys to Advance U.S. Offshore Wind Development DOE Launches High-Tech Research Buoys to Advance U.S. Offshore Wind Development May 18, 2015 - 3:18pm...

  11. Ice Mass Balance Buoy: An Instrument to Measure and Attribute Changes in Ice Thickness

    E-Print Network [OSTI]

    Geiger, Cathleen

    Ice Mass Balance Buoy: An Instrument to Measure and Attribute Changes in Ice Thickness Jacqueline A the Ice Mass Balance buoy (IMB) in response to the need for monitoring changes in the thickness of the Arctic sea ice cover. The IMB is an autonomous, ice-based system. IMB buoys provide a time series of ice

  12. Bragg scattering and wave-power extraction by an array of small buoys

    E-Print Network [OSTI]

    Boyer, Edmond

    Bragg scattering and wave-power extraction by an array of small buoys By Xavier Garnaud & Chiang C to power-takeoff devices. The spacing between buoys is assumed to be comparable to the incident wavelength to the potential of power extraction from sea waves by an isolated unit such as a buoy, a raft or an oscillating

  13. #061212-008 1 Abstract A new type of surface vehicle/buoy is needed for

    E-Print Network [OSTI]

    Wood, Stephen L.

    is a completely redesigned NOMAD buoy with the ability to pull up anchor and traverse under power to a new#061212-008 1 Abstract ­ A new type of surface vehicle/buoy is needed for marine biological studies, and fluorescein. Index Terms-- Autonomous Marine Vehicle, Autonomous Mobile Buoy, Coastal Observatories, Self

  14. Small Buoys for Energy Harvesting : Experimental and Numerical Modeling Studies

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    of Ocean Engineering, University of Rhode Island, Narragansett, RI, USA 2. Electro Standards Laboratories. These systems are targeted for powering distributed marine surveillance and instrumentation networks, and should climates, of two new types of buoy systems equipped with an embedded Linear Electric Generator (LEG; made

  15. Comparing TRMM rainfall retrieval with NOAA buoy rain gauge data

    E-Print Network [OSTI]

    Phillips, Amy Blackmore

    2002-01-01T23:59:59.000Z

    to December of 2001. TRMM's 3G68 product provides instantaneous rain rate data averaged over 0.5? x 0.5? latitude-longitude grid boxes for the TRMM Microwave Imager (TMI), Precipitation Radar (PR), and a combined algorithm (COMB). The buoy's rain rate data...

  16. Hybrid Renewable Energy Systems for a Dynamically Positioned Buoy

    E-Print Network [OSTI]

    Wood, Stephen L.

    of the vessel and environmental conditions, power requirements for DP tend to be quite substantial and costly of powering a low cost, simple, dynamic positioning system. This system was implemented on a dynamically a theoretical hybrid renewable energy system to power it, thereby improving on the station keeping buoy (SKB

  17. JEDI Marine and Hydrokinetic Model: User Reference Guide

    SciTech Connect (OSTI)

    Goldberg, M.; Previsic, M.

    2011-04-01T23:59:59.000Z

    The Jobs and Economic Development Impact Model (JEDI) for Marine and Hydrokinetics (MHK) is a user-friendly spreadsheet-based tool designed to demonstrate the economic impacts associated with developing and operating MHK power systems in the United States. The JEDI MHK User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the sources and parameters used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

  18. Form:Marine and Hydrokinetic Technology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd a Marine and Hydrokinetic

  19. Live Webinar on the Funding Opportunity for Marine and Hydrokinetic Research and Development University Consortium

    Broader source: Energy.gov [DOE]

    On April 24, 2014 from 1:00 - 2:30 PM EDT, the Water Power Program will hold a live webinar to provide information to potential applicants for the Marine and Hydrokinetic (MHK) Research and...

  20. Marine and Hydrokinetic Energy Development Technical Support and General Environmental Studies Report on Outreach to Stakeholders for Fiscal Year 2009

    SciTech Connect (OSTI)

    Copping, Andrea E.; Geerlofs, Simon H.

    2010-01-22T23:59:59.000Z

    Report on activities working with stakeholders in the emerging marine and hydrokinetic energy industry during FY09, for DOE EERE Office of Waterpower.

  1. Hydro-kinetic approach to relativistic heavy ion collisions

    E-Print Network [OSTI]

    S. V. Akkelin; Y. Hama; Iu. A. Karpenko; Yu. M. Sinyukov

    2008-08-28T23:59:59.000Z

    We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.

  2. MHK Technologies/AquaBuoy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy InformationSEAREVAquaBuoy < MHK

  3. MHK Technologies/Electric Buoy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlaneElectric Buoy.jpg Technology Profile

  4. MHK Technologies/Finavera Buoy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlaneElectricBuoy.jpg Technology Profile

  5. MHK Technologies/WAG Buoy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy < MHK Technologies Jump to:

  6. THORs Power Method for Hydrokinetic Devices - Final Report

    SciTech Connect (OSTI)

    J. Turner Hunt; Joel Rumker

    2012-08-08T23:59:59.000Z

    Ocean current energy represents a vast untapped source of renewable energy that exists on the outer continental shelf areas of the 5 major continents. Ocean currents are unidirectional in nature and are perpetuated by thermal and salinity sea gradients, as well as coriolis forces imparted from the earth's rotation. This report details THORs Power Method, a breakthrough power control method that can provide dramatic increases to the capacity factor over and above existing marine hydrokinetic (MHK) devices employed in the extraction of energy from ocean currents. THORs Power Method represents a constant speed, variable depth operational method that continually locates the ocean current turbine at a depth at which the rated power of the generator is routinely achieved. Variable depth operation is achieved by using various vertical force effectors, including ballast tanks for variable weight, a hydrodynamic wing for variable lift or down force and drag flaps for variable vehicle drag forces.

  7. Dynamic Ping Optimization for Surveillance in Multistatic Sonar Buoy Networks with Energy Constraints

    E-Print Network [OSTI]

    Amir, Yair

    Dynamic Ping Optimization for Surveillance in Multistatic Sonar Buoy Networks with Energy optimization of ping schedule in an active sonar buoy network deployed to provide persistent surveillance management of power consumption for pinging is important to support the required lifetime of the network

  8. Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-01T23:59:59.000Z

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

  9. Tropical Moored Buoy Implementation Panel (TIP) Report Michael J. McPhaden, TIP Chairman

    E-Print Network [OSTI]

    CLIVAR and IOC/WMO panels) to advance the implementation of a moored buoy network in the context of other), which advises the Administrator of NOAA on management and policy issues, has requested submission

  10. Accessing the Energy Department’s Lidar Buoy Data off Virginia Beach

    Broader source: Energy.gov [DOE]

    In December 2014, Pacific Northwest National Laboratory (PNNL) deployed the Energy Department’s floating lidar buoy off of Virginia Beach, Virginia, in less than 30 meters (m) of water,...

  11. Numerical Simulations of a Wave Energy Conversion Device Used for Oceanographic Buoys

    E-Print Network [OSTI]

    Lee, Yongseok

    2014-07-24T23:59:59.000Z

    oceanographic ships prior to transmission land based research facilities. Most buoy designs are powered by battery systems that provide ballast and some can be recharged by solar panels. At-sea maintenance may include regular battery replacement or repairs...

  12. Experimental analysis of an energy self sufficient ocean buoy utilizing a bi-directional turbine

    E-Print Network [OSTI]

    Gruber, Timothy J. (Timothy James)

    2012-01-01T23:59:59.000Z

    An experimental analysis of a Venturi shrouded hydro turbine for wave energy conversion. The turbine is designed to meet the specific power requirements of a, Woods Hole Oceanographic Institute offshore monitoring buoy ...

  13. regulation. Buoys and ship-based sensors are normally used to measure the amount of

    E-Print Network [OSTI]

    Heller, Eric

    regulation. Buoys and ship-based sensors are normally used to measure the amount of water of many neurons at once. But researchers based in Cambridge, Massachusetts, have painstakingly mapped

  14. Eos, Vol. 93, No. 10, 6 March 2012 Marine and hydrokinetic (MHK) energy

    E-Print Network [OSTI]

    Foufoula-Georgiou, Efi

    convert the kinetic energy of waves and water currents into power to generate electricity. Although of harnessing the natural power of water for renewable energy at a competitive cost and without harmingEos, Vol. 93, No. 10, 6 March 2012 Marine and hydrokinetic (MHK) energy harvesting technologies

  15. Wave and Hydrokinetics Interest Group 1st Meeting of 2009/2010 Year

    E-Print Network [OSTI]

    Wave and Hydrokinetics Interest Group 1st Meeting of 2009/2010 Year: With a Focus on wave Energy, Inc. All rights reserved. Marine Wave Energy Interest Group · Bill Toman, PG&E WaveConnect Project Manager is Chairman · Agenda 8:30-9:00 USA Project Status: PG&E WaveConnect, OPT Reedsport and Coos Bay

  16. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-10T23:59:59.000Z

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

  17. Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

  18. US Synthetic Corp (TRL 4 Component)- The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

    Broader source: Energy.gov [DOE]

    US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

  19. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect (OSTI)

    Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory

    2012-12-31T23:59:59.000Z

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

  20. Draft Genome Sequence of the Polycyclic Aromatic Hydrocarbon-Degrading, Genetically Engineered Bioluminescent Bioreporter Pseudomonas fluorescens HK44

    SciTech Connect (OSTI)

    Chauhan, Archana [ORNL; Layton, Alice [University of Tennessee, Knoxville (UTK); Williams, Daniel W [ORNL; Smart, Abby E. [University of Tennessee, Knoxville (UTK); Ripp, Steven Anthony [ORNL; Karpinets, Tatiana V [ORNL; Brown, Steven D [ORNL; Sayler, Gary Steven [ORNL

    2011-01-01T23:59:59.000Z

    Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of {approx}6.1 Mb sequence indicates that 30% of the traits are unique and distributed over 5 genomic islands, a prophage and two plasmids.

  1. 15 2 1 2013 Union Press ccchan@eee.hku.hk

    E-Print Network [OSTI]

    Leung, Ka-Cheong

    17 LTO LTO LTO LTO Altairnano, 2012 Wave energy Wind energy Geothermal energy Wind energy Modern biomass energy Solar energy Geothermal energy #12;18 Studies in Science15 2 1 2013 Union Press ccchan@eee.hku.hk ln.jian@siat.ac.cn Correlation between energy

  2. Comparison of the CERN-MEMPHYS and T2HK neutrino oscillation experiments

    E-Print Network [OSTI]

    Thomas Schwetz

    2006-11-20T23:59:59.000Z

    In this talk I compare the physics potential of possible future neutrino oscillation experiments from CERN to a Mt scale water Cerenkov detector at Frejus (MEMPHYS) and of the T2HK proposal in Japan, where for the CERN experiments an SPL Superbeam and a $\\gamma=100$ Beta Beam are considered.

  3. Sandia National Laboratories: Computational Modeling & Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    understand the potential for hydrokinetic (HK) energy development within existing canal systems. HK turbine operation alters water surface elevations and modifies its flow in...

  4. Tellus 000, 000000 (0000) Printed 3 May 2004 (Tellus LATEX style file v2.2) Resonant Inertial Oscillations in Moored Buoy Ocean

    E-Print Network [OSTI]

    Oscillations in Moored Buoy Ocean Surface Winds By R.G. Stockwell1 , W.G. Large2 and R.F. Milliff1 1 Colorado-3000 (Manuscript received 26 February 2004; ) ABSTRACT The surface winds from the moored buoy dataset available from the National Data Buoy Center are examined for the occurrence of inertial range oscillations

  5. Transformation from SDSS Photometric System to Johnson-Morgan-Cousins System in HK Survey

    E-Print Network [OSTI]

    Chongshan Zhao; Heidi Jo Newberg

    2006-12-01T23:59:59.000Z

    We calculate the transformation from the Sloan Digital Sky Survey (SDSS) photometric system to the Johnson-Morgan-Cousins System in the HK Survey. This research was done in late 2001, so the SDSS photometry was taken from the database prior to the release of DR1. This paper is being posted because it is referenced in other papers in the literature, but will not be submitted to a refereed journal because it uses unpublished versions of the catalogs.

  6. Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait

    SciTech Connect (OSTI)

    Neary, Vincent S [ORNL; Gunawan, Budi [ORNL; Ryou, Albert S [ORNL

    2012-06-01T23:59:59.000Z

    The U.S. Department of Energy (DoE) is assessing and mapping the potential off-shore ocean current hydrokinetic energy resources along the U.S. coastline, excluding tidal currents, to facilitate market penetration of water power technologies. This resource assessment includes information on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled historical simulations spanning a 7-year period of record using HYCOM-GOM, an ocean current observation assimilation model that generates a spatially distributed three-dimensional representation of daily averaged horizontal current magnitude and direction time series from which power density time series and their statistics can be derived. This study ascertains the deviation of HYCOM-GOM outputs, including transport (flow) and power density, from outputs based on three independent observation sources to evaluate HYCOM-GOM performance. The three independent data sources include NOAA s submarine cable data of transport, ADCP data at a high power density location, and HF radar data in the high power density region of the Florida Strait. Comparisons with these three independent observation sets indicate discrepancies with HYCOM model outputs, but overall indicate that the HYCOM-GOM model can provide an adequate assessment of the ocean current hydrokinetic resource in high power density regions like the Florida Strait. Additional independent observational data, in particular stationary ADCP measurements, would be useful for expanding this model performance evaluation study. ADCP measurements are rare in ocean environments not influenced by tides, and limited to one location in the Florida Strait. HF radar data, although providing great spatial coverage, is limited to surface currents only.

  7. 2011 Marine Hydrokinetic Device Modeling Workshop: Final Report; March 1, 2011

    SciTech Connect (OSTI)

    Li, Y.; Reed, M.; Smith, B.

    2011-10-01T23:59:59.000Z

    This report summarizes the NREL Marine and Hydrokinetic Device Modeling Workshop. The objectives for the modeling workshop were to: (1) Review the designs of existing MHK device prototypes and discuss design and optimization procedures; (2) Assess the utility and limitations of modeling techniques and methods presently used for modeling MHK devices; (3) Assess the utility and limitations of modeling methods used in other areas, such as naval architecture and ocean engineering (e.g., oil & gas industry); and (4) Identify the necessary steps to link modeling with other important components that analyze MHK devices (e.g., tank testing, PTO design, mechanical design).

  8. Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2011: Annual Progress Report

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

    2011-06-09T23:59:59.000Z

    The Pacific Northwest National Laboratory (PNNL), in collaboration with the Applied Physics Laboratory at the University of Washington (APL-UW), has carried out a detailed preliminary fluid flow field study at site selected for testing of marine and hydrokinetic turbines using Acoustic Doppler Velocimetry (ADV) measurements, Acoustic Doppler Current Profiler (ADCP) measurements, and Conductivity, Temperature and Depth (CTD) measurements. In FY-2011 these measurements were performed continuously for two weeks, in order to collect data during neap and spring tides, as well as during diurnal tidal variations.

  9. Microsoft PowerPoint - MVD Hydrokinetics, SW Regional Hydropower Conference, 10 June 2010, rev 1.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE'sR.G.Hydrokinetic Projects

  10. Preliminary Screening Analysis for the Environmental Risk Evaluation System: Task 2.1.1: Evaluating Effects of Stressors – Fiscal Year 2010 Progress Report: Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

    2010-11-15T23:59:59.000Z

    Possible environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term effects. An understanding of risk associated with likely interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help reduce the level of uncertainty and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases - a tidal project in Puget Sound using Open Hydro turbines, a wave project off the coast of Oregon using Ocean Power Technologies point attenuator buoys, and a riverine current project in the Mississippi River using Free Flow turbines. Through an iterative process, the screening analysis revealed that top-tier stressors in all three cases were the effects of the dynamic physical presence of the device (e.g., strike), accidents, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the four highest tiers of risk were dominated by marine mammals (cetaceans and pinnipeds) and birds (diving and non-diving); only the riverine case (Free Flow) included different receptors in the third tier (fish) and the fourth tier (benthic invertebrates). Although this screening analysis provides a preliminary analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis, especially of risk associated with chemical toxicity and accidents such as oil spills or lost gear, will be necessary to further understand high-priority risks. Subject matter expert review of this process and results is required and is planned for the first quarter of FY11. Once expert review is finalized, the screening analysis phase of ERES will be complete.

  11. International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status

    SciTech Connect (OSTI)

    Rondorf, Neil E.; Busch, Jason; Kimball, Richard

    2011-10-29T23:59:59.000Z

    This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at www.TC114.us

  12. Cadmium induces phosphorylation and stabilization of c-Fos in HK-2 renal proximal tubular cells

    SciTech Connect (OSTI)

    Iwatsuki, Mamiko; Inageda, Kiyoshi; Matsuoka, Masato, E-mail: matsuoka@research.twmu.ac.jp

    2011-03-15T23:59:59.000Z

    We examined the effects of cadmium chloride (CdCl{sub 2}) exposure on the expression and phosphorylation status of members of the Fos family, components of the activator protein-1 transcription factor, in HK-2 human renal proximal tubular cells. Following the exposure to CdCl{sub 2}, the expression of c-fos, fosB, fra-1, and fra-2 increased markedly, with different magnitudes and time courses. The levels of Fos family proteins (c-Fos, FosB, Fra-1, and Fra-2) also increased in response to CdCl{sub 2} exposure. Although the elevation of c-fos transcripts was transient, c-Fos protein levels increased progressively with lower electrophoretic mobility, suggesting stabilization of c-Fos through post-translational modifications. Consistently, we observed phosphorylation of c-Fos at Ser362 and Ser374 in HK-2 cells treated with CdCl{sub 2}. Phosphorylated forms of mitogen-activated protein kinases (MAPKs)-including extracellular signal-regulated protein kinase (ERK), c-Jun NH{sub 2}-terminal kinase, and p38-increased after CdCl{sub 2} exposure, whereas treatment with the MAPK/ERK kinase inhibitor U0126 and the p38 inhibitor SB203580 suppressed the accumulation and phosphorylation of c-Fos. We mutated Ser362 to alanine (S362A), Ser374 to alanine (S374A), and both residues to alanines (S362A/S374A) to inhibit potential phosphorylation of c-Fos at these sites. S374A or double S362A/S374A mutations reduced c-Fos level markedly, but S362A mutation did not. On the other hand, S362A/S374A mutations induced a more pronounced reduction in c-Fos DNA-binding activity than S374A mutation. These results suggest that while Ser374 phosphorylation seems to play a role in c-Fos stabilization, phosphorylation at two C-terminal serine residues is required for the transcriptional activation of c-Fos in HK-2 cells treated with CdCl{sub 2}.

  13. Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades

    SciTech Connect (OSTI)

    J.L. Rovey

    2012-09-21T23:59:59.000Z

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.

  14. Simulating Blade-Strike on Fish passing through Marine Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-06-16T23:59:59.000Z

    The study reported here evaluated the occurrence, frequency, and intensity of blade strike of fish on an axial-flow marine hydrokinetic turbine by using two modeling approaches: a conventional kinematic formulation and a proposed Lagrangian particle- based scheme. The kinematic model included simplifying assumptions of fish trajectories such as distribution and velocity. The proposed method overcame the need for such simplifications by integrating the following components into a computational fluid dynamics (CFD) model: (i) advanced eddy-resolving flow simulation, (ii) generation of ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The test conditions to evaluate the blade-strike probability and fish survival rate were: (i) the turbulent environment, (ii) the fish size, and (iii) the approaching flow velocity. The proposed method offered the ability to produce potential fish trajectories and their interaction with the rotating turbine. Depending upon the scenario, the percentile of particles that registered a collision event ranged from 6% to 19% of the released sample size. Next, by using a set of experimental correlations of the exposure-response of living fish colliding with moving blades, the simulated collision data were used as input variables to estimate the survival rate of fish passing through the operating turbine. The resulting survival rates were greater than 96% in all scenarios, which is comparable to or better than known survival rates for conventional hydropower turbines. The figures of strike probability and mortality rate were amplified by the kinematic model. The proposed method offered the advantage of expanding the evaluation of other mechanisms of stress and injury on fish derived from hydrokinetic turbines and related devices.

  15. Tethys: The Marine and Hydrokinetic Technology Environmental Impacts Knowledge Management System -- Requirements Specification -- Version 1.0

    SciTech Connect (OSTI)

    Butner, R. Scott; Snowden-Swan, Lesley J.; Ellis, Peter C.

    2010-11-09T23:59:59.000Z

    The marine and hydrokinetic (MHK) environmental impacts knowledge management system (KMS), dubbed Tethys after the mythical Greek goddess of the seas, is being developed for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program (WHTP) by Pacific Northwest National Laboratory (PNNL). This requirements specification establishes the essential capabilities required of Tethys and clarifies for WHTP and the Tethys development team the results that must be achieved by the system.

  16. Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy Annette R. Grilli

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy.g., latching) of the SSLG, in order to further improve power generation. KEYWORDS : Wave energy systems networks), based on captur- ing renewable wave energy. To do so, we design and optimize a new type

  17. Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida

    SciTech Connect (OSTI)

    Vinick, Charles; Riccobono, Antonino, MS; Messing, Charles G., Ph.D.; Walker, Brian K., Ph.D.; Reed, John K., Ph.D.

    2012-02-28T23:59:59.000Z

    Dehlsen Associates, LLC was awarded a grant by the United States Department of Energy (DOE) Golden Field Office for a project titled 'Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida,' corresponding to DOE Grant Award Number DE-EE0002655 resulting from DOE funding Opportunity Announcement Number DE-FOA-0000069 for Topic Area 2, and it is referred to herein as 'the project.' The purpose of the project was to enhance the certainty of the survey requirements and regulatory review processes for the purpose of reducing the time, efforts, and costs associated with initial siting efforts of marine and hydrokinetic energy conversion facilities that may be proposed in the Atlantic Ocean offshore Southeast Florida. To secure early input from agencies, protocols were developed for collecting baseline geophysical information and benthic habitat data that can be used by project developers and regulators to make decisions early in the process of determining project location (i.e., the siting process) that avoid or minimize adverse impacts to sensitive marine benthic habitat. It is presumed that such an approach will help facilitate the licensing process for hydrokinetic and other ocean renewable energy projects within the study area and will assist in clarifying the baseline environmental data requirements described in the U.S. Department of the Interior Bureau of Ocean Energy Management, Regulation and Enforcement (formerly Minerals Management Service) final regulations on offshore renewable energy (30 Code of Federal Regulations 285, published April 29, 2009). Because projects generally seek to avoid or minimize impacts to sensitive marine habitats, it was not the intent of this project to investigate areas that did not appear suitable for the siting of ocean renewable energy projects. Rather, a two-tiered approach was designed with the first step consisting of gaining overall insight about seabed conditions offshore southeastern Florida by conducting a geophysical survey of pre-selected areas with subsequent post-processing and expert data interpretation by geophysicists and experienced marine biologists knowledgeable about the general project area. The second step sought to validate the benthic habitat types interpreted from the geophysical data by conducting benthic video and photographic field surveys of selected habitat types. The goal of this step was to determine the degree of correlation between the habitat types interpreted from the geophysical data and what actually exists on the seafloor based on the benthic video survey logs. This step included spot-checking selected habitat types rather than comprehensive evaluation of the entire area covered by the geophysical survey. It is important to note that non-invasive survey methods were used as part of this study and no devices of any kind were either temporarily or permanently attached to the seabed as part of the work conducted under this project.

  18. Environmentally Benign and Permanent Modifications to Prevent Biofouling on Marine and Hydrokinetic Devices

    SciTech Connect (OSTI)

    Zheng Zhang

    2012-04-19T23:59:59.000Z

    Semprus Biosciences is developing environmentally benign and permanent modifications to prevent biofouling on Marine and Hydrokinetic (MHK) devices. Biofouling, including growth on external surfaces by bacteria, algae, barnacles, mussels, and other marine organisms, accumulate quickly on MHK devices, causing mechanical wear and changes in performance. Biofouling on crucial components of hydrokinetic devices, such as rotors, generators, and turbines, imposes substantial mass and hydrodynamic loading with associated efficiency loss and maintenance costs. Most antifouling coatings leach toxic ingredients, such as copper and tributyltin, through an eroding process, but increasingly stringent regulation of biocides has led to interest in the development of non-biocidal technologies to control fouling. Semprus Biosciences research team is developing modifications to prevent fouling from a broad spectrum of organisms on devices of all shapes, sizes, and materials for the life of the product. The research team designed and developed betaine-based polymers as novel underwater coatings to resist the attachment of marine organisms. Different betaine-based monomers and polymers were synthesized and incorporated within various coating formulations. The formulations and application methods were developed on aluminum panels with required adhesion strength and mechanical properties. The coating polymers were chemically stable under UV, hydrolytic and oxidative environments. The sulfobetaine formulations are applicable as nonleaching and stable underwater coatings. For the first time, coating formulations modified with highly packed sulfobetaine polymers were prepared and demonstrated resistance to a broad spectrum of marine organisms. Assays for comparing nonfouling performance were developed to evaluate protein adsorption and bacteria attachment. Barnacle settlement and removal were evaluated and a 60-day field test was performed. Silicone substrates including a commercial fouling release coating were used for comparison. Compared with the unmodified silicone substrates, the sulfobetaine-modified formulations were able to exhibit a 98% reduction in fibrinogen adsorption, 97.0% (E. coli), 99.6% (S. aureus), and 99.5% (C. lytica) reduction in bacteria attachment, and 100% reduction in barnacles cyprid attachment. In addition to the significant improvement in fouling resistance of various organisms, the 60-day field test also showed an evident efficacy from visual assessment, foul rating, and fouling removal test. The research confirmed that the novel antifouling mechanism of betaine polymers provides a new avenue for marine coating development. The developed coatings out-performed currently used nontoxic underwater coatings in a broad spectrum of fouling resistance. By further developing formulations and processing methods for specific devices, the technology is ready for the next stage of development with demonstration in MHK systems.

  19. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    SciTech Connect (OSTI)

    McCully, Curtis; Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Chornock, Ryan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Holtzman, Jon A. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Balam, David D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Branch, David [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Frieman, Joshua [Kavli Institute for Cosmological Physics and Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Fynbo, Johan; Leloudas, Giorgos [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Galbany, Lluis [Institut de Física d'Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Leonard, Douglas C., E-mail: cmccully@physics.rutgers.edu [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); and others

    2014-05-10T23:59:59.000Z

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n{sub e} ? 10{sup 9} cm{sup –3}. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  20. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    SciTech Connect (OSTI)

    Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

    2011-09-01T23:59:59.000Z

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  1. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    SciTech Connect (OSTI)

    Musial, W.; Lawson, M.; Rooney, S.

    2013-02-01T23:59:59.000Z

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9-10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts and discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest how the U.S. Department of Energy and national laboratory resources can be utilized to most effectively assist the marine energy industry.

  2. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    SciTech Connect (OSTI)

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30T23:59:59.000Z

    Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy proj

  3. DISCRETE ELEMENT MODELING OF BLADE–STRIKE FREQUENCY AND SURVIVAL OF FISH PASSING THROUGH HYDROKINETIC TURBINES

    SciTech Connect (OSTI)

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-04-17T23:59:59.000Z

    Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energy device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric aspects of the passage event ---which the probabilistic method does--- as well as the fluid-particle interactions ---which the Lagrangian particle method does. The DEM-based survival rates were comparable to laboratory results for small fish but not for mid-size fish because of the considerably different turbine diameters. The modeling framework can be used for applications that aim at evaluating the biological performance of MHK turbine units during the design phase and to provide information to regulatory agencies needed for the environmental permitting process.

  4. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2012-04-01T23:59:59.000Z

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

  5. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2013-02-01T23:59:59.000Z

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

  6. Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    SciTech Connect (OSTI)

    Jacobson, Paul T. [Electric Power Research Institute; Ravens, Thomas M. [University of Alaska Anchorage; Cunningham, Keith W. [University of Alaska Fairbanks; Scott, George [National Renewable Energy Laboratory

    2012-12-14T23:59:59.000Z

    The U.S. Department of Energy (DOE) funded the Electric Power Research Institute and its collaborative partners, University of Alaska ? Anchorage, University of Alaska ? Fairbanks, and the National Renewable Energy Laboratory, to provide an assessment of the riverine hydrokinetic resource in the continental United States. The assessment benefited from input obtained during two workshops attended by individuals with relevant expertise and from a National Research Council panel commissioned by DOE to provide guidance to this and other concurrent, DOE-funded assessments of water based renewable energy. These sources of expertise provided valuable advice regarding data sources and assessment methodology. The assessment of the hydrokinetic resource in the 48 contiguous states is derived from spatially-explicit data contained in NHDPlus ?a GIS-based database containing river segment-specific information on discharge characteristics and channel slope. 71,398 river segments with mean annual flow greater than 1,000 cubic feet per second (cfs) mean discharge were included in the assessment. Segments with discharge less than 1,000 cfs were dropped from the assessment, as were river segments with hydroelectric dams. The results for the theoretical and technical resource in the 48 contiguous states were found to be relatively insensitive to the cutoff chosen. Raising the cutoff to 1,500 cfs had no effect on estimate of the technically recoverable resource, and the theoretical resource was reduced by 5.3%. The segment-specific theoretical resource was estimated from these data using the standard hydrological engineering equation that relates theoretical hydraulic power (Pth, Watts) to discharge (Q, m3 s-1) and hydraulic head or change in elevation (??, m) over the length of the segment, where ? is the specific weight of water (9800 N m-3): ??? = ? ? ?? For Alaska, which is not encompassed by NPDPlus, hydraulic head and discharge data were manually obtained from Idaho National Laboratory?s Virtual Hydropower Prospector, Google Earth, and U.S. Geological Survey gages. Data were manually obtained for the eleven largest rivers with average flow rates greater than 10,000 cfs and the resulting estimate of the theoretical resource was expanded to include rivers with discharge between 1,000 cfs and 10,000 cfs based upon the contribution of rivers in the latter flow class to the total estimate in the contiguous 48 states. Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate

  7. FFP/NREL Collaboration on Hydrokinetic River Turbine Testing: Cooperative Research and Development Final Report, CRADA Number CRD-12-00473

    SciTech Connect (OSTI)

    Driscoll, F.

    2013-04-01T23:59:59.000Z

    This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory (NREL) and Free Flow Power (FFP) set forth in the following Joint Work Statement. Under the terms and conditions described in this CRADA, NREL and FFP will collaborate on the testing of FFP's hydrokinetic river turbine project on the Mississippi River (baseline location near Baton Rouge, LA; alternate location near Greenville, MS). NREL and FFP will work together to develop testing plans, instrumentation, and data acquisition systems; and perform field measurements.

  8. Regulatory Assistance, Stakeholder Outreach, and Coastal and Marine Spatial Planning Activities in Support of Marine and Hydrokinetic Energy Deployment

    SciTech Connect (OSTI)

    Geerlofs, Simon H.; Copping, Andrea E.; Van Cleve, Frances B.; Blake, Kara M.; Hanna, Luke A.

    2011-09-30T23:59:59.000Z

    This fiscal year 2011 progress report summarizes activities carried out under DOE Water Power Task 2.1.7, Permitting and Planning. Activities under Task 2.1.7 address the concerns of a wide range of stakeholders with an interest in the development of the marine and hydrokinetic (MHK) energy industry, including regulatory and resource management agencies, tribes, nongovernmental organizations, and industry. Objectives for Task 2.1.7 are the following: • to work with stakeholders to streamline the MHK regulatory permitting process • to work with stakeholders to gather information on needs and priorities for environmental assessment of MHK development • to communicate research findings and directions to the MHK industry and stakeholders • to engage in spatial planning processes in order to further the development of the MHK industry. These objectives are met through three subtasks, each of which is described in this report: • 2.1.7.1—Regulatory Assistance • 2.1.7.2—Stakeholder Outreach • 2.1.7.3—Coastal and Marine Spatial Planning. As MHK industry partners work with the regulatory community and stakeholders to plan, site, permit, and license MHK technologies, they have an interest in a predictable, efficient, and transparent process. Stakeholders and regulators have an interest in processes that result in sustainable use of ocean space with minimal effects to existing ocean users. Both stakeholders and regulators have an interest in avoiding legal challenges by meeting the intent of federal, state, and local laws that govern siting and operation of MHK technologies. The intention of work under Task 2.1.7 is to understand and work to address these varied interests, reduce conflict, identify efficiencies, and ultimately reduce the regulatory costs, time, and potential environmental impacts associated with developing, siting, permitting, and deploying MHK systems.

  9. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code

    SciTech Connect (OSTI)

    Maniaci, D. C.; Li, Y.

    2011-10-01T23:59:59.000Z

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

  10. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint

    SciTech Connect (OSTI)

    Maniaci, D. C.; Li, Y.

    2012-04-01T23:59:59.000Z

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

  11. Siting Methodologies for Hydrokinetics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle|SecurityDepartmentShawn WangSioux Students2009 Siting

  12. Marine & Hydrokinetic Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECSEnergy Plans andWorkerandPROGRAM C L

  13. Effects of Electromagnetic Fields on Fish and Invertebrates Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2012 Progress Report Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Woodruff, Dana L.; Cullinan, Valerie I.; Copping, Andrea E.; Marshall, Kathryn E.

    2013-05-20T23:59:59.000Z

    Energy generated by the world’s oceans and rivers offers the potential to make substantial contributions to the domestic and global renewable energy supply. However, the marine and hydrokinetic (MHK) energy industry faces challenges related to siting, permitting, construction, and operation of pilotand commercial-scale facilities. One of the challenges is to understand the potential effects to marine organisms from electromagnetic fields, which are produced as a by-product of transmitting power from offshore to onshore locations through underwater transmission cables. This report documents the progress of the third year of research (fiscal year 2012) to investigate environmental issues associated with marine and hydrokinetic energy (MHK) generation. This work was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Technologies Office. The report addresses the effects of electromagnetic fields (EMFs) on selected marine species where significant knowledge gaps exist. The species studied this fiscal year included one fish and two crustacean species: the Atlantic halibut (Hippoglossus hippoglossus), Dungeness crab (Metacarcinus magister), and American lobster (Homarus americanus).

  14. Direct Drive Wave Energy Buoy

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29T23:59:59.000Z

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  15. Wave Energy Extraction from buoys

    E-Print Network [OSTI]

    Garnaud, Xavier

    2009-01-01T23:59:59.000Z

    Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...

  16. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This document described the U.S. Department of Energy's Water Power Program efforts to promote the development and deployment of advanced water power devices.

  17. Hydrokinetic Laboratory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:ProjectPrograms |

  18. Spring 2010 ME GRADUATE STUDENT SEMINAR (Note if MS student with 20 min presentation, two seminars will be scheduled on the same day)

    E-Print Network [OSTI]

    New Hampshire, University of

    4/30/10 Beytullah Erdogan Buoy-Mounted Wind Turbine Technology 40 Mins Luncheon Date- TBA #12; Mins 2/19/10 Nikolay Timoshchuk Nano Indentation of Carbon/Carbon Composites 20 Mins Michael Buck 20-kinetic Turbine Testing 20 Mins Alex Johnston Investigation of Hydrokinetic Turbines 20 Mins 4/9/10 Benjamin

  19. Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

    2012-05-01T23:59:59.000Z

    This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not statistically significant. Additional species are currently planned for laboratory testing in the next fiscal year (e.g. an elasmobranch, American lobster) to provide a broader assessment of species important to stakeholders. The collective responses of all species will be assessed in terms of life stage, exposure scenarios, and biological relevance, to address current uncertainties related to effects of EMF on aquatic organisms.

  20. Screening Analysis for the Environmental Risk Evaluation System Task 2.1.1.2: Evaluating Effects of Stressors Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Copping, Andrea E.; Blake, Kara M.; Anderson, Richard M.; Zdanski, Laura C.; Gill, Gary A.; Ward, Jeffrey A.

    2011-09-01T23:59:59.000Z

    Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases. During FY 2011, two additional cases were added: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. Through an iterative process, the screening analysis revealed that top-tier stressors in the two FY 2011 cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted in early FY 2012. The ERES screening analysis provides an analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis is needed to determine specific risk levels to receptors. “Risk” has two components: (1) The likelihood, or “probability”, of the occurrence of a given interaction or event, and (2) the potential “consequence” if that interaction or event were to occur. During FY 2011, the ERES screening analysis focused primarily on the second component of risk, “consequence”, with focused probability analysis for interactions where data was sufficient for probability modeling. Consequence analysis provides an assessment of vulnerability of environmental receptors to stressors associated with MHK installations. Probability analysis is needed to determine specific risk levels to receptors and requires significant data inputs to drive risk models. During FY 2011, two stressor-receptor interactions were examined for the probability of occurrence. The two interactions (spill probability due to an encounter between a surface vessel and an MHK device; and toxicity from anti-biofouling paints on MHK devices) were seen to present relatively low risks to marine and freshwater receptors of greatest concern in siting and permitting MHK devices. A third probability analysis was scoped and initial steps taken to understand the risk of encounter between marine animals and rotating turbine blades. This analysis will be completed in FY 2012.

  1. Reserves hike to buoy Bontang LNG

    SciTech Connect (OSTI)

    Not Available

    1992-07-27T23:59:59.000Z

    This paper reports that a redetermination of reserves in an Indonesian production sharing contract (PSC) will boost liquefied natural gas sales for an Indonesian joint venture (IJV) of Lasmo plc, Union Texas (South East Asia) Inc., Chinese Petroleum Corp. (CPC), and Japex Rantau Ltd. The Indonesian reserves increase involves the Sanga PSC operated by Virginia Indonesia Co., a 50-50 joint venture of Lasmo and Union Texas. Union Texas holds a 38% interest in the IJV and Lasmo 37.8%, with remaining interests held by CPC and Japex. meantime, in US LNG news: Shell LNG Co. has shelved plans to buy an added interest in the LNG business of Columbia Gas System Inc. Panhandle Eastern Corp. units Trunkline Gas Co., Trunkline LNG Co., and Panhandle Eastern Pipe Line Co. (PEPL) filed settlement agreements with the Federal Energy Regulatory Commission to recover from customers $243 million in costs associated with Panhandle's Trunkline LNG operation at Lake Charles, Louisiana.

  2. Design of a mobile coastal communications buoy

    E-Print Network [OSTI]

    Hendry-Brogan, Meghan

    2004-01-01T23:59:59.000Z

    In response to a growing interest in networked communications at sea as well as the needs of our vital commercial fishing industry, the Northeast Consortium funded a novel research initiative to establish wireless acoustic ...

  3. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement...

    Broader source: Energy.gov (indexed) [DOE]

    workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help...

  4. Water Power Program: Marine and Hydrokinetic Technologies

    Broader source: Energy.gov [DOE]

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  5. Sandia National Laboratories: Marine Hydrokinetics Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

  6. Sandia National Laboratories: Marine Hydrokinetics Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Publications Biochemical Conversion Program Lignocellulosic Biomass Microalgae Thermochemical Conversion Sign up for our E-Newsletter Required.gif?3.21 Email...

  7. Siting Methodologies for Hydrokinetics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle|SecurityDepartmentShawn WangSioux Students2009

  8. Siting Methodologies for Hydrokinetics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepositoryManagement | Department of

  9. River Hydrokinetic Resource Atlas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to: navigation, search Name: Ristma

  10. Sandia Energy - Marine Hydrokinetics Technology: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePowerUpdates

  11. Sandia Energy - Marine Hydrokinetics Technology: Reference Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePowerUpdatesDevelopment Reference Model

  12. Sandia Energy - Marine Hydrokinetics Technology: Technology Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePowerUpdatesDevelopment Reference

  13. Marine and Hydrokinetic Resource Assessment and Characterization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossary ofHomeJC3 BulletinProject »EnergyDepartment of

  14. Marine & Hydrokinetic Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturingMarch8, 2006:Marina

  15. Siting Methodologies for Hydrokinetics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus GroupSherrellHanfordPlan2011 | Department

  16. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesourceCharacterization 2

  17. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana,MariesWave) Jump to: navigation,

  18. Marine and Hydrokinetic | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana,MariesWave) Jump to:Axial

  19. Experimental Design of Hydrokinetic Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids |5Expanded PendingPlains419

  20. Structural characterization of viral capsid maturation in bacteriophage HK97

    E-Print Network [OSTI]

    Gertsman, Ilya

    2009-01-01T23:59:59.000Z

    P-II expansion. (B) WT-PII and E344Q expansion, similar toA. (C) WT-PII and E344A/E348A (referred to as double mutantendotherms of (A) WT-PII, (B) E344Q P-II, (C) E348A P-II, (

  1. e-mail: metzhao@ust.hk Assoc. Prof.,

    E-Print Network [OSTI]

    Zhao, Tianshou

    - conditioning and heat pumps 1 . Since in some applications such as automobile air-conditioning and heat pump Measurements of Heat Transfer Coefficients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels Heat transfer from supercritical carbon dioxide flowing in horizontal mini/micro circular tubes

  2. Dynamic response analysis of spar buoy floating wind turbine systems

    E-Print Network [OSTI]

    Lee, Sungho, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    The importance of alternative energy development has been dramatically increased by the dwindling supplies of oil and gas, and our growing efforts to protect our environment. A variety of meaningful steps have been taken ...

  3. Sandia National Laboratories: backward-bent duct buoy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This model has ... Joint Sandia-DOE-HMRC Testing of a Floating Oscillating Water Column Wave Energy Converter Device On November 11, 2013, in Energy, News, News & Events,...

  4. Direct Drive Wave Energy Buoy – 33rd scale experiment

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29T23:59:59.000Z

    Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Power’s Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

  5. MHK Projects/OE Buoy OE 30 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|

  6. MHK Technologies/Direct Drive Power Generation Buoy | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlane <TurbinesEnergy

  7. MHK Technologies/IPS OWEC Buoy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship <Helix <

  8. MHK Technologies/OE Buoy OE 50 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNAREC < MHKOCGen turbine

  9. MHK Technologies/PowerBuoy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNAREC <AirOysterOrgan <

  10. MHK Technologies/The B1 buoy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHK TechnologiesSyphon

  11. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bear, New Energy Corporation; Mary Ann Adonizio, Verdant Power; Sean Anderton, Ocean Renewable Power Company; Roger Bedard, EPRI (retired); Howard Hanson, Florida Atlantic...

  12. Sandia Energy - Biofouling Studies on Sandia's Marine Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Sequim Bay facility, which is a part of Pacific Northwest National Laboratory (PNNL). Tests will reveal anti-biofouling efficacy of coatings developed for MHK technology...

  13. Request for Information Regarding the Testing of Marine and Hydrokinet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program is seeking to better understand the current state of development of existing wave energy converter systems and current energy converter systems nearing one of two...

  14. Marine and Hydrokinetic (MHK) Technology Development Risk Management...

    Energy Savers [EERE]

    NETHERLANDS 31-20-716-8076 0800-020-0351 NEW ZEALAND 64-9-970-4606 0800-456-270 NORWAY 47-21-590-025 800-18093 PANAMA 011-001-800-5072372 PERU 0800-53731 PHILIPPINES...

  15. SITING PROTOCOLS FOR MARINE AND HYDROKINETIC ENERGY PROJECTS

    SciTech Connect (OSTI)

    Kopf, Steven; Klure, Justin; Hofford, Anna; McMurray, Greg; Hampton, Therese

    2012-07-15T23:59:59.000Z

    Project Objective: The purpose of this project is to identify and address regulatory issues that affect the cost, time and the management of potential effects as it relates to siting and permitting advanced water power technologies. Background: The overall goal of this effort is to reduce the cost, time and effort of managing potential effects from the development advanced water power projects as it relates to the regulatory process in siting and permitting. To achieve this goal, a multi-disciplinary team will collect and synthesize existing information regarding regulatory processes into a user-friendly online format. In addition, the team will develop a framework for project planning and assessment that can incorporate existing and new information. The team will actively collaborate and coordinate with other efforts that support or influence regulatory process. Throughout the process, the team will engage in an iterative, collaborative process for gathering input and testing ideas that involves the relevant stakeholders across all sectors at the national, regional, and all state levels.

  16. Funding Opportunity Announcement for a Marine and Hydrokinetic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University Consortium." This funding opportunity is supporting the advancement of wave and tidal energy technologies while developing a globally competitive MHK workforce....

  17. Department of Energy Awards $37 Million for Marine and Hydrokinetic...

    Broader source: Energy.gov (indexed) [DOE]

    from concept studies and component design research to prototype development and in-water device testing. This unprecedented level of funding will advance the ability of marine and...

  18. DOE Announces Marine and Hydrokinetic Open Data Effort | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office ofDemonstrationDepartment

  19. Upcoming Funding Opportunity for Marine and Hydrokinetic Development

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan-JapanHighlyFrom

  20. MHK Projects/Passamaquoddy Tribe Hydrokinetic Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy Information Basin

  1. MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy Information BasinRiver

  2. MHK Technologies/Hydrokinetic Power Barge | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECO Auger < MHK Technologies JumpBarge

  3. Marine and Hydrokinetic (MHK) Technology Development Risk Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0808-238-9817 UNITED KINGDOM LEEDS 44-113-301-0013 0808-238-9817 UNITED KINGDOM LONDON 44-20-7950-1322 0808-238-9817 UNITED KINGDOM MANCHESTER 44-161-601-0113 0808-238-9817...

  4. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance...

    Office of Environmental Management (EM)

    as the device performed as expected, with no discernible harm to river-dwelling fish. Free Flow has also completed preliminary designs of utility-scale installations at a...

  5. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT8.pdfStatement of Christopher47328 Vol.ModernFrancis

  6. Funding Opportunity Announcement for a Marine and Hydrokinetic Development

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion Study CommentsStolar,NEACEnergy AviationThis

  7. Funding Opportunity Announcement for a Marine and Hydrokinetic Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfittedof Energydetails to

  8. Request for Information for Marine and Hydrokinetic Environmental

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric,RMPipeline FirstSpent Nuclear Fuels Request ForMonitoring

  9. Category:Marine and Hydrokinetic Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for Companies"Image

  10. Category:Marine and Hydrokinetic Technology Projects | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for

  11. In-stream hydrokinetic resource assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:DepartmentDepartment of EnergyEnergy JohnExcel Version

  12. First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergencyU.S.U.S. DOEField

  13. Notice of Intent to Fund Marine and Hydrokinetic Instrumentation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O N N E V I L L E

  14. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartment ofRecipients |Demonstration Project and the

  15. Assessment and Mapping of the Riverine Hydrokinetic Resource in the

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of theArctic Energy Summit26

  16. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energyof 2005Site-Level Exercise

  17. DOE Announces Marine and Hydrokinetic Open Data Effort | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,CraftyChair'sAnnounces Dates for 2014Energy DOE

  18. Sandia Energy - Biofouling Studies on Sandia's Marine Hydrokinetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements

  19. Sandia Energy - Biofouling Studies on Sandia's Marine Hydrokinetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim Bay Coatings Initiated at PNNL's

  20. Sandia Energy - Investigations on Marine Hydrokinetic Turbine Foil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePower Company'sInAsInternationalStructural Health

  1. Marine and Hydrokinetic Energy Research & Development | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossary ofHomeJC3 BulletinProject »Energy

  2. Marine and Hydrokinetic Technology Development and Testing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossary ofHomeJC3 BulletinProject »EnergyDepartment

  3. Marine and Hydrokinetic Technology Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossary ofHomeJC3 BulletinProject

  4. Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads intoMansoor Ghassem ) )3/03DepartmentUntitled

  5. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next > Sun Mon Tue Wed ThuofDemonstration Crosscuton

  6. Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturingMarch8,of Energy Marine

  7. Marine and Hydrokinetic (MHK) Technology Development Risk Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturingMarch8,of Energy

  8. MHK Projects/Atchafalaya River Hydrokinetic Project II | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AK ProjectMS Project

  9. MHK Projects/Sakonnet River Hydrokinetic Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet.7413°, -155.488° Project PhaseSakonnet

  10. MHK Projects/Yukon River Hydrokinetic Turbine Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:Vicksburg BendWillapaInformation

  11. MHK Technologies/Deep water capable hydrokinetic turbine | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlane <Turbines <

  12. MHK Technologies/In stream River Hydrokinetics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship <Helix <ITRI20kW.jpgstream

  13. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesourceCharacterization 2

  14. Marine and Hydrokinetic Technology Readiness Level | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesourceCharacterization 2Information

  15. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60 DATE:AnnualDepartment ofPotential Healthon Aquatic

  16. Request for Information Regarding the Testing of Marine and Hydrokinetic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9,Award RecipientsActMission to China at

  17. Marine and Hydrokinetic Technology Glossary | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC) Richard Cowart,Department ofCommercialDepartment ofMarine

  18. Marine and Hydrokinetic (MHK) Technology Development Risk Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECSEnergy Plans

  19. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana,MariesWave) Jump to:

  20. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana,MariesWave) Jump to:Axial Flow

  1. NREL: Water Power Research - Marine and Hydrokinetic Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photo of twoInstrumentation,

  2. Template:Marine and Hydrokinetic Technology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained ByManagement IncDrillbe nice if logos could betemplate. It

  3. New Report States That Hydrokinetic Turbines Have Minimal Environmental

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9, 2013 V-237:MultimediaConsumers' UtilityPenetrations

  4. Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District of ColumbiaDepartment of EnergyDepartmentMarinaThisof

  5. Marine and Hydrokinetic Energy Projects | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District of ColumbiaDepartment of

  6. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District of ColumbiaDepartment ofEnergy Photo of several

  7. Marine and Hydrokinetic Technology Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNew Hampshire:Marin Energy

  8. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNew Hampshire:Marin Energy

  9. Marine & Hydrokinetic Technologies (Fact Sheet) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartment ofMarginal Energy Prices - RECS97 Update

  10. Marine and Hydrokinetic Market Acceleration and Deployment | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartment ofMarginal Energy Prices - RECS97 UpdateDepartment

  11. Enviro effects of hydrokinetic turbines on fish | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration | Department ofDecember 2014Hurdles:

  12. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration | Department56-2011DepartmentThird

  13. Assessment and Mapping of the Riverine Hydrokinetic Resource in the

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,Asotin County,Resource | Open

  14. Sandia Energy - Numerical Simulations of Hydrokinetics in the Roza Canal,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Posted North AmericanStudy

  15. Sandia Energy - Sandia Releases Open-Source Hydrokinetic Turbine Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffects of Wave-Energy ConvertersModel,

  16. Form:Marine and Hydrokinetic Technology Project Milestone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,Forked River,eventInformation

  17. Form:Marine and Hydrokinetic Technology Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,Forked

  18. Notice of Intent to Fund Marine and Hydrokinetic Instrumentation |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverview | DepartmentofEmergingKevin Craft WhatDepartment of

  19. Request for Information for Marine and Hydrokinetic Field Measurements |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues CellsReportDepartment of Energy for Marine

  20. Hydro-Kansas (HK) Research Project: Tests of a Physical Basis of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel Cell Hydrogen andHydra-TH:Statistical

  1. Laboratory Studies of the Effects of Static and Variable Magnetic Fields on Freshwater Fish

    SciTech Connect (OSTI)

    Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL; Fortner, Allison M [ORNL; Riemer, Kristina P [ORNL; Schweizer, Peter E [ORNL

    2012-04-01T23:59:59.000Z

    There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the effect on aquatic organisms of electromagnetic fields (EMF) created by the projects. The submerged electrical generator will emit an EMF into the surrounding water, as will underwater cables used to transmit electricity from the generator to the shore, between individual units in an array (inter-turbine cables), and between the array and a submerged step-up transformer. The electric current moving through these cables will induce magnetic fields in the immediate vicinity, which may affect the behavior or viability of fish and benthic invertebrates (Gill et al. 2005, 2009). It is known that numerous marine and freshwater organisms are sensitive to electrical and magnetic fields, often depending on them for such diverse activities as prey location and navigation (DOE 2009; Normandeau et al. 2011). Despite the wide range of aquatic organisms that are sensitive to EMF and the increasing numbers of underwater electrical transmitting cables being installed in rivers and coastal waters, little information is available to assess whether animals will be attracted, repelled, or unaffected by these new sources of EMF. This knowledge gap is especially significant for freshwater systems, where electrosensitive organisms such as paddlefish and sturgeon may interact with electrical transmission cables. We carried out a series of laboratory experiments to test the sensitivity of freshwater fish and invertebrates to the levels of EMF that are expected to be produced by HK projects in rivers. In this context, EM fields are likely to be emitted primarily by generators in the water column and by transmission cables on or buried in the substrate. The HK units will be located in areas of high-velocity waters that are used as only temporary habitats for most riverine species, so long-term exposure of fish and benthic invertebrates to EMF is unlikely. Rather, most aquatic organisms will be briefly exposed to the fields as they drift downstream or migrate upstream. Because the exposure of most aquatic organisms to EMF in a river would be relatively brief and non-lethal, we focused our investigations on detecting behavioral effects. For example, attraction to the EM fields could result in prolonged exposures to the fields or the HK rotor. On the other hand, avoidance reactions might hinder upstream migrations of fish. The experiments reported here are a continuation of studies begun in FY 2010, which focused on the potential effects of static magnetic fields on snails, clams, and fathead minnows (Cada et al. 2011). Those experiments found little indication that the behaviors of these freshwater species were a

  2. ROBUSTNESS OF A CORRECTION METHOD APPLIED TO A VERTICALLY DEFORMED HFSWR ON BUOYS

    E-Print Network [OSTI]

    Boyer, Edmond

    , such as the production of energy from water, sea currents, winds, oceanographic parameters and target detection. High of the Economic Exclusive Zone (EEZ) finds roots from the United Nations Convention regulations on the sea [1 Frequency Surface Wave Radar (HFSWR) is one of the optimum solutions in order to monitor the EEZ. It uses

  3. Texas Automated Buoy System Sustainable Ocean Observations to Help Protect the Environment

    E-Print Network [OSTI]

    of Campeche in the Gulf of Mexico. Some were too young to remember the Exxon Valdez disaster in 1989

  4. THE GLOBAL TROPICAL MOORED BUOY ARRAY M. J. McPhaden(1)

    E-Print Network [OSTI]

    constitute a key region of the Earth's climate system. They experience the highest solar irradiance of precipitation energize teleconnect

  5. THE GLOBAL TROPICAL MOORED BUOY ARRAY M. J. McPhaden(1)

    E-Print Network [OSTI]

    constitute a key region of the Earth's climate system. They experience the highest solar irradiance of precipitation energize teleconnections to high

  6. Autonomous buoy for seismic reflection data acquisition in the inaccessible parts of the Arctic Ocean

    E-Print Network [OSTI]

    Kristoffersen, Yngve

    . Remaining challenges - power supplied by batteries charged by solar panels and wind mill has proven & electronics battery solar panels Field tests Results Deployment on the ice north of Svalbard Test locations

  7. Tropical Moored Buoy Implementation Panel (TIP) Report M. J. McPhaden, NOAA/PMEL

    E-Print Network [OSTI]

    Hole technical report in December 2002. Barometric pressure and downwelling long wave radiation from study of equatorial upwelling in the Pacific, incorporating intensive field measurements in the framework of the TAO/TRITON array. The planned study, called PUMP (Pacific Upwelling and Mixing Physics

  8. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEANSprings Gets anColoring and Activity|

  9. MHK Projects/OSU Direct Drive Power Generation Buoys | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy Information Basin Bay ofMutriku

  10. DOE Launches High-Tech Research Buoys to Advance U.S. Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE Contract DOE International

  11. MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNAREC <Air Piston < MHKOWEC

  12. MHK Technologies/SeaRaser buoy seawater pump | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNARECRho

  13. Name Name Address Place Zip Category Sector Telephone number...

    Open Energy Info (EERE)

    Hydro Marine and Hydrokinetic http acep uaf edu facilities tanana river hydrokinetic test site aspx Alden Research Laboratory Inc Alden Research Laboratory Inc Shrewsbury Street...

  14. New Request for Information on Strategy to Advance the Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Request for Information on Strategy to Advance the Marine and Hydrokinetic Energy Industry New Request for Information on Strategy to Advance the Marine and Hydrokinetic Energy...

  15. Developing an Instrumentation Package for in-Water Testing of Marine Hydrokinetic Energy Devices: Preprint

    SciTech Connect (OSTI)

    Nelson, E.

    2010-08-01T23:59:59.000Z

    The ocean-energy industry is still in its infancy and device developers have provided their own equipment and procedures for testing. Currently, no testing standards exist for ocean energy devices in the United States. Furthermore, as prototype devices move from the test tank to in-water testing, the logistical challenges and costs grow exponentially. Development of a common instrumentation package that can be moved from device to device is one means of reducing testing costs and providing normalized data to the industry as a whole. As a first step, the U.S. National Renewable Energy Laboratory (NREL) has initiated an effort to develop an instrumentation package to provide a tool to allow common measurements across various ocean energy devices. The effort is summarized in this paper. First, we present the current status of ocean energy devices. We then review the experiences of the wind industry in its development of the instrumentation package and discuss how they can be applied in the ocean environment. Next, the challenges that will be addressed in the development of the ocean instrumentation package are discussed. For example, the instrument package must be highly adaptable to fit a large array of devices but still conduct common measurements. Finally, some possible system configurations are outlined followed by input from the industry regarding its measurement needs, lessons learned from prior testing, and other ideas.

  16. NREL Developing a Numerical Simulation Tool to Study Hydrokinetic Energy Conversion Devices and Arrays (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    New code will help accelerate design improvements by providing a high-fidelity simulation tool to study power performance, structural loading, and the interactions between devices in arrays.

  17. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    SciTech Connect (OSTI)

    Stein, Peter J.; Edson, Patrick L.

    2013-12-20T23:59:59.000Z

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, was shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.

  18. On freeze-out problem in hydro-kinetic approach to A+A collisions

    E-Print Network [OSTI]

    Yu. M. Sinyukov; S. V. Akkelin; Y. Hama

    2002-05-02T23:59:59.000Z

    A new method for evaluating spectra and correlations in the hydrodynamic approach is proposed. It is based on an analysis of Boltzmann equations (BE) in terms of probabilities for constituent particles to escape from the interacting system. The conditions of applicability of Cooper-Frye freeze-out prescription are considered within the method. The results are illustrated with a non-relativistic exact solution of BE for expanding spherical fireball as well as with approximate solutions for ellipsoidally expanding ones.

  19. Rheological properties of soft-glassy flows from hydro-kinetic simulations

    E-Print Network [OSTI]

    R. Benzi; M. Bernaschi; M. Sbragaglia; S. Succi

    2014-02-28T23:59:59.000Z

    Based on numerical simulations of a lattice kinetic model for soft-glassy materials, we characterize the global rheology of a dense emulsion-like system, under three representative load conditions: Couette flow, time-oscillating Strain and Kolmogorov flow. It is found that in all cases the rheology is described by a Herschel-Bulkley (HB) relation, $\\sigma = {\\sigma}_{Y} + A S^{\\beta}$, with the yield stress ${\\sigma}_{Y}$ largely independent of the loading scenario. A proper rescaling of the HB parameters permits to describe heterogeneous flows with space-dependent stresses, based on the notion of cooperativity, as recently proposed to characterize the degree of non-locality of stress relaxation phenomena in soft-glassy materials.

  20. Design, build and test of an axial flow hydrokinetic turbine with fatigue analysis

    E-Print Network [OSTI]

    Ketcham, Jerod W

    2010-01-01T23:59:59.000Z

    OpenProp is an open source propeller and turbine design and analysis code that has been in development since 2007 by MIT graduate students under the supervision of Professor Richard Kimball. In order to test the performance ...

  1. Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2010 Annual Progress Report

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

    2011-01-31T23:59:59.000Z

    Marine and Hydro Kinetic devices (MHK) are being widely studied as a source of renewable energy. The Marrowstone Island site is a potential location for installing MHK devices because the tidal currents observed that are sufficient for power generation. In order to quantify the effects of turbulence on MHK devices and the surrounding environment at this site, a prelimi- nary fluid flow field study was conducted here by the Pacific Northwest National Lab (PNNL) in collaboration with the Applied Physics Lab at the University of Washington (APL-UW). This study entailed continuous The Acoustic Doppler Velocimetry (ADV), Acoustic Doppler Current Profiler (ADCP) and Conductivity, Temperature and Depth (CTD) measurements from May 4, 2010 to May 22, 2010, in order to obtain information about turbulence effects during different tidal conditions. The instruments used for collecting the above measurements were deployed at the Marrowstone site using a R/V Jack Robertson provided by the University of Washington (APL-UW). All the measurements were taken at the site with an average depth of 22 m below the sea surface. ADV acquired velocity data at 32 Hz sampling frequency at 4.6 m above the seabed, and ADCP acquired velocity profile data at a sampling frequency of 2 Hz, from a height of 2.6 m above the seabed to the surface with a bin resolution of 0.5 m. The ADV and ADCP measurements showed that the horizontal velocity had a turbulence intensity of 10%. Further- more, the spectral analysis from ADV measurements showed that the flow is fully turbulent with -5/3 slope in the inertial sub-range of the spectra. Moreover, the temporal-frequency analysis showed presence of ”eddies” at high frequencies. These preliminary studies provided initial flow field and site characteristics, showed the limitations of the instruments used and highlighted changes that need to be made in the experimental setup for deployment in FY-2011 studies.

  2. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect (OSTI)

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01T23:59:59.000Z

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  3. Effects on Freshwater Organisms of Magnetic Fields Associated with Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL; Riemer, Kristina P [ORNL; Turner, Julie W [ORNL

    2011-07-01T23:59:59.000Z

    Underwater cables will be used to transmit electricity between turbines in an array (interturbine cables), between the array and a submerged step-up transformer (if part of the design), and from the transformer or array to shore. All types of electrical transmitting cables (as well as the generator itself) will emit EMF into the surrounding water. The electric current will induce magnetic fields in the immediate vicinity, which may affect the behavior or viability of animals. Because direct electrical field emissions can be prevented by shielding and armoring, we focused our studies on the magnetic fields that are unavoidably induced by electric current moving through a generator or transmission cable. These initial experiments were carried out to evaluate whether a static magnetic field, such as would be produced by a direct current (DC) transmitting cable, would affect the behavior of common freshwater fish and invertebrates.

  4. MHK Projects/Indian River Tidal Hydrokinetic Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMARECInformationGriffinCA

  5. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear13SummerBookmark andMaps

  6. ORNL/TM-2012/221 Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOENurseResourcesThe Value News and AwardsORNL/TM-2012/221

  7. Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in807 DE899 06 Revision 0U7114-

  8. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next > SunChallenge to DriveElectric GridProceedings of

  9. Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearning & DevelopmentEnergythe

  10. Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturingMarch8, 2006:Marina Sofosto

  11. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturingMarch8,of EnergyMarine

  12. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemicalIndustryIssuePhoto ofData

  13. Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclear EnergySouth

  14. Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 ThisFinalResearch and Development |

  15. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60 DATE:AnnualDepartment ofPotential Healthon Aquatic

  16. Marine & Hydrokinetic Technologies, Wind and Water Power Program (WWPP) (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECSEnergy Plans andWorkerandPROGRAM C L

  17. Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat 1PowerofSystems |AsApril 1, 2014May1TECHNICAL

  18. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration | Department56-2011DepartmentThirdEnvironmental

  19. Effects of Large Energetic Vortices on Axial-Flow Hydrokinetic Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnetEffective safety ...

  20. Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues CellsReport on Separate Disposal6 Report

  1. Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices Task 2.1.3: Effects on Aquatic Organisms – Fiscal Year 2011 Progress Report Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Kropp, Roy K.

    2011-09-30T23:59:59.000Z

    A literature search was conducted by using the Web of Science® Databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on marine mammals, seabirds, and fish. Several relatively recent general review articles that included possible effects of marine renewable energy devices on marine mammals and seabirds were examined to begin the search process (e.g., Boehlert et al. 2008; Thompson et al. 2008; Simas et al. 2009). From these articles, several general topics of potential environmental effects on marine mammals, seabirds, and fish were derived. These topics were used as the primary search factors. Searches were conducted with reference to the potential effects of offshore wind farms and MHK devices on marine mammals, seabirds, and fish. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that often the potential effects were offered as hypotheses that often were not supported by the presentation of appropriate documentation. Therefore, the search was refined and focused on trying to obtain the necessary information to support or challenge a proposed potential effect to a specific concern. One of the expressed concerns regarding MHK devices is that placing wave parks in coastal waters could compromise the migration patterns of whales. Disruption of the annual migration of the gray whale (Eschrichtius robustus), which swims at least 30,000 km on its round trip from breeding grounds in Baja California to feeding areas in the Bering Sea, is of particular concern. Among the hypothesized effects on the migrating gray whales are increased predation risk by constricting migration corridor to between array and shore or by forcing the whales to swim into deeper waters, increased metabolic energy costs and delays in reaching the destinations, and interrupting feeding by blocking access to benthic areas under arrays. The literature search focused on identifying published studies that could provide information to evaluate these concerns. The results were developed into a case study that evaluated the potential effects of the placement of wave parks in coastal waters along the migration route of the gray whale. Wave parks and other MHK arrays may have additional effects on gray whales and other marine mammals, including entanglement in mooring lines and interference with communications among other effects, that were not included in this case study. The case study results were rewritten into a simpler form that would be suitable for placement on a web blog

  2. The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines

    SciTech Connect (OSTI)

    Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

    2012-11-28T23:59:59.000Z

    Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

  3. Sudden freeze-out vs continuous emission: duality in hydro-kinetic approach to A+A collisions

    E-Print Network [OSTI]

    S. V. Akkelin; M. S. Borysova; Yu. M. Sinyukov

    2004-03-26T23:59:59.000Z

    The problem of spectra formation in hydrodynamic approach to A+A collisions is discussed. It is analyzed in terms of the two different objects: distribution and emission functions. We show that though the process of particle liberation, described by the emission function, is, usually, continuous in time, the observable spectra can be also expressed by means of the Landau/Cooper-Frye prescription. We argue that such an approximate duality results from some symmetry properties that systems in A+A collisions reach to the end of hydrodynamic evolution and reduction of the collision rate at post hydrodynamic stage

  4. EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center’s Offshore Marine Hydrokinetic Technology Testing Project, Florida

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University’s South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC’s experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

  5. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30T23:59:59.000Z

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  6. Name Address Place Zip Sector Product Stock Symbol Year founded...

    Open Energy Info (EERE)

    Dag Hammarskjlds vg B Uppsala S Marine and Hydrokinetic http http www currentpower se Sweden Current Power AB Dag Hammarskjlds vg B Uppsala S Marine and Hydrokinetic http http www...

  7. Charles Sturt University CRICOS 00005F (NSW), 01947G (VIC) and 02960B (ACT) International Agents

    E-Print Network [OSTI]

    Thomas, Richard C.

    Consultancy (AEC) Hong Kong info@aecl.com.hk www.aecl.com.hk AIS Education Centre Australia, South Korea

  8. (MIRU2005) 2005 7 E-mail: {kudoh,ki}@cvl.iis.u-tokyo.ac.jp, itaku@cityu.edu.hk

    E-Print Network [OSTI]

    Tokyo, University of

    yaw ¨ 2. 2 IPM: Inverted Pendulum Model IK: Inverse Kinematics 2. 2. 1 IPM IPM 3 2 1 1 ka kb 2 IPM ml2 : Fig. 5 Relationship between x (distance between a foot contact point and CM) and fg (the ground) renew as + renew r for new } 8 IK Fig. 8 Flowchart of solving IK IPM 8 2. 2. 4 IK ZMP 2 IK ZMP 3. 12

  9. *Corresponding author. Tel.: 852-2358-6916; fax: 852-2358-E-mail address: fangming@ust.hk (M. Fang).

    E-Print Network [OSTI]

    Zheng, Mei

    for Environment & Sustainable Development, The Hong Kong University of Science & Technology, Clear Water Bay, Hong-alkanes, fatty acids, alkanols and PAHs (polycyclic aromatic hydrocarbons)) and identi"ed with GC-MS (gas at 46}80%, alkanes at 10}34%, alkanols at 4}21%, and PAHs at 1}6%. Compared to the TSP (total suspended

  10. * Corresponding author. Tel.: #852-2788-7812; fax: #852-2788-7830. E-mail address: appetery@cityu.edu.hk (K.N. Yu)

    E-Print Network [OSTI]

    Yu, K.N.

    and assessment of accident consequences for Daya Bay nuclear power plant in China J.Z. Cao , M.R. Yeung , S Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong Institute of Nuclear Energy Technology of nuclear accidents, developed with the support of the European Commission, was applied to investigate

  11. * Corresponding author. Tel.: #852-2788-7812; fax: #852-2788-7830. E-mail address: peter.yu@cityu.edu.hk (K.N. Yu)

    E-Print Network [OSTI]

    Yu, K.N.

    irradiation path is the internal irradiation caused by the transfer of radionuclides from soil to vegetation reserved. PII: S 0 2 6 5 - 9 3 1 X ( 9 9 ) 0 0 1 0 0 - 9 #12;For the terrestrial food chain model used) showed that, among the various transfer coe$cients in the terrestrial food chain, the range for that from

  12. OES-IA Annex IV: Environmental Effects of Marine and Hydrokinetic Devices - Report from the Experts’ Workshop September 27th – 28th 2010 Clontarf Castle, Dublin Ireland

    SciTech Connect (OSTI)

    Copping, Andrea E.; O'Toole, Michael J.

    2010-12-02T23:59:59.000Z

    An experts' workshop was convened in Dublin Ireland September 27th – 28th 2010 in support of IEA Ocean Energy Systems Implementing Agreement Annex IV. PNNL was responsible for organizing the content of the workshop, overseeing the contractors (Irish Marine Institute) hosting the event, presenting material on Annex IV and materials applicable to the workshop intent. PNNL is also overseeing a contractor (Wave Energy Center/University of Plymouth – WEC/UP) in the collection and analysis of the Annex IV data. Fifty-eight experts from 8 countries attended the workshop by invitation, spending two days discussing the needs of Annex IV. Presentations by DOE (background on Annex IV), PNNL (process for developing Annex IV; presentation of the draft database for PNNL project, plans for incorporating Annex IV data), WEC/UP on the environmental effect matrix, and four MHK developers (two from the UK, one from Ireland and one from Sweden; each discussing their own projects and lessons learned for measuring and mitigating environmental effects, as well as interactions with consenting [permitting] processes) helped provide background. The workshop participants worked part of the time in the large group and most of the time in four smaller breakout groups. Participants engaged in the process and provided a wealth of examples of MHK environmental work, particularly in the European nations. They provided practical and actionable advice on the following: • Developing the Annex IV database, with specific uses and audiences • Strong consensus that we should collect detailed metadata on available data sets, rather than attempting to draw in copious datasets. The participants felt there would then be an opportunity to then ask for specific set of data as needed, with specific uses and ownership of the data specified. This is particularly important as many data collected, particularly in Europe but also in Canada, are proprietary; developers were not comfortable with the idea of handing over all their environmental effects data, but all said they would entertain the request if they specifics were clear. • The recommendation was to collect metadata via an online interactive form, taking no more than one hour to complete. • Although the idea of cases representing the “best practices” was recognized as useful, the participants pointed out that there are currently so few MHK projects in the water, that any and all projects were appropriate to highlight as “cases”. There was also discomfort at the implication that “best practices” implied “lesser practices”; this being unhelpful to a new and emerging industry. • Workshop participants were asked if they were willing to continue to engage in the Annex IV process; all expressed willingness. The workshop was successful in adequately addressing its objectives and through participation and interaction in the breakout sessions around the various topics. As a result of the workshop, many delegates are now better informed and have a greater understanding of the potential environmental effects of MHK devices on the marine environment. There is now a greater sense of understanding of the issues involved and consensus by those regulators, developers and scientists who attended the workshop. A strong network has also been built over the two days between European and US/Canadian technical experts in wave and tidal energy.

  13. Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.

    SciTech Connect (OSTI)

    Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake [Oregon State University, Corvallis, OR

    2013-05-01T23:59:59.000Z

    This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

  14. In Brief . ... Marine Anglers, Angling

    E-Print Network [OSTI]

    , instrumentation, data collec- tion/reporting systems, buoy environ- ment, moorings, power systems, mathematical Symposium on Buoy Technology, announced jointly by the NOAA Data Buoy Office and the 32 Gulf Coast Section technical pro- grams on moored and drifting buoys. Possible topics will include: Hulls, sensors

  15. Woods Hole Oceanographic Institution Upper Ocean Processes Group

    E-Print Network [OSTI]

    Wind -1400 Meters of 300 lbs Spectra Line -Davit and Block -Mounting Pedestal -Power Supply -UCTD while underway between the SHOA DART buoy and the STRATUS IMET buoy. The probe was deployed every half buoys. Figure 6. Individual cast from SHOA DART and WHOI ORS buoys. Conclusion With proper training

  16. JAMES PATRICK ANDERSON MS PLAN B PRESENTATION AND DEFENSE

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    center into which the center spar shaped buoy is positioned. The spar buoy contains the mechanical power 400 10:30AM MODELING A TWO BODY WAVE ENERGY CONVERTER ABSTRACT The motions and power generation of two vertically orientated cylindrical buoys of different shapes. The outer buoy has a moonpool at its

  17. Do U.S. tariff reductions explain rising wage inequality?: The case of U.S. tariffs on imports from countries having free trade agreements with the U.S.

    E-Print Network [OSTI]

    Kitaoka, Hisaya

    2008-07-28T23:59:59.000Z

    source......................................................................................................... 24 B. Consistent industrial classification code (ASM-HK)......................................... 25 C. Panel data...: Mandated wage methodology............................................................... 102 Appendix II: ASM-HK code..................................................................................... 104 Appendix III: Description of ASM-HK code...

  18. NREL - FY09 Lab Call: Supporting Research and Testing for MHK...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Hydrokinetic Technologies FY 09 Lab Call: Research & Assessment for MHK Development Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality...

  19. Prototype Testing Could Help Prove a Promising Energy Source...

    Energy Savers [EERE]

    Marine and Hydrokinetic Technology Manager The first third-party-validated, grid-tied wave energy device in North American waters started feeding renewable electricity to...

  20. U.S. Department of Energy Wind and Water Power Program Funding...

    Energy Savers [EERE]

    Research Institute Assessment of the Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies 597,408 FY09 Advanced Water Power FOA California...

  1. DOE Awards Up to $14.6 Million to Support Development of Advanced...

    Office of Environmental Management (EM)

    will produce information needed to determine the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river...

  2. Report to Congress on the Potential Environmental Effects of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hydrokinetic technologies to aquatic environments (i.e. rivers, estuaries, and oceans), fish and fish habitats, ecological relationships, and other marine and freshwater aquatic...

  3. Energy Department Announces Funding for Demonstration and Testing...

    Broader source: Energy.gov (indexed) [DOE]

    environmentally responsible marine and hydrokinetic energy devices and components. Wave Energy Converter (WEC) Prize The Energy Department will make 6.5 million available...

  4. NREL: Dynamic Maps, GIS Data, and Analysis Tools - GIS Mailing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal and Wind Prospectors Releasing from Beta, Marine & Hydrokinetic (MHK) Atlas, Solar Prospector, GIS Website Updates Third Quarter 2012 Contents: An Estimate of the...

  5. Sandia National Laboratories: Upgrades to SNL-EFDC: A Tool to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECEnergyComputational Modeling & SimulationUpgrades to SNL-EFDC: A Tool to Balance Marine Hydrokinetic Energy Generation Efficiency with Environmental Response Upgrades to...

  6. Sandia National Laboratories: hydrodynamic modeling platform...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling platform SNL-EFDC Upgrades to SNL-EFDC: A Tool to Balance Marine Hydrokinetic Energy Generation Efficiency with Environmental Response On June 26, 2014, in Computational...

  7. Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization

    E-Print Network [OSTI]

    Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization and flow characterization within full scale conventional hydropower systems, at marine and hydrokinetic

  8. Water Power Program Peer Review Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and evaluate the progress and accomplishments of the Program's conventional hydropower and marine and hydrokinetic projects funded in FY2009 through FY2011 Foster...

  9. Sandia Energy - Reference Model Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (2011). The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Marine and Hydrokinetic Devices. M. Previsic (2011). Economic Methodology...

  10. Clean Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources. Eligible biomass...

  11. Clean Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources. Eligible biomass...

  12. Sandia National Laboratories: MHK Technology Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MHK Technology Development Biofouling Studies on Sandia's Marine Hydrokinetic (MHK) Coatings Initiated at PNNL's Sequim Bay On June 18, 2014, in Energy, News, News & Events,...

  13. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and turns it into electricity for our homes and businesses. http:energy.goveerevideosenergy-101-hydroelectric-power Video Energy 101: Marine and Hydrokinetic Energy See...

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    it into electricity to power our homes, buildings and cities. http:energy.goveerevideosenergy-101-marine-and-hydrokinetic-energy Video Energy 101: Feedstocks for Biofuels...

  15. Videos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    101: Marine and Hydrokinetic Energy Energy 101: Feedstocks for Biofuels and More About the Southeastern Power Administration Secretary Moniz Speaks at the Center on Global Energy...

  16. Open Data | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. Calling All Coders: Help Advance America's Wave...

  17. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled...

  18. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assessment of the hydrodynamic forces acting on the hydrokinetic device and the power density and power available over the energy extraction plane (EEP). This data informs the...

  19. CX-011388: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    near Eastport, Maine. This would enable the continuation of long-term monitoring of fish near a marine hydrokinetic (MHK) device, improve acoustic target identification to aid...

  20. Sandia National Laboratories: Water Power in the News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensor selection. Upgrades to SNL-EFDC: A Tool to Balance Marine Hydrokinetic Energy Generation Efficiency with Environmental Response SNL-EFDC is an open-source tool...

  1. Sandia National Laboratories: Reference Model Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  2. Sandia National Laboratories: wave energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  3. Sandia National Laboratories: Cardinal Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  4. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of materials and coatings being investigated for potential marine hydrokinetic (MHK) and ocean thermal energy conversion (OTEC) technologies as well as developing novel...

  5. Sandia National Laboratories: University of Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  6. Sandia National Laboratories: river current energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  7. Sandia National Laboratories: ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  8. Sandia National Laboratories: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  9. Sandia National Laboratories: Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of materials and coatings being investigated for potential marine hydrokinetic (MHK) and ocean thermal energy conversion (OTEC) technologies as well as developing novel...

  10. Sandia National Laboratories: News & Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  11. Sandia National Laboratories: tidal energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  12. CBS | OpenEI Community

    Open Energy Info (EERE)

    Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic...

  13. Sandia National Laboratories: PNNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  14. Sandia National Laboratories: Re Vision Consulting LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  15. Sandia National Laboratories: Pennsylvania State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  16. Sandia National Laboratories: SAND2014-0472P

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  17. Sandia National Laboratories: Instrumentation and Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation and Materials & Manufacturing Reliability Program Investigations on Marine Hydrokinetic Turbine Foil Structural Health Monitoring Presented at GMREC METS On June...

  18. Sandia National Laboratories: Materials & Manufacturing Reliability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials & Manufacturing Reliability Program Biofouling Studies on Sandia's Marine Hydrokinetic Coatings Initiated at PNNL's Sequim Bay On June 26, 2014, in Energy, Materials...

  19. Atmospheric Environment 42 (2008) 35103527 MICS-Asia II: Model intercomparison and evaluation of

    E-Print Network [OSTI]

    .engardt@smhi.se (M. Engardt), Cecilia.Bennet@smhi.se (C. Bennet), cfung@epd.gov.hk (C. Fung), alick@epd.gov.hk (A

  20. Numerical simulation of thin-shell direct drive DHe3-filled capsules fielded A. R. Miles, H.-K. Chung, R. Heeter, W. Hsing, J. A. Koch et al.

    E-Print Network [OSTI]

    of characterizing laser-ablated carbon plasmas via planar laser induced fluorescence Rev. Sci. Instrum. 83, 10E515, California 94550, USA 2 Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge the radiative cooling enhancement. The baseline model captures the behavior of the capsule when the D:He3 ratio

  1. Mixing Water and Oil Under Static High Pressure H.K. Ploeg1, M.D. McCluskey2,3, G.J. Hanna2,3

    E-Print Network [OSTI]

    Collins, Gary S.

    University of Michigan, Ann Arbor, MI 2 Institute for Shock Physics, Washington State University, Pullman, WA 3Dept. of Physics and Astronomy, Washington State University, Pullman, WA The diamond anvil cell a phase change is observed at about 9.8kbar. ·The phase diagram (left) confirms that the cell contains ice

  2. Marine High Voltage Power Conditioning and Transmission System with Integrated Storage DE-EE0003640 Final Report

    SciTech Connect (OSTI)

    Frank Hoffmann, PhD; Aspinall, Rik

    2012-12-10T23:59:59.000Z

    Design, Development, and test of the three-port power converter for marine hydrokinetic power transmission. Converter provides ports for AC/DC conversion of hydrokinetic power, battery storage, and a low voltage to high voltage DC port for HVDC transmission to shore. The report covers the design, development, implementation, and testing of a prototype built by PPS.

  3. FALL 2010 ME GRADUATE STUDENT SEMINAR (Note if MS student with 20 min presentation, two seminars will be scheduled on the same day)

    E-Print Network [OSTI]

    New Hampshire, University of

    NO CLASSES 10/22/10 Adam Kaplan Design of a Laboratory Tube Hydroforming Machine 20 Mins 10/29/10 Dr. Tom Characteristics of Cross-Flow Axis Hydrokinetic Turbines 20 Mins Peter Bachant Experimental Study of Hydrokinetic Turbines 20 Mins #12;

  4. Hexokinases and cardioprotection

    E-Print Network [OSTI]

    Calmettes, G; Ribalet, B; John, S; Korge, P; Ping, P; Weiss, JN

    2015-01-01T23:59:59.000Z

    mitochondria and the bioenergetics of cancer cells. Prog Expof mitochondrial bioenergetics, its interaction with HK

  5. A Sea Test of Mobile Underwater Localization Huizhong Gao, Xiaoka Xu, David Huang, Chen-Fen Huang, TC Yang,

    E-Print Network [OSTI]

    Zhou, Shengli

    packs, power control board, GPS, and wireless communication module. The OFDM modems and buoys were the OFDM modem was fixed in a stationary position by the anchor, and the sur- face buoy included battery

  6. Vol. 42, No. 2 August 1998 Mariners Weather Log

    E-Print Network [OSTI]

    . Featured in this issue is an article about Supertyphoon Tip (the most powerful tropical storm ever recorded pressure). We also have a report on "Dial-A-Buoy," a new National Data Buoy Center program providing phone

  7. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...

    Office of Environmental Management (EM)

    Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am...

  8. SPIE International Conference, Denver CO, July 1999 1 Relevance Of The Modified Model For The Microwave Brightness Temperature To The

    E-Print Network [OSTI]

    Cruz-Pol, Sandra L.

    seas, including locations where radiosonde or buoys cannot be afforded, relatively low power numerous advantages over ship and buoy data. Some of these advantages include the vast coverage of global

  9. MOBY Project Overview 12 March 2009

    E-Print Network [OSTI]

    Kuligowski, Bob

    (calibration, optics assembly, filtration) 6 Shipboard Vans 3 labs - (wet, optics, data acquisition) power Lanai Study AreaMOBY Lanai Study Area #12;Mooring BuoyMooring Buoy #12;MOBY Lanai MooringMOBY Lanai

  10. Scalable Opportunistic Forwarding Algorithms in Delay Tolerant Networks using Similarity Hashing

    E-Print Network [OSTI]

    Wu, Jie

    networks [5], deep space satellite networks, underwater acoustic buoy networks, and many dedicated networks are typically power- constrained

  11. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM AT POTENTIAL OTEC SITES

    E-Print Network [OSTI]

    Wilde, P.

    2010-01-01T23:59:59.000Z

    Power/water from platform but with backup systems RFP late FY 80 Operations Van (sensor packages on buoy)

  12. Regulatory Assistance, Stakeholder Outreach, and Coastal and Marine Spatial Planning Activities In Support Marine and Hydrokinetic Energy Deployment: Task 2.1.7 Permitting and Planning Fiscal Year 2012 Year-End Report

    SciTech Connect (OSTI)

    Geerlofs, Simon H.; Hanna, Luke A.; Judd, Chaeli R.; Blake, Kara M.

    2012-09-01T23:59:59.000Z

    This fiscal year 2012 year-end report summarizes activities carried out under DOE Water Power task 2.1.7, Permitting and Planning. Activities under Task 2.1.7 address the concerns of a wide range of stakeholders with an interest in the development of the MHK industry, including regulatory and resource management agencies, tribes, NGOs, and industry. Objectives for 2.1.7 are the following: • To work with stakeholders to streamline the MHK regulatory permitting process. • To work with stakeholders to gather information on needs and priorities for environmental assessment of MHK development. • To communicate research findings and directions to the MHK industry and stakeholders. • To engage in spatial planning processes in order to further the development of the MHK industry. These objectives are met through three subtasks, each of which are described in this report: • 2.1.7.1—Regulatory Assistance • 2.1.7.2—Stakeholder Outreach • 2.1.7.3—Coastal and Marine Spatial Planning As the MHK industry works with the regulatory community and stakeholders to plan, site, permit and license MHK technologies they have an interest in a predictable, efficient, and transparent process. Stakeholders and regulators have an interest in processes that result in sustainable use of ocean space with minimal effects to existing ocean users. Both stakeholders and regulators have an interest in avoiding legal challenges by meeting the intent of federal, state, and local laws that govern siting and operation of MHK technologies. The intention of work under 2.1.7 is to understand these varied interests, explore mechanisms to reduce conflict, identify efficiencies, and ultimately identify pathways to reduce the regulatory costs, time, and potential environmental impacts associated with developing, siting, permitting, and deploying MHK systems.

  13. Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30T23:59:59.000Z

    Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  14. Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices; Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2012 Progress Report

    SciTech Connect (OSTI)

    Kropp, Roy K.

    2013-01-01T23:59:59.000Z

    A literature search was conducted by using the Web of Science® databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on seabirds and fish. Several relatively recent general review articles that included possible effects on seabirds and fish were examined to begin the search process. From these articles, several general topics of potential environmental effects on seabirds and fish were derived. These topics were used as the primary search factors. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that the potential effects frequently w

  15. Effect of nonlinear Froude-Krylov and restoring forces on a hinged

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    control forces on a wave to wave timescale #12;Motivation · Optimizing Power/displacement or similar cost buoys hinged to a soft-moored central platform · The energy is absorbed from the relative rotation Converter" ASME Conference Proceedings, 2009 #12;Model test Up-wave buoy (nr. 1) Down-wave buoy (nr. 2

  16. Environmental Monitoring, Mapping, Analysis, and Planning Systems Lab University of North Florida

    E-Print Network [OSTI]

    Asaithambi, Asai

    measurements ·Low cost, but survivable, buoy structure of easily obtained materials ·Self sufficient on solar Florida Buoy Overview Power-managed solar panel/ Lead-acid battery Spread spectrum 900 MHz radio & textEnvironmental Monitoring Mapping Analysis and Planning Systems LaboratorySystems Laboratory ONR Buoy Conference Monterey

  17. Minutes of the Thirteenth Annual Meeting of the Participants of the

    E-Print Network [OSTI]

    Rigor, Ignatius G.

    of the buoys (see section 5.0). Done. October 2002. 3.6.ETH and IR will make a standardized IABP PowerMinutes of the Thirteenth Annual Meeting of the Participants of the International Arctic Buoy IABP data is posted on the GTS. 3.4.1. Resolve discrepancy between the list of buoys

  18. Goals: Reduction of IridiumGoals: Reduction of Iridium--usage; ASV Collaboration under Constraints; Online Datausage; ASV Collaboration under Constraints; Online Data--streamingstreaming CoastalCoastal FreewaveFreewave network; Hierarchical Control Scheme

    E-Print Network [OSTI]

    Smith, Ryan N.

    power-consumption, reduce communication cost and enable easier access to data for re-tasking algorithms gliders, ASVsASVs and Networked Buoys and Moorings for coastal observationand Networked Buoys and Moorings) Networked Sensor Buoys/Moorings + Constant presence with real-time web-streaming + More sophisticated

  19. 2013DvorakandSailor'sEnergy Model Forecasting Accuracy Along

    E-Print Network [OSTI]

    Firestone, Jeremy

    available buoy and tower data hourly from 2006-2010 NOAA National Data Buoy Center buoys (23) and tall. #12;©2013DvorakandSailor'sEnergy What Time is Offshore Wind Power Most Useful? Analyzed hourly a REpower 5M, 5 MW power curve, determined capacity factor out to 200-m depth Incredibly strong resource

  20. The Wirewalker: A Vertically Profiling Instrument Carrier Powered by Ocean Waves R. PINKEL, M. A. GOLDIN, J. A. SMITH, O. M. SUN, A. A. AJA, M. N. BUI, AND T. HUGHEN

    E-Print Network [OSTI]

    Smith, Jerome A.

    The Wirewalker: A Vertically Profiling Instrument Carrier Powered by Ocean Waves R. PINKEL, M. A­time record. The elements of the WW system in- clude a surface buoy, a wire suspended from the buoy, a weight at the end of the wire, and the profiler itself. The wire and weight follow the surface motion of the buoy

  1. Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2011-09-01T23:59:59.000Z

    In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  2. Ryan Sun Chee Fore | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ryan Sun Chee Fore About Us Ryan Sun Chee Fore - Marine and Hydrokinetic Technology Manager Most Recent Riding the Clean Energy Wave: New Projects Aim to Improve Water Power...

  3. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EXTERNALLY BONDED FBG STRAIN SENSORS FOR STRUCTURAL HEALTH MONITORING OF MARINE HYDROKINETIC STRUCTURESTara Camacho-Lopez2015-04-06T22:15:34+00:00 Placeholder Download Filename...

  4. 2014 Water Power Program Peer Review Compiled Presentations:...

    Energy Savers [EERE]

    and Deployment (MA&D)-Hoyt Battey, U.S. Department of Energy Survival and Behavior of Fish Exposed to an Axial-Flow Hydrokinetic Turbine-Mark Bevelhimer, Oak Ridge National...

  5. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technological Cost-Reduction Pathways for Attenuator Wave Energy Converters in the Marine Hydrokinetic EnvironmentTara Camacho-Lopez2015-04-06T22:15:34+00:00 Placeholder Download...

  6. CX-010572: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-010572: Categorical Exclusion Determination Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems CX(s) Applied: B3.6 Date: 02...

  7. CX-011404: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Marine and Hydrokinetic Environmental Effects Assessment and Monitoring CX(s) Applied: A9 Date: 11/14/2013 Location(s): California, Hawaii Offices(s): Golden Field Office

  8. Levelized Cost Calculations | Transparent Cost Database

    Open Energy Info (EERE)

    0.83155 Small Hydropower: 0.83155 Commercial PV: 0.83155 Marine Hydrokinetic: 0.83155 Solar Thermal: 0.83155 Compressed Air Energy Storage: 1 Near Field (or Enhanced...

  9. CX-004548: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic ApplicationsCX(s) Applied: A9Date: 11/30/2010Location(s): Davis, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  10. U.S. Department of Energy Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems Program or Field Office:Advanced Research Projects Agency- Energy (ARPA-E) Location(s) (City...

  11. CX-009160: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy Projects CX(s) Applied: B3.3 Date: 09/24/2012 Location(s): Maine Offices(s): Golden Field Office

  12. Fiscal Year 2011 Water Power Program Peer Review

    Broader source: Energy.gov [DOE]

    In November 2011, the Water Power Program held their Annual Peer Review Meeting in Alexandria, Virginia. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic...

  13. CX-004836: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Marine and Hydrokinetic Technology Readiness Advancement InitiativeCX(s) Applied: A9, B3.6Date: 12/16/2010Location(s): Lynnwood, WashingtonOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  14. CX-003102: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    coast of Florida. Their goals are to further the assessment of hydrokinetic and thermal ocean-energy resources off the east coast of Florida and to advance the development of those...

  15. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,...

  16. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  17. Abstract--Radio-frequency identification has a great number of unfulfilled prospects. Part of the problem until now has been

    E-Print Network [OSTI]

    California at Los Angeles, University of

    , The University of Hong Kong; PR China. (email: gqhuang@hku.hk). Rajit Gadh is the Director of the Wireless

  18. FACULTYFACULTYFACULTY BUSINESS ANDBUSINESS AND

    E-Print Network [OSTI]

    Tam, Vincent W. L.

    (Acc&Fin) curriculum. DEGREES OFFERED Website: http://www.fbe.hku.hk BUSINESS AND ECONOMICS k BUSINESSANDECONOMICS #12

  19. Limit Domains in Several Complex Variables

    E-Print Network [OSTI]

    Console, Alexander

    2013-12-31T23:59:59.000Z

    sequence of automor- phisms" in [Fornæss & Stensønes, 2004], both the approaches to constructing Fatou-Bieberbach domains discussed above can be seen as constructing basins of attraction. We will not pursue this viewpoint. 3.2 Push-Out Constructions... n ? N and z ??n and k > m? n. Then writing w = Gm(z) ? Dm, a) and b) 17 imply |Gk(z)?Gm(z)|= |Hk ?Hk?1 ? · · · ?Hm+1(w)?w| ? |w?Hm+1(w)|+ |Hm+1(w)?Hm+2(Hm+1(w))| + · · ·+ |Hk?1 ? · · · ?Hm+1(w)?Hk(Hk?1 ? · · · ?Hm+1(w))| < ?m 2m + ?m+1 2m+1...

  20. COMICR-947; NO. OF PAGES 8 Please cite this article in press as: Kim HK, et al. Recurrent infections and immune evasion strategies of Staphylococcus aureus, Curr Opin Microbiol (2011), doi:10.1016/j.mib.2011.10.012

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    to as methi- cillin-resistant S. aureus (MRSA) [4]. Infections with methicillin-sensitive S. aureus (MSSA) or MRSA originate both in the community and in hospitals [5,6]. The therapy of severe MRSA infections or linezolid [5]. Because of the severity of invasive disease, MRSA infections are associ- ated with a poor

  1. Method and apparatus for production of subsea hydrocarbon formations

    DOE Patents [OSTI]

    Blandford, J.W.

    1995-01-17T23:59:59.000Z

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external flotation tanks located below the water surface. The surface buoy is secured to the sea bed by one or more tendons which are anchored to a foundation with piles imbedded in the sea bed. The system accommodates multiple versions on the surface buoy configuration. 20 figures.

  2. Offshore Wind Project Surges Ahead in South Carolina

    Broader source: Energy.gov [DOE]

    The Center for Marine and Wetland Studies studies wind speed data from buoys, which have been measuring wind speed and direction for the past year.

  3. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 13 Figure 2. Santa Cruz model domain. Nearshore wave-measurement buoy and bottom-mounted ADCP measurement locations are shown for reference....

  4. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NDBC National Data Buoy Center NOAA National Oceanic and Atmospheric Administration PTO Power take-off RCW Relative capture width SNL Sandia National Laboratories SWAN Simulating...

  5. Fashionable Form: The Narrative Strategies of Silver-Fork Fiction, 1824-1848

    E-Print Network [OSTI]

    Richstad, Josephine Sara

    2012-01-01T23:59:59.000Z

    buoys the reviewer’s credibility); and damned for his lack of creative powers, which in the particular language of the review

  6. IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 2, APRIL 2011 369 Practical Routing in a Cyclic MobiSpace

    E-Print Network [OSTI]

    Wu, Jie

    , intermittent power, interference, obstruction, and attacks. DTNs have been proposed for use in terrestrial with periodic connectivity, underwater acoustic buoy deployments, and many developing region contexts

  7. FADEL et al A coupled hydrodynamic biological model for

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of flood control, power generation, agricultural irrigation, industrial and cooling water supply, sports research project was created, consisting of high frequency measurements by an autonomous wireless buoy

  8. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K

    2010-01-01T23:59:59.000Z

    power conversion facilities, nearby METARs stations, and other ob- servation and buoypower con- version facilities, nearby METARs stations, and other observation and buoy

  9. Energy-efficient scheduling and hybrid communication architecture for underwater littoral surveillance

    E-Print Network [OSTI]

    Cardei, Mihaela

    - cations. In combination with a scalable buoy positioning scheme that assures AUV underwater components are battery- powered, power efficiency is an important characteristic of the underwater

  10. Dielectric Elastomers for Actuation and Energy Harvesting

    E-Print Network [OSTI]

    Brochu, Paul

    2012-01-01T23:59:59.000Z

    Power Technologies [357] and the AquaBuOY developed by AquaEnergy Group, Ltd. [358] are examples of buoy-

  11. This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    a preliminary validation with in situ buoy measurements. Experimental and simulated Doppler spectra agree [power spectral density (PSD)], ocean wave spectum, radar equation. I. INTRODUCTION TODAY, high

  12. Why Work on Derivative-Free Optimization? Because the Problems are Important and Cool

    E-Print Network [OSTI]

    Aerodynamics Engine Nozzle Performance Shot peen forming of wing skins Space Station Power System Aerospike with surrogates 11 / 23 #12;Example: NOAA Tsunami warning buoy placement. We

  13. DTLSR: Delay Tolerant Routing for Developing Regions Michael Demmer

    E-Print Network [OSTI]

    Fall, Kevin R.

    , underwater and nautical buoy deploy- ments, sensor networks, as well as many developing region con- texts/or unreliable power can cause short-term outages

  14. AUV {gslee, sbahk}@netlab.snu.ac.kr

    E-Print Network [OSTI]

    Bahk, Saewoong

    AUV , {gslee, sbahk}@netlab.snu.ac.kr Transmission Power Control in Cluster AUV (CH) AUV . 1 . 1. 2. 3 . AUV CH (Buoy

  15. Method and apparatus for production of subsea hydrocarbon formations

    DOE Patents [OSTI]

    Blandford, Joseph W. (15 Mott La., Houston, TX 77024)

    1995-01-01T23:59:59.000Z

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external floatation tanks located below the water surface. The surface buoy is secured to the seabed by one or more tendons which are anchored to a foundation with piles imbedded in the seabed. The system accommodates multiple versions on the surface buoy configuration.

  16. Framework for Identifying Key Environmental Concerns in Marine Renewable Energy Projects- Appendices

    SciTech Connect (OSTI)

    Sharon Kramer; Mirko Previsic; Peter Nelson; Sheri Woo

    2010-06-17T23:59:59.000Z

    Marine wave and tidal energy technology could interact with marine resources in ways that are not well understood. As wave and tidal energy conversion projects are planned, tested, and deployed, a wide range of stakeholders will be engaged; these include developers, state and federal regulatory agencies, environmental groups, tribal governments, recreational and commercial fishermen, and local communities. Identifying stakeholders’ environmental concerns in the early stages of the industry’s development will help developers address and minimize potential environmental effects. Identifying important concerns will also assist with streamlining siting and associated permitting processes, which are considered key hurdles by the industry in the U.S. today. In September 2008, RE Vision consulting, LLC was selected by the Department of Energy (DoE) to conduct a scenario-based evaluation of emerging hydrokinetic technologies. The purpose of this evaluation is to identify and characterize environmental impacts that are likely to occur, demonstrate a process for analyzing these impacts, identify the “key” environmental concerns for each scenario, identify areas of uncertainty, and describe studies that could address that uncertainty. This process is intended to provide an objective and transparent tool to assist in decision-making for siting and selection of technology for wave and tidal energy development. RE Vision worked with H. T. Harvey & Associates, to develop a framework for identifying key environmental concerns with marine renewable technology. This report describes the results of this study. This framework was applied to varying wave and tidal power conversion technologies, scales, and locations. The following wave and tidal energy scenarios were considered: ? 4 wave energy generation technologies ? 3 tidal energy generation technologies ? 3 sites: Humboldt coast, California (wave); Makapu’u Point, Oahu, Hawaii (wave); and the Tacoma Narrows, Washington (tidal) ? 3 project sizes: pilot, small commercial, and large commercial The possible combinations total 24 wave technology scenarios and 9 tidal technology scenarios. We evaluated 3 of the 33 scenarios in detail: 1. A small commercial OPT Power Buoy project off the Humboldt County, California coast 2. A small commercial Pelamis Wave Power P-2 project off Makapu’u Point, Oahu, Hawaii 3. A pilot MCT SeaGen tidal project, sited in the Tacoma Narrows, Washington This framework document used information available from permitting documents that were written to support actual wave or tidal energy projects, but the results obtained here should not be confused with those of the permitting documents1. The main difference between this framework document and permitting documents of currently proposed pilot projects is that this framework identifies key environmental concerns and describes the next steps in addressing those concerns; permitting documents must identify effects, find or declare thresholds of significance, evaluate the effects against the thresholds, and find mitigation measures that will minimize or avoid the effects so they can be considered less-than-significant. Two methodologies, 1) an environmental effects analysis and 2) Raptools, were developed and tested to identify potential environmental effects associated with wave or tidal energy conversion projects. For the environmental effects analysis, we developed a framework based on standard risk assessment techniques. The framework was applied to the three scenarios listed above. The environmental effects analysis addressed questions such as: ? What is the temporal and spatial exposure of a species at a site? ? What are the specific potential project effects on that species? ? What measures could minimize, mitigate, or eliminate negative effects? ? Are there potential effects of the project, or species’ response to the effect, that are highly uncertain and warrant additional study? The second methodology, Raptools, is a collaborative approach useful for evaluating multiple characteristi

  17. Profiling Aquatic Diffusion Process Using Robotic Sensor Networks

    E-Print Network [OSTI]

    of diffusion. An alternative is in situ sensing with fixed or buoyed/moored sensors [2]. However, since buoyed examples of such technologies. However, because of their high cost (over 50;000 US dollars per unit [5 with onboard power, con- trol, navigation, wireless communication, and sensing modules, which turn these robots

  18. VSoE RIF Report: Micro-Tomography P.I.: Young H. Cho, Research Assistant Professor, Dept of EE/Dept of CS

    E-Print Network [OSTI]

    Zhou, Chongwu

    the underwater physical phenomena accurately at higher resolution using a network of collaborative, low-cost tomography (micro-tomography), (2) deep water Micro-tomography, and (3) ultra-low power sensor PHY to the expense of buoys, floats or robotic probes. By performing acoustic tomography between shore or buoy

  19. Oxybuoy: Constructing a Real-Time Inexpensive Hypoxia Monitoring Platform

    E-Print Network [OSTI]

    Nesterenko, Mikhail

    of Biology, University of Akron Abstract We present a low-cost sensor buoy designed for unattended dissolved oxygen measurement in aquatic environment. We describe the buoy's architectural design and three with controlled oxy- gen level, a lake deployment and an extensive electric power consump- tion test. Our

  20. Messages in a Bottle Ari Kernen

    E-Print Network [OSTI]

    Ott, Jörg

    University Comnet jo@comnet.tkk.fi ABSTRACT Drift bottles and drift buoys have been used to explore currents) buoys may also be equipped with network interfaces to transmit their results or serve as network infrastructure to relay data from, e.g., underwater nodes. In this paper, we explore a low-cost variant

  1. Profiling Aquatic Diffusion Process Using Robotic Sensor Networks

    E-Print Network [OSTI]

    Tan, Xiaobo

    is in situ sensing with fixed or buoyed/moored sensors [2]. However, since buoyed sensors cannot move around of such technologies. However, because of their high cost (over 50,000 U.S. dollars per unit [5]), weight (over 100 to create untethered robotic fish with onboard power, con- trol, navigation, wireless communication

  2. Oceans. Europe2005 An Acoustically-Linked Deep-Ocean Observatory

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    to communications power efficiency and cost of the acoustic and satellite telemetry systems. The efficiency ship servicing. Solarcells on the buoy provide enough power for many hours of Iridium terminalHole Oceano a hicKnstitution A6slmei - A buoy-based observatory that uses acoustic communication to retrieve

  3. 78 The Open Atmospheric Science Journal, 2010, 4, 78-87 1874-2823/10 2010 Bentham Open

    E-Print Network [OSTI]

    Wm-2 in some cases. Given the low cost, low weight, and low power consumption of the SPN1 total Unmanned Aerial Vehicles and solar powered buoys now become feasible using our methodology. The increase are sorely needed and must be made on ships and buoys. Keywords: Tilt correction, shortwave irradiance, solar

  4. Monitoring the coastal ocean surface -The poten-tial use of HF radar for the design and operational

    E-Print Network [OSTI]

    Wyatt, Lucy

    is needed when deciding where to locate and how to esti- mate the efficiency of a wave or tidal stream power cases these needs are being met by single point in situ measurement sys- tems for example wave buoys this trial for 5- 9th April 2005 measured at the location of the buoy. This was the last major storm (a low

  5. The Bermuda Testbed Mooring and HALE-ALOHA Mooring Programs

    E-Print Network [OSTI]

    Chang, Grace C.

    developed at the BTM and H-A sites are reviewed, and 3) a few of the recent scientific results-biofouling techniques and hardware, and data telemetry systems. For example, a new interdisciplinary surface buoy design multi-wavelength Figure 1. Photographs of the buoys used for the Bermuda Testbed Mooring (left) and HALE

  6. Newsletter of the Friends of Hatfield Marine Science Center www.hmsc.oregonstate.edu/friends UpwellingUpwellingNewsletter of the Friends of Hatfield Marine Science Center

    E-Print Network [OSTI]

    p. 7 · Upcoming seminars / events p. 8 The R/V Pacific Storm tows the wave energy buoy devel- oped in a collaboration between OSU, Columbia Power Technologies and the US Navy out to a test site off the coast of Newport. The buoy performed well during its September deployment, with hydrodynamic behavior conforming

  7. Diving Deeper: Expanded Papers from Recent MTS Conferences

    E-Print Network [OSTI]

    Past President Bruce C. Gilman, P.E. Consultant VP--Section Affairs Kevin Hardy DeepSea Power and Light Stamey Noblis PROFESSIONAL COMMIT TEES Industry and Technology Buoy Technology Dr. Walter Paul Woods Hole Exploration Vacant Physical Oceanography/Meteorology Dr. Richard L. Crout National Data Buoy Center Remote

  8. Usage Codes Observer code Vessel code Trip ID

    E-Print Network [OSTI]

    . propellers: No. blades: Model Kw: Power (Kw) Ducted propeller? Y / N Tonnage: GT / NT / GRT / NRT Broken/day): Transmission (gear box) Y / N Sonar Y / N Y / N Y / N GPS buoys Y / N ADCP (current profiler) Radio buoys Present? Raft Y / N Y / N Speedboats Y / N Ring stripper? How many? Engine power (hp): Registration Make

  9. 1 FEBRUARY 2004 281F E D O R O V I C H E T A L . 2004 American Meteorological Society

    E-Print Network [OSTI]

    Fedorovich, Evgeni

    the LES and laboratory data. Power-law approximations for relationships between the entrainment parameters@ou.edu The discussion below is presented in terms of buoy- ancy, defined as b g( 0)/ 0, where is the density temperature can be used instead of to define buoy- ancy, b g( 0)/ 0, where 0 is the reference value of since

  10. Learn More: www.glerl.noaa.gov economic value

    E-Print Network [OSTI]

    of buoys for generating electricity from wave energy and have scoped out a site for a pilot wave power of Scotland. Deployed off Oregon's coast, researchers predict that 200 buoys could potentially power something Grant completed a survey look- ing at Delaware residents' opinions on offshore wind power. Ninety

  11. Long Island Sound Testbed and Experiments , Peng Zheng1

    E-Print Network [OSTI]

    Zhou, Shengli

    . The power consumptions of testbed components in different modes were also measured. Experiment data performance of protocols and applications. Instead of large buoy systems, Aqua-TUNE project employs small in this testbed system, including surface nodes employing buoy system, mobile nodes equipped on autonomous

  12. Wirewalker Dynamics JEROME A. SMITH, ROBERT PINKEL, MICHAEL GOLDIN, OLIVER SUN,* SAN NGUYEN,

    E-Print Network [OSTI]

    Smith, Jerome A.

    A wirewalker exploits the difference in vertical motion between a wire attached to a surface buoy and the water at the depth of a profiling body to provide the power to execute deep profiles: when the wire's relative motion between the buoy and water even at the surface; and 2) for waves too gentle to directly exceed

  13. Title: Seafloor Soundings in Polar and Remote Regions --A new instrument for unattended bathymetric observations

    E-Print Network [OSTI]

    New Hampshire, University of

    is developing a battery-powered buoy which houses the sounder, navigation receiver, data acquisition system, radiotelemetry system, and battery power sufficient for about three years of operation. Alternatively the depth sounder, by itself, can be incorporated into other multi-instrument moorings or buoys. During 1994

  14. Congrs SHF : Energies Marines Renouvelables -EMR 2013, Brest, 9-10 octobre 2013 Olaya et al. Modle temporel pour houlognrateur MODLE TEMPOREL SOUS FORME DE REPRSENTATION

    E-Print Network [OSTI]

    Brest, Université de

    of a cylindrical buoy sliding along a partially submerged platform made up of a plate and a column. This model consists of a cylindrical buoy riding in waves and sliding along a partially submerged platform made up and Fossen, 2011] defined this model as a basis for initial design and prediction of power capture. Cummins

  15. www.pmel.noaa.gov/ocs July 2013 NOAA Pacific Marine Environmental Laboratory

    E-Print Network [OSTI]

    in June 2012, and recovered in June 2013. The buoy well contained voltage of PA006 shows a steep decline. The Logic battery supplies power to be associated with water intrusion in the buoy well. Upon recovery, the PA006 well

  16. NHC SATELLITE IMAGERY DATA FEED Full disk: every 3 hours

    E-Print Network [OSTI]

    FOS data of METAR,radiosonde, synoptic,ship, buoy, C-man, DATA TYPE FORMAT COMMENTS FOS GEMPAK(N-AWIPS) NetCDF(AWIPS) metar, radiosonde, synoptic, ship, buoys,C-man Aircraft GEMPAK recon, 12Z,18Z Basic Parameters JOINT HURRICANE TESTBED EQUIPMENT SPECIFICATIONS JHT Server- DELL 6350 Power

  17. Multifractal Thermal Structure in the Western Philippine Sea Upper Layer

    E-Print Network [OSTI]

    Chu, Peter C.

    · Coastal Monitoring Buoy (CMB) - U.S. Naval Oceanographic Office - July 28 - August 7, 2005 - Ocean data 1 for Drifting Buoy Measurements · Difference between measurements at some time t and a later time t + acts turbulence-Dominated (00-05 GMT Aug 1) #12;Power Spectrum Stationary Nonstationary with stationary increments

  18. Acoustic Communications for Regional Undersea Observatories Lee Freitag, Milica Stojanovic

    E-Print Network [OSTI]

    Stojanovic, Milica

    different scientific disciplines will located at each node and along the branches. The fiber optic and power that use surface buoys and satellite telemetry. Examples of buoy-based efforts in- clude a Japanese project advanced power and optical commu- nication technology will allow the long cables to circle the Juan de Fuca

  19. www.hboi.fau.edu Ocean Energy

    E-Print Network [OSTI]

    Fernandez, Eduardo

    by Executive Director Sue Skemp, they are helping to investigate and develop power extraction from particularly approximately 12 miles offshore of Fort Lauderdale, the cornerstone of which is a moored boat-like buoy filled oversaw a series of tow tests to assess how the buoy would perform in the current, which led to design

  20. The goal of Team Constant Contact is to design and construct the most efficient

    E-Print Network [OSTI]

    Wood, Stephen L.

    the second phase, our team will fabricate a buoy configuration using the chosen turbine and deploy will be converted into a buoy system. Adequate floatation will be added along with an anchoring system applied to modern societies thirst for cleaner power. The ocean offers vast oppor- tunities for generating

  1. DEVELOPMENTS IN SATELLITE COMMUNICATION SYSTEMS Update -October 2001

    E-Print Network [OSTI]

    Brewer, Eric A.

    the requirement of the mobile to have a complex antenna and/or high output power. A key feature of several MSS this is as yet unclear. However, dangers will exist for data buoy users of most MSS, in that they will generally. The arrangements for data distribution are also unlikely to be tailored towards data buoy applications

  2. 29th May, 2013, Trondheim Integrated analysis of hydraulic PTOs in WECs

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    ) with hydraulic power take-off (PTO) · Bond graph representations of pipelines · Bond graph system modelling Yang Det Norske VeritasCeSOS Highlights and AMOS Visions Conference Model description -- wave-buoy stiffness Excitation force External force PositionVelocityAccelarationMass wave-buoy interactions 0

  3. Ocean Currents, Marine Debris, and

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    paper bag cardboard box milk carton tin can styrofoam buoys Aluminum can 6-pack ring plastic bottles #12: styrofoam buoys 200 ­ 400 yrs: Aluminum can 400 yrs: 6-pack ring 450 yrs: plastic bottles #12;Biological ·!Up to 80% of marine debris is plastic United Nations Environment Programme #12;How does debris get

  4. Tidal Energy Research

    SciTech Connect (OSTI)

    Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

    2014-03-31T23:59:59.000Z

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  5. Dynamic organization of the actin system in the motile cells of Dictyostelium TILL BRETSCHNEIDER1

    E-Print Network [OSTI]

    Devreotes, Peter

    , JAMES JONKMAN2 , JANA KO¨ HLER1 , OHAD MEDALIA1 , KARMELA BARISIC1, , IGOR WEBER3 , ERNST H.K STELZER2

  6. Hard instances for satisfiability and quasi-one-way Andrej Bogdanov1

    E-Print Network [OSTI]

    Wan, Andrew

    @cse.cuhk.edu.hk kunal@microsoft.com atw12@columbia.edu Abstract: We give an efficient algorithm that takes as input any

  7. SKT 40 r FREDAG DEN 16. AUGUST 2013 JUBILUMSPROGRAM

    E-Print Network [OSTI]

    . Læs mere om projektet på www.redbarnet.dk under projektnr.: 4202S2. #12;SKT siger tak til HK/Danmark

  8. acid decarboxylase expression: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the expressions. Anna Sthl; Petra Sundstrm; Kristina Hk 2005-01-01 180 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  9. acid oxidase expression: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the expressions. Anna Sthl; Petra Sundstrm; Kristina Hk 2005-01-01 252 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  10. CX-000900: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    An Assessment of Projected Life-Cycle Cost for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power in the United States over TimeCX(s) Applied: A9Date: 02/25/2010Location(s): CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  11. 2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  12. CX-005128: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic (MHK) Energy MachinesCX(s) Applied: A9, B3.6Date: 01/25/2011Location(s): Orem, UtahOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  13. CX-005184: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic Energy MachinesCX(s) Applied: A9, B3.6Date: 01/28/2011Location(s): Orem, UtahOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  14. Final Technical Report: The Water-to-Wire (W2W) Project

    SciTech Connect (OSTI)

    Lissner, Daniel N.; Edward, Lovelace C.

    2013-12-24T23:59:59.000Z

    The purpose of the Free Flow Power (FFP) Water-to-Wire Project (Project) was to evaluate and optimize the performance, environmental compatibility, and cost factors of FFP hydrokinetic turbines through design analyses and deployments in test flumes and riverine locations.

  15. NOAA AND ENERGY NOAA's involvement with the energy sector is wide-ranging. NOAA has an interest or is actively engaged in

    E-Print Network [OSTI]

    and production); liquefied natural gas (LNG); hydropower; offshore and land-based wind power; hydrokinetic ocean power; biomass and biofuel. NOAA provides data, scientific research, technical products, management science and management, Coastal Zone Management Act (CZMA) federal consistency reviews, and mediation

  16. CX-002145: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Acoustic Effects of Hydrokinetic Tidal TurbinesCX(s) Applied: B3.1, B3.3, A9Date: 04/29/2010Location(s): Snohomish County, WashingtonOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  17. Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    The Wind-Wildlife Impacts Literature Database (WILD), developed and maintained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic, power lines, and communication and television towers on wildlife.

  18. CX-011403: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Evaluating the Potential for Marine and Hydrokinetic Devices to Become Artificial Reefs of Fish Aggregating Devices Based on Analysis of Surrogates in Tropical, Subtropical and Temperate United States West Coast and Hawaiian Coastal Waters CX(s) Applied: A9 Date: 11/15/2013 Location(s): California, Hawaii Offices(s): Golden Field Office

  19. WRITTEN TESTIMONY OF JANE LUBCHENCO, Ph.D.

    E-Print Network [OSTI]

    to strengthen comprehensive planning for energy resource use both on land and in the ocean and to take action); liquefied natural gas (LNG); hydropower; offshore and land-based wind power; hydrokinetic ocean energy (wave, tidal, and current); ocean thermal energy conversion (OTEC); ocean methane hydrates; solar power

  20. CX-005670: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Marine and Hydrokinetic Energy System Development of the Aquantis 2.5 Megawatt Ocean-Current Electricity Generation DeviceCX(s) Applied: A9, B3.6Date: 04/13/2011Location(s): Carpinteria, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  1. EXACT REGULARIZATION OF CONVEX PROGRAMS November 18 ...

    E-Print Network [OSTI]

    2006-11-18T23:59:59.000Z

    Nov 18, 2006 ... lpi-reactor. 2.0e+00. 2.0e+00. 1.5e+06 ? 1.1e+06. 569 ?. 357 ..... intersection point of Hk, Hk+1 and the x1x3-plane. Direct calculation yields xk.

  2. Coordinating Plans for Agents Performing AAW Hardkill and Softkill for Frigates

    E-Print Network [OSTI]

    Kropf, Peter

    weapons varies, and the effectiveness of the weapon depends on a variety of factors like range, type-air warfare (AAW) hardkill (HK) and softkill (SK) weapon systems is an important aspect of command and control was successfully implemented, and proved effective in mitigating interference between HK and SK actions

  3. Pancake bouncing on superhydrophobic surfaces , Lisa Moevius2

    E-Print Network [OSTI]

    Loss, Daniel

    Pancake bouncing on superhydrophobic surfaces Yahua Liu1 , Lisa Moevius2 , Xinpeng Xu3 , Tiezheng.ox.ac.uk) or Z.W (zuanwang@cityu.edu.hk). 1 Pancake bouncing on superhydrophobic surfaces Yahua Liu1 , Lisa.Y. (j.yeomans1@physics.ox.ac.uk) or Z.W (zuanwang@cityu.edu.hk). Pancake bouncing on superhydrophobic

  4. Theoretical modelling of two wave-power devices

    E-Print Network [OSTI]

    Lovas, Stéphanie

    2010-01-01T23:59:59.000Z

    Many wave energy devices are currently studied. In this thesis we focus on two specific devices: the Oscillating Water Column (OWC), and the buoys. In the first part of this thesis we examine the effects of coastline ...

  5. Experimental studies of the hydrodynamic characteristics of a sloped wave energy device 

    E-Print Network [OSTI]

    Lin, Chia-Po

    2000-07-19T23:59:59.000Z

    Many wave energy convertors are designed to use either vertical (heave) or horizontal (surge) movements of waves. But the frequency response of small heaving buoys and oscillating water column devices shows that they are ...

  6. An Observational Summary of Convective Storm-generated Winds NOAA/NESDIS/STAR

    E-Print Network [OSTI]

    Kuligowski, Bob

    ), GOES sounding profile over Patuxent River, MD at 2100 UTC (top right), GOES imager product at 2232 UTC River Buoy near Dahlgren, Virginia (left) compared to a hypothetical microburst wind speed trace (right

  7. Real-time Coastal Observation Network (ReCON)

    E-Print Network [OSTI]

    research. Deploy observations systems on portable, low cost buoys and fixed platforms of opportunity systems. The project will establish a test bed for observing system network design studies and develop

  8. Changes in Tropical Rainfall Measuring Mission (TRMM) retrievals due to the orbit boost estimated from rain gauge data

    E-Print Network [OSTI]

    DeMoss, Jeremy

    2009-06-02T23:59:59.000Z

    in precipitation retrievals from the satellite data alone. We estimate changes in TRMM Microwave Imager (TMI) and the Precipitation Radar (PR) precipitation retrievals due to the orbit boost by comparing them with surface rain gauges on ocean buoys operated...

  9. Data Assimilation in Weather Forecasting: A Case Study in PDE ...

    E-Print Network [OSTI]

    of atmospheric data, increased computational power, and the continued im- provement of ... speed, and radiances, and are taken from satellites, buoys, planes, boats, ..... there is a large difference in cost between these two operations

  10. Adaptive Sensor Selection Algorithms for Wireless Sensor Networks

    E-Print Network [OSTI]

    Sensing Tiny size, low cost Power supply Challenge: Minimize energy consumption One approach: Only [Stenman et al., 1996] Intel Lab data Good Food project deployments USA National Data Buoy Center #12

  11. BOEM Issues First Renewable Energy Lease for MHK Technology Testing...

    Energy Savers [EERE]

    to harness energy from ocean currents. Each floating test berth will consist of a buoy anchored to the sea floor to measure ocean conditions and will allow for the deployment...

  12. O R I G I N A L A R T I C L E The hydrodynamics of hovering in Antarctic

    E-Print Network [OSTI]

    to increase buoy- ancy (Pond 2012). However, lipid storage as a portion of dry mass in Antarctic krill varies) to drag flow backward during its power stroke and contracts and folds the distal leg segments to minimize

  13. 2138 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 4, APRIL 2014 HF Bistatic Ocean Doppler Spectra: Simulation

    E-Print Network [OSTI]

    with in situ buoy measurements. Experimental and simulated Doppler spectra agree generally well, except Terms--Bistatic high-frequency surface wave radar (HFSWR), Doppler spectrum [power spectral density (PSD

  14. IEEE TRANSACTIONS ON GEOSCIENCE ELECTRONICS, VOL. GE-8, NO. 1, JANUARY 1970 Balloon-Borne Radio Altimeter

    E-Print Network [OSTI]

    Levanon, Nadav

    payload. The peak power of the altimeter was one watt. INTRODUCTION rl HE radiosonde, an instrument package elevated to high altitudes in the atmosphere by a buoy- ant balloon, is the most widespread means

  15. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model was most sensitive to WEC device type (and WEC size with the exception of the F-OWC buoy). The power matrix associated with each WEC was generally scaled to WEC size (i.e....

  16. Rogue Waves and Explorations of Coastal Wave Characteristics Primary Investigator: Paul C. Liu -NOAA GLERL (Emeritus)

    E-Print Network [OSTI]

    - Central Res. Institute Electric Power Industry, Japan, Uggo F. de Pinho - Federal University of Rio de Janeiro, Brazil, Chyng-Chu Teng - NOAA National Data Buoy Center, Chin H. Wu - Department of Civil

  17. FCourse: Learn to Swim Level 6: Fitness Swimmer

    E-Print Network [OSTI]

    Azevedo, Ricardo

    Purpose To refine strokes so participants swim them with more ease, efficiency, power and smoothness Pull buoy o Fins o Pace clock o Paddles Describe the principles of setting up a fitness program

  18. National Aeronautics and Space Administration Analog Missions and Field Tests

    E-Print Network [OSTI]

    Marine Sanctuary, about 62 feet beneath the surface. A surface buoy provides connections for power, life and ILC Dover, collected information about various aspects of the habitat, including the structure's power

  19. The high conductivity of iron and thermal evolution of the Earth's core Hitoshi Gomi a,

    E-Print Network [OSTI]

    with secular cooling (along with possible radioactive heating) and buoy- ant release of incompatible light, if thermal buoyancy alone drives convection, then the power for maintaining a geodynamo must be in excess

  20. Intermittency of velocity fluctuations in turbulent thermal convection Emily S. C. Ching and C. K. Leung

    E-Print Network [OSTI]

    Tong, Penger

    indicates that the vertical direction is special and buoy- ancy is important even at the center is within the inertial range. Experimental measurements confirm the power-law behavior but indicate

  1. DE-FC26-06NT42877 - DE-FC26-02NT41628 - DE-FC26-00NT40920 | netl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bay (suitable sea state). The Data Recovery System-including the integrated data power unit, pop-up buoy, and battery system-for the observatory was deployed successfully...

  2. 1970. Analysis of arsenic and selenium in marine raw materials. J. Sci. Food Agric. 21:242-247.

    E-Print Network [OSTI]

    were collected in the intake canal ofthe Carolina Power and Light Company generating plant in the Cape .Fear Rivel' estuary west of buoy 19 on 11 October 1977. Bottom type was silty-sand at depth of 4 m

  3. Buoyant plumes with inertial and chemical reaction-driven forcing

    E-Print Network [OSTI]

    Morris, Stephen W.

    . The forced plumes were compositionally buoy- ant and were injected with inertial forcing into a fluid filled power law relationship that explains their ascent velocity. However, the morphology of the plume heads

  4. Electromagnetic imaging of the crust and upper mantle across the continental margin in central California

    E-Print Network [OSTI]

    Wheelock, Brent David

    2012-01-01T23:59:59.000Z

    of water wave power as measured by a buoy near our seafloorbuoy record, the two final ones between the days of November 29th and December 1st exhibit slightly higher power and

  5. Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain

    E-Print Network [OSTI]

    Lovley, Derek

    to be useful for powering small electronic devices such as a meteorological buoy. Here we present a 5-step is broadly applicable and may be useful to develop strategies for optimizing power generation by MFCs. 896

  6. Internal Actuation for Intelligent Underwater Vehicle Control

    E-Print Network [OSTI]

    Leonard, Naomi

    missions with limited on­board power. The harsh seawater environment can lead to early deterioration the vehicle's range of operating conditions. A vehicle that has the capability to change its buoy­ ancy (e

  7. National Aeronautics and Space Administration Sensing Our Planet

    E-Print Network [OSTI]

    .nasa.gov #12;Front cover images Top row, left to right: Crew members recover a buoy which broke loose the related article, "The power of a Brazilian wind," on page 6. (Courtesy A. Upton, npower renewables

  8. Natural versus forced convection in laminar starting plumes Michael C. Rogers and Stephen W. Morris

    E-Print Network [OSTI]

    Morris, Stephen W.

    that the ascent velocity of the plume, nondimensionalized by Ri, exhibits a power law relationship with Re by the Richardson number Ri, defined in Eq. 1, which is the ratio of buoy- ancy forces to inertial effects. Thus, Ri

  9. Edmund J. Synakowski Fusion Power Associates Meeting

    E-Print Network [OSTI]

    Edmund J. Synakowski Fusion Power Associates Meeting September 27 - 28, 2006 The LLNL Fusion Energy Fusion Energy Program: leadership roles in both MFE and IFE, buoyed by ITER, NIF science, and LLNL

  10. Biogeosciences, 7, 36253636, 2010 www.biogeosciences.net/7/3625/2010/

    E-Print Network [OSTI]

    Leclerc, Monique Y.

    . When local |Ri| > 1, |m| decreases with |Ri| in a power function, a result consistent for all levels by mechanical shear. It is destroyed by negative buoy- ancy forces and viscous dissipation, with the suppression

  11. Solar Active Region Flux Fragmentation, Subphotospheric Flows, and Flaring

    E-Print Network [OSTI]

    Canfield, Richard

    flux is thought to be generated below the convection zone and rise buoy- antly in loops of shape range > 1019 Mx; neither exponential nor power law functions provided a consistent fit

  12. FROM THE GLACIER TO THE GULF Update 8/22/14 This document is a brief update of the status of each observation platform in the

    E-Print Network [OSTI]

    met buoy data, AVISO SSHA, and satellite nLw products. Scott and Nick called today and said there was a power failure for the CO2 system. It looks

  13. 2033Bulletin of the American Meteorological Society *The Lab Sea Group

    E-Print Network [OSTI]

    Pickart, Robert S.

    of the Atlantic Ocean (the Labrador Sea sketched in Fig. 1) is a region of power- ful physical forces, extremes of wind and cold, incur- sions of icebergs and sea ice, great contrasts in buoy- ancy of air and seawater

  14. MATHEMATICAL ANALYSIS OF A WAVE ENERGY CONVERTER ARNAUD ROUGIREL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for buoy-type ocean wave energy converter. The simplest model for this scheme is a non autonomous piecewise): see [OOS10]. Basically, a WEC is a floating body with a power takeoff system. It uses the vertical

  15. Ocean Observatories Initiative: Pacific Northwest The Endurance Array

    E-Print Network [OSTI]

    Kurapov, Alexander

    . Global Scale Nodes (GSN) Autonomous moored buoy platforms at four deep water, high-latitude locations spanning multiple geological and oceanographic features and processes. The RSN also provides power

  16. EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    , The Netherlands Email: b.j.v.d.linden@tue.nl Emmanuel Ory Single Buoy Mooring Offshore Monaco, Monaco Email applications to make important design decisions such as the required power of the pumps, that drive the flow

  17. Using a Bore-Soliton-Splash to understand Rogue Waves, Tsunamis & Wave Energy

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    )compression] use wave focussing in a convergence [3]. · IPS wave buoy has a linear dynamo below sea level. · Designed & built new RogueWavEnergy device: it works, a LED is blinking & we measured the power output. 8

  18. Finding Tropical Cyclones on a Cloud Computing Cluster: Using Parallel Virtualization for Large-Scale Climate Simulation Analysis

    E-Print Network [OSTI]

    Laboratory, USA {dhasenkamp, asim, mfwehner, kwu}@lbl.gov ABSTRACT Extensive computing power has been used temperatures. The National Oceanographic Data Center, for example, compiled data from a survey buoy in the Gulf

  19. 1 1989-1993 Publications List SOEST 2 1995 and 1996 A Report SOEST

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    : Numerical examples Ivanov, L.D. 5 Analytical Process for GPS Directional Wave Buoy Smith, D.A. and Krock, H Hydrodynamics Problems Ertekin, R.C. (PI) 27 Preliminary Design of a Kalina Cycle OTEC Power Plant

  20. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy H s Significant wave height MWD Mean wave direction NDBC National Data Buoy Center NOAA National Oceanic and Atmospheric Administration NWW3 WaveWatch III PTO...

  1. Journal of Oceanography, Vol. 63, pp. 927 to 939, 2007 High-order

    E-Print Network [OSTI]

    Chu, Peter C.

    , intermittency, internal wave, internal soliton, multifractal analysis, power spectrum, stationarity) temperature in the western Philippine Sea near Taiwan was sampled using a coastal monitoring buoy (CMB. Without the internal waves and solitons, the power spectra, structure functions, and singular measures

  2. JANUARY 2003 83B A R T H E L M I E A N D P R Y O R 2003 American Meteorological Society

    E-Print Network [OSTI]

    Pryor, Sara C.

    .barthelmie@risoe.dk ships and buoy networks with data from a few offshore meteorological masts (Barthelmie 1999a), marine. In the case of wind energy applications, available wind power density is related to the cube of the wind speed

  3. RESEARCH ARTICLE 10.1002/2014WR015335

    E-Print Network [OSTI]

    Huppert, Herbert

    supercritical CO2 is captured from the flue gas of power plants and injected underground into deep saline aquifers. After injection, the CO2 will spread and migrate as a buoy- ant gravity current relative

  4. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization and Annual Average Power Predictions of a Backward Bent Duct Buoy Oscillating Water Column Device Using the Wells TurbineTara Camacho-Lopez2015-04-06T22:15:34+00:00...

  5. The Buoyancy Budget with a Nonlinear Equation of State MAGNUS HIERONYMUS AND JONAS NYCANDER

    E-Print Network [OSTI]

    Nycander, Jonas

    ). They find that 0.4 TW is needed, which is a very substantial power consumption given that their estimate. However, when the buoyancy transport equation is integrated over the whole ocean volume the global buoy

  6. AUGUST 2001 1411W A S H B U R N E T A L . 2001 American Meteorological Society

    E-Print Network [OSTI]

    Washburn, Libe

    buoy, is suitable for deployment from small boats under conditions of light wind and small waves Santa Barbara, California, where natural hydro- carbon seepage produces extensive, dense bubble plumes

  7. Swell Alert Eric Goodman

    E-Print Network [OSTI]

    Liebling, Michael

    there there are no waves. #12;Team Member Expertise Eric Goodman - Team Lead, Wifi and Buoy Data Ryan Summers - Processor://www.nxp.com/documents/data_sheet/LPC2478.pdf #12;Wifi RN171XVW-I/RM -3.3V Operation -Ultra-low power - 180mA Tx -Supports AD;Critical Elements Wifi - Needed For interaction with online buoy data Server - Extracting online data

  8. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells

    SciTech Connect (OSTI)

    Min, Joong Won [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kwang Il [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Hyun-Ah; Kim, Eun-Kyu; Noh, Woo Chul [Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] [Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jeon, Hong Bae [Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul (Korea, Republic of)] [Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul (Korea, Republic of); Cho, Dong-Hyung [Graduate School of East-West Medical Science, Kyung Hee University, Gyeonggi-do (Korea, Republic of)] [Graduate School of East-West Medical Science, Kyung Hee University, Gyeonggi-do (Korea, Republic of); Oh, Jeong Su [Department of Genetic Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)] [Department of Genetic Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Park, In-Chul; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jae-Sung, E-mail: jaesung@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-10-11T23:59:59.000Z

    Highlights: •HIF-1?-regulated INPP4B enhances glycolysis. •INPP4B regulates aerobic glycolysis by inducing HK2 via Akt-mTOR pathway. •Blockage of INPP4B and HK2 sensitizes radioresistant laryngeal cancer cells to radiation and anticancer drug. •INPP4B is associated with HK2 in human laryngeal cancer tissues. -- Abstract: Inositol polyphosphate 4-phosphatase type II (INPP4B) was recently identified as a tumor resistance factor in laryngeal cancer cells. Herein, we show that INPP4B-mediated resistance is associated with increased glycolytic phenotype. INPP4B expression was induced by hypoxia and irradiation. Intriguingly, overexpression of INPP4B enhanced aerobic glycolysis. Of the glycolysis-regulatory genes, hexokinase 2 (HK2) was mainly regulated by INPP4B and this regulation was mediated through the Akt-mTOR pathway. Notably, codepletion of INPP4B and HK2 markedly sensitized radioresistant laryngeal cancer cells to irradiation or anticancer drug. Moreover, INPP4B was significantly associated with HK2 in human laryngeal cancer tissues. Therefore, these results suggest that INPP4B modulates aerobic glycolysis via HK2 regulation in radioresistant laryngeal cancer cells.

  9. Quantized control using vector differential pulse code modulation

    E-Print Network [OSTI]

    Tinnin, Dorothy Joy

    1982-01-01T23:59:59.000Z

    information based on the exact model of the source from which the state and measurement are produced. L14j Z4 The DPCN structure is shown in Figures 3a and 3b, is the input signal to be transmitted; ~e is the error signal representing the difference... Error: ? = zk - zZ(ik-1 Encoded Value:. e nQ k DPCN Measurement Estimate: From (3. 5a-g), the Kalman filter equations are: Error Covariance Extrapolation: k~k-1 ek-1 k-1ek-1 + k-1 T Kalman Gain Matrix: T T -1 Kk - Pk(k 1Hk(HkPk lk-1Hk + Vk) (3...

  10. Reference Inflow Characterization for River Resource Reference Model (RM2)

    SciTech Connect (OSTI)

    Neary, Vincent S [ORNL

    2011-12-01T23:59:59.000Z

    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time-series and stage vs. cross-section area rating relationship.

  11. Perfect fluidity of sQGP core and dissipative hadronic corona

    E-Print Network [OSTI]

    Tetsufumi Hirano

    2006-01-03T23:59:59.000Z

    We can establish a new picture, the perfect fluid sQGP core and the dissipative hadronic corona, of the space-time evolution of produced matter in relativistic heavy ion collisions at RHIC. It is also shown that the picture works well also in the forward rapidity region through an analysis based on a new class of the hydro-kinetic model and is a manifestation of deconfinement.

  12. Perfect fluidity of sQGP core and dissipative hadronic corona

    SciTech Connect (OSTI)

    Hirano, Tetsufumi [Department of Physics, Columbia University, New York, NY 10027 (United States)

    2006-07-11T23:59:59.000Z

    We can establish a new picture, the perfect fluid sQGP core and the dissipative hadronic corona, of the space-time evolution of produced matter in relativistic heavy ion collisions at RHIC. It is also shown that the picture works well also in the forward rapidity region through an analysis based on a new class of the hydro-kinetic model and is a manifestation of deconfinement.

  13. Beyond the Betz Theory - Blockage, Wake Mixing and Turbulence

    E-Print Network [OSTI]

    Nishino, Takafumi

    2013-01-01T23:59:59.000Z

    Recent analytical models concerning the limiting efficiency of marine hydrokinetic (MHK) devices are reviewed with an emphasis on the significance of blockages (of local as well as global flow passages) and wake mixing. Also discussed is the efficiency of power generation from fully developed turbulent open channel flows. These issues are primarily concerned with the design/optimization of tidal turbine arrays; however, some of them are relevant to wind turbines as well.

  14. No. RD-0016 -----Original Message-----

    E-Print Network [OSTI]

    No. RD-0016 -----Original Message----- From: HK Hamann Sent: Friday, September 13, 2002 10:47 PM To: Comment@bpa.gov Subject: Fw: Save The Dams CORRECTION TO MY EARLIER E-MAIL ----- Original Message

  15. Software Model Checking: The VeriSoft Approach Patrice Godefroid

    E-Print Network [OSTI]

    Rajamani, Sriram K.

    of the concurrent system specified in a (essentially finite­state) modeling language. Many properties of a model purposes. 1 Examples of tools that follow the above paradigm are CAESAR [FGM + 92], COSPAN [HK90], CWB [CPS

  16. Tsunami Information Sources: Part 4 (With a section on impulsively generated waves by a rapid mass movement, either submerged, or into a body of water)

    E-Print Network [OSTI]

    Wiegel, Robert L.

    2008-01-01T23:59:59.000Z

    India, "Setting up of Early Warning System for Tsunami andof the Tsunami Early Warning System for Indian Ocean," in1998 Gupta, H.K. , "Early Warning System for Oceanographic

  17. Global convergence of sequential injective algorithm for weakly ...

    E-Print Network [OSTI]

    2015-03-16T23:59:59.000Z

    Hk} converging to H uniformly?1 over any bounded subset of D. We can ... Step 1 If H(wk) = 0, then terminate and output wk as a solution. ..... Mr1 Mr2 ··· Mrr. ?.

  18. The Daya Bay Nuclear Plant Project in the Light of International Environmental Law

    E-Print Network [OSTI]

    Mushkat, Roda

    1990-01-01T23:59:59.000Z

    result from locating a nuclear plant so close to the Hongat 1292 (1975). THE DA YA BAY NUCLEAR PLANT PROJECT national1986) (H.K. ). THE DA YA BAY NUCLEAR PLANT PROJECT IV. THE "

  19. Mach Learn (2007) 69: 7996 DOI 10.1007/s10994-007-5007-9

    E-Print Network [OSTI]

    Wan, Andrew

    2007-01-01T23:59:59.000Z

    -mail: rocco@cs.columbia.edu H.K. Lee e-mail: homin@cs.columbia.edu A. Wan e-mail: atw12@cs.columbia.edu #12

  20. Hexokinases and cardioprotection

    E-Print Network [OSTI]

    Calmettes, G; Ribalet, B; John, S; Korge, P; Ping, P; Weiss, JN

    2015-01-01T23:59:59.000Z

    glucose metabolism and energy production during I/R; 3) theglucose metabolism and energy production during I/R, anda crit- ical role in energy production. In contrast, HK2 (“

  1. Integrating Ecology and History to Understand Historical Marine Population Dynamics: A Case Study of the California Spiny Lobster

    E-Print Network [OSTI]

    McArdle, Deborah Ann

    2008-01-01T23:59:59.000Z

    S.A. 1992. The problem of pattern and scale in ecology.Ecology 73:1943- Lotze, H.K. , Lenihan, H.S. , Bourque,Trends in Evolution and Ecology 10:420. Pauly, D. ,

  2. al thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dalek@eee.hku.hk , C. Y. Kwong, T. W. Lau, L. S. M. Lam, and W. K 276 DEFECT-FREE THIN FILM MEMBRANES FOR H2 SEPARATION AND ISOLATION Energy Storage, Conversion and...

  3. al thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dalek@eee.hku.hk , C. Y. Kwong, T. W. Lau, L. S. M. Lam, and W. K 276 DEFECT-FREE THIN FILM MEMBRANES FOR H2 SEPARATION AND ISOLATION Energy Storage, Conversion and...

  4. LOV´ASZ-SCHRIJVER SDP-OPERATOR, NEAR-PERFECT ...

    E-Print Network [OSTI]

    2014-11-19T23:59:59.000Z

    Nov 19, 2014 ... generates the stable set polytope in one step has been open since 1990. We call these ...... (k, ?)ei ? cone(FRAC(Hk)) and Y. ?. (k, ?)(e0 ? ei) ...

  5. Optimum BMI Cut Points to Screen Asian Americans for Type 2 Diabetes

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    A, Chang HK. A1C and diabetes diagnosis among Filipinoand Native Hawai- ians. Diabetes Care 2010;33:2626–2628 22.RA, et al. ; American Diabetes Association. Impaired fasting

  6. Selection of a Global Set of GMPEs for the GEM-PEER Global GMPEs Project

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    K. , Thio, H.K. , Somerville, P.G. , Fukushima, Y. ,Fukushima, Y. (2006) Attenuation relations of strong groundN. , Fujiwara, H. , Fukushima, Y. (2006). A new attenuation

  7. Utilization of Recently Enhanced Simulation Tools and Empirical Ground Motion Databases to Improve Ground Motion Prediction Capabilities

    E-Print Network [OSTI]

    Khodavirdi, Khatereh

    2013-01-01T23:59:59.000Z

    K. Irikura, H.K. Thio, P.G. Somerville, Y. Fukushima, and Y.Fukushima. “Attenuation relations of strong ground motion incatastrophic damage at the Fukushima nuclear power plant,

  8. Ground motion estimation for evaluation of levee performance in past earthquakes

    E-Print Network [OSTI]

    Kwak, DongYoup; Mikami, Atsushi; Brandenberg, Scott J; Stewart, Jonathan P

    2012-01-01T23:59:59.000Z

    K. , Thio, H.K. , Somerville, P.G. , Fukushima, Y. ,and Fukushima, Y. (2006), “Attenuation Relations of StrongSawada, S. , Suetomi, I. , Fukushima, Y. , and Goto, H. (

  9. The Mining Life : : A Transnational History of Race and Family in the U.S.-Mexico Borderlands, 1890-1965

    E-Print Network [OSTI]

    Maiorana, Juliette Charlie

    Mexican Mining Department, Mexico, City, Dec. 1, 1961; Lic.de 1949; L. Vega Lavin, Mexico City, letter marked “personalChihuahua City, Chihuahua, Mexico, July 17, 1962; H.K.

  10. c 1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee 2.3 TRUNCATED STEP RESPONSE MODEL

    E-Print Network [OSTI]

    Hong, Deog Ki

    c 1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee 2.3 TRUNCATED STEP RESPONSE MODEL Step Responses of Linear Systems yk = hkx0 + k,1X i=0 hk , i , 1ui Step Response Sequence fskg: fykg when x0 = 0 and ui = 1, i = 0;1;2; . Relationship between impulse and step responses: sk = kX i=1 hi m hk = sk , sk

  11. Wave Power Demonstration Project at Reedsport, Oregon

    SciTech Connect (OSTI)

    Mekhiche, Mike [Principal Investigator] [Principal Investigator; Downie, Bruce [Project Manager] [Project Manager

    2013-10-21T23:59:59.000Z

    Ocean wave power can be a significant source of large?scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy? to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high?voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon?based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take?off subsystem are complete; additionally the power take?off subsystem has been successfully integrated into the spar.

  12. Modification and recovery of the shoreface of Matagorda Peninsula, Texas, following the landfall of Hurricane Claudette: the role of antecedent geology on short-term shoreface morphodynamics

    E-Print Network [OSTI]

    Majzlik, Edward James

    2006-08-16T23:59:59.000Z

    (Schwarzer et al., 2003). The enormous power a hurricane imparts to the seafloor of the shoreface and inner continental shelf is an important mechanism for extensive transport of sand from the shoreface and reworking of nearshore bathymetry (Gayes, 1991... Category I hurricane shortly before landfall on the Texas coast (Beven, 2003). Mean wave heights of 5.5 m were reported around 0100 h on 15 July, 2003, by the National Data Buoy Center (NDBC) buoy 42019, located 35 km southwest of the eye...

  13. Analysis of tidal current observations over the northeastern shelf of the Gulf of Mexico

    E-Print Network [OSTI]

    Durham, Donald L

    1967-01-01T23:59:59.000Z

    27 27 27 28 33 41 54 62 68 74 REFERENCES APPENDIX A LIST OF SYMBOLS APPENDIX B SIZE DETERMINATION OF SUBSURFACE BUOY AND ANCHOR APPENDIX C MATHEMATICAL DEVELOPMENT OF LINEAR EQUATIONS INVOLVING THE FIVE FOURIER COEFFICIENTS APPENDIX D... LINE SEA SURFACE SUBSURFACE BUOY 0 Ol 3/8 INCH CHAIN N ~&4 OEC/HP CURRENT ME TER 7/32 INCH GALV WIRE ~Y TJ SHACKLE ? 3/8 INCH THIMBLE ? 1/4 INCH SWIVEL ? 1500 LBS WORKING LOAD BRAINCON CURRENT METER 0 Ol ? ANCHOR RELEASE BOTTC/M 1000...

  14. Ameliorating risk: Culturable and metagenomic monitoring of the 14 year decline of a genetically engineered microorganism at a bioremediation field site

    SciTech Connect (OSTI)

    Layton, Alice [University of Tennessee, Knoxville (UTK); Smart, Abby E. [University of Tennessee, Knoxville (UTK); Chauhan, Archana [University of Tennessee, Knoxville (UTK); Ripp, Steven Anthony [University of Tennessee, Knoxville (UTK); Williams, Daniel [University of Tennessee, Knoxville (UTK); Burton, Whitney [University of Tennessee, Knoxville (UTK); Moser, Scott [University of Tennessee, Knoxville (UTK); Phillips, Jana Randolph [ORNL; Palumbo, Anthony Vito [ORNL; Sayler, Gary [University of Tennessee, Knoxville (UTK)

    2012-01-01T23:59:59.000Z

    Pseudomonas fluorescens HK44 represented the first genetically engineered microorganism to be approved in the United States for field release for applications related to subsurface soil bioremediation. In October 1996, strain HK44 was introduced into a replicated semi-contained array of soil lysimeters where its luciferase (luxCDABE)-based bioluminescent response to soil-borne polycyclic aromatic hydrocarbon (PAH) contaminants was detected and monitored for the next two years. At the termination of this experiment, it was decided that the lysimeters remain available for future longer-term monitoring efforts, and were thus covered and left essentially undisturbed until the initiation of a large sampling event in 2010, fourteen years after the original release. Although after extensive sampling culturable HK44 cells were not found, additional molecular and metagenomic analyses indicated that genetic signatures of HK44 cells still persisted, with genes diagnostic for the bioluminescent transposon carried by strain HK44 (luxA and tetA) being found at low concentrations (< 5000 copies/g).

  15. RADIATION MEASUREMENTS BY BROOKHAVEN NATIONAL LABORATORY DURING THE WOODS HOLE OCEANOGRAPHIC INSTITUTION INTERCOMPARISON STUDY, MAY-JUNE 2000.

    SciTech Connect (OSTI)

    REYNOLDS, R.M.; BARTHOLOMEW, M.J.; MILLER, M.A.; SMITH, S.; EDWARDS, R.

    2000-12-01T23:59:59.000Z

    The WHOI buoy radiometer intercomparison took place during May and June, 2000 at the WHOI facility. The WHOI IMET, JAMSTEC Triton, and NOAA TAO buoy systems were operated from a beach site and the Brookhaven National Laboratory set up two Portable Radiation Package systems (P01 and P02) alongside the WHOI instrumentation on the roof of the Clark Building, about 300 m away. The BNL instruments were named ''P01'' and ''P02'' and were identical. Buoy instruments were all leveled to {+-}1{degree} to horizontal. The purpose of the project was to compare the buoy systems with precision measurements so that any differences in data collection or processing would be evaluated. BNL was pleased to participate so the PRP system could be evaluated as a calibration tool. The Portable Radiation Package is an integral component of the BNL Shipboard Oceanographic and Atmospheric Radiation (SOAR) system. It is designed to make accurate downwelling radiation measurements, including the three solar irradiance components (direct normal, diffuse and global) at six narrowband channels, aerosol optical depth measurements, and broadband longwave and shortwave irradiance measurements.

  16. S e a i c e s t u d i e s i n t h e W e d d e l l S e a a b o a r d U S C G C Polar Sea

    E-Print Network [OSTI]

    Golden, Kenneth M.

    of Weddell Sea pack ice that may affect the relative roles of dynamics and thermodynamics of pack ice devel opment in this region. The total pack ice production and the movement of pack ice from its source area properties of pack ice using core samples; (2) to deploy drifting buoys to obtain pack ice drift

  17. NOAA Data Report ERL GLERL-30 MEASUREMENTS OF ICE MOTION IN LAKE ERIE

    E-Print Network [OSTI]

    NOAA Data Report ERL GLERL-30 MEASUREMENTS OF ICE MOTION IN LAKE ERIE USING SATELLITE Research Laboratories #12;NOAA Data Report ERL GLERL-30 MEASUREMENTS OF ICE MOTION IN LAKE ERIE USING Appendix A: The observed and interpolated Lake Erie 1984 ice conditions.. 9 Appendix B: Buoy and wind

  18. The 24th Annual Lecture Series THE DELICATE BALANCE OF NATURE 2015

    E-Print Network [OSTI]

    Watson, Craig A.

    , including their life cycle, habitat, interactions with predators, and fisheries. February 25 HISTORY AND DEVELOPMENT OF THE REEF MOORING BUOY SYSTEM John Halas, long-time Keys' resident, retired Upper Region Manager of the Florida Keys National Marine Sanctuary, and biologist, developed a mooring system to protect our coral

  19. Facts about ENSO: . Originates in the tropical Pacific

    E-Print Network [OSTI]

    : . Computer models show skill in forecasting tropical Pacific Ocean temperatures one to two years in advance for Pacific Ocean observations that are the foundation of skillful ENSO forecasts: Moored buoys Drifting buoysaaaaaa Facts about ENSO: . Originates in the tropical Pacific . Has a periodicity of 2­7 years

  20. Hydrodynamic Coefficients and Wave Loads for a WEC Device in Heaving Mode

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    on the seabed by a rigid rope. Wave energy is harnessed by a liquid pump in the caisson through the rope parameter computation of a Wave Energy Converter (WEC) that con- sists of a cylindrical buoy sliding along Energy Converter, potential theory, eigen- function expansion, wave-loads, heaving mode, scattering

  1. EOF analysis of a time series with application to tsunami detection

    E-Print Network [OSTI]

    Tolkova, Elena

    determines the accuracy of any forecast of the future tsunami evolution. A tsunami wave in the open ocean isEOF analysis of a time series with application to tsunami detection Elena Tolkova a, a. Decomposition of a tsunami buoy record in a functional space of tidal EOFs presents an efficient tool

  2. BULLETIN OF THE UNITED STATES FISH C O ~ I S S I O N . 17 Pum VII1.-Way in which cod gill-nets are set at the bottom on the east cowt of

    E-Print Network [OSTI]

    of Norwegian territory, the law of June 19,1880, regulating the protection of whales on the coast of Finmarken, the Finmarken Company, which possesses aharbor in West Finmarken, on the south coast of the island of Soro.) PLATEX.-Norwegian net and trawl buoy made of glassfloats. PLATEX1.-Way in which cod gill-nets are set

  3. Coordinating UAVs and AUVs for Oceanographic Field Experiments: Challenges and Lessons Learned

    E-Print Network [OSTI]

    Johansen, Tor Arne

    are expensive and, unless the vessel can survey at high-speed, unrealistic. Autonomous underwater vehicles (AUVs related to their energy sources. Unmanned aerial vehicles (UAVs) recently introduced in coastal and polar distributed over buoys, unmanned marine vehicles, manned vehicles and adapt- ing the sampling strategy

  4. Validating a New Algorithm for Wind Vector Retrieval in Tropical Zachary Hargrove, UNC Asheville

    E-Print Network [OSTI]

    Hennon, Christopher C.

    on buoy and recon data from Air Force over flights. We can use these analyses as our "truth." H*Winds hasValidating a New Algorithm for Wind Vector Retrieval in Tropical Cyclones Zachary Hargrove, UNC to estimate wind speed and direction based on the "roughness" of the ocean. · Errors arise when the beam

  5. Decentralized Estimation and Control of Graph Connectivity in Mobile Sensor Networks

    E-Print Network [OSTI]

    Gordon, Geoffrey J.

    buoys to clean up oil spills. In many situations, auxiliary constraints, such as connectivity between in wireless communications and elec- tronics have enabled the development of low-cost sensor networks [1 power iteration algorithm that estimates the eigenvector correspond- ing to the second smallest

  6. Cyberinfrastructure Technologies Enhancing Conservation for the 21st Century ....Advanced data acquisition, data integration, data storage, data management, data mining

    E-Print Network [OSTI]

    Stuart, Steven J.

    ­powerful social network Gene Eidson and Jason Hallstrom, Institute of Applied Ecology #12;Earth Monitoring uEngineer a long-lived, cost-effec3ve, basin- scale earth monitoring fabric u. The MoteStack (patent pending) #12;Platform Enclosure Telemetry Buoy (patent pending) Custom enclosures

  7. European High-End Products in International Competition

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - formance. Using an econometric shift-share methodology, Cheptea et al. (2014) shows buoy- ancy of EU market, and market power. On the demand side, a large share of high-priced goods in EU consumption and exports to large differences within the Single European Market in labor costs, skills, and ultimately, com

  8. MAS02ACommunica4onsFrameworkfortheCosteffec4veOpera4onof SlocumGlidersinCoastalRegions

    E-Print Network [OSTI]

    California at Los Angeles, University of

    :onmodels such asJPL'sROMSmodel.Eventhoughtheglidersareveryefficientin their use of power, the nominal cost of opera,whichwillenableustogetdatabackfromgliders(andprobablyotherdatacollec:onpla]ormssuch as boats, and buoys), in a costeffec:ve and quick manner. This infrastructure requires minor hardware:on :mes,at the expense of speed and maneuverability. Power consump:on minimiza

  9. 1 #69 02/2010 30 years of

    E-Print Network [OSTI]

    Geiger, Cathleen

    . Argos was there to provide a global, low-cost, simple, low- power satellite-based telemetry link By Mathieu Belbéoch & Hester Viola USERS' PROGRAMS SATELLITE- DERIVED MOTION ANALYSIS USING ARGOS ICE BUOYS retaining the vital simple, low-power platforms. In the 1970's, large scale met-ocean experiments like GARP

  10. Vol. 00, No. 0, Xxxxx 0000, pp. 000000 issn 0092-2102|eissn 1526-551X|00|0000|0001

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    enables cost reduction by using cheaper types of crude intelligently and minimizing crude changeovers ethylene processing capacity of 300,000 million tons, as well as complete supporting systems of power SBM (single buoy mooring) offshore crude loading and unloading system. It mainly makes 30-odd types

  11. Leveraging application context for efficient Jinseok Yang

    E-Print Network [OSTI]

    Simunic, Tajana

    --Today's platforms for long-term environmental monitoring (e.g. buoys or towers) typically host large solar panels and batteries. Ideally, miniaturized platforms could be used instead, so state of the art power management the optimal sampling rate at the cost of high computational complexity O(n3 ), thus draining the batteries

  12. Short Paper: A Reservation MAC Protocol for Ad-Hoc Underwater Acoustic Sensor Networks

    E-Print Network [OSTI]

    Roy, Sumit

    to shore or surface buoys equipped with RF modems and signif- icant battery power; the other fixed are interconnected us- ing acoustic communications for cost effective data trans- port. The acoustic channel, however and mobile non-gateway nodes are typically much more power limited. MAC protocol design for such a network

  13. AOML Keynotes March-April 2004 Detecting DNA with a

    E-Print Network [OSTI]

    Goodwin, Kelly D.

    probes. The goal is to adapt the technique to use on a buoy, allowing for remote detection of the DNA detection offers devices that are small, inexpensive, simple in design, and have low power requirements benefits include reducing health and legal costs derived from consumption of contami

  14. technology offer Vienna University of Technology | Research and Transfer Support | Claudia Doubek

    E-Print Network [OSTI]

    Szmolyan, Peter

    -15m, depending on design) Additional conventional buoys for transport and security Additional cost excitation Cost efficient system for sun tracking in solar power generation systems Easy transportation platforms main features are low cost and high swimming stability. The mechanical action between platform

  15. Energy Efficient Signaling Strategies for Tracking Mobile Underwater Vehicles

    E-Print Network [OSTI]

    Kastner, Ryan

    for underwater vehicles. The beacons may be buoys or vehicles on the surface with access to GPS or they may for tracking vehicles is a recurring cost, we propose to minimize the energy consumption by optimizing method to find the best schedule for beacon transmissions for a fixed signaling rate (or average power

  16. Evaluating Service Disciplines for On-Demand Mobile Data Collection

    E-Print Network [OSTI]

    Cai, Lin

    the dense deployment of nodes and thus introduces extra costs. Another data collection approach utilizes mobile element example is the Seaeye Sabertooth [12], a battery-powered autonomous underwater vehicle the smart buoy equipped with Seatext from WFS [13], the structural health monitoring with radio

  17. Coupling schemes for modeling hydraulic fracture propagation using the XFEM Elizaveta Gordeliy, Anthony Peirce

    E-Print Network [OSTI]

    Peirce, Anthony

    to width power law indices k > 1 2 , which are different from the index k ¼ 1 2 of linear elastic fracture by buoy- ancy forces to propagate in finger-like fractures toward the surface of the Earth. Engineering of HF. The prohibitive re-meshing cost of tracking a propagating frac- ture has hampered the development

  18. 1 P A P E R 2 Design, Modeling and Optimization of an

    E-Print Network [OSTI]

    Qu, Zhihua

    1 P A P E R 2 Design, Modeling and Optimization of an 3 Ocean Wave Power Generation Buoy 4 A U T H source of energy. Exist- 44 ing systems, typically hydraulic turbines powered by high-pressure fluids, are very 45 large in size and costly. Additionally, they require large ocean waves in which to op- 46 erate

  19. HU ET AL. VOL. 7 ' NO. 11 ' 1042410432 ' 2013 www.acsnano.org

    E-Print Network [OSTI]

    Wang, Zhong L.

    /infrastructure monitoring. KEYWORDS: triboelectric nanogenerator . 3D spiral structure . buoy ball . self-powered s an external circuit. It is a cost- effective, simple, and robust technique for energy harvesting- tric output by itself without a driving power source. A mechanical structure positioned at its critical

  20. SPECTRAL DEPENDENCE OF THE RESPONSE TIME OF SEA STATE TO LOCAL WIND FORCING

    E-Print Network [OSTI]

    Ruf, Christopher

    and local winds by examining windspeed and surface slope measurements by buoys. Specifically, by applying, causes the power distribution of the cross-correlation between the reflected signal and the reference major advantage of GPS over conventional radiometers and radars is that the cost and accommodation