National Library of Energy BETA

Sample records for bulk vitrification system

  1. Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrificati...

    Office of Environmental Management (EM)

    Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrification System (DBVS) Review Report Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrification System ...

  2. Summary - Demonstration Bulk Vitrification System (DBVS) for...

    Office of Environmental Management (EM)

    External Technical Review of the Demonstration Bulk Vitrification System (DBVS) for ... What the ETR Team Recommended Additional cold testing and demonstration is needed for ...

  3. DEMONSTRATION BULK VITRIFICATION SYSTEM (DBVS) EXTERNAL REVIEW

    SciTech Connect (OSTI)

    HONEYMAN, J.O.

    2007-02-08

    The Hanford mission to retrieve and immobilize 53 million gallons of radioactive waste from 177 underground storage tanks will be accomplished using a combination of processing by the waste treatment plant currently under construction, and a supplemental treatment that would process low-activity waste. Under consideration for this treatment is bulk vitrification, a versatile joule-heated melter technology which could be deployed in the tank farms. The Department proposes to demonstrate this technology under a Research, Development and Demonstration (RD and D) permit issued by the Washington State Department of Ecology using both non-radioactive simulant and blends of actual tank waste. From the demonstration program, data would be obtained on cost and technical performance to enable a decision on the potential use of bulk vitrification as the supplemental treatment technology for Hanford. An independent review by sixteen subject matter experts was conducted to assure that the technical basis of the demonstration facility design would be adequate to meet the objectives of the Demonstration Bulk Vitrification System (DBVS) program. This review explored all aspects of the program, including flowsheet chemistry, project risk, vitrification, equipment design and nuclear safety, and was carried out at a time when issues can be identified and corrected. This paper describes the mission need, review approach, technical recommendations and follow-on activities for the DBVS program.

  4. A COMPREHENSIVE TECHNICAL REVIEW OF THE DEMONSTRATION BULK VITRIFICATION SYSTEM

    SciTech Connect (OSTI)

    SCHAUS, P.S.

    2006-09-29

    In May 2006, CH2M Hill Hanford Group, Inc. chartered an Expert Review Panel (ERP) to review the current status of the Demonstration Bulk Vitrification System (DBVS). It is the consensus of the ERP that bulk vitrification is a technology that requires further development and evaluation to determine its potential for meeting the Hanford waste stabilization mission. No fatal flaws (issues that would jeopardize the overall DBVS mission that cannot be mitigated) were found, given the current state of the project. However, a number of technical issues were found that could significantly affect the project's ability to meet its overall mission as stated in the project ''Justification of Mission Need'' document, if not satisfactorily resolved. The ERP recognizes that the project has changed from an accelerated schedule demonstration project to a formally chartered project that must be in full compliance with DOE 413.3 requirements. The perspective of the ERP presented herein, is measured against the formally chartered project as stated in the approved Justification of Mission Need document. A justification of Mission Need document was approved in July 2006 which defined the objectives for the DBVS Project. In this document, DOE concluded that bulk vitrification is a viable technology that requires additional development to determine its potential applicability to treatment of a portion of the Hanford low activity waste. The DBVS mission need statement now includes the following primary objectives: (1) process approximately 190,000 gallons of Tank S-109 waste into fifty 100 metric ton boxes of vitrified product; (2) store and dispose of these boxes at Hanford's Integrated Disposal Facility (IDF); (3) evaluate the waste form characteristics; (4) gather pilot plant operability data, and (5) develop the overall life cycle system performance of bulk vitrification and produce a comparison of the bulk vitrification process to building a second LAW Immobilization facility or other

  5. Summary - Demonstration Bulk Vitrification System (DBVS) for Low-Actvity Waste at Hanford

    Office of Environmental Management (EM)

    DBVS ETR Report Date: September 2006 ETR-3 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Demonstration Bulk Vitrification System (DBVS) for Low Activity Waste (LAW) at Hanford Why DOE-EM Did This Review The Department of Energy (DOE) is charged with the safe retrieval, treatment and disposal of 53 million gallons of Hanford radioactive waste. The Waste Treatment Plant (WTP) is being designed to treat and vitrify the High Level

  6. CALCULATION OF DEMONSTRATION BULK VITRIFICATION SYSTEM MELTER INLEAKAGE AND OFF-GAS GENERATION RATE

    SciTech Connect (OSTI)

    MAY TH

    2008-04-16

    The River Protection Project (RPP) mission is to safely store, retrieve, treat, immobilize, and dispose of the Hanford Site tank waste. The Demonstration Bulk Vitrification System (DBVS) is a research and development project whose objective is to demonstrate the suitability of Bulk Vitrification treatment technology waste form for disposing of low-activity waste from the Tank Farms. The objective of this calculation is to determine the DBVS melter inleakage and off-gas generation rate based on full scale testing data from 38D. This calculation estimates the DBVS melter in leakage and gas generation rate based on test data. Inleakage is estimated before the melt was initiated, at one point during the melt, and at the end of the melt. Maximum gas generation rate is also estimated.

  7. DESIGN OF THE DEMOSNTRATION BULK VITRIFICATION SYSTEM FOR THE SUPPLEMENTAL TREATMENT OF LOW ACTIVITY TANK WASTE AT HANFORD

    SciTech Connect (OSTI)

    VAN BEEK JE

    2008-02-14

    In June 2004, the Demonstration Bulk Vitrification System (DBVS) was initiated with the intent to design, construct, and operate a full-scale bulk vitrification pilot-plant to treat low-activity tank waste from Hanford Tank 241-S-109. The DBVS facility uses In-Container Vitrification{trademark} (ICV{trademark}) at the core of the treatment process. The basic process steps combine liquid low-activity waste (LAW) and glassformers; dry the mixture; and then vitrify the mixture in a batch feed-while-melt process in a refractory lined steel container. Off-gases are processed through a state-of-the-art air pollution control system including sintered-metal filtration, thermal oxidation, acid gas scrubbing, and high-efficiency particulate air (HEPA) and high-efficiency gas adsorber (HEGA) filtration. Testing has focused on development and validation of the waste dryer, ICV, and sintered-metal filters (SMFs) equipment, operations enhancements, and glass formulation. With a parallel testing and design process, testing has allowed improvements to the DBVS equipment configuration and operating methodology, since its original inception. Design improvements include optimization of refractory panels in the ICV, simplifying glassformer addition equipment, increasing the number of waste feed chutes to the ICV, and adding capability for remote clean-out of piping, In addition, the U.S. Department of Energy (DOE) has provided an independent review of the entire DBVS process. While the review did not find any fatal flaws, some technical issues were identified that required a re-evaluation of the DBVS design and subsequent changes to the design. A 100 percent design package for the pilot plant will be completed and submitted to DOE for review in early 2008 that incorporates process improvements substantiated through testing and reviews. This paper provides a description of the bulk vitrification process and a discussion of major equipment design changes that have occurred based on full

  8. Waste Form Qualification Compliance Strategy for Bulk Vitrification

    SciTech Connect (OSTI)

    Bagaasen, Larry M.; Westsik, Joseph H.; Brouns, Thomas M.

    2005-01-03

    The Bulk Vitrification System is being pursued to assist in immobilizing the low-activity tank waste from the 53 million gallons of radioactive waste in the 177 underground storage tanks on the Hanford Site. To demonstrate the effectiveness of the bulk vitrification process, a research and development facility known as the Demonstration Bulk Vitrification System (DBVS) is being built to demonstrate the technology. Specific performance requirements for the final packaged bulk vitrification waste form have been identified. In addition to the specific product-performance requirements, performance targets/goals have been identified that are necessary to qualify the waste form but do not lend themselves to specifications that are easily verified through short-term testing. Collectively, these form the product requirements for the DBVS. This waste-form qualification (WFQ) strategy document outlines the general strategies for achieving and demonstrating compliance with the BVS product requirements. The specific objectives of the WFQ activities are discussed, the bulk vitrification process and product control strategy is outlined, and the test strategy to meet the WFQ objectives is described. The DBVS product performance targets/goals and strategies to address those targets/goals are described. The DBVS product-performance requirements are compared to the Waste Treatment and Immobilization Plant immobilized low-activity waste product specifications. The strategies for demonstrating compliance with the bulk vitrification product requirements are presented.

  9. Bulk Vitrification Castable Refractory Block Protection Study

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Bagaasen, Larry M.; Beck, Andrew E.; Brouns, Thomas M.; Caldwell, Dustin D.; Elliott, Michael L.; Matyas, Josef; Minister, Kevin BC; Schweiger, Michael J.; Strachan, Denis M.; Tinsley, Bronnie P.; Hollenberg, Glenn W.

    2005-05-01

    Bulk vitrification (BV) was selected for a pilot-scale test and demonstration facility for supplemental treatment to accelerate the cleanup of low-activity waste (LAW) at the Hanford U.S. DOE Site. During engineering-scale (ES) tests, a small fraction of radioactive Tc (and Re, its nonradioactive surrogate) were transferred out of the LAW glass feed and molten LAW glass, and deposited on the surface and within the pores of the castable refractory block (CRB). Laboratory experiments were undertaken to understand the mechanisms of the transport Tc/Re into the CRB during vitrification and to evaluate various means of CRB protection against the deposition of leachable Tc/Re. The tests used Re as a chemical surrogate for Tc. The tests with the baseline CRB showed that the molten LAW penetrates into CRB pores before it converts to glass, leaving deposits of sulfates and chlorides when the nitrate components decompose. Na2O from the LAW reacts with the CRB to create a durable glass phase that may contain Tc/Re. Limited data from a single CRB sample taken from an ES experiment indicate that, while a fraction of Tc/Re is present in the CRB in a readily leachable form, most of the Tc/Re deposited in the refractory is retained in the form of a durable glass phase. In addition, the molten salts from the LAW, mainly sulfates, chlorides, and nitrates, begin to evaporate from BV feeds at temperatures below 800 C and condense on solid surfaces at temperatures below 530 C. Three approaches aimed at reducing or preventing the deposition of soluble Tc/Re within the CRB were proposed: metal lining, sealing the CRB surface with a glaze, and lining the CRB with ceramic tiles. Metal liners were deemed unsuitable because evaluations showed that they can cause unacceptable distortions of the electric field in the BV system. Sodium silicate and a low-alkali borosilicate glaze were selected for testing. The glazes slowed down molten salt condensate penetration, but did little to reduce the

  10. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages

    SciTech Connect (OSTI)

    Bacon, Diana H.; Pierce, Eric M.; Wellman, Dawn M.; Strachan, Denis M.; Josephson, Gary B.

    2006-07-31

    The primary purpose of the work reported here is to analyze the potential effect of the release of technetium (Tc) from metal inclusions in bulk vitrification waste packages once they are placed in the Integrated Disposal Facility (IDF). As part of the strategy for immobilizing waste from the underground tanks at Hanford, selected wastes will be immobilized using bulk vitrification. During analyses of the glass produced in engineering-scale tests, metal inclusions were found in the glass product. This report contains the results from experiments designed to quantify the corrosion rates of metal inclusions found in the glass product from AMEC Test ES-32B and simulations designed to compare the rate of Tc release from the metal inclusions to the release of Tc from glass produced with the bulk vitrification process. In the simulations, the Tc in the metal inclusions was assumed to be released congruently during metal corrosion as soluble TcO4-. The experimental results and modeling calculations show that the metal corrosion rate will, under all conceivable conditions at the IDF, be dominated by the presence of the passivating layer and corrosion products on the metal particles. As a result, the release of Tc from the metal particles at the surfaces of fractures in the glass releases at a rate similar to the Tc present as a soluble salt. The release of the remaining Tc in the metal is controlled by the dissolution of the glass matrix. To summarize, the release of 99Tc from the BV glass within precipitated Fe is directly proportional to the diameter of the Fe particles and to the amount of precipitated Fe. However, the main contribution to the Tc release from the iron particles is over the same time period as the release of the soluble Tc salt. For the base case used in this study (0.48 mass% of 0.5 mm diameter metal particles homogeneously distributed in the BV glass), the release of 99Tc from the metal is approximately the same as the release from 0.3 mass% soluble Tc

  11. Analysis of Soluble Re Concentrations in Refractory from Bulk Vitrification Full-Scale Test 38B

    SciTech Connect (OSTI)

    Cooley, Scott K.; Pierce, Eric M.; Bagaasen, Larry M.; Schweiger, Michael J.

    2006-06-30

    The capacity of the waste treatment plant (WTP) being built at the Hanford Site is not sufficient to process all of the tank waste accumulated from more than 40 years of nuclear materials production. Bulk vitrification can accelerate tank waste treatment by providing some supplemental low-activity waste (LAW) treatment capacity. Bulk vitrification combines LAW and glass-forming chemicals in a large metal container and melts the contents using electrical resistance heating. A castable refractory block (CRB) is used along with sand to insulate the container from the heat generated while melting the contents into a glass waste form. This report describes engineering-scale (ES) and full-scale (FS) tests that have been conducted. Several ES tests showed that a small fraction of soluble Tc moves in the CRB and results in a groundwater peak different than WTP glass. The total soluble Tc-99 fraction in the FS CRB is expected to be different than that determined in the ES tests, but until FS test results are available, the best-estimate soluble Tc-99 fraction from the ES tests has been used as a conservative estimate. The first FS test results are from cold simulant tests that have been spiked with Re. An estimated scale-up factor extrapolates the Tc-99 data collected at the ES to the FS bulk vitrification waste package. Test FS-38A tested the refractory design and did not have a Re spike. Samples were taken and analyzed to help determine Re CRB background concentrations using a Re-spiked, six-tank composite simulant mixed with soil and glass formers to produce the waste feed. Although this feed is not physically the same as the Demonstration Bulk Vitrification System feed , the chemical make-up is the same. Extensive sampling of the CRB was planned, but difficulties with the test prevented completion of a full box. An abbreviated plan is described that looks at duplicate samples taken from refractory archive sections, a lower wall sample, and two base samples to gain early

  12. DEVELOPMENT OF THE BULK VITRIFICATION TREATMENT PROCESS FOR THE LOW ACTIVITY FRACTION OF HANFORD SINGLE SHELL TANK WASTES

    SciTech Connect (OSTI)

    Thompson, L.E.; Lowery, P.S.; Arrowsmith, H.W.; Snyder, T.; McElroy, J.L.

    2003-02-27

    AMEC Earth & Environmental, Inc. and RWE NUKEM Corporation have teamed to develop and apply a waste pre-treatment and bulk vitrification process for low activity waste (LAW) from Hanford Single Shell Tanks (SSTs). The pretreatment and bulk vitrification process utilizes technologies that have been successfully deployed to remediate both radioactive and chemically hazardous wastes at nuclear power plants, DOE sites, and commercial waste sites in the US and abroad. The process represents an integrated systems approach. The proposed AMEC/NUKEM process follow the extraction and initial segregation activities applied to the tank wastes carried out by others. The first stage of the process will utilize NUKEM's concentrate dryer (CD) system to concentrate the liquid waste stream. The concentrate will then be mixed with soil or glass formers and loaded into refractory-lined steel containers for bulk vitrification treatment using AMEC's In-Container Vitrification (ICV) process. Following the vitrification step, a lid will be placed on the container of cooled, solidified vitrified waste, and the container transported to the disposal site. The container serves as the melter vessel, the transport container and the disposal container. AMEC and NUKEM participated in the Mission Acceleration Initiative Workshop held in Richland, Washington in April 2000 [1]. An objective of the workshop was to identify selected technologies that could be combined into viable treatment options for treatment of the LAW fraction from selected Hanford waste tanks. AMEC's ICV process combined with NUKEM's CD system and other remote operating capabilities were presented as an integrated solution. The Team's proposed process received some of the highest ratings from the Workshop's review panel. The proposed approach compliments the Hanford Waste Treatment Plant (WTP) by reducing the amount of waste that the WTP would have to process. When combined with the capabilities of the WTP, the proposed approach

  13. BULK VITRIFICATION TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    ARD KE

    2011-04-11

    This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

  14. Evaluation of Exothermic Reactions from Bulk-Vitrification Melter Feeds Containing Cellulose

    SciTech Connect (OSTI)

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.; Bos, Stanley J.; Kozelisky, Anne E.; Berry, Pam

    2007-06-25

    PNNL has demonstrated that cellulose effectively reduces the amount of molten ionic salt during Bulk Vitrification of simulated Hanford Low Level Waste (LLW). To address concerns about the potential reactivity of cellulose-LLW, PNNL used thermogravimetric analysis, differential thermal analysis, and accelerating rate calorimetry to determine in these preliminary studies that these mixtures will support a self-sustaining reaction if heated to 110°C at adiabatic conditions. Additional testing is recommended.

  15. Transportable Vitrification System: Operational experience gained during vitrification of simulated mixed waste

    SciTech Connect (OSTI)

    Whitehouse, J.C.; Burket, P.R.; Crowley, D.A.; Hansen, E.K.; Jantzen, C.M.; Smith, M.E.; Singer, R.P.; Young, S.R.; Zamecnik, J.R.; Overcamp, T.J.; Pence, I.W. Jr.

    1996-11-21

    The Transportable Vitrification System (TVS) is a large-scale, fully-integrated, transportable, vitrification system for the treatment of low-level nuclear and mixed wastes in the form of sludges, soils, incinerator ash, and similar waste streams. The TVS was built to demonstrate the vitrification of actual mixed waste at U. S. Department of Energy (DOE) sites. Currently, Westinghouse Savannah River Company (WSRC) is working with Lockheed Martin Energy Systems (LMES) to apply field scale vitrification to actual mixed waste at Oak Ridge Reservation`s (ORR) K-25 Site. Prior to the application of the TVS to actual mixed waste it was tested on simulated K-25 B and C Pond waste at Clemson University. This paper describes the results of that testing and preparations for the demonstration on actual mixed waste.

  16. Transportable Vitrification System Demonstration on Mixed Waste

    SciTech Connect (OSTI)

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-01-01

    This paper describes preliminary results from the first demonstration of the Transportable Vitrification System (TVS) on actual mixed waste. The TVS is a fully integrated, transportable system for the treatment of mixed and low-level radioactive wastes. The demonstration was conducted at Oak Ridge`s East Tennessee Technology Park (ETTP), formerly known as the K-25 site. The purpose of the demonstration was to show that mixed wastes could be vitrified safely on a `field` scale using joule-heated melter technology and obtain information on system performance, waste form durability, air emissions, and costs.

  17. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    SciTech Connect (OSTI)

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  18. Innovative technology summary report: Transportable vitrification system

    SciTech Connect (OSTI)

    1998-09-01

    At the end of the cold war, many of the Department of Energy`s (DOE`s) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned.

  19. Bulk Vitrification Performance Enhancement: Refractory Lining Protection Against Molten Salt Penetration

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Bagaasen, Larry M.; Schweiger, Michael J.; Evans, Michael B.; Smith, Benjamin T.; Arrigoni, Benjamin M.; Kim, Dong-Sang; Rodriguez, Carmen P.; Yokuda, Satoru T.; Matyas, Josef; Buchmiller, William C.; Gallegos, Autumn B.; Fluegel, Alexander

    2007-08-06

    Bulk vitrification (BV) is a process that heats a feed material that consists of glass-forming solids and dried low-activity waste (LAW) in a disposable refractory-lined metal box using electrical power supplied through carbon electrodes. The feed is heated to the point that the LAW decomposes and combines with the solids to generate a vitreous waste form. This study supports the BV design and operations by exploring various methods aimed at reducing the quantities of soluble Tc in the castable refractory block portion of the refractory lining, which limits the effectiveness of the final waste form.

  20. Hanford Waste Vitrification Systems Risk Assessment action plan

    SciTech Connect (OSTI)

    Miller, W.C.

    1990-11-01

    Recent events in the Hanford waste storage tanks and delays in the startup of US Department of Energy vitrification plans suggest that the schedule for waste vitrification activities at the Hanford Site should be reexamined. As a result, a Hanford Waste Vitrification Systems Risk Assessment will be performed to identify significant risks associated with the vitrification of Hanford high-level and transuranic wastes. This document defines the purpose, scope, plan of execution, responsibilities, reporting requirements, and preliminary schedule and cost estimate to complete this assessment. The study will identify and evaluate uncertainties, quantify potential consequences from these uncertainties, and identify the risks to successful completion of the Hanford vitrification mission. Waste characterization, retrieval, pretreatment, and vitrification will be addressed. Uncertainties associated with the vitrification of double-shell and single-shell tank wastes and cesium and strontium capsules, as well as a limited assessment of the grouting of low-level wastes, will be defined. Technical, regulatory (safety and environmental), and programmatic (cost and schedule) uncertainties will be defined. Recommendations for mitigating strategies and assessments of technical alternatives will be made to reduce substantial risks. 2 refs., 1 fig., 1 tab.

  1. Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrificati...

    Office of Environmental Management (EM)

    ... that waste particles remain suspended and transported to one of two Dry Waste Receivers. ... process off-gas after the SMFs and fed into the off-gas wet scrubber treatment skid. ...

  2. Investigation of Tc Migration Mechanism During Bulk Vitrification Process Using Re Surrogate

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Bagaasen, Larry M.; Crum, Jarrod V.; Fluegel, Alex; Gallegos, Autumn B.; Martinez, Baudelio; Matyas, Josef; Meyer, Perry A.; Paulsen, Dan; Riley, Brian J.; Schweiger, Michael J.; Stewart, Charles W.; Swoboda, Robert G.; Yeager, John D.

    2006-12-04

    As a part of Bulk vitrification (BV) performance enhancement tasks, Laboratory scoping tests were performed in FY 2004-2005 to explore possible ways to reduce the amount of soluble Tc in the BV waste package. Theses scoping tests helped identify which mechanisms play an important role in the migration of Tc in the BV process (Hrma et al. 2005 and Kim et al. 2005). Based on the results from these scoping tests, additional tests were identified that will improve the understanding of Tc migration and to clearly identify the dominant mechanisms. The additional activities identified from previous studies were evaluated and prioritized for planning for Tasks 29 and 30 conducted in FY2006. Task 29 focused on the improved understanding of Tc migration mechanisms, and Task 30 focused on identifying the potential process changes that might reduce Tc/Re migration into the castable refractory block (CRB). This report summarizes the results from the laboratory- and crucible-scale tests in the lab for improved Tc migration mechanism understanding utilizing Re as a surrogate performed in Task 29.

  3. Progress Report on the Laboratory Testing of the Bulk Vitrification Cast Refractory

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B PETER.; Bagaasen, Larry M.; Wellman, Dawn M.; Crum, J V.; Geiszler, Keith N.; Baum, Steven R.

    2004-11-15

    The Hanford Site in southeastern Washington State has been used extensively to produce nuclear materials for the U. S. strategic defense arsenal by the U. S. Department of Energy (DOE). A large inventory of radioactive and mixed waste has accumulated in 177 single- and double-shell tanks. Liquid waste recovered from the tanks will be pre-treated to separate the low-activity fraction from the high-level and transuranic wastes. Currently, the DOE Office of River Protection (ORP) is evaluating several options for immobilization of low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. A significant portion of the waste will be converted into immobilized low-activity waste (ILAW) glass with a conventional Joule-heated ceramic melter. In addition to ILAW glass, supplemental treatment technologies are under consideration by the DOE to treat a portion of the low activity waste. The reason for using this alternative treatment technology is to accelerate the overall cleanup mission at the Hanford site. The ORP selected Bulk Vitrification (BV) for further development and testing. Work in FY03 on engineered and large scale tests of the BV process suggested that approximately 0.3 to as much as 3 wt% of the waste stream 99Tc inventory would end up in a soluble form deposited in a vesicular layer located at the top of the BV melt and in the sand used as an insulator after vitrification. In the FY03 risk assessment (RA) (Mann et al., 2003), the soluble Tc salt in the BV waste packages creates a 99Tc concentration peak at early times in the groundwater extracted from a 100-meter down-gradient well. This peak differs from the presently predicted baseline WTP glass performance, which shows an asymptotic rise to a constant release rate. Because of the desire by regulatory agencies to achieve essentially equivalent performance to WTP glass with supplemental treatment technologies, the BV process was modified in FY04 in an attempt to

  4. Design, operation, and evaluation of the transportable vitrification system

    SciTech Connect (OSTI)

    Zamecnik, J.R.; Young, S.R.; Hansen, E.K.; Whitehouse, J.C.

    1997-02-20

    The Transportable Vitrification System (TVS) is a transportable melter system designed to demonstrate the treatment of low-level and mixed hazardous and radioactive wastes such as wastewater treatment sludges, contaminated soils and incinerator ash. The TVS is a large-scale, fully integrated vitrification system consisting of melter feed preparation, melter, offgas, service, and control modules. The TVS was tested with surrogate waste at the Clemson University Environmental Systems Engineering Department`s (ESED) DOE/Industry Center for Vitrification Research prior to being shipped to the DOE Oak Ridge Reservation (ORR) K-25 site for treatment of mixed waste. This testing, along with additional testing at ORR, proved that the TVS would be able to successfully treat mixed waste. These surrogate tests consistently produced glass that met the EPA Toxicity Characteristic Leaching Procedure (TCLP). Performance of the system resulted in acceptable emissions of regulated metals from the offgas system. The TVS is scheduled to begin mixed waste operations at ORR in June 1997.

  5. Independent engineering review of the Hanford Waste Vitrification System

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs.

  6. Extending Fuzzy System Concepts for Control of a Vitrification Melter

    SciTech Connect (OSTI)

    Whitehouse, J.C.; Sorgel, W.; Garrison, A.; Schalkoff, R.J.

    1995-08-16

    Fuzzy systems provide a mathematical framework to capture uncertainty. The complete description of real, complex systems or situations often requires far more detail and information than could ever be obtained (or understood). Fuzzy approaches are an alternative technology for both system control and information processing and management. In this paper, we present the design of a fuzzy control system for a melter used in the vitrification of hazardous waste. Design issues, especially those related to melter shutdown and obtaining smooth control surfaces, are addressed. Several extensions to commonly-applied fuzzy techniques, notably adaptive defuzzification and modified rule structures are developed.

  7. Method to Reduce Molten Salt Penetration into Bulk Vitrification Refractory Materials

    SciTech Connect (OSTI)

    Bagaasen, L.M.; Hrma, P.R.; Kim, D.S.; Schweiger, M.J.; Matyas, J.; Rodriguez, C.P. [Pacific Northwest National Laboratory, Richland WA (United States); Witwer, K.S. [AMEC Nuclear Holdings Ltd., GeoMelt Division, Richland, WA (United States)

    2008-07-01

    Bulk vitrification (BV) is a process that heats a feed material consisting of glass-forming solids and dried low-activity waste (LAW) in a disposable refractory-lined metal box using electrical power supplied through carbon electrodes. The feed is heated to the point that the LAW decomposes and combines with the solids to generate a vitreous waste form. However, the castable refractory block (CRB) portion of the refractory lining has sufficient porosity to allow the low-viscosity molten ionic salt (MIS), which contains technetium (Tc) in a soluble form, to penetrate the CRB. This limits the effectiveness of the final waste form. This paper describes tests conducted to develop a method aimed at reducing the quantities of soluble Tc in the CRB. Tests showed that MIS formed in significant quantities at temperatures above 300 deg. C, remained stable until roughly 550 deg. C where it began to thermally decompose, and was completely decomposed by 800 deg. C. The estimated volume fraction of MIS in the feed was greater than 40%, and the CRB material contained 11 to 15% open porosity, a combination allowing a large quantity of MIS to migrate through the feed and penetrate the open porosity of the CRB. If the MIS is decomposed at temperatures below 300 deg. C or can be contained in the feed until it fully decomposes by 800 deg. C, MIS migration into the CRB can be avoided. Laboratory and crucible-scale experiments showed that a variety of methods, individually or in combination, can decrease MIS penetration into the CRB. Modifying the CRB to block MIS penetration was not deemed practical as a method to prevent the large quantities of MIS penetration seen in the full-scale tests, but it may be useful to reduce the impacts of lower levels of MIS penetration. Modifying the BV feed materials to better contain the MIS proved to be more successful. A series of qualitative and quantitative crucible tests were developed that allowed screening of feed modifications that might be

  8. Development of a Transportable Vitrification System for Mixed Waste

    SciTech Connect (OSTI)

    Whitehouse, J.C.; Jantzen, C.M.; Bickford, D.F.; Kielpinski, A.L.; Helton, B.D.; Van Ryn, F.

    1995-01-13

    The US DOE through the Mixed Waste Integrated Program, has identified a need to move mixed waste vitrification technology from the laboratory to the field as rapidly as possible. A great deal of work over the last few years has shown the feasibility of immobilizing selected hazardous waste streams in a vitrified product. Lab-scale work has been extended to pilot-scale tests, usually with surrogates of the actual waste. DOE felt that the technology was mature enough to allow demonstration in the field, on actual wastes, with units that would be prototypic of full sized waste treatment equipment. To this end, DOE`s Office of Technology Development sponsored the Westinghouse Savannah River Company (WSRC) to specify, procure, test, and operate a field scale demonstration using mobile equipment. Oak Ridge Reservation was chosen as the initial location for the field demonstration and Martin Marietta Reservation was chosen as the initial location for the field demonstration and Martin Marietta Energy Systems (MMES) tasked with all permitting, site preparation, and field support activities. During September 1993, WSRC used a ``Vendor Forum`` to solicit preliminary proposals for the Transportable Vitrification System (TVS). A number of quality proposals were received and evaluated. A vendor was selected and detailed negotiations were completed in August 1994, at which time a contract was signed for the TVS. In parallel, WSRC opened a dialogue with MMES to explore candidate waste streams at the Oak Ridge Reservation for the first TVS vitrification campaign. After some preliminary work, a group of waste water sludges were selected. The first of these to be demonstrated with the TVS will be the West End Treatment Facility (WETF) sludge. This paper describes the development of the specification for the TVS, the design and construction activities to date, and ongoing efforts for permitting and site support. The schedule for field application is also discussed.

  9. Transportable vitrification system demonstration on mixed waste. Revision 1

    SciTech Connect (OSTI)

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-04-22

    The Transportable Vitrification System (TVS) is a large scale, fully integrated, vitrification system for the treatment of low-level and mixed wastes in the form of sludges, soils, incinerator ash, and many other waste streams. It was demonstrated on surrogate waste at Clemson University and at the Oak Ridge Reservation (ORR) prior to treating actual mixed waste. Treatment of a combination of dried B and C Pond sludge and CNF sludge was successfully demonstrated at ORR in 1997. The demonstration produced 7,616 kg of glass from 7,328 kg of mixed wastes with a 60% reduction in volume. Glass formulations for the wastes treated were developed using a combination of laboratory crucible studies with the actual wastes and small melter studies at Clemson with both surrogate and actual wastes. Initial characterization of the B and C Pond sludge had not shown the presence of carbon or fluoride, which required a modified glass formulation be developed to maintain proper glass redox and viscosity. The CNF sludge challenges the glass formulations due to high levels of phosphate and iron. The demonstration was delayed several times by permitting problems, a glass leak, and electrical problems. The demonstration showed that the two wastes could be successfully vitrified, although the design glass production rate was not achieved. The glass produced met the Universal Treatment Standards and the emissions from the TVS were well within the allowable permit limits.

  10. Flammability Control In A Nuclear Waste Vitrification System

    SciTech Connect (OSTI)

    Zamecnik, John R.; Choi, Alexander S.; Johnson, Fabienne C.; Miller, Donald H.; Lambert, Daniel P.; Stone, Michael E.; Daniel, William E. Jr.

    2013-07-25

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: 1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; 2) adjust feed rheology; and 3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid in pretreatment has been studied to eliminate the production of hydrogen in the pretreatment systems, which requires nuclear grade monitoring equipment. An alternative reductant, glycolic acid, has been studied as a substitute for formic acid. However, in the melter, the potential for greater formation of flammable gases exists with glycolic acid. Melter flammability is difficult to control because flammable mixtures can be formed during surges in offgases that both increase the amount of flammable species and decrease the temperature in the vapor space of the melter. A flammable surge can exceed the 60% of the LFL with no way to mitigate it. Therefore, careful control of the melter feed composition based on scaled melter surge testing is required. The results of engineering scale melter tests with the formic-nitric flowsheet and the use of these data in the melter flammability model are presented.

  11. Evaluation Pilot-Scale Melter Systems for the Direct Vitrification Development Program

    SciTech Connect (OSTI)

    Mc Cray, Casey William; Thomson, Troy David

    2001-09-01

    This report documents the results of an evaluation conducted to identify a joule-heated melter system that could be installed in the Idaho Falls area in support of the Direct Vitrification Development Program. The relocation was to be completed by January 1, 2002, within a total budget of one million dollars. Coordination with the Department of Energy Tanks Focus Area identified five melters or melter systems that could potentially support the Direct Vitrification Development Program. Each unit was inspected and evaluated based on qualitative criteria such as availability, completeness of the system, contamination, scalability, materials of construction, facility requirements, and any unique features.

  12. Melter system technology testing for Hanford Site low-level tankwaste vitrification

    SciTech Connect (OSTI)

    Wilson, C.N.

    1996-05-03

    Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for Complete melter feasibility and system operability immobilization of the low-level waste (LLW) tests, select reference melter(s), and establish reference derived from retrieval and pretreatment of the radioactive LLW glass formulation that meets complete systems defense wastes stored in 177 underground tanks, commercial requirements (June 1996). Available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference Submit conceptual design and initiate definitive design technologies for the new LLW vitrification mission.

  13. System for enhanced destruction of hazardous wastes by in situ vitrification of soil

    DOE Patents [OSTI]

    Timmerman, Craig L.

    1991-01-01

    The present invention comprises a system for promoting the destruction of volatile and/or hazardous contaminants present in waste materials during in situ vitrification processes. In accordance with the present invention, a cold cap (46) comprising a cohesive layer of resolidified material is formed over the mass of liquefied soil and waste (40) present between and adjacent to the electrodes (10, 12, 14, 16) during the vitrification process. This layer acts as a barrier to the upward migration of any volatile type materials thereby increasing their residence time in proximity to the heated material. The degree of destruction of volatile and/or hazardous contaminants by pyrolysis is thereby improved during the course of the vitrification procedure.

  14. Innovative Vitrification for Soil Remediation

    SciTech Connect (OSTI)

    Hnat, James G.; Patten, John S.; Jetta, Norman W.

    1996-12-31

    Vortec has successfully completed Phases 1 and 2 of a technology demonstration program for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation.'' The principal objective of the program is to demonstrate the ability of a Vortec Cyclone Melting System (CMS) to remediate DOE contaminated soils and other waste forms containing TM RCRA hazardous materials, low levels of radionuclides and TSCA (PCB) containing wastes. The demonstration program will verify the ability of this vitrification process to produce a chemically stable glass final waste form which passes both TCLP and PCT quality control requirements, while meeting all federal and state emission control regulations. The demonstration system is designed to process 36 ton/day of as-received drummed or bulk wastes. The processing capacity equates to approximately 160 barrels/day of waste materials containing 30% moisture at an average weight of 450 lbs./barrel.

  15. Evaluation of melter system technologies for vitrification of high-sodium content low-level radioactive liquid wastes

    SciTech Connect (OSTI)

    Wilson, C.N.

    1994-03-21

    Westinghouse Hanford Company (WHC) is conducting a two-phased demonstration testing and evaluation of candidate melter system technologies for vitrification of Hanford Site low-level tank wastes. The testing is to be performed by melter equipment and vitrification technology commercial suppliers. This Statement of Work is for Phases 1 and 2 of the demonstration testing program. The primary objective of the demonstration testing is to identify the best available melter system technology for the Hanford Site LLW vitrification facility. Data obtained also will support various WHC engineering studies and conceptual design of the LLW vitrification facility. Multiple technologies will be selected for demonstration and evaluation. Testing will be conducted using non-radioactive LLW simulants in Seller-specified pilot/testing facilities.

  16. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    SciTech Connect (OSTI)

    Bickford, D.F.

    1993-12-31

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

  17. Low-level waste vitrification pilot-scale system need report

    SciTech Connect (OSTI)

    Morrissey, M.F.; Whitney, L.D.

    1996-03-01

    This report examines the need for pilot-scale testing in support of the low-level vitrification facility at Hanford. In addition, the report examines the availability of on-site facilities to contain a pilot-plant. It is recommended that a non-radioactive pilot-plant be operated for extended periods. In addition, it is recommended that two small-scale systems, one processing radioactive waste feed and one processing a simulated waste feed be used for validation of waste simulants. The actual scale of the pilot-plant will be determined from the technologies included in conceptual design of the plant. However, for the purposes of this review, a plant of 5 to 10 metric ton/day of glass production was assumed. It is recommended that a detailed data needs package and integrated flowsheet be developed in FY95 to clearly identify data requirements and identify relationships with other TWRS elements. A pilot-plant will contribute to the reduction of uncertainty in the design and initial operation of the vitrification facility to an acceptable level. Prior to pilot-scale testing, the components will not have been operated as an integrated system and will not have been tested for extended operating periods. Testing for extended periods at pilot-scale will allow verification of the flowsheet including the effects of recycle streams. In addition, extended testing will allow evaluation of wear, corrosion and mechanical reality of individual components, potential accumulations within the components, and the sensitivity of the process to operating conditions. Also, the pilot facility will provide evidence that the facility will meet radioactive and nonradioactive environmental release limits, and increase the confidence in scale-up. The pilot-scale testing data and resulting improvements in the vitrification facility design will reduce the time required for cold chemical testing in the vitrification facility.

  18. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    SciTech Connect (OSTI)

    Howden, G.F.

    1994-10-24

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  19. bulk power system | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  20. Overview of Western's Interconnected Bulk Electric System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Western's Interconnected Bulk Electric System Western Area Power Admin. Objectives * Describe Western Area Power Administration Region and Facilities Overview * Explain Fundamentals of Electricity, Power Transformers and Transmission Lines * Discuss Overview of the Bulk Electric System (BES) * Objectives Review Western's Service Area Western marketing areas and offices 3 Wholesale Power Services * Markets 10,479 MW from 56 Federal hydropower projects owned by Bureau of Reclamation (BOR) , Army

  1. Vitrification of NORM wastes

    SciTech Connect (OSTI)

    Chapman, C.

    1994-05-01

    Vitrification of wastes is a relatively new application of none of man`s oldest manufacturing processes. During the past 25 years it has been developed and accepted internationally for immobilizing the most highly radioactive wastes from spent nuclear fuel. By the year 2005, there will be nine operating high-level radioactive vitrification plants. Many of the technical ``lessons learned`` from this international program can be applied to much less hazardous materials such as naturally occurring radioactive material (NORM). With the deployment of low capital and operating cost systems, vitrification should become a broadly applied process for treating a large variety of wastes. In many situations, the wastes can be transformed into marketable products. This paper will present a general description of waste vitrification, summarize some of its key advantages, provide some test data for a small sample of one NORM, and suggest how this process may be applied to NORM.

  2. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    SciTech Connect (OSTI)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-02-26

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

  3. Controlled environment vitrification system for preparation of liquids

    DOE Patents [OSTI]

    Bellare, J.R.; Davis, H.T.; Scriven, L.E. II; Talmon, Y.

    1988-06-28

    A system is described for preparing specimens in a controlled environment to insure that a liquid or partially liquid specimen is maintained in its original state while it is being prepared, and once prepared the specimen is vitrified or solidified with minimal alteration of its microstructure. The controlled environment is provided within a chamber where humidity and temperature can be controlled precisely while the specimen is prepared. The specimen is mounted on a plunger and a shutter controlled opening is opened substantially simultaneously with release of the plunger so the specimen is propelled through the shutter into an adjacent cryogenic bath. 7 figs.

  4. Controlled environment vitrification system for preparation of liquids

    DOE Patents [OSTI]

    Bellare, Jayesh R.; Davis, Howard T.; Scriven, II, L. Edward; Talmon, Yeshayahu

    1988-01-01

    A system for preparing specimens in a controlled environment to insure that a liquid or partially liquid specimen is maintained in its original state while it is being prepared, and once prepared the specimen is vitrified or solidified with minimal alteration of its microstructure. The controlled environment is provided within a chamber where humidity and temperature can be controlled precisely while the specimen is prepared. The specimen is mounted on a plunger and a shutter controlled opening is opened substantially simultaneously with release of the plunger so the specimen is propelled through the shutter into an adjacent cryogenic bath.

  5. Operation of a bushing melter system designed for actinide vitrification

    SciTech Connect (OSTI)

    Ramsey, W.G.

    1996-03-01

    The Westinghouse Savannah River Company is developing a melter system to vitrify actinide materials. The melter system will used to vitrify the americium and curium solution which is currently stored in one of the Savannah River Site`s (SRS) processing canyons. This solution is one of the materials designated by the Defense Nuclear Facilities Safety Board (DNFSB) to be dispositioned as part of the DNFSB recommendation 94-1. The Am/Cm solution contains an extremely large fraction (>2 kilograms of Cm and 10 kilograms of Am) of t he United States`s total inventory of both elements. They have an estimated value on the order of one billion dollars - if they are processed through the DOE Isotope Sales program at the Oak Ridge National Laboratory. It is therefore deemed highly desirable to transfer the material to Oak Ridge in a form which can allow for recovery of the material. A commercial glass composition has been demonstrated to be compatible with up to 40 weight percent of the Am/Cm solution contents. This glass is also selectively attacked by nitric acid. This allows the actinide to be recovered by common separation processes.

  6. Tunable molten oxide pool assisted plasma-melter vitrification systems

    DOE Patents [OSTI]

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical

  7. Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288

    SciTech Connect (OSTI)

    Higley, B.A.

    1995-03-15

    This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

  8. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  9. Vitrification of simulated radioactive Rocky Flats plutonium containing ash residue with a Stir Melter System

    SciTech Connect (OSTI)

    Marra, J.C.; Kormanyos, K.R.; Overcamp, T.J.

    1996-10-01

    A demonstration trial has been completed in which a simulated Rocky Flats ash consisting of an industrial fly-ash material doped with cerium oxide was vitrified in an alloy tank Stir-Melter{trademark} System. The cerium oxide served as a substitute for plutonium oxide present in the actual Rocky Flats residue stream. The glass developed falls within the SiO{sub 2} + Al{sub 2}O{sub 3}/{Sigma}Alkali/B{sub 2}O{sub 3} system. The glass batch contained approximately 40 wt% of ash, the ash was modified to contain {approximately} 5 wt% CeO{sub 2} to simulate plutonium chemistry in the glass. The ash simulant was mixed with water and fed to the Stir-Melter as a slurry with a 60 wt% water to 40 wt% solids ratio. Glass melting temperature was maintained at approximately 1,050 C during the melting trials. Melting rates as functions of impeller speed and slurry feed rate were determined. An optimal melting rate was established through a series of evolutionary variations of the control variables` settings. The optimal melting rate condition was used for a continuous six hour steady state run of the vitrification system. Glass mass flow rates of the melter were measured and correlated with the slurry feed mass flow. Melter off-gas was sampled for particulate and volatile species over a period of four hours during the steady state run. Glass composition and durability studies were run on samples collected during the steady state run.

  10. Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant Low-Activity Waste Vitrification System

    SciTech Connect (OSTI)

    Hamel, W. F. [Office of River Protection, U.S. Department of Energy, 2400 Stevens Drive, Richland, WA 99354 (United States); Gerdes, K. [U.S. Department of Energy, 19901 Germantown Road, Germantown, MD 20874 (United States); Holton, L. K. [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States); Pegg, I.L. [Vitreous State Laboratory, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Bowan, B.W. [Duratek, Inc., 10100 Old Columbia Road, Columbia, Maryland 21046 (United States)

    2006-07-01

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE's initial assessment, which is based on the work reported in this paper, is that the treatment rate of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing the cost of waste treatment. (authors)

  11. Ensuring a Reliable Bulk Electric System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Reliability Corporation (NERC): Ensuring a Reliable Bulk Electric System Cooling Tower Report, October 2008 Transmission Constraints and Congestion in the Western...

  12. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    SciTech Connect (OSTI)

    Powell, J.; Reich, M.; Barletta, R.

    1996-03-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small ({approximately}1 m{sup 3}) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ``secondary.`` The induced current in the ``secondary`` heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., {approximately}1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature.

  13. Melter system technology testing for Hanford Site low-level tank waste vitrification

    SciTech Connect (OSTI)

    Wilson, C.N. [Westinghouse Hanford Company, Richland, WA (United States)

    1996-12-31

    Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for immobilization of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks, commercially available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference technologies for the new LLW vitrification mission. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes were also tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection and recommendations for Phase 2 testing completed. This paper describes the Phase 1 LLW melter vendor testing program and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  14. Literature review of arc/plasma, combustion, and joule-heated melter vitrification systems

    SciTech Connect (OSTI)

    Freeman, C.J.; Abrigo, G.P.; Shafer, P.J.; Merrill, R.A.

    1995-07-01

    This report provides reviews of papers and reports for three basic categories of melters: arc/plasma-heated melters, combustion-heated melters, and joule-heated melters. The literature reviewed here represents those publications which may lend insight to phase I testing of low-level waste vitrification being performed at the Hanford Site in FY 1995. For each melter category, information from those papers and reports containing enough information to determine steady-state mass balance data is tabulated at the end of each section. The tables show the composition of the feed processed, the off-gas measured via decontamination factors, gross energy consumptions, and processing rates, among other data.

  15. Chloride removal from vitrification offgas

    SciTech Connect (OSTI)

    Slaathaug, E.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-06-01

    This study identified and investigated techniques of selectively purging chlorides from the low-level waste (LLW) vitrification process with the purge stream acceptable for burial on the Hanford Site. Chlorides will be present in high concentration in several individual feeds to the LLW Vitrification Plant. The chlorides are highly volatile in combustion type melters and are readily absorbed by wet scrubbing of the melter offgas. The Tank Waste Remediation System (TWRS) process flow sheets show that the resulting chloride rich scrub solution is recycled back to the melter. The chlorides must be purged from the recycle loop to prevent the buildup of excessively high chloride concentrations.

  16. Development of a Wet Logistics System for Bulk Corn Stover

    Broader source: Energy.gov (indexed) [DOE]

    a Wet Logistics System for Bulk Corn Stover March 25, 2015 Lynn M. Wendt, William A. Smith, Austin Murphy, and Ian J. Bonner Idaho National Laboratory This presentation does not ...

  17. Vitrification assistance program: international co-operation on vitrification technology

    SciTech Connect (OSTI)

    Penrice, Ch.; McGowan, B.; Garth, B.; Reed, J.; Prod'homme, A. [Sellafield Ltd, Sellafield, CA20 1PG Seascale (United Kingdom); Sartelet, S.; Guerif, H.N. [AREVA NC, AREVA Group, 50 - Beaumont La Hague (France); Hollebecque, J.F. [CEA Marcoule 30 (France); Flament, T.; Prod'homme, A. [SGN, AREVA Group, 78 - St Quentin Yvelines (France)

    2008-07-01

    With 10 vitrification lines in operation (3 on WVP in Sellafield, 1 on AVM in Marcoule and 6 on AVH in La Hague), Sellafield Ltd and Areva NC benefit from the most in-depth experience worldwide in the vitrification of highly active liquors within a framework of commercial operations. Based on the two-step process design, using a calciner and an induction-heated hot melter, which was initially deployed in Marcoule in 1978, core vitrification equipment has been continuously improved by the independent development programmes of the two companies. In March 2005, Sellafield Ltd and Areva NC signed the Vitrification Assistance Program (hereafter referred to as VAP); a co-operative project lasting 4 years during which Areva NC is to share some areas of their experience and expertise with Sellafield Ltd. Now at the halfway point of this project, this paper summarises the work performed by the VAP team to date, highlighting the early benefits and lessons learned. The following points will be developed: - Equipment delivery and preparation for implementation on WVP - Training organization and dissemination to WVP teams - Lessons learned from the early changes implemented in operations (Calciner, Melter, Dust Scrubber and Primary off gas system), and initial feedback from the first campaign using a VAP equipped line. In conclusion: The vitrification process and technology implemented at Sellafield and at La Hague, based on the two-step process, have proved to be efficient in treating high active liquor of various types. Ten lines based on this principle have been successfully operated for more than 15 years in France and in the UK. The process has also been demonstrated to be sufficiently versatile to benefit from continuous improvement and development programmes. VAP, as a complete package to support vitrification technology and knowledge transfer from AREVA NC to Sellafield Ltd, has provided the framework for fruitful technical exchanges and discussions between the two

  18. Process system evaluation-consolidated letters. Volume 1. Alternatives for the off-gas treatment system for the low-level waste vitrification process

    SciTech Connect (OSTI)

    Peurrung, L.M.; Deforest, T.J; Richards, J.R.

    1996-03-01

    This report provides an evaluation of alternatives for treating off-gas from the low-level waste (LLW) melter. The study used expertise obtained from the commercial nonradioactive off-gas treatment industry. It was assumed that contact maintenance is possible, although the subsequent risk to maintenance personnel was qualitatively considered in selecting equipment. Some adaptations to the alternatives described may be required, depending on the extent of contact maintenance that can be achieved. This evaluation identified key issues for the off-gas system design. To provide background information, technology reviews were assembled for various classifications of off-gas treatment equipment, including off-gas cooling, particulate control, acid gas control, mist elimination, NO{sub x} reduction, and SO{sub 2} removal. An order-of-magnitude cost estimate for one of the off-gas systems considered is provided using both the off-gas characteristics associated with the Joule-heated and combustion-fired melters. The key issues identified and a description of the preferred off-gas system options are provided below. Five candidate treatment systems were evaluated. All of the systems are appropriate for the different melting/feed preparations currently being considered. The lowest technical risk is achieved using option 1, which is similar to designs for high-level waste (HLW) vitrification in the Hanford Waste Vitrification Project (HWVP) and the West Valley. Demonstration Project. Option 1 uses a film cooler, submerged bed scrubber (SBS), and high-efficiency mist eliminator (HEME) prior to NO{sub x} reduction and high-efficiency particulate air (HEPA) filtration. However, several advantages were identified for option 2, which uses high-temperature filtration. Based on the evaluation, option 2 was identified as the preferred alternative. The characteristics of this option are described below.

  19. Engineering report of plasma vitrification of Hanford tank wastes

    SciTech Connect (OSTI)

    Hendrickson, D.W.

    1995-05-12

    This document provides an analysis of vendor-derived testing and technology applicability to full scale glass production from Hanford tank wastes using plasma vitrification. The subject vendor testing and concept was applied in support of the Hanford LLW Vitrification Program, Tank Waste Remediation System.

  20. Development of a Bulk-Format System to Harvest, Handle, Store...

    Broader source: Energy.gov (indexed) [DOE]

    a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage generaprojectabstract1.pdf More Documents & Publications Development of a Bulk-Format System to Harvest,...

  1. Preliminary hazards analysis -- vitrification process

    SciTech Connect (OSTI)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  2. LFCM vitrification technology. Quarterly progress report, January-March 1986

    SciTech Connect (OSTI)

    Burkholder, H.C.; Minor, J.E.

    1986-09-01

    This report is compiled by the Nuclear Waste Treatment Progrqam and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to document progress on liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the second quarter of FY 1986 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, and process/product modeling and control.

  3. LFCM vitrification technology. Quarterly progress report, July-September 1985

    SciTech Connect (OSTI)

    Burkholder, H.C.; Jarrett, J.H.; Minor, J.E.

    1986-05-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to document progress on liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the fourth quarter of FY 1985 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, process/product modeling and control, and supporting studies.

  4. LFCM vitrification technology. Quarterly progress report, October-December 1985

    SciTech Connect (OSTI)

    Burkholder, H.C.; Jarrett, J.H.; Minor, J.E.

    1986-09-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to document progress on liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1986 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, process/product modeling and control, and supporting studies.

  5. LFCM vitrification technology: Qualterly progress report April--June 1987

    SciTech Connect (OSTI)

    Brouns, R.A.; Allen, C.R.; Powell, J.A.

    1988-08-01

    This report is compiled by the Nuclear Waste treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to describe the progress in developing, testing, applying and documenting liquid-fed ceramic melter vitrification technology. Progress in the following technical subject areas during the quarter of FY 1987 is discussed: melting process chemistry and glass development; feed preparation and transfer systems, melter systems; and canister filling and handling systems. 4 refs., 20 figs., 18 tabs.

  6. Vitrification publication bibliography

    SciTech Connect (OSTI)

    Schmieman, E.; Johns, W.E.

    1996-02-01

    This document was compiled by a group of about 12 graduate students in the Department of Mechanical Engineering and Material Science at Washington State University and was funded by the U.S. Department of Energy. The literature search resulting in the compilation of this bibliography was designed to be an exhaustive search for research and development work involving the vitrification of mixed wastes, published by domestic and foreign researchers, primarily during 1989-1994. The search techniques were dominated by electronic methods and this bibliography is also available in electronic format, Windows Reference Manager.

  7. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G.

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  8. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  9. Direct vitrification of plutonium-containing materials (PCM`s) with the glass material oxidation and dissolution system (GMODS)

    SciTech Connect (OSTI)

    Forsberg, C.W. Beahm, E.C.; Parker, G.W.; Rudolph, J.C.; Haas, P.A.; Malling, G.F.; Elam, K.; Ott, L.

    1995-10-30

    The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

  10. Microsoft Word - FINAL_TWC_August2007_summary.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ......... 4 Demonstration Bulk Vitrification System (DBVS) ... at WTP and to provide funding for the demonstration bulk vitrification system (DBVS) and ...

  11. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G.

    1995-10-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  12. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)] [and others

    1996-03-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  13. US DOE Initiated Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant (WTP) Low-activity Waste Vitrification (LAW) System

    SciTech Connect (OSTI)

    Hamel, William F.; Gerdes, Kurt D.; Holton, Langdon K.; Pegg, Ian L.; Bowen, Brad W.

    2006-03-03

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE’s initial assessment, which is based on the work reported in this paper, is that the capacity of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing both processing time and cost.

  14. Hanford low-level vitrification melter testing -- Master list of data submittals

    SciTech Connect (OSTI)

    Hendrickson, D.W.

    1995-03-15

    The Westinghouse Hanford Company (WHC) is conducting a two-phased effort to evaluate melter system technologies for vitrification of liquid low-level radioactive waste (LLW) streams. The evaluation effort includes demonstration testing of selected glass melter technologies and technical reports regarding the applicability of the glass melter technologies to the vitrification of Hanford LLW tank waste. The scope of this document is to identify and list vendor document submittals in technology demonstration support of the Hanford Low-Level Waste Vitrification melter testing program. The scope of this document is limited to those documents responsive to the Statement of Work, accepted and issued by the LLW Vitrification Program. The purpose of such a list is to maintain configuration control of vendor supplied data and to enable ready access to, and application of, vendor supplied data in the evaluation of melter technologies for the vitrification of Hanford low-level tank wastes.

  15. LFCM vitrification technology: Quarterly progress report, July-September 1987

    SciTech Connect (OSTI)

    Brouns, R.A.; Allen, C.R.; Powell, J.A.; Bates, S.O.; Bray, L.A.; Budden, M.J.; Dierks, R.D.; Elliott, M.L.; Elmore, M.R.; Faletti, D.W.; Farnsworth, R.K.; Holton, L.K. Jr.; Kuhn, W.L.; Mellinger, G.B.; Nakaoka, R.K.; Peterson, M.E.; Piepel, G.F.; Powell, J.A.; Pulsipher, B.A.; Reimus, M.A.H.; Surma, J.E.; Wiemers, K.D.

    1988-09-01

    This report describes the progress in developing, testing, applying and documenting liquid-fed ceramic melter vitrification technology. Progress in the following technical subject areas during the fourth quarter of FY 1987 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, canister filling and handling systems, and process/product modeling and control.

  16. Selecting a plutonium vitrification process

    SciTech Connect (OSTI)

    Jouan, A. [Centre d`Etudes de la Vallee du Rhone, Bagnols sur Ceze (France)

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing of plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.

  17. High-Impact, Low-Frequency Risk to the North American Bulk Power System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (June 2010) | Department of Energy High-Impact, Low-Frequency Risk to the North American Bulk Power System (June 2010) High-Impact, Low-Frequency Risk to the North American Bulk Power System (June 2010) A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the U.S. Department of Energy's November 2009 Workshop. The North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy (DOE) partnered in July of 2009 on an effort to

  18. High-Impact, Low-Frequency Risk to the North American Bulk Power System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (June 2010) | Department of Energy Impact, Low-Frequency Risk to the North American Bulk Power System (June 2010) High-Impact, Low-Frequency Risk to the North American Bulk Power System (June 2010) A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the U.S. Department of Energy's November 2009 Workshop. The North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy (DOE) partnered in July of 2009 on an effort to

  19. Vitrification of NAC process residue

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D. [Pacific Northwest Lab., Richland, WA (United States)

    1995-12-31

    Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1,200 C to 1,400 C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

  20. Vitrification of NAC process residue

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D.

    1995-09-01

    Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1200{degrees}C to 1400{degrees}C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

  1. LFCM (liquid-fed ceramic melter) vitrification technology: Quarterly progress report, April-June 1986

    SciTech Connect (OSTI)

    Burkholder, H.C.; Allen, C.R.

    1987-02-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to document progress on liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the third quarter of FY 1986 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, and process/product modeling and control.

  2. Low-level waste vitrification contact maintenance viability study

    SciTech Connect (OSTI)

    Leach, C.E., Westinghouse Hanford

    1996-07-12

    This study investigates the economic viability of contact maintenance in the Low-Level Waste Vitrification Facility, which is part of the Hanford Site Tank Waste Remediation System. This document was prepared by Flour Daniel, Inc., and transmitted to Westinghouse Hanford Company in September 1995.

  3. U.S. Department of Energy (DOE) initiated performance enhancements to the Hanford waste treatment and immobilization plant (WTP) high-level waste vitrification (HLW) system

    SciTech Connect (OSTI)

    Bowan, Bradley [Energy Solutions, LLC (United States); Gerdes, Kurt [United States Department of Energy (United States); Pegg, Ian [Vitreous State Laboratory, Catholic University of America, 400 Hannan Hall 620 Michigan Avenue, NE Washington, DC 20064 (United States); Holton, Langdon [Pacific Northwest National Laboratory, PO Box 999, Richland WA 99352 (United States)

    2007-07-01

    Available in abstract form only. Full text of publication follows: The U.S Department of Energy is currently constructing, at the Hanford, Washington Site, a Waste Treatment and Immobilization Plant (WTP) for the treatment and immobilization, by vitrification, of stored underground tank wastes. The WTP is comprised of four major facilities: a Pretreatment facility to separate the tank waste into high level waste (HLW) and low activity waste (LAW); a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction and an analytical Laboratory to support the treatment facilities. DOE has strategic objectives to optimize the performance of the WTP facilities, and waste forms, in order to reduce the overall schedule and cost for the treatment of the Hanford tank wastes. One key part of this strategy is to maximize the loading of inorganic waste components in the final glass product (waste loading). For the Hanford tank wastes, this is challenging because of the compositional diversity of the wastes generated over several decades. This paper presents the results of an initial series of HLW waste loading enhancement tests, using diverse HLW compositions that are projected for treatment at the WTP. Specifically, results of glass formulation development and melter testing with simulated Hanford HLW containing high concentrations of troublesome components such as bismuth, aluminum, aluminum-sodium, and chromium will be presented. (authors)

  4. LFCM (liquid-fed ceramic melter) vitrification technology: Quarterly progress report, January--March 1987

    SciTech Connect (OSTI)

    Brouns, R. A.; Allen, C. R.; Powell, J. A.

    1988-05-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to describe the progress in developing, testing, applying and documenting liquid-fed ceramic melter vitrification technology. Progress in the following technical subject areas during the second quarter of FY 1987 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, and process/product modeling. 23 refs., 14 figs., 10 tabs.

  5. Vendor glass durability study during evaluation of melter system technologies for vitrification of Hanford low-level wastes

    SciTech Connect (OSTI)

    Feng, X.; Kim, D.; Schweiger, M.J. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1995-12-31

    The low level radioactive wastes (LLW) separated from the single-shell tanks and double-shell tanks at the Hanford Site will be immobilized into glass. A melter system technology testing, and evaluation program is being conducted to identify the demonstration, best overall melter system technology available to vitrify the Hanford LLW streams. The melter technologies being demonstrated use a variety of heating methods to melt the glass, including plasma torch, fossil-fuel-fired cyclone burner, carbon arc and joule-heating. The Phase I testing is a {open_quotes}proof of principle{close_quotes} test to demonstrate that a melter system technology can process a simulated highly alkaline, high nitrate/nitrite content LLW feed and produce a glass product of consistent quality. Target waste oxide loading of LLW simulant was specified to be about 25 wt%. Pacific Northwest Laboratory (PNL) is providing glass formulation support for this program. The five candidate vendor glasses at 20 wt% Na{sub 2}O level provided by PNL are alumino-borosilicate and aluminosilicate glasses with melting points around 1300{degrees}. Glasses adopted by vendors were tested at PNL to verify the required properties. The testing included durability evaluation through product consistency test, MCC-1 tests, and flow through tests and viscosity measurements.

  6. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    SciTech Connect (OSTI)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2013-07-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  7. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    SciTech Connect (OSTI)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  8. Vitrification of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  9. Improvement to low-level radioactive-waste vitrification processes. Master's thesis

    SciTech Connect (OSTI)

    Horton, W.S.

    1986-05-01

    Low-level radioactive waste vitrification (LLWV) is a technically feasible and cost-competitive alternative to the traditional immobilization options, i.e., cementation or bituminization. This thesis analyzes cementation, bituminization and vitrification, reviews the impact of the low-level Waste-stream composition on the vitrification process, then proposes and discusses several techniques to control the volatile radionuclides in a Process Improved LLWV system (PILLWV). The techniques that control the volatile radionuclides include chemical precipitation, electrodialysis, and ion exchange. Ion exchange is preferred. A comparison of the technical specifications, of the regulatory compliance, and of the cost considerations shows the PILLWV to be the superior LLW immobilization option.

  10. Tunable, self-powered integrated arc plasma-melter vitrification system for waste treatment and resource recovery

    DOE Patents [OSTI]

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.

  11. Vitrification Melter Waste Incidental to Reprocessing Determination...

    Office of Environmental Management (EM)

    Reprocessing Determination For The West Valley Demonstration Project Concentrator Feed Makeup Tank and Melter Feed Hold Tank Responses to Public Comments on Draft Vitrification...

  12. Vitrification of ion exchange resins

    DOE Patents [OSTI]

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  13. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B.M.

    2014-11-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This presentation is an overview of a study that examines the value of improved solar forecasts on Bulk Power System Operations.

  14. Apparatus for in situ heating and vitrification

    DOE Patents [OSTI]

    Buelt, James L.; Oma, Kenton H.; Eschbach, Eugene A.

    1994-01-01

    An apparatus for decontaminating ground areas where toxic chemicals are buried includes a plurality of spaced electrodes located in the ground and to which a voltage is applied for bringing about current flow. Power delivered to the ground volatilizes the chemicals that are then collected and directed to a gas treatment system. A preferred form of the invention employs high voltage arc discharge between the electrodes for heating a ground region to relatively high temperatures at relatively low power levels. Electrodes according to the present invention are provided with preferentially active lower portions between which current flows for the purpose of soil heating or for soil melting and vitrification. Promoting current flow below ground level avoids predominantly superficial treatment and increases electrode life.

  15. Apparatus for in situ heating and vitrification

    DOE Patents [OSTI]

    Buelt, J.L.; Oma, K.H.; Eschbach, E.A.

    1994-05-31

    An apparatus for decontaminating ground areas where toxic chemicals are buried includes a plurality of spaced electrodes located in the ground and to which a voltage is applied for bringing about current flow. Power delivered to the ground volatilizes the chemicals that are then collected and directed to a gas treatment system. A preferred form of the invention employs high voltage arc discharge between the electrodes for heating a ground region to relatively high temperatures at relatively low power levels. Electrodes according to the present invention are provided with preferentially active lower portions between which current flows for the purpose of soil heating or for soil melting and vitrification. Promoting current flow below ground level avoids predominantly superficial treatment and increases electrode life. 15 figs.

  16. ECONOMIC ASSESSMENT ON VITRIFICATION FACILITY OF LOW-AND INTERMEDIATE-LEVEL RADIOACTIVE WASTES IN KOREA

    SciTech Connect (OSTI)

    Kim, Sung Il; Lee, Kun Jai; Ji, Pyung Kook; Park, Jong Kil; Ha, Jong Hyun; Song, Myung Jae

    2003-02-27

    The usefulness of vitrification technology for low-and intermediate-level radioactive wastes was demonstrated with high volume reduction capability and good mechanical and chemical stability of final waste forms, and commercial vitrification facility is expected to be constructed at Ulchin site of Korean Nuclear Power Plant Ulchin Unit 5 and 6. Hence, overall economic assessment was necessary to find out the economic advantage of the vitrification facility and to predict the construction and operation costs of the facility on the preliminary bases. Additionally, the generation characteristics of radioactive wastes were investigated. The results of the cost analysis showed that the disposal cost of radioactive wastes treated by vitrification facility reduced to 85 percent compared with that by current waste treatment system. And the present worth analysis was performed through the cost-benefit analysis method for the commercial vitrification facility. The results showed that the vitrification facility combining cold crucible melter (CCM) for treatment of combustible DAW, spent resin, and borated liquid waste concentrate and plasma torch melter (PTM) for non-combustible DAW and spent filter is more economical than current waste treatment system when the escalation rate of disposal cost of more than 10 percent per year was applied.

  17. Design and performance of a 100-kg/h, direct calcine-fed electric-melter system for nuclear-waste vitrification

    SciTech Connect (OSTI)

    Dierks, R.D.

    1980-11-01

    This report describes the physical characteristics of a ceramic-lined, joule-heated glass melter that is directly connected to the discharge of a spray calciner and is currently being used to study the vitrification of simulated nuclear-waste slurries. Melter performance characteristics and subsequent design improvements are described. The melter contains 0.24 m/sup 3/ of glass with a glass surface area of 0.76 m/sup 2/, and is heated by the flow of an alternating current (ranging from 600 to 1200 amps) between two Inconel-690 slab-type electrodes immersed in the glass at either end of the melter tank. The melter was maintained at operating temperature (900 to 1260/sup 0/C) for 15 months, and produced 62,000 kg of glass. The maximum sustained operating period was 122 h, during which glass was produced at the rate of 70 kg/h.

  18. A Bulk Superconducting Magnetic System for the CLAS12 Target at Jefferson Lab

    SciTech Connect (OSTI)

    Statera, Marco; Contalbrigo, Marco; Ciullo, Giuseppe; Lenisa, Paulo; Lowry, Michael M.; Sandorfi, Andrew M.

    2015-06-01

    A feasibility study of a bulk magnetic system for the target of an experiment to measure the transverse spin effects in semi-inclusive deep inelastic scattering (SIDIS) at 11 GeV with a transversely polarized target using the CLAS12 detector is presented. An experiment has been approved with the highest priority rating to study spin azimuthal asymmetries in SIDIS using 11-GeV polarized electron beams from the upgraded CEBAF facility and the CLAS12 detector equipped with a transversely polarized target. The transverse target in CLAS12 requires the shielding of a volume inside the longitudinal field of the main solenoid. In the shielded region, a transverse target magnet can operate; for the proposed magnetic configuration, the main solenoid maximum magnetic induction is 2 T. A bulk MgB2 cylinder cooled in liquid helium is proposed both to shield the longitudinal field of the main solenoid and to provide a transverse field induction up to 1.2 T for the hydrogen deuteride ice (HD-ice) target. The installation and magnetization procedure will be described. The magnetization procedure has to be compatible with the polarization and installation procedure of the HD-ice target. The design of a test bench to measure the transverse magnetization of a MgB2 bulk cylinder cooled by a coldhead is presented together with the scheduled measurements.

  19. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bulk Electric Power Systems: Operations and Transmission Planning Volume 4 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M.

  20. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  1. Cold Test Operation of the German VEK Vitrification Plant

    SciTech Connect (OSTI)

    Fleisch, J.; Schwaab, E.; Weishaupt, M. [WAK GmbH, Eggenstein-Leopoldshafen (Germany); Gruenewald, W.; Roth, G.; Tobie, W. [Forschungszentrum Karlsruhe, Institut fur Nukleare Entsorgung, Eggenstein-Leopoldshafen (Germany)

    2008-07-01

    In 2007 the German High-Level Liquid Waste (HLLW) Vitrification plant VEK (Verglasungseinrichtung Karlsruhe) has passed a three months integral cold test operation as final step before entering the hot phase. The overall performance of the vitrification process equipment with a liquid-fed ceramic glass melter as main component proved to be completely in line with the requirements of the regulatory body. The retention efficiency of main radioactive-bearing elements across melter and wet off-gas treatment system exceeded the design values distinctly. The strategy to produce a specified waste glass could be successfully demonstrated. The results of the cold test operation allow entering the next step of hot commissioning, i.e. processing of approximately 2 m{sup 3} of diluted HLLW. In summary: An important step of the VEK vitrification plant towards hot operation has been the performance of the cold test operation from April to July 2007. This first integral operation was carried out under boundary conditions and rules established for radioactive operation. Operation and process control were carried out following the procedure as documented in the licensed operational manuals. The function of the process technology and the safe operation could be demonstrated. No severe problems were encountered. Based on the positive results of the cold test, application of the license for hot operation has been initiated and is expected in the near future. (authors)

  2. Hanford Waste Vitrification program pilot-scale ceramic melter Test 23

    SciTech Connect (OSTI)

    Goles, R.W.; Nakaoka, R.K.

    1990-02-01

    The pilot-scale ceramic melter test, was conducted to determine the vitrification processing characteristics of simulated Hanford Waste Vitrification Plant process slurries and the integrated performance of the melter off-gas treatment system. Simulated melter feed was prepared and processed to produce glass. The vitrification system, achieved an on-stream efficiency of greater than 98%. The melter off-gas treatment system included a film cooler, submerged bed scrubber, demister, high-efficiency mist eliminator, preheater, and high-efficiency particulate air filter (HEPA). Evaluation of the off-gas system included the generation, nature, and capture efficiency of gross particulate, semivolatile, and noncondensible melter products. 17 refs., 48 figs., 61 tabs.

  3. LFCM (liquid-fed ceramic melter) vitrification technology: Quarterly progress report, October-December 1986

    SciTech Connect (OSTI)

    Brouns, R.A.; Allen, C.R.; Powell, J.A.

    1987-09-01

    This report describes the progress in developing, testing, applying, and documenting liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1987 is discussed. Topics include melting process chemistry and glass development, feed preparation and transfer systems, melter systems, off-gas systems, canister filling and handling systems, and process/product modeling.

  4. Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy HLW Waste Vitrification Facility Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility (742.54 KB) Summary - WTP HLW Waste Vitrification Facility (137.99 KB) More Documents & Publications Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste

  5. LFCM (liquid-fed ceramic melter) vitrification technology: Quarterly progress report, July-September 1986

    SciTech Connect (OSTI)

    Burkholder, H.C.; Allen, C.R.; Andersen, C.M.; Bates, S.O.; Dierks, R.D.; Faletti, D.W.; Farnsworth, R.K.; Goles, R.W.; Kuhn, W.L.; Nakaoka, R.K.: Perez, J.M Jr.; Peters, R.D.; Peterson, M.E.; Pulsipher, B.A.; Reimus, P.W.

    1987-06-01

    Individual papers are processed separately for the data bases. This report documents progress on liquid-fed ceramic melter (LFCM) vitrification technology. Progress in melting process chemistry and glass development, feed preparation and transfer systems, melter systems, off-gas systems, and process/product modeling and control is discussed.

  6. In-situ vitrification of waste materials

    DOE Patents [OSTI]

    Powell, James R.; Reich, Morris; Barletta, Robert

    1997-11-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed.

  7. In-situ vitrification of waste materials

    DOE Patents [OSTI]

    Powell, J.R.; Reich, M.; Barletta, R.

    1997-10-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed. 7 figs.

  8. Bulk glass formation in the Pd{endash}Ni{endash}P system

    SciTech Connect (OSTI)

    He, Y.; Schwarz, R.B.; Archuleta, J.I. [Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1996-09-01

    Bulk amorphous Pd{endash}Ni{endash}P rods with diameters ranging from 10 to 25 mm were prepared by a fluxing technique over a wide composition range. For most bulk glassy alloys studied, the difference between the glass transition temperature and the crystallization temperature, {ital T}{sub {ital x}}{minus}{ital T}{sub {ital g}}, is larger than 90 K. Of all the alloy compositions examined, Pd{sub 40}Ni{sub 40}P{sub 20} has the highest glass formability, and 300-g bulk amorphous cylinders, 25 mm in diameter and 50 mm in length, were easily and repeatedly formed. This size, however, is not an upper limit. The elastic properties of these bulk amorphous alloys were determined by a resonant ultrasound spectroscopy technique.

  9. Final Vitrification Melter And Vessels Evaluation Documentation

    Broader source: Energy.gov [DOE]

    DOE has prepared final evaluations and made waste incidental to reprocessing determinations for the vitrification melter and feed vessels (the concentrator feed makeup tank and the melter feed hold tank), used by DOE’s West Valley Demonstration Project as part of the process to vitrify waste from prior commercial reprocessing of spent nuclear fuel.

  10. Applying vitrification to meet customers` values

    SciTech Connect (OSTI)

    Roy, B. [Scientific Ecology Group, Inc., Oak Ridge, TN (United States)

    1996-03-01

    Cost-effective waste management solutions that maximize customer value require a thorough and flexible evaluation and integration of approaches, technology applications, and disposal options. This is particulary true in the application of vitrification to low-level radioactive and mixed waste stabilization. Case-specific evaluations are the required to determine the highest value, most cost-effective approaches.

  11. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  12. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  13. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

    1998-06-23

    A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.

  14. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVbulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers.

  15. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage Low-Moisture Switchgrass Feedstock

    SciTech Connect (OSTI)

    Womac, Alvin; Groothuis, Mitch; Westover, Tyler; Phanphanich, Manunya; Webb, Erin; Sokhansanj, Shahab; Turhollow, Anthony

    2013-09-24

    This project evaluates and compares comprehensive feedstock logistics systems (FLS), where a FLS is defined to comprehensively span from biomass material standing in a field to conveyance of a uniform, industrial-milled product into the throat of a biomass conversion facility (BCF). Elements of the bulk-format FLS evaluated in this project include: field-standing switchgrass dry chopped into bulk format on the farm, hauled (either loose or bulk compacted) to storage, stored with confining overburden in a protective facility, reclaimed and conveyed to bulk-format discharge, bulk compacted into an ejector trailer, and conveyed as bulk flow into the BCF. In this FLS evaluation, bulk storage bins served as a controlled and sensored proxy for large commercial stacks protected from moisture with a membrane cover.

  16. World first in high level waste vitrification - A review of French vitrification industrial achievements

    SciTech Connect (OSTI)

    Brueziere, J.; Chauvin, E. [AREVA, 1 place Jean Millier, 92084 Paris La Defense (France); Piroux, J.C. [Joint Vitrification Laboratory - LCV, Marcoule, BP171, 30207 Bagnols sur Ceze (France)

    2013-07-01

    AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process was implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.

  17. Defense waste vitrification studies during FY-1981. Summary report

    SciTech Connect (OSTI)

    Bjorklund, W.J. (comp.)

    1982-09-01

    Both simulated alkaline defense wastes and simulated acidic defense wastes (formed by treating alkaline waste with formic acid) were successfully vitrified in direct liquid-fed melter experiments. The vitrification process was improved while using the formate-treated waste. Leach resistance was essentially the same. Off-gas entrainment was the primary mechanism for material exiting the melter. When formate waste was vitrified, the flow behavior of the off gas from the melter changed dramatically from an erratic surging behavior to a more quiet, even flow. Hydrogen and CO were detectable while processing formate feed; however, levels exceeding the flamability limits in air were never approached. Two types of melter operation were tested during the year, one involving boost power. Several boosting methods located within the melter plenum were tested. When lid heating was being used, water spray cooling in the off gas was required. Countercurrent spray cooling was more effective than cocurrent spray cooling. Materials of construction for the off-gas system were examined. Inconel-690 is preferred in the plenum area. Inspection of the pilot-scale melter found that corrosion of the K-3 refractory and Inconel-690 electrodes was minimal. An overheating incident occurred with the LFCM in which glass temperatures up to 1480/sup 0/C were experienced. Lab-scale vitrification tests to study mercury behavior were also completed this year. 53 figures, 63 tables.

  18. DEVELOPMENT OF A TAMPER RESISTANT/INDICATING AEROSOL COLLECTION SYSTEM FOR ENVIRONMENTAL SAMPLING AT BULK HANDLING FACILITIES

    SciTech Connect (OSTI)

    Sexton, L.

    2012-06-06

    Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity to collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office

  19. Vitrification technology for Hanford Site tank waste

    SciTech Connect (OSTI)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy`s (DOE) Hanford Site has an inventory of 217,000 m{sup 3} of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing.

  20. Responses to Public Comments on Draft Vitrification Melter Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation for the Vitrification Melter" (Draft WIR Evaluation) available for public and state review and comment and Nuclear Regulatory Commission (NRC) consultation review. ...

  1. Waste Treatment and Immobilation Plant HLW Waste Vitrification...

    Office of Environmental Management (EM)

    6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August ...

  2. Hanford Waste Vitrification Plant applied technology plan

    SciTech Connect (OSTI)

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs.

  3. CFD Modeling of Thermal Effects of Nuclear Waste Vitrification Processes

    SciTech Connect (OSTI)

    Rayner, Chris; Soltani, Mehdi; Barringer, Chris; Knight, Kelly

    2006-07-01

    The Waste Treatment Plant (WTP) at Hanford, WA will vitrify nuclear waste stored at the DOE Hanford facility. The vitrification process will take place in two large concrete buildings where the glass is poured into stainless steel canisters or containers and allowed to cool. Computational Fluid Dynamics (CFD) was used extensively to calculate the effects of the heat released by molten glass as it is poured and cooled, on the HVAC system and the building structure. CFD studies of the glass cooling in these facilities were used to predict canister temperatures, HVAC air temperatures, concrete temperatures and insulation requirements, and design temperatures for canister handling equipment and instrumentation at various stages of the process. These predictions provided critical input in the design of the HVAC system, specification of insulation, the design of canister handling equipment, and the selection of instrumentation. (authors)

  4. FINAL REPORT MELTER TESTS WITH AZ-101 HLW SIMULANT USING A DURAMELTER 100 VITRIFICATION SYSTEM VSL-01R10N0-1 REV 1 2/25/02

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL

    2011-12-29

    This report provides data, analyses, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic of America (VSL) to determine the processing rates that are achievable with AZ-101 HLW simulants and corresponding melter feeds on a DuraMelter 100 (DM100) vitrification system. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. Tests conducted during Part B1 (VSL-00R2590-2) on the DM1000 vitrification system installed at the Vitreous State Laboratory of The Catholic University of America showed that, without the use of bubblers, glass production rates with AZ-101 and C-106/AY-102 simulants were significantly lower than the Project design basis rate of 0.4 MT/m{sup 2}/d. Conversely, three-fold increases over the design basis rate were demonstrated with the use of bubblers. Furthermore, an un-bubbled control test using a replica of the melter feed used in cold commissioning tests at West Valley reproduced the rates that were observed with that feed on the WVDP production melter. More recent tests conducted on the DM1200 system, which more closely represents the present RPP-WTP design, are in general agreement with these earlier results. Screening tests conducted on the DM10 system have provided good indications of the larger-scale processing rates with bubblers (for both HL W and LAW feeds) but significantly overestimated the DM1000 un-bubbled rate observed for C-106/AY-102 melter feeds. This behavior is believed to be a consequence of the role of

  5. Vitrification and solidification remedial treatment and disposal costs

    SciTech Connect (OSTI)

    Gimpel, R.F.

    1992-03-12

    Solidification (making concrete) and vitrification (making glass) are frequently the treatment methods recommended for treating inorganic or radioactive wastes. Solidification is generally perceived as the most economical treatment method. Whereas, vitrification is considered (by many) as the most effective of all treatment methods. Unfortunately, vitrification has acquired the stigma that it is too expensive to receive further consideration as an alternative to solidification in high volume treatment applications. Ironically, economic studies, as presented in this paper, show that vitrification may be more competitive in some high volume applications. Ex-situ solidification and vitrification are the competing methods for treating in excess of 450,000 m{sup 3} of low-level radioactive and mixed waste at the Fernald Environmental Management Project (FEMP or simply, Fernald) located near Cincinnati, Ohio. This paper summarizes a detailed study done to: compare the economics of the solidification and vitrification processes, determine if the stigma assigned to vitrification is warranted and, determine if investing millions of dollars into vitrification development, along with solidification development, at the Fernald is warranted.

  6. A knowledge-based method for making restoration plan of bulk power system

    SciTech Connect (OSTI)

    Shimakura, K.; Inagaki, J.; Matsunoki, Y. (Hokkaido Univ., Sapporo (Japan). Faculty of Science); Ito, M.; Fukui, S.; Hori, S. (Mitsubishi Electric Corp., 1-1-2 Wadasaki-cho, Hyogo-ku, Kobe (JP))

    1992-05-01

    In this paper a knowledge-based method is proposed for use in event of power system outages. This method uses general-purpose restoration knowledge not dependent on pre-outage system states in order to generate post-restoration target systems in which post-outage systems are taken as initial states. Conventionally post-outage system states are formed to emulate as closely as possible pre-outage system states, with system operations performed only within blackout systems. Therefore, depending on the amount of pre-outage load, some outage loads may be experienced in the restored system. Proposed here is a method by which system operations in both blackout systems and sound systems are combined according to the amount of load in the pre-outage systems, so that post-restoration system states with minimal outage loads from post-outage systems will be generated. A prototype system incorporating actual power systems and utilizing this method was built and tested under simulated conditions. The effectiveness of the proposed system is discussed on the basis of the test results.

  7. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-11-01

    The work presented in the paper corresponding to this presentation aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This presentation is an overview of a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool

  8. Electrode systems for in situ vitrification

    DOE Patents [OSTI]

    Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.

    1990-01-01

    An electrode comprising a molybdenum rod is received within a conductive collar formed of graphite. The molybdenum rod and the graphite collar may be physically joined at the bottom. A pair of such electrodes are placed in soil containing buried waste material and an electric current is passed therebetween for vitrifying the soil. The graphite collar enhances the thermal conductivity of the combination, bringing heat to the surface, and preventing formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is suitably filled with a conductive ceramic powder that sinters upon the molybdenum rod, protecting the same from oxidation as graphite material is consumed, or a metal powder which liquefies at operating temperatures. The center of the molybdenum rod, used with a collar of separately, can be hollow and filled with a powdered metal, such as copper, which liquefies at operating temperatures. Connection to electrodes can be provided below ground level to avoid open circuit due to electrode deterioration, or sacrificial electrodes may be employed when operation is started. Outboard electrodes cna be utilized to square up a vitrified area.

  9. Preliminary design requirements document for Project W-378, low-level waste vitrification plant

    SciTech Connect (OSTI)

    Swanson, L.M.

    1995-03-31

    The scope of this preliminary Design Requirements Document (DRD) is to identify and define the functions, with associated requirements, which must be performed to accomplish vitrification and disposal of the pretreated low-level waste (LLW) fraction of the Hanford Site tank waste. This document sets forth function requirements, performance requirements and design constraints necessary to begin conceptual design for the Low-Level Waste Vitrification Plant (LLWVP). System and physical interfaces between the LLWVP Project and the Tank Waste Remediation System (TWRS) are identified. The constraints, performance requirements, and transfer of information and data across a technical interface will be documented in an Interface Control Document. The design requirements provided in this document will be augmented by additional detailed design data to be documented by the project.

  10. Vitrification of organics-containing wastes

    DOE Patents [OSTI]

    Bickford, Dennis F.

    1997-01-01

    A process for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  11. Vitrification of organics-containing wastes

    DOE Patents [OSTI]

    Bickford, D.F.

    1997-09-02

    A process is described for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process is also disclosed. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile. 1 fig.

  12. Vitrification of organics-containing wastes

    DOE Patents [OSTI]

    Bickford, D.F.

    1995-01-01

    A process for stabilizing organics-containing waste materials and recovery metals therefrom, and a waste glass product made according to the process are described. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate form the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  13. Hanford Waste Vitrification Plant foreign alternatives feasibility study

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The impacts and uncertainties of changing from the current Hanford Waste Vitrification Plant technology and plant design based on the liquid-fed ceramic melter to the French Ateliers Vitrification La Hague vitrification technology and plant design for vitrifying high-level defense wastes are considered in this report. An evaluation has been made as to whether the change might be a source of significant cost savings. The French Ateliers Vitrification La Hague technology is the only alternative at a sufficiently advanced stage of development to consider as a replacement for the current Hanford Waste Vitrification Plant technology. This study concludes that a significant cost savings could not be realized by changing to the French Ateliers Vitrification La Hague technology and design for the Hanford Waste Vitrification Plant. The study provides a rough comparison of plant costs based on available information. An improved cost estimate could be developed through more detailed study, but it would be unlikely to change the overall conclusion. 7 figs., 3 tabs.

  14. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

    2014-09-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

  15. Development of a Bulk-Format System to Harvest, Handle, Store...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laidig Systems, Inc., Marathon Equipment, Dupont-Danisco Cellulosic Ethanol, Deere & ... potential, and inhibitors will be determined by Dupont-Danisco Cellulosic Ethanol. ...

  16. Vitrification facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  17. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-09-01

    The work presented in this paper aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This paper presents a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool. The results show that increasing the integration of distributed wind reduces total variable electricity generation costs, coal- and gas-fired electricity generation, electricity imports, and CO2 emissions, and increases wind curtailment. The variability and uncertainty of wind power also increases the start-up and shutdown costs and ramping of most conventional power plants.

  18. Cell multipole method for molecular simulations in bulk and confined systems

    SciTech Connect (OSTI)

    Zheng, Jie; Balasundaram, Ramkumar; Gehrke, Stevin H.; Heffelfinger, Grant S.; Goddard, William A. III; Jiang, Shaoyi

    2002-08-01

    One of the bottlenecks in molecular simulations is to treat large systems involving electrostatic interactions. Computational time in conventional molecular simulation methods scales with O(N{sup 2}), where N is the number of atoms. With the emergence of the cell multipole method (CMM) and massively parallel supercomputers, simulations of 10 million atoms have been performed. In this work, the optimal hierarchy cell level and the algorithm for Taylor expansion were recommended for fast and accurate molecular dynamics (MD) simulations of three-dimensional (3D) systems. CMM was then extended to treat quasi-two-dimensional (2D) systems, which is very important for condensed matter physics problems. In addition, CMM was applied to grand canonical ensemble Monte Carlo (GCMC) simulations for both 3D and 2D systems. Under the optimal conditions, the results show that computational time is approximately linear with N for large systems, average error in total potential energy is less than {approx}1%, and RMS force is about 0.015 for 3D and 2D systems when compared with the Ewald summation.

  19. PNL vitrification technology development project glass formulation strategy for LLW vitrification

    SciTech Connect (OSTI)

    Kim, D.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    This Glass Formulation Strategy describes development approaches to optimize glass compositions for Hanford`s low-level waste vitrification between now and the projected low-level waste facility start-up in 2005. The objectives of the glass formulation task are to develop optimized glass compositions with satisfactory long-term durability, acceptable processing characteristics, adequate flexibility to handle waste variations, maximize waste loading to practical limits, and to develop methodology to respond to further waste variations.

  20. Microwave vitrification of Rocky Flats hydroxide precipitation sludge, Building 774. Progress report

    SciTech Connect (OSTI)

    Eschen, V.G.; Sprenger, G.S.; Fenner, G.S.; Corbin, I.E.

    1995-04-01

    This report describes the first set of experiments performed on transuranic (TRU) precipitation sludge produced in Building 774, to determine the operating parameters for the microwave vitrification process. Toxicity Characteristic Leach Procedure (TCLP) results of the raw sludge showed concentrations of lead, silver and cadmium which were in excess of land disposal restrictions (LDR). Crushed, borosilicate glass was used as a frit source to produce a highly desirable, vitrified, product that required less energy to produce. TCLP testing, of microwaved samples, showed favorable results for 40 and 50% waste loading. The results of this study are encouraging and support the development of microwave vitrification technology for the treatment of various mixed waste streams at Rocky Flats Environmental Technology Site. However, additional experiments are required to fully define the operating parameters for a production-scale system.

  1. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1997 annual progress report

    SciTech Connect (OSTI)

    Doctor, R.; Nunez, L.; Cicero-Herman, C.A.; Ritter, J.A.; Landsberger, S.

    1997-01-01

    'Vitrification has been selected as a final waste form technology in the US for long-term storage of high-level radioactive wastes (HLW). However, a foreseeable problem during vitrification in some waste feed streams lies in the presence of elements (e.g., transition metals) in the HLW that may cause instabilities in the final glass product. The formation of spinel compounds, such as Fe{sub 3}O{sub 4} and FeCrO{sub 4}, results in glass phase separation and reduces vitrifier lifetime, and durability of the final waste form. A superconducting open gradient magnetic separation (OGMS) system maybe suitable for the removal of the deleterious transition elements (e.g. Fe, Co, and Ni) and other elements (lanthanides) from vitrification feed streams due to their ferromagnetic or paramagnetic nature. The OGMS systems are designed to deflect and collect paramagnetic minerals as they interact with a magnetic field gradient. This system has the potential to reduce the volume of HLW for vitrification and ensure a stable product. In order to design efficient OGMS and High gradient magnetic separation (HGMS) processes, a fundamental understanding of the physical and chemical properties of the waste feed streams is required. Using HLW simulant and radioactive fly ash and sludge samples from the Savannah River Technology Center, Rocky Flats site, and the Hanford reservation, several techniques were used to characterize and predict the separation capability for a superconducting OGMS system.'

  2. Renewable Electricity Futures Study Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Broader source: Energy.gov [DOE]

    This volume focuses on the role of variable renewable generation in creating challenges to the planning and operations of power systems and the expansion of transmission to deliver electricity from remote resources to load centers. The technical and institutional changes to power systems that respond to these challenges are, in many cases, underway, driven by the economic benefits of adopting more modern communication, information, and computation technologies that offer significant operational cost savings and improved asset utilization. While this volume provides background information and numerous references, the reader is referred to the literature for more complete tutorials.

  3. Thermal spray vitrification process for the removal of lead oxide contained in organic paints

    SciTech Connect (OSTI)

    Karthikeyan, J.; Chen, J.; Bancke, G.A.; Herman, H.; Berndt, C.C.; Breslin, V.T.

    1995-12-31

    The US Environmental Protection Agency (US-EPA) regulations have necessitated the removal and containment of toxic lead from lead oxide containing paints. The Thermal Spray Vitrification Process (TSVP) is a novel technique in which a glass powder of appropriate composition is flame sprayed onto the painted surface to achieve removal and vitrification of the lead. Two different glass systems, i.e., alkali silicate and ferrous silicate, were chosen for detailed study. Appropriate amounts of raw materials were mixed, fused, quenched, ground and sieved to obtain the spray quality powders. Grit blasted mild steel coupons were used as test substrates for the spray parameter optimization studies; while those coupons with lead oxide containing organic paint were used for the lead removal experiments. The powders and deposits were investigated using Microtrac particle size analysis (for powders), optical microscopy, XRD and SEM. The remnant lead in the panel was measured using a specially prepared X-Ray Fluorescence (XRF) system. The lead leach rate was recorded as per US-EPA approved Toxicity Characteristic Leaching Procedure (TCLP). The results of this study have shown that lead oxide can be successfully removed form the paint by flame spraying a maximum of three layers of glass onto the painted surface. It is possible to obtain much higher lead removal rate with ferrous silicate glass as compared to alkali silicate glass is much higher than the ferrous silicate glass. The in situ vitrification has not been completely optimized; however, the lead containing glass coating can be remelted in situ or on site to enhance the vitrification of the lead which had been absorbed in the glass coating.

  4. Low-level waste vitrification plant environmental permitting plan

    SciTech Connect (OSTI)

    Gretsinger, W.T.; Colby, J.M.

    1994-10-03

    This document presents projected environmental permitting and approval requirements for the treatment and disposal of low-level Hanford tank waste by vitrification. Applicability, current status, and strategy are discussed for each potential environmental permit or approval.

  5. Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

    Office of Environmental Management (EM)

    6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-046 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S.

  6. Commercial LFCM vitrification technology. Quarterly progress report, October-December 1984

    SciTech Connect (OSTI)

    Burkholder, H.C.; Jarrett, J.H. (comps.)

    1985-07-01

    This report is the first in a series of quarterly reports compiled by the Nuclear Waste Treatment Program Office at Pacific Northwest Laboratory to document progress on commercial liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1985 is discussed: pretreatment systems, melting process chemistry, glass development and characterization, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, process/product modeling and control, and supporting studies. 33 figs., 12 tabs.

  7. Plasmonic excitations in ZnO/Ag/ZnO multilayer systems: Insight into interface and bulk electronic properties

    SciTech Connect (OSTI)

    Philipp, Martin; Knupfer, Martin; Buechner, Bernd; Gerardin, Hadia

    2011-03-15

    Electron energy-loss spectroscopy experiments in transmission were carried out on silver-based multi-layer systems, consisting of a silver layer of various thicknesses (8, 10 and 50 nm) sandwiched between two Al-doped ZnO layers. The films were produced by magnetron sputtering using potassium bromide single crystals as substrates. The electronic structure of these systems was probed and analyzed with respect to their plasmonic excitations, which can be basically split up into excitations of the electrons in the bulk silver and excitations at the ZnO:Al/Ag interface. A detailed examination of the momentum dependence of the plasmon peaks revealed a positive dispersion for both, the volume and the interface plasmon, where only for the first one a quadratic behavior (as expected for a free electron gas) could be observed. Furthermore, the peak width was analyzed and set into relation to electrical conductivity measurements by calculating the plasmon lifetime and the electron scattering rate. Here, a good agreement between these different methods was obtained.

  8. Vitrification development plan for US Department of Energy mixed wastes

    SciTech Connect (OSTI)

    Peters, R.; Lucerna, J.; Plodinec, M.J.

    1993-10-01

    This document is a general plan for conducting vitrification development for application to mixed wastes owned by the US Department of Energy. The emphasis is a description and discussion of the data needs to proceed through various stages of development. These stages are (1) screening at a waste site to determine which streams should be vitrified, (2) waste characterization and analysis, (3) waste form development and treatability studies, (4) process engineering development, (5) flowsheet and technical specifications for treatment processes, and (6) integrated pilot-scale demonstration. Appendices provide sample test plans for various stages of the vitrification development process. This plan is directed at thermal treatments which produce waste glass. However, the study is still applicable to the broader realm of thermal treatment since it deals with issues such as off-gas characterization and waste characterization that are not necessarily specific to vitrification. The purpose is to provide those exploring or considering vitrification with information concerning the kinds of data that are needed, the way the data are obtained, and the way the data are used. This will provide guidance to those who need to prioritize data needs to fit schedules and budgets. Knowledge of data needs also permits managers and planners to estimate resource requirements for vitrification development.

  9. Waste vitrification projects throughout the US initiated by SRS

    SciTech Connect (OSTI)

    Jantzen, C.M.; Whitehouse, J.C.; Smith, M.E.; Ramsey, W.G.; Pickett, J.B.

    1996-05-01

    Technologies are being developed by the US Department of Energy (DOE) Nuclear Facility sites to convert high-level, low-level, and mixed wastes to a solid stabilized waste form for permanent disposal. Vitrification is one of the most important and environmentally safest technologies being developed. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The Defense Waste Processing Facility (DWPF) being tested at Savannah River Site (SRS) will soon begin vitrifying the high-level waste at SRS. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both the current and future regulatory specifications. Vitrification produces durable waste forms at volume reductions up to 97%. Large reductions in volume minimize long-term storage costs making vitrification cost effective on a life cycle basis.

  10. Waste Vitrification Projects Throughout the US Initiated by SRS

    SciTech Connect (OSTI)

    Jantzen, C.M.; Whitehouse, J.C.; Smith, M.E.; Pickett, J.B.; Peeler, D.K.

    1998-05-01

    Technologies are being developed by the U. S. Department of Energy`s (DOE) Nuclear Facility sites to convert high-level, low-level, and mixed wastes to a solid stabilized waste form for permanent disposal. Vitrification is one of the most important and environmentally safest technologies being developed. The Environmental Protection Agency (EPA) has declared vitrification the best demonstrated available technology for high-level radioactive waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The Defense Waste Processing Facility being tested at will soon start vitrifying the high-level waste at. The DOE Office of Technology Development has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Vitrification produces durable waste forms at volume reductions up to 97%. Large reductions in volume minimize long-term storage costs making vitrification cost effective on a life cycle basis.

  11. Process for treating alkaline wastes for vitrification

    DOE Patents [OSTI]

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  12. Process for treating alkaline wastes for vitrification

    DOE Patents [OSTI]

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  13. Process for treating alkaline wastes for vitrification

    DOE Patents [OSTI]

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  14. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    SciTech Connect (OSTI)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P.

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  15. Thermal Cycling on Fatigue Failure of the Plutonium Vitrification Melter

    SciTech Connect (OSTI)

    Jordan, Jeffrey; Gorczyca, Jennifer

    2009-02-11

    One method for disposition of excess plutonium is vitrification into cylindrical wasteforms. Due to the hazards of working with plutonium, the vitrification process must be carried out remotely in a shielded environment. Thus, the equipment must be easily maintained. With their simple design, induction melters satisfy this criterion, making them ideal candidates for plutonium vitrification. However, due to repeated heating and cooling cycles and differences in coefficients of thermal expansion of contacting materials fatigue failure of the induction melter is of concern. Due to the cost of the melter, the number of cycles to failure is critical. This paper presents a method for determining the cycles to failure for an induction melter by using the results from thermal and structural analyses as input to a fatigue failure model.

  16. Vitrification of Polyvinyl Chloride Waste from Korean Nuclear Power Plants

    SciTech Connect (OSTI)

    Sheng, Jiawei [Kyoto University (Japan); Choi, Kwansik [Nuclear Environment Technology Institute (Korea, Republic of); Yang, Kyung-Hwa [Nuclear Environment Technology Institute (Korea, Republic of); Lee, Myung-Chan [Nuclear Environment Technology Institute (Korea, Republic of); Song, Myung-Jae [Nuclear Environment Technology Institute (Korea, Republic of)

    2000-02-15

    Vitrification is considered as an economical and safe treatment technology for low-level radioactive waste (LLW) generated from nuclear power plants (NPPs). Korea is in the process of preparing for its first ever vitrification plant to handle LLW from its NPPs. Polyvinyl chloride (PVC) has the largest volume of dry active wastes and is the main waste stream to treat. Glass formulation development for PVC waste is the focus of study. The minimum additive waste stabilization approach has been utilized in vitrification. It was found that glasses can incorporate a high content of PVC ash (up to 50 wt%), which results in a large volume reduction. A glass frit, KEP-A, was developed to vitrify PVC waste after the optimization of waste loading, melt viscosity, melting temperature, and chemical durability. The KEP-A could satisfactorily vitrify PVC with a waste loading of 30 to 50 wt%. The PVC-frit was tolerant of variations in waste composition.

  17. Feasibility Study for Vitrification of Sodium-Bearing Waste

    SciTech Connect (OSTI)

    J. J. Quigley; B. D. Raivo; S. O. Bates; S. M. Berry; D. N. Nishioka; P. J. Bunnell

    2000-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated under a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is the complete calcination (i.e., treatment) of all SBW by December 31, 2012. One of the proposed options for treatment of SBW is vitrification. This study will examine the viability of SBW vitrification. This study describes the process and facilities to treat the SBW, from beginning waste input from INTEC Tank Farm to the final waste forms. Schedules and cost estimates for construction and operation of a Vitrification Facility are included. The study includes a facility layout with drawings, process description and flow diagrams, and preliminary equipment requirements and layouts.

  18. Hanford Waste Vitrification Plant technical manual

    SciTech Connect (OSTI)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  19. Workers Continue Progress in Installing Equipment for Vitrification Facility

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Workers recently completed installing two of the last major pieces of equipment for the EM Office of River Protection’s Low-Activity Waste (LAW) Vitrification Facility at the Hanford Site’s Waste Treatment and Immobilization Plant (WTP).

  20. Nuclear waste vitrification efficiency: cold cap reactions

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Kruger, Albert A.; Pokorny, Richard

    2012-12-15

    . The model demonstrates that batch foaming has a decisive influence on the rate of melting. Understanding the dynamics of the foam layer at the bottom of the cold cap and the heat transfer through it appears crucial for a reliable prediction of the rate of melting as a function of the melter-feed makeup and melter operation parameters. Although the study is focused on a batch for waste vitrification, the authors expect that the outcome will also be relevant for commercial glass melting.

  1. NUCLEAR WASTE VITRIFICATION EFFICIENCY COLD CAP REACTIONS

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR; POKORNY R

    2011-07-29

    and melter conditions. The model demonstrates that batch foaming has a decisive influence on the rate of melting. Understanding the dynamics of the foam layer at the bottom of the cold cap and the heat transfer through it appears crucial for a reliable prediction of the rate of melting as a function of the melter-feed makeup and melter operation parameters. Although the study is focused on a batch for waste vitrification, the authors expect that the outcome will also be relevant for commercial glass melting.

  2. Vitrification of ion exchange materials. Innovative technology summary report

    SciTech Connect (OSTI)

    Not Available

    1999-07-01

    Ion exchange is a process that safely and efficiently removes radionuclides from tank waste. Cesium and strontium account for a large portion of the radioactivity in waste streams from US Department of Energy (DOE) weapons production. Crystalline silicotitanate (CST) is an inorganic sorbent that strongly binds cesium, strontium, and several other radionuclides. Developed jointly by Sandia National Laboratory and Texas A and M University, CST was commercialized through a cooperative research and development agreement with an industrial partner. Both an engineered (mesh pellets) and powdered forms are commercially available. Cesium removal is a baseline in HLW treatment processing. CST is very effective at removing cesium from HLW streams and is being considered for adoption at several sites. However, CST is nonregenerable, and it presents a significant secondary waste problem. Treatment options include vitrification of the CST, vitrification of the CST coupled with HLW, direct disposal, and low-temperature processes such as grouting. The work presented in this report demonstrates that it is effective to immobilize CST using a baseline technology such as vitrification. Vitrification produces a durable waste form. CST vitrification was not demonstrated before 1996. In FY97, acceptable glass formulations were developed using cesium-loaded CST obtained from treating supernatants from Oak Ridge Reservation (ORR) tanks, and the CST was vitrified in a research melter at the Savannah River Technology Center (SRTC). In FY98, SRS decided to reevaluate the use of in-tank precipitation using tetraphenylborate to remove cesium from tank supernatant and to consider other options for cesium removal, including CST. Hanford and Idaho National Engineering and Environmental Laboratory also require radionuclide removal in their baseline flowsheets.

  3. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Huff, Georgianne; Tong, Nellie; Fioravanti, Richard; Gordon, Paul; Markel, Larry; Agrawal, Poonum; Nourai, Ali

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  4. Choosing solidification or vitrification for low-level radioactive and mixed waste treatment

    SciTech Connect (OSTI)

    Gimpel, R.F.

    1992-02-14

    Solidification (making concrete) and vitrification (making glass) are frequently the treatment methods recommended for treating inorganic or radioactive wastes. Solidification is generally perceived as the most economical treatment method. Whereas, vitrification is considered (by many) as the most effective of all treatment methods. Unfortunately, vitrification has acquired the stigma that it is too expensive to receive further consideration as an alternative to solidification in high volume treatment applications. Ironically, economic studies, as presented in this paper, show that vitrification may be more competitive in some high volume applications. Ex-situ solidification and vitrification are the competing methods for treating in excess of 450 000m{sup 3} of low-level radioactive and mixed waste at the Fernald Environmental Management Project (FEMP or simply, Fernald) located near Cincinnati, Ohio. This paper summarizes how Fernald is choosing between solidification and vitrification as the primary waste treatment method.

  5. Support for the in situ vitrification treatability study at the Idaho National Engineering Laboratory: FY 1988 summary

    SciTech Connect (OSTI)

    Oma, K.H.; Reimus, M.A.H.; Timmerman, C.L.

    1989-02-01

    The objective of this project is to determine if in situ vitrification (ISV) is a viable, long-term confinement technology for previously buried solid transuranic and mixed waste at the Radioactive Waste Management Complex (RWMC). The RWMC is located at the Idaho National Engineering Laboratory (INEL). In situ vitrification is a thermal treatment process that converts contaminated soils and wastes into a durable glass and crystalline form. During processing, heavy metals or other inorganic constituents are retained and immobilized in the glass structure, and organic constituents are typically destroyed or removed for capture by an off-gas treatment system. The primary FY 1988 activities included engineering-scale feasibility tests on INEL soils containing a high metals loading. Results of engineering-scale testing indicate that wastes with a high metals content can be successfully processed by ISV. The process successfully vitrified soils containing localized metal concentrations as high as 42 wt % without requiring special methods to prevent electrical shorting within the melt zone. Vitrification of this localized concentration resulted in a 15.9 wt % metals content in the entire ISV test block. This ISV metals limit is related to the quantity of metal that accumulates at the bottom of the molten glass zone. Intermediate pilot-scale testing is recommended to determine metals content scale-up parameters in order to project metals content limits for large-scale ISV operation at INEL.

  6. Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository

    SciTech Connect (OSTI)

    Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

    1994-11-01

    The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE`s investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4).

  7. Rotary bulk solids divider

    DOE Patents [OSTI]

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  8. ROTARY BULK SOLIDS DIVIDER

    DOE Patents [OSTI]

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  9. Vitrification of low-level radioactive waste in a slagging combustor

    SciTech Connect (OSTI)

    Holmes, M.J.; Downs, W.; Higley, B.A. [and others

    1995-07-01

    The suitability of a Babcock & Wilcox cyclone furnace to vitrify a low-level radioactive liquid waste was evaluated. The feed stream contained a mixture of simulated radioactive liquid waste and glass formers. The U.S. Department of Energy is testing technologies to vitrify over 60,000,000 gallons of this waste at the Hanford site. The tests reported here demonstrated the technical feasibility of Babcock & Wilcox`s cyclone vitrification technology to produce a glass for near surface disposal. Glass was produced over a period of 24-hours at a rate of 100 to 150 lb/hr. Based on glass analyses performed by an independent laboratory, all of the glass samples had leachabilities at least as low as those of the laboratory glass that the recipe was based upon. This paper presents the results of this demonstration, and includes descriptions of feed preparation, glass properties, system operation, and flue gas composition. The paper also provides discussions on key technical issues required to match cyclone furnace vitrification technology to this U.S. Department of Energy Hanford site application.

  10. The role of troublesome components in plutonium vitrification

    SciTech Connect (OSTI)

    Li, Hong; Vienna, J.D.; Peeler, D.K.; Hrma, P.; Schweiger, M.J.

    1996-05-01

    One option for immobilizing surplus plutonium is vitrification in a borosilicate glass. Two advantages of the glass form are (1) high tolerance to feed variability and, (2) high solubility of some impurity components. The types of plutonium-containing materials in the United States inventory include: pits, metals, oxides, residues, scrap, compounds, and fuel. Many of them also contain high concentrations of carbon, chloride, fluoride, phosphate, sulfate, and chromium oxide. To vitrify plutonium-containing scrap and residues, it is critical to understand the impact of each component on glass processing and chemical durability of the final product. This paper addresses glass processing issues associated with these troublesome components. It covers solubility limits of chlorine, fluorine, phosphate, sulfate, and chromium oxide in several borosilicate based glasses, and the effect of each component on vitrification (volatility, phase segregation, crystallization, and melt viscosity). Techniques (formulation, pretreatment, removal, and/or dilution) to mitigate the effect of these troublesome components are suggested.

  11. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    SciTech Connect (OSTI)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facility intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.

  12. Babcock and Wilcox cyclone furnace vitrification. Technology demonstration summary

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    A Superfund Innovative Technology Evaluation (SITE) Demonstration of the Babcock and Wilcox Cyclone Furnace Vitrification Technology was conducted in November 1991. This Demonstration occurred at the Babcock and Wilcox (B and W) Alliance Research Center (ARC) in Alliance, OH. The B and W cyclone furnace may be used for thermal treatment of soils contaminated with organics, metals, and radionuclides. The cyclone furnace is designed to destroy organic contaminants and to immobilize metals and radionuclides in a vitrified soil matrix (slag).

  13. Microsoft Word - FINAL_TWC_Feb07_summary_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ......... 6 Demonstration Bulk Vitrification System ... John also updated the committee on T-Farm Interim Surface Barrier Demonstration, which is ...

  14. Hanford Waste Vitrification Plant Quality Assurance Program description: Overview and applications. Revision 3, Part 1

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This document (Parts 1 and 2) describes the requirements that must be implemented during the design and construction phases for the Hanford Waste Vitrification Plant Project Quality Assurance Program. This program is being implemented to ensure the acceptability of high-level radioactive canistered waste forms produced by the Hanford Waste Vitrification Plant for disposal in a licensed federal repository.

  15. Method for initiating in-situ vitrification using an impregnated cord

    DOE Patents [OSTI]

    Carter, John G.

    1991-01-01

    In-situ vitrification of soil is initiated by placing a cord of dielectric material impregnated with conductive material in thermally-conductive contact with the soil, and energizing the cord with an electric current for heating the cord and starting the vitrification process.

  16. Method for initiating in-situ vitrification using an impregnated cord

    DOE Patents [OSTI]

    Carter, J.G.

    1991-04-02

    In-situ vitrification of soil is initiated by placing a cord of dielectric material impregnated with conductive material in thermally-conductive contact with the soil, and energizing the cord with an electric current for heating the cord and starting the vitrification process. 1 figure.

  17. Review of FY 2001 Development Work for Vitrification of Sodium Bearing Waste

    SciTech Connect (OSTI)

    Taylor, Dean Dalton; Barnes, Charles Marshall

    2002-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  18. Review of FY2001 Development Work for Vitrification of Sodium Bearing Waste

    SciTech Connect (OSTI)

    Barnes, C.M.; Taylor, D.D.

    2002-09-09

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  19. Vitrification of plutonium at Rocky Flats the argument for a pilot plant

    SciTech Connect (OSTI)

    Moore, L.

    1996-05-01

    Current plans for stabilizing and storing the plutonium at Rocky Flats Plant fail to put the material in a form suitable for disposition and resistant to proliferation. Vitrification should be considered as an alternate technology. The vitrification should begin with a small-scale pilot plant.

  20. Hanford’s Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    SciTech Connect (OSTI)

    Witwer, Keith S.; Dysland, Eric J.; Garfield, J. S.; Beck, T. H.; Matyas, Josef; Bagaasen, Larry M.; Cooley, Scott K.; Pierce, Eric M.; Kim, Dong-Sang; Schweiger, Michael J.

    2008-02-22

    The GeoMelt® In-Container Vitrification™ (ICV™) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford’s low-activity waste (LAW). Also referred to as “bulk vitrification,” this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV™ technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV™ process before operating the Hanford pilot-plant. In 2007, the project’s fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV™ melter with a 10,000-liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting

  1. Hanford's Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    SciTech Connect (OSTI)

    Witwer, K.S.; Dysland, E.J.; Garfield, J.S.; Beck, T.H.; Matyas, J.; Bagaasen, L.M.; Cooley, S.K.; Pierce, E.; Kim, D.S.; Schweiger, M.J.

    2008-07-01

    The GeoMelt{sup R} In-Container Vitrification{sup TM} (ICV{sup TM}) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford's low-activity waste (LAW). Also referred to as 'bulk vitrification', this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV{sup TM} technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV{sup TM} process before operating the Hanford pilot-plant. In 2007, the project's fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV{sup TM} melter with a 10,000- liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test

  2. Chemical durability of soda-lime-aluminosilicate glass for radioactive waste vitrification

    SciTech Connect (OSTI)

    Eppler, F.H.; Yim, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1998-09-01

    Vitrification has been identified as one of the most viable waste treatment alternatives for nuclear waste disposal. Currently, the most popular glass compositions being selected for vitrification are the borosilicate family of glasses. Another popular type that has been around in glass industry is the soda-lime-silicate variety, which has often been characterized as the least durable and a poor candidate for radioactive waste vitrification. By replacing the boron constituent with a cheaper substitute, such as silica, the cost of vitrification processing can be reduced. At the same time, addition of network intermediates such as Al{sub 2}O{sub 3} to the glass composition increases the environmental durability of the glass. The objective of this study is to examine the ability of the soda-lime-aluminosilicate glass as an alternative vitrification tool for the disposal of radioactive waste and to investigate the sensitivity of product chemical durability to variations in composition.

  3. Tank Waste Remediation System optimized processing strategy

    SciTech Connect (OSTI)

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  4. Operating experience during high-level waste vitrification at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    Valenti, P.J.; Elliott, D.I.

    1999-01-01

    This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

  5. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    SciTech Connect (OSTI)

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  6. Large area bulk superconductors

    DOE Patents [OSTI]

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  7. Bulk Data Mover

    SciTech Connect (OSTI)

    2011-01-03

    Bulk Data Mover (BDM) is a high-level data transfer management tool. BDM handles the issue of large variance in file sizes and a big portion of small files by managing the file transfers with optimized transfer queue and concurrency management algorithms. For example, climate simulation data sets are characterized by large volume of files with extreme variance in file sizes. The BDN achieves high performance using a variety of techniques, including multi-thraded concurrent transfer connections, data channel caching, load balancing over multiple transfer servers, and storage i/o pre-fetching. Logging information from the BDM is collected and analyzed to study the effectiveness of the transfer management algorithms. The BDM can accept a request composed of multiple files or an entire directory. The request also contains the target site and directory where the replicated files will reside. If a directory is provided at the source, then the BDM will replicate the structure of the source directory at the target site. The BDM is capable of transferring multiple files concurrently as well as using parallel TCP streams. The optimal level of concurrency or parallel streams depends on the bandwidth capacity of the storage systems at both ends of the transfer as well as achievable bandwidth of the wide-area network. Hardware req.-PC, MAC, Multi-platform & Workstation; Software req.: Compile/version-Java 1.50_x or ablove; Type of files: source code, executable modules, installation instructions other, user guide; URL: http://sdm.lbl.gov/bdm/

  8. Vitrification of lead-based paint using thermal spray

    SciTech Connect (OSTI)

    Kumar, A.; Covey, S.W.; Lattimore, J.L.; Boy, J.H.

    1996-12-31

    Lead-based paint (LBP) primers have been used to protect steel structures from corrosion. Abrasive blasting is currently used to remove old LBP. During abrasive blasting a containment structure is required to keep the hazardous lead dust from contaminating air, soil, or water. A thermal spray vitrification (TSV) process to remove LBP was developed. Dried glass powder is melted in the high temperature flame of the thermal spray torch. When the glass strikes the substrate it is molten and reacts with the paint on the substrate. The organic components of the paint are pyrolyzed, while the lead ions are trapped on the surface of glass. The quenching stresses in the glass cause the glass to crack and spall off the substrate. The crumbled glass fragments can be collected and remelted, immobilizing the lead ions within the glass network, thereby preventing leaching. The resulting glass can be disposed of as non-hazardous waste. The process is dust-free, eliminating the need for containment. The volume of residue waste is less than for abrasive blasting and is nonhazardous. The concept and techniques of using the thermal spray vitrification process for the removal and the containment of lead from a section of a bridge containing lead-based paint have been successfully demonstrated.

  9. Radiological characterization of a vitrification facility for decommissioning

    SciTech Connect (OSTI)

    Asou, M. [CEA/DEN/VALRHO/UMODD, 30207 Bagnols-sur-Ceze Cedex (France); Le Goaller, C. [CEA/DEN/VALRHO/DDCO, 30207 Bagnols-sur-Ceze Cedex (France); Martin, F. [AREVA NC DAP/MOP (France)

    2007-07-01

    Cleanup operations in the Marcoule Vitrification Facility (AVM) will start in 2007. This plant includes 20 highly irradiating storage tanks for high-level liquid waste before vitrification. The objective of the cleanup phase is to significantly decrease the amount of highly radioactive waste resulting from dismantling. A comprehensive radiological survey of the plant was initiated in 2000. Most of the tanks were characterized using advanced technologies: gamma imaging, CdZnTe gamma spectroscopy, dose rate measurements and 3D calculations codes. At the same time, inspections were conducted to develop 3D geometrical models of the tanks. The techniques used and the main results obtained are described as well as lessons learned from these operations. The rinsing program was defined in 2006. Decontamination operations are expected to begin in 2007, and radiological surveys will be followed up to monitor the efficiency of the decontamination process. Specific rinsing of all tanks and equipment will be carried out from 2007 to 2009. Concentrated liquid solutions will be vitrified between 2008 and 2010; the decommissioning of AVM will be delayed until the end of 2010. This strategy aims at producing less than 5% 'B' type (long-lived intermediate-level) waste from the decommissioning operations, as well as reducing the dose rate and risks by simplified remote dismantling. The paper reviews the main options selected for decontamination, as well as the radiological characterization strategy. Some cost-related aspects will also be analyzed. (authors)

  10. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  11. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Techology and Engineering Center FY-2001 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Kirkham, Robert John; Losinski, Sylvester John

    2001-09-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  12. FINAL REPORT DETERMINATION OF THE PROCESSING RATE OF RPP WTP HLW SIMULANTS USING A DURAMELTER J 1000 VITRIFICATION SYSTEM VSL-00R2590-2 REV 0 8/21/00

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; KOT WK; PEREZ-CARDENAS F; PEGG IL

    2011-12-29

    This report provides data, analysis, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic University of America (VSL) to determine the melter processing rates that are achievable with RPP-WTP HLW simulants. The principal findings were presented earlier in a summary report (VSL-00R2S90-l) but the present report provides additional details. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. As a consequence of the limited amount of relevant information, there exists, for good reasons, a significant disparity between design-base specific glass production rates for the RPP-WTP LAW and HLW conceptual designs (1.0 MT/m{sup 2}/d and 0.4 MT/m{sup 2}/d, respectively); furthermore, small-scale melter tests with HLW simulants that were conducted during Part A indicated typical processing rates with bubbling of around 2.0 MT/m{sup 2}/d. This range translates into more than a factor of five variation in the resultant surface area of the HLW melter, which is clearly not without significant consequence. It is clear that an undersized melter is undesirable in that it will not be able to support the required waste processing rates. It is less obvious that there are potential disadvantages associated with an oversized melter, over and above the increased capital costs. A melt surface that is consistently underutilized will have poor cold cap coverage, which will result in increased volatilization from the melt (which is generally undesirable) and

  13. Integrating Wind and Solar Energy in the U.S. Bulk Power System: Lessons from Regional Integration Studies

    SciTech Connect (OSTI)

    Bird, L.; Lew, D.

    2012-09-01

    Two recent studies sponsored by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) have examined the impacts of integrating high penetrations of wind and solar energy on the Eastern and Western electric grids. The Eastern Wind Integration and Transmission Study (EWITS), initiated in 2007, examined the impact on power system operations of reaching 20% to 30% wind energy penetration in the Eastern Interconnection. The Western Wind and Solar Integration Study (WWSIS) examined the operational implications of adding up to 35% wind and solar energy penetration to the Western Interconnect. Both studies examined the costs of integrating variable renewable energy generation into the grid and transmission and operational changes that might be necessary to address higher penetrations of wind or solar generation. This paper identifies key insights from these regional studies for integrating high penetrations of renewables in the U.S. electric grid. The studies share a number of key findings, although in some instances the results vary due to differences in grid operations and markets, the geographic location of the renewables, and the need for transmission.

  14. Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes

    SciTech Connect (OSTI)

    McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N.

    1994-10-20

    This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

  15. Bulk Data Mover

    Energy Science and Technology Software Center (OSTI)

    2011-01-03

    Bulk Data Mover (BDM) is a high-level data transfer management tool. BDM handles the issue of large variance in file sizes and a big portion of small files by managing the file transfers with optimized transfer queue and concurrency management algorithms. For example, climate simulation data sets are characterized by large volume of files with extreme variance in file sizes. The BDN achieves high performance using a variety of techniques, including multi-thraded concurrent transfer connections,more » data channel caching, load balancing over multiple transfer servers, and storage i/o pre-fetching. Logging information from the BDM is collected and analyzed to study the effectiveness of the transfer management algorithms. The BDM can accept a request composed of multiple files or an entire directory. The request also contains the target site and directory where the replicated files will reside. If a directory is provided at the source, then the BDM will replicate the structure of the source directory at the target site. The BDM is capable of transferring multiple files concurrently as well as using parallel TCP streams. The optimal level of concurrency or parallel streams depends on the bandwidth capacity of the storage systems at both ends of the transfer as well as achievable bandwidth of the wide-area network. Hardware req.-PC, MAC, Multi-platform & Workstation; Software req.: Compile/version-Java 1.50_x or ablove; Type of files: source code, executable modules, installation instructions other, user guide; URL: http://sdm.lbl.gov/bdm/« less

  16. Letter report: Pre-conceptual design study for a pilot-scale Non-Radioactive Low-Level Waste Vitrification Facility

    SciTech Connect (OSTI)

    Thompson, R.A.; Morrissey, M.F.

    1996-03-01

    This report presents a pre-conceptual design study for a Non-Radioactive Low-Level Waste, Pilot-Scale Vitrification System. This pilot plant would support the development of a full-scale LLW Vitrification Facility and would ensure that the full-scale facility can meet its programmatic objectives. Use of the pilot facility will allow verification of process flowsheets, provide data for ensuring product quality, assist in scaling to full scale, and support full-scale start-up. The facility will vitrify simulated non-radioactive LLW in a manner functionally prototypic to the full-scale facility. This pre-conceptual design study does not fully define the LLW Pilot-Scale Vitrification System; rather, it estimates the funding required to build such a facility. This study includes identifying all equipment necessary. to prepare feed, deliver it into the melter, convert the feed to glass, prepare emissions for atmospheric release, and discharge and handle the glass. The conceived pilot facility includes support services and a structure to contain process equipment.

  17. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report

    SciTech Connect (OSTI)

    Herborn, D.I.

    1992-10-01

    This manual describes the overall WHC safety analysis process in terms of requirements for safety analyses, responsibilities of the various contributing organizations, and required reviews and approvals for the Hanford Waste Vitrification Plant.

  18. Waste-Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project Vitrification Melter

    Broader source: Energy.gov [DOE]

    The Department of Energy has evaluated whether the Vitrification Melter at the West Valley Demonstration Project in New York meets the waste-incidental-to reprocessing criteria of Department of Energy Manual 435.1-1, Radioactive Waste Management Manual.

  19. Cold cap subsidence for in situ vitrification and electrodes therefor

    DOE Patents [OSTI]

    Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.

    1992-01-01

    An electrode for use in in situ vitrification of soil comprises a molybdenum rod received within a conductive sleeve or collar formed of graphite. Electrodes of this type are placed on either side of a region containing buried waste material and an electric current is passed therebetween for vitrifying the soil between the electrodes. The graphite collar enhances the thermal conductivity of the electrode, bringing heat to the surface, and preventing the formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is filled with a conductive ceramic powder of a type that sinters upon the molybdenum rod, protecting the same from oxidation as the graphite material is consumed, or a metal powder which liquifies at operating temperatures. The molybdenum rod in the former case may be coated with an oxidation protectant, e.g. of molybdenum disilicide. As insulative blanket is suitably placed on the surface of the soil during processing to promote subsidence by allowing off-gassing and reducing surface heat loss. In other embodiments, connection to vitrification electrodes is provided below ground level to avoid loss of connection due to electrodes deterioration, or a sacrificial electrode may be employed when operation is started. Outboard electrodes can be utilized to square up the vitrified area. Further, the center of the molybdenum rod can be made hollow and filled with a powdered metal, such as copper, which liquifies at operating temperatures. In one embodiment, the molybdenum rod and the graphite collar are physically joined at the bottom.

  20. Pilot-Scale Testing of In Situ Vitrification of Arnold Engineering Development Center Site 10 Contaminated Soils

    SciTech Connect (OSTI)

    Timmerman, C. L.; Peterson, M. E.

    1990-02-01

    Process verification testing using in situ vitrification (ISV) was successfully performed in a pilot-scale test using soils containing fuel oils and heavy metals from Site 10 Installation Restoration Program (IRP) at the Arnold Engineering Development Center (AEDC) located in the southern portion of middle Tennessee. This effort was directed through the U.S. Department of Energy ' s Hazardous Waste Remedial Action Program (HAZWRAP) Office managed by Martin Marietta Energy Systems. In situ vitrification is a thermal treatment process that converts contaminated soils and wastes into a durable product containing glass and crystalline phases. During processing, heavy metals or other inorganic constituents are retained and immobilized in the glass structure; organic constituents are typically destroyed or removed and captured by the off-gas treatment system. The objective of this test is to verify the applicability of the ISV process for stabilization of the contaminated soil at Site 10 . The pilotscale ISV testing results, reported herein, indicate that the AEDC Site 10 Fire Training Area may be successfully processed by ISV. Site 10 is a fire training pit that is contaminated with fuel oils and heavy metals from fire training exercises. Actual site material was processed by ISV to verify its feasible application to those soils . Initial feasibility bench-scale testing and analyses of the soils determined that a lower-melting, electrically conductive fluxing additive (such as sodium carbonate) is required as an additive to the soil for ISV processing to work effecti vely. The actual Site 10 soils showed a larger degree of compositional variation than the soil used for the bench-scale test . This variation dictates that each vitrification setting should be analyzed to determine the composition as. a function of depth and location . This data will dictate the amount (if any) of fluxing add itives of sodium and calci um to bring the melt composition to the recommended

  1. ADVANCED VITRIFICATION SYSTEM (RIC AVS) RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    J.R. Powell; M. Reich

    2003-06-30

    The objective of this AVS testing program is to use bench-scale test equipment to produce a vitrified product at maximum waste loading from the specified AZ-101 waste simulant and conduct a TTT analysis using laboratory scale melts to show compliance with the DOE Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS). The vitrified product complies with the following WAPS. A borosilicate glass with a waste loading of 60.9-wt% was produced from a slurry feed of AZ101 simulant. Glass durability testing, glass characterization testing, and testing methodology were performed in accordance with the Department of Energy approved Test Plan. The glass has two crystalline phases and good uniformity of composition. The Product Consistency Test on the 6 location-specific samples are at least 1 to 2 orders of magnitude below the mean PCT results for the EA glass. Standard deviations were less than 10% of measured values. The glass transition temperature averaged 658 {+-} 9 C. A TTT diagram was produced. There was measured cesium loss of about 2%, and compliance with the Universal Treatment Standards.

  2. Bulk Hauling Equipment for CHG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BULK HAULING EQUIPMENT FOR CHG Don Baldwin Director of Product Development - Hexagon Lincoln HEXAGON LINCOLN TITAN(tm) Module System Compressed Hydrogen Gas * Capacity 250 bar - 616 kg 350 bar - 809 kg 540 bar - 1155 kg * Gross Vehicle Weight (with prime mover) 250 bar - 28 450 kg 350 bar - 30 820 kg 540 bar - 39 440 kg * Purchase Cost 250 bar - $510,000 350 bar - $633,750 540 bar - $1,100,000 Compressed Natural Gas * Capacity (250 bar at 15 C) - 7412 kg * GVW (With prime mover) - 35 250 kg *

  3. Tank waste remediation system optimized processing strategy with an altered treatment scheme

    SciTech Connect (OSTI)

    Slaathaug, E.J.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  4. Vitrification of surrogate mixed wastes in a graphite electrode arc melter

    SciTech Connect (OSTI)

    Soelberg, N.R.; Chambers, A.G.; Ball, L.

    1995-11-01

    Demonstration tests for vitrifying mixed wastes and contaminated soils have been conducted using a small (800 kVA), industrial-scale, three-phase AC, graphite electrode furnace located at the Albany Research Center of the United States Bureau of Mines (USBM). The feed mixtures were non-radioactive surrogates of various types of mixed (radioactive and hazardous), transuranic-contaminated wastes stored and buried at the Idaho National Engineering Laboratory (INEL). The feed mixtures were processed with added soil from the INEL. Objectives being evaluated include (1) equipment capability to achieve desired process conditions and vitrification products for different feed compositions, (2) slag and metals tapping capability, (3) partitioning of transuranic elements and toxic metals among the furnace products, (4) slag, fume, and metal products characteristics, and (5) performance of the feed, furnace and air pollution control systems. The tests were successfully completed in mid-April 1995. A very comprehensive process monitoring, sampling and analysis program was included in the test program. Sample analysis, data reduction, and results evaluation are currently underway. Initial results indicate that the furnace readily processed around 20,000 lb of widely ranging feed mixtures at feedrates of up to 1,100 lb/hr. Continuous feeding and slag tapping was achieved. Molten metal was also tapped twice during the test program. Offgas emissions were efficiently controlled as expected by a modified air pollution control system.

  5. Widening the envelope of UK HLW vitrification - Experimental studies with high waste loadings and new product formulations on a full scale non-active vitrification plant

    SciTech Connect (OSTI)

    Short, R.; Gribble, N. [Nexia Solutions, Sellafield, Cumbria, CA20 1PG (United Kingdom); Riley, A. [Sellafield Ltd, Sellafield, Seascale, Cumbria, CA20 1PG, UK (United Kingdom)

    2008-07-01

    The Vitrification Test Rig is a full scale waste vitrification plant that processes non-radioactive liquid HLW simulants based on the active waste streams produced by the reprocessing plants in the UK. Previous work on the rig has primarily concerned increasing the operational envelopes for the active waste vitrification plants at Sellafield to accommodate higher throughputs of Blended waste streams, higher waste oxide incorporation rates in the vitrified products, and the incorporation of legacy waste streams from early reactor commissioning and reprocessing operations at Sellafield. Recent operations have focussed on four main areas; dilute liquid feeds, very high Magnox waste stream incorporation levels, alternative base glass formulations and providing an operational envelope for 28 %w/w Magnox waste vitrification. This paper details the work performed and the major findings of that work. In summary: The VTR has been successfully used to determine operational envelopes and product quality for several HLW feed variations that will allow WVP to increase overall plant throughput via increased waste loading in canisters, increased HLW feed rates or a combination of both. The VTR has also demonstrated the ability to go to waste incorporations, feed rates and glass compositions that are currently beyond WVP specified limits, but that are feasible for future vitrification regimes. In addition, the VTR has trialled dilute feeds similar to those that are likely to be received by WVP in the future and the data obtained from these experiments will allow WVP to prepare adequately for the high throughput challenge of such feeds. Furthermore, new equipment has been trialled on the VTR in water feed mode to determine its suitability and operational limitations for WVP. Future operations will, in the short term, be concerned with increasing the throughput of WVP and are likely to focus on HLW decommissioning operations waste streams in the longer term. (authors)

  6. Process Options Description for Vitrification Flowsheet Model of INEEL Sodium Bearing Waste

    SciTech Connect (OSTI)

    Nichols, T.T.; Taylor, D.D.; Lauerhass, L.; Barnes, C.M.

    2002-02-21

    The technical information required for the development of a basic steady-state process simulation of the vitrification treatment train of sodium bearing waste (SBW) at Idaho National Engineering and Environmental Laboratory (INEEL) is presented. The objective of the modeling effort is to provide the predictive capability required to optimize an entire treatment train and assess system-wide impacts of local changes at individual unit operations, with the aim of reducing the schedule and cost of future process/facility design efforts. All the information required a priori for engineers to construct and link unit operation modules in a commercial software simulator to represent the alternative treatment trains is presented. The information is of a mid- to high-level nature and consists of the following: (1) a description of twenty-four specific unit operations--their operating conditions and constraints, primary species and key outputs, and the initial modeling approaches that will be used in the first year of the simulation's development; (2) three potential configurations of the unit operations (trains) and their interdependencies via stream connections; and (3) representative stream compositional makeups.

  7. Interim data quality objectives for waste pretreatment and vitrification. Revision 1

    SciTech Connect (OSTI)

    Kupfer, M.J.; Conner, J.M.; Kirkbride, R.A.; Mobley, J.R.

    1994-09-15

    The Tank Waste Remediation System (TWRS) is responsible for storing, processing, and immobilizing the Hanford Site tank wastes. Characterization information on the tank wastes is needed so that safety concerns can be addressed, and retrieval, pretreatment, and immobilization processes can be designed, permitted, and implemented. This document describes the near-term tank waste sampling and characterization needs of the Pretreatment, High-Level Waste (HLW) Disposal, and Low-Level Waste (LLW) Disposal Programs to support the TWRS disposal mission. The final DQO (Data Quality Objective) will define specific waste tanks to be sampled, sample timing requirements, an appropriate analytical scheme, and a list of required analytes. This interim DQO, however, focuses primarily on the required analytes since the tanks to be sampled in FY 1994 and early FY 1995 are being driven most heavily by other considerations, particularly safety. The major objective of this Interim DQO is to provide guidance for tank waste characterization requirements for samples taken before completion of the final DQO. The characterization data needs defined herein will support the final DQO to help perform the following: Support the TWRS technical strategy by identification of the chemical and physical composition of the waste in the tanks and Guide development efforts to define waste pretreatment processes, which will in turn define HLW and LLW feed to vitrification processes.

  8. RAPID/BulkTransmission/Colorado | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Colorado. In addition, WECC provides...

  9. RAPID/BulkTransmission/Idaho | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Idaho. In addition, WECC provides an...

  10. RAPID/BulkTransmission/Washington | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Washington. In addition, WECC provides...

  11. RAPID/BulkTransmission/Nevada | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Nevada. WECC also provides an...

  12. RAPID/BulkTransmission/Arizona | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including Arizona. WECC also provides an...

  13. RAPID/BulkTransmission/Oregon | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including Oregon. WECC also provides an environment...

  14. Bulk-memory processor for data acquisition

    SciTech Connect (OSTI)

    Nelson, R.O.; McMillan, D.E.; Sunier, J.W.; Meier, M.; Poore, R.V.

    1981-01-01

    To meet the diverse needs and data rate requirements at the Van de Graaff and Weapons Neutron Research (WNR) facilities, a bulk memory system has been implemented which includes a fast and flexible processor. This bulk memory processor (BMP) utilizes bit slice and microcode techniques and features a 24 bit wide internal architecture allowing direct addressing of up to 16 megawords of memory and histogramming up to 16 million counts per channel without overflow. The BMP is interfaced to the MOSTEK MK 8000 bulk memory system and to the standard MODCOMP computer I/O bus. Coding for the BMP both at the microcode level and with macro instructions is supported. The generalized data acquisition system has been extended to support the BMP in a manner transparent to the user.

  15. Creating bulk nanocrystalline metal.

    SciTech Connect (OSTI)

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  16. Explosive bulk charge

    SciTech Connect (OSTI)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  17. NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE STATUS AND DIRECTION

    SciTech Connect (OSTI)

    RAMSEY WG; GRAY MF; CALMUS RB; EDGE JA; GARRETT BG

    2011-01-13

    Vitrification technology has been selected to treat high-level waste (HLW) at the Hanford Site, the West Valley Demonstration Project and the Savannah River Site (SRS), and low activity waste (LAW) at Hanford. In addition, it may potentially be applied to other defense waste streams such as sodium bearing tank waste or calcine. Joule-heated melters (already in service at SRS) will initially be used at the Hanford Site's Waste Treatment and Immobilization Plant (WTP) to vitrify tank waste fractions. The glass waste content and melt/production rates at WTP are limited by the current melter technology. Significant reductions in glass volumes and mission life are only possible with advancements in melter technology coupled with new glass formulations. The Next Generation Melter (NGM) program has been established by the U.S. Department of Energy's (DOE's), Environmental Management Office of Waste Processing (EM-31) to develop melters with greater production capacity (absolute glass throughput rate) and the ability to process melts with higher waste fractions. Advanced systems based on Joule-Heated Ceramic Melter (JHCM) and Cold Crucible Induction Melter (CCIM) technologies will be evaluated for HLW and LAW processing. Washington River Protection Solutions (WRPS), DOE's tank waste contractor, is developing and evaluating these systems in cooperation with EM-31, national and university laboratories, and corporate partners. A primary NGM program goal is to develop the systems (and associated flowsheets) to Technology Readiness Level 6 by 2016. Design and testing are being performed to optimize waste glass process envelopes with melter and balance of plant requirements. A structured decision analysis program will be utilized to assess the performance of the competing melter technologies. Criteria selected for the decision analysis program will include physical process operations, melter performance, system compatibility and other parameters.

  18. Micro benchtop optics by bulk silicon micromachining

    DOE Patents [OSTI]

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  19. Microfabricated bulk wave acoustic bandgap device (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Microfabricated bulk wave acoustic bandgap device Title: Microfabricated bulk wave acoustic bandgap device A microfabricated bulk wave acoustic bandgap device comprises a periodic ...

  20. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    SciTech Connect (OSTI)

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  1. Bench-scale vitrification studies with Savannah River Site mercury contaminated soil

    SciTech Connect (OSTI)

    Cicero, C.A.; Bickford, D.F.

    1995-12-31

    The Savannah River Technology Center (SRTC) has been charted by the Department of Energy (DOE)--Office of Technology Development (OTD) to investigate vitrification technology for the treatment of Low Level Mixed Wastes (LLMW). In fiscal year 1995, mercury containing LLMW streams were targeted. In order to successfully apply vitrification technology to mercury containing LLMW, the types and quantities of glass forming additives necessary for producing homogeneous glasses from the wastes have to be determined and the treatment for the mercury portion must also be determined. Selected additives should ensure that a durable and leach resistant waste form is produced, while the mercury treatment should ensure that hazardous amounts of mercury are not released into the environment. The mercury containing LLMW selected for vitrification studies at the SRTC was mercury contaminated soil from the TNX pilot-plant facility at the Savannah River Site (SRS). Samples of this soil were obtained so bench-scale vitrification studies could be performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability and leach resistance. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury.

  2. Orchestrating Bulk Data Movement in Grid Environments

    SciTech Connect (OSTI)

    Vazhkudai, SS

    2005-01-25

    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.

  3. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of Bulk Thermoelectric Materials for Power Generation Commercialization of Bulk Thermoelectric Materials for Power Generation Critical aspects of technology ...

  4. Effect of vitrification temperature upon the solar average absorptance properties of Pyromark Series 2500 black paint

    SciTech Connect (OSTI)

    Nelson, C.; Mahoney, A.R.

    1986-06-01

    A significant drop in production efficiency has occurred over time at the Solar One facility at Barstow, California, primarily as a result of the degradation of the Pyromark Series 2500 black paint used as the absorptive coating on the receiver panels. As part of the investigation of the problem, the solar-averaged adsorptance properties of the paint were determined as a function of vitrification temperature, since it is known that a significant amount of the panel surface area at Solar One was vitrified at temperatures below those recommended by the paint manufacturer (540/sup 0/C, 1000/sup 0/F). Painted samples initially vitrified at 230/sup 0/C (450/sup 0/F), 315/sup 0/C (600/sup 0/F), 371/sup 0/C (700/sup 0/F), and 480/sup 0/C (900/sup 0/F) exhibited significantly lower solar-averaged absorptance values (0.02 absorptance units) compared to samples vitrified at 540/sup 0/C (1000/sup 0/F). Thus, Solar One began its service life below optimal levels. After 140 h of thermal aging at 370/sup 0/C (700/sup 0/F) and 540/sup 0/C (1000/sup 0/F), all samples regardless of their initial vitrification temperatures, attained the same solar-averaged absorptance value (..cap alpha../sub s/ = 0.973). Therefore, both the long-term low-temperature vitrification and the short-term high-temperature vitrification can be used to obtain optimal or near-optimal absorptance of solar flux. Futher thermal aging of vitrified samples did not result in paint degradation, clearly indicating that high solar flux is required to produce this phenomenon. The panels at Solar One never achieved optimal absorptance because their exposure to high solar flux negated the effect of long-term low-temperature vitrification during operation. On future central receiver projects, every effort should be made to properly vitrify the Pyromark coating before its exposure to high flux conditions.

  5. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    SciTech Connect (OSTI)

    Jantzen, C.M.

    2000-04-10

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public.

  6. Fiber Bulk Gaseous Carriers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles * Learning from experience ... world experience EG, a system approach to impact and ... (State Fire Marshalls) * Business model not well understood ...

  7. High-Impact, Low-Frequency Risk to the North American Bulk Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Impact, Low-Frequency Risk to the North American Bulk Power System (June 2010) High-Impact, Low-Frequency Risk to the North American Bulk Power System (June 2010) A ...

  8. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report. Revision 2

    SciTech Connect (OSTI)

    Herborn, D.I.

    1992-10-01

    This manual describes the overall WHC safety analysis process in terms of requirements for safety analyses, responsibilities of the various contributing organizations, and required reviews and approvals for the Hanford Waste Vitrification Plant.

  9. R and D Programs and Policy within the CEA-AREVA Joint Vitrification Lab (LCV) - 13592

    SciTech Connect (OSTI)

    Piroux, Jean Christophe [AREVA NC Marcoule LCV (France)] [AREVA NC Marcoule LCV (France); Paradis, Luc; Ladirat, Christian [CEA Marcoule LCV (France)] [CEA Marcoule LCV (France); Brueziere, Jerome; Chauvin, Eric [AREVA NC Paris La Defense (France)] [AREVA NC Paris La Defense (France)

    2013-07-01

    Waste management is a key issue for the reprocessing industry; furthermore, vitrification is considered as the reference for nuclear waste management. In order to further improve and strengthen their historical cooperation in high temperature waste management, the CEA, R and D organization, and AREVA, Industrial Operator, decided, in September 2010, to create a Joint Vitrification Laboratory within the framework of a strategic partnership. The main objectives of the CEA-AREVA Joint Vitrification Laboratory (LCV) are (i) support AREVA's activities, notably in its La Hague plants and for new projects, (ii) strengthen the CEA's lead as a reference laboratory in the field of waste conditioning. The LCV is mandated to provide strong, innovative solutions through the performance of R and D on processes and materials for vitrification, fusion and incineration, for high, intermediate and low level waste. The activities carried out in the LCV include academic research on containment matrices (formulation, long-term behaviour), and the improvement of current technologies/development of new ones in lab-scale to full-scale pilot facilities, in non-radioactive and radioactive conditions, including modelling and experimental tools. This paper focuses on the programs and policy managed within the LCV, as well as the means employed by the CEA and AREVA to meet common short-,mid- and long-term challenges, from a scientific and industrial point of view. Among other things, we discuss the technical support provided for the La Hague vitrification facilities on hot melter and CCIM technologies, the start-up of new processes (decommissioning effluents, UMo FP) with CCIM, the preparation of future processes by means of an assessment of new technologies and containment matrices (improved glasses, ceramics, etc.), as well as incineration/vitrification for organic and metallic mixed waste or metallic fusion. The close relationship between the R and D teams and industrial operators enables

  10. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification. Revision 3, Part 2

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program.

  11. Modeling of NOx Destruction Options for INEEL Sodium-Bearing Waste Vitrification

    SciTech Connect (OSTI)

    Wood, Richard Arthur

    2001-09-01

    Off-gas NOx concentrations in the range of 1-5 mol% are expected as a result of the proposed vitrification of sodium-bearing waste at the Idaho National Engineering and Environmental Laboratory. An existing kinetic model for staged combustion (originally developed for NOx abatement from the calcination process) was updated for application to vitrification offgas. In addition, two new kinetic models were developed to assess the feasibility of using selective non-catalytic reduction (SNCR) or high-temperature alone for NOx abatement. Each of the models was developed using the Chemkin code. Results indicate that SNCR is a viable option, reducing NOx levels to below 1000 ppmv. In addition, SNCR may be capable of simultaneously reducing CO emissions to below 100 ppmv. Results for using high-temperature alone were not as promising, indicating that a minimum NOx concentration of 3950 ppmv is achievable at 3344°F.

  12. High temperature materials for radioactive waste incineration and vitrification. Revision 1

    SciTech Connect (OSTI)

    Bickford, D F; Ondrejcin, R S; Salley, L

    1986-01-01

    Incineration or vitrification of radioactive waste subjects equipment to alkaline or acidic fluxing, oxidation, sulfidation, carburization, and thermal shock. It is necessary to select appropriate materials of construction and control operating conditions to avoid rapid equipment failure. Nickel- and cobalt-based alloys with high chromium or aluminum content and aluminum oxide/chromium oxide refractories with high chromium oxide content have provided the best service in pilot-scale melter tests. Inconel 690 and Monofrax K-3 are being used for waste vitrification. Haynes 188 and high alumina refractory are undergoing pilot scale tests for incineration equipment. Laboratory tests indicate that alloys and refractories containing still higher concentrations of chromium or chromium oxide, such as Inconel 671 and Monofrax E, may provide superior resistance to attack in glass melter environments.

  13. Tank Waste Remediation System Projects Document Control Plan

    SciTech Connect (OSTI)

    Slater, G.D.; Halverson, T.G.

    1994-09-30

    The purpose of this Tank Waste Remediation System Projects Document Control Plan is to provide requirements and responsibilities for document control for the Hanford Waste Vitrification Plant (HWVP) Project and the Initial Pretreatment Module (IPM) Project.

  14. Hanford Waste Vitrification Plant technical background document for toxics best available control technology demonstration

    SciTech Connect (OSTI)

    1992-10-01

    This document provides information on toxic air pollutant emissions to support the Notice of Construction for the proposed Hanford Waste Vitrification Plant (HWVP) to be built at the the Department of Energy Hanford Site near Richland, Washington. Because approval must be received prior to initiating construction of the facility, state and federal Clean Air Act Notices of construction are being prepared along with necessary support documentation.

  15. Identification and summary characterization of materials potentially requiring vitrification: Background information

    SciTech Connect (OSTI)

    Croff, A.G.

    1996-05-13

    This document contains background information for the Workshop in general and the presentation entitled `Identification and Summary Characterization of Materials Potentially Requiring Vitrification` that was given during the first morning of the workshop. summary characteristics of 9 categories of US materials having some potential to be vitrified are given. This is followed by a 1-2 page elaborations for each of these 9 categories. References to more detailed information are included.

  16. Development of Vitrification Process and Glass Formulation for Nuclear Waste Conditioning

    SciTech Connect (OSTI)

    Petitjean, V.; Fillet, C.; Boen, R.; Veyer, C.; Flament, T.

    2002-02-26

    The vitrification of high-level waste is the internationally recognized standard to minimize the impact to the environment resulting from waste disposal as well as to minimize the volume of conditioned waste to be disposed of. COGEMA has been vitrifying high-level waste industrially for over 20 years and is currently operating three commercial vitrification facilities based on a hot metal crucible technology, with outstanding records of safety, reliability and product quality. To further increase the performance of vitrification facilities, CEA and COGEMA have been developing the cold crucible melter technology since the beginning of the 1980s. This type of melter is characterized by a virtually unlimited equipment service life and a great flexibility in dealing with various types of waste and allowing development of high temperature matrices. In complement of and in parallel with the vitrification process, a glass formulation methodology has been developed by the CEA in order to tailor matrices for the wastes to be conditioned while providing the best adaptation to the processing technology. The development of a glass formulation is a trade-off between material properties and qualities, technical feasibility, and disposal safety criteria. It involves non-radioactive and radioactive laboratories in order to achieve a comprehensive matrix qualification. Several glasses and glass ceramics have thus been studied by the CEA to be compliant with industrial needs and waste characteristics: glasses or other matrices for a large spectrum of fission products, or for high contents of specifics elements such as sodium, phosphate, iron, molybdenum, or actinides. New glasses or glass-ceramics designed to minimize the final wasteform volume for solutions produced during the reprocessing of high burnup fuels or to treat legacy wastes are now under development and take benefit from the latest CEA hot-laboratories and technology development. The paper presents the CEA state

  17. Test Summary Report INEEL Sodium-Bearing Waste Vitrification Demonstration RSM-01-1

    SciTech Connect (OSTI)

    Goles, Ronald W.; Perez, Joseph M.; Macisaac, Brett D.; Siemer, Darryl D.; Mccray, John A.

    2001-05-21

    The U.S. Department of Energy's Idaho National Engineering and Environmental Laboratory is storing large amounts of radioactive and mixed wastes. Most of the sodium-bearing wastes have been calcined, but about a million gallons remain uncalcined, and this waste does not meet current regulatory requirements for long-term storage and/or disposal. As a part of the Settlement Agreement between DOE and the State of Idaho, the tanks currently containing SBW are to be taken out of service by December 31, 2012, which requires removing and treatment the remaining SBW. Vitrification is the option for waste disposal that received the highest weighted score against the criteria used. Beginning in FY 2000, the INEEL high-level waste program embarked on a program for technology demonstration and development that would lead to conceptual design of a vitrification facility in the event that vitrification is the preferred alternative for SBW disposal. The Pacific Northwest National Laborator's Research-Scale Melter was used to conduct these initial melter-flowsheet evaluations. Efforts are underway to reduce the volume of waste vitrified, and during the current test, an overall SBW waste volume-reduction factor of 7.6 was achieved.

  18. Mixed Waste Treatment Cost Analysis for a Range of GeoMelt Vitrification Process Configurations

    SciTech Connect (OSTI)

    Thompson, L. E.

    2002-02-27

    GeoMelt is a batch vitrification process used for contaminated site remediation and waste treatment. GeoMelt can be applied in several different configurations ranging from deep subsurface in situ treatment to aboveground batch plants. The process has been successfully used to treat a wide range of contaminated wastes and debris including: mixed low-level radioactive wastes; mixed transuranic wastes; polychlorinated biphenyls; pesticides; dioxins; and a range of heavy metals. Hypothetical cost estimates for the treatment of mixed low-level radioactive waste were prepared for the GeoMelt subsurface planar and in-container vitrification methods. The subsurface planar method involves in situ treatment and the in-container vitrification method involves treatment in an aboveground batch plant. The projected costs for the subsurface planar method range from $355-$461 per ton. These costs equate to 18-20 cents per pound. The projected cost for the in-container method is $1585 per ton. This cost equates to 80 cents per pound. These treatment costs are ten or more times lower than the treatment costs for alternative mixed waste treatment technologies according to a 1996 study by the US Department of Energy.

  19. Bulk Electronic Structure of Quasicrystals (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Bulk Electronic Structure of Quasicrystals Prev Next Title: Bulk Electronic Structure of Quasicrystals Authors: Nayak, J. ; Maniraj, M. ; Rai, Abhishek ; Singh, Sanjay ; ...

  20. Bulk Electronic Structure of Quasicrystals (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Bulk Electronic Structure of Quasicrystals Citation Details In-Document Search Title: Bulk Electronic Structure of Quasicrystals Authors: Nayak, J. ; Maniraj, M. ; Rai, Abhishek ; ...

  1. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste ...

  2. RAPID/BulkTransmission | Open Energy Information

    Open Energy Info (EERE)

    regulatory processes and requirements by searching our regulatory flowchart library. Learn more about bulk transmission. BulkTransCoverage.png Regulations and permitting...

  3. Vitrification of HLW Produced by Uranium/Molybdenum Fuel Reprocessing in COGEMA's Cold Crucible Melter

    SciTech Connect (OSTI)

    Do Quang, R.; Petitjean, V.; Hollebecque, F.; Pinet, O.; Flament, T.; Prod'homme, A.

    2003-02-25

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R&D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  4. Waste-Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project Vitrification Melter - 12167

    SciTech Connect (OSTI)

    McNeil, Jim; Kurasch, David; Sullivan, Dan; Crandall, Thomas

    2012-07-01

    The Department of Energy (DOE) has determined that the vitrification melter used in the West Valley Demonstration Project can be disposed of as low-level waste (LLW) after completion of a waste-incidental-to-reprocessing evaluation performed in accordance with the evaluation process of DOE Manual 435.1-1, Radioactive Waste Management Manual. The vitrification melter - which consists of a ceramic lined, electrically heated box structure - was operated for more than 5 years melting and fusing high-level waste (HLW) slurry and glass formers and pouring the molten glass into 275 stainless steel canisters. Prior to shutdown, the melter was decontaminated by processing low-activity decontamination flush solutions and by extracting molten glass from the melter cavity. Because it could not be completely emptied, residual radioactivity conservatively estimated at approximately 170 TBq (4,600 Ci) remained in the vitrification melter. To establish whether the melter was incidental to reprocessing, DOE prepared an evaluation to demonstrate that the vitrification melter: (1) had been processed to remove key radionuclides to the maximum extent technically and economically practical; (2) would be managed to meet safety requirements comparable to the performance objectives for LLW established by the Nuclear Regulatory Commission (NRC); and (3) would be managed by DOE in accordance with DOE's requirements for LLW after it had been incorporated in a solid physical form with radionuclide concentrations that do not exceed the NRC concentration limits for Class C LLW. DOE consulted with the NRC on the draft evaluation and gave other stakeholders an opportunity to submit comments before the determination was made. The NRC submitted a request for additional information in connection with staff review of the draft evaluation; DOE provided the additional information and made improvements to the evaluation, which was issued in January 2012. DOE considered the NRC Technical Evaluation Report

  5. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report. Revision 3

    SciTech Connect (OSTI)

    Herborn, D.I.

    1993-11-01

    Westinghouse Hanford Company (WHC) is the Integrating Contractor for the Hanford Waste Vitrification Plant (HWVP) Project, and as such is responsible for preparation of the HWVP Preliminary Safety Analysis Report (PSAR). The HWVP PSAR was prepared pursuant to the requirements for safety analyses contained in US Department of Energy (DOE) Orders 4700.1, Project Management System (DOE 1987); 5480.5, Safety of Nuclear Facilities (DOE 1986a); 5481.lB, Safety Analysis and Review System (DOE 1986b) which was superseded by DOE order 5480-23, Nuclear Safety Analysis Reports, for nuclear facilities effective April 30, 1992 (DOE 1992); and 6430.lA, General Design Criteria (DOE 1989). The WHC procedures that, in large part, implement these DOE requirements are contained in WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual. This manual describes the overall WHC safety analysis process in terms of requirements for safety analyses, responsibilities of the various contributing organizations, and required reviews and approvals.

  6. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  7. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  8. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion

  9. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    SciTech Connect (OSTI)

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.

  10. Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process

    SciTech Connect (OSTI)

    Finucane, K.G. [AMEC Nuclear Holdings Ltd., GeoMelt Div., Richland, WA (United States); Thompson, L.E. [Capto Group LLC, Dallas, TX (United States); Abuku, T. [ISV Japan Ltd., Yokohama-city (Japan); Nakauchi, H. [Mie Chuo Kaihatsu Co. Ltd., Hachiya, Iga City (Japan)

    2008-07-01

    The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method for volume and toxicity minimization and radionuclide immobilization for UK radioactive asbestos mixed waste. The common practice to date for asbestos wastes is disposal in licensed landfills. In some cases, compaction techniques are used to minimize the disposal space requirements. However, such practices are becoming less practical. Social pressures have resulted in changes to disposal regulations which, in turn, have resulted in the closure of some landfills and increased disposal costs. In the UK, tens of thousands of tonnes of asbestos waste will result from the decommissioning of nuclear sites over the next 20 years. In Japan, it is estimated that over 40 million tonnes of asbestos materials used in construction will require disposal. Methods for the safe and cost effective volume reduction of asbestos wastes are being evaluated for many sites. The GeoMelt{sup R} vitrification process is being demonstrated at full-scale in Japan for the Japan Ministry of Environment and plans are being developed for the GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes. The full-scale treatment operations in Japan have also included contaminated soils and debris. The GeoMelt{sup R} vitrification process result in the maximum possible volume reduction, destroys the asbestos fibers, treats problematic debris associated with asbestos wastes, and immobilizes radiological contaminants within the resulting glass matrix. Results from recent full-scale treatment operations in Japan are discussed and plans for GeoMelt treatment of UK nuclear site